1
|
Li Y, Cheng L, Yang B, Ding Y, Zhao Y, Wu Y, Nie Y, Liu Y, Xu A. Zinc oxide/graphene oxide nanocomposites specifically remediated Cd-contaminated soil via reduction of bioavailability and ecotoxicity of Cd. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 940:173641. [PMID: 38825205 DOI: 10.1016/j.scitotenv.2024.173641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/22/2024] [Accepted: 05/28/2024] [Indexed: 06/04/2024]
Abstract
From both environment and health perspectives, sustainable management of ever-growing soil contamination by heavy metal is posing a serious global concern. The potential ecotoxicity of cadmium (Cd) to soil and ecosystem seriously threatens human health. Developing efficient, specific, and long-term remediation technology for Cd-contaminated soil is impending to synchronously minimize the bioavailability and ecotoxicity of Cd. In the present study, zinc oxide/graphene oxide nanocomposite (ZnO/GO) was developed as a novel amendment for remediating Cd-contaminated soil. Our results showed that ZnO/GO effectively decreased the available soil Cd content, and increased pH and cation exchange capacity (CEC) in both Cd-spiked standard soil and Cd-contaminated mine field soil through the interaction between ZnO/GO and soil organic acids. Using Caenorhabditis elegans (C. elegans) as a model organism for soil safety evaluation, ZnO/GO was further proved to decrease the ecotoxicity of Cd-contaminated soil. Specifically, ZnO/GO promoted Cd excretion and declined Cd storage in C. elegans by increasing the expression of gene ttm-1 and decreasing the level of gene cdf-2, which were responsible for Cd transportation and Cd accumulation, respectively. Moreover, the efficacy of ZnO/GO in remediating the properties and ecotoxicity of Cd-contaminated soil increased gradually with the time gradient, and could maintain a long-term effect after reaching the optimal remediation efficiency. Our findings established a specific and long-term strategy to simultaneously improve soil properties and reduce ecotoxicity of Cd-contaminated soil, which might provide new insights into the potential application of ZnO/GO in soil remediation for both ecosystem and human health.
Collapse
Affiliation(s)
- Yang Li
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, PR China; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, CAS, Hefei, Anhui, 230031, PR China
| | - Lei Cheng
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, PR China; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, CAS, Hefei, Anhui, 230031, PR China
| | - Baolin Yang
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, PR China; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, CAS, Hefei, Anhui, 230031, PR China
| | - Yuting Ding
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, PR China; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, CAS, Hefei, Anhui, 230031, PR China
| | - Yanan Zhao
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, CAS, Hefei, Anhui, 230031, PR China
| | - Yuanyuan Wu
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, PR China; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, CAS, Hefei, Anhui, 230031, PR China
| | - Yaguang Nie
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, PR China
| | - Yun Liu
- Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, CAS, Hefei, Anhui, 230031, PR China.
| | - An Xu
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, PR China; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, CAS, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, CAS, Hefei, Anhui, 230031, PR China; Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, PR China.
| |
Collapse
|
2
|
Mendoza AD, Dietrich N, Tan CH, Herrera D, Kasiah J, Payne Z, Cubillas C, Schneider DL, Kornfeld K. Lysosome-related organelles contain an expansion compartment that mediates delivery of zinc transporters to promote homeostasis. Proc Natl Acad Sci U S A 2024; 121:e2307143121. [PMID: 38330011 PMCID: PMC10873617 DOI: 10.1073/pnas.2307143121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 11/22/2023] [Indexed: 02/10/2024] Open
Abstract
Zinc is an essential nutrient-it is stored during periods of excess to promote detoxification and released during periods of deficiency to sustain function. Lysosome-related organelles (LROs) are an evolutionarily conserved site of zinc storage, but mechanisms that control the directional zinc flow necessary for homeostasis are not well understood. In Caenorhabditis elegans intestinal cells, the CDF-2 transporter stores zinc in LROs during excess. Here, we identify ZIPT-2.3 as the transporter that releases zinc during deficiency; ZIPT-2.3 transports zinc, localizes to the membrane of LROs in intestinal cells, and is necessary for zinc release from LROs and survival during zinc deficiency. In zinc excess and deficiency, the expression levels of CDF-2 and ZIPT-2.3 are reciprocally regulated at the level of mRNA and protein, establishing a fundamental mechanism for directional flow to promote homeostasis. To elucidate how the ratio of CDF-2 and ZIPT-2.3 is altered, we used super-resolution microscopy to demonstrate that LROs are composed of a spherical acidified compartment and a hemispherical expansion compartment. The expansion compartment increases in volume during zinc excess and deficiency. These results identify the expansion compartment as an unexpected structural feature of LROs that facilitates rapid transitions in the composition of zinc transporters to mediate homeostasis, likely minimizing the disturbance to the acidified compartment.
Collapse
Affiliation(s)
- Adelita D. Mendoza
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO63110
| | - Nicholas Dietrich
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO63110
| | - Chieh-Hsiang Tan
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO63110
| | - Daniel Herrera
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO63110
| | - Jennysue Kasiah
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO63110
| | - Zachary Payne
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO63110
| | - Ciro Cubillas
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO63110
| | - Daniel L. Schneider
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO63110
| | - Kerry Kornfeld
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO63110
| |
Collapse
|
3
|
Dejima K, Imae R, Suehiro Y, Yoshida K, Mitani S. An endomembrane zinc transporter negatively regulates systemic RNAi in Caenorhabditis elegans. iScience 2023; 26:106930. [PMID: 37305693 PMCID: PMC10250833 DOI: 10.1016/j.isci.2023.106930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/18/2023] [Accepted: 05/16/2023] [Indexed: 06/13/2023] Open
Abstract
Double-stranded RNA (dsRNA) regulates gene expression in a sequence-dependent manner. In Caenorhabditis elegans, dsRNA spreads through the body and leads to systemic RNA silencing. Although several genes involved in systemic RNAi have been genetically identified, molecules that mediate systemic RNAi remain largely unknown. Here, we identified ZIPT-9, a C. elegans homolog of ZIP9/SLC39A9, as a broad-spectrum negative regulator of systemic RNAi. We showed that RSD-3, SID-3, and SID-5 genetically act in parallel for efficient RNAi, and that zipt-9 mutants suppress the RNAi defects of all the mutants. Analysis of a complete set of deletion mutants for SLC30 and SLC39 family genes revealed that only zipt-9 mutants showed altered RNAi activity. Based on these results and our analysis using transgenic Zn2+ reporters, we propose that ZIPT-9-dependent Zn2+ homeostasis, rather than overall cytosolic Zn2+, modulates systemic RNAi activity. Our findings reveal a previously unknown function of zinc transporters in negative RNAi regulation.
Collapse
Affiliation(s)
- Katsufumi Dejima
- Department of Physiology, Tokyo Women’s Medical University School of Medicine, 8-1, Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Rieko Imae
- Department of Physiology, Tokyo Women’s Medical University School of Medicine, 8-1, Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Yuji Suehiro
- Department of Physiology, Tokyo Women’s Medical University School of Medicine, 8-1, Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Keita Yoshida
- Department of Physiology, Tokyo Women’s Medical University School of Medicine, 8-1, Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Shohei Mitani
- Department of Physiology, Tokyo Women’s Medical University School of Medicine, 8-1, Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
| |
Collapse
|
4
|
Zinc transporters ZIPT-2.4 and ZIPT-15 are required for normal C. elegans fecundity. J Assist Reprod Genet 2022; 39:1261-1276. [PMID: 35501415 DOI: 10.1007/s10815-022-02495-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 04/11/2022] [Indexed: 10/18/2022] Open
Abstract
PURPOSE The requirement of zinc for the development and maturation of germ lines and reproductive systems is deeply conserved across evolution. The nematode Caenorhabditis elegans offers a tractable platform to study the complex system of distributing zinc to the germ line. We investigated several zinc importers to investigate how zinc transporters play a role in the reproductive system in nematodes, as well as establish a platform to study zinc transporter biology in germline and reproductive development. METHODS Previous high throughput transcriptional datasets as well as phylogenetic analysis identified several putative zinc transporters that have a function in reproduction in worms. Phenotypic analysis of CRISPR-generated knockouts and tags included characterization of offspring output, gonad development, and protein localization. Light and immunofluorescence microscopy allowed for visualization of physiological and molecular effects of zinc transporter mutations. RESULTS Disruption of two zinc transporters, ZIPT-2.4 and ZIPT-15, was shown to lead to defects in reproductive output. A mutation in zipt-2.4 has subtle effects on reproduction, while a mutation in zipt-15 has a clear impact on gonad and germline development that translates into a more pronounced defect in fecundity. Both transporters have germline expression, as well as additional expression in other cell types. CONCLUSIONS Two ZIP-family zinc transporter orthologs of human ZIP6/10 and ZIP1/2/3 proteins are important for full reproductive fecundity and participate in development of the gonad. Notably, these zinc transporters are present in gut and reproductive tissues in addition to the germ line, consistent with a complex zinc trafficking network important for reproductive success.
Collapse
|
5
|
Mendoza AD, Sue A, Antipova O, Vogt S, Woodruff TK, Wignall SM, O’Halloran TV. Dynamic zinc fluxes regulate meiotic progression in Caenorhabditis elegans†. Biol Reprod 2022; 107:406-418. [PMID: 35466369 PMCID: PMC9902257 DOI: 10.1093/biolre/ioac064] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 10/14/2021] [Accepted: 03/20/2022] [Indexed: 11/14/2022] Open
Abstract
Zinc influx and efflux events are essential for meiotic progression in oocytes of several mammalian and amphibian species, but it is less clear whether this evolutionary conservation of zinc signals is also important in late-stage germline development in invertebrates. Using quantitative, single cell elemental mapping methods, we find that Caenorhabditis elegans oocytes undergo significant stage-dependent fluctuations in total zinc content, rising by over sevenfold from Prophase I through the beginning of mitotic divisions in the embryo. Live imaging of the rapid cell cycle progression in C. elegans enables us to follow changes in labile zinc pools across meiosis and mitosis in single embryo. We find a dynamic increase in labile zinc prior to fertilization that then decreases from Anaphase II through pronuclear fusion and relocalizes to the eggshell. Disruption of these zinc fluxes blocks extrusion of the second polar body, leading to a range of mitotic defects. We conclude that spatial temporal zinc fluxes are necessary for meiotic progression in C. elegans and are a conserved feature of germ cell development in a broad cross section of metazoa.
Collapse
Affiliation(s)
- Adelita D Mendoza
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA,The Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
| | - Aaron Sue
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA,The Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
| | - Olga Antipova
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL, USA
| | - Stefan Vogt
- X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Argonne, IL, USA
| | - Teresa K Woodruff
- Correspondence: Department of Chemistry and Department of Microbiology and Molecular Genetics, Michigan State University, Interdisciplinary Science and Technology Building Room 3022, 766 Service Rd., East Lansing, MI 48823, USA. Tel: 517-353-4090; Fax: 517-353-2446; E-mail: ; Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Interdisplinary Science and Technology Building Room 3006, 766 Service Rd. East Lansing, MI 48823, USA. Tel: 517-353-4090; Fax: 517-353-2446; E-mail: and Department of Molecular Biosciences, Northwestern University, 2205 Tech Drive, Hogan 2-100, Evanston, IL 60208. E-mail:
| | - Sarah M Wignall
- Correspondence: Department of Chemistry and Department of Microbiology and Molecular Genetics, Michigan State University, Interdisciplinary Science and Technology Building Room 3022, 766 Service Rd., East Lansing, MI 48823, USA. Tel: 517-353-4090; Fax: 517-353-2446; E-mail: ; Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Interdisplinary Science and Technology Building Room 3006, 766 Service Rd. East Lansing, MI 48823, USA. Tel: 517-353-4090; Fax: 517-353-2446; E-mail: and Department of Molecular Biosciences, Northwestern University, 2205 Tech Drive, Hogan 2-100, Evanston, IL 60208. E-mail:
| | - Thomas V O’Halloran
- Correspondence: Department of Chemistry and Department of Microbiology and Molecular Genetics, Michigan State University, Interdisciplinary Science and Technology Building Room 3022, 766 Service Rd., East Lansing, MI 48823, USA. Tel: 517-353-4090; Fax: 517-353-2446; E-mail: ; Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University, Interdisplinary Science and Technology Building Room 3006, 766 Service Rd. East Lansing, MI 48823, USA. Tel: 517-353-4090; Fax: 517-353-2446; E-mail: and Department of Molecular Biosciences, Northwestern University, 2205 Tech Drive, Hogan 2-100, Evanston, IL 60208. E-mail:
| |
Collapse
|
6
|
Cadmium hijacks the high zinc response by binding and activating the HIZR-1 nuclear receptor. Proc Natl Acad Sci U S A 2021; 118:2022649118. [PMID: 34649987 DOI: 10.1073/pnas.2022649118] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2021] [Indexed: 11/18/2022] Open
Abstract
Cadmium is an environmental pollutant and significant health hazard that is similar to the physiological metal zinc. In Caenorhabditis elegans, high zinc homeostasis is regulated by the high zinc activated nuclear receptor (HIZR-1) transcription factor. To define relationships between the responses to high zinc and cadmium, we analyzed transcription. Many genes were activated by both high zinc and cadmium, and hizr-1 was necessary for activation of a subset of these genes; in addition, many genes activated by cadmium did not require hizr-1, indicating there are at least two mechanisms of cadmium-regulated transcription. Cadmium directly bound HIZR-1, promoted nuclear accumulation of HIZR-1 in intestinal cells, and activated HIZR-1-mediated transcription via the high zinc activation (HZA) enhancer. Thus, cadmium binding promotes HIZR-1 activity, indicating that cadmium acts as a zinc mimetic to hijack the high zinc response. To elucidate the relationships between high zinc and cadmium detoxification, we analyzed genes that function in three pathways: the pcs-1/phytochelatin pathway strongly promoted cadmium resistance but not high zinc resistance, the hizr-1/HZA pathway strongly promoted high zinc resistance but not cadmium resistance, and the mek-1/sek-1/kinase signaling pathway promoted resistance to high zinc and cadmium. These studies identify resistance pathways that are specific for high zinc and cadmium, as well as a shared pathway.
Collapse
|
7
|
Hu Y, Wang Y, Wang X, Wu X, Fu L, Liu X, Wen Y, Sheng J, Zhang J. The Role of Cation Diffusion Facilitator CDF-1 in Lipid Metabolism in Caenorhabditis elegans. G3-GENES GENOMES GENETICS 2021; 11:6237889. [PMID: 33871589 PMCID: PMC8495940 DOI: 10.1093/g3journal/jkab120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/08/2021] [Indexed: 11/20/2022]
Abstract
Zinc is one of the most important trace elements as it plays a vital role in many biological processes. As well, aberrant zinc metabolism has been implicated in lipid-related metabolic diseases. Previously, we showed that zinc antagonizes iron to regulate sterol regulatory element-binding proteins and the stearoyl-CoA desaturase (SREBP-SCD) pathway in lipid metabolism in the model organism Caenorhabditis elegans. In this study, we present the identification of another cation diffusion facilitator, CDF-1, which regulates lipid metabolism along with SUR-7 in response to zinc. Inactivation of SBP-1, the only homolog of SREBPs, leads to an increased zinc level but decreased lipid accumulation. However, either the cdf-1(n2527) or sur-7(tm6523) mutation could successfully restore the altered fatty acid profile, fat content, and zinc level of the sbp-1(ep79) mutant. Furthermore, we found that CDF-1/SUR-7 may functionally bypass SBP-1 to directly affect the conversion activity of SCD in the biosynthesis of unsaturated fatty acids and lipid accumulation. Collectively, these results consistently support the link between zinc homeostasis and lipid metabolism via the SREBP-SCD axis by the cation diffusion facilitators CDF-1 and SUR-7.
Collapse
Affiliation(s)
- Ying Hu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Yanli Wang
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, China
| | - Xuanjun Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Xiaoyun Wu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Lin Fu
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, China
| | - Xiayu Liu
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, China
| | - Yu Wen
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, China
| | - Jun Sheng
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China
| | - Jingjing Zhang
- Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, China
| |
Collapse
|
8
|
Baesler J, Michaelis V, Stiboller M, Haase H, Aschner M, Schwerdtle T, Sturzenbaum SR, Bornhorst J. Nutritive Manganese and Zinc Overdosing in Aging C. elegans Result in a Metallothionein-Mediated Alteration in Metal Homeostasis. Mol Nutr Food Res 2021; 65:e2001176. [PMID: 33641237 PMCID: PMC8224813 DOI: 10.1002/mnfr.202001176] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/15/2021] [Indexed: 01/02/2023]
Abstract
SCOPE Manganese (Mn) and zinc (Zn) are not only essential trace elements, but also potential exogenous risk factors for various diseases. Since the disturbed homeostasis of single metals can result in detrimental health effects, concerns have emerged regarding the consequences of excessive exposures to multiple metals, either via nutritional supplementation or parenteral nutrition. This study focuses on Mn-Zn-interactions in the nematode Caenorhabditis elegans (C. elegans) model, taking into account aspects related to aging and age-dependent neurodegeneration. METHODS AND RESULTS Chronic co-exposure of C. elegans to Mn and Zn increases metal uptake, exceeding levels of single metal exposures. Supplementation with Mn and/or Zn also leads to an age-dependent increase in metal content, a decline in overall mRNA expression, and metal co-supplementation induced expression of target genes involved in Mn and Zn homeostasis, in particular metallothionein 1 (mtl-1). Studies in transgenic worms reveal that mtl-1 played a prominent role in mediating age- and diet-dependent alterations in metal homeostasis. Metal dyshomeostasis is further induced in parkin-deficient nematodes (Parkinson's disease (PD) model), but this did not accelerate the age-dependent dopaminergic neurodegeneration. CONCLUSIONS A nutritive overdose of Mn and Zn can alter interactions between essential metals in an aging organism, and metallothionein 1 acts as a potential protective modulator in regulating homeostasis.
Collapse
Affiliation(s)
- Jessica Baesler
- Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
- TraceAge – DFG Research Unit FOR 2558, Berlin-Potsdam-Jena, Germany
| | - Vivien Michaelis
- Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Michael Stiboller
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Hajo Haase
- TraceAge – DFG Research Unit FOR 2558, Berlin-Potsdam-Jena, Germany
- TU Berlin, Department of Food Chemistry and Toxicology, Berlin, Germany
| | - Michael Aschner
- Department of Molecular Pharmacology, Neuroscience, and Pediatrics, Albert Einstein College of Medicine, NY, USA
- IM Sechenov First Moscow State Medical University, Moscow, Russia
| | - Tanja Schwerdtle
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
- TraceAge – DFG Research Unit FOR 2558, Berlin-Potsdam-Jena, Germany
| | - Stephen R. Sturzenbaum
- Department of Analytical, Environmental & Forensic Sciences, School of Population Health & Environmental Sciences, Faculty of Life Sciences & Medicine, King’s College London, London, United Kingdom
| | - Julia Bornhorst
- Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
- TraceAge – DFG Research Unit FOR 2558, Berlin-Potsdam-Jena, Germany
| |
Collapse
|
9
|
Evans KS, Zdraljevic S, Stevens L, Collins K, Tanny RE, Andersen EC. Natural variation in the sequestosome-related gene, sqst-5, underlies zinc homeostasis in Caenorhabditis elegans. PLoS Genet 2020; 16:e1008986. [PMID: 33175833 PMCID: PMC7682890 DOI: 10.1371/journal.pgen.1008986] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 11/23/2020] [Accepted: 09/23/2020] [Indexed: 12/14/2022] Open
Abstract
Zinc is an essential trace element that acts as a co-factor for many enzymes and transcription factors required for cellular growth and development. Altering intracellular zinc levels can produce dramatic effects ranging from cell proliferation to cell death. To avoid such fates, cells have evolved mechanisms to handle both an excess and a deficiency of zinc. Zinc homeostasis is largely maintained via zinc transporters, permeable channels, and other zinc-binding proteins. Variation in these proteins might affect their ability to interact with zinc, leading to either increased sensitivity or resistance to natural zinc fluctuations in the environment. We can leverage the power of the roundworm nematode Caenorhabditis elegans as a tractable metazoan model for quantitative genetics to identify genes that could underlie variation in responses to zinc. We found that the laboratory-adapted strain (N2) is resistant and a natural isolate from Hawaii (CB4856) is sensitive to micromolar amounts of exogenous zinc supplementation. Using a panel of recombinant inbred lines, we identified two large-effect quantitative trait loci (QTL) on the left arm of chromosome III and the center of chromosome V that are associated with zinc responses. We validated and refined both QTL using near-isogenic lines (NILs) and identified a naturally occurring deletion in sqst-5, a sequestosome-related gene, that is associated with resistance to high exogenous zinc. We found that this deletion is relatively common across strains within the species and that variation in sqst-5 is associated with zinc resistance. Our results offer a possible mechanism for how organisms can respond to naturally high levels of zinc in the environment and how zinc homeostasis varies among individuals.
Collapse
Affiliation(s)
- Kathryn S. Evans
- Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, Illinois, United States of America
| | - Stefan Zdraljevic
- Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, Illinois, United States of America
| | - Lewis Stevens
- Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Kimberly Collins
- Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Robyn E. Tanny
- Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Erik C. Andersen
- Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
10
|
Earley BJ, Mendoza AD, Tan CH, Kornfeld K. Zinc homeostasis and signaling in the roundworm C. elegans. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118882. [PMID: 33017595 DOI: 10.1016/j.bbamcr.2020.118882] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/11/2020] [Accepted: 09/25/2020] [Indexed: 12/14/2022]
Abstract
C. elegans is a powerful model for studies of zinc biology. Here we review recent discoveries and emphasize the advantages of this model organism. Methods for manipulating and measuring zinc levels have been developed in or adapted to the worm. The C. elegans genome encodes highly conserved zinc transporters, and their expression and function are beginning to be characterized. Homeostatic mechanisms have evolved to respond to high and low zinc conditions. The pathway for high zinc homeostasis has been recently elucidated based on the discovery of the master regulator of high zinc homeostasis, HIZR-1. A parallel pathway for low zinc homeostasis is beginning to emerge based on the discovery of the Low Zinc Activation promoter element. Zinc has been established to play a role in two cell fate determination events, and accumulating evidence suggests zinc may function as a second messenger signaling molecule during vulval cell development and sperm activation.
Collapse
Affiliation(s)
- Brian J Earley
- Department of Developmental Biology, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, United States of America
| | - Adelita D Mendoza
- Department of Developmental Biology, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, United States of America
| | - Chieh-Hsiang Tan
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E California Blvd, Pasadena, CA 91125, United States of America
| | - Kerry Kornfeld
- Department of Developmental Biology, Washington University School of Medicine, 660 S. Euclid Ave., St. Louis, MO 63110, United States of America.
| |
Collapse
|
11
|
Suzuki E, Ogawa N, Takeda TA, Nishito Y, Tanaka YK, Fujiwara T, Matsunaga M, Ueda S, Kubo N, Tsuji T, Fukunaka A, Yamazaki T, Taylor KM, Ogra Y, Kambe T. Detailed analyses of the crucial functions of Zn transporter proteins in alkaline phosphatase activation. J Biol Chem 2020; 295:5669-5684. [PMID: 32179649 PMCID: PMC7186172 DOI: 10.1074/jbc.ra120.012610] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/04/2020] [Indexed: 11/06/2022] Open
Abstract
Numerous zinc ectoenzymes are metalated by zinc and activated in the compartments of the early secretory pathway before reaching their destination. Zn transporter (ZNT) proteins located in these compartments are essential for ectoenzyme activation. We have previously reported that ZNT proteins, specifically ZNT5-ZNT6 heterodimers and ZNT7 homodimers, play critical roles in the activation of zinc ectoenzymes, such as alkaline phosphatases (ALPs), by mobilizing cytosolic zinc into these compartments. However, this process remains incompletely understood. Here, using genetically-engineered chicken DT40 cells, we first determined that Zrt/Irt-like protein (ZIP) transporters that are localized to the compartments of the early secretory pathway play only a minor role in the ALP activation process. These transporters included ZIP7, ZIP9, and ZIP13, performing pivotal functions in maintaining cellular homeostasis by effluxing zinc out of the compartments. Next, using purified ALP proteins, we showed that zinc metalation on ALP produced in DT40 cells lacking ZNT5-ZNT6 heterodimers and ZNT7 homodimers is impaired. Finally, by genetically disrupting both ZNT5 and ZNT7 in human HAP1 cells, we directly demonstrated that the tissue-nonspecific ALP-activating functions of both ZNT complexes are conserved in human cells. Furthermore, using mutant HAP1 cells, we uncovered a previously-unrecognized and unique spatial regulation of ZNT5-ZNT6 heterodimer formation, wherein ZNT5 recruits ZNT6 to the Golgi apparatus to form the heterodimeric complex. These findings fill in major gaps in our understanding of the molecular mechanisms underlying zinc ectoenzyme activation in the compartments of the early secretory pathway.
Collapse
Affiliation(s)
- Eisuke Suzuki
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Namino Ogawa
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Taka-Aki Takeda
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Yukina Nishito
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Yu-Ki Tanaka
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Takashi Fujiwara
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | - Mayu Matsunaga
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Sachiko Ueda
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Naoya Kubo
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Tokuji Tsuji
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Ayako Fukunaka
- Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa-machi, Maebashi, Gunma 371-8512, Japan
| | - Tomohiro Yamazaki
- Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan
| | - Kathryn M Taylor
- School of Pharmacy and Pharmaceutical Sciences, Redwood Building, Cardiff University, King Edward VIIth Avenue, Cardiff CF10 3NB, United Kingdom
| | - Yasumitsu Ogra
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Taiho Kambe
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
12
|
Bird AJ, Wilson S. Zinc homeostasis in the secretory pathway in yeast. Curr Opin Chem Biol 2020; 55:145-150. [PMID: 32114317 DOI: 10.1016/j.cbpa.2020.01.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 12/14/2019] [Accepted: 01/26/2020] [Indexed: 01/20/2023]
Abstract
It is estimated that up to 10% of proteins in eukaryotes require zinc for their function. Although the majority of these proteins are located in the nucleus and cytosol, a small subset is secreted from cells or is located within an intracellular compartment. As many of these compartmentalized metalloproteins fold to their native state and bind their zinc cofactor inside an organelle, cells require mechanisms to maintain supply of zinc to these compartments even under conditions of zinc deficiency. At the same time, intracellular compartments can also be the site for storing zinc ions, which then can be mobilized when needed. In this review, we highlight insight that has been obtained from yeast models about how zinc homeostasis is maintained in the secretory pathway and vacuole.
Collapse
Affiliation(s)
- Amanda J Bird
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, 43210, USA; Department of Human Sciences, The Ohio State University, Columbus, OH, 43210, USA; Center for RNA Biology, The Ohio State University, Columbus, OH, 43210, USA.
| | - Stevin Wilson
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, 43210, USA
| |
Collapse
|
13
|
Joint Toxicity of a Multi-Heavy Metal Mixture and Chemoprevention in Sprague Dawley Rats. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17041451. [PMID: 32102388 PMCID: PMC7068392 DOI: 10.3390/ijerph17041451] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/20/2020] [Accepted: 02/20/2020] [Indexed: 11/16/2022]
Abstract
To explore the joint toxicity and bio-accumulation of multi-heavy metals and potential chemoprevention strategies, Male Sprague Dawley (SD) rats (n = 30) were treated orally once a week for six months with 500mg/kg•bw of eight heavy metals which were commonly identified in aquatic products in the Ningbo area including chromium, manganese, nickel, copper, zinc, cadmium, mercury, and lead. At the same time, 200mg/kg•bw of epigallocatechin-3-gallate (EGCG), trisodium citrate dihydrate (TCD) or glutathione (GSH) were administered to evaluate their antagonistic effects against adverse effects of multi-heavy metal mixture. The Morris water maze test was used to evaluate spatial learning and memory in the treated rats. Then the rats were anesthetized by pentobarbital sodium (40 mg/kg•bw) to obtain blood samples for biochemical analysis and organs (heart, liver, spleen, lungs, kidneys, brain, testis) to be conducted for biopsy and organ coefficients. Inductively coupled plasma mass spectrometer (ICP-MS) was used to analyze the concentrations of heavy metals. Results indicated that six months of exposure to a multi-heavy metal mixture under this experimental dosage resulted in accumulation in organs and adverse effects on the blood, reproductive system, and liver function. EGCG, TCD or GSH all showed certain chemoprevention effects against the joint toxicity induced by the multi-heavy metal mixture and indicated alleviation and the potential mechanism that also included the promotion of excretion of metals to which animals were exposed.
Collapse
|
14
|
Baesler J, Kopp JF, Pohl G, Aschner M, Haase H, Schwerdtle T, Bornhorst J. Zn homeostasis in genetic models of Parkinson's disease in Caenorhabditis elegans. J Trace Elem Med Biol 2019; 55:44-49. [PMID: 31345364 PMCID: PMC6676891 DOI: 10.1016/j.jtemb.2019.05.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/09/2019] [Accepted: 05/09/2019] [Indexed: 01/13/2023]
Abstract
While the underlying mechanisms of Parkinson's disease (PD) are still insufficiently studied, a complex interaction between genetic and environmental factors is emphasized. Nevertheless, the role of the essential trace element zinc (Zn) in this regard remains controversial. In this study we altered Zn balance within PD models of the versatile model organism Caenorhabditis elegans (C. elegans) in order to examine whether a genetic predisposition in selected genes with relevance for PD affects Zn homeostasis. Protein-bound and labile Zn species act in various areas, such as enzymatic catalysis, protein stabilization pathways and cell signaling. Therefore, total Zn and labile Zn were quantitatively determined in living nematodes as individual biomarkers of Zn uptake and bioavailability with inductively coupled plasma tandem mass spectrometry (ICP-MS/MS) or a multi-well method using the fluorescent probe ZinPyr-1. Young and middle-aged deletion mutants of catp-6 and pdr-1, which are orthologues of mammalian ATP13A2 (PARK9) and parkin (PARK2), showed altered Zn homeostasis following Zn exposure compared to wildtype worms. Furthermore, age-specific differences in Zn uptake were observed in wildtype worms for total as well as labile Zn species. These data emphasize the importance of differentiation between Zn species as meaningful biomarkers of Zn uptake as well as the need for further studies investigating the role of dysregulated Zn homeostasis in the etiology of PD.
Collapse
Affiliation(s)
- Jessica Baesler
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany; TraceAge - DFG Research Unit FOR 2558, Berlin, Potsdam, Jena, Germany
| | - Johannes F Kopp
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany; TraceAge - DFG Research Unit FOR 2558, Berlin, Potsdam, Jena, Germany
| | - Gabriele Pohl
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany; TraceAge - DFG Research Unit FOR 2558, Berlin, Potsdam, Jena, Germany
| | - Michael Aschner
- Department of Molecular Pharmacology, Neuroscience, and Pediatrics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, 10461 Bronx, NY, USA
| | - Hajo Haase
- TraceAge - DFG Research Unit FOR 2558, Berlin, Potsdam, Jena, Germany; Department of Food Chemistry and Toxicology, Berlin Institute of Technology, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Tanja Schwerdtle
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany; TraceAge - DFG Research Unit FOR 2558, Berlin, Potsdam, Jena, Germany
| | - Julia Bornhorst
- Department of Food Chemistry, Institute of Nutritional Science, University of Potsdam, Arthur-Scheunert-Allee 114-116, 14558 Nuthetal, Germany; TraceAge - DFG Research Unit FOR 2558, Berlin, Potsdam, Jena, Germany; Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaußstraße 20, 42119 Wuppertal, Germany.
| |
Collapse
|
15
|
Chapman EM, Lant B, Ohashi Y, Yu B, Schertzberg M, Go C, Dogra D, Koskimäki J, Girard R, Li Y, Fraser AG, Awad IA, Abdelilah-Seyfried S, Gingras AC, Derry WB. A conserved CCM complex promotes apoptosis non-autonomously by regulating zinc homeostasis. Nat Commun 2019; 10:1791. [PMID: 30996251 PMCID: PMC6470173 DOI: 10.1038/s41467-019-09829-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 04/02/2019] [Indexed: 12/13/2022] Open
Abstract
Apoptotic death of cells damaged by genotoxic stress requires regulatory input from surrounding tissues. The C. elegans scaffold protein KRI-1, ortholog of mammalian KRIT1/CCM1, permits DNA damage-induced apoptosis of cells in the germline by an unknown cell non-autonomous mechanism. We reveal that KRI-1 exists in a complex with CCM-2 in the intestine to negatively regulate the ERK-5/MAPK pathway. This allows the KLF-3 transcription factor to facilitate expression of the SLC39 zinc transporter gene zipt-2.3, which functions to sequester zinc in the intestine. Ablation of KRI-1 results in reduced zinc sequestration in the intestine, inhibition of IR-induced MPK-1/ERK1 activation, and apoptosis in the germline. Zinc localization is also perturbed in the vasculature of krit1-/- zebrafish, and SLC39 zinc transporters are mis-expressed in Cerebral Cavernous Malformations (CCM) patient tissues. This study provides new insights into the regulation of apoptosis by cross-tissue communication, and suggests a link between zinc localization and CCM disease.
Collapse
Affiliation(s)
- Eric M Chapman
- Department of Molecular Genetics, University of Toronto, Toronto, M5S 1A8, ON, Canada
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, M5G 0A4, ON, Canada
| | - Benjamin Lant
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, M5G 0A4, ON, Canada
| | - Yota Ohashi
- Department of Molecular Genetics, University of Toronto, Toronto, M5S 1A8, ON, Canada
| | - Bin Yu
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, M5G 0A4, ON, Canada
| | - Michael Schertzberg
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, M5S 3E1, ON, Canada
| | - Christopher Go
- Department of Molecular Genetics, University of Toronto, Toronto, M5S 1A8, ON, Canada
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Toronto, M5G 1X5, ON, Canada
| | - Deepika Dogra
- Institute for Biochemistry and Biology, Potsdam University, Potsdam, 14476, Germany
| | - Janne Koskimäki
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine, Chicago, IL, 60637, USA
| | - Romuald Girard
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine, Chicago, IL, 60637, USA
| | - Yan Li
- University of Chicago Center for Research Informatics, The University of Chicago, Chicago, IL, 60637, USA
| | - Andrew G Fraser
- Department of Molecular Genetics, University of Toronto, Toronto, M5S 1A8, ON, Canada
- The Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, M5S 3E1, ON, Canada
| | - Issam A Awad
- Neurovascular Surgery Program, Section of Neurosurgery, The University of Chicago Medicine, Chicago, IL, 60637, USA
| | | | - Anne-Claude Gingras
- Department of Molecular Genetics, University of Toronto, Toronto, M5S 1A8, ON, Canada
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Toronto, M5G 1X5, ON, Canada
| | - W Brent Derry
- Department of Molecular Genetics, University of Toronto, Toronto, M5S 1A8, ON, Canada.
- Developmental and Stem Cell Biology Program, Peter Gilgan Centre for Research and Learning, The Hospital for Sick Children, Toronto, M5G 0A4, ON, Canada.
| |
Collapse
|
16
|
Choi S, Hu YM, Corkins ME, Palmer AE, Bird AJ. Zinc transporters belonging to the Cation Diffusion Facilitator (CDF) family have complementary roles in transporting zinc out of the cytosol. PLoS Genet 2018. [PMID: 29529046 PMCID: PMC5864093 DOI: 10.1371/journal.pgen.1007262] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Zinc is an essential trace element that is required for the function of a large number of proteins. As these zinc-binding proteins are found within the cytosol and organelles, all eukaryotes require mechanisms to ensure that zinc is delivered to organelles, even under conditions of zinc deficiency. Although many zinc transporters belonging to the Cation Diffusion Facilitator (CDF) families have well characterized roles in transporting zinc into the lumens of intracellular compartments, relatively little is known about the mechanisms that maintain organelle zinc homeostasis. The fission yeast Schizosaccharomyces pombe is a useful model system to study organelle zinc homeostasis as it expresses three CDF family members that transport zinc out of the cytosol into intracellular compartments: Zhf1, Cis4, and Zrg17. Zhf1 transports zinc into the endoplasmic reticulum, and Cis4 and Zrg17 form a heterodimeric complex that transports zinc into the cis-Golgi. Here we have used the high and low affinity ZapCY zinc-responsive FRET sensors to examine cytosolic zinc levels in yeast mutants that lack each of these CDF proteins. We find that deletion of cis4 or zrg17 leads to higher levels of zinc accumulating in the cytosol under conditions of zinc deficiency, whereas deletion of zhf1 results in zinc accumulating in the cytosol when zinc is not limiting. We also show that the expression of cis4, zrg17, and zhf1 is independent of cellular zinc status. Taken together our results suggest that the Cis4/Zrg17 complex is necessary for zinc transport out of the cytosol under conditions of zinc-deficiency, while Zhf1 plays the dominant role in removing zinc from the cytosol when labile zinc is present. We propose that the properties and/or activities of individual CDF family members are fine-tuned to enable cells to control the flux of zinc out of the cytosol over a broad range of environmental zinc stress.
Collapse
Affiliation(s)
- Sangyong Choi
- Department of Human Nutrition, The Ohio State University, Columbus, Ohio, United States of America
| | - Ya-Mei Hu
- Department of Human Nutrition, The Ohio State University, Columbus, Ohio, United States of America
| | - Mark E Corkins
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
| | - Amy E Palmer
- Department of Chemistry and Biochemistry and BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado, United States of America
| | - Amanda J Bird
- Department of Human Nutrition, The Ohio State University, Columbus, Ohio, United States of America.,Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America.,Center for RNA Biology, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
17
|
Mugova F, Read DS, Riding MJ, Martin FL, Tyne W, Svendsen C, Spurgeon D. Phenotypic responses in Caenorhabditis elegans following chronic low-level exposures to inorganic and organic compounds. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:920-930. [PMID: 29095522 DOI: 10.1002/etc.4026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/26/2017] [Accepted: 10/31/2017] [Indexed: 06/07/2023]
Abstract
Responses of organisms to sublethal exposure of environmental stressors can be difficult to detect. We investigated phenotypic changes in the tissue of Caenorhabditis elegans via Raman spectroscopy, as well as survival and reproductive output when exposed to chronic low doses of metals (copper, zinc, or silver), an herbicide (diuron), and a pesticide (imidacloprid). Raman spectroscopy measures changes in phenotype by providing information about the molecular composition and relative abundance of biomolecules. Multivariate analysis was used to evaluate the significance of treatment phenotype segregation plots compared with controls. Dose-dependent responses were observed for copper, zinc, silver, and diuron, whereas imidacloprid exposure resulted in a small response over the tested concentrations. Concentration-dependent shifts in nematode biomolecular phenotype were observed for copper. Despite having a dose-dependent reproductive response, silver, diuron, and imidacloprid produced inconsistent biological phenotype patterns. In contrast, there was a clear stepwise change between low concentrations (0.00625-0.5 mg/L) and higher concentration (1-2 mg/L) of ionic zinc. The findings demonstrate that measuring phenotypic responses via Raman spectroscopy can provide insights into the biomolecular mechanisms of toxicity. Despite the lack of consistency between survival and Raman-measured phenotypic changes, the results support the effectiveness of Raman spectroscopy and multivariate analysis to detect sublethal responses of chemicals in whole organisms and to identify toxic effect thresholds. Environ Toxicol Chem 2018;37:920-930. © 2017 SETAC.
Collapse
Affiliation(s)
- Fidelis Mugova
- Centre for Biophotonics, Lancaster University, Bailrigg, Lancaster, United Kingdom
- Centre for Ecology & Hydrology, Crowmarsh Gifford, Wallingford, United Kingdom
| | - Daniel S Read
- Centre for Ecology & Hydrology, Crowmarsh Gifford, Wallingford, United Kingdom
| | - Matthew J Riding
- Centre for Biophotonics, Lancaster University, Bailrigg, Lancaster, United Kingdom
| | - Francis L Martin
- Centre for Biophotonics, Lancaster University, Bailrigg, Lancaster, United Kingdom
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston, United Kingdom
| | - William Tyne
- Microbiology and Infection Unit, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Claus Svendsen
- Centre for Ecology & Hydrology, Crowmarsh Gifford, Wallingford, United Kingdom
| | - David Spurgeon
- Centre for Ecology & Hydrology, Crowmarsh Gifford, Wallingford, United Kingdom
| |
Collapse
|
18
|
Sauzéat L, Laurençon A, Balter V. Metallome evolution in ageing C. elegans and a copper stable isotope perspective. Metallomics 2018. [DOI: 10.1039/c7mt00318h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Ageing is accompanied by important chemical deregulations that could serve as biomarkers of premature ageing conditions.
Collapse
Affiliation(s)
| | - Anne Laurençon
- UMR 5534
- Institut de Génomique Fonctionelle de Lyon (IGFL)
- CNRS
- Université Claude Bernard (Lyon 1)
- France
| | | |
Collapse
|
19
|
Dietrich N, Schneider DL, Kornfeld K. A pathway for low zinc homeostasis that is conserved in animals and acts in parallel to the pathway for high zinc homeostasis. Nucleic Acids Res 2017; 45:11658-11672. [PMID: 28977437 PMCID: PMC5714235 DOI: 10.1093/nar/gkx762] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 08/22/2017] [Indexed: 12/20/2022] Open
Abstract
The essential element zinc plays critical roles in biology. High zinc homeostasis mechanisms are beginning to be defined in animals, but low zinc homeostasis is poorly characterized. We investigated low zinc homeostasis in Caenorhabditis elegans because the genome encodes 14 evolutionarily conserved Zrt, Irt-like protein (ZIP) zinc transporter family members. Three C. elegans zipt genes were regulated in zinc-deficient conditions; these promoters contained an evolutionarily conserved motif that we named the low zinc activation (LZA) element that was both necessary and sufficient for activation of transcription in response to zinc deficiency. These results demonstrated that the LZA element is a critical part of the low zinc homeostasis pathway. Transcriptional regulation of the LZA element required the transcription factor ELT-2 and mediator complex member MDT-15. We investigated conservation in mammals by analyzing LZA element function in human cultured cells; the LZA element-mediated transcriptional activation in response to zinc deficiency in cells, suggesting a conserved pathway of low zinc homeostasis. We propose that the pathway for low zinc homeostasis, which includes the LZA element and ZIP transporters, acts in parallel to the pathway for high zinc homeostasis, which includes the HZA element, HIZR-1 transcription factor and cation diffusion facilitator transporters.
Collapse
Affiliation(s)
- Nicholas Dietrich
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Daniel L Schneider
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Kerry Kornfeld
- Department of Developmental Biology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| |
Collapse
|
20
|
PMK-1 p38 MAPK promotes cadmium stress resistance, the expression of SKN-1/Nrf and DAF-16 target genes, and protein biosynthesis in Caenorhabditis elegans. Mol Genet Genomics 2017; 292:1341-1361. [PMID: 28766017 PMCID: PMC5682872 DOI: 10.1007/s00438-017-1351-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 07/25/2017] [Indexed: 01/01/2023]
Abstract
The mechanisms of cadmium (Cd) resistance are complex and not sufficiently understood. The present study, therefore, aimed at assessing the roles of important components of stress-signaling pathways and of ABC transporters under severe Cd stress in Caenorhabditis elegans. Survival assays on mutant and control animals revealed a significant promotion of Cd resistance by the PMK-1 p38 MAP kinase, the transcription factor DAF-16/FoxO, and the ABC transporter MRP-1. Transcriptome profiling by RNA-Seq on wild type and a pmk-1 mutant under control and Cd stress conditions revealed, inter alia, a PMK-1-dependent promotion of gene expression for the translational machinery. PMK-1 also promoted the expression of target genes of the transcription factors SKN-1/Nrf and DAF-16 in Cd-stressed animals, which included genes for molecular chaperones or immune proteins. Gene expression studies by qRT-PCR confirmed the positive effects of PMK-1 on DAF-16 activity under Cd stress and revealed negative effects of DAF-16 on the expression of genes for MRP-1 and DAF-15/raptor. Additional studies on pmk-1 RNAi-treated wild type and mutant strains provided further information on the effects of PMK-1 on SKN-1 and DAF-16, which resulted in a model of these relationships. The results of this study demonstrate a central role of PMK-1 for the processing of cellular responses to abiotic and biotic stressors, with the promoting effects of PMK-1 on Cd resistance mostly mediated by the transcription factors SKN-1 and DAF-16.
Collapse
|
21
|
Zhang JJ, Hao JJ, Zhang YR, Wang YL, Li MY, Miao HL, Zou XJ, Liang B. Zinc mediates the SREBP-SCD axis to regulate lipid metabolism in Caenorhabditis elegans. J Lipid Res 2017; 58:1845-1854. [PMID: 28710073 DOI: 10.1194/jlr.m077198] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 07/12/2017] [Indexed: 12/15/2022] Open
Abstract
Maintenance of lipid homeostasis is crucial for cells in response to lipid requirements or surplus. The SREBP transcription factors play essential roles in regulating lipid metabolism and are associated with many metabolic diseases. However, SREBP regulation of lipid metabolism is still not completely understood. Here, we showed that reduction of SBP-1, the only homolog of SREBPs in Caenorhabditis elegans, surprisingly led to a high level of zinc. On the contrary, zinc reduction by mutation of sur-7, encoding a member of the cation diffusion facilitator (CDF) family, restored the fat accumulation and fatty acid profile of the sbp-1(ep79) mutant. Zinc reduction resulted in iron overload, which thereby directly activated the conversion activity of stearoyl-CoA desaturase (SCD), a main target of SREBP, to promote lipid biosynthesis and accumulation. However, zinc reduction reversely repressed SBP-1 nuclear translocation and further downregulated the transcription expression of SCD for compensation. Collectively, we revealed zinc-mediated regulation of the SREBP-SCD axis in lipid metabolism, distinct from the negative regulation of SREBP-1 or SREBP-2 by phosphatidylcholine or cholesterol, respectively, thereby providing novel insights into the regulation of lipid homeostasis.
Collapse
Affiliation(s)
- Jing-Jing Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.,Department of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Jun-Jun Hao
- State Key Laboratory of Genetic Resources and Evolutionary and Functional Genomics, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Yu-Ru Zhang
- College of Fisheries, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yan-Li Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Ming-Yi Li
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Hui-Lai Miao
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Xiao-Ju Zou
- Department of Life Science and Biotechnology, Key Laboratory of Special Biological Resource Development and Utilization of University in Yunnan Province, Kunming University, Kunming 650214, China
| | - Bin Liang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China .,Department of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| |
Collapse
|
22
|
Yin S, Qin Q, Zhou B. Functional studies of Drosophila zinc transporters reveal the mechanism for zinc excretion in Malpighian tubules. BMC Biol 2017; 15:12. [PMID: 28196538 PMCID: PMC5309981 DOI: 10.1186/s12915-017-0355-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 01/25/2017] [Indexed: 11/10/2022] Open
Abstract
Background Zinc is an essential metal involved in many physiological processes. Previous work has identified a set of zinc transporters involved in Drosophila dietary zinc absorption. However, zinc excretion and reabsorption, the other two important processes to maintain zinc homeostasis, are not as well understood. In this work, we screened all the potential zinc transporter Zip (SLC39) and ZnT (SLC30) members for their likely roles in zinc excretion in Malpighian tubules, an insect organ functionally analogous to mammalian kidneys. Results Zip71B (CG10006, most homologous to hZIP5), in addition to the previously characterized ZnT35C (CG3994), was identified as being critical in zinc excretion. Tubule-specific knockdown of Zip71B/dZip5 reduces zinc accumulation in the tubules, but increases zinc levels in the body, resulting in survival defect under zinc excess conditions. Zip71B/dZip5 is localized to the plasma membrane at the basolateral side of the tubules, and is functionally epistatic to the apically localized ZnT35C in regulating the tubule zinc homeostasis. Our results indicate that Zip71B/dZip5 is involved in zinc import into the tubular cells from the circulation, and ZnT35C in turn effluxes the tubular zinc out. Notably, mammalian ZIP5, which is expressed in the kidney, functions analogously to Zip71B/dZip5 in the fly while hZIP4 cannot complement the loss of Zip71B/dZip5 function. Furthermore, Zip71B/dZip5 expression is regulated by zinc so that, in response to toxic levels of zinc, the tubules can increase zinc efflux capability. We also characterized the role of dZnT1 (CG17723) in zinc reabsorption in Malpighian tubules. Finally, using a tubule calcification model, we were able to show that knockdown of Zip71B/dZip5 or ZnT35C was able to mitigate stone formation, consistent with their roles in tubular zinc homeostasis. Conclusions Our results start to sketch out a relatively complete picture of the zinc excretion process in Drosophila Malpighian tubules, and may provide a reference for relevant mammalian studies. Electronic supplementary material The online version of this article (doi:10.1186/s12915-017-0355-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sai Yin
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Qiuhong Qin
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Bing Zhou
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
23
|
Warnhoff K, Roh HC, Kocsisova Z, Tan CH, Morrison A, Croswell D, Schneider DL, Kornfeld K. The Nuclear Receptor HIZR-1 Uses Zinc as a Ligand to Mediate Homeostasis in Response to High Zinc. PLoS Biol 2017; 15:e2000094. [PMID: 28095401 PMCID: PMC5240932 DOI: 10.1371/journal.pbio.2000094] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 12/14/2016] [Indexed: 11/18/2022] Open
Abstract
Nuclear receptors were originally defined as endocrine sensors in humans, leading to the identification of the nuclear receptor superfamily. Despite intensive efforts, most nuclear receptors have no known ligand, suggesting new ligand classes remain to be discovered. Furthermore, nuclear receptors are encoded in the genomes of primitive organisms that lack endocrine signaling, suggesting the primordial function may have been environmental sensing. Here we describe a novel Caenorhabditis elegans nuclear receptor, HIZR-1, that is a high zinc sensor in an animal and the master regulator of high zinc homeostasis. The essential micronutrient zinc acts as a HIZR-1 ligand, and activated HIZR-1 increases transcription of genes that promote zinc efflux and storage. The results identify zinc as the first inorganic molecule to function as a physiological ligand for a nuclear receptor and direct environmental sensing as a novel function of nuclear receptors. Zinc is an essential nutrient for all life forms, and maintaining zinc homeostasis is critical for survival. However, little is known about how animals sense changes in zinc availability and make adjustments to maintain homeostasis. In particular, logic dictates there must be a mechanism for zinc sensing, but it has not been defined in animals. We discovered that the nuclear receptor transcription factor HIZR-1 is the master regulator of high zinc homeostasis in the roundworm Caenorhabditis elegans. In response to high dietary zinc, HIZR-1 activates transcription of multiple genes that encode a network of proteins that store and detoxify excess zinc. Furthermore, our results suggest HIZR-1 itself is the high zinc sensor, since it directly binds zinc ions in the ligand-binding domain that regulates transcriptional activation. These findings advance the understanding of zinc homeostasis and nuclear receptor biology. Nuclear receptors were initially characterized as receptors for hormones such as estrogen, indicating complex animals use these transcription factors to monitor their internal environment. However, nuclear receptors are present in simple organisms that lack endocrine signaling, suggesting these transcription factors might have a primordial function in sensing the external environment. Our results identify a new class of nuclear receptor ligands, the inorganic ion zinc, and a new function for nuclear receptors in directly sensing levels of a nutrient. We speculate that nutrient homeostasis mediated by direct binding of nutrients to the ligand-binding domain is a primordial function of nuclear receptors, whereas endocrine signaling in complex animals mediated by direct binding of hormones to the ligand-binding domain is a derived function of nuclear receptors that appeared later in evolution.
Collapse
Affiliation(s)
- Kurt Warnhoff
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Hyun C. Roh
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Zuzana Kocsisova
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Chieh-Hsiang Tan
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Andrew Morrison
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Damari Croswell
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Daniel L. Schneider
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Kerry Kornfeld
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
24
|
Hester J, Hanna-Rose W, Diaz F. Zinc deficiency reduces fertility in C. elegans hermaphrodites and disrupts oogenesis and meiotic progression. Comp Biochem Physiol C Toxicol Pharmacol 2017; 191:203-209. [PMID: 27663471 PMCID: PMC5945198 DOI: 10.1016/j.cbpc.2016.09.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 09/16/2016] [Accepted: 09/18/2016] [Indexed: 11/19/2022]
Abstract
Zinc is necessary for successful gametogenesis in mammals; however the role of zinc in the gonad function of non-mammalian species has not been investigated. The genetic tractability, short generation time, and hermaphroditic reproduction of the nematode C. elegans offer distinct advantages for the study of impaired gametogenesis as a result of zinc deficiency. However the phenotypic reproductive effects arising from zinc restriction have not been established in this model. We therefore examined the effect of zinc deficiency on C. elegans reproduction by exposing worms to the zinc chelator N,N,N',N'-tetrakis (2-pyridylmethyl)ethane-1,2-diamine (TPEN). Treatment began at the early larval stage and continued until reproductive senescence. TPEN treatment reduced the total number of progeny produced by C. elegans hermaphrodites compared with control subjects, with the largest difference in output observed 48h after larval stage 4. At this time-point, zinc deficient worms displayed fewer embryos in the uterus and disorganized oocyte development when observed under DIC microscopy. DAPI staining revealed impaired oogenesis and chromosome dynamics with an expanded region of pachytene stage oocytes extending into the proximal arm of the gonad. This phenotype was not seen in control or zinc-rescue subjects. This study demonstrates that reproduction in C. elegans is sensitive to environmental perturbations in zinc, indicating that this is a good model for future studies in zinc-mediated subfertility. Aberrant oocyte development and disruption of the pachytene-diplotene transition indicate that oogenesis in particular is affected by zinc deficiency in this model.
Collapse
Affiliation(s)
- James Hester
- Intercollege Program in Physiology, The Pennsylvania State University, University Park, PA 16802
| | - Wendy Hanna-Rose
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802
| | - Francisco Diaz
- Intercollege Program in Physiology, The Pennsylvania State University, University Park, PA 16802; Department of Animal Science, The Pennsylvania State University, University Park, PA 16802.
| |
Collapse
|
25
|
Mendoza AD, Woodruff TK, Wignall SM, O'Halloran TV. Zinc availability during germline development impacts embryo viability in Caenorhabditis elegans. Comp Biochem Physiol C Toxicol Pharmacol 2017; 191:194-202. [PMID: 27664515 PMCID: PMC5210184 DOI: 10.1016/j.cbpc.2016.09.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 09/02/2016] [Accepted: 09/06/2016] [Indexed: 11/29/2022]
Abstract
Zinc is an essential metal that serves as a cofactor in a variety of cellular processes, including meiotic maturation. Cellular control of zinc uptake, availability and efflux is closely linked to meiotic progression in rodent and primate reproduction where large fluctuations in zinc levels are critical at several steps in the oocyte-to-embryo transition. Despite these well-documented roles of zinc fluxes during meiosis, only a few of the genes encoding key zinc receptors, membrane-spanning transporters, and downstream signaling pathway factors have been identified to date. Furthermore, little is known about analogous roles for zinc fluxes in the context of a whole organism. Here, we evaluate whether zinc availability regulates germline development and oocyte viability in the nematode Caenorhabditis elegans, an experimentally flexible model organism. We find that similar to mammals, mild zinc limitation in C. elegans profoundly impacts the reproductive axis: the brood size is significantly reduced under conditions of zinc limitation where other physiological functions are not perturbed. Zinc limitation in this organism has a more pronounced impact on oocytes than sperm and this leads to the decrease in viable embryo production. Moreover, acute zinc limitation of isolated zygotes prevents extrusion of the second polar body during meiosis and leads to aneuploid embryos. Thus, the zinc-dependent steps in C. elegans gametogenesis roughly parallel those described in meiotic-to-mitotic transitions in mammals.
Collapse
Affiliation(s)
- Adelita D Mendoza
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA; The Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
| | - Teresa K Woodruff
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA; The Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA; Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Sarah M Wignall
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA.
| | - Thomas V O'Halloran
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA; The Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA; Department of Chemistry, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
26
|
Dietrich N, Tan CH, Cubillas C, Earley BJ, Kornfeld K. Insights into zinc and cadmium biology in the nematode Caenorhabditis elegans. Arch Biochem Biophys 2016; 611:120-133. [PMID: 27261336 DOI: 10.1016/j.abb.2016.05.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/18/2016] [Accepted: 05/28/2016] [Indexed: 10/21/2022]
Abstract
Zinc is an essential metal that is involved in a wide range of biological processes, and aberrant zinc homeostasis is implicated in multiple human diseases. Cadmium is chemically similar to zinc, but it is a nonessential environmental pollutant. Because zinc deficiency and excess are deleterious, animals require homeostatic mechanisms to maintain zinc levels in response to dietary fluctuations. The nematode Caenorhabditis elegans is emerging as a powerful model system to investigate zinc trafficking and homeostasis as well as cadmium toxicity. Here we review genetic and molecular studies that have combined to generate a picture of zinc homeostasis based on the transcriptional control of zinc transporters in intestinal cells. Furthermore, we summarize studies of cadmium toxicity that reveal intriguing parallels with zinc biology.
Collapse
Affiliation(s)
- Nicholas Dietrich
- Department of Developmental Biology, Washington University School of Medicine, Campus Box 8103, 660 South Euclid Avenue, St. Louis, MO 63110, United States.
| | - Chieh-Hsiang Tan
- Department of Developmental Biology, Washington University School of Medicine, Campus Box 8103, 660 South Euclid Avenue, St. Louis, MO 63110, United States
| | - Ciro Cubillas
- Department of Developmental Biology, Washington University School of Medicine, Campus Box 8103, 660 South Euclid Avenue, St. Louis, MO 63110, United States
| | - Brian James Earley
- Department of Developmental Biology, Washington University School of Medicine, Campus Box 8103, 660 South Euclid Avenue, St. Louis, MO 63110, United States
| | - Kerry Kornfeld
- Department of Developmental Biology, Washington University School of Medicine, Campus Box 8103, 660 South Euclid Avenue, St. Louis, MO 63110, United States
| |
Collapse
|
27
|
Cellular sensing and transport of metal ions: implications in micronutrient homeostasis. J Nutr Biochem 2015; 26:1103-15. [PMID: 26342943 DOI: 10.1016/j.jnutbio.2015.08.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 07/23/2015] [Accepted: 08/04/2015] [Indexed: 12/15/2022]
Abstract
Micronutrients include the transition metal ions zinc, copper and iron. These metals are essential for life as they serve as cofactors for many different proteins. On the other hand, they can also be toxic to cell growth when in excess. As a consequence, all organisms require mechanisms to tightly regulate the levels of these metal ions. In eukaryotes, one of the primary ways in which metal levels are regulated is through changes in expression of genes required for metal uptake, compartmentalization, storage and export. By tightly regulating the expression of these genes, each organism is able to balance metal levels despite fluctuations in the diet or extracellular environment. The goal of this review is to provide an overview of how gene expression can be controlled at a transcriptional, posttranscriptional and posttranslational level in response to metal ions in lower and higher eukaryotes. Specifically, I review what is known about how these metalloregulatory factors sense fluctuations in metal ion levels and how changes in gene expression maintain nutrient homeostasis.
Collapse
|
28
|
Kambe T, Tsuji T, Hashimoto A, Itsumura N. The Physiological, Biochemical, and Molecular Roles of Zinc Transporters in Zinc Homeostasis and Metabolism. Physiol Rev 2015; 95:749-84. [DOI: 10.1152/physrev.00035.2014] [Citation(s) in RCA: 556] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Zinc is involved in a variety of biological processes, as a structural, catalytic, and intracellular and intercellular signaling component. Thus zinc homeostasis is tightly controlled at the whole body, tissue, cellular, and subcellular levels by a number of proteins, with zinc transporters being particularly important. In metazoan, two zinc transporter families, Zn transporters (ZnT) and Zrt-, Irt-related proteins (ZIP) function in zinc mobilization of influx, efflux, and compartmentalization/sequestration across biological membranes. During the last two decades, significant progress has been made in understanding the molecular properties, expression, regulation, and cellular and physiological roles of ZnT and ZIP transporters, which underpin the multifarious functions of zinc. Moreover, growing evidence indicates that malfunctioning zinc homeostasis due to zinc transporter dysfunction results in the onset and progression of a variety of diseases. This review summarizes current progress in our understanding of each ZnT and ZIP transporter from the perspective of zinc physiology and pathogenesis, discussing challenging issues in their structure and zinc transport mechanisms.
Collapse
Affiliation(s)
- Taiho Kambe
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Tokuji Tsuji
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Ayako Hashimoto
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| | - Naoya Itsumura
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
| |
Collapse
|
29
|
Chen P, Bowman AB, Mukhopadhyay S, Aschner M. SLC30A10: A novel manganese transporter. WORM 2015; 4:e1042648. [PMID: 26430566 DOI: 10.1080/21624054.2015.1042648] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 03/31/2015] [Accepted: 04/10/2015] [Indexed: 10/23/2022]
Abstract
Homozygous mutations in SLC30A10 cause familial parkinsonism associated with manganese (Mn) retention. We recently identified SLC30A10 to be a cell surface-localized Mn efflux transporter and demonstrated that parkinsonism-causing mutations block its intracellular trafficking and efflux function. In C. elegans, SLC30A10 over-expression protected against Mn-induced lethality and dopaminergic neurotoxicity, consistent with results in mammalian systems. Here, we present new data about SLC30A10 function in C. elegans. SLC30A10 expression did not protect worms against ZnSO4toxicity, suggesting that SLC30A10 does not mediate Zn export in C. elegans. Furthermore, while a blast search identified 5 potential SLC30A10 homologs in worms (cdf-1, cdf-2, ttm-1 and toc-1; sequence identity <35%), knock-down of these genes showed a tendency of increased survival after Mn exposure (although only ttm-1 was statistically significant), suggesting that the worm homologs may function differently.
Collapse
Affiliation(s)
- Pan Chen
- Department of Molecular Pharmacology; Albert Einstein College of Medicine ; Bronx, NY USA
| | - Aaron B Bowman
- Department of Neurology; Vanderbilt University Medical Center ; Nashville, TN USA
| | - Somshuvra Mukhopadhyay
- Division of Pharmacology & Toxicology; Institute for Cellular and Molecular Biology and Institute for Neuroscience; College of Pharmacy; The University of Texas at Austin ; Austin, TX USA
| | - Michael Aschner
- Department of Molecular Pharmacology; Albert Einstein College of Medicine ; Bronx, NY USA
| |
Collapse
|
30
|
Cation Diffusion Facilitator family: Structure and function. FEBS Lett 2015; 589:1283-95. [PMID: 25896018 DOI: 10.1016/j.febslet.2015.04.007] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 04/01/2015] [Accepted: 04/08/2015] [Indexed: 01/13/2023]
Abstract
The Cation Diffusion Facilitators (CDFs) form a family of membrane-bound proteins capable of transporting zinc and other heavy metal ions. Involved in metal tolerance/resistance by efflux of ions, CDF proteins share a two-modular architecture consisting of a transmembrane domain (TMD) and C-terminal domain (CTD) that protrudes into the cytoplasm. Discovery of a Zn²⁺ and Cd²⁺ CDF transporter from a marine bacterium Maricaulis maris that does not possess the CTD questions current perceptions regarding this family of proteins. This article describes a new, CTD-lacking subfamily of CDFs and our current knowledge about this family of proteins in the view of these findings.
Collapse
|
31
|
Roh HC, Dimitrov I, Deshmukh K, Zhao G, Warnhoff K, Cabrera D, Tsai W, Kornfeld K. A modular system of DNA enhancer elements mediates tissue-specific activation of transcription by high dietary zinc in C. elegans. Nucleic Acids Res 2014; 43:803-16. [PMID: 25552416 PMCID: PMC4333406 DOI: 10.1093/nar/gku1360] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Zinc is essential for biological systems, and aberrant zinc metabolism is implicated in a broad range of human diseases. To maintain homeostasis in response to fluctuating levels of dietary zinc, animals regulate gene expression; however, mechanisms that mediate the transcriptional response to fluctuating levels of zinc have not been fully defined. Here, we identified DNA enhancer elements that mediate intestine-specific transcriptional activation in response to high levels of dietary zinc in C. elegans. Using bioinformatics, we characterized an evolutionarily conserved enhancer element present in multiple zinc-inducible genes, the high zinc activation (HZA) element. The HZA was consistently adjacent to a GATA element that mediates expression in intestinal cells. Functional studies using transgenic animals demonstrated that this modular system of DNA enhancers mediates tissue-specific transcriptional activation in response to high levels of dietary zinc. We used this information to search the genome and successfully identified novel zinc-inducible genes. To characterize the mechanism of enhancer function, we demonstrated that the GATA transcription factor ELT-2 and the mediator subunit MDT-15 are necessary for zinc-responsive transcriptional activation. These findings define new mechanisms of zinc homeostasis and tissue-specific regulation of transcription.
Collapse
Affiliation(s)
- Hyun Cheol Roh
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ivan Dimitrov
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Krupa Deshmukh
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Guoyan Zhao
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kurt Warnhoff
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Daniel Cabrera
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Wendy Tsai
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Kerry Kornfeld
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
32
|
Warnhoff K, Murphy JT, Kumar S, Schneider DL, Peterson M, Hsu S, Guthrie J, Robertson JD, Kornfeld K. The DAF-16 FOXO transcription factor regulates natc-1 to modulate stress resistance in Caenorhabditis elegans, linking insulin/IGF-1 signaling to protein N-terminal acetylation. PLoS Genet 2014; 10:e1004703. [PMID: 25330323 PMCID: PMC4199503 DOI: 10.1371/journal.pgen.1004703] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 08/26/2014] [Indexed: 12/24/2022] Open
Abstract
The insulin/IGF-1 signaling pathway plays a critical role in stress resistance and longevity, but the mechanisms are not fully characterized. To identify genes that mediate stress resistance, we screened for C. elegans mutants that can tolerate high levels of dietary zinc. We identified natc-1, which encodes an evolutionarily conserved subunit of the N-terminal acetyltransferase C (NAT) complex. N-terminal acetylation is a widespread modification of eukaryotic proteins; however, relatively little is known about the biological functions of NATs. We demonstrated that loss-of-function mutations in natc-1 cause resistance to a broad-spectrum of physiologic stressors, including multiple metals, heat, and oxidation. The C. elegans FOXO transcription factor DAF-16 is a critical target of the insulin/IGF-1 signaling pathway that mediates stress resistance, and DAF-16 is predicted to directly bind the natc-1 promoter. To characterize the regulation of natc-1 by DAF-16 and the function of natc-1 in insulin/IGF-1 signaling, we analyzed molecular and genetic interactions with key components of the insulin/IGF-1 pathway. natc-1 mRNA levels were repressed by DAF-16 activity, indicating natc-1 is a physiological target of DAF-16. Genetic studies suggested that natc-1 functions downstream of daf-16 to mediate stress resistance and dauer formation. Based on these findings, we hypothesize that natc-1 is directly regulated by the DAF-16 transcription factor, and natc-1 is a physiologically significant effector of the insulin/IGF-1 signaling pathway that mediates stress resistance and dauer formation. These studies identify a novel biological function for natc-1 as a modulator of stress resistance and dauer formation and define a functionally significant downstream effector of the insulin/IGF-1 signaling pathway. Protein N-terminal acetylation mediated by the NatC complex may play an evolutionarily conserved role in regulating stress resistance.
Collapse
Affiliation(s)
- Kurt Warnhoff
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - John T. Murphy
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Sandeep Kumar
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Daniel L. Schneider
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Michelle Peterson
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Simon Hsu
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - James Guthrie
- Research Reactor Center, University of Missouri, Columbia, Missouri, United States of America
| | - J. David Robertson
- Research Reactor Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Chemistry, University of Missouri, Columbia, Missouri, United States of America
| | - Kerry Kornfeld
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|