1
|
Xu X, Wang Y, Wang Q, LV S, Mao G. Elevated expression of ELK1 promotes breast cancer cell growth and correlates with poor prognosis of breast cancer patients. Ann Med Surg (Lond) 2024; 86:5767-5775. [PMID: 39359848 PMCID: PMC11444635 DOI: 10.1097/ms9.0000000000002256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 05/29/2024] [Indexed: 10/04/2024] Open
Abstract
Background Breast cancer is the most common tumor in women and poses a serious threat to women's physical and mental health. The ETS-like gene 1 (ELK1), upregulated in various malignancies, serves as a transcription regulatory factor. This study primarily investigates the biological functions and prognostic significance of ELK1 in breast cancer. Materials and methods The authors conducted an analysis of ELK1 expression in breast cancer and adjacent tissues using data from The Cancer Genome Atlas (TCGA), and validated these findings with clinical specimens. Additionally, the authors employed siRNA transfection, proliferation and apoptosis assays to elucidate the roles of ELK1 in breast cancer cells. Furthermore, we assessed the correlations between ELK1 expression and the tumor microenvironment, as well as tumor-infiltrating immune cells (TIICs), utilizing the ESTIMATE and CIBERSORT algorithms. Finally, we used Kaplan-Meier plots and COX regressions to identify prognostic factors, and developed a predictive alignment diagram to evaluate the prognostic significance of ELK1 in breast cancer. Results A marked increase in ELK1 expression is evident in breast cancer tissues (P<0.01). Experimental findings demonstrate that silencing ELK1 suppresses proliferation and promotes apoptosis in breast cancer cells. ELK1 plays a pivotal role in regulating the immune microenvironment of breast cancer. Furthermore, the alignment diagram indicates that ELK1 may serve as an independent prognostic factor for breast cancer patients. Conclusion The authors' study reveals that ELK1 exhibits a high expression level in breast cancer tissues and is associated with disease progression and poor prognosis.
Collapse
Affiliation(s)
- Xiuping Xu
- Medical Laboratory, Shaoxing People’s Hospital
| | - Yanan Wang
- Medical Laboratory, Shaoxing University Affiliated Hospital, Shaoxing, Zhejiang, China
| | - Qing Wang
- Medical Laboratory, Shaoxing People’s Hospital
| | - Shanmei LV
- Medical Laboratory, Shaoxing People’s Hospital
| | - Guofeng Mao
- Medical Laboratory, Shaoxing People’s Hospital
| |
Collapse
|
2
|
Su C, Liu M, Yao X, Hao W, Ma J, Ren Y, Gao X, Xin L, Ge L, Yu Y, Wei M, Yang J. Vascular injury activates the ELK1/SND1/SRF pathway to promote vascular smooth muscle cell proliferative phenotype and neointimal hyperplasia. Cell Mol Life Sci 2024; 81:59. [PMID: 38279051 PMCID: PMC10817852 DOI: 10.1007/s00018-023-05095-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 12/01/2023] [Accepted: 12/15/2023] [Indexed: 01/28/2024]
Abstract
BACKGROUND Vascular smooth muscle cell (VSMC) proliferation is the leading cause of vascular stenosis or restenosis. Therefore, investigating the molecular mechanisms and pivotal regulators of the proliferative VSMC phenotype is imperative for precisely preventing neointimal hyperplasia in vascular disease. METHODS Wire-induced vascular injury and aortic culture models were used to detect the expression of staphylococcal nuclease domain-containing protein 1 (SND1). SMC-specific Snd1 knockout mice were used to assess the potential roles of SND1 after vascular injury. Primary VSMCs were cultured to evaluate SND1 function on VSMC phenotype switching, as well as to investigate the mechanism by which SND1 regulates the VSMC proliferative phenotype. RESULTS Phenotype-switched proliferative VSMCs exhibited higher SND1 protein expression compared to the differentiated VSMCs. This result was replicated in primary VSMCs treated with platelet-derived growth factor (PDGF). In the injury model, specific knockout of Snd1 in mouse VSMCs reduced neointimal hyperplasia. We then revealed that ETS transcription factor ELK1 (ELK1) exhibited upregulation and activation in proliferative VSMCs, and acted as a novel transcription factor to induce the gene transcriptional activation of Snd1. Subsequently, the upregulated SND1 is associated with serum response factor (SRF) by competing with myocardin (MYOCD). As a co-activator of SRF, SND1 recruited the lysine acetyltransferase 2B (KAT2B) to the promoter regions leading to the histone acetylation, consequently promoted SRF to recognize the specific CArG motif, and enhanced the proliferation- and migration-related gene transcriptional activation. CONCLUSIONS The present study identifies ELK1/SND1/SRF as a novel pathway in promoting the proliferative VSMC phenotype and neointimal hyperplasia in vascular injury, predisposing the vessels to pathological remodeling. This provides a potential therapeutic target for vascular stenosis.
Collapse
Affiliation(s)
- Chao Su
- Division of Cardiovascular Surgery, Cardiac and Vascular Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), and Key Laboratory of Cellular and Molecular Immunology, Tianjin, China
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Mingxia Liu
- Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), and Key Laboratory of Cellular and Molecular Immunology, Tianjin, China
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Xuyang Yao
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), and Key Laboratory of Cellular and Molecular Immunology, Tianjin, China
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China
- Eye Institute & School of Optometry and Ophthalmology, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Wei Hao
- Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), and Key Laboratory of Cellular and Molecular Immunology, Tianjin, China
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Jinzheng Ma
- Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), and Key Laboratory of Cellular and Molecular Immunology, Tianjin, China
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Yuanyuan Ren
- Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), and Key Laboratory of Cellular and Molecular Immunology, Tianjin, China
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Xingjie Gao
- Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), and Key Laboratory of Cellular and Molecular Immunology, Tianjin, China
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Lingbiao Xin
- Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), and Key Laboratory of Cellular and Molecular Immunology, Tianjin, China
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Lin Ge
- Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), and Key Laboratory of Cellular and Molecular Immunology, Tianjin, China
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Ying Yu
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), and Key Laboratory of Cellular and Molecular Immunology, Tianjin, China
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China
| | - Minxin Wei
- Division of Cardiovascular Surgery, Cardiac and Vascular Center, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
| | - Jie Yang
- Department of Biochemistry and Molecular Biology, Department of Immunology, School of Basic Medical Science, Tianjin Medical University, Tianjin, China.
- Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), and Key Laboratory of Cellular and Molecular Immunology, Tianjin, China.
- The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University, Tianjin, China.
- State Key Laboratory of Experimental Hematology, Tianjin, China.
| |
Collapse
|
3
|
Ahmed SA, Mendonca P, Messeha SS, Oriaku ET, Soliman KFA. The Anticancer Effects of Marine Carotenoid Fucoxanthin through Phosphatidylinositol 3-Kinase (PI3K)-AKT Signaling on Triple-Negative Breast Cancer Cells. Molecules 2023; 29:61. [PMID: 38202644 PMCID: PMC10779870 DOI: 10.3390/molecules29010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer that lacks specific targets such as estrogen, progesterone, and HER2 receptors. TNBC affects one in eight women in the United States, making up 15-20% of breast cancer cases. Patients with TNBC can develop resistance to chemotherapy over time, leading to treatment failure. Therefore, finding other options like natural products is necessary for treatment. The advantages of using natural products sourced from plants as anticancer agents are that they are less toxic, more affordable, and have fewer side effects. These products can modulate several cellular processes of the tumor microenvironment, such as proliferation, migration, angiogenesis, cell cycle arrest, and apoptosis. The phosphatidyl inositol 3-kinase (PI3K)-AKT signaling pathway is an important pathway that contributes to the survival and growth of the tumor microenvironment and is associated with these cellular processes. This current study examined the anticancer effects of fucoxanthin, a marine carotenoid isolated from brown seaweed, in the MDA-MB-231 and MDA-MB-468 TNBC cell lines. The methods used in this study include a cytotoxic assay, PI3K-AKT signaling pathway PCR arrays, and Wes analysis. Fucoxanthin (6.25 µM) + TNF-α (50 ng/mL) and TNF-α (50 ng/mL) showed no significant effect on cell viability compared to the control in both MDA-MB-231 and MDA-MB-468 cells after a 24 h treatment period. PI3K-AKT signaling pathway PCR array studies showed that in TNF-α-stimulated (50 ng/mL) MDA-MB-231 and MDA-MB-468 cells, fucoxanthin (6.25 µM) modulated the mRNA expression of 12 genes, including FOXO1, RASA1, HRAS, MAPK3, PDK2, IRS1, EIF4EBP1, EIF4B, PTK2, TIRAP, RHOA, and ELK1. Additionally, fucoxanthin significantly downregulated the protein expression of IRS1, EIF4B, and ELK1 in MDA-MB-231 cells, and no change in the protein expression of EIF4B and ELK1 was shown in MDA-MB-468 cells. Fucoxanthin upregulated the protein expression of RHOA in both cell lines. The modulation of the expression of genes and proteins of the PI3K-AKT signaling pathway may elucidate fucoxanthin's effects in cell cycle progression, apoptotic processes, migration, and proliferation, which shows that PI3K-AKT may be the possible molecular mechanism for fucoxanthin's effects. In conclusion, the results obtained in this study elucidate fucoxanthin's molecular mechanisms and indicate that fucoxanthin may be considered a promising candidate for breast cancer-targeted therapy.
Collapse
Affiliation(s)
- Shade’ A. Ahmed
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA; (S.A.A.); (E.T.O.)
| | - Patricia Mendonca
- Department of Biology, College of Science and Technology, Florida A&M University, Tallahassee, FL 32307, USA;
| | - Samia S. Messeha
- Department of Biology, College of Science and Technology, Florida A&M University, Tallahassee, FL 32307, USA;
| | - Ebenezer T. Oriaku
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA; (S.A.A.); (E.T.O.)
| | - Karam F. A. Soliman
- Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA; (S.A.A.); (E.T.O.)
| |
Collapse
|
4
|
Bunch H, Kim D, Naganuma M, Nakagawa R, Cong A, Jeong J, Ehara H, Vu H, Chang JH, Schellenberg MJ, Sekine SI. ERK2-topoisomerase II regulatory axis is important for gene activation in immediate early genes. Nat Commun 2023; 14:8341. [PMID: 38097570 PMCID: PMC10721843 DOI: 10.1038/s41467-023-44089-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/29/2023] [Indexed: 12/17/2023] Open
Abstract
The function of the mitogen-activated protein kinase signaling pathway is required for the activation of immediate early genes (IEGs), including EGR1 and FOS, for cell growth and proliferation. Recent studies have identified topoisomerase II (TOP2) as one of the important regulators of the transcriptional activation of IEGs. However, the mechanism underlying transcriptional regulation involving TOP2 in IEG activation has remained unknown. Here, we demonstrate that ERK2, but not ERK1, is important for IEG transcriptional activation and report a critical ELK1 binding sequence for ERK2 function at the EGR1 gene. Our data indicate that both ERK1 and ERK2 extensively phosphorylate the C-terminal domain of TOP2B at mutual and distinctive residues. Although both ERK1 and ERK2 enhance the catalytic rate of TOP2B required to relax positive DNA supercoiling, ERK2 delays TOP2B catalysis of negative DNA supercoiling. In addition, ERK1 may relax DNA supercoiling by itself. ERK2 catalytic inhibition or knock-down interferes with transcription and deregulates TOP2B in IEGs. Furthermore, we present the first cryo-EM structure of the human cell-purified TOP2B and etoposide together with the EGR1 transcriptional start site (-30 to +20) that has the strongest affinity to TOP2B within -423 to +332. The structure shows TOP2B-mediated breakage and dramatic bending of the DNA. Transcription is activated by etoposide, while it is inhibited by ICRF193 at EGR1 and FOS, suggesting that TOP2B-mediated DNA break to favor transcriptional activation. Taken together, this study suggests that activated ERK2 phosphorylates TOP2B to regulate TOP2-DNA interactions and favor transcriptional activation in IEGs. We propose that TOP2B association, catalysis, and dissociation on its substrate DNA are important processes for regulating transcription and that ERK2-mediated TOP2B phosphorylation may be key for the catalysis and dissociation steps.
Collapse
Affiliation(s)
- Heeyoun Bunch
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea.
- School of Applied Biosciences, College of Agriculture & Life Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea.
| | - Deukyeong Kim
- School of Applied Biosciences, College of Agriculture & Life Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Masahiro Naganuma
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Reiko Nakagawa
- RIKEN BDR Laboratory for Phyloinformatics, Hyogo, 650-0047, Japan
| | - Anh Cong
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Jaehyeon Jeong
- Department of Applied Biosciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Haruhiko Ehara
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Hongha Vu
- Department of Biology Education, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Jeong Ho Chang
- Department of Biology Education, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Matthew J Schellenberg
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Shun-Ichi Sekine
- Laboratory for Transcription Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| |
Collapse
|
5
|
Huang S, Li J, Wu S, Zheng Z, Wang C, Li H, Zhao L, Zhang X, Huang H, Huang C, Xie Q. C4orf19 inhibits colorectal cancer cell proliferation by competitively binding to Keap1 with TRIM25 via the USP17/Elk-1/CDK6 axis. Oncogene 2023; 42:1333-1346. [PMID: 36882524 DOI: 10.1038/s41388-023-02656-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/18/2023] [Accepted: 02/27/2023] [Indexed: 03/09/2023]
Abstract
Colorectal cancer (CRC) is one of the most common malignant tumors in the gastrointestinal tract, and has been attracted a great deal attention and extensive investigation due to its high morbidity and mortality rates. The C4orf19 gene encodes a protein with uncharacterized function. Our preliminary exploration of the TCGA database indicated that C4orf19 is markedly downregulated in CRC tissues in comparison to that observed in normal colonic tissues, suggesting its potential association with CRC behaviors. Further studies showed a significant positive correlation between C4orf19 expression levels and CRC patient prognosis. Ectopic expression of C4orf19 inhibited the growth of CRC cells in vitro and tumorigenic ability in vivo. Mechanistic studies showed that C4orf19 binds to Keap1 at near the Lys615, which prevents the ubiquitination of Keap1 by TRIM25, thus protecting the Keap1 protein from degradation. The accumulated Keap1 results in USP17 degradation and in turn leading to the degradation of Elk-1, further attenuates its regulated CDK6 mRNA transcription and protein expression, as well as its mediated proliferation of CRC cells. Collectively, the present studies characterize function of C4orf19 as a tumor suppressor for CRC cell proliferation by targeting Keap1/USP17/Elk-1/CDK6 axis.
Collapse
Affiliation(s)
- Shirui Huang
- Department of Clinical Laboratory, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Jizhen Li
- Department of Clinical Laboratory, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Shuang Wu
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Zhijian Zheng
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Cong Wang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Hongyan Li
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Lingling Zhao
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Xiaodong Zhang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Haishan Huang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Chuanshu Huang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Qipeng Xie
- Department of Clinical Laboratory, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.
| |
Collapse
|
6
|
Mańkowska A, Brym P, Sobiech P, Fraser L. Promoter polymorphisms in STK35 and IFT27 genes and their associations with boar sperm freezability. Theriogenology 2022; 189:199-208. [DOI: 10.1016/j.theriogenology.2022.06.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 06/07/2022] [Accepted: 06/19/2022] [Indexed: 12/18/2022]
|
7
|
Wei S, Yu Z, Shi R, An L, Zhang Q, Zhang Q, Zhang T, Zhang J, Wang H. GPX4 suppresses ferroptosis to promote malignant progression of endometrial carcinoma via transcriptional activation by ELK1. BMC Cancer 2022; 22:881. [PMID: 35962333 PMCID: PMC9373394 DOI: 10.1186/s12885-022-09986-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/08/2022] [Indexed: 12/21/2022] Open
Abstract
Background Glutathione Peroxidase 4 (GPX4) is a key protein that inhibits ferroptosis. However, its biological regulation and mechanism in endometrial cancer (EC) have not been reported in detail. Methods The expression of GPX4 in EC tissues was determined by TCGA databases, qRT-PCR, Western blot, and immunohistochemistry (IHC). The effects of GPX4 on EC cell proliferation, migration, apoptosis, and tumorigenesis were studied in vivo and in vitro. In addition, ETS Transcription Factor ELK1 (ELK1) was identified by bioinformatics methods, dual-luciferase reporter assay, and chromatin immunoprecipitation (ChIP). Pearson correlation analysis was used to evaluate the association between ELK1 and GPX4 expression. Results The expression of GPX4 was significantly up-regulated in EC tissues and cell lines. Silencing GPX4 significantly inhibited the proliferation, migration ability, induced apoptosis, and arrested the cell cycle of Ishikawa and KLE cells. Knockdown of GPX4 accumulated intracellular ferrous iron and ROS, disrupted MMP, and increased MDA levels. The xenograft tumor model also showed that GPX4 knockdown markedly reduced tumor growth in mice. Mechanically, ELK1 could bind to the promoter of GPX4 to promote its transcription. In addition, the expression of ELK1 in EC was positively correlated with GPX4. Rescue experiments confirmed that GPX4 knockdown could reverse the strengthens of cell proliferation and migration ability and the lower level of Fe2+ and MDA caused by upregulating ELK1. Conclusion The results of the present study suggest that ELK1 / GPX4 axis plays an important role in the progress of EC by promoting the malignant biological behavior and inducing ferroptosis of EC cells, which provides evidence for investigating the potential therapeutic strategies of endometrial cancer. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09986-3.
Collapse
Affiliation(s)
- Sitian Wei
- Department of Gynecology and Obstetrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Zhicheng Yu
- Department of Gynecology and Obstetrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Rui Shi
- Department of Gynecology and Obstetrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Lanfen An
- Department of Gynecology and Obstetrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Qi Zhang
- Department of Gynecology and Obstetrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Qian Zhang
- Department of Gynecology and Obstetrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Tangansu Zhang
- Department of Gynecology and Obstetrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Jun Zhang
- Department of Gynecology and Obstetrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
| | - Hongbo Wang
- Department of Gynecology and Obstetrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
8
|
Bernardini A, Lorenzo M, Chaves-Sanjuan A, Swuec P, Pigni M, Saad D, Konarev PV, Graewert MA, Valentini E, Svergun DI, Nardini M, Mantovani R, Gnesutta N. The USR domain of USF1 mediates NF-Y interactions and cooperative DNA binding. Int J Biol Macromol 2021; 193:401-413. [PMID: 34673109 DOI: 10.1016/j.ijbiomac.2021.10.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 10/20/2022]
Abstract
The trimeric CCAAT-binding NF-Y is a "pioneer" Transcription Factor -TF- known to cooperate with neighboring TFs to regulate gene expression. Genome-wide analyses detected a precise stereo-alignment -10/12 bp- of CCAAT with E-box elements and corresponding colocalization of NF-Y with basic-Helix-Loop-Helix (bHLH) TFs. We dissected here NF-Y interactions with USF1 and MAX. USF1, but not MAX, cooperates in DNA binding with NF-Y. NF-Y and USF1 synergize to activate target promoters. Reconstruction of complexes by structural means shows independent DNA binding of MAX, whereas USF1 has extended contacts with NF-Y, involving the USR, a USF-specific amino acid sequence stretch required for trans-activation. The USR is an intrinsically disordered domain and adopts different conformations based on E-box-CCAAT distances. Deletion of the USR abolishes cooperative DNA binding with NF-Y. Our data indicate that the functionality of certain unstructured domains involves adapting to small variation in stereo-alignments of the multimeric TFs sites.
Collapse
Affiliation(s)
- Andrea Bernardini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano 20133, Italy
| | - Mariangela Lorenzo
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano 20133, Italy
| | | | - Paolo Swuec
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano 20133, Italy
| | - Matteo Pigni
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano 20133, Italy
| | - Dana Saad
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano 20133, Italy
| | - Petr V Konarev
- A.V. Shubnikov Institute of Crystallography, Federal Scientific Research Centre "Crystallography and Photonics" of Russian Academy of Science, Moscow 119333, Russian Federation
| | | | - Erica Valentini
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg 22607, Germany
| | - Dmitri I Svergun
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg 22607, Germany
| | - Marco Nardini
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano 20133, Italy
| | - Roberto Mantovani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano 20133, Italy.
| | - Nerina Gnesutta
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano 20133, Italy.
| |
Collapse
|
9
|
Wang S, Zhang H, Liu H, Guo X, Ma R, Zhu W, Gao P. ELK1-induced up-regulation of KIF26B promotes cell cycle progression in breast cancer. Med Oncol 2021; 39:15. [PMID: 34817735 DOI: 10.1007/s12032-021-01607-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 11/01/2021] [Indexed: 10/19/2022]
Abstract
KIF26B is a member of the kinesin superfamily that is up-regulated in various tumors, including breast cancer (BC), which can promote tumor progression. This study aimed to investigate the potential function of KIF26B in BC, and the underlying mechanisms, focusing mainly on cell proliferation. KIF26B expression was examined in BC tissue samples obtained from 99 patients. Then, we performed MTS, EdU and flow cytometry assays to detect cell proliferation, and western blotting to measure the expression of cell cycle-related proteins in MDA-MB-231 and MDA-MB-468 cells following KIF26B knockdown. Promoter analysis was used to study the upstream regulatory mechanism of KIF26B. KIF26B was upregulated in BC tissues. High expression of KIF26B was associated with clinicopathological parameters, such as positive lymph node metastasis, higher tumor grade, and higher proliferative index in BC. Furthermore, knockdown of KIF26B expression inhibited MDA-MB-231 and MDA-MB-468 cell proliferation, arresting cells in the G1 phase of the cell cycle in vitro. Similarly, KIF26B silencing decreased the expression levels of Wnt, β-catenin, and cell cycle-related proteins such as c-Myc, cyclin D1, and cyclin-dependent kinase 4, while increasing the expression of p27. Moreover, ELK1 could bind to the core promoter region of KIF26B and activate its transcription. KIF26B acts as an oncogene in BC by regulating multiple proteins involved in the cell cycle. ELK1 activates KIF26B transcription.
Collapse
Affiliation(s)
- SuXia Wang
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan Wen Hua Xi Road 44, Jinan, 250012, Shandong, China.,Department of Pathology, Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, Shandong, China.,Department of Pathology, Qilu Hospital, Shandong University Jinan, Shandong, 250012, China
| | - Hui Zhang
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan Wen Hua Xi Road 44, Jinan, 250012, Shandong, China.,Department of Pathology, Qilu Hospital, Shandong University Jinan, Shandong, 250012, China
| | - HaiTing Liu
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan Wen Hua Xi Road 44, Jinan, 250012, Shandong, China.,Department of Pathology, Qilu Hospital, Shandong University Jinan, Shandong, 250012, China
| | - XiangYu Guo
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan Wen Hua Xi Road 44, Jinan, 250012, Shandong, China
| | - RanRan Ma
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan Wen Hua Xi Road 44, Jinan, 250012, Shandong, China.,Department of Pathology, Qilu Hospital, Shandong University Jinan, Shandong, 250012, China
| | - WenJie Zhu
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan Wen Hua Xi Road 44, Jinan, 250012, Shandong, China.
| | - P Gao
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan Wen Hua Xi Road 44, Jinan, 250012, Shandong, China. .,Department of Pathology, Qilu Hospital, Shandong University Jinan, Shandong, 250012, China.
| |
Collapse
|
10
|
Gao J, Gao A, Liu W, Chen L. Golgi stress response: A regulatory mechanism of Golgi function. Biofactors 2021; 47:964-974. [PMID: 34500494 DOI: 10.1002/biof.1780] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 08/25/2021] [Indexed: 01/09/2023]
Abstract
The organelle of eukaryotes is a finely regulated system. Once disturbed, it activates the specific autoregulatory systems, namely, organelle autoregulation. Among which, the Golgi stress response accounts for one. When the abundance and capacity of the Golgi apparatus are insufficient compared with cellular demand, the Golgi stress response is activated to enhance the function of the Golgi apparatus. Although the molecular mechanism of the Golgi stress response has not been well characterized yet, it seems to be an important part of the mammalian stress response. In this review, we discuss the current status of research on the six pathways of the mammalian Golgi stress response (the TFE3, heat shock protein 47, CREB3, E26 transformation specific, proteoglycan, and mucin pathways), which regulate the general function of the Golgi apparatus, anti-apoptosis, pro-apoptosis, proteoglycan glycosylation, and mucin glycosylation, respectively.
Collapse
Affiliation(s)
- Jiayin Gao
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Anbo Gao
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| | - Wei Liu
- Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, China
| |
Collapse
|
11
|
Zhang Q, Wu J, Zhang X, Cao L, Wu Y, Miao X. Transcription factor ELK1 accelerates aerobic glycolysis to enhance osteosarcoma chemoresistance through miR-134/PTBP1 signaling cascade. Aging (Albany NY) 2021; 13:6804-6819. [PMID: 33621196 PMCID: PMC7993718 DOI: 10.18632/aging.202538] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 03/31/2020] [Indexed: 12/12/2022]
Abstract
Osteosarcoma is a malignancy that primarily affects children and young adults. The poor survival is largely attributed to acquisition of chemoresistance. Thus, the current study aimed to elucidate the role of ELK1/miR-134/PTBP1 signaling cascade in osteosarcoma chemoresistance. Doxorubicin (DXR)-resistant human osteosarcoma cells were initially self-established by continuous exposure of MG-63, U2OS and HOS cells to increasing DXR doses. Osteosarcoma chemoresistance in vitro was evaluated using CCK-8 assays and EdU staining. Aerobic glycolysis was evaluated by lactic acid production, glucose consumption, ATP levels, and Western blot analysis of GLUT3, HK2 and PDK1 proteins. The nude mice were injected with 5.0 mg/kg DXR following the subcutaneous transplantation of osteosarcomas. PTBP1 was upregulated in tumor tissues derived from non-responders to DXR treatment and correlated with patient poor survival. PTBP1 enhanced chemoresistance in cultured osteosarcoma cells in vitro and in vivo by increasing aerobic glycolysis. Additionally, miR-134 inhibited translation of PTBP1. ELK1 bound to miR-134 promoter and inhibited its expression. Overexpressed ELK1 enhanced chemoresistance and increased aerobic glycolysis by downregulating miR-134 and upregulating PTBP1 in DXR-resistant cells. Altogether, the key findings of the present study highlight ELK1/miR-134/PTBP1 signaling cascade as a novel molecular mechanism underlying the acquisition of osteosarcoma chemoresistance.
Collapse
Affiliation(s)
- Qiang Zhang
- Foot and Ankle Group of Department of Orthopaedics, The Second Hospital Affiliated to Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Jiaqi Wu
- Trauma Group of Orthopaedics, The Second Hospital Affiliated to Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Xiangfeng Zhang
- Trauma Group of Orthopaedics, The Second Hospital Affiliated to Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Le Cao
- Foot and Ankle Group of Department of Orthopaedics, The Second Hospital Affiliated to Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Yongping Wu
- Foot and Ankle Group of Department of Orthopaedics, The Second Hospital Affiliated to Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Xudong Miao
- Foot and Ankle Group of Department of Orthopaedics, The Second Hospital Affiliated to Zhejiang University School of Medicine, Hangzhou 310000, China
| |
Collapse
|
12
|
Montagnani V, Maresca L, Apollo A, Pepe S, Carr RM, Fernandez-Zapico ME, Stecca B. E3 ubiquitin ligase PARK2, an inhibitor of melanoma cell growth, is repressed by the oncogenic ERK1/2-ELK1 transcriptional axis. J Biol Chem 2020; 295:16058-16071. [PMID: 32938713 DOI: 10.1074/jbc.ra120.014615] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/09/2020] [Indexed: 12/26/2022] Open
Abstract
Malignant melanoma, the most aggressive form of skin cancer, is characterized by high prevalence of BRAF/NRAS mutations and hyperactivation of extracellular signal-regulated kinase 1 and 2 (ERK1/2), mitogen-activated protein kinases (MAPK), leading to uncontrolled melanoma growth. Efficacy of current targeted therapies against mutant BRAF or MEK1/2 have been hindered by existence of innate or development of acquired resistance. Therefore, a better understanding of the mechanisms controlled by MAPK pathway driving melanogenesis will help develop new treatment approaches targeting this oncogenic cascade. Here, we identify E3 ubiquitin ligase PARK2 as a direct target of ELK1, a known transcriptional effector of MAPK signaling in melanoma cells. We show that pharmacological inhibition of BRAF-V600E or ERK1/2 in melanoma cells increases PARK2 expression. PARK2 overexpression reduces melanoma cell growth in vitro and in vivo and induces apoptosis. Conversely, its genetic silencing increases melanoma cell proliferation and reduces cell death. Further, we demonstrate that ELK1 is required by the BRAF-ERK1/2 pathway to repress PARK2 expression and promoter activity in melanoma cells. Clinically, PARK2 is highly expressed in WT BRAF and NRAS melanomas, but it is expressed at low levels in melanomas carrying BRAF/NRAS mutations. Overall, our data provide new insights into the tumor suppressive role of PARK2 in malignant melanoma and uncover a novel mechanism for the negative regulation of PARK2 via the ERK1/2-ELK1 axis. These findings suggest that reactivation of PARK2 may be a promising therapeutic approach to counteract melanoma growth.
Collapse
Affiliation(s)
- Valentina Montagnani
- Core Research Laboratory, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Florence, Italy
| | - Luisa Maresca
- Core Research Laboratory, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Florence, Italy
| | - Alessandro Apollo
- Core Research Laboratory, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Florence, Italy
| | - Sara Pepe
- Core Research Laboratory, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Florence, Italy; Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Ryan M Carr
- Division of Oncology Research, Department of Oncology, Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, Minnesota USA
| | - Martin E Fernandez-Zapico
- Division of Oncology Research, Department of Oncology, Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, Minnesota USA
| | - Barbara Stecca
- Core Research Laboratory, Institute for Cancer Research, Prevention and Clinical Network (ISPRO), Florence, Italy.
| |
Collapse
|
13
|
Down-regulation of the insulin signaling pathway by SHC may correlate with congenital heart disease in Chinese populations. Clin Sci (Lond) 2020; 134:349-358. [PMID: 31971563 DOI: 10.1042/cs20190255] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 01/23/2020] [Accepted: 01/23/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND/AIMS Congenital heart disease (CHD) is one of the most common and severe congenital defects. The incidence of fetal cardiac malformation is increased in the context of maternal gestational diabetes mellitus (GDM). Therefore, we wanted to determine whether abnormalities in the insulin signaling pathway are associated with the occurrence of nonsyndromic CHD (ns-CHD). METHODS We used digital gene expression profiling (DGE) of right atrial myocardial tissue samples from eight ns-CHD patients and four controls. The genes potentially associated with CHD were validated by real-time fluorescence quantitative PCR analysis of right atrial myocardial tissues from 37 patients and 10 controls and the H9C2 cell line. RESULTS The results showed that the insulin signaling pathway, which is mediated by the SHC gene family, was inhibited in the ns-CHD patients. The expression levels of five genes (PTPRF, SHC4, MAP2K2, MKNK2, and ELK1) in the pathway were significantly down-regulated in the patients' atrial tissues (P<0.05 for all). In vitro, the H9C2 cells cultured in high glucose (33 mmol/l) expressed less SHC4, MAP2K2, and Elk-1 than those cultured in low glucose (25 mmol/l). Furthermore, the high glucose concentration down-regulated the 25 genes associated with blood vessel development based on Gene Ontology (GO) term enrichment analyses of RNA-seq data. CONCLUSION We considered that changes in the insulin signaling pathway mediated by SHC might be involved in the heart development process. This mechanism might account for the increase in the incidence of fetal cardiac malformations in the context of GDM.
Collapse
|
14
|
Lesch A, Backes TM, Langfermann DS, Rössler OG, Laschke MW, Thiel G. Ternary complex factor regulates pancreatic islet size and blood glucose homeostasis in transgenic mice. Pharmacol Res 2020; 159:104983. [PMID: 32504838 DOI: 10.1016/j.phrs.2020.104983] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 05/05/2020] [Accepted: 05/29/2020] [Indexed: 12/13/2022]
Abstract
A hallmark of diabetes mellitus is the inability of pancreatic β-cells to secrete sufficient amounts of insulin for maintaining normoglycemia. The formation of smaller islets may underlie the development of a diabetic phenotype, as a decreased β-cell mass will produce an insufficient amount of insulin. For a pharmacological intervention it is crucial to identify the proteins determining β-cell mass. Here, we identified the ternary complex factor (TCF) Elk-1 as a regulator of the size of pancreatic islets. Elk-1 mediates, together with a dimer of the serum-response factor (SRF), serum response element-regulated gene transcription. Elk-1 is activated in glucose-treated pancreatic β-cells but the biological functions of this protein in β-cells are so far unknown. Elk-1 and homologous TCF proteins are expressed in islets and insulinoma cells. Gene targeting experiments revealed that the TCF proteins show redundant activities. To solve the problem of functional redundancy of these homologous proteins, we generated conditional transgenic mice expressing a dominant-negative mutant of Elk-1 in pancreatic β-cells. The mutant competes with the wild-type TCFs for DNA and SRF-binding. Expression of the Elk-1 mutant in pancreatic β-cells resulted in the generation of significantly smaller islets and increased caspase-3 activity, indicating that apoptosis was responsible for the reduction of the pancreatic islet size. Glucose tolerance tests revealed that transgenic mice expressing the dominant-negative mutant of Elk-1 in pancreatic β-cells displayed impaired glucose tolerance. Thus, we show here for the first time that TCF controls important functions of pancreatic β-cells in vivo. Elk-1 may be considered as a new therapeutic target for the treatment of diabetes.
Collapse
Affiliation(s)
- Andrea Lesch
- Department of Medical Biochemistry and Molecular Biology, Saarland University, D-66421 Homburg, Germany
| | - Tobias M Backes
- Department of Medical Biochemistry and Molecular Biology, Saarland University, D-66421 Homburg, Germany
| | - Daniel S Langfermann
- Department of Medical Biochemistry and Molecular Biology, Saarland University, D-66421 Homburg, Germany
| | - Oliver G Rössler
- Department of Medical Biochemistry and Molecular Biology, Saarland University, D-66421 Homburg, Germany
| | - Matthias W Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, D-66421, Homburg, Germany
| | - Gerald Thiel
- Department of Medical Biochemistry and Molecular Biology, Saarland University, D-66421 Homburg, Germany.
| |
Collapse
|
15
|
Prise I, Sharrocks AD. ELK1 has a dual activating and repressive role in human embryonic stem cells. Wellcome Open Res 2019; 4:41. [PMID: 31346550 PMCID: PMC6619381 DOI: 10.12688/wellcomeopenres.15091.2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2019] [Indexed: 12/31/2022] Open
Abstract
Background: The ERK MAPK pathway plays a pivotal role in regulating numerous cellular processes during normal development and in the adult but is often deregulated in disease scenarios. One of its key nuclear targets is the transcription factor ELK1, which has been shown to play an important role in controlling gene expression in human embryonic stem cells (hESCs). ELK1 is known to act as a transcriptional activator in response to ERK pathway activation but repressive roles have also been uncovered, including a putative interaction with the PRC2 complex. Methods: Here we probe the activity of ELK1 in hESCs by using a combination of gene expression analysis in hESCs and during differentiation following ELK1 depletion and also analysis of chromatin occupancy of transcriptional regulators and histone mark deposition that accompany changes in gene expression. Results: We find that ELK1 can exert its canonical activating activity downstream from the ERK pathway but also possesses additional repressive activities. Despite its co-binding to PRC2 occupied regions, we could not detect any ELK1-mediated repression at these regions. Instead, we find that ELK1 has a repressive role at a subset of co-occupied SRF binding regions. Conclusions: ELK1 should therefore be viewed as a dichotomous transcriptional regulator that can act through SRF to generate both activating and repressing properties at different genomic loci.
Collapse
Affiliation(s)
- Ian Prise
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Andrew D Sharrocks
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| |
Collapse
|
16
|
Prise I, Sharrocks AD. ELK1 has a dual activating and repressive role in human embryonic stem cells. Wellcome Open Res 2019; 4:41. [DOI: 10.12688/wellcomeopenres.15091.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2019] [Indexed: 11/20/2022] Open
Abstract
Background: The ERK MAPK pathway plays a pivotal role in regulating numerous cellular processes during normal development and in the adult but is often deregulated in disease scenarios. One of its key nuclear targets is the transcription factor ELK1, which has been shown to play an important role in controlling gene expression in human embryonic stem cells (hESCs). ELK1 is known to act as a transcriptional activator in response to ERK pathway activation but repressive roles have also been uncovered, including a putative interaction with the PRC2 complex. Methods: Here we probe the activity of ELK1 in hESCs by using a combination of gene expression analysis in hESCs and during differentiation following ELK1 depletion and also analysis of chromatin occupancy of transcriptional regulators and histone mark deposition that accompany changes in gene expression. Results: We find that ELK1 can exert its canonical activating activity downstream from the ERK pathway but also possesses additional repressive activities. Despite its co-binding to PRC2 occupied regions, we could not detect any ELK1-mediated repression at these regions. Instead, we find that ELK1 has a repressive role at a subset of co-occupied SRF binding regions. This latter repressive role appears not to be exerted through competition with MRTF family co-activators. Conclusions: ELK1 should therefore be viewed as a dichotomous transcriptional regulator that can act through SRF to generate both activating and repressing properties at different genomic loci.
Collapse
|
17
|
Liu G, Wang Y, Jiang S, Sui M, Wang C, Kang L, Sun Y, Jiang Y. Suppression of lymphocyte apoptosis in spleen by CXCL13 after porcine circovirus type 2 infection and regulatory mechanism of CXCL13 expression in pigs. Vet Res 2019; 50:17. [PMID: 30819249 PMCID: PMC6394056 DOI: 10.1186/s13567-019-0634-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 02/15/2019] [Indexed: 12/15/2022] Open
Abstract
Porcine circovirus-associated disease (PCVAD) is one of the most serious infectious diseases in pigs worldwide. The primary causative agent of PCVAD is porcine circovirus type 2 (PCV2), which can cause lymphoid depletion and immunosuppression in pigs. Our previous study demonstrated that Laiwu (LW) pigs, a Chinese indigenous pig breed, have stronger resistance to PCV2 infection than Yorkshire × Landrace (YL) pigs. In this study, we found that the YL pigs showed more severe lymphocyte apoptosis and higher viral load in the spleen tissue than LW pigs. To illustrate the differential gene expression between healthy and infected spleens, transcriptome profiling of spleen tissues from PCV2-infected and control YL pigs was compared by RNA sequencing. A total of 90 differentially expressed genes (DEGs) was identified, including CD207, RSAD2, OAS1, OAS2, MX2, ADRB3, CXCL13, CCR1, and ADRA2C, which were significantly enriched in gene ontology (GO) terms related to the defense response to virus and cell-cell signaling, and another nine DEGs, KLF11, HGF, PTGES3, MAP3K11, XDH, CYCS, ACTC1, HSPH1, and RYR2, which were enriched in GO terms related to regulation of cell proliferation or apoptosis. Among these DEGs, the CXCL13 gene, which can suppress lymphocyte apoptosis during PCV2 infection, was significantly down-regulated in response to PCV2 infection in YL but not in LW pigs. By analysis of the regulatory elements in the promoter and 3'-untranslated region (3'-UTR) of porcine CXCL13, we found that the single nucleotide polymorphism (SNP) -1014 G (LW) > A (YL) and the Sus scrofa microRNA-296-5p (ssc-miR-296-5p) participated in regulating CXCL13 expression during the response to PCV2 infection.
Collapse
Affiliation(s)
- Gen Liu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, No. 61 Daizong Street, Tai’an, 271018 Shandong China
| | - Yanchao Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, No. 61 Daizong Street, Tai’an, 271018 Shandong China
| | - Shijin Jiang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, No. 61 Daizong Street, Tai’an, 271018 Shandong China
| | - Minmin Sui
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, No. 61 Daizong Street, Tai’an, 271018 Shandong China
| | - Changying Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, No. 61 Daizong Street, Tai’an, 271018 Shandong China
| | - Li Kang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, No. 61 Daizong Street, Tai’an, 271018 Shandong China
| | - Yi Sun
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, No. 61 Daizong Street, Tai’an, 271018 Shandong China
| | - Yunliang Jiang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, No. 61 Daizong Street, Tai’an, 271018 Shandong China
| |
Collapse
|
18
|
Revealing the alternative promoter usage of SAF/MAZ gene by bichromatic fluorescent reporter construct. Biosci Rep 2019; 39:BSR20171668. [PMID: 30610159 PMCID: PMC6340948 DOI: 10.1042/bsr20171668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 12/20/2018] [Accepted: 12/31/2018] [Indexed: 11/17/2022] Open
Abstract
The large-scale identification of putative alternative promoters study shows more than 52% of human genes are regulated by alternative promoters. The human myc-associated zinc finger protein (SAF/MAZ) gene have SAF-1 and SAF-3 variants transcripted from two transcription start sites (TSSs). By using SAF/MAZ promoter as a model, we set up an approach to probe how the alternative promoters are regulated in real time. We have constructed the bichromatic fluorescent reporter driven by SAF/MAZ 5'-proximal promoter plasmids from which transactivation status of SAF-1 and SAF-3 alternative promoter could be monitored by EGFP and DsRed expression respectively. The results showed that the SAF-3 expression is regulated by alternative promoters. When the bichromatic fluorescent reporter was driven by -1692/+277 or -1401/+277 SAF/MAZ promoter the dominant expression of SAF-3 would be observed in comparison with SAF-1 expression. We also identified that Elk-1 is an inhibitory transcription factor for SAF-3 expression. The temporal diversity of SAF-1 and SAF-3 expressions can be observed via bichromatic fluorescent reporters. These imply that the bichromatic fluorescent reporter driven by alternative promoter construct might be a useful tool for decoding the temporal regulatory repertoire of alternative promoter in human genes.
Collapse
|
19
|
Rubil S, Thiel G. Stimulation of TRPM3 channels increases the transcriptional activation potential of Elk-1 involving cytosolic Ca 2+, extracellular signal-regulated protein kinase, and calcineurin. Eur J Pharmacol 2018; 844:225-230. [PMID: 30552902 DOI: 10.1016/j.ejphar.2018.12.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/10/2018] [Accepted: 12/11/2018] [Indexed: 12/11/2022]
Abstract
Stimulation of transient receptor potential M3 (TRPM3) channels with the steroid pregnenolone sulfate increases the transcriptional activation potential of Elk-1, a transcription factor that regulates serum response element-mediated transcription. Here, we show that an influx of Ca2+ ions into the cells is essential for the activation of Elk-1 following stimulation of TRPM3. Using genetically encoded Ca2+ buffers, we show that a rise in cytoplasmic Ca2+ is required for the upregulation of the transcriptional activation potential of Elk-1, while buffering of Ca2+ in the nucleus had no inhibitory effect on the transcriptional activity of Elk-1. Pharmacological and genetic experiments showed that extracellular signal-regulated protein kinase (ERK1/2) functions as signal transducer connecting TRPM3 channels with the Elk-1 transcription factor. Accordingly, dephosphorylation of ERK1/2 in the nucleus by MAP kinase phosphatase attenuated TRPM3-mediated Elk-1 activation. Moreover, we show that the Ca2+/calmodulin-dependent protein phosphatase calcineurin is part of a shut-off-device for the signaling cascade connecting TRPM3 channels with the activation of Elk-1. The fact that TRPM3 channel stimulation activates Elk-1 connects TRPM3 with the biological functions of Elk-1, including the regulation of proliferation, differentiation, survival, transcription, and cell migration.
Collapse
Affiliation(s)
- Sandra Rubil
- Department of Medical Biochemistry and Molecular Biology Saarland University Medical Faculty, Building 44, D-66421 Homburg, Germany
| | - Gerald Thiel
- Department of Medical Biochemistry and Molecular Biology Saarland University Medical Faculty, Building 44, D-66421 Homburg, Germany.
| |
Collapse
|
20
|
Fan HX, Feng YJ, Zhao XP, He YZ, Tang H. MiR-185-5p suppresses HBV gene expression by targeting ELK1 in hepatoma carcinoma cells. Life Sci 2018; 213:9-17. [PMID: 30308183 DOI: 10.1016/j.lfs.2018.10.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/05/2018] [Accepted: 10/08/2018] [Indexed: 12/12/2022]
Abstract
AIMS To investigate the role and underlying mechanism of miR-185-5p in hepatitis B virus (HBV) expression and replication. MAIN METHODS The relative levels of hepatitis B surface antigen and hepatitis B e antigen were detected by enzyme-linked immunosorbent assay (ELISA). The HBV DNA copies in the cultures medium were measured by RT-qPCR. The HBV large surface antigen promoter (S1p) activity was analyzed by luciferase reporter assay. The target relationship between miR-185-5p and ELK1 was identified by bioinformatics analysis and EGFP fluorescent reporter assay. The ELK1 expression was determined by RT-qPCR and Western blot. KEY FINDINGS miR-185-5p significantly decreased HBV large surface antigen promoter activity and subsequently the production of HBV proteins and HBV DNA copies in vitro. Further, we identified the ETS transcription factor ELK1 is a target of miR-185-5p. Overexpression and knockdown experiments showed overexpression of ELK1 stimulated HBV large surface antigen promoter activity and promoted the production of HBV proteins and HBV DNA copies, whereas knockdown of ELK1 has the opposite effects. Moreover, the rescue of ELK1 expression reversed the suppression of miR-185-5p on HBV replication and gene expression. Further mechanistic study showed that the ETS binding sites within the HBV large surface antigen promoter are required for the repression effect of miR-185-5p on HBV. SIGNIFICANCE There are few reports about the interaction between miRNAs and the transcription from HBV S1p, we found that miR-185-5p decreases HBV S1p activity by targeting ELK1, which may provide a promising therapeutic strategy for HBV infection.
Collapse
Affiliation(s)
- Hong-Xia Fan
- Tianjin Life Science Research Center and Department of Pathogen Biology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Yu-Jie Feng
- Tianjin Life Science Research Center and Department of Pathogen Biology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Xiao-Pei Zhao
- Tianjin Life Science Research Center and Department of Pathogen Biology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Yu-Ze He
- Tianjin Life Science Research Center and Department of Pathogen Biology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Hua Tang
- Tianjin Life Science Research Center and Department of Pathogen Biology, Collaborative Innovation Center of Tianjin for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China.
| |
Collapse
|
21
|
Shan J, Dudenhausen E, Kilberg MS. Induction of early growth response gene 1 (EGR1) by endoplasmic reticulum stress is mediated by the extracellular regulated kinase (ERK) arm of the MAPK pathways. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1866:371-381. [PMID: 30290239 DOI: 10.1016/j.bbamcr.2018.09.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 09/13/2018] [Accepted: 09/23/2018] [Indexed: 12/11/2022]
Abstract
Endoplasmic reticulum (ER) stress activates three principal signaling pathways, collectively known as the unfolded protein response, leading to translational and transcriptional control mechanisms that dictate the cell's response as adaptive or apoptotic. The present study illustrates that for HepG2 human hepatocellular carcinoma cells the signaling pathways triggered by ER stress extend beyond the three principal pathways to include mitogen-activated protein kinase (MAPK) signaling, leading to activation of transcription from the early growth response 1 (EGR1) gene. Analysis provided evidence for a SRC-RAS-RAF-MEK-ERK cascade mechanism that leads to enhanced phosphorylation of the transcription factor ELK1. ELK1 and serum response factor (SRF) are constitutively bound to the EGR1 promoter and are phosphorylated by nuclear localized ERK. The promoter abundance of both phospho-SRF and phopsho-ELK1 was increased by ER stress, but the SRF phosphorylation was transient. Knockdown of ELK1 had little effect on the basal EGR1 mRNA content, but completely blocked the increase in response to ER stress. Conversely, knockdown of SRF suppressed basal EGR1 mRNA content, but had only a small effect on the induction by ER stress. This research highlights the importance of MAPK signaling in response to ER stress and identifies ELK1 as a transcriptional mediator and the EGR1 gene as a target.
Collapse
Affiliation(s)
- Jixiu Shan
- Department of Biochemistry and Molecular Biology, Genetics Institute, Shands Cancer Center and Center for Nutritional Sciences, University of Florida College of Medicine, Gainesville 32610, FL, United States of America
| | - Elizabeth Dudenhausen
- Department of Biochemistry and Molecular Biology, Genetics Institute, Shands Cancer Center and Center for Nutritional Sciences, University of Florida College of Medicine, Gainesville 32610, FL, United States of America
| | - Michael S Kilberg
- Department of Biochemistry and Molecular Biology, Genetics Institute, Shands Cancer Center and Center for Nutritional Sciences, University of Florida College of Medicine, Gainesville 32610, FL, United States of America.
| |
Collapse
|
22
|
MTBP inhibits the Erk1/2-Elk-1 signaling in hepatocellular carcinoma. Oncotarget 2018; 9:21429-21443. [PMID: 29765550 PMCID: PMC5940416 DOI: 10.18632/oncotarget.25117] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 03/21/2018] [Indexed: 01/14/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide, and the prognosis of HCC patients, especially those with metastasis, remains extremely poor. This is partly due to unclear molecular mechanisms underlying HCC metastasis. Our previous study indicates that MDM2 Binding Protein (MTBP) suppresses migration and metastasis of HCC cells. However, signaling pathways regulated by MTBP remain unknown. To identify metastasis-associated signaling pathways governed by MTBP, we have performed unbiased luciferase reporter-based signal array analyses and found that MTBP suppresses the activity of the ETS-domain transcription factor Elk-1, a downstream target of Erk1/2 MAP kinases. MTBP also inhibits phosphorylation of Elk-1 and decreases mRNA expression of Elk-1 target genes. Reduced Elk-1 activity is caused by inhibited nuclear translocation of phosphorylated Erk1/2 (p-Erk) by MTBP and subsequent inhibition of Elk-1 phosphorylation. We also reveal that MTBP inhibits the interaction of p-Erk with importin-7/RanBP7 (IPO7), an importin family member which shuttles p-Erk into the nucleus, by binding to IPO7. Moreover, high levels of MTBP in human HCC tissues are correlated with cytoplasmic localization of p-Erk1/2. Our study suggests that MTBP suppresses metastasis, at least partially, by down-modulating the Erk1/2-Elk-1 signaling pathway, thus identifying a novel regulatory mechanism of HCC metastasis by regulating the subcellular localization of p-Erk.
Collapse
|
23
|
Baumann J, Ignashkova TI, Chirasani SR, Ramírez-Peinado S, Alborzinia H, Gendarme M, Kuhnigk K, Kramer V, Lindemann RK, Reiling JH. Golgi stress-induced transcriptional changes mediated by MAPK signaling and three ETS transcription factors regulate MCL1 splicing. Mol Biol Cell 2018; 29:42-52. [PMID: 29118074 PMCID: PMC5746065 DOI: 10.1091/mbc.e17-06-0418] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 10/11/2017] [Accepted: 10/31/2017] [Indexed: 12/14/2022] Open
Abstract
The secretory pathway is a major determinant of cellular homoeostasis. While research into secretory stress signaling has so far mostly focused on the endoplasmic reticulum (ER), emerging data suggest that the Golgi itself serves as an important signaling hub capable of initiating stress responses. To systematically identify novel Golgi stress mediators, we performed a transcriptomic analysis of cells exposed to three different pharmacological compounds known to elicit Golgi fragmentation: brefeldin A, golgicide A, and monensin. Subsequent gene-set enrichment analysis revealed a significant contribution of the ETS family transcription factors ELK1, GABPA/B, and ETS1 to the control of gene expression following compound treatment. Induction of Golgi stress leads to a late activation of the ETS upstream kinases MEK1/2 and ERK1/2, resulting in enhanced ETS factor activity and the transcription of ETS family target genes related to spliceosome function and cell death induction via alternate MCL1 splicing. Further genetic analyses using loss-of-function and gain-of-function experiments suggest that these transcription factors operate in parallel.
Collapse
Affiliation(s)
- Jan Baumann
- BioMed X Innovation Center, 69120 Heidelberg, Germany
| | | | | | | | | | | | - Kyra Kuhnigk
- BioMed X Innovation Center, 69120 Heidelberg, Germany
| | | | - Ralph K Lindemann
- Translational Innovation Platform Oncology, Merck Biopharma, Merck KGaA, 64293 Darmstadt, Germany
| | - Jan H Reiling
- BioMed X Innovation Center, 69120 Heidelberg, Germany
| |
Collapse
|
24
|
Matsuba S, Yabe-Wada T, Takeda K, Sato T, Suyama M, Takai T, Kikuchi T, Nukiwa T, Nakamura A. Identification of Secretory Leukoprotease Inhibitor As an Endogenous Negative Regulator in Allergic Effector Cells. Front Immunol 2017; 8:1538. [PMID: 29181004 PMCID: PMC5693852 DOI: 10.3389/fimmu.2017.01538] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 10/27/2017] [Indexed: 01/01/2023] Open
Abstract
Mast cells, basophils, and eosinophils are central effectors in allergic inflammatory disorders. These cells secrete abundant serine proteases as well as chemical mediators and cytokines; however, the expression profiles and functions of their endogenous inhibitors remain elusive. We found that murine secretory leukoprotease inhibitor (SLPI) is expressed in basophils and eosinophils but in not in mast cells. SLPI-deficient (Slpi−/−) basophils produce more cytokines than wild-type mice after IgE stimulation. Although the deletion of SLPI in basophils did not affect the release of chemical mediators upon IgE stimulation, the enzymatic activity of the serine protease tryptase was increased in Slpi−/− basophils. Mice transferred with Slpi−/− basophils were highly sensitive to IgE-mediated chronic allergic inflammation. Eosinophils lacking SLPI showed greater interleukin-6 secretion and invasive activity upon lipopolysaccharide stimulation, and the expression of matrix metalloproteinase-9 by these eosinophils was increased without stimulation. The absence of SLPI increases JNK1 phosphorylation at the steady state, and augments the serine phosphorylation of JNK1-downstream ETS transcriptional factor Elk-1 in eosinophils upon stimulation. Of note, SLPI interacts with a scaffold protein, JNK-interacting protein 3 (JIP3), that constitutively binds to the cytoplasmic domain of toll-like receptor (TLR) 4, suggesting that SLPI controls Elk-1 activation via binding to JIP3 in eosinophils. Mice transferred with Slpi−/− eosinophils showed the exacerbation of chitin-induced allergic inflammation. These findings showed that SLPI is a negative regulator in allergic effector cells and suggested a novel inhibitory role of SLPI in the TLR4 signaling pathways.
Collapse
Affiliation(s)
- Shintaro Matsuba
- Department of Immunology, Kanazawa Medical University, Kahoku Uchinada, Ishikawa, Japan
| | - Toshiki Yabe-Wada
- Department of Immunology, Kanazawa Medical University, Kahoku Uchinada, Ishikawa, Japan
| | - Kazuya Takeda
- Division of Immunology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Tetsuya Sato
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Mikita Suyama
- Division of Bioinformatics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Toshiyuki Takai
- Department of Experimental Immunology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Toshiaki Kikuchi
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Toshihiro Nukiwa
- Department of Respiratory Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Akira Nakamura
- Division of Immunology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| |
Collapse
|
25
|
Konopko MA, Densmore AL, Krueger BK. Sexually Dimorphic Epigenetic Regulation of Brain-Derived Neurotrophic Factor in Fetal Brain in the Valproic Acid Model of Autism Spectrum Disorder. Dev Neurosci 2017; 39:507-518. [PMID: 29073621 PMCID: PMC6020162 DOI: 10.1159/000481134] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 08/30/2017] [Indexed: 01/22/2023] Open
Abstract
Prenatal exposure to the antiepileptic, mood-stabilizing drug, valproic acid (VPA), increases the incidence of autism spectrum disorders (ASDs); in utero administration of VPA to pregnant rodents induces ASD-like behaviors such as repetitive, stereotyped activity, and decreased socialization. In both cases, males are more affected than females. We previously reported that VPA, administered to pregnant mice at gestational day 12.5, rapidly induces a transient, 6-fold increase in BDNF (brain-derived neurotrophic factor) protein and mRNA in the fetal brain. Here, we investigate sex differences in the induction of Bdnf expression by VPA as well as the underlying epigenetic mechanisms. We found no sex differences in the VPA stimulation of total brain Bdnf mRNA as indicated by probing for the BDNF protein coding sequence (exon 9); however, stimulation of individual transcripts containing two of the nine 5'-untranslated exons (5'UTEs) in Bdnf (exons 1 and 4) by VPA was greater in female fetal brains. These Bdnf transcripts have been associated with different cell types or subcellular compartments within neurons. Since VPA is a histone deacetylase inhibitor, covalent histone modifications at Bdnf 5'UTEs in the fetal brain were analyzed by chromatin immunoprecipitation. VPA increased the acetylation of multiple H3 and H4 lysine residues in the vicinity of exons 1, 2, 4, and 6; minimal differences between the sexes were observed. H3 lysine 4 trimethylation (H3K4me3) at those exons was also stimulated by VPA. Moreover, the VPA-induced increase in H3K4me3 at exons 1, 4, and 6 was significantly greater in females than in males, i.e., sexually dimorphic stimulation of H3K4me3 by VPA correlated with Bdnf transcripts containing exons 1 and 4, but not 6. Neither H3K27me3 nor cytosine methylation at any of the 117 CpGs in the vicinity of the transcription start sites of exons 1, 4, and 6 was affected by VPA. Thus, of the 6 epigenetic marks analyzed, only H3K4me3 can account for the sexually dimorphic expression of Bdnf transcripts induced by VPA in the fetal brain. Preferential expression of exon 1- and exon 4-Bdnf transcripts in females may contribute to sex differences in ASDs by protecting females from the adverse effects of genetic variants or environmental factors such as VPA on the developing brain.
Collapse
Affiliation(s)
- Melissa A Konopko
- Program in Neuroscience, University of Maryland Baltimore, 655 West Baltimore Street, Baltimore MD 21201
| | | | - Bruce K. Krueger
- Program in Neuroscience, University of Maryland Baltimore, 655 West Baltimore Street, Baltimore MD 21201
| |
Collapse
|
26
|
Britton E, Rogerson C, Mehta S, Li Y, Li X, Fitzgerald RC, Ang YS, Sharrocks AD. Open chromatin profiling identifies AP1 as a transcriptional regulator in oesophageal adenocarcinoma. PLoS Genet 2017; 13:e1006879. [PMID: 28859074 PMCID: PMC5578490 DOI: 10.1371/journal.pgen.1006879] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 06/20/2017] [Indexed: 01/04/2023] Open
Abstract
Oesophageal adenocarcinoma (OAC) is one of the ten most prevalent forms of cancer and is showing a rapid increase in incidence and yet exhibits poor survival rates. Compared to many other common cancers, the molecular changes that occur in this disease are relatively poorly understood. However, genes encoding chromatin remodeling enzymes are frequently mutated in OAC. This is consistent with the emerging concept that cancer cells exhibit reprogramming of their chromatin environment which leads to subsequent changes in their transcriptional profile. Here, we have used ATAC-seq to interrogate the chromatin changes that occur in OAC using both cell lines and patient-derived material. We demonstrate that there are substantial changes in the regulatory chromatin environment in the cancer cells and using this data we have uncovered an important role for ETS and AP1 transcription factors in driving the changes in gene expression found in OAC cells.
Collapse
Affiliation(s)
- Edward Britton
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Connor Rogerson
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Shaveta Mehta
- School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- Christie Hospital, Manchester, United Kingdom
| | - Yaoyong Li
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Xiaodun Li
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, United Kingdom
| | | | - Rebecca C. Fitzgerald
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Yeng S. Ang
- School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- GI Science Centre, Salford Royal NHS FT, University of Manchester, Stott Lane, Salford, United Kingdom
| | - Andrew D. Sharrocks
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- MRC Cancer Unit, Hutchison/MRC Research Centre, University of Cambridge, Cambridge, United Kingdom
- GI Science Centre, Salford Royal NHS FT, University of Manchester, Stott Lane, Salford, United Kingdom
| |
Collapse
|
27
|
Wu D, Huang CJ, Khan FA, Jiao XF, Liu XM, Pandupuspitasari NS, Brohi RD, Huo LJ. SENP3 grants tight junction integrity and cytoskeleton architecture in mouse Sertoli cells. Oncotarget 2017; 8:58430-58442. [PMID: 28938568 PMCID: PMC5601664 DOI: 10.18632/oncotarget.16915] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/14/2017] [Indexed: 11/25/2022] Open
Abstract
Germ cells develop in a sophisticated immune privileged microenvironment provided by specialized junctions contiguous the basement membrane of the adjacent Sertoli cells that constituted the blood-testis barrier (BTB) in seminiferous epithelium of testis in mammals. Deciphering the molecular regulatory machinery of BTB activity is central to improve male fertility and the role of post-translational modification including SUMOylation pathway is one of the key factors. Herein, we unveiled the mystery of the SUMO-2/3 specific protease SENP3 (Sentrin-specific protease 3) in BTB dynamics regulation. SENP3 is predominantly expressed in the nucleus of Sertoli and spermatocyte cells in adult mouse testis, and knockdown of SENP3 compromises tight junction in Sertoli cells by destructing the permeability function with a concomitant decline in trans-epithelial electrical resistance in primary Sertoli cells, which could attribute to the conspicuous dysfunction of tight junction (TJ) proteins (e.g., ZO-1, occludin) at the cell-cell interface due to the inactivation of STAT3. Moreover, SENP3 knockdown disrupts F-actin architecture in Sertoli cells through intervening Rac1/CDC42-N-WASP-Arp2/3 signaling pathway and Profilin-1 abundance. Our study pinpoints SENP3 might be a novel determinant of multiple pathways governing BTB dynamics in testis to support germ cells development in mammals.
Collapse
Affiliation(s)
- Di Wu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Chun-Jie Huang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Faheem Ahmed Khan
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Xiao-Fei Jiao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Xiao-Ming Liu
- Second Affiliated Hospital and Center of Reproductive Medicine, The Second Affiliated Hospital & Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325000, Zhejiang, China
| | - Nuruliarizki Shinta Pandupuspitasari
- The Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430070, Hubei, China
| | - Rahim Dad Brohi
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Li-Jun Huo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| |
Collapse
|
28
|
Zhang P, Kong F, Deng X, Yu Y, Hou C, Liang T, Zhu L. MicroRNA-326 suppresses the proliferation, migration and invasion of cervical cancer cells by targeting ELK1. Oncol Lett 2017; 13:2949-2956. [PMID: 28529556 PMCID: PMC5431565 DOI: 10.3892/ol.2017.5852] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 01/12/2017] [Indexed: 01/19/2023] Open
Abstract
Although microRNAs (miRNAs or miRs) are able to function as oncogenes or tumor suppressors, the role of miR-326 in regulating human cervical cancer cells remains unclear. In the present study, the expression of miR-326 was identified to be downregulated in cervical cancer cell lines and primary tumor samples, and the overexpression of miR-326 decreased cell proliferation, migration and invasion in cervical cell lines. Bioinformatics prediction and experimental validation results revealed that the function of miR-326 was achieved by targeting and repressing ETS domain-containing protein Elk-1 (ELK1) expression. ELK1 was targeted directly by miR-326, which was downregulated in human cervical cancer tissues compared with that in adjacent normal tissues. The results of the present study suggest that miR-326, a potential tumor suppressor, may be used in the treatment of cervical cancer.
Collapse
Affiliation(s)
- Ping Zhang
- Department of Gynecology, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Feng Kong
- Central Laboratory, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Xinchao Deng
- Department of Gynecology, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Yunhai Yu
- Department of Gynecology, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Congzhe Hou
- Department of Gynecology, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Tingting Liang
- Department of Gynecology, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| | - Lin Zhu
- Department of Gynecology, The Second Hospital of Shandong University, Jinan, Shandong 250033, P.R. China
| |
Collapse
|
29
|
Osmanbeyoglu HU, Toska E, Chan C, Baselga J, Leslie CS. Pancancer modelling predicts the context-specific impact of somatic mutations on transcriptional programs. Nat Commun 2017; 8:14249. [PMID: 28139702 PMCID: PMC5290314 DOI: 10.1038/ncomms14249] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 12/12/2016] [Indexed: 12/15/2022] Open
Abstract
Pancancer studies have identified many genes that are frequently somatically altered across multiple tumour types, suggesting that pathway-targeted therapies can be deployed across diverse cancers. However, the same ‘actionable mutation' impacts distinct context-specific gene regulatory programs and signalling networks—and interacts with different genetic backgrounds of co-occurring alterations—in different cancers. Here we apply a computational strategy for integrating parallel (phospho)proteomic and mRNA sequencing data across 12 TCGA tumour data sets to interpret the context-specific impact of somatic alterations in terms of functional signatures such as (phospho)protein and transcription factor (TF) activities. Our analysis predicts distinct dysregulated transcriptional regulators downstream of somatic alterations in different cancers, and we validate the context-specific differential activity of TFs associated to mutant PIK3CA in isogenic cancer cell line models. These results have implications for the pancancer use of targeted drugs and potentially for the design of combination therapies. Cancer genomic data sets contain a wealth of data that can be used to predict prognosis and further understand disease. Here, the authors integrate multiple genomics data types to identify transcriptional dysregulation in response to somatic mutations.
Collapse
Affiliation(s)
- Hatice U Osmanbeyoglu
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box No. 460, New York, New York 10065, USA
| | - Eneda Toska
- Human Oncogenesis and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Carmen Chan
- Human Oncogenesis and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - José Baselga
- Human Oncogenesis and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Christina S Leslie
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, Box No. 460, New York, New York 10065, USA
| |
Collapse
|
30
|
Chakraborty M, Roy S. A peptide-based synthetic transcription factor selectively down-regulates the proto-oncogene CFOS in tumour cells and inhibits proliferation. Chem Commun (Camb) 2017; 53:376-379. [DOI: 10.1039/c6cc08086c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A synthetic transcription factor targeted against Elk-1 inhibits expression of CFOS and other genes selectively in Ras-mutated tumour cells.
Collapse
Affiliation(s)
| | - Siddhartha Roy
- Department of Biophysics
- Bose Institute
- Kolkata 700054
- India
| |
Collapse
|
31
|
Kew V, Wills M, Reeves M. HCMV activation of ERK-MAPK drives a multi-factorial response promoting the survival of infected myeloid progenitors. JOURNAL OF MOLECULAR BIOCHEMISTRY 2017; 6:13-25. [PMID: 28491825 PMCID: PMC5421601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Viral binding and entry provides the first trigger of a cell death response and thus how human cytomegalovirus (HCMV) evades this - particularly during latent infection where a very limited pattern of gene expression is observed - is less well understood. It has been demonstrated that the activation of cellular signalling pathways upon virus binding promotes the survival of latently infected cells by the activation of cell encoded anti-apoptotic responses. In CD34+ cells, a major site of HCMV latency, ERK signalling is important for survival and we now show that the activation of this pathway impacts on multiple aspects of cell death pathways. The data illustrate that HCMV infection triggers activation of pro-apoptotic Bak which is then countered through multiple ERK-dependent functions. Specifically, ERK promotes ELK1 mediated transcription of the key survival molecule MCL-1, along with a concomitant decrease of the pro-apoptotic BIM and PUMA proteins. Finally, we show that the elimination of ELK-1 from CD34+ cells results in elevated Bak activation in response to viral infection, resulting in cell death. Taken together, these data begin to shed light on the poly-functional response elicited by HCMV via ERK-MAPK to promote cell survival.
Collapse
Affiliation(s)
- Verity Kew
- Department of Medicine, Addenbrooke’s Hospital, Cambridge, UK
| | - Mark Wills
- Department of Medicine, Addenbrooke’s Hospital, Cambridge, UK
| | - Matthew Reeves
- UCL Institute of Immunity & Transplantation, Royal Free Hospital, London, UK
| |
Collapse
|
32
|
Mikula M, Skrzypczak M, Goryca K, Paczkowska K, Ledwon JK, Statkiewicz M, Kulecka M, Grzelak M, Dabrowska M, Kuklinska U, Karczmarski J, Rumienczyk I, Jastrzebski K, Miaczynska M, Ginalski K, Bomsztyk K, Ostrowski J. Genome-wide co-localization of active EGFR and downstream ERK pathway kinases mirrors mitogen-inducible RNA polymerase 2 genomic occupancy. Nucleic Acids Res 2016; 44:10150-10164. [PMID: 27587583 PMCID: PMC5137434 DOI: 10.1093/nar/gkw763] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 08/17/2016] [Accepted: 08/23/2016] [Indexed: 01/20/2023] Open
Abstract
Genome-wide mechanisms that coordinate expression of subsets of functionally related genes are largely unknown. Recent studies show that receptor tyrosine kinases and components of signal transduction cascades including the extracellular signal-regulated protein kinase (ERK), once thought to act predominantly in the vicinity of plasma membrane and in the cytoplasm, can be recruited to chromatin encompassing transcribed genes. Genome-wide distribution of these transducers and their relationship to transcribing RNA polymerase II (Pol2) could provide new insights about co-regulation of functionally related gene subsets. Chromatin immunoprecipitations (ChIP) followed by deep sequencing, ChIP-Seq, revealed that genome-wide binding of epidermal growth factor receptor, EGFR and ERK pathway components at EGF-responsive genes was highly correlated with characteristic mitogen-induced Pol2-profile. Endosomes play a role in intracellular trafficking of proteins including their nuclear import. Immunofluorescence revealed that EGF-activated EGFR, MEK1/2 and ERK1/2 co-localize on endosomes. Perturbation of endosome internalization process, through the depletion of AP2M1 protein, resulted in decreased number of the EGFR containing endosomes and inhibition of Pol2, EGFR/ERK recruitment to EGR1 gene. Thus, mitogen-induced co-recruitment of EGFR/ERK components to subsets of genes, a kinase module possibly pre-assembled on endosome to synchronize their nuclear import, could coordinate genome-wide transcriptional events to ensure effective cell proliferation.
Collapse
Affiliation(s)
- M Mikula
- Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Department of Genetics, Roentgena 5, 02-781 Warsaw, Poland
| | - M Skrzypczak
- University of Warsaw, CeNT, Laboratory of Bioinformatics and Systems Biology, Zwirki i Wigury 93, 02-089, Poland
| | - K Goryca
- Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Department of Genetics, Roentgena 5, 02-781 Warsaw, Poland
| | - K Paczkowska
- Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Department of Genetics, Roentgena 5, 02-781 Warsaw, Poland
| | - J K Ledwon
- Medical Center for Postgraduate Education, Department of Gastroenterology, Hepatology and Clinical Oncology, Roentgena 5, 02-781 Warsaw, Poland
| | - M Statkiewicz
- Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Department of Genetics, Roentgena 5, 02-781 Warsaw, Poland
| | - M Kulecka
- Medical Center for Postgraduate Education, Department of Gastroenterology, Hepatology and Clinical Oncology, Roentgena 5, 02-781 Warsaw, Poland
| | - M Grzelak
- University of Warsaw, CeNT, Laboratory of Bioinformatics and Systems Biology, Zwirki i Wigury 93, 02-089, Poland
| | - M Dabrowska
- Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Department of Genetics, Roentgena 5, 02-781 Warsaw, Poland
| | - U Kuklinska
- Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Department of Genetics, Roentgena 5, 02-781 Warsaw, Poland
| | - J Karczmarski
- Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Department of Genetics, Roentgena 5, 02-781 Warsaw, Poland
| | - I Rumienczyk
- Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Department of Genetics, Roentgena 5, 02-781 Warsaw, Poland
| | - K Jastrzebski
- International Institute of Molecular and Cell Biology, Trojdena 4, 02-109, Warsaw, Poland
| | - M Miaczynska
- International Institute of Molecular and Cell Biology, Trojdena 4, 02-109, Warsaw, Poland
| | - K Ginalski
- University of Warsaw, CeNT, Laboratory of Bioinformatics and Systems Biology, Zwirki i Wigury 93, 02-089, Poland
| | - K Bomsztyk
- University of Washington, Department of Medicine, 850 Republican Street, Seattle, WA, USA
| | - J Ostrowski
- Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, Department of Genetics, Roentgena 5, 02-781 Warsaw, Poland.,Medical Center for Postgraduate Education, Department of Gastroenterology, Hepatology and Clinical Oncology, Roentgena 5, 02-781 Warsaw, Poland
| |
Collapse
|
33
|
Kawahara T, Shareef HK, Aljarah AK, Ide H, Li Y, Kashiwagi E, Netto GJ, Zheng Y, Miyamoto H. ELK1 is up-regulated by androgen in bladder cancer cells and promotes tumor progression. Oncotarget 2016; 6:29860-76. [PMID: 26342199 PMCID: PMC4745768 DOI: 10.18632/oncotarget.5007] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 08/12/2015] [Indexed: 12/15/2022] Open
Abstract
Little is known about biological significance of ELK1, a transcriptional factor that activates downstream targets including c-fos proto-oncogene, in bladder cancer. Recent preclinical evidence also suggests the involvement of androgen receptor (AR) signaling in bladder cancer progression. In this study, we aim to investigate the functions of ELK1 in bladder cancer growth and their regulation by AR signals. Immunohistochemistry in bladder tumor specimens showed that the levels of phospho-ELK1 (p-ELK1) expression were significantly elevated in urothelial neoplasms, compared with non-neoplastic urothelium tissues, and were also correlated with AR positivity. Patients with p-ELK1-positive non-muscle-invasive and muscle-invasive tumors had significantly higher risks for tumor recurrence and progression, respectively. In AR-positive bladder cancer cell lines, dihydrotestosterone treatment increased ELK1 expression (mRNA, protein) and its nuclear translocation, ELK1 transcriptional activity, and c-fos expression, which was restored by an anti-androgen hydroxyflutamide. ELK1 silencing via short hairpin RNA (shRNA) resulted in decreases in cell viability/colony formation, and cell migration/invasion as well as an increase in apoptosis. Importantly, ELK1 appears to require activated AR to regulate bladder cancer cell proliferation, but not cell migration. Androgen also failed to significantly induce AR transactivation in ELK1-knockdown cells. In accordance with our in vitro findings, ELK1-shRNA expression considerably retarded tumor formation as well as its growth in xenograft-bearing male mice. Our results suggest that ELK1 plays an important role in bladder tumorigenesis and cancer progression, which is further induced by AR activation. Accordingly, ELK1 inhibition, together with AR inactivation, has the potential of being a therapeutic approach for bladder cancer.
Collapse
Affiliation(s)
- Takashi Kawahara
- Departments of Pathology and Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA.,Department of Urology, Yokohama City University School of Medicine, Yokohama, Japan
| | - Hasanain Khaleel Shareef
- Departments of Pathology and Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Biology, University of Babylon College of Science for Women, Babylon, Iraq
| | - Ali Kadhim Aljarah
- Departments of Pathology and Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Biology, University of Baghdad College of Science, Baghdad, Iraq
| | - Hiroki Ide
- Departments of Pathology and Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yi Li
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA.,Department of Urology, 2nd Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Eiji Kashiwagi
- Departments of Pathology and Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - George J Netto
- Departments of Pathology and Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yichun Zheng
- Departments of Pathology and Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA.,Department of Urology, 2nd Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Hiroshi Miyamoto
- Departments of Pathology and Urology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
34
|
Disinhibition of the extracellular-signal-regulated kinase restores the amplification of circadian rhythms by lithium in cells from bipolar disorder patients. Eur Neuropsychopharmacol 2016; 26:1310-9. [PMID: 27216486 DOI: 10.1016/j.euroneuro.2016.05.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 03/24/2016] [Accepted: 05/08/2016] [Indexed: 12/31/2022]
Abstract
UNLABELLED Bipolar disorder (BD) is characterized by depression, mania, and circadian rhythm abnormalities. Lithium, a treatment for BD stabilizes mood and increases circadian rhythm amplitude. However, in fibroblasts grown from BD patients, lithium has weak effects on rhythm amplitude compared to healthy controls. To understand the mechanism by which lithium differentially affects rhythm amplitude in BD cells, we investigated the extracellular-signal-regulated kinase (ERK) and related signaling molecules linked to BD and circadian rhythms. In fibroblasts from BD patients, controls and mice, we assessed the contribution of the ERK pathway to lithium-induced circadian rhythm amplification. Protein analyses revealed low phospho-ERK1/2 (p-ERK) content in fibroblasts from BD patients vs. CONTROLS Pharmacological inhibition of ERK1/2 by PD98059 attenuated the rhythm amplification effect of lithium, while inhibition of two related kinases, c-Jun N-terminal kinase (JNK), and P38 did not. Knockdown of the transcription factors CREB and EGR-1, downstream effectors of ERK1/2, reduced baseline rhythm amplitude, but did not alter rhythm amplification by lithium. In contrast, ELK-1 knockdown amplified rhythms, an effect that was not increased further by the addition of lithium, suggesting this transcription factor may regulate the effect of lithium on amplitude. Augmentation of ERK1/2 signaling through DUSP6 knockdown sensitized NIH3T3 cells to rhythm amplification by lithium. In BD fibroblasts, DUSP6 knockdown reversed the BD rhythm phenotype, restoring the ability of lithium to increase amplitude in these cells. We conclude that the inability of lithium to regulate circadian rhythms in BD may reflect reduced ERK activity, and signaling through ELK-1.
Collapse
|
35
|
Yan Q, Lou G, Qian Y, Qin B, Xu X, Wang Y, Liu Y, Dong X. SPAG9 is involved in hepatocarcinoma cell migration and invasion via modulation of ELK1 expression. Onco Targets Ther 2016; 9:1067-75. [PMID: 27042099 PMCID: PMC4780205 DOI: 10.2147/ott.s98727] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Background Sperm-associated antigen 9 (SPAG9) is upregulated in several malignancies and its overexpression is positively correlated with cancer cell malignancies. However, the specific biological roles of SPAG9 in hepatocellular carcinoma (HCC) are less understood. Methods We analyzed SPAG9 and ETS-like gene 1, tyrosine kinase (ELK1) expression in 50 paired HCC specimens and adjacent noncancerous liver specimens using immunohistochemistry. SPAG9 small interfering RNA (siRNA) was used to knockdown SPAG9 expression in HCCLM3 and HuH7 cell lines. We used plasmids to upregulate ELK1 expression and siRNA to downregulate ELK1 expression in HuH7 cells. Quantitative real-time polymerase chain reaction and Western blot were used to evaluate the expression of SPAG9 and ELK1 at the mRNA and protein level, respectively. Wound healing, matrigel migration, and invasion analyses were performed to determine the effect of SPAG9 and ELK1 on HCC metastasis. Results SPAG9 and ELK1 were overexpressed in HCC tissue specimens and their expressions were higher in HCCLM3 and HuH7 cells compared to the low-metastatic HepG2 cells. Overexpression of SPAG9 was positively associated with tumor-node-metastasis staging (P=0.032), metastasis parameters (P=0.018) of HCC patients, and ELK1 expression (r=0.422, P<0.001) in HCC tissue specimens. In addition, knockdown of SPAG9 in HCCLM3 and HuH7 cells using siRNA significantly suppressed cell migration and invasion. Furthermore, we observed inhibition of ELK1 expression and p38 signaling. However, ELK1 overexpression reversed the inhibitory effects of SPAG9 siRNA on HCC cell metastasis and ELK1 depletion inhibited HuH7 cell migration and invasion. Conclusion SPAG9 overexpression was positively correlated with HCC metastasis and SPAG9-induced migration and invasion were partially dependent on ELK1 expression in HCC cell lines. These results suggest that SPAG9 may be a potential anti-metastasis target effective in HCC therapy.
Collapse
Affiliation(s)
- Qiuyue Yan
- Shaoxing People's Hospital, Shaoxing Hospital Zhejiang University, Shaoxing, Zhejiang, People's Republic of China; The Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Guohua Lou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Ying Qian
- Shaoxing People's Hospital, Shaoxing Hospital Zhejiang University, Shaoxing, Zhejiang, People's Republic of China
| | - Bo Qin
- Shaoxing People's Hospital, Shaoxing Hospital Zhejiang University, Shaoxing, Zhejiang, People's Republic of China
| | - Xiuping Xu
- Shaoxing People's Hospital, Shaoxing Hospital Zhejiang University, Shaoxing, Zhejiang, People's Republic of China; The Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Yanan Wang
- Shaoxing People's Hospital, Shaoxing Hospital Zhejiang University, Shaoxing, Zhejiang, People's Republic of China; The Key Laboratory of Laboratory Medicine, Ministry of Education of China, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Yanning Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China
| | - Xuejun Dong
- Shaoxing People's Hospital, Shaoxing Hospital Zhejiang University, Shaoxing, Zhejiang, People's Republic of China
| |
Collapse
|
36
|
Donyo M, Hollander D, Abramovitch Z, Naftelberg S, Ast G. Phosphatidylserine enhances IKBKAP transcription by activating the MAPK/ERK signaling pathway. Hum Mol Genet 2016; 25:1307-17. [PMID: 26769675 DOI: 10.1093/hmg/ddw011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 01/11/2016] [Indexed: 01/04/2023] Open
Abstract
Familial dysautonomia (FD) is a genetic disorder manifested due to abnormal development and progressive degeneration of the sensory and autonomic nervous system. FD is caused by a point mutation in the IKBKAP gene encoding the IKAP protein, resulting in decreased protein levels. A promising potential treatment for FD is phosphatidylserine (PS); however, the manner by which PS elevates IKAP levels has yet to be identified. Analysis of ChIP-seq results of the IKBKAP promoter region revealed binding of the transcription factors CREB and ELK1, which are regulated by the mitogen-activated protein kinase (MAPK)/extracellular-regulated kinase (ERK) signaling pathway. We show that PS treatment enhanced ERK phosphorylation in cells derived from FD patients. ERK activation resulted in elevated IKBKAP transcription and IKAP protein levels, whereas pretreatment with the MAPK inhibitor U0126 blocked elevation of the IKAP protein level. Overexpression of either ELK1 or CREB activated the IKBKAP promoter, whereas downregulation of these transcription factors resulted in a decrease of the IKAP protein. Additionally, we show that PS improves cell migration, known to be enhanced by MAPK/ERK activation and abrogated in FD cells. In conclusion, our results demonstrate that PS activates the MAPK/ERK signaling pathway, resulting in activation of transcription factors that bind the promoter region of IKBKAP and thus enhancing its transcription. Therefore, compounds that activate the MAPK/ERK signaling pathway could constitute potential treatments for FD.
Collapse
Affiliation(s)
- Maya Donyo
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Dror Hollander
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Ziv Abramovitch
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Shiran Naftelberg
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv 69978, Israel
| | - Gil Ast
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Ramat Aviv 69978, Israel
| |
Collapse
|
37
|
Buffet C, Catelli MG, Hecale-Perlemoine K, Bricaire L, Garcia C, Gallet-Dierick A, Rodriguez S, Cormier F, Groussin L. Dual Specificity Phosphatase 5, a Specific Negative Regulator of ERK Signaling, Is Induced by Serum Response Factor and Elk-1 Transcription Factor. PLoS One 2015; 10:e0145484. [PMID: 26691724 PMCID: PMC4687125 DOI: 10.1371/journal.pone.0145484] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 10/29/2015] [Indexed: 12/11/2022] Open
Abstract
Serum stimulation of mammalian cells induces, via the MAPK pathway, the nuclear protein DUSP5 (dual-specificity phosphatase 5), which specifically interacts with and inactivates the ERK1/2 MAP kinases. However, molecular mechanisms underlying DUSP5 induction are not well known. Here, we found that the DUSP5 mRNA induction depends on a transcriptional regulation by the MAPK pathway, without any modification of the mRNA stability. Two contiguous CArG boxes that bind serum response factor (SRF) were found in a 1 Kb promoter region, as well as several E twenty-six transcription factor family binding sites (EBS). These sites potentially bind Elk-1, a transcription factor activated by ERK1/2. Using wild type or mutated DUSP5 promoter reporters, we demonstrated that SRF plays a crucial role in serum induction of DUSP5 promoter activity, the proximal CArG box being important for SRF binding in vitro and in living cells. Moreover, in vitro and in vivo binding data of Elk-1 to the same promoter region further demonstrate a role for Elk-1 in the transcriptional regulation of DUSP5. SRF and Elk-1 form a ternary complex (Elk-1-SRF-DNA) on DUSP5 promoter, consequently providing a link to an important negative feedback tightly regulating phosphorylated ERK levels.
Collapse
Affiliation(s)
- Camille Buffet
- Endocrinology-Metabolism-Diabetes Department, Institut Cochin, Université Paris Descartes, CNRS (UMR8104), INSERM U1016, Paris, France
| | - Maria-Grazia Catelli
- Endocrinology-Metabolism-Diabetes Department, Institut Cochin, Université Paris Descartes, CNRS (UMR8104), INSERM U1016, Paris, France
| | - Karine Hecale-Perlemoine
- Endocrinology-Metabolism-Diabetes Department, Institut Cochin, Université Paris Descartes, CNRS (UMR8104), INSERM U1016, Paris, France
| | - Léopoldine Bricaire
- Endocrinology-Metabolism-Diabetes Department, Institut Cochin, Université Paris Descartes, CNRS (UMR8104), INSERM U1016, Paris, France
| | - Camille Garcia
- Endocrinology-Metabolism-Diabetes Department, Institut Cochin, Université Paris Descartes, CNRS (UMR8104), INSERM U1016, Paris, France
| | - Anne Gallet-Dierick
- Endocrinology-Metabolism-Diabetes Department, Institut Cochin, Université Paris Descartes, CNRS (UMR8104), INSERM U1016, Paris, France
| | - Stéphanie Rodriguez
- Endocrinology-Metabolism-Diabetes Department, Institut Cochin, Université Paris Descartes, CNRS (UMR8104), INSERM U1016, Paris, France
| | - Françoise Cormier
- Endocrinology-Metabolism-Diabetes Department, Institut Cochin, Université Paris Descartes, CNRS (UMR8104), INSERM U1016, Paris, France
| | - Lionel Groussin
- Endocrinology-Metabolism-Diabetes Department, Institut Cochin, Université Paris Descartes, CNRS (UMR8104), INSERM U1016, Paris, France
- Department of Endocrinology, Cochin Hospital, Paris, France
- * E-mail:
| |
Collapse
|
38
|
Cauchy P, Maqbool MA, Zacarias-Cabeza J, Vanhille L, Koch F, Fenouil R, Gut M, Gut I, Santana MA, Griffon A, Imbert J, Moraes-Cabé C, Bories JC, Ferrier P, Spicuglia S, Andrau JC. Dynamic recruitment of Ets1 to both nucleosome-occupied and -depleted enhancer regions mediates a transcriptional program switch during early T-cell differentiation. Nucleic Acids Res 2015; 44:3567-85. [PMID: 26673693 PMCID: PMC4856961 DOI: 10.1093/nar/gkv1475] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 12/03/2015] [Indexed: 12/20/2022] Open
Abstract
Ets1 is a sequence-specific transcription factor that plays an important role during hematopoiesis, and is essential for the transition of CD4−/CD8− double negative (DN) to CD4+/CD8+ double positive (DP) thymocytes. Using genome-wide and functional approaches, we investigated the binding properties, transcriptional role and chromatin environment of Ets1 during this transition. We found that while Ets1 binding at distal sites was associated with active genes at both DN and DP stages, its enhancer activity was attained at the DP stage, as reflected by levels of the core transcriptional hallmarks H3K4me1/3, RNA Polymerase II and eRNA. This dual, stage-specific ability reflected a switch from non-T hematopoietic toward T-cell specific gene expression programs during the DN-to-DP transition, as indicated by transcriptome analyses of Ets1−/− thymic cells. Coincidentally, Ets1 associates more specifically with Runx1 in DN and with TCF1 in DP cells. We also provide evidence that Ets1 predominantly binds distal nucleosome-occupied regions in DN and nucleosome-depleted regions in DP. Finally and importantly, we demonstrate that Ets1 induces chromatin remodeling by displacing H3K4me1-marked nucleosomes. Our results thus provide an original model whereby the ability of a transcription factor to bind nucleosomal DNA changes during differentiation with consequences on its cognate enhancer activity.
Collapse
Affiliation(s)
- Pierre Cauchy
- CIML CNRS UMR7280, Case 906, Campus de Luminy, Marseille F-13009, France CIML INSERM U1104, Case 906, Campus de Luminy, Marseille F-13009, France Aix-Marseille University, 58 Boulevard Charles Livon, Marseille F-13284, France Inserm U1090, Technological Advances for Genomics and Clinics (TAGC), Marseille F-13009, France Aix-Marseille University UMR-S 1090, TAGC, Marseille F-13009, France
| | - Muhammad A Maqbool
- Institut de Génétique Moléculaire de Montpellier, CNRS UMR5535, 1919 Route de Mende, Montpellier F-34293, France
| | - Joaquin Zacarias-Cabeza
- CIML CNRS UMR7280, Case 906, Campus de Luminy, Marseille F-13009, France CIML INSERM U1104, Case 906, Campus de Luminy, Marseille F-13009, France Aix-Marseille University, 58 Boulevard Charles Livon, Marseille F-13284, France
| | - Laurent Vanhille
- Inserm U1090, Technological Advances for Genomics and Clinics (TAGC), Marseille F-13009, France Aix-Marseille University UMR-S 1090, TAGC, Marseille F-13009, France
| | - Frederic Koch
- CIML CNRS UMR7280, Case 906, Campus de Luminy, Marseille F-13009, France CIML INSERM U1104, Case 906, Campus de Luminy, Marseille F-13009, France Aix-Marseille University, 58 Boulevard Charles Livon, Marseille F-13284, France
| | - Romain Fenouil
- CIML CNRS UMR7280, Case 906, Campus de Luminy, Marseille F-13009, France CIML INSERM U1104, Case 906, Campus de Luminy, Marseille F-13009, France Aix-Marseille University, 58 Boulevard Charles Livon, Marseille F-13284, France
| | - Marta Gut
- Centre Nacional D'Anàlisi Genòmica, Parc Científic de Barcelona, Baldiri i Reixac 4, Barcelona ES-08028, Spain
| | - Ivo Gut
- Centre Nacional D'Anàlisi Genòmica, Parc Científic de Barcelona, Baldiri i Reixac 4, Barcelona ES-08028, Spain
| | - Maria A Santana
- CIML CNRS UMR7280, Case 906, Campus de Luminy, Marseille F-13009, France CIML INSERM U1104, Case 906, Campus de Luminy, Marseille F-13009, France Aix-Marseille University, 58 Boulevard Charles Livon, Marseille F-13284, France
| | - Aurélien Griffon
- Inserm U1090, Technological Advances for Genomics and Clinics (TAGC), Marseille F-13009, France Aix-Marseille University UMR-S 1090, TAGC, Marseille F-13009, France
| | - Jean Imbert
- Inserm U1090, Technological Advances for Genomics and Clinics (TAGC), Marseille F-13009, France Aix-Marseille University UMR-S 1090, TAGC, Marseille F-13009, France
| | - Carolina Moraes-Cabé
- INSERM UMR 1126 Institut Universitaire d'Hématologie, Hôpital Saint-Louis, Paris F-75475, France
| | - Jean-Christophe Bories
- INSERM UMR 1126 Institut Universitaire d'Hématologie, Hôpital Saint-Louis, Paris F-75475, France
| | - Pierre Ferrier
- CIML CNRS UMR7280, Case 906, Campus de Luminy, Marseille F-13009, France CIML INSERM U1104, Case 906, Campus de Luminy, Marseille F-13009, France Aix-Marseille University, 58 Boulevard Charles Livon, Marseille F-13284, France
| | - Salvatore Spicuglia
- Inserm U1090, Technological Advances for Genomics and Clinics (TAGC), Marseille F-13009, France Aix-Marseille University UMR-S 1090, TAGC, Marseille F-13009, France
| | - Jean-Christophe Andrau
- Institut de Génétique Moléculaire de Montpellier, CNRS UMR5535, 1919 Route de Mende, Montpellier F-34293, France
| |
Collapse
|
39
|
Chen X, Ji Z, Webber A, Sharrocks AD. Genome-wide binding studies reveal DNA binding specificity mechanisms and functional interplay amongst Forkhead transcription factors. Nucleic Acids Res 2015; 44:1566-78. [PMID: 26578569 PMCID: PMC4770209 DOI: 10.1093/nar/gkv1120] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 10/14/2015] [Indexed: 01/19/2023] Open
Abstract
Transcription factors belonging to the same transcription factor families contain very similar DNA binding domains and hence have the potential to bind to related DNA sequences. However, subtle differences in binding specificities can be detected in vitro with the potential to direct specific responses in vivo. Here, we have examined the binding properties of three Forkhead (FOX) transcription factors, FOXK2, FOXO3 and FOXJ3 in vivo. Extensive overlap in chromatin binding is observed, although underlying differential DNA binding specificity can dictate the recruitment of FOXK2 and FOXJ3 to chromatin. However, functionally, FOXO3-dependent gene regulation is generally mediated not through uniquely bound regions but through regions occupied by both FOXK2 and FOXO3 where both factors play a regulatory role. Our data point to a model whereby FOX transcription factors control gene expression through dynamically binding and generating partial occupancy of the same site rather than mutually exclusive binding derived by stable binding of individual FOX proteins.
Collapse
Affiliation(s)
- Xi Chen
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Zongling Ji
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Aaron Webber
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| | - Andrew D Sharrocks
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
40
|
Kawahara T, Ide H, Kashiwagi E, Patterson JD, Inoue S, Shareef HK, Aljarah AK, Zheng Y, Baras AS, Miyamoto H. Silodosin inhibits the growth of bladder cancer cells and enhances the cytotoxic activity of cisplatin via ELK1 inactivation. Am J Cancer Res 2015; 5:2959-68. [PMID: 26693052 PMCID: PMC4656723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 09/14/2015] [Indexed: 06/05/2023] Open
Abstract
Silodosin, a selective α1A-adrenergic blocker prescribed for the symptomatic treatment of benign prostatic hyperplasia, was previously shown to decrease the expression of ELK1, a c-fos proto-oncogene regulator and a well-described downstream target of the PKC/Raf-1/ERK pathway, in human prostate smooth muscle cells. PKC/Raf-1/ERK activation has also been implicated in drug resistance. In the current study, we assessed the effects of silodosin on ELK1 expression/activity in bladder cancer cells as well as on their proliferation in the presence or absence of chemotherapeutic drugs, including cisplatin and gemcitabine. In bladder cancer cell lines, silodosin reduced the expression of ELK1 (mRNA/protein) and its downstream target, c-fos gene, as well as the transcriptional activity of ELK1. While silodosin alone (up to 10 μM) insignificantly affected the growth of bladder cancer cells cultured in androgen depleted conditions or those expressing ELK1-short hairpin RNA, it considerably inhibited the viability of androgen receptor (AR)-positive/ELK1-positive cells in the presence of androgens. Silodosin also inhibited the migration of ELK1-positive cells with or without a functional AR, but not that of ELK1 knockdown cells. Interestingly, silodosin treatment or ELK1 silencing resulted in increases in drug sensitivity to cisplatin, but not to gemcitabine, even in AR-negative cells or AR-positive cells cultured in an androgen-depleted condition. In addition, silodosin decreased the expression of NF-κB, a key regulator of chemoresistance, and its transcriptional activity. Moreover, immunohistochemistry in bladder cancer specimens from patients who received neoadjuvant chemotherapy revealed that phospho-ELK1 positivity strongly correlated with chemoresistance. Silodosin was thus found to not only inhibit cell viability and migration but also enhance the cytotoxic activity of cisplatin in bladder cancer lines via inactivating ELK1. Our results suggest that combined treatment with silodosin is useful for overcoming chemoresistance in patients with ELK1-positive urothelial carcinoma receiving cisplatin.
Collapse
Affiliation(s)
- Takashi Kawahara
- Departments of Pathology and Urology, Johns Hopkins University School of MedicineBaltimore, MD, USA
- Department of Urology, Yokohama City University Graduate School of MedicineYokohama, Japan
| | - Hiroki Ide
- Departments of Pathology and Urology, Johns Hopkins University School of MedicineBaltimore, MD, USA
| | - Eiji Kashiwagi
- Departments of Pathology and Urology, Johns Hopkins University School of MedicineBaltimore, MD, USA
| | - John D Patterson
- Departments of Pathology and Urology, Johns Hopkins University School of MedicineBaltimore, MD, USA
| | - Satoshi Inoue
- Departments of Pathology and Urology, Johns Hopkins University School of MedicineBaltimore, MD, USA
| | - Hasanain Khaleel Shareef
- Departments of Pathology and Urology, Johns Hopkins University School of MedicineBaltimore, MD, USA
- Department of Biology, University of Babylon College of Science for WomenBabylon, Iraq
| | - Ali Kadhim Aljarah
- Departments of Pathology and Urology, Johns Hopkins University School of MedicineBaltimore, MD, USA
- Department of Biology, University of Baghdad College of ScienceBaghdad, Iraq
| | - Yichun Zheng
- Departments of Pathology and Urology, Johns Hopkins University School of MedicineBaltimore, MD, USA
| | - Alexander S Baras
- Departments of Pathology and Urology, Johns Hopkins University School of MedicineBaltimore, MD, USA
| | - Hiroshi Miyamoto
- Departments of Pathology and Urology, Johns Hopkins University School of MedicineBaltimore, MD, USA
| |
Collapse
|
41
|
Sanders DA, Gormally MV, Marsico G, Beraldi D, Tannahill D, Balasubramanian S. FOXM1 binds directly to non-consensus sequences in the human genome. Genome Biol 2015; 16:130. [PMID: 26100407 PMCID: PMC4492089 DOI: 10.1186/s13059-015-0696-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 06/15/2015] [Indexed: 02/07/2023] Open
Abstract
Background The Forkhead (FKH) transcription factor FOXM1 is a key regulator of the cell cycle and is overexpressed in most types of cancer. FOXM1, similar to other FKH factors, binds to a canonical FKH motif in vitro. However, genome-wide mapping studies in different cell lines have shown a lack of enrichment of the FKH motif, suggesting an alternative mode of chromatin recruitment. We have investigated the role of direct versus indirect DNA binding in FOXM1 recruitment by performing ChIP-seq with wild-type and DNA binding deficient FOXM1. Results An in vitro fluorescence polarization assay identified point mutations in the DNA binding domain of FOXM1 that inhibit binding to a FKH consensus sequence. Cell lines expressing either wild-type or DNA binding deficient GFP-tagged FOXM1 were used for genome-wide mapping studies comparing the distribution of the DNA binding deficient protein to the wild-type. This shows that interaction of the FOXM1 DNA binding domain with target DNA is essential for recruitment. Moreover, analysis of the protein interactome of wild-type versus DNA binding deficient FOXM1 shows that the reduced recruitment is not due to inhibition of protein-protein interactions. Conclusions A functional DNA binding domain is essential for FOXM1 chromatin recruitment. Even in FOXM1 mutants with almost complete loss of binding, the protein-protein interactions and pattern of phosphorylation are largely unaffected. These results strongly support a model whereby FOXM1 is specifically recruited to chromatin through co-factor interactions by binding directly to non-canonical DNA sequences. Electronic supplementary material The online version of this article (doi:10.1186/s13059-015-0696-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Deborah A Sanders
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing Center, Robinson Way, Cambridge, CB2 0RE, UK. .,Present address: Domainex, 162 Cambridge Science Park, Milton Road, Cambridge, CB4 0GH, UK.
| | - Michael V Gormally
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing Center, Robinson Way, Cambridge, CB2 0RE, UK.
| | - Giovanni Marsico
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing Center, Robinson Way, Cambridge, CB2 0RE, UK.
| | - Dario Beraldi
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing Center, Robinson Way, Cambridge, CB2 0RE, UK.
| | - David Tannahill
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing Center, Robinson Way, Cambridge, CB2 0RE, UK.
| | - Shankar Balasubramanian
- Cancer Research UK, Cambridge Research Institute, Li Ka Shing Center, Robinson Way, Cambridge, CB2 0RE, UK. .,Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK. .,School of Clinical Medicine, The University of Cambridge, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0SP, UK.
| |
Collapse
|
42
|
Hui RK, Leung FC. Differential Expression Profile of Chicken Embryo Fibroblast DF-1 Cells Infected with Cell-Adapted Infectious Bursal Disease Virus. PLoS One 2015; 10:e0111771. [PMID: 26053856 PMCID: PMC4460012 DOI: 10.1371/journal.pone.0111771] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 10/01/2014] [Indexed: 12/17/2022] Open
Abstract
RNA-Seq was used to unveil the transcriptional profile of DF-1 cells at the early stage of caIBDV infection. Total RNAs were extracted from virus-infected cells at 0, 6 and 12 hpi. RNA-Seq datasets of respective samples mapped to 56.5–57.6% of isoforms in the reference genome Galgal4.73. At 6 hpi, 23 isoforms underwent an elevated expression, while 128 isoforms were up-regulated and 5 were down-regulated at 12 hpi in the virus-infected group. Besides, 10 isoforms were exclusively expressed in the virus-infected cells. Though no significant change was detected in cytokine and interferon expression levels at the first 12 hours of infection, modulations of the upstream regulators were observed. In addition to the reported regulatory factors including EIF2AK2, MX, OAS*A, GBP7 and IFIT, IBDV infection also triggered a IFIT5-IRF1/3-RSAD5 pathway in the DF-1 cells which potentially restricted the viral replication cycle in the early infection stage. Over-expression of LIPA and CH25H, together with the suppression of STARD4, LSS and AACS genes implied a modulation of membrane fluidity and lipid raft arrangement in the infected cells. Alternative splicing of the EFR3 homolog A gene was also through to be involved in the lipid membrane regulation, and these cumulative responses projected an inhibition of viral endocytosis. Recognition of viral RNA genomes and intermediates was presumably enhanced by the elevated levels of IFIH1, DHX58 and TRIM25 genes which possess properties on detecting viral dsRNA. On the other hand, the caIBDV arrested the host's apoptotic process by inducing the expression of apoptosis inhibitors including NFKBIA/Z, TNFAIP2/3 and ITA at the first 12 hours of infection. In conclusion, the differential expression landscape demonstrated with RNA-Seq provides a comprehensive picture on the molecular interactions between host cells and virus at the early stage of infection.
Collapse
Affiliation(s)
- Raymond K. Hui
- School of Biological Sciences, The University of Hong Kong, Hong Kong, People’s Republic of China
| | - Frederick C. Leung
- School of Biological Sciences, The University of Hong Kong, Hong Kong, People’s Republic of China
- Bioinformatics Center, Nanjing Agricultural University, Nanjing, China
- * E-mail:
| |
Collapse
|
43
|
Selvaraj N, Kedage V, Hollenhorst PC. Comparison of MAPK specificity across the ETS transcription factor family identifies a high-affinity ERK interaction required for ERG function in prostate cells. Cell Commun Signal 2015; 13:12. [PMID: 25885538 PMCID: PMC4338625 DOI: 10.1186/s12964-015-0089-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 02/04/2015] [Indexed: 01/01/2023] Open
Abstract
Background The RAS/MAPK signaling pathway can regulate gene expression by phosphorylating and altering the function of some, but not all, ETS transcription factors. ETS family transcription factors bind similar DNA sequences and can compete for genomic binding sites. However, MAPK regulation varies across the ETS family. Therefore, changing the ETS factor bound to a cis-regulatory element can alter MAPK regulation of gene expression. To understand RAS/MAPK regulated gene expression programs, comprehensive knowledge of the ETS family members that are MAPK targets and relative MAPK targeting efficiency across the family is needed. Results An in vitro kinase assay was used to rank-order 27 human ETS family transcription factors based on phosphorylation by ERK2, JNK1, and p38α. Many novel MAPK targets and specificities were identified within the ETS family, including the identification of the prostate cancer oncoprotein ERG as a specific target of ERK2. ERK2 phosphorylation of ERG S215 required a DEF docking domain and was necessary for ERG to activate transcription of cell migration genes and promote prostate cell migration. The ability of ERK2 to bind ERG with higher affinity than ETS1 provided a potential molecular explanation for why ERG overexpression drives migration of prostate cells with low levels of RAS/ERK signaling, while ETS1 has a similar function only when RAS/ERK signaling is high. Conclusions The rank ordering of ETS transcription factors as MAPK targets provides an important resource for understanding ETS proteins as mediators of MAPK signaling. This is emphasized by the difference in rank order of ERG and ETS1, which allows these factors to have distinct roles based on the level of RAS/ERK signaling present in the cell. Electronic supplementary material The online version of this article (doi:10.1186/s12964-015-0089-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nagarathinam Selvaraj
- Medical Sciences, Indiana University School of Medicine, 1001 E 3rd St, Bloomington, IN, 47405, USA.
| | - Vivekananda Kedage
- Medical Sciences, Indiana University School of Medicine, 1001 E 3rd St, Bloomington, IN, 47405, USA.
| | - Peter C Hollenhorst
- Medical Sciences, Indiana University School of Medicine, 1001 E 3rd St, Bloomington, IN, 47405, USA.
| |
Collapse
|
44
|
Qian J, Kong X, Deng N, Tan P, Chen H, Wang J, Li Z, Hu Y, Zou W, Xu J, Fang JY. OCT1 is a determinant of synbindin-related ERK signalling with independent prognostic significance in gastric cancer. Gut 2015; 64:37-48. [PMID: 24717932 PMCID: PMC4283676 DOI: 10.1136/gutjnl-2013-306584] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Octamer transcription factor 1 (OCT1) was found to be expressed in intestinal metaplasia and gastric cancer (GC), but the exact roles of OCT1 in GC remain unclear. The objective of this study was to determine the functional and prognostic implications of OCT1 in GC. DESIGN Expression of OCT1 was examined in paired normal and cancerous gastric tissues and the prognostic significance of OCT1 was analysed by univariate and multivariate survival analyses. The functions of OCT1 on synbindin expression and extracellular signal-regulated kinase (ERK) phosphorylation were studied in vitro and in xenograft mouse models. RESULTS The OCT1 gene is recurrently amplified and upregulated in GC. OCT1 overexpression and amplification are associated with poor survival in patients with GC and the prognostic significance was confirmed by independent patient cohorts. Combining OCT1 overexpression with American Joint Committee on Cancer staging improved the prediction of survival in patients with GC. High expression of OCT1 associates with activation of the ERK mitogen-activated protein kinase signalling pathway in GC tissues. OCT1 functions by transactivating synbindin, which binds to ERK DEF domain and facilitates ERK phosphorylation by MEK. OCT1-synbindin signalling results in the activation of ERK substrates ELK1 and RSK, leading to increased cell proliferation and invasion. Immunofluorescent study of human GC tissue samples revealed strong association between OCT1 protein level and synbindin expression/ERK phosphorylation. Upregulation of OCT1 in mouse xenograft models induced synbindin expression and ERK activation, leading to accelerated tumour growth in vivo. CONCLUSIONS OCT1 is a driver of synbindin-mediated ERK signalling and a promising marker for the prognosis and molecular subtyping of GC.
Collapse
Affiliation(s)
- Jin Qian
- State Key Laboratory of Oncogenes and Related Genes, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Xuan Kong
- State Key Laboratory of Oncogenes and Related Genes, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Niantao Deng
- Cancer and Stem Cell Biology Program, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Patrick Tan
- Cancer and Stem Cell Biology Program, Duke-NUS Graduate Medical School, Singapore, Singapore,Cancer Therapeutics and Stratified Oncology, Genome Institute of Singapore, Singapore, Singapore
| | - Haoyan Chen
- State Key Laboratory of Oncogenes and Related Genes, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Jilin Wang
- State Key Laboratory of Oncogenes and Related Genes, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Zhaoli Li
- Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Ye Hu
- State Key Laboratory of Oncogenes and Related Genes, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Weiping Zou
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Jie Xu
- State Key Laboratory of Oncogenes and Related Genes, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| | - Jing-Yuan Fang
- State Key Laboratory of Oncogenes and Related Genes, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Cancer Institute, Shanghai Institute of Digestive Disease, Shanghai, China
| |
Collapse
|
45
|
Shan J, Donelan W, Hayner JN, Zhang F, Dudenhausen EE, Kilberg MS. MAPK signaling triggers transcriptional induction of cFOS during amino acid limitation of HepG2 cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:539-48. [PMID: 25523140 DOI: 10.1016/j.bbamcr.2014.12.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 11/19/2014] [Accepted: 12/10/2014] [Indexed: 12/17/2022]
Abstract
Amino acid (AA) deprivation in mammalian cells activates a collection of signaling cascades known as the AA response (AAR), which is characterized by transcriptional induction of stress-related genes, including FBJ murine osteosarcoma viral oncogene homolog (cFOS). The present study established that the signaling mechanism underlying the AA-dependent transcriptional regulation of the cFOS gene in HepG2 human hepatocellular carcinoma cells is independent of the classic GCN2-eIF2-ATF4 pathway. Instead, a RAS-RAF-MEK-ERK cascade mediates AAR signaling to the cFOS gene. Increased cFOS transcription is observed from 4-24 h after AAR-activation, exhibiting little or no overlap with the rapid and transient increase triggered by the well-known serum response. Furthermore, serum is not required for the AA-responsiveness of the cFOS gene and no phosphorylation of promoter-bound serum response factor (SRF) is observed. The ERK-phosphorylated transcription factor E-twenty six-like (p-ELK1) is increased in its association with the cFOS promoter after activation of the AAR. This research identified cFOS as a target of the AAR and further highlights the importance of AA-responsive MAPK signaling in HepG2 cells.
Collapse
Affiliation(s)
- Jixiu Shan
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, Florida 32610
| | - William Donelan
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, Florida 32610
| | - Jaclyn N Hayner
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, Florida 32610
| | - Fan Zhang
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, Florida 32610
| | - Elizabeth E Dudenhausen
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, Florida 32610
| | - Michael S Kilberg
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, Florida 32610.
| |
Collapse
|
46
|
Robertson ED, Wasylyk C, Ye T, Jung AC, Wasylyk B. The oncogenic MicroRNA Hsa-miR-155-5p targets the transcription factor ELK3 and links it to the hypoxia response. PLoS One 2014; 9:e113050. [PMID: 25401928 PMCID: PMC4234625 DOI: 10.1371/journal.pone.0113050] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 10/18/2014] [Indexed: 12/29/2022] Open
Abstract
The molecular response to hypoxia is a critical cellular process implicated in cancer, and a target for drug development. The activity of the major player, HIF1α, is regulated at different levels by various factors, including the transcription factor ELK3. The molecular mechanisms of this intimate connection remain largely unknown. Whilst investigating global ELK3-chromatin interactions, we uncovered an unexpected connection that involves the microRNA hsa-miR-155-5p, a hypoxia-inducible oncomir that targets HIF1α. One of the ELK3 chromatin binding sites, detected by Chromatin Immuno-Precipitation Sequencing (ChIP-seq) of normal Human Umbilical Vein Endothelial Cells (HUVEC), is located at the transcription start site of the MIR155HG genes that expresses hsa-miR-155-5p. We confirmed that ELK3 binds to this promoter by ChIP and quantitative polymerase chain reaction (QPCR). We showed that ELK3 and hsa-miR-155-5p form a double-negative regulatory loop, in that ELK3 depletion induced hsa-miR-155-5p expression and hsa-miR-155-5p expression decreased ELK3 expression at the RNA level through a conserved target sequence in its 3'-UTR. We further showed that the activities of hsa-miR-155-5p and ELK3 are functionally linked. Pathway analysis indicates that both factors are implicated in related processes, including cancer and angiogenesis. Hsa-miR-155-5p expression and ELK3 depletion have similar effects on expression of known ELK3 target genes, and on in-vitro angiogenesis and wound closure. Bioinformatic analysis of cancer RNA-seq data shows that hsa-miR-155-5p and ELK3 expression are significantly anti-correlated, as would be expected from hsa-miR-155-5p targeting ELK3 RNA. Finally, hypoxia (0% oxygen) down-regulates ELK3 mRNA in a microRNA and hsa-miR-155-5p dependent manner. These results tie ELK3 into the hypoxia response pathway through an oncogenic microRNA and into a circuit implicated in the dynamics of the hypoxic response. This crosstalk could be important for the development of new treatments for a range of pathologies.
Collapse
Affiliation(s)
- E. Douglas Robertson
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Christine Wasylyk
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Tao Ye
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Alain C. Jung
- Laboratoire de Biologie Tumorale, Centre Régional de Lutte Contre le Cancer Paul Strauss, EA3430 de l’Université de Strasbourg, Strasbourg, France
| | - Bohdan Wasylyk
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, Illkirch, France
- * E-mail:
| |
Collapse
|
47
|
Plotnik JP, Budka JA, Ferris MW, Hollenhorst PC. ETS1 is a genome-wide effector of RAS/ERK signaling in epithelial cells. Nucleic Acids Res 2014; 42:11928-40. [PMID: 25294825 PMCID: PMC4231772 DOI: 10.1093/nar/gku929] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The RAS/ERK pathway is commonly activated in carcinomas and promotes oncogenesis by altering transcriptional programs. However, the array of cis-regulatory elements and trans-acting factors that mediate these transcriptional changes is still unclear. Our genome-wide analysis determined that a sequence consisting of neighboring ETS and AP-1 transcription factor binding sites is enriched near cell migration genes activated by RAS/ERK signaling in epithelial cells. In vivo screening of candidate ETS proteins revealed that ETS1 is specifically required for migration of RAS/ERK activated cells. Furthermore, both migration and transcriptional activation through ETS/AP-1 required ERK phosphorylation of ETS1. Genome-wide mapping of multiple ETS proteins demonstrated that ETS1 binds specifically to enhancer ETS/AP-1 sequences. ETS1 occupancy, and its role in cell migration, was conserved in epithelial cells derived from multiple tissues, consistent with a chromatin organization common to epithelial cell lines. Genome-wide expression analysis showed that ETS1 was required for activation of RAS-regulated cell migration genes, but also identified a surprising role for ETS1 in the repression of genes such as DUSP4, DUSP6 and SPRY4 that provide negative feedback to the RAS/ERK pathway. Consistently, ETS1 was required for robust RAS/ERK pathway activation. Therefore, ETS1 has dual roles in mediating epithelial-specific RAS/ERK transcriptional functions.
Collapse
Affiliation(s)
- Joshua P Plotnik
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Justin A Budka
- Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana, USA
| | - Mary W Ferris
- Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana, USA
| | - Peter C Hollenhorst
- Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana, USA
| |
Collapse
|
48
|
Shan J, Balasubramanian MN, Donelan W, Fu L, Hayner J, Lopez MC, Baker HV, Kilberg MS. A mitogen-activated protein kinase/extracellular signal-regulated kinase kinase (MEK)-dependent transcriptional program controls activation of the early growth response 1 (EGR1) gene during amino acid limitation. J Biol Chem 2014; 289:24665-79. [PMID: 25028509 DOI: 10.1074/jbc.m114.565028] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Amino acid (AA) limitation in mammalian cells triggers a collection of signaling cascades jointly referred to as the AA response (AAR). In human HepG2 hepatocellular carcinoma, the early growth response 1 (EGR1) gene was induced by either AA deprivation or endoplasmic reticulum stress. AAR-dependent EGR1 activation was discovered to be independent of the well characterized GCN2-ATF4 pathway and instead dependent on MEK-ERK signaling, one of the MAPK pathways. ChIP showed that constitutively bound ELK1 at the EGR1 proximal promoter region was phosphorylated after AAR activation. Increased p-ELK1 binding was associated with increased de novo recruitment of RNA polymerase II to the EGR1 promoter. EGR1 transcription was not induced in HEK293T cells lacking endogenous MEK activity, but overexpression of exogenous constitutively active MEK in HEK293T cells resulted in increased basal and AAR-induced EGR1 expression. ChIP analysis of the human vascular endothelial growth factor A (VEGF-A) gene, a known EGR1-responsive gene, revealed moderate increases in AAR-induced EGR1 binding within the proximal promoter and highly inducible binding to a site within the first intron. Collectively, these data document a novel AA-activated MEK-ERK-ELK1 signaling mechanism.
Collapse
Affiliation(s)
- Jixiu Shan
- From the Department of Biochemistry and Molecular Biology, Shands Cancer Center and Center for Nutritional Sciences and
| | - Mukundh N Balasubramanian
- From the Department of Biochemistry and Molecular Biology, Shands Cancer Center and Center for Nutritional Sciences and
| | - William Donelan
- From the Department of Biochemistry and Molecular Biology, Shands Cancer Center and Center for Nutritional Sciences and
| | - Lingchen Fu
- From the Department of Biochemistry and Molecular Biology, Shands Cancer Center and Center for Nutritional Sciences and
| | - Jaclyn Hayner
- From the Department of Biochemistry and Molecular Biology, Shands Cancer Center and Center for Nutritional Sciences and
| | - Maria-Cecilia Lopez
- the Department of Molecular Genetics and Microbiology, Genetics Institute, University of Florida College of Medicine, Gainesville, Florida 32610
| | - Henry V Baker
- the Department of Molecular Genetics and Microbiology, Genetics Institute, University of Florida College of Medicine, Gainesville, Florida 32610
| | - Michael S Kilberg
- From the Department of Biochemistry and Molecular Biology, Shands Cancer Center and Center for Nutritional Sciences and
| |
Collapse
|
49
|
Cadet JL, Brannock C, Jayanthi S, Krasnova IN. Transcriptional and epigenetic substrates of methamphetamine addiction and withdrawal: evidence from a long-access self-administration model in the rat. Mol Neurobiol 2014; 51:696-717. [PMID: 24939695 PMCID: PMC4359351 DOI: 10.1007/s12035-014-8776-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Accepted: 06/01/2014] [Indexed: 01/06/2023]
Abstract
Methamphetamine use disorder is a chronic neuropsychiatric disorder characterized by recurrent binge episodes, intervals of abstinence, and relapses to drug use. Humans addicted to methamphetamine experience various degrees of cognitive deficits and other neurological abnormalities that complicate their activities of daily living and their participation in treatment programs. Importantly, models of methamphetamine addiction in rodents have shown that animals will readily learn to give themselves methamphetamine. Rats also accelerate their intake over time. Microarray studies have also shown that methamphetamine taking is associated with major transcriptional changes in the striatum measured within a short or longer time after cessation of drug taking. After a 2-h withdrawal time, there was increased expression of genes that participate in transcription regulation. These included cyclic AMP response element binding (CREB), ETS domain-containing protein (ELK1), and members of the FOS family of transcription factors. Other genes of interest include brain-derived neurotrophic factor (BDNF), tyrosine kinase receptor, type 2 (TrkB), and synaptophysin. Methamphetamine-induced transcription was found to be regulated via phosphorylated CREB-dependent events. After a 30-day withdrawal from methamphetamine self-administration, however, there was mostly decreased expression of transcription factors including junD. There was also downregulation of genes whose protein products are constituents of chromatin-remodeling complexes. Altogether, these genome-wide results show that methamphetamine abuse might be associated with altered regulation of a diversity of gene networks that impact cellular and synaptic functions. These transcriptional changes might serve as triggers for the neuropsychiatric presentations of humans who abuse this drug. Better understanding of the way that gene products interact to cause methamphetamine addiction will help to develop better pharmacological treatment of methamphetamine addicts.
Collapse
Affiliation(s)
- Jean Lud Cadet
- Molecular Neuropsychiatry Research Branch, Intramural Research Program, National Institute on Drug Abuse, NIH, DHHS, 251 Bayview Boulevard, Baltimore, MD, 21224, USA,
| | | | | | | |
Collapse
|
50
|
Subtil-Rodríguez A, Vázquez-Chávez E, Ceballos-Chávez M, Rodríguez-Paredes M, Martín-Subero JI, Esteller M, Reyes JC. The chromatin remodeller CHD8 is required for E2F-dependent transcription activation of S-phase genes. Nucleic Acids Res 2013; 42:2185-96. [PMID: 24265227 PMCID: PMC3936757 DOI: 10.1093/nar/gkt1161] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The precise regulation of S-phase-specific genes is critical for cell proliferation. How the repressive chromatin configuration mediated by the retinoblastoma protein and repressor E2F factors changes at the G1/S transition to allow transcription activation is unclear. Here we show ChIP-on-chip studies that reveal that the chromatin remodeller CHD8 binds ∼ 2000 transcriptionally active promoters. The spectrum of CHD8 target genes was enriched in E2F-dependent genes. We found that CHD8 binds E2F-dependent promoters at the G1/S transition but not in quiescent cells. Consistently, CHD8 was required for G1/S-specific expression of these genes and for cell cycle re-entry on serum stimulation of quiescent cells. We also show that CHD8 interacts with E2F1 and, importantly, loading of E2F1 and E2F3, but not E2F4, onto S-specific promoters, requires CHD8. However, CHD8 recruiting is independent of these factors. Recruiting of MLL histone methyltransferase complexes to S-specific promoters was also severely impaired in the absence of CHD8. Furthermore, depletion of CHD8 abolished E2F1 overexpression-dependent S-phase stimulation of serum-starved cells, highlighting the essential role of CHD8 in E2F-dependent transcription activation.
Collapse
Affiliation(s)
- Alicia Subtil-Rodríguez
- Molecular Biology Department, Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas (CSIC), Av. Americo Vespucio 41092 Seville, Spain, Cancer Epigenetics and Biology Program, Bellvitge Biomedical Research Institute, L'Hospitalet, Barcelona, Spain and Department of Anatomic Pathology, Pharmacology and Microbiology, University of Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|