1
|
Dublin-Ryan LB, Bhadra AK, True HL. Disruption of the nascent polypeptide-associated complex leads to reduced polyglutamine aggregation and toxicity. PLoS One 2024; 19:e0303008. [PMID: 39146256 PMCID: PMC11326622 DOI: 10.1371/journal.pone.0303008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/25/2024] [Indexed: 08/17/2024] Open
Abstract
The nascent polypeptide-associate complex (NAC) is a heterodimeric chaperone complex that binds near the ribosome exit tunnel and is the first point of chaperone contact for newly synthesized proteins. Deletion of the NAC induces embryonic lethality in many multi-cellular organisms. Previous work has shown that the deletion of the NAC rescues cells from prion-induced cytotoxicity. This counterintuitive result led us to hypothesize that NAC disruption would improve viability in cells expressing human misfolding proteins. Here, we show that NAC disruption improves viability in cells expressing expanded polyglutamine and also leads to delayed and reduced aggregation of expanded polyglutamine and changes in polyglutamine aggregate morphology. Moreover, we show that NAC disruption leads to changes in de novo yeast prion induction. These results indicate that the NAC plays a critical role in aggregate organization as a potential therapeutic target in neurodegenerative disorders.
Collapse
Affiliation(s)
- Leeran B Dublin-Ryan
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Ankan K Bhadra
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, United States of America
| | - Heather L True
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, United States of America
| |
Collapse
|
2
|
Lippi A, Krisko A. Protein aggregation: A detrimental symptom or an adaptation mechanism? J Neurochem 2024; 168:1426-1441. [PMID: 37694504 DOI: 10.1111/jnc.15955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/12/2023]
Abstract
Protein quality control mechanisms oversee numerous aspects of protein lifetime. From the point of protein synthesis, protein homeostasis machineries take part in folding, solubilization, and/or degradation of impaired proteins. Some proteins follow an alternative path upon loss of their solubility, thus are secluded from the cytosol and form protein aggregates. Protein aggregates differ in their function and composition, rendering protein aggregation a complex phenomenon that continues to receive plenty of attention in the scientific and medical communities. Traditionally, protein aggregates have been associated with aging and a large spectrum of protein folding diseases, such as neurodegenerative diseases, type 2 diabetes, or cataract. However, a body of evidence suggests that they may act as an adaptive mechanism to overcome transient stressful conditions, serving as a sink for the removal of misfolded proteins from the cytosol or storage compartments for machineries required upon stress release. In this review, we present examples and evidence elaborating different possible roles of protein aggregation and discuss their potential roles in stress survival, aging, and disease, as well as possible anti-aggregation interventions.
Collapse
Affiliation(s)
- Alice Lippi
- Department of Experimental Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Anita Krisko
- Department of Experimental Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
3
|
Limcharoensuk T, Chusuth P, Utaisincharoen P, Auesukaree C. Protein quality control systems in the endoplasmic reticulum and the cytosol coordinately prevent alachlor-induced proteotoxic stress in Saccharomyces cerevisiae. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134270. [PMID: 38640676 DOI: 10.1016/j.jhazmat.2024.134270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/21/2024]
Abstract
Alachlor, a widely used chloroacetanilide herbicide for controlling annual grasses in crops, has been reported to rapidly trigger protein denaturation and aggregation in the eukaryotic model organism Saccharomyces cerevisiae. Therefore, this study aimed to uncover cellular mechanisms involved in preventing alachlor-induced proteotoxicity. The findings reveal that the ubiquitin-proteasome system (UPS) plays a crucial role in eliminating alachlor-denatured proteins by tagging them with polyubiquitin for subsequent proteasomal degradation. Exposure to alachlor rapidly induced an inhibition of proteasome activity by 90 % within 30 min. The molecular docking analysis suggests that this inhibition likely results from the binding of alachlor to β subunits within the catalytic core of the proteasome. Notably, our data suggest that nascent proteins in the endoplasmic reticulum (ER) are the primary targets of alachlor. Consequently, the unfolded protein response (UPR), responsible for coping with aberrant proteins in the ER, becomes activated within 1 h of alachlor treatment, leading to the splicing of HAC1 mRNA into the active transcription activator Hac1p and the upregulation of UPR gene expression. These findings underscore the critical roles of the protein quality control systems UPS and UPR in mitigating alachlor-induced proteotoxicity by degrading alachlor-denatured proteins and enhancing the protein folding capacity of the ER.
Collapse
Affiliation(s)
- Tossapol Limcharoensuk
- Department of Biology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Mahidol University-Osaka University Collaborative Research Center for Bioscience and Biotechnology (MU-OU:CRC), Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Phakawat Chusuth
- Mahidol University-Osaka University Collaborative Research Center for Bioscience and Biotechnology (MU-OU:CRC), Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Pongsak Utaisincharoen
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Choowong Auesukaree
- Mahidol University-Osaka University Collaborative Research Center for Bioscience and Biotechnology (MU-OU:CRC), Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand.
| |
Collapse
|
4
|
Wen P, Sun Y, Jiang TX, Qiu XB. PA200-Mediated Proteasomal Protein Degradation and Regulation of Cellular Senescence. Int J Mol Sci 2024; 25:5637. [PMID: 38891826 PMCID: PMC11171664 DOI: 10.3390/ijms25115637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 06/21/2024] Open
Abstract
Cellular senescence is closely related to DNA damage, proteasome inactivity, histone loss, epigenetic alterations, and tumorigenesis. The mammalian proteasome activator PA200 (also referred to as PSME4) or its yeast ortholog Blm10 promotes the acetylation-dependent degradation of the core histones during transcription, DNA repair, and spermatogenesis. According to recent studies, PA200 plays an important role in senescence, probably because of its role in promoting the degradation of the core histones. Loss of PA200 or Blm10 is a major cause of the decrease in proteasome activity during senescence. In this paper, recent research progress on the association of PA200 with cellular senescence is summarized, and the potential of PA200 to serve as a therapeutic target in age-related diseases is discussed.
Collapse
Affiliation(s)
- Pei Wen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; (P.W.); (Y.S.)
| | - Yan Sun
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; (P.W.); (Y.S.)
| | - Tian-Xia Jiang
- Ministry of Education Key Laboratory of Cell Proliferation & Regulation Biology, College of Life Sciences, Beijing Normal University, 19 Xinjiekouwai Avenue, Beijing 100875, China
| | - Xiao-Bo Qiu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; (P.W.); (Y.S.)
- Ministry of Education Key Laboratory of Cell Proliferation & Regulation Biology, College of Life Sciences, Beijing Normal University, 19 Xinjiekouwai Avenue, Beijing 100875, China
| |
Collapse
|
5
|
Mariner BL, Rodriguez AS, Heath OC, McCormick MA. Induction of proteasomal activity in mammalian cells by lifespan-extending tRNA synthetase inhibitors. GeroScience 2024; 46:1755-1773. [PMID: 37749371 PMCID: PMC10828360 DOI: 10.1007/s11357-023-00938-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/04/2023] [Indexed: 09/27/2023] Open
Abstract
We have recently shown that multiple tRNA synthetase inhibitors can greatly increase lifespan in multiple models by acting through the conserved transcription factor ATF4. Here, we show that these compounds, and several others of the same class, can greatly upregulate mammalian ATF4 in cells in vitro, in a dose dependent manner. Further, RNASeq analysis of these cells pointed toward changes in protein turnover. In subsequent experiments here we show that multiple tRNA synthetase inhibitors can greatly upregulate activity of the ubiquitin proteasome system (UPS) in cells in an ATF4-dependent manner. The UPS plays an important role in the turnover of many damaged or dysfunctional proteins in an organism. Increasing UPS activity has been shown to enhance the survival of Huntington's disease cell models, but there are few known pharmacological enhancers of the UPS. Additionally, we see separate ATF4 dependent upregulation of macroautophagy upon treatment with tRNA synthetase inhibitors. Protein degradation is an essential cellular process linked to many important human diseases of aging such as Alzheimer's disease and Huntington's disease. These drugs' ability to enhance proteostasis more broadly could have wide-ranging implications in the treatment of important age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Blaise L Mariner
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA
- Center for Biomedical Engineering, University of New Mexico, Albuquerque, NM, 87131, USA
- Autophagy, Inflammation and Metabolism Center of Biomedical Research Excellence, Albuquerque, NM, 87131, USA
| | - Antonio S Rodriguez
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA
| | - Olivia C Heath
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA
| | - Mark A McCormick
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA.
- Autophagy, Inflammation and Metabolism Center of Biomedical Research Excellence, Albuquerque, NM, 87131, USA.
| |
Collapse
|
6
|
Kandel R, Jung J, Neal S. Proteotoxic stress and the ubiquitin proteasome system. Semin Cell Dev Biol 2024; 156:107-120. [PMID: 37734998 PMCID: PMC10807858 DOI: 10.1016/j.semcdb.2023.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/01/2023] [Accepted: 08/20/2023] [Indexed: 09/23/2023]
Abstract
The ubiquitin proteasome system maintains protein homeostasis by regulating the breakdown of misfolded proteins, thereby preventing misfolded protein aggregates. The efficient elimination is vital for preventing damage to the cell by misfolded proteins, known as proteotoxic stress. Proteotoxic stress can lead to the collapse of protein homeostasis and can alter the function of the ubiquitin proteasome system. Conversely, impairment of the ubiquitin proteasome system can also cause proteotoxic stress and disrupt protein homeostasis. This review examines two impacts of proteotoxic stress, 1) disruptions to ubiquitin homeostasis (ubiquitin stress) and 2) disruptions to proteasome homeostasis (proteasome stress). Here, we provide a mechanistic description of the relationship between proteotoxic stress and the ubiquitin proteasome system. This relationship is illustrated by findings from several protein misfolding diseases, mainly neurodegenerative diseases, as well as from basic biology discoveries from yeast to mammals. In addition, we explore the importance of the ubiquitin proteasome system in endoplasmic reticulum quality control, and how proteotoxic stress at this organelle is alleviated. Finally, we highlight how cells utilize the ubiquitin proteasome system to adapt to proteotoxic stress and how the ubiquitin proteasome system can be genetically and pharmacologically manipulated to maintain protein homeostasis.
Collapse
Affiliation(s)
- Rachel Kandel
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, United States
| | - Jasmine Jung
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, United States
| | - Sonya Neal
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, United States; Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
7
|
Gómez-Montalvo J, de Obeso Fernández del Valle A, De la Cruz Gutiérrez LF, Gonzalez-Meljem JM, Scheckhuber CQ. Replicative aging in yeast involves dynamic intron retention patterns associated with mRNA processing/export and protein ubiquitination. MICROBIAL CELL (GRAZ, AUSTRIA) 2024; 11:69-78. [PMID: 38414808 PMCID: PMC10897858 DOI: 10.15698/mic2024.02.816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/25/2024] [Accepted: 02/01/2024] [Indexed: 02/29/2024]
Abstract
Saccharomyces cerevisiae (baker's yeast) has yielded relevant insights into some of the basic mechanisms of organismal aging. Among these are genomic instability, oxidative stress, caloric restriction and mitochondrial dysfunction. Several genes are known to have an impact on the aging process, with corresponding mutants exhibiting short- or long-lived phenotypes. Research dedicated to unraveling the underlying cellular mechanisms can support the identification of conserved mechanisms of aging in other species. One of the hitherto less studied fields in yeast aging is how the organism regulates its gene expression at the transcriptional level. To our knowledge, we present the first investigation into alternative splicing, particularly intron retention, during replicative aging of S. cerevisiae. This was achieved by utilizing the IRFinder algorithm on a previously published RNA-seq data set by Janssens et al. (2015). In the present work, 44 differentially retained introns in 43 genes were identified during replicative aging. We found that genes with altered intron retention do not display significant changes in overall transcript levels. It was possible to functionally assign distinct groups of these genes to the cellular processes of mRNA processing and export (e.g., YRA1) in early and middle-aged yeast, and protein ubiquitination (e.g., UBC5) in older cells. In summary, our work uncovers a previously unexplored layer of the transcriptional program of yeast aging and, more generally, expands the knowledge on the occurrence of alternative splicing in baker's yeast.
Collapse
Affiliation(s)
- Jesús Gómez-Montalvo
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., México
| | | | | | - Jose Mario Gonzalez-Meljem
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., México
| | | |
Collapse
|
8
|
Lehmann CP, González-Fernández P, Tercero J. Spatial regulation of DNA damage tolerance protein Rad5 interconnects genome stability maintenance and proteostasis networks. Nucleic Acids Res 2024; 52:1156-1172. [PMID: 38055836 PMCID: PMC10853803 DOI: 10.1093/nar/gkad1176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/08/2023] Open
Abstract
The Rad5/HLTF protein has a central role in the tolerance to DNA damage by mediating an error-free mode of bypassing unrepaired DNA lesions, and is therefore critical for the maintenance of genome stability. We show in this work that, following cellular stress, Rad5 is regulated by relocalization into two types of nuclear foci that coexist within the same cell, which we termed 'S' and 'I'. Rad5 S-foci form in response to genotoxic stress and are associated with Rad5's function in maintaining genome stability, whereas I-foci form in the presence of proteotoxic stress and are related to Rad5's own proteostasis. Rad5 accumulates into S-foci at DNA damage tolerance sites by liquid-liquid phase separation, while I-foci constitute sites of chaperone-mediated sequestration of Rad5 at the intranuclear quality control compartment (INQ). Relocalization of Rad5 into each type of foci involves different pathways and recruitment mechanisms, but in both cases is driven by the evolutionarily conserved E2 ubiquitin-conjugating enzyme Rad6. This coordinated differential relocalization of Rad5 interconnects DNA damage response and proteostasis networks, highlighting the importance of studying these homeostasis mechanisms in tandem. Spatial regulation of Rad5 under cellular stress conditions thus provides a useful biological model to study cellular homeostasis as a whole.
Collapse
Affiliation(s)
- Carl P Lehmann
- Centro de Biología Molecular Severo Ochoa (CSIC/UAM), Cantoblanco. 28049-Madrid, Spain
| | | | - José Antonio Tercero
- Centro de Biología Molecular Severo Ochoa (CSIC/UAM), Cantoblanco. 28049-Madrid, Spain
| |
Collapse
|
9
|
Mariner BL, Felker DP, Cantergiani RJ, Peterson J, McCormick MA. Multiomics of GCN4-Dependent Replicative Lifespan Extension Models Reveals Gcn4 as a Regulator of Protein Turnover in Yeast. Int J Mol Sci 2023; 24:16163. [PMID: 38003352 PMCID: PMC10671045 DOI: 10.3390/ijms242216163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
We have shown that multiple tRNA synthetase inhibitors can increase lifespan in both the nematode C. elegans and the budding yeast S. cerevisiae by acting through the conserved transcription factor Gcn4 (yeast)/ATF-4 (worms). To further understand the biology downstream from this conserved transcription factor in the yeast model system, we looked at two different yeast models known to have upregulated Gcn4 and GCN4-dependent increased replicative lifespan. These two models were rpl31aΔ yeast and yeast treated with the tRNA synthetase inhibitor borrelidin. We used both proteomic and RNAseq analysis of a block experimental design that included both of these models to identify GCN4-dependent changes in these two long-lived strains of yeast. Proteomic analysis of these yeast indicate that the long-lived yeast have increased abundances of proteins involved in amino acid biosynthesis. The RNAseq of these same yeast uncovered further regulation of protein degradation, identifying the differential expression of genes associated with autophagy and the ubiquitin-proteasome system (UPS). The data presented here further underscore the important role that GCN4 plays in the maintenance of protein homeostasis, which itself is an important hallmark of aging. In particular, the changes in autophagy and UPS-related gene expression that we have observed could also have wide-ranging implications for the understanding and treatment of diseases of aging that are associated with protein aggregation.
Collapse
Affiliation(s)
- Blaise L. Mariner
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA (D.P.F.); (R.J.C.)
- Department of Chemical and Biological Engineering, University of New Mexico, Albuquerque, NM 87131, USA
| | - Daniel P. Felker
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA (D.P.F.); (R.J.C.)
| | - Ryla J. Cantergiani
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA (D.P.F.); (R.J.C.)
| | - Jack Peterson
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA (D.P.F.); (R.J.C.)
| | - Mark A. McCormick
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA (D.P.F.); (R.J.C.)
- Autophagy, Inflammation, and Metabolism Center of Biomedical Research Excellence, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
10
|
Bicev RN, de Souza Degenhardt MF, de Oliveira CLP, da Silva ER, Degrouard J, Tresset G, Ronsein GE, Demasi M, da Cunha FM. Glucose restriction in Saccharomyces cerevisiae modulates the phosphorylation pattern of the 20S proteasome and increases its activity. Sci Rep 2023; 13:19383. [PMID: 37938622 PMCID: PMC10632367 DOI: 10.1038/s41598-023-46614-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 11/02/2023] [Indexed: 11/09/2023] Open
Abstract
Caloric restriction is known to extend the lifespan and/or improve diverse physiological parameters in a vast array of organisms. In the yeast Saccharomyces cerevisiae, caloric restriction is performed by reducing the glucose concentration in the culture medium, a condition previously associated with increased chronological lifespan and 20S proteasome activity in cell extracts, which was not due to increased proteasome amounts in restricted cells. Herein, we sought to investigate the mechanisms through which glucose restriction improved proteasome activity and whether these activity changes were associated with modifications in the particle conformation. We show that glucose restriction increases the ability of 20S proteasomes, isolated from Saccharomyces cerevisiae cells, to degrade model substrates and whole proteins. In addition, threonine 55 and/or serine 56 of the α5-subunit, were/was consistently found to be phosphorylated in proteasomes isolated from glucose restricted cells, which may be involved in the increased proteolysis capacity of proteasomes from restricted cells. We were not able to observe changes in the gate opening nor in the spatial conformation in 20S proteasome particles isolated from glucose restricted cells, suggesting that the changes in activity were not accompanied by large conformational alterations in the 20S proteasome but involved allosteric activation of proteasome catalytic site.
Collapse
Affiliation(s)
- Renata Naporano Bicev
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brasil
| | | | | | - Emerson Rodrigo da Silva
- Departamento de Biofísica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brasil
| | - Jéril Degrouard
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405, Orsay, France
| | - Guillaume Tresset
- Université Paris-Saclay, CNRS, Laboratoire de Physique des Solides, 91405, Orsay, France
| | - Graziella Eliza Ronsein
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Marilene Demasi
- Laboratório de Bioquímica, Instituto Butantan, São Paulo, SP, Brasil.
| | - Fernanda Marques da Cunha
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brasil.
| |
Collapse
|
11
|
Gressler AE, Leng H, Zinecker H, Simon AK. Proteostasis in T cell aging. Semin Immunol 2023; 70:101838. [PMID: 37708826 PMCID: PMC10804938 DOI: 10.1016/j.smim.2023.101838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 09/16/2023]
Abstract
Aging leads to a decline in immune cell function, which leaves the organism vulnerable to infections and age-related multimorbidities. One major player of the adaptive immune response are T cells, and recent studies argue for a major role of disturbed proteostasis contributing to reduced function of these cells upon aging. Proteostasis refers to the state of a healthy, balanced proteome in the cell and is influenced by synthesis (translation), maintenance and quality control of proteins, as well as degradation of damaged or unwanted proteins by the proteasome, autophagy, lysosome and cytoplasmic enzymes. This review focuses on molecular processes impacting on proteostasis in T cells, and specifically functional or quantitative changes of each of these upon aging. Importantly, we describe the biological consequences of compromised proteostasis in T cells, which range from impaired T cell activation and function to enhancement of inflamm-aging by aged T cells. Finally, approaches to improve proteostasis and thus rejuvenate aged T cells through pharmacological or physical interventions are discussed.
Collapse
Affiliation(s)
- A Elisabeth Gressler
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13125 Berlin, Germany
| | - Houfu Leng
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford OX3 7FY, United Kingdom; Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Heidi Zinecker
- Ascenion GmbH, Am Zirkus 1, Bertold-Brecht-Platz 3, 10117 Berlin, Germany
| | - Anna Katharina Simon
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle-Str. 10, 13125 Berlin, Germany; Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford OX3 7FY, United Kingdom.
| |
Collapse
|
12
|
Zhang Y, Zhang X, Kennedy BK. Investigating the biology of yeast aging by single-cell RNA-seq. Aging (Albany NY) 2023; 15:7340-7342. [PMID: 37580796 PMCID: PMC10457072 DOI: 10.18632/aging.204991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 06/03/2023] [Indexed: 08/16/2023]
Affiliation(s)
- Yi Zhang
- Department of Strategy and Development, Sansure Biotech Inc., Changsha, Hunan 410205, China
| | - Xiannian Zhang
- School of Basic Medical Sciences, Beijing Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Brian K. Kennedy
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University Singapore, Singapore 117456, Singapore
| |
Collapse
|
13
|
Phua CZJ, Zhao X, Turcios-Hernandez L, McKernan M, Abyadeh M, Ma S, Promislow D, Kaeberlein M, Kaya A. Genetic perturbation of mitochondrial function reveals functional role for specific mitonuclear genes, metabolites, and pathways that regulate lifespan. GeroScience 2023; 45:2161-2178. [PMID: 37086368 PMCID: PMC10651825 DOI: 10.1007/s11357-023-00796-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/08/2023] [Indexed: 04/23/2023] Open
Abstract
Altered mitochondrial function is tightly linked to lifespan regulation, but underlying mechanisms remain unclear. Here, we report the chronological and replicative lifespan variation across 167 yeast knock-out strains, each lacking a single nuclear-coded mitochondrial gene, including 144 genes with human homologs, many associated with diseases. We dissected the signatures of observed lifespan differences by analyzing profiles of each strain's proteome, lipidome, and metabolome under fermentative and respiratory culture conditions, which correspond to the metabolic states of replicative and chronologically aging cells, respectively. Examination of the relationships among extended longevity phenotypes, protein, and metabolite levels revealed that although many of these nuclear-encoded mitochondrial genes carry out different functions, their inhibition attenuates a common mechanism that controls cytosolic ribosomal protein abundance, actin dynamics, and proteasome function to regulate lifespan. The principles of lifespan control learned through this work may be applicable to the regulation of lifespan in more complex organisms, since many aspects of mitochondrial function are highly conserved among eukaryotes.
Collapse
Affiliation(s)
- Cheryl Zi Jin Phua
- Genome Institute of Singapore, Agency for Science, Technology, and Research (A* STAR), Singapore, Singapore
| | - Xiaqing Zhao
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Lesly Turcios-Hernandez
- Department of Biology, Virginia Commonwealth University, Room 126, 1000 West Cary St. , Richmond, VA, 23284, USA
| | - Morrigan McKernan
- Department of Biology, Virginia Commonwealth University, Room 126, 1000 West Cary St. , Richmond, VA, 23284, USA
| | - Morteza Abyadeh
- Department of Biology, Virginia Commonwealth University, Room 126, 1000 West Cary St. , Richmond, VA, 23284, USA
| | - Siming Ma
- Genome Institute of Singapore, Agency for Science, Technology, and Research (A* STAR), Singapore, Singapore
| | - Daniel Promislow
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
- Department of Biology, University of Washington, Seattle, WA, 98195, USA
| | - Matt Kaeberlein
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
| | - Alaattin Kaya
- Department of Biology, Virginia Commonwealth University, Room 126, 1000 West Cary St. , Richmond, VA, 23284, USA.
| |
Collapse
|
14
|
Uvdal P, Shashkova S. The Effect of Calorie Restriction on Protein Quality Control in Yeast. Biomolecules 2023; 13:biom13050841. [PMID: 37238710 DOI: 10.3390/biom13050841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/30/2023] [Accepted: 05/01/2023] [Indexed: 05/28/2023] Open
Abstract
Initially, protein aggregates were regarded as a sign of a pathological state of the cell. Later, it was found that these assemblies are formed in response to stress, and that some of them serve as signalling mechanisms. This review has a particular focus on how intracellular protein aggregates are related to altered metabolism caused by different glucose concentrations in the extracellular environment. We summarise the current knowledge of the role of energy homeostasis signalling pathways in the consequent effect on intracellular protein aggregate accumulation and removal. This covers regulation at different levels, including elevated protein degradation and proteasome activity mediated by the Hxk2 protein, the enhanced ubiquitination of aberrant proteins through Torc1/Sch9 and Msn2/Whi2, and the activation of autophagy mediated through ATG genes. Finally, certain proteins form reversible biomolecular aggregates in response to stress and reduced glucose levels, which are used as a signalling mechanism in the cell, controlling major primary energy pathways related to glucose sensing.
Collapse
Affiliation(s)
- Petter Uvdal
- Department of Physics, University of Gothenburg, 405 30 Göteborg, Sweden
| | | |
Collapse
|
15
|
Fischbach A, Johns A, Schneider KL, Hao X, Tessarz P, Nyström T. Artificial Hsp104-mediated systems for re-localizing protein aggregates. Nat Commun 2023; 14:2663. [PMID: 37160881 PMCID: PMC10169802 DOI: 10.1038/s41467-023-37706-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 03/28/2023] [Indexed: 05/11/2023] Open
Abstract
Spatial Protein Quality Control (sPQC) sequesters misfolded proteins into specific, organelle-associated inclusions within the cell to control their toxicity. To approach the role of sPQC in cellular fitness, neurodegenerative diseases and aging, we report on the construction of Hsp100-based systems in budding yeast cells, which can artificially target protein aggregates to non-canonical locations. We demonstrate that aggregates of mutant huntingtin (mHtt), the disease-causing agent of Huntington's disease can be artificially targeted to daughter cells as well as to eisosomes and endosomes with this approach. We find that the artificial removal of mHtt inclusions from mother cells protects them from cell death suggesting that even large mHtt inclusions may be cytotoxic, a trait that has been widely debated. In contrast, removing inclusions of endogenous age-associated misfolded proteins does not significantly affect the lifespan of mother cells. We demonstrate also that this approach is able to manipulate mHtt inclusion formation in human cells and has the potential to be useful as an alternative, complementary approach to study the role of sPQC, for example in aging and neurodegenerative disease.
Collapse
Affiliation(s)
- Arthur Fischbach
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health-AgeCap, University of Gothenburg, Gothenburg, Sweden.
- Max-Planck Research Group Chromatin and Ageing, Max Planck Institute for Biology of Ageing, Cologne, Germany.
| | - Angela Johns
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health-AgeCap, University of Gothenburg, Gothenburg, Sweden
| | - Kara L Schneider
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health-AgeCap, University of Gothenburg, Gothenburg, Sweden
| | - Xinxin Hao
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health-AgeCap, University of Gothenburg, Gothenburg, Sweden
| | - Peter Tessarz
- Max-Planck Research Group Chromatin and Ageing, Max Planck Institute for Biology of Ageing, Cologne, Germany
- Cologne Excellence Cluster on Stress Responses in Ageing-Associated Diseases (CECAD), Cologne, Germany
| | - Thomas Nyström
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health-AgeCap, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
16
|
Hwangbo DS, Kwon YJ, Iwanaszko M, Jiang P, Abbasi L, Wright N, Alli S, Hutchison AL, Dinner AR, Braun RI, Allada R. Dietary Restriction Impacts Peripheral Circadian Clock Output Important for Longevity in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.04.522718. [PMID: 36711760 PMCID: PMC9881908 DOI: 10.1101/2023.01.04.522718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Circadian clocks may mediate lifespan extension by caloric or dietary restriction (DR). We find that the core clock transcription factor Clock is crucial for a robust longevity and fecundity response to DR in Drosophila. To identify clock-controlled mediators, we performed RNA-sequencing from abdominal fat bodies across the 24 h day after just 5 days under control or DR diets. In contrast to more chronic DR regimens, we did not detect significant changes in the rhythmic expression of core clock genes. Yet we discovered that DR induced de novo rhythmicity or increased expression of rhythmic clock output genes. Network analysis revealed that DR increased network connectivity in one module comprised of genes encoding proteasome subunits. Adult, fat body specific RNAi knockdown demonstrated that proteasome subunits contribute to DR-mediated lifespan extension. Thus, clock control of output links DR-mediated changes in rhythmic transcription to lifespan extension.
Collapse
Affiliation(s)
- Dae-Sung Hwangbo
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
- Center for Sleep & Circadian Biology, Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
- NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston, IL 60208, USA
- Department of Biology, University of Louisville, Louisville, 40292, KY, USA
| | - Yong-Jae Kwon
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - Marta Iwanaszko
- Biostatistics Division, Department of Preventive Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL 60208, USA
- NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston, IL 60208, USA
| | - Peng Jiang
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
- Center for Sleep & Circadian Biology, Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
| | - Ladan Abbasi
- Department of Biology, University of Louisville, Louisville, 40292, KY, USA
| | - Nicholas Wright
- Department of Biology, University of Louisville, Louisville, 40292, KY, USA
| | - Sarayu Alli
- Department of Biology, University of Louisville, Louisville, 40292, KY, USA
| | - Alan L. Hutchison
- James Franck Institute, Department of Chemistry, Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA
| | - Aaron R. Dinner
- James Franck Institute, Department of Chemistry, Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637, USA
| | - Rosemary I Braun
- Biostatistics Division, Department of Preventive Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL 60208, USA
- NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston, IL 60208, USA
| | - Ravi Allada
- Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
- Center for Sleep & Circadian Biology, Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA
- NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
17
|
Wang J, Sang Y, Jin S, Wang X, Azad GK, McCormick MA, Kennedy BK, Li Q, Wang J, Zhang X, Zhang Y, Huang Y. Single-cell RNA-seq reveals early heterogeneity during aging in yeast. Aging Cell 2022; 21:e13712. [PMID: 36181361 PMCID: PMC9649600 DOI: 10.1111/acel.13712] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 07/25/2022] [Accepted: 08/31/2022] [Indexed: 01/25/2023] Open
Abstract
The budding yeast Saccharomyces cerevisiae (S. cerevisiae) has relatively short lifespan and is genetically tractable, making it a widely used model organism in aging research. Here, we carried out a systematic and quantitative investigation of yeast aging with single-cell resolution through transcriptomic sequencing. We optimized a single-cell RNA sequencing (scRNA-seq) protocol to quantitatively study the whole transcriptome profiles of single yeast cells at different ages, finding increased cell-to-cell transcriptional variability during aging. The single-cell transcriptome analysis also highlighted key biological processes or cellular components, including oxidation-reduction process, oxidative stress response (OSR), translation, ribosome biogenesis and mitochondrion that underlie aging in yeast. We uncovered a molecular marker of FIT3, indicating the early heterogeneity during aging in yeast. We also analyzed the regulation of transcription factors and further characterized the distinctive temporal regulation of the OSR by YAP1 and proteasome activity by RPN4 during aging in yeast. Overall, our data profoundly reveal early heterogeneity during aging in yeast and shed light on the aging dynamics at the single cell level.
Collapse
Affiliation(s)
- Jincheng Wang
- Biomedical Pioneering Innovation Center (BIOPIC), Peking‐Tsinghua Center for Life Sciences, Beijing Advanced Innovation Center for Genomics (ICG), School of Life SciencesPeking UniversityBeijingChina
| | - Yuchen Sang
- Biomedical Pioneering Innovation Center (BIOPIC), Peking‐Tsinghua Center for Life Sciences, Beijing Advanced Innovation Center for Genomics (ICG), School of Life SciencesPeking UniversityBeijingChina
| | - Shengxian Jin
- Biomedical Pioneering Innovation Center (BIOPIC), Peking‐Tsinghua Center for Life Sciences, Beijing Advanced Innovation Center for Genomics (ICG), School of Life SciencesPeking UniversityBeijingChina
| | - Xuezheng Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking‐Tsinghua Center for Life SciencesPeking UniversityBeijingChina,Academy for Advanced Interdisciplinary StudiesPeking UniversityBeijingChina
| | - Gajendra Kumar Azad
- Departments of Biochemistry, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore,Department of ZoologyPatna UniversityPatnaIndia
| | - Mark A. McCormick
- Department of Biochemistry and Molecular Biology, School of MedicineUniversity of New Mexico Health Sciences CenterAlbuquerqueNew MexicoUSA,Autophagy Inflammation and Metabolism Center of Biomedical Research ExcellenceAlbuquerqueNew MexicoUSA
| | - Brian K. Kennedy
- Departments of Biochemistry, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore,Healthy Longevity Programme, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore,Centre for Healthy LongevityNational University Health SystemSingaporeSingapore
| | - Qing Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking‐Tsinghua Center for Life SciencesPeking UniversityBeijingChina
| | - Jianbin Wang
- School of Life Sciences, Beijing Advanced Innovation Center for Structural BiologyTsinghua UniversityBeijingChina
| | - Xiannian Zhang
- School of Basic Medical Sciences, Beijing Advanced Innovation Center for Human Brain ProtectionCapital Medical UniversityBeijingChina
| | - Yi Zhang
- Biomedical Pioneering Innovation Center (BIOPIC), Peking‐Tsinghua Center for Life Sciences, Beijing Advanced Innovation Center for Genomics (ICG), School of Life SciencesPeking UniversityBeijingChina
| | - Yanyi Huang
- Biomedical Pioneering Innovation Center (BIOPIC), Peking‐Tsinghua Center for Life Sciences, Beijing Advanced Innovation Center for Genomics (ICG), School of Life SciencesPeking UniversityBeijingChina,Analytical Chemistry, College of ChemistryPeking UniversityBeijingChina,Institute for Cell AnalysisShenzhen Bay LaboratoryShenzhenChina
| |
Collapse
|
18
|
Schneider KL, Ahmadpour D, Keuenhof KS, Eisele-Bürger AM, Berglund LL, Eisele F, Babazadeh R, Höög JL, Nyström T, Widlund PO. Using reporters of different misfolded proteins reveals differential strategies in processing protein aggregates. J Biol Chem 2022; 298:102476. [PMID: 36096201 PMCID: PMC9636550 DOI: 10.1016/j.jbc.2022.102476] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 11/18/2022] Open
Abstract
The accumulation of misfolded proteins is a hallmark of aging and many neurodegenerative diseases, making it important to understand how the cellular machinery recognizes and processes such proteins. A key question in this respect is whether misfolded proteins are handled in a similar way regardless of their genetic origin. To approach this question, we compared how three different misfolded proteins, guk1-7, gus1-3, and pro3-1, are handled by the cell. We show that all three are nontoxic, even though highly overexpressed, highlighting their usefulness in analyzing the cellular response to misfolding in the absence of severe stress. We found significant differences between the aggregation and disaggregation behavior of the misfolded proteins. Specifically, gus1-3 formed some aggregates that did not efficiently recruit the protein disaggregase Hsp104 and did not colocalize with the other misfolded reporter proteins. Strikingly, while all three misfolded proteins generally coaggregated and colocalized to specific sites in the cell, disaggregation was notably different; the rate of aggregate clearance of pro3-1 was faster than that of the other misfolded proteins, and its clearance rate was not hindered when pro3-1 colocalized with a slowly resolved misfolded protein. Finally, we observed using super-resolution light microscopy as well as immunogold labeling EM in which both showed an even distribution of the different misfolded proteins within an inclusion, suggesting that misfolding characteristics and remodeling, rather than spatial compartmentalization, allows for differential clearance of these misfolding reporters residing in the same inclusion. Taken together, our results highlight how properties of misfolded proteins can significantly affect processing.
Collapse
Affiliation(s)
- Kara L Schneider
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health - AgeCap, University of Gothenburg, Gothenburg, Sweden
| | - Doryaneh Ahmadpour
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health - AgeCap, University of Gothenburg, Gothenburg, Sweden; Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Katharina S Keuenhof
- Department for Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Anna Maria Eisele-Bürger
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health - AgeCap, University of Gothenburg, Gothenburg, Sweden; Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - Lisa Larsson Berglund
- Department for Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Frederik Eisele
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health - AgeCap, University of Gothenburg, Gothenburg, Sweden
| | - Roja Babazadeh
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health - AgeCap, University of Gothenburg, Gothenburg, Sweden
| | - Johanna L Höög
- Department for Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Thomas Nyström
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health - AgeCap, University of Gothenburg, Gothenburg, Sweden
| | - Per O Widlund
- Institute for Biomedicine, Sahlgrenska Academy, Centre for Ageing and Health - AgeCap, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
19
|
Nguyet VTA, Furutani N, Ando R, Izawa S. Acquired resistance to severe ethanol stress-induced inhibition of proteasomal proteolysis in Saccharomyces cerevisiae. Biochim Biophys Acta Gen Subj 2022; 1866:130241. [PMID: 36075516 DOI: 10.1016/j.bbagen.2022.130241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/19/2022] [Accepted: 08/29/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Although the budding yeast, Saccharomyces cerevisiae, produces ethanol via alcoholic fermentation, high-concentration ethanol is harmful to yeast cells. Severe ethanol stress (> 9% v/v) inhibits protein synthesis and increases the level of intracellular protein aggregates. However, its effect on proteolysis in yeast cells remains largely unknown. METHODS We examined the effects of ethanol on proteasomal proteolysis in yeast cells through the cycloheximide-chase analysis of short-lived proteins. We also assayed protein degradation in the auxin-inducible degron system and the ubiquitin-independent degradation of Spe1 under ethanol stress conditions. RESULTS We demonstrated that severe ethanol stress strongly inhibited the degradation of the short-lived proteins Rim101 and Gic2. Severe ethanol stress also inhibited protein degradation in the auxin-inducible degron system (Paf1-AID*-6FLAG) and the ubiquitin-independent degradation of Spe1. Proteasomal degradation of these proteins, which was inhibited by severe ethanol stress, resumed rapidly once the ethanol was removed. These results suggested that proteasomal proteolysis in yeast cells is reversibly inhibited by severe ethanol stress. Furthermore, yeast cells pretreated with mild ethanol stress (6% v/v) showed proteasomal proteolysis even with 10% (v/v) ethanol, indicating that yeast cells acquired resistance to proteasome inhibition caused by severe ethanol stress. However, yeast cells failed to acquire sufficient resistance to severe ethanol stress-induced proteasome inhibition when new protein synthesis was blocked with cycloheximide during pretreatment, or when Rpn4 was lost. CONCLUSIONS AND GENERAL SIGNIFICANCE Our results provide novel insights into the adverse effects of severe ethanol stress on proteasomal proteolysis and ethanol adaptability in yeast.
Collapse
Affiliation(s)
- Vo Thi Anh Nguyet
- Laboratory of Microbial Technology, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Noboru Furutani
- Laboratory of Microbial Technology, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Ryoko Ando
- Laboratory of Microbial Technology, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Shingo Izawa
- Laboratory of Microbial Technology, Graduate School of Science and Technology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
| |
Collapse
|
20
|
Takaine M, Imamura H, Yoshida S. High and stable ATP levels prevent aberrant intracellular protein aggregation in yeast. eLife 2022; 11:67659. [PMID: 35438635 PMCID: PMC9018071 DOI: 10.7554/elife.67659] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 03/18/2022] [Indexed: 12/24/2022] Open
Abstract
Adenosine triphosphate (ATP) at millimolar levels has recently been implicated in the solubilization of cellular proteins. However, the significance of this high ATP level under physiological conditions and the mechanisms that maintain ATP remain unclear. We herein demonstrated that AMP-activated protein kinase (AMPK) and adenylate kinase (ADK) cooperated to maintain cellular ATP levels regardless of glucose levels. Single-cell imaging of ATP-reduced yeast mutants revealed that ATP levels in these mutants underwent stochastic and transient depletion, which promoted the cytotoxic aggregation of endogenous proteins and pathogenic proteins, such as huntingtin and α-synuclein. Moreover, pharmacological elevations in ATP levels in an ATP-reduced mutant prevented the accumulation of α-synuclein aggregates and its cytotoxicity. The present study demonstrates that cellular ATP homeostasis ensures proteostasis and revealed that suppressing the high volatility of cellular ATP levels prevented cytotoxic protein aggregation, implying that AMPK and ADK are important factors that prevent proteinopathies, such as neurodegenerative diseases. Cells use a chemical called adenosine triphosphate (ATP) as a controllable source of energy. Like a battery, each ATP molecule contains a specific amount of energy that can be released when needed. Cells just need enough ATP to survive, but most cells store a lot more than they need. It is unclear why cells keep so much ATP, or whether this excess ATP has any other purpose. To answer these questions, Takaine et al. identified mutants of the yeast Saccharomyces cerevisiae that had low levels of ATP, and studied how these cells differ from normal yeast The results showed that, in S. cerevisiae cells with lower and variable levels of ATP, proteins stick together, forming clumps. Proteins are molecules that perform diverse roles, keeping cells alive. When they clump together, they stop working and can cause cells to die. Further experiments showed that reducing the levels of ATP just for a short time increased the rate at which proteins stick together. Taken together, Takaine et al.’s results suggest that ATP plays a role in stopping proteins from sticking together, explaining why cells may store excess ATP, since it could aid survival. Protein clumps, also called aggregates, are a key feature of various illnesses, including neurodegenerative diseases such as Alzheimer’s. Takaine et al. provide a possible cause for why proteins aggregate in these diseases, which may be worth further study.
Collapse
Affiliation(s)
- Masak Takaine
- Gunma University Initiative for Advanced Research (GIAR), Gunma University, Maebashi, Japan.,Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi, Japan
| | - Hiromi Imamura
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Satoshi Yoshida
- Gunma University Initiative for Advanced Research (GIAR), Gunma University, Maebashi, Japan.,Institute for Molecular and Cellular Regulation (IMCR), Gunma University, Maebashi, Japan.,School of International Liberal Studies, Waseda University, Tokyo, Japan.,Japan Science and Technology Agency, PREST, Tokyo, Japan
| |
Collapse
|
21
|
Hotz M, Thayer NH, Hendrickson DG, Schinski EL, Xu J, Gottschling DE. rDNA array length is a major determinant of replicative lifespan in budding yeast. Proc Natl Acad Sci U S A 2022; 119:e2119593119. [PMID: 35394872 PMCID: PMC9169770 DOI: 10.1073/pnas.2119593119] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 03/01/2022] [Indexed: 12/29/2022] Open
Abstract
The complex processes and interactions that regulate aging and determine lifespan are not fully defined for any organism. Here, taking advantage of recent technological advances in studying aging in budding yeast, we discovered a previously unappreciated relationship between the number of copies of the ribosomal RNA gene present in its chromosomal array and replicative lifespan (RLS). Specifically, the chromosomal ribosomal DNA (rDNA) copy number (rDNA CN) positively correlated with RLS and this interaction explained over 70% of variability in RLS among a series of wild-type strains. In strains with low rDNA CN, SIR2 expression was attenuated and extrachromosomal rDNA circle (ERC) accumulation was increased, leading to shorter lifespan. Suppressing ERC formation by deletion of FOB1 eliminated the relationship between rDNA CN and RLS. These data suggest that previously identified rDNA CN regulatory mechanisms limit lifespan. Importantly, the RLSs of reported lifespan-enhancing mutations were significantly impacted by rDNA CN, suggesting that changes in rDNA CN might explain the magnitude of some of those reported effects. We propose that because rDNA CN is modulated by environmental, genetic, and stochastic factors, considering rDNA CN is a prerequisite for accurate interpretation of lifespan data.
Collapse
Affiliation(s)
- Manuel Hotz
- Calico Life Sciences LLC, South San Francisco, CA 94080
| | | | | | | | - Jun Xu
- Calico Life Sciences LLC, South San Francisco, CA 94080
| | | |
Collapse
|
22
|
|
23
|
Shen W, He J, Hou T, Si J, Chen S. Common Pathogenetic Mechanisms Underlying Aging and Tumor and Means of Interventions. Aging Dis 2022; 13:1063-1091. [PMID: 35855334 PMCID: PMC9286910 DOI: 10.14336/ad.2021.1208] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 12/07/2021] [Indexed: 11/22/2022] Open
Abstract
Recently, there has been an increase in the incidence of malignant tumors among the older population. Moreover, there is an association between aging and cancer. During the process of senescence, the human body suffers from a series of imbalances, which have been shown to further accelerate aging, trigger tumorigenesis, and facilitate cancer progression. Therefore, exploring the junctions of aging and cancer and searching for novel methods to restore the junctions is of great importance to intervene against aging-related cancers. In this review, we have identified the underlying pathogenetic mechanisms of aging-related cancers by comparing alterations in the human body caused by aging and the factors that trigger cancers. We found that the common mechanisms of aging and cancer include cellular senescence, alterations in proteostasis, microbiota disorders (decreased probiotics and increased pernicious bacteria), persistent chronic inflammation, extensive immunosenescence, inordinate energy metabolism, altered material metabolism, endocrine disorders, altered genetic expression, and epigenetic modification. Furthermore, we have proposed that aging and cancer have common means of intervention, including novel uses of common medicine (metformin, resveratrol, and rapamycin), dietary restriction, and artificial microbiota intervention or selectively replenishing scarce metabolites. In addition, we have summarized the research progress of each intervention and revealed their bidirectional effects on cancer progression to compare their reliability and feasibility. Therefore, the study findings provide vital information for advanced research studies on age-related cancers. However, there is a need for further optimization of the described methods and more suitable methods for complicated clinical practices. In conclusion, targeting aging may have potential therapeutic effects on aging-related cancers.
Collapse
Affiliation(s)
- Weiyi Shen
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, China.
- Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang, China.
- Prevention and Treatment Research Center for Senescent Disease, Zhejiang University School of Medicine, Zhejiang, China
| | - Jiamin He
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, China.
- Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang, China.
- Prevention and Treatment Research Center for Senescent Disease, Zhejiang University School of Medicine, Zhejiang, China
| | - Tongyao Hou
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, China.
- Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang, China.
- Prevention and Treatment Research Center for Senescent Disease, Zhejiang University School of Medicine, Zhejiang, China
- Correspondence should be addressed to: Dr. Shujie Chen (), Dr. Jianmin Si () and Dr. Tongyao Hou (), Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang, China
| | - Jianmin Si
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, China.
- Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang, China.
- Prevention and Treatment Research Center for Senescent Disease, Zhejiang University School of Medicine, Zhejiang, China
- Correspondence should be addressed to: Dr. Shujie Chen (), Dr. Jianmin Si () and Dr. Tongyao Hou (), Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang, China
| | - Shujie Chen
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, China.
- Institute of Gastroenterology, Zhejiang University, Hangzhou 310016, Zhejiang, China.
- Prevention and Treatment Research Center for Senescent Disease, Zhejiang University School of Medicine, Zhejiang, China
- Correspondence should be addressed to: Dr. Shujie Chen (), Dr. Jianmin Si () and Dr. Tongyao Hou (), Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, Zhejiang, China
| |
Collapse
|
24
|
Chen X, Muñoz-Arellano AJ, Petranovic D. UBB +1 reduces amyloid-β cytotoxicity by activation of autophagy in yeast. Aging (Albany NY) 2021; 13:23953-23980. [PMID: 34751669 PMCID: PMC8610117 DOI: 10.18632/aging.203681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/02/2021] [Indexed: 04/20/2023]
Abstract
UBB+1 is a mutated version of ubiquitin B peptide caused by a transcriptional frameshift due to the RNA polymerase II "slippage". The accumulation of UBB+1 has been linked to ubiquitin-proteasome system (UPS) dysfunction and neurodegeneration. Alzheimer's disease (AD) is defined as a progressive neurodegeneration and aggregation of amyloid-β peptides (Aβ) is a prominent neuropathological feature of AD. In our previous study, we found that yeast cells expressing UBB+1 at lower level display an increased resistance to cellular stresses under conditions of chronological aging. In order to examine the molecular mechanisms behind, here we performed genome-wide transcriptional analyses and molecular/cellular biology assays. We found that low UBB+1 expression activated the autophagy pathway, increased vacuolar activity, and promoted transport of autophagic marker ATG8p into vacuole. Furthermore, we introduced low UBB+1 expression to our humanized yeast AD models, that constitutively express Aβ42 and Aβ40 peptide, respectively. The co-expression of UBB+1 with Aβ42 or Aβ40 peptide led to reduced intracellular Aβ levels, ameliorated viability, and increased chronological life span. In an autophagy deficient background strain (atg1Δ), intracellular Aβ levels were not affected by UBB+1 expression. Our findings offer insights for reducing intracellular Aβ toxicity via autophagy-dependent cellular pathways under low level of UBB+1 expression.
Collapse
Affiliation(s)
- Xin Chen
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden
| | - Ana Joyce Muñoz-Arellano
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Dina Petranovic
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
25
|
Jenkins EC, Chattopadhyay M, Germain D. Folding Mitochondrial-Mediated Cytosolic Proteostasis Into the Mitochondrial Unfolded Protein Response. Front Cell Dev Biol 2021; 9:715923. [PMID: 34631705 PMCID: PMC8495152 DOI: 10.3389/fcell.2021.715923] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/30/2021] [Indexed: 01/04/2023] Open
Abstract
Several studies reported that mitochondrial stress induces cytosolic proteostasis. How mitochondrial stress activates proteostasis in the cytosol remains unclear. However, the cross-talk between the mitochondria and cytosolic proteostasis has far reaching implications for treatment of proteopathies including neurodegenerative diseases. This possibility appears within reach since selected drugs have begun to emerge as being able to stimulate mitochondrial-mediated cytosolic proteostasis. In this review, we focus on studies describing how mitochondrial stress activates proteostasis in the cytosol across multiple model organisms. A model is proposed linking mitochondrial-mediated regulation of cytosolic translation, folding capacity, ubiquitination, and proteasome degradation and autophagy as a multi layered control of cytosolic proteostasis that overlaps with the integrated stress response (ISR) and the mitochondrial unfolded protein response (UPRmt). By analogy to the conductor in an orchestra managing multiple instrumental sections into a dynamically integrated musical piece, the cross-talk between these signaling cascades places the mitochondria as a major conductor of cellular integrity.
Collapse
Affiliation(s)
- Edmund Charles Jenkins
- Division of Hematology/Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY, United States
| | - Mrittika Chattopadhyay
- Division of Hematology/Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY, United States
| | - Doris Germain
- Division of Hematology/Oncology, Department of Medicine, Icahn School of Medicine at Mount Sinai, Tisch Cancer Institute, New York, NY, United States
| |
Collapse
|
26
|
Narayan V, McMahon M, O'Brien JJ, McAllister F, Buffenstein R. Insights into the Molecular Basis of Genome Stability and Pristine Proteostasis in Naked Mole-Rats. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1319:287-314. [PMID: 34424521 DOI: 10.1007/978-3-030-65943-1_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The naked mole-rat (Heterocephalus glaber) is the longest-lived rodent, with a maximal reported lifespan of 37 years. In addition to its long lifespan - which is much greater than predicted based on its small body size (longevity quotient of ~4.2) - naked mole-rats are also remarkably healthy well into old age. This is reflected in a striking resistance to tumorigenesis and minimal declines in cardiovascular, neurological and reproductive function in older animals. Over the past two decades, researchers have been investigating the molecular mechanisms regulating the extended life- and health- span of this animal, and since the sequencing and assembly of the naked mole-rat genome in 2011, progress has been rapid. Here, we summarize findings from published studies exploring the unique molecular biology of the naked mole-rat, with a focus on mechanisms and pathways contributing to genome stability and maintenance of proteostasis during aging. We also present new data from our laboratory relevant to the topic and discuss our findings in the context of the published literature.
Collapse
Affiliation(s)
| | - Mary McMahon
- Calico Life Sciences, LLC, South San Francisco, CA, USA
| | | | | | - Rochelle Buffenstein
- Calico Life Sciences, LLC, South San Francisco, CA, USA. .,Department of Pharmacology, University of Texas Health at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
27
|
Maresh ME, Chen P, Hazbun TR, Trader DJ. A Yeast Chronological Lifespan Assay to Assess Activity of Proteasome Stimulators. Chembiochem 2021; 22:2553-2560. [PMID: 34043860 PMCID: PMC8478123 DOI: 10.1002/cbic.202100117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/26/2021] [Indexed: 11/10/2022]
Abstract
Aging is characterized by changes in several cellular processes, including dysregulation of proteostasis. Current research has shown long-lived rodents display elevated proteasome activity throughout life and proteasome dysfunction is linked to shorter lifespans in a transgenic mouse model. The ubiquitin proteasome system (UPS) is one of the main pathways leading to cellular protein clearance and quality maintenance. Reduction in proteasome activity is associated with aging and its related pathologies. Small molecule stimulators of the proteasome have been proposed to help alleviate cellular stress related to unwanted protein accumulation. Here we have described the development of techniques to monitor the impact of proteasome stimulation in wild-type yeast and a strain that has impaired proteasome expression. We validated our chronological lifespan assay using both types of yeast with a variety of small molecule stimulators at different concentrations. By modifying the media conditions for the yeast, molecules can be evaluated for their potential to increase chronological lifespan in five days. Additionally, our assay conditions can be used to monitor the activity of proteasome stimulators in modulating the degradation of a YFP-α-synuclein fusion protein produced by yeast. We anticipate these methods to be valuable for those wishing to study the impact of increasing proteasome-mediated degradation of proteins in a eukaryotic model organism.
Collapse
Affiliation(s)
- Marianne E. Maresh
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, 47907
| | - Panyue Chen
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, 47907
| | - Tony R. Hazbun
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, 47907
| | - Darci J. Trader
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana, 47907
| |
Collapse
|
28
|
Lee MB, Kiflezghi MG, Tsuchiya M, Wasko B, Carr DT, Uppal PA, Grayden KA, Elala YC, Nguyen TA, Wang J, Ragosti P, Nguyen S, Zhao YT, Kim D, Thon S, Sinha I, Tang TT, Tran NHB, Tran THB, Moore MD, Li MAK, Rodriguez K, Promislow DEL, Kaeberlein M. Pterocarpus marsupium extract extends replicative lifespan in budding yeast. GeroScience 2021; 43:2595-2609. [PMID: 34297314 PMCID: PMC8599564 DOI: 10.1007/s11357-021-00418-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/05/2021] [Indexed: 02/02/2023] Open
Abstract
As the molecular mechanisms of biological aging become better understood, there is growing interest in identifying interventions that target those mechanisms to promote extended health and longevity. The budding yeast Saccharomyces cerevisiae has served as a premier model organism for identifying genetic and molecular factors that modulate cellular aging and is a powerful system in which to evaluate candidate longevity interventions. Here we screened a collection of natural products and natural product mixtures for effects on the growth rate, mTOR-mediated growth inhibition, and replicative lifespan. No mTOR inhibitory activity was detected, but several of the treatments affected growth rate and lifespan. The strongest lifespan shortening effects were observed for green tea extract and berberine. The most robust lifespan extension was detected from an extract of Pterocarpus marsupium and another mixture containing Pterocarpus marsupium extract. These findings illustrate the utility of the yeast system for longevity intervention discovery and identify Pterocarpus marsupium extract as a potentially fruitful longevity intervention for testing in higher eukaryotes.
Collapse
Affiliation(s)
- Mitchell B. Lee
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Box 357470, Seattle, WA 98195-7470 USA
| | - Michael G. Kiflezghi
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Box 357470, Seattle, WA 98195-7470 USA
| | - Mitsuhiro Tsuchiya
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Box 357470, Seattle, WA 98195-7470 USA
| | - Brian Wasko
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Box 357470, Seattle, WA 98195-7470 USA ,Department of Biology and Biotechnology, University of Houston-Clear Lake, Houston, TX USA
| | - Daniel T. Carr
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Box 357470, Seattle, WA 98195-7470 USA
| | - Priya A. Uppal
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Box 357470, Seattle, WA 98195-7470 USA
| | - Katherine A. Grayden
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Box 357470, Seattle, WA 98195-7470 USA
| | - Yordanos C. Elala
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Box 357470, Seattle, WA 98195-7470 USA
| | - Tu Anh Nguyen
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Box 357470, Seattle, WA 98195-7470 USA
| | - Jesse Wang
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Box 357470, Seattle, WA 98195-7470 USA
| | - Priya Ragosti
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Box 357470, Seattle, WA 98195-7470 USA
| | - Sunny Nguyen
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Box 357470, Seattle, WA 98195-7470 USA
| | - Yan Ting Zhao
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Box 357470, Seattle, WA 98195-7470 USA ,Department of Oral Health Sciences, School of Dentistry, University of Washington, Seattle, WA USA
| | - Deborah Kim
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Box 357470, Seattle, WA 98195-7470 USA
| | - Socheata Thon
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Box 357470, Seattle, WA 98195-7470 USA
| | - Irika Sinha
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Box 357470, Seattle, WA 98195-7470 USA
| | - Thao T. Tang
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Box 357470, Seattle, WA 98195-7470 USA
| | - Ngoc H. B. Tran
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Box 357470, Seattle, WA 98195-7470 USA
| | - Thu H. B. Tran
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Box 357470, Seattle, WA 98195-7470 USA
| | - Margarete D. Moore
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Box 357470, Seattle, WA 98195-7470 USA
| | - Mary Ann K. Li
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Box 357470, Seattle, WA 98195-7470 USA
| | - Karl Rodriguez
- Department of Cell Systems and Anatomy, University of Texas Health Sciences Center, San Antonio, TX USA ,Sam and Ann Barshop Center for Longevity and Aging Studies, University of Texas Health Science Center, San Antonio, TX USA
| | - Daniel E. L. Promislow
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Box 357470, Seattle, WA 98195-7470 USA ,Department of Biology, University of Washington, Seattle, WA USA
| | - Matt Kaeberlein
- Department of Laboratory Medicine and Pathology, School of Medicine, University of Washington, Box 357470, Seattle, WA 98195-7470 USA
| |
Collapse
|
29
|
Nakazawa N, Fukuda M, Ashizaki M, Shibata Y, Takahashi K. Hsp104 contributes to freeze-thaw tolerance by maintaining proteasomal activity in a spore clone isolated from Shirakami kodama yeast. J GEN APPL MICROBIOL 2021; 67:170-178. [PMID: 34148914 DOI: 10.2323/jgam.2020.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The supply of oven-fresh bakery products to consumers has been improved by frozen dough technology; however, freeze-thaw stress decreases the activity of yeast cells. To breed better baker's yeasts for frozen dough, it is important to understand the factors affecting freeze-thaw stress tolerance in baker's yeast. We analyzed the stress response in IB1411, a spore clone from Saccharomyces cerevisiae Shirakami kodama yeast, with an exceptionally high tolerance to freeze-thaw stress. Genes encoding trehalose-6-phosphate synthase (TPS1), catalase (CTT1), and disaggregase (HSP104) were highly expressed in IB1411 cells even under conditions of non-stress. The expression of Hsp104 protein was also higher in IB1411 cells even under non-stress conditions. Deletion of HSP104 (hsp104Δ) in IB1411 cells reduced the activity of the ubiquitin-proteasome system (UPS). By monitoring the accumulation of aggregated proteins using the ΔssCPY*-GFP fusion protein under freeze-thaw stress or treatment with proteasomal inhibitor, we found that IB1411 cells resolved aggregated proteins faster than the hsp104Δ strain. Thus, Hsp104 seems to contribute to freeze-thaw tolerance by maintaining UPS activity via the disaggregation of aggregated proteins. Lastly, we found that the IB1411 cells maintained high leavening ability in frozen dough as compared with the parental strain, Shirakami kodama yeast, and thus will be useful for making bread.
Collapse
Affiliation(s)
- Nobushige Nakazawa
- Department of Biotechnology, Faculty of Bioresource Science, Akita Prefectural University
| | - Mami Fukuda
- Department of Biotechnology, Faculty of Bioresource Science, Akita Prefectural University
| | - Mizuki Ashizaki
- Department of Biotechnology, Faculty of Bioresource Science, Akita Prefectural University
| | - Yukari Shibata
- Department of Biotechnology, Faculty of Bioresource Science, Akita Prefectural University
| | | |
Collapse
|
30
|
Harrison MC, Niño LMJ, Rodrigues MA, Ryll J, Flatt T, Oettler J, Bornberg-Bauer E. Gene Coexpression Network Reveals Highly Conserved, Well-Regulated Anti-Ageing Mechanisms in Old Ant Queens. Genome Biol Evol 2021; 13:6263858. [PMID: 33944936 PMCID: PMC8214412 DOI: 10.1093/gbe/evab093] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/23/2021] [Indexed: 12/11/2022] Open
Abstract
Evolutionary theories of ageing predict a reduction in selection efficiency with age, a so-called “selection shadow,” due to extrinsic mortality decreasing effective population size with age. Classic symptoms of ageing include a deterioration in transcriptional regulation and protein homeostasis. Understanding how ant queens defy the trade-off between fecundity and lifespan remains a major challenge for the evolutionary theory of ageing. It has often been discussed that the low extrinsic mortality of ant queens, that are generally well protected within the nest by workers and soldiers, should reduce the selection shadow acting on old queens. We tested this by comparing strength of selection acting on genes upregulated in young and old queens of the ant, Cardiocondyla obscurior. In support of a reduced selection shadow, we find old-biased genes to be under strong purifying selection. We also analyzed a gene coexpression network (GCN) with the aim to detect signs of ageing in the form of deteriorating regulation and proteostasis. We find no evidence for ageing. In fact, we detect higher connectivity in old queens indicating increased transcriptional regulation with age. Within the GCN, we discover five highly correlated modules that are upregulated with age. These old-biased modules regulate several antiageing mechanisms such as maintenance of proteostasis, transcriptional regulation, and stress response. We observe stronger purifying selection on central hub genes of these old-biased modules compared with young-biased modules. These results indicate a lack of transcriptional ageing in old C. obscurior queens, possibly facilitated by strong selection at old age and well-regulated antiageing mechanisms.
Collapse
Affiliation(s)
- Mark C Harrison
- Institute for Evolution and Biodiversity, University of Münster, Germany
| | | | | | - Judith Ryll
- Institute for Evolution and Biodiversity, University of Münster, Germany
| | - Thomas Flatt
- Department of Biology, University of Fribourg, Switzerland
| | - Jan Oettler
- Institut für Zoologie/Evolutionsbiologie, University of Regensburg, Germany
| | - Erich Bornberg-Bauer
- Department of Biology, University of Fribourg, Switzerland.,Department of Protein Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany
| |
Collapse
|
31
|
Tain LS, Sehlke R, Meilenbrock RL, Leech T, Paulitz J, Chokkalingam M, Nagaraj N, Grönke S, Fröhlich J, Atanassov I, Mann M, Beyer A, Partridge L. Tissue-specific modulation of gene expression in response to lowered insulin signalling in Drosophila. eLife 2021; 10:e67275. [PMID: 33879316 PMCID: PMC8060030 DOI: 10.7554/elife.67275] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 03/18/2021] [Indexed: 01/15/2023] Open
Abstract
Reduced activity of the insulin/IGF signalling network increases health during ageing in multiple species. Diverse and tissue-specific mechanisms drive the health improvement. Here, we performed tissue-specific transcriptional and proteomic profiling of long-lived Drosophila dilp2-3,5 mutants, and identified tissue-specific regulation of >3600 transcripts and >3700 proteins. Most expression changes were regulated post-transcriptionally in the fat body, and only in mutants infected with the endosymbiotic bacteria, Wolbachia pipientis, which increases their lifespan. Bioinformatic analysis identified reduced co-translational ER targeting of secreted and membrane-associated proteins and increased DNA damage/repair response proteins. Accordingly, age-related DNA damage and genome instability were lower in fat body of the mutant, and overexpression of a minichromosome maintenance protein subunit extended lifespan. Proteins involved in carbohydrate metabolism showed altered expression in the mutant intestine, and gut-specific overexpression of a lysosomal mannosidase increased autophagy, gut homeostasis, and lifespan. These processes are candidates for combatting ageing-related decline in other organisms.
Collapse
Affiliation(s)
| | - Robert Sehlke
- Max-Planck Institute for Biology of AgeingCologneGermany
- CECAD Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated DiseasesCologneGermany
| | | | - Thomas Leech
- Max-Planck Institute for Biology of AgeingCologneGermany
| | - Jonathan Paulitz
- Max-Planck Institute for Biology of AgeingCologneGermany
- CECAD Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated DiseasesCologneGermany
| | - Manopriya Chokkalingam
- CECAD Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated DiseasesCologneGermany
| | - Nagarjuna Nagaraj
- Department of Proteomics and Signal Transduction, Max-Planck-Institute of BiochemistryMartinsriedGermany
| | | | - Jenny Fröhlich
- Max-Planck Institute for Biology of AgeingCologneGermany
| | | | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max-Planck-Institute of BiochemistryMartinsriedGermany
| | - Andreas Beyer
- CECAD Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated DiseasesCologneGermany
- Center for Molecular Medicine (CMMC) & Cologne School for Computational Biology (CSCB), University of CologneCologneGermany
| | - Linda Partridge
- Max-Planck Institute for Biology of AgeingCologneGermany
- Institute of Healthy Ageing, and GEE, UCLLondonUnited Kingdom
| |
Collapse
|
32
|
Abstract
The 26S proteasome is the most complex ATP-dependent protease machinery, of ~2.5 MDa mass, ubiquitously found in all eukaryotes. It selectively degrades ubiquitin-conjugated proteins and plays fundamentally indispensable roles in regulating almost all major aspects of cellular activities. To serve as the sole terminal "processor" for myriad ubiquitylation pathways, the proteasome evolved exceptional adaptability in dynamically organizing a large network of proteins, including ubiquitin receptors, shuttle factors, deubiquitinases, AAA-ATPase unfoldases, and ubiquitin ligases, to enable substrate selectivity and processing efficiency and to achieve regulation precision of a vast diversity of substrates. The inner working of the 26S proteasome is among the most sophisticated, enigmatic mechanisms of enzyme machinery in eukaryotic cells. Recent breakthroughs in three-dimensional atomic-level visualization of the 26S proteasome dynamics during polyubiquitylated substrate degradation elucidated an extensively detailed picture of its functional mechanisms, owing to progressive methodological advances associated with cryogenic electron microscopy (cryo-EM). Multiple sites of ubiquitin binding in the proteasome revealed a canonical mode of ubiquitin-dependent substrate engagement. The proteasome conformation in the act of substrate deubiquitylation provided insights into how the deubiquitylating activity of RPN11 is enhanced in the holoenzyme and is coupled to substrate translocation. Intriguingly, three principal modes of coordinated ATP hydrolysis in the heterohexameric AAA-ATPase motor were discovered to regulate intermediate functional steps of the proteasome, including ubiquitin-substrate engagement, deubiquitylation, initiation of substrate translocation and processive substrate degradation. The atomic dissection of the innermost working of the 26S proteasome opens up a new era in our understanding of the ubiquitin-proteasome system and has far-reaching implications in health and disease.
Collapse
Affiliation(s)
- Youdong Mao
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, 02215, Massachusetts, USA. .,School of Physics, Center for Quantitative Biology, Peking University, Beijing, 100871, China.
| |
Collapse
|
33
|
Maresh ME, Salazar-Chaparro AF, Trader DJ. Methods for the discovery of small molecules to monitor and perturb the activity of the human proteasome. Future Med Chem 2021; 13:99-116. [PMID: 33275045 PMCID: PMC7857359 DOI: 10.4155/fmc-2020-0288] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 10/14/2020] [Indexed: 12/12/2022] Open
Abstract
Regulating protein production and degradation is critical to maintaining cellular homeostasis. The proteasome is a key player in keeping proteins at the proper levels. However, proteasome activity can be altered in certain disease states, such as blood cancers and neurodegenerative diseases. Cancers often exhibit enhanced proteasomal activity, as protein synthesis is increased in these cells compared with normal cells. Conversely, neurodegenerative diseases are characterized by protein accumulation, leading to reduced proteasome activity. As a result, the proteasome has emerged as a target for therapeutic intervention. The potential of the proteasome as a therapeutic target has come from studies involving chemical stimulators and inhibitors, and the development of a suite of assays and probes that can be used to monitor proteasome activity with purified enzyme and in live cells.
Collapse
Affiliation(s)
- Marianne E Maresh
- Department of Medicinal Chemistry & Molecular Pharmacology, Purdue University, 575 West Stadium Avenue, West Lafayette, IN 47907, USA
| | - Andres F Salazar-Chaparro
- Department of Medicinal Chemistry & Molecular Pharmacology, Purdue University, 575 West Stadium Avenue, West Lafayette, IN 47907, USA
| | - Darci J Trader
- Department of Medicinal Chemistry & Molecular Pharmacology, Purdue University, 575 West Stadium Avenue, West Lafayette, IN 47907, USA
| |
Collapse
|
34
|
The dialogue between the ubiquitin-proteasome system and autophagy: Implications in ageing. Ageing Res Rev 2020; 64:101203. [PMID: 33130248 DOI: 10.1016/j.arr.2020.101203] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/09/2020] [Accepted: 10/25/2020] [Indexed: 02/06/2023]
Abstract
Dysregulated proteostasis is one of the hallmarks of ageing. Damaged proteins may impair cellular function and their accumulation may lead to tissue dysfunction and disease. This is why protective mechanisms to safeguard the cell proteome have evolved. These mechanisms consist of cellular machineries involved in protein quality control, including regulators of protein translation, folding, trafficking and degradation. In eukaryotic cells, protein degradation occurs via two main pathways: the ubiquitin-proteasome system (UPS) and the autophagy-lysosome pathway. Although distinct pathways, they are not isolated systems and have a complementary nature, as evidenced by recent studies. These findings raise the question of how autophagy and the proteasome crosstalk. In this review we address how the two degradation pathways impact each other, thereby adding a new layer of regulation to protein degradation. We also analyze the implications of the UPS and autophagy in ageing.
Collapse
|
35
|
Townes FW, Carr K, Miller JW. Identifying longevity associated genes by integrating gene expression and curated annotations. PLoS Comput Biol 2020; 16:e1008429. [PMID: 33253142 PMCID: PMC7728194 DOI: 10.1371/journal.pcbi.1008429] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 12/10/2020] [Accepted: 10/09/2020] [Indexed: 02/06/2023] Open
Abstract
Aging is a complex process with poorly understood genetic mechanisms. Recent studies have sought to classify genes as pro-longevity or anti-longevity using a variety of machine learning algorithms. However, it is not clear which types of features are best for optimizing classification performance and which algorithms are best suited to this task. Further, performance assessments based on held-out test data are lacking. We systematically compare five popular classification algorithms using gene ontology and gene expression datasets as features to predict the pro-longevity versus anti-longevity status of genes for two model organisms (C. elegans and S. cerevisiae) using the GenAge database as ground truth. We find that elastic net penalized logistic regression performs particularly well at this task. Using elastic net, we make novel predictions of pro- and anti-longevity genes that are not currently in the GenAge database. Aging is a complex process with poorly understood genetic mechanisms. Recent studies have sought to classify genes as pro-longevity or anti-longevity using a variety of machine learning algorithms. However, it is not clear which types of features are best for optimizing classification performance and which algorithms are best suited to this task. Further, performance assessments based on held-out test data are lacking. We systematically compare five popular classification algorithms using gene ontology and gene expression datasets as features to predict the pro-longevity versus anti-longevity status of genes for two model organisms (nematode worms and yeast) using the GenAge database as ground truth. We find that elastic net penalized logistic regression performs particularly well at this task. Using elastic net, we make novel predictions of pro- and anti-longevity genes that are not currently in the GenAge database.
Collapse
Affiliation(s)
- F. William Townes
- Department of Computer Science, Princeton University, Princeton, New Jersey, USA
- * E-mail:
| | - Kareem Carr
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Jeffrey W. Miller
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
36
|
Aladdin A, Yao Y, Yang C, Kahlert G, Ghani M, Király N, Boratkó A, Uray K, Dittmar G, Tar K. The Proteasome Activators Blm10/PA200 Enhance the Proteasomal Degradation of N-Terminal Huntingtin. Biomolecules 2020; 10:biom10111581. [PMID: 33233776 PMCID: PMC7699873 DOI: 10.3390/biom10111581] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/12/2020] [Accepted: 11/18/2020] [Indexed: 12/22/2022] Open
Abstract
The Blm10/PA200 family of proteasome activators modulates the peptidase activity of the core particle (20S CP). They participate in opening the 20S CP gate, thus facilitating the degradation of unstructured proteins such as tau and Dnm1 in a ubiquitin- and ATP-independent manner. Furthermore, PA200 also participates in the degradation of acetylated histones. In our study, we use a combination of yeast and human cell systems to investigate the role of Blm10/PA200 in the degradation of N-terminal Huntingtin fragments (N-Htt). We demonstrate that the human PA200 binds to N-Htt. The loss of Blm10 in yeast or PA200 in human cells results in increased mutant N-Htt aggregate formation and elevated cellular toxicity. Furthermore, Blm10 in vitro accelerates the proteasomal degradation of soluble N-Htt. Collectively, our data suggest N-Htt as a new substrate for Blm10/PA200-proteasomes and point to new approaches in Huntington's disease (HD) research.
Collapse
Affiliation(s)
- Azzam Aladdin
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (A.A.); (M.G.); (N.K.); (A.B.); (K.U.)
- Doctoral School of Molecular Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Yanhua Yao
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10460, USA;
- Correspondence: (Y.Y.); (G.D.); (K.T.); Tel.: +86-21-6384-6590 (Y.Y.); +352-26970-944 (G.D.); +36-52-412-345 (K.T.)
| | - Ciyu Yang
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10460, USA;
- Departments of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | | | - Marvi Ghani
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (A.A.); (M.G.); (N.K.); (A.B.); (K.U.)
- Doctoral School of Molecular Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Nikolett Király
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (A.A.); (M.G.); (N.K.); (A.B.); (K.U.)
- Doctoral School of Molecular Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Anita Boratkó
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (A.A.); (M.G.); (N.K.); (A.B.); (K.U.)
| | - Karen Uray
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (A.A.); (M.G.); (N.K.); (A.B.); (K.U.)
| | - Gunnar Dittmar
- Proteomics of Cellular Signalling, Luxembourg Institute of Health, 1445 Strassen, Luxembourg
- Department of Life Science and Medicine, University of Luxembourg, 4365 Esch-sur-Alzette, Luxembourg
- Correspondence: (Y.Y.); (G.D.); (K.T.); Tel.: +86-21-6384-6590 (Y.Y.); +352-26970-944 (G.D.); +36-52-412-345 (K.T.)
| | - Krisztina Tar
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (A.A.); (M.G.); (N.K.); (A.B.); (K.U.)
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10460, USA;
- Correspondence: (Y.Y.); (G.D.); (K.T.); Tel.: +86-21-6384-6590 (Y.Y.); +352-26970-944 (G.D.); +36-52-412-345 (K.T.)
| |
Collapse
|
37
|
Ohtsuka H, Shimasaki T, Aiba H. Genes affecting the extension of chronological lifespan in Schizosaccharomyces pombe (fission yeast). Mol Microbiol 2020; 115:623-642. [PMID: 33064911 PMCID: PMC8246873 DOI: 10.1111/mmi.14627] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/17/2020] [Accepted: 10/11/2020] [Indexed: 02/06/2023]
Abstract
So far, more than 70 genes involved in the chronological lifespan (CLS) of Schizosaccharomyces pombe (fission yeast) have been reported. In this mini‐review, we arrange and summarize these genes based on the reported genetic interactions between them and the physical interactions between their products. We describe the signal transduction pathways that affect CLS in S. pombe: target of rapamycin complex 1, cAMP‐dependent protein kinase, Sty1, and Pmk1 pathways have important functions in the regulation of CLS extension. Furthermore, the Php transcription complex, Ecl1 family proteins, cyclin Clg1, and the cyclin‐dependent kinase Pef1 are important for the regulation of CLS extension in S. pombe. Most of the known genes involved in CLS extension are related to these pathways and genes. In this review, we focus on the individual genes regulating CLS extension in S. pombe and discuss the interactions among them.
Collapse
Affiliation(s)
- Hokuto Ohtsuka
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Takafumi Shimasaki
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Hirofumi Aiba
- Laboratory of Molecular Microbiology, Department of Basic Medicinal Sciences, Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
38
|
Carolina de Souza-Guerreiro T, Meng X, Dacheux E, Firczuk H, McCarthy J. Translational control of gene expression noise and its relationship to ageing in yeast. FEBS J 2020; 288:2278-2293. [PMID: 33090724 DOI: 10.1111/febs.15594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 09/30/2020] [Accepted: 10/07/2020] [Indexed: 11/29/2022]
Abstract
Gene expression noise influences organism evolution and fitness but is poorly understood. There is increasing evidence that the functional roles of components of the translation machinery influence noise intensity. In addition, modulation of the activities of at least some of these same components affects the replicative lifespan of a broad spectrum of organisms. In a novel comparative approach, we modulate the activities of the translation initiation factors eIFG1 and eIF4G2, both of which are involved in the process of recruiting ribosomal 43S preinitiation complexes to the 5' end of eukaryotic mRNAs. We show that tagging of the cell wall using a fluorescent dye allows us to follow gene expression noise as different yeast strains progress through successive cycles of replicative ageing. This procedure reveals a relationship between global protein synthesis rate and gene expression noise (cell-to-cell heterogeneity), which is accompanied by a parallel correlation between gene expression noise and the replicative age of mother cells. An alternative approach, based on microfluidics, confirms the interdependence between protein synthesis rate, gene expression noise and ageing. We additionally show that it is important to characterize the influence of the design of the microfluidic device on the nutritional state of the cells during such experiments. Analysis of the noise data derived from flow cytometry and fluorescence microscopy measurements indicates that both the intrinsic and the extrinsic noise components increase as a function of ageing.
Collapse
Affiliation(s)
| | - Xiang Meng
- Warwick Integrative Synthetic Biology Centre (WISB) and School of Life Sciences, University of Warwick, Coventry, UK
| | - Estelle Dacheux
- Warwick Integrative Synthetic Biology Centre (WISB) and School of Life Sciences, University of Warwick, Coventry, UK
| | - Helena Firczuk
- Warwick Integrative Synthetic Biology Centre (WISB) and School of Life Sciences, University of Warwick, Coventry, UK
| | - John McCarthy
- Warwick Integrative Synthetic Biology Centre (WISB) and School of Life Sciences, University of Warwick, Coventry, UK
| |
Collapse
|
39
|
Spatio-temporal correlates of gene expression and cortical morphology across lifespan and aging. Neuroimage 2020; 224:117426. [PMID: 33035668 DOI: 10.1016/j.neuroimage.2020.117426] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/29/2020] [Accepted: 09/29/2020] [Indexed: 11/23/2022] Open
Abstract
Evidence from neuroimaging and genetic studies supports the concept that brain aging mirrors development. However, it is unclear whether mechanisms linking brain development and aging provide new insights to delay aging and potentially reverse it. This study determined biological mechanisms and phenotypic traits underpinning brain alterations across the lifespan and in aging by examining spatio-temporal correlations between gene expression and cortical volumes using datasets d with the age range from 2 to 82 years. We revealed that a large proportion of genes whose expression was associated with cortical volumes across the lifespan were in astrocytes. These genes, which showed up-regulation during development and down-regulation during aging, contributed to fundamental homeostatic functions of astrocytes. Included among these genes were those encoding components of cAMP, Ras, and retrograde endocannabinoid signaling pathways. Genes associated with cortical volumes in the same data aged above 55 years were also enriched for the sphingolipid, renin-angiotensin system (RAS), proteasome, and TGF-β signaling pathway, which is linked to senescence-associated secretory phenotypes. Neuroticism, drinking, and smoking were the common phenotypic traits in the lifespan and aging, while memory was the unique phenotype associated with aging. These findings provide biological mechanisms mirroring development and aging as well as unique to aging.
Collapse
|
40
|
Reproductive Potential of Yeast Cells Depends on Overall Action of Interconnected Changes in Central Carbon Metabolism, Cellular Biosynthetic Capacity, and Proteostasis. Int J Mol Sci 2020; 21:ijms21197313. [PMID: 33022992 PMCID: PMC7582853 DOI: 10.3390/ijms21197313] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 12/18/2022] Open
Abstract
Carbon metabolism is a crucial aspect of cell life. Glucose, as the primary source of energy and carbon skeleton, determines the type of cell metabolism and biosynthetic capabilities, which, through the regulation of cell size, may affect the reproductive capacity of the yeast cell. Calorie restriction is considered as the most effective way to improve cellular physiological capacity, and its molecular mechanisms are complex and include several nutrient signaling pathways. It is widely assumed that the metabolic shift from fermentation to respiration is treated as a substantial driving force for the mechanism of calorie restriction and its influence on reproductive capabilities of cells. In this paper, we propose another approach to this issue based on analysis the connection between energy-producing and biomass formation pathways which are closed in the metabolic triangle, i.e., the respiration-glycolysis-pentose phosphate pathway. The analyses were based on the use of cells lacking hexokinase 2 (∆hxk2) and conditions of different glucose concentration corresponding to the calorie restriction and the calorie excess. Hexokinase 2 is the key enzyme involved in central carbon metabolism and is also treated as a calorie restriction mimetic. The experimental model used allows us to explain both the role of increased respiration as an effect of calorie restriction but also other aspects of carbon metabolism and the related metabolic flux in regulation of reproductive potential of the cells. The obtained results reveal that increased respiration is not a prerequisite for reproductive potential extension but rather an accompanying effect of the positive role of calorie restriction. More important seems to be the changes connected with fluxes in central carbon metabolic pathways resulting in low biosynthetic capabilities and improved proteostasis.
Collapse
|
41
|
Transcriptional upregulation of proteasome activator Blm10 antagonizes cellular aging. Biochem Biophys Res Commun 2020; 532:211-218. [PMID: 32861419 DOI: 10.1016/j.bbrc.2020.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 07/01/2020] [Indexed: 12/20/2022]
Abstract
Cellular aging is associated with the damage to DNA, decline in proteasome activity, loss of histones and alteration of epigenetic marks. The atypical proteasome with the activator PA200 in mammals or its ortholog Blm10 in yeast promotes the acetylation-dependent degradation of the core histones during DNA repair or spermiogenesis. We show here that loss of PA200 or Blm10 is the leading cause of the decline in proteasome activity during aging, the latter of which conversely induces the transcription of Blm10. The transcription factor Crt1 suppressed, but the proteasome subunit Rpn4 promoted, the transcription of Blm10. On the contrary to deletion of Rpn4, deletion of Crt1 elevated Blm10 transcription upon DNA damage, reduced core histone levels during aging, and prolonged replicative lifespan. These results suggest that cells can antagonize aging by up-regulating transcription of Blm10, providing important insights into the mechanisms of aging and the aging-related diseases.
Collapse
|
42
|
Zou K, Rouskin S, Dervishi K, McCormick MA, Sasikumar A, Deng C, Chen Z, Kaeberlein M, Brem RB, Polymenis M, Kennedy BK, Weissman JS, Zheng J, Ouyang Q, Li H. Life span extension by glucose restriction is abrogated by methionine supplementation: Cross-talk between glucose and methionine and implication of methionine as a key regulator of life span. SCIENCE ADVANCES 2020; 6:eaba1306. [PMID: 32821821 PMCID: PMC7406366 DOI: 10.1126/sciadv.aba1306] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 06/22/2020] [Indexed: 05/03/2023]
Abstract
Caloric restriction (CR) is known to extend life span across species; however, the molecular mechanisms are not well understood. We investigate the mechanism by which glucose restriction (GR) extends yeast replicative life span, by combining ribosome profiling and RNA-seq with microfluidic-based single-cell analysis. We discovered a cross-talk between glucose sensing and the regulation of intracellular methionine: GR down-regulated the transcription and translation of methionine biosynthetic enzymes and transporters, leading to a decreased intracellular methionine concentration; external supplementation of methionine cancels the life span extension by GR. Furthermore, genetic perturbations that decrease methionine synthesis/uptake extend life span. These observations suggest that intracellular methionine mediates the life span effects of various nutrient and genetic perturbations, and that the glucose-methionine cross-talk is a general mechanism for coordinating the nutrient status and the translation/growth of a cell. Our work also implicates proteasome as a downstream effector of the life span extension by GR.
Collapse
Affiliation(s)
- Ke Zou
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
- The State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences at Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Silvia Rouskin
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California Institute for Quantitative Biomedical Research and Howard Hughes Medical Institute, San Francisco, CA 94158, USA
| | | | - Mark A. McCormick
- Department of Biochemistry and Molecular Biology, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
- Autophagy Inflammation and Metabolism Center of Biomedical Research Excellence, Albuquerque, NM 87131, USA
| | | | - Changhui Deng
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Zhibing Chen
- Department of Physical Therapy and Rehabilitation Science, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Matt Kaeberlein
- Department of Pathology, University of Washington, Seattle, WA 98195, USA
| | - Rachel B. Brem
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Michael Polymenis
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Brian K. Kennedy
- Buck Institute for Research on Aging, Novato, CA 94945, USA
- Departments of Biochemistry and Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Centre for Healthy Longevity, National University Health System, Singapore
- Singapore Institute for Clinical Sciences, A*STAR, Singapore
| | - Jonathan S. Weissman
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California Institute for Quantitative Biomedical Research and Howard Hughes Medical Institute, San Francisco, CA 94158, USA
| | - Jiashun Zheng
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Qi Ouyang
- The State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences at Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Hao Li
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
43
|
Verheijen BM, Lussier C, Müller-Hübers C, Garruto RM, Oyanagi K, Braun RJ, van Leeuwen FW. Activation of the Unfolded Protein Response and Proteostasis Disturbance in Parkinsonism-Dementia of Guam. J Neuropathol Exp Neurol 2020; 79:34-45. [PMID: 31750913 DOI: 10.1093/jnen/nlz110] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/15/2019] [Accepted: 10/14/2019] [Indexed: 12/14/2022] Open
Abstract
Guam parkinsonism-dementia (G-PD) is a progressive and fatal neurodegenerative disorder among the native inhabitants of the Mariana Islands that manifests clinically with parkinsonism as well as dementia. Neuropathologically, G-PD is characterized by abundant neurofibrillary tangles composed of hyperphosphorylated tau, marked deposition of transactive response DNA-binding protein 43 kDa (TDP-43), and neuronal loss. The mechanisms that underlie neurodegeneration in G-PD are poorly understood. Here, we report that the unfolded protein response (UPR) is activated in G-PD brains. Specifically, we show that the endoplasmic reticulum (ER) chaperone binding immunoglobulin protein/glucose-regulated protein 78 kDa and phosphorylated (activated) ER stress sensor protein kinase RNA-like ER kinase accumulate in G-PD brains. Furthermore, proteinaceous aggregates in G-PD brains are found to contain several proteins related to the ubiquitin-proteasome system (UPS) and the autophagy pathway, two major mechanisms for intracellular protein degradation. In particular, a mutant ubiquitin (UBB+1), whose presence is a marker for UPS dysfunction, is shown to accumulate in G-PD brains. We demonstrate that UBB+1 is a potent modifier of TDP-43 aggregation and cytotoxicity in vitro. Overall, these data suggest that UPR activation and intracellular proteolytic pathways are intimately connected with the accumulation of aggregated proteins in G-PD.
Collapse
Affiliation(s)
- Bert M Verheijen
- Department of Translational Neuroscience (BMV); Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University (BMV), Utrecht, The Netherlands; Institute of Cell Biology, University of Bayreuth, Bayreuth, Germany (CL, CM-H, RJB); Department of Anthropology (RMG); Department of Biological Sciences, Binghamton University, State University of New York (RMG), Binghamton, New York; Division of Neuropathology, Department of Brain Disease Research, Shinshu University School of Medicine, Matsumoto, Nagano, Japan (KO); Brain Research Laboratory, Hatsuishi Hospital, Kashiwa, Chiba, Japan (KO); Faculty of Medicine/Dental Medicine, Danube Private University, Krems an der Donau, Austria (RJB); and Department of Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands (FWvL)
| | - Celina Lussier
- Department of Translational Neuroscience (BMV); Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University (BMV), Utrecht, The Netherlands; Institute of Cell Biology, University of Bayreuth, Bayreuth, Germany (CL, CM-H, RJB); Department of Anthropology (RMG); Department of Biological Sciences, Binghamton University, State University of New York (RMG), Binghamton, New York; Division of Neuropathology, Department of Brain Disease Research, Shinshu University School of Medicine, Matsumoto, Nagano, Japan (KO); Brain Research Laboratory, Hatsuishi Hospital, Kashiwa, Chiba, Japan (KO); Faculty of Medicine/Dental Medicine, Danube Private University, Krems an der Donau, Austria (RJB); and Department of Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands (FWvL)
| | - Cora Müller-Hübers
- Department of Translational Neuroscience (BMV); Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University (BMV), Utrecht, The Netherlands; Institute of Cell Biology, University of Bayreuth, Bayreuth, Germany (CL, CM-H, RJB); Department of Anthropology (RMG); Department of Biological Sciences, Binghamton University, State University of New York (RMG), Binghamton, New York; Division of Neuropathology, Department of Brain Disease Research, Shinshu University School of Medicine, Matsumoto, Nagano, Japan (KO); Brain Research Laboratory, Hatsuishi Hospital, Kashiwa, Chiba, Japan (KO); Faculty of Medicine/Dental Medicine, Danube Private University, Krems an der Donau, Austria (RJB); and Department of Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands (FWvL)
| | - Ralph M Garruto
- Department of Translational Neuroscience (BMV); Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University (BMV), Utrecht, The Netherlands; Institute of Cell Biology, University of Bayreuth, Bayreuth, Germany (CL, CM-H, RJB); Department of Anthropology (RMG); Department of Biological Sciences, Binghamton University, State University of New York (RMG), Binghamton, New York; Division of Neuropathology, Department of Brain Disease Research, Shinshu University School of Medicine, Matsumoto, Nagano, Japan (KO); Brain Research Laboratory, Hatsuishi Hospital, Kashiwa, Chiba, Japan (KO); Faculty of Medicine/Dental Medicine, Danube Private University, Krems an der Donau, Austria (RJB); and Department of Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands (FWvL)
| | - Kiyomitsu Oyanagi
- Department of Translational Neuroscience (BMV); Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University (BMV), Utrecht, The Netherlands; Institute of Cell Biology, University of Bayreuth, Bayreuth, Germany (CL, CM-H, RJB); Department of Anthropology (RMG); Department of Biological Sciences, Binghamton University, State University of New York (RMG), Binghamton, New York; Division of Neuropathology, Department of Brain Disease Research, Shinshu University School of Medicine, Matsumoto, Nagano, Japan (KO); Brain Research Laboratory, Hatsuishi Hospital, Kashiwa, Chiba, Japan (KO); Faculty of Medicine/Dental Medicine, Danube Private University, Krems an der Donau, Austria (RJB); and Department of Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands (FWvL)
| | - Ralf J Braun
- Department of Translational Neuroscience (BMV); Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University (BMV), Utrecht, The Netherlands; Institute of Cell Biology, University of Bayreuth, Bayreuth, Germany (CL, CM-H, RJB); Department of Anthropology (RMG); Department of Biological Sciences, Binghamton University, State University of New York (RMG), Binghamton, New York; Division of Neuropathology, Department of Brain Disease Research, Shinshu University School of Medicine, Matsumoto, Nagano, Japan (KO); Brain Research Laboratory, Hatsuishi Hospital, Kashiwa, Chiba, Japan (KO); Faculty of Medicine/Dental Medicine, Danube Private University, Krems an der Donau, Austria (RJB); and Department of Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands (FWvL)
| | - Fred W van Leeuwen
- Department of Translational Neuroscience (BMV); Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University (BMV), Utrecht, The Netherlands; Institute of Cell Biology, University of Bayreuth, Bayreuth, Germany (CL, CM-H, RJB); Department of Anthropology (RMG); Department of Biological Sciences, Binghamton University, State University of New York (RMG), Binghamton, New York; Division of Neuropathology, Department of Brain Disease Research, Shinshu University School of Medicine, Matsumoto, Nagano, Japan (KO); Brain Research Laboratory, Hatsuishi Hospital, Kashiwa, Chiba, Japan (KO); Faculty of Medicine/Dental Medicine, Danube Private University, Krems an der Donau, Austria (RJB); and Department of Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, The Netherlands (FWvL)
| |
Collapse
|
44
|
Moreno DF, Aldea M. Proteostatic stress as a nodal hallmark of replicative aging. Exp Cell Res 2020; 394:112163. [PMID: 32640194 DOI: 10.1016/j.yexcr.2020.112163] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/01/2020] [Accepted: 07/03/2020] [Indexed: 11/30/2022]
Abstract
Aging is characterized by the progressive decline of physiology at the cell, tissue and organism level, leading to an increased risk of mortality. Proteotoxic stress, mitochondrial dysfunction and genomic instability are considered major universal drivers of cell aging, and accumulating evidence establishes clear biunivocal relationships among these key hallmarks. In this regard, the finite lifespan of the budding yeast, together with the extensive armamentarium of available analytical tools, has made this single cell eukaryote a key model to study aging at molecular and cellular levels. Here we review the current data that link proteostasis to cell cycle progression in the budding yeast, focusing on senescence as an inherent phenotype displayed by aged cells. Recent advances in high-throughput systems to study yeast mother cells while they replicate are providing crucial information on aging-related processes and their temporal interdependencies at a systems level. In our view, the available data point to the existence of multiple feedback mechanisms among the major causal factors of aging, which would converge into the loss of proteostasis as a nodal driver of cell senescence and death.
Collapse
Affiliation(s)
- David F Moreno
- Molecular Biology Institute of Barcelona (IBMB), CSIC, 08028, Barcelona, Catalonia, Spain
| | - Martí Aldea
- Molecular Biology Institute of Barcelona (IBMB), CSIC, 08028, Barcelona, Catalonia, Spain.
| |
Collapse
|
45
|
Dahiya R, Mohammad T, Alajmi MF, Rehman MT, Hasan GM, Hussain A, Hassan MI. Insights into the Conserved Regulatory Mechanisms of Human and Yeast Aging. Biomolecules 2020; 10:E882. [PMID: 32526825 PMCID: PMC7355435 DOI: 10.3390/biom10060882] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 05/22/2020] [Accepted: 05/27/2020] [Indexed: 12/12/2022] Open
Abstract
Aging represents a significant biological process having strong associations with cancer, diabetes, and neurodegenerative and cardiovascular disorders, which leads to progressive loss of cellular functions and viability. Astonishingly, age-related disorders share several genetic and molecular mechanisms with the normal aging process. Over the last three decades, budding yeast Saccharomyces cerevisiae has emerged as a powerful yet simple model organism for aging research. Genetic approaches using yeast RLS have led to the identification of hundreds of genes impacting lifespan in higher eukaryotes. Numerous interventions to extend yeast lifespan showed an analogous outcome in multi-cellular eukaryotes like fruit flies, nematodes, rodents, and humans. We collected and analyzed a multitude of observations from published literature and provide the contribution of yeast in the understanding of aging hallmarks most applicable to humans. Here, we discuss key pathways and molecular mechanisms that underpin the evolutionarily conserved aging process and summarize the current understanding and clinical applicability of its trajectories. Gathering critical information on aging biology would pave the way for future investigation targeted at the discovery of aging interventions.
Collapse
Affiliation(s)
- Rashmi Dahiya
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India;
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India;
| | - Mohamed F. Alajmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.F.A.); (M.T.R.); (A.H.)
| | - Md. Tabish Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.F.A.); (M.T.R.); (A.H.)
| | - Gulam Mustafa Hasan
- Department of Biochemistry, College of Medicine, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia;
| | - Afzal Hussain
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; (M.F.A.); (M.T.R.); (A.H.)
| | - Md. Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India;
| |
Collapse
|
46
|
Hamazaki J, Murata S. ER-Resident Transcription Factor Nrf1 Regulates Proteasome Expression and Beyond. Int J Mol Sci 2020; 21:ijms21103683. [PMID: 32456207 PMCID: PMC7279161 DOI: 10.3390/ijms21103683] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 02/06/2023] Open
Abstract
Protein folding is a substantively error prone process, especially when it occurs in the endoplasmic reticulum (ER). The highly exquisite machinery in the ER controls secretory protein folding, recognizes aberrant folding states, and retrotranslocates permanently misfolded proteins from the ER back to the cytosol; these misfolded proteins are then degraded by the ubiquitin–proteasome system termed as the ER-associated degradation (ERAD). The 26S proteasome is a multisubunit protease complex that recognizes and degrades ubiquitinated proteins in an ATP-dependent manner. The complex structure of the 26S proteasome requires exquisite regulation at the transcription, translation, and molecular assembly levels. Nuclear factor erythroid-derived 2-related factor 1 (Nrf1; NFE2L1), an ER-resident transcription factor, has recently been shown to be responsible for the coordinated expression of all the proteasome subunit genes upon proteasome impairment in mammalian cells. In this review, we summarize the current knowledge regarding the transcriptional regulation of the proteasome, as well as recent findings concerning the regulation of Nrf1 transcription activity in ER homeostasis and metabolic processes.
Collapse
|
47
|
Liu P, Sarnoski EA, Olmez TT, Young TZ, Acar M. Characterization of the impact of GMP/GDP synthesis inhibition on replicative lifespan extension in yeast. Curr Genet 2020; 66:813-822. [PMID: 32232569 DOI: 10.1007/s00294-020-01068-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 03/03/2020] [Accepted: 03/13/2020] [Indexed: 02/06/2023]
Abstract
Slowing down aging-associated accumulation of molecular damage or its prevention represents a promising therapeutic paradigm to combat aging-related disease and death. While several chemical compounds extend lifespan in model organisms, their mechanism of action is often unknown, reducing their therapeutic potential. Using a systematic approach, here we characterize the impact of the GMP pathway on yeast lifespan and elucidate GMP synthesis inhibition as a lifespan extension mechanism. We further discover that proteasome activation extends lifespan in part through the GMP pathway. GMP synthesis inhibition exerts its lifespan extension effect independently of the canonical nutrient-sensing pathway regulating lifespan. Exposing longitudinally aging yeast cells to GMP pathway inhibition in an age-dependent manner, we demonstrate that the lifespan extension is facilitated by slowing, rather than reversing, the aging process in cells. Using a GUK1 mutant with lower GMP-to-GDP conversion activity, we observe lifespan extension, suggesting that reduced GDP level by itself can also extend yeast lifespan. These findings elucidate the involvement of nucleotide metabolism in the aging process. The existence of clinically-approved GMP pathway inhibitors elicits the potential of a new class of therapeutics for aging-related disorders.
Collapse
Affiliation(s)
- Ping Liu
- Department of Molecular Cellular and Developmental Biology, Yale University, 219 Prospect Street, New Haven, CT, 06511, USA.,Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, CT, 06516, USA
| | - Ethan A Sarnoski
- Department of Molecular Cellular and Developmental Biology, Yale University, 219 Prospect Street, New Haven, CT, 06511, USA.,Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, CT, 06516, USA
| | - Tolga T Olmez
- Department of Molecular Cellular and Developmental Biology, Yale University, 219 Prospect Street, New Haven, CT, 06511, USA.,Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, CT, 06516, USA
| | - Thomas Z Young
- Department of Molecular Cellular and Developmental Biology, Yale University, 219 Prospect Street, New Haven, CT, 06511, USA.,Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, CT, 06516, USA
| | - Murat Acar
- Department of Molecular Cellular and Developmental Biology, Yale University, 219 Prospect Street, New Haven, CT, 06511, USA. .,Systems Biology Institute, Yale University, 850 West Campus Drive, West Haven, CT, 06516, USA. .,Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, 300 George Street, Suite 501, New Haven, CT, 06511, USA. .,Department of Physics, Yale University, 217 Prospect Street, New Haven, CT, 06511, USA.
| |
Collapse
|
48
|
Camandona VDL, Rios-Anjos RM, Alegria TGP, Pereira F, Bicev RN, da Cunha FM, Digiampietri LA, de Barros MH, Netto LES, Ferreira-Junior JR. Expression of human HSP27 in yeast extends replicative lifespan and uncovers a hormetic response. Biogerontology 2020; 21:559-575. [PMID: 32189112 DOI: 10.1007/s10522-020-09869-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 03/13/2020] [Indexed: 01/20/2023]
Abstract
Human HSP27 is a small heat shock protein that modulates the ability of cells to respond to heat shock and oxidative stress, and also functions as a chaperone independent of ATP, participating in the proteasomal degradation of proteins. The expression of HSP27 is associated with survival in mammalian cells. In cancer cells, it confers resistance to chemotherapy; in neurons, HSP27 has a positive effect on neuronal viability in models of Alzheimer's and Parkinson's diseases. To better understand the mechanism by which HSP27 expression contributes to cell survival, we expressed human HSP27 in the budding yeast Saccharomyces cerevisiae under control of different mutant TEF promoters, that conferred nine levels of graded basal expression, and showed that replicative lifespan and proteasomal activity increase as well as the resistance to oxidative and thermal stresses. The profile of these phenotypes display a dose-response effect characteristic of hormesis, an adaptive phenomenon that is observed when cells are exposed to increasing amounts of stress or toxic substances. The hormetic response correlates with changes in expression levels of HSP27 and also with its oligomeric states when correlated to survival assays. Our results indicate that fine tuning of HSP27 concentration could be used as a strategy for cancer therapy, and also for improving neuronal survival in neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | - Thiago Geronimo Pires Alegria
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Fábio Pereira
- Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, São Paulo, Brazil
| | | | | | | | - Mário Henrique de Barros
- Departamento de Microbiologia - Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Luis Eduardo Soares Netto
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | | |
Collapse
|
49
|
Buffenstein R, Lewis KN, Gibney PA, Narayan V, Grimes KM, Smith M, Lin TD, Brown-Borg HM. Probing Pedomorphy and Prolonged Lifespan in Naked Mole-Rats and Dwarf Mice. Physiology (Bethesda) 2020; 35:96-111. [DOI: 10.1152/physiol.00032.2019] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Pedomorphy, maintenance of juvenile traits throughout life, is most pronounced in extraordinarily long-lived naked mole-rats. Many of these traits (e.g., slow growth rates, low hormone levels, and delayed sexual maturity) are shared with spontaneously mutated, long-lived dwarf mice. Although some youthful traits likely evolved as adaptations to subterranean habitats (e.g., thermolability), the nature of these intrinsic pedomorphic features may also contribute to their prolonged youthfulness, longevity, and healthspan.
Collapse
Affiliation(s)
| | | | - Patrick A. Gibney
- Calico Life Sciences LLC, South San Francisco, California
- Department of Food Science, College of Agriculture and Life Sciences, Stocking Hall, Cornell University, Ithaca, New York
| | - Vikram Narayan
- Calico Life Sciences LLC, South San Francisco, California
| | - Kelly M. Grimes
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Megan Smith
- Calico Life Sciences LLC, South San Francisco, California
| | - Tzuhua D. Lin
- Calico Life Sciences LLC, South San Francisco, California
| | - Holly M. Brown-Borg
- Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota
| |
Collapse
|
50
|
Crane MM, Chen KL, Blue BW, Kaeberlein M. Trajectories of Aging: How Systems Biology in Yeast Can Illuminate Mechanisms of Personalized Aging. Proteomics 2020; 20:e1800420. [PMID: 31385433 PMCID: PMC7000301 DOI: 10.1002/pmic.201800420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/02/2019] [Indexed: 02/02/2023]
Abstract
All organisms age, but the extent to which all organisms age the same way remains a fundamental unanswered question in biology. Across species, it is now clear that at least some aspects of aging are highly conserved and are perhaps universal, but other mechanisms of aging are private to individual species or sets of closely related species. Within the same species, however, it has generally been assumed that the molecular mechanisms of aging are largely invariant from one individual to the next. With the development of new tools for studying aging at the individual cell level in budding yeast, recent data has called this assumption into question. There is emerging evidence that individual yeast mother cells may undergo fundamentally different trajectories of aging. Individual trajectories of aging are difficult to study by traditional population level assays, but through the application of systems biology approaches combined with novel microfluidic technologies, it is now possible to observe and study these phenomena in real time. Understanding the spectrum of mechanisms that determine how different individuals age is a necessary step toward the goal of personalized geroscience, where healthy longevity is optimized for each individual.
Collapse
Affiliation(s)
- Matthew M Crane
- Department of Pathology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Kenneth L Chen
- Department of Pathology, School of Medicine, University of Washington, Seattle, WA, USA,Department of Genome Sciences, University of Washington, Seattle, WA, USA,Medical Scientist Training Program, University of Washington, Seattle, WA, USA
| | - Ben W. Blue
- Department of Pathology, School of Medicine, University of Washington, Seattle, WA, USA
| | - Matt Kaeberlein
- Department of Pathology, School of Medicine, University of Washington, Seattle, WA, USA,Department of Genome Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|