1
|
Perales IE, Jones SD, Piaszynski KM, Geyer PK. Developmental changes in nuclear lamina components during germ cell differentiation. Nucleus 2024; 15:2339214. [PMID: 38597409 PMCID: PMC11008544 DOI: 10.1080/19491034.2024.2339214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 04/02/2024] [Indexed: 04/11/2024] Open
Abstract
The nuclear lamina (NL) changes composition for regulation of nuclear events. We investigated changes that occur in Drosophila oogenesis, revealing switches in NL composition during germ cell differentiation. Germline stem cells (GSCs) express only LamB and predominantly emerin, whereas differentiating nurse cells predominantly express LamC and emerin2. A change in LamC-specific localization also occurs, wherein phosphorylated LamC redistributes to the nuclear interior only in the oocyte, prior to transcriptional reactivation of the meiotic genome. These changes support existing concepts that LamC promotes differentiation, a premise that was tested. Remarkably ectopic LamC production in GSCs did not promote premature differentiation. Increased LamC levels in differentiating germ cells altered internal nuclear structure, increased RNA production, and reduced female fertility due to defects in eggshell formation. These studies suggest differences between Drosophila lamins are regulatory, not functional, and reveal an unexpected robustness to level changes of a major scaffolding component of the NL.
Collapse
Affiliation(s)
- Isabella E. Perales
- Department of Biochemistry and Molecular Biology, University of Iowa, Iowa City, IA, USA
| | - Samuel D. Jones
- Department of Biochemistry and Molecular Biology, University of Iowa, Iowa City, IA, USA
| | | | - Pamela K. Geyer
- Department of Biochemistry and Molecular Biology, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
2
|
Vallés AM, Rubin T, Macaisne N, Dal Toe L, Molla-Herman A, Antoniewski C, Huynh JR. Transcriptomic analysis of meiotic genes during the mitosis-to-meiosis transition in Drosophila females. Genetics 2024; 228:iyae130. [PMID: 39225982 DOI: 10.1093/genetics/iyae130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 07/12/2024] [Indexed: 09/04/2024] Open
Abstract
Germline cells produce gametes, which are specialized cells essential for sexual reproduction. Germline cells first amplify through several rounds of mitosis before switching to the meiotic program, which requires specific sets of proteins for DNA recombination, chromosome pairing, and segregation. Surprisingly, we previously found that some proteins of the synaptonemal complex, a prophase I meiotic structure, are already expressed and required in the mitotic region of Drosophila females. Here, to assess if additional meiotic genes were expressed earlier than expected, we isolated mitotic and meiotic cell populations to compare their RNA content. Our transcriptomic analysis reveals that all known meiosis I genes are already expressed in the mitotic region; however, only some of them are translated. As a case study, we focused on mei-W68, the Drosophila homolog of Spo11, to assess its expression at both the mRNA and protein levels and used different mutant alleles to assay for a premeiotic function. We could not detect any functional role for Mei-W68 during homologous chromosome pairing in dividing germ cells. Our study paves the way for further functional analysis of meiotic genes expressed in the mitotic region.
Collapse
Affiliation(s)
- Ana Maria Vallés
- Center for Interdisciplinary Research in Biology, Collège de France, Université PSL, CNRS, INSERM, 75005 Paris, France
| | - Thomas Rubin
- Center for Interdisciplinary Research in Biology, Collège de France, Université PSL, CNRS, INSERM, 75005 Paris, France
| | - Nicolas Macaisne
- Center for Interdisciplinary Research in Biology, Collège de France, Université PSL, CNRS, INSERM, 75005 Paris, France
| | - Laurine Dal Toe
- Center for Interdisciplinary Research in Biology, Collège de France, Université PSL, CNRS, INSERM, 75005 Paris, France
| | - Anahi Molla-Herman
- Center for Interdisciplinary Research in Biology, Collège de France, Université PSL, CNRS, INSERM, 75005 Paris, France
| | - Christophe Antoniewski
- ARTbio Bioinformatics Analysis Facility, IBPS, CNRS, Sorbonne Université, Institut Français de Bioinformatique, 75005 Paris, France
| | - Jean-René Huynh
- Center for Interdisciplinary Research in Biology, Collège de France, Université PSL, CNRS, INSERM, 75005 Paris, France
| |
Collapse
|
3
|
Chavan A, Isenhart R, Nguyen SC, Kotb NM, Harke J, Sintsova A, Ulukaya G, Uliana F, Ashiono C, Kutay U, Pegoraro G, Rangan P, Joyce EF, Jagannathan M. A nuclear architecture screen in Drosophila identifies Stonewall as a link between chromatin position at the nuclear periphery and germline stem cell fate. Genes Dev 2024; 38:415-435. [PMID: 38866555 PMCID: PMC11216176 DOI: 10.1101/gad.351424.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 05/21/2024] [Indexed: 06/14/2024]
Abstract
The association of genomic loci to the nuclear periphery is proposed to facilitate cell type-specific gene repression and influence cell fate decisions. However, the interplay between gene position and expression remains incompletely understood, in part because the proteins that position genomic loci at the nuclear periphery remain unidentified. Here, we used an Oligopaint-based HiDRO screen targeting ∼1000 genes to discover novel regulators of nuclear architecture in Drosophila cells. We identified the heterochromatin-associated protein Stonewall (Stwl) as a factor promoting perinuclear chromatin positioning. In female germline stem cells (GSCs), Stwl binds and positions chromatin loci, including GSC differentiation genes, at the nuclear periphery. Strikingly, Stwl-dependent perinuclear positioning is associated with transcriptional repression, highlighting a likely mechanism for Stwl's known role in GSC maintenance and ovary homeostasis. Thus, our study identifies perinuclear anchors in Drosophila and demonstrates the importance of gene repression at the nuclear periphery for cell fate.
Collapse
Affiliation(s)
- Ankita Chavan
- Institute of Biochemistry, Department of Biology, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich 8093, Switzerland
- Bringing Materials to Life Consortium, ETH Zürich, Zürich 8093, Switzerland
- Life Science Zürich Graduate School, Zürich 8057, Switzerland
| | - Randi Isenhart
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Son C Nguyen
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Noor M Kotb
- Department of Cell, Developmental, and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Jailynn Harke
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Anna Sintsova
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich 8093, Switzerland
| | - Gulay Ulukaya
- Bioinformatics for Next-Generation Sequencing (BiNGS) Core, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Federico Uliana
- Institute of Biochemistry, Department of Biology, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich 8093, Switzerland
| | - Caroline Ashiono
- Institute of Biochemistry, Department of Biology, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich 8093, Switzerland
| | - Ulrike Kutay
- Institute of Biochemistry, Department of Biology, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich 8093, Switzerland
| | - Gianluca Pegoraro
- High-Throughput Imaging Facility (HiTIF), National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Prashanth Rangan
- Department of Cell, Developmental, and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | - Eric F Joyce
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Madhav Jagannathan
- Institute of Biochemistry, Department of Biology, Eidgenössische Technische Hochschule (ETH) Zürich, Zürich 8093, Switzerland;
- Bringing Materials to Life Consortium, ETH Zürich, Zürich 8093, Switzerland
| |
Collapse
|
4
|
Hockens C, Lorenzi H, Wang TT, Lei EP, Rosin LF. Chromosome segregation during spermatogenesis occurs through a unique center-kinetic mechanism in holocentric moth species. PLoS Genet 2024; 20:e1011329. [PMID: 38913752 PMCID: PMC11226059 DOI: 10.1371/journal.pgen.1011329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 07/05/2024] [Accepted: 06/03/2024] [Indexed: 06/26/2024] Open
Abstract
Precise regulation of chromosome dynamics in the germline is essential for reproductive success across species. Yet, the mechanisms underlying meiotic chromosomal events such as homolog pairing and chromosome segregation are not fully understood in many species. Here, we employ Oligopaint DNA FISH to investigate mechanisms of meiotic homolog pairing and chromosome segregation in the holocentric pantry moth, Plodia interpunctella, and compare our findings to new and previous studies in the silkworm moth, Bombyx mori, which diverged from P. interpunctella over 100 million years ago. We find that pairing in both Bombyx and Plodia spermatogenesis is initiated at gene-rich chromosome ends. Additionally, both species form rod shaped cruciform-like bivalents at metaphase I. However, unlike the telomere-oriented chromosome segregation mechanism observed in Bombyx, Plodia can orient bivalents in multiple different ways at metaphase I. Surprisingly, in both species we find that kinetochores consistently assemble at non-telomeric loci toward the center of chromosomes regardless of where chromosome centers are located in the bivalent. Additionally, sister kinetochores do not seem to be paired in these species. Instead, four distinct kinetochores are easily observed at metaphase I. Despite this, we find clear end-on microtubule attachments and not lateral microtubule attachments co-orienting these separated kinetochores. These findings challenge the classical view of segregation where paired, poleward-facing kinetochores are required for accurate homolog separation in meiosis I. Our studies here highlight the importance of exploring fundamental processes in non-model systems, as employing novel organisms can lead to the discovery of novel biology.
Collapse
Affiliation(s)
- Clio Hockens
- Unit on Chromosome Dynamics, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Hernan Lorenzi
- TriLab Bioinformatics Group, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Tricia T. Wang
- Unit on Chromosome Dynamics, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Elissa P. Lei
- Nuclear Organization and Gene Expression Section; Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Leah F. Rosin
- Unit on Chromosome Dynamics, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
5
|
Marshall WF, Fung JC. Modeling homologous chromosome recognition via nonspecific interactions. Proc Natl Acad Sci U S A 2024; 121:e2317373121. [PMID: 38722810 PMCID: PMC11098084 DOI: 10.1073/pnas.2317373121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 03/18/2024] [Indexed: 05/18/2024] Open
Abstract
In many organisms, most notably Drosophila, homologous chromosomes associate in somatic cells, a phenomenon known as somatic pairing, which takes place without double strand breaks or strand invasion, thus requiring some other mechanism for homologs to recognize each other. Several studies have suggested a "specific button" model, in which a series of distinct regions in the genome, known as buttons, can associate with each other, mediated by different proteins that bind to these different regions. Here, we use computational modeling to evaluate an alternative "button barcode" model, in which there is only one type of recognition site or adhesion button, present in many copies in the genome, each of which can associate with any of the others with equal affinity. In this model, buttons are nonuniformly distributed, such that alignment of a chromosome with its correct homolog, compared with a nonhomolog, is energetically favored; since to achieve nonhomologous alignment, chromosomes would be required to mechanically deform in order to bring their buttons into mutual register. By simulating randomly generated nonuniform button distributions, many highly effective button barcodes can be easily found, some of which achieve virtually perfect pairing fidelity. This model is consistent with existing literature on the effect of translocations of different sizes on homolog pairing. We conclude that a button barcode model can attain highly specific homolog recognition, comparable to that seen in actual cells undergoing somatic homolog pairing, without the need for specific interactions. This model may have implications for how meiotic pairing is achieved.
Collapse
Affiliation(s)
- Wallace F. Marshall
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA94158
| | - Jennifer C. Fung
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, CA94158
- Center for Reproductive Sciences, University of California, San Francisco, CA94158
| |
Collapse
|
6
|
Lee L, Rosin LF. Uncharted territories: Solving the mysteries of male meiosis in flies. PLoS Genet 2024; 20:e1011185. [PMID: 38489251 PMCID: PMC10942038 DOI: 10.1371/journal.pgen.1011185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024] Open
Abstract
The segregation of homologous chromosomes during meiosis typically requires tight end-to-end chromosome pairing. However, in Drosophila spermatogenesis, male flies segregate their chromosomes without classic synaptonemal complex formation and without recombination, instead compartmentalizing homologs into subnuclear domains known as chromosome territories (CTs). How homologs find each other in the nucleus and are separated into CTs has been one of the biggest riddles in chromosome biology. Here, we discuss our current understanding of pairing and CT formation in flies and review recent data on how homologs are linked and partitioned during meiosis in male flies.
Collapse
Affiliation(s)
- LingSze Lee
- Unit on Chromosome Dynamics, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Leah F. Rosin
- Unit on Chromosome Dynamics, Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
7
|
Tian Y, Liu L, Gao J, Wang R. Homologous chromosome pairing: The linchpin of accurate segregation in meiosis. J Cell Physiol 2024; 239:3-19. [PMID: 38032002 DOI: 10.1002/jcp.31166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/13/2023] [Accepted: 11/20/2023] [Indexed: 12/01/2023]
Abstract
Meiosis is a specialized cell division that occurs in sexually reproducing organisms, generating haploid gametes containing half the chromosome number through two rounds of cell division. Homologous chromosomes pair and prepare for their proper segregation in subsequent divisions. How homologous chromosomes recognize each other and achieve pairing is an important question. Early studies showed that in most organisms, homologous pairing relies on homologous recombination. However, pairing mechanisms differ across species. Evidence indicates that chromosomes are dynamic and move during early meiotic stages, facilitating pairing. Recent studies in various model organisms suggest conserved mechanisms and key regulators of homologous chromosome pairing. This review summarizes these findings and compare similarities and differences in homologous chromosome pairing mechanisms across species.
Collapse
Affiliation(s)
- Yuqi Tian
- Center for Cell Structure and Function, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, China
| | - Libo Liu
- Center for Cell Structure and Function, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, China
| | - Jinmin Gao
- Center for Cell Structure and Function, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, China
| | - Ruoxi Wang
- Center for Cell Structure and Function, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, China
| |
Collapse
|
8
|
Abstract
The raison d'être of meiosis is shuffling of genetic information via Mendelian segregation and, within individual chromosomes, by DNA crossing-over. These outcomes are enabled by a complex cellular program in which interactions between homologous chromosomes play a central role. We first provide a background regarding the basic principles of this program. We then summarize the current understanding of the DNA events of recombination and of three processes that involve whole chromosomes: homolog pairing, crossover interference, and chiasma maturation. All of these processes are implemented by direct physical interaction of recombination complexes with underlying chromosome structures. Finally, we present convergent lines of evidence that the meiotic program may have evolved by coupling of this interaction to late-stage mitotic chromosome morphogenesis.
Collapse
Affiliation(s)
- Denise Zickler
- Institute for Integrative Biology of the Cell (I2BC), Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Nancy Kleckner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA;
| |
Collapse
|
9
|
Chavan A, Isenhart R, Nguyen SC, Kotb N, Harke J, Sintsova A, Ulukaya G, Uliana F, Ashiono C, Kutay U, Pegoraro G, Rangan P, Joyce EF, Jagannathan M. A nuclear architecture screen in Drosophila identifies Stonewall as a link between chromatin position at the nuclear periphery and germline stem cell fate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.17.567611. [PMID: 38014085 PMCID: PMC10680830 DOI: 10.1101/2023.11.17.567611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The association of genomic loci to the nuclear periphery is proposed to facilitate cell-type specific gene repression and influence cell fate decisions. However, the interplay between gene position and expression remains incompletely understood, in part because the proteins that position genomic loci at the nuclear periphery remain unidentified. Here, we used an Oligopaint-based HiDRO screen targeting ~1000 genes to discover novel regulators of nuclear architecture in Drosophila cells. We identified the heterochromatin-associated protein, Stonewall (Stwl), as a factor promoting perinuclear chromatin positioning. In female germline stem cells (GSCs), Stwl binds and positions chromatin loci, including GSC differentiation genes, at the nuclear periphery. Strikingly, Stwl-dependent perinuclear positioning is associated with transcriptional repression, highlighting a likely mechanism for Stwl's known role in GSC maintenance and ovary homeostasis. Thus, our study identifies perinuclear anchors in Drosophila and demonstrates the importance of gene repression at the nuclear periphery for cell fate.
Collapse
Affiliation(s)
- Ankita Chavan
- Institute of Biochemistry, Department of Biology, ETH Zürich, Switzerland
- Bringing Materials to Life Consortium, ETH Zürich, Switzerland
- Life Science Zurich Graduate School, Zürich, Switzerland
- These authors contributed equally
| | - Randi Isenhart
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- These authors contributed equally
| | - Son C. Nguyen
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Noor Kotb
- Department of Cell, Developmental and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jailynn Harke
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Anna Sintsova
- Institute of Microbiology, Department of Biology, ETH Zürich, Switzerland
| | - Gulay Ulukaya
- Bioinformatics for Next Generation Sequencing (BiNGS) core, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Federico Uliana
- Institute of Biochemistry, Department of Biology, ETH Zürich, Switzerland
| | - Caroline Ashiono
- Institute of Biochemistry, Department of Biology, ETH Zürich, Switzerland
| | - Ulrike Kutay
- Institute of Biochemistry, Department of Biology, ETH Zürich, Switzerland
| | - Gianluca Pegoraro
- High Throughput Imaging Facility (HiTIF), National Cancer Institute, NIH, Bethesda, MD 20892 USA
| | - Prashanth Rangan
- Department of Cell, Developmental and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Eric F. Joyce
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Madhav Jagannathan
- Institute of Biochemistry, Department of Biology, ETH Zürich, Switzerland
- Bringing Materials to Life Consortium, ETH Zürich, Switzerland
| |
Collapse
|
10
|
Solé M, Pascual Á, Anton E, Blanco J, Sarrate Z. The courtship choreography of homologous chromosomes: timing and mechanisms of DSB-independent pairing. Front Cell Dev Biol 2023; 11:1191156. [PMID: 37377734 PMCID: PMC10291267 DOI: 10.3389/fcell.2023.1191156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Meiosis involves deep changes in the spatial organisation and interactions of chromosomes enabling the two primary functions of this process: increasing genetic diversity and reducing ploidy level. These two functions are ensured by crucial events such as homologous chromosomal pairing, synapsis, recombination and segregation. In most sexually reproducing eukaryotes, homologous chromosome pairing depends on a set of mechanisms, some of them associated with the repair of DNA double-strand breaks (DSBs) induced at the onset of prophase I, and others that operate before DSBs formation. In this article, we will review various strategies utilised by model organisms for DSB-independent pairing. Specifically, we will focus on mechanisms such as chromosome clustering, nuclear and chromosome movements, as well as the involvement of specific proteins, non-coding RNA, and DNA sequences.
Collapse
Affiliation(s)
| | | | | | - Joan Blanco
- *Correspondence: Joan Blanco, ; Zaida Sarrate,
| | | |
Collapse
|
11
|
Rubin T, Macaisne N, Vallés AM, Guilleman C, Gaugué I, Dal Toe L, Huynh JR. Premeiotic pairing of homologous chromosomes during Drosophila male meiosis. Proc Natl Acad Sci U S A 2022; 119:e2207660119. [PMID: 36375065 PMCID: PMC9704699 DOI: 10.1073/pnas.2207660119] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 10/07/2022] [Indexed: 11/15/2022] Open
Abstract
In the early stages of meiosis, maternal and paternal chromosomes pair with their homologous partner and recombine to ensure exchange of genetic information and proper segregation. These events can vary drastically between species and between males and females of the same species. In Drosophila, in contrast to females, males do not form synaptonemal complexes (SCs), do not recombine, and have no crossing over; yet, males are able to segregate their chromosomes properly. Here, we investigated the early steps of homolog pairing in Drosophila males. We found that homolog centromeres are not paired in germline stem cells (GSCs) and become paired in the mitotic region before meiotic entry, similarly to females. Surprisingly, male germline cells express SC proteins, which localize to centromeres and promote pairing. We further found that the SUN/KASH (LINC) complex and microtubules are required for homolog pairing as in females. Chromosome movements in males, however, are much slower than in females and we demonstrate that this slow dynamic is compensated in males by having longer cell cycles. In agreement, slowing down cell cycles was sufficient to rescue pairing-defective mutants in female meiosis. Our results demonstrate that although meiosis differs significantly between males and females, sex-specific cell cycle kinetics integrate similar molecular mechanisms to achieve proper centromere pairing.
Collapse
Affiliation(s)
- Thomas Rubin
- Center for Interdisciplinary Research in Biology, CNRS UMR 7241, INSERM U1050, Collège de France and Paris Sciences & Lettres Research University, 75231 Paris Cedex 05, France
| | | | - Ana Maria Vallés
- Center for Interdisciplinary Research in Biology, CNRS UMR 7241, INSERM U1050, Collège de France and Paris Sciences & Lettres Research University, 75231 Paris Cedex 05, France
| | - Clara Guilleman
- Center for Interdisciplinary Research in Biology, CNRS UMR 7241, INSERM U1050, Collège de France and Paris Sciences & Lettres Research University, 75231 Paris Cedex 05, France
| | - Isabelle Gaugué
- Department of Genetics and Developmental Biology, CNRS UMR 3215, INSERM U934, Institut Curie, 75005 Paris, France
| | - Laurine Dal Toe
- Center for Interdisciplinary Research in Biology, CNRS UMR 7241, INSERM U1050, Collège de France and Paris Sciences & Lettres Research University, 75231 Paris Cedex 05, France
| | - Jean-René Huynh
- Center for Interdisciplinary Research in Biology, CNRS UMR 7241, INSERM U1050, Collège de France and Paris Sciences & Lettres Research University, 75231 Paris Cedex 05, France
| |
Collapse
|
12
|
Fleck K, Raj R, Erceg J. The 3D genome landscape: Diverse chromosomal interactions and their functional implications. Front Cell Dev Biol 2022; 10:968145. [PMID: 36036013 PMCID: PMC9402908 DOI: 10.3389/fcell.2022.968145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Genome organization includes contacts both within a single chromosome and between distinct chromosomes. Thus, regulatory organization in the nucleus may include interplay of these two types of chromosomal interactions with genome activity. Emerging advances in omics and single-cell imaging technologies have allowed new insights into chromosomal contacts, including those of homologs and sister chromatids, and their significance to genome function. In this review, we highlight recent studies in this field and discuss their impact on understanding the principles of chromosome organization and associated functional implications in diverse cellular processes. Specifically, we describe the contributions of intra-chromosomal, inter-homolog, and inter-sister chromatid contacts to genome organization and gene expression.
Collapse
Affiliation(s)
- Katherine Fleck
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| | - Romir Raj
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
| | - Jelena Erceg
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, United States
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, United States
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, United States
| |
Collapse
|
13
|
Abstract
Inheriting the wrong number of chromosomes is one of the leading causes of infertility and birth defects in humans. However, in many organisms, individual chromosomes vary dramatically in both organization, sequence, and size. Chromosome segregation systems must be capable of accounting for these differences to reliably segregate chromosomes. During gametogenesis, meiosis ensures that all chromosomes segregate properly into gametes (i.e., egg or sperm). Interestingly, not all chromosomes exhibit the same dynamics during meiosis, which can lead to chromosome-specific behaviors and defects. This review will summarize some of the chromosome-specific meiotic events that are currently known and discuss their impact on meiotic outcomes.
Collapse
|
14
|
Lee JY, Yang Q, Chang X, Wisniewski H, Olivera TR, Saji M, Kim S, Perumal D, Zhang F. Nucleic acid paranemic structures: a promising building block for functional nanomaterials in biomedical and bionanotechnological applications. J Mater Chem B 2022; 10:7460-7472. [PMID: 35912570 DOI: 10.1039/d2tb00605g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Over the past few decades, DNA has been recognized as a powerful self-assembling material capable of crafting supramolecular nanoarchitectures with quasi-angstrom precision, which promises various applications in the fields of materials science, nanoengineering, and biomedical science. Notable structural features include biocompatibility, biodegradability, high digital encodability by Watson-Crick base pairing, nanoscale dimension, and surface addressability. Bottom-up fabrication of complex DNA nanostructures relies on the design of fundamental DNA motifs, including parallel (PX) and antiparallel (AX) crossovers. However, paranemic or PX motifs have not been thoroughly explored for the construction of DNA-based nanostructures compared to AX motifs. In this review, we summarize the developments of PX-based DNA nanostructures, highlight the advantages as well as challenges of PX-based assemblies, and give an overview of the structural and chemical features that lend their utilization in a variety of applications. The works presented cover PX-based DNA nanostructures in biological systems, dynamic systems, and biomedical contexts. The possible future advances of PX structures and applications are also summarized, discussed, and postulated.
Collapse
Affiliation(s)
- Jung Yeon Lee
- Department of Chemistry, Rutgers University, Newark, NJ 07102, USA.
| | - Qi Yang
- Department of Chemistry, Rutgers University, Newark, NJ 07102, USA.
| | - Xu Chang
- Department of Chemistry, Rutgers University, Newark, NJ 07102, USA.
| | - Henry Wisniewski
- Department of Chemistry, Rutgers University, Newark, NJ 07102, USA.
| | | | - Minu Saji
- Department of Chemistry, Rutgers University, Newark, NJ 07102, USA.
| | - Suchan Kim
- Department of Chemistry, Rutgers University, Newark, NJ 07102, USA.
| | | | - Fei Zhang
- Department of Chemistry, Rutgers University, Newark, NJ 07102, USA.
| |
Collapse
|
15
|
Antel M, Raj R, Masoud MYG, Pan Z, Li S, Mellone BG, Inaba M. Interchromosomal interaction of homologous Stat92E alleles regulates transcriptional switch during stem-cell differentiation. Nat Commun 2022; 13:3981. [PMID: 35810185 PMCID: PMC9271046 DOI: 10.1038/s41467-022-31737-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 06/30/2022] [Indexed: 01/24/2023] Open
Abstract
Pairing of homologous chromosomes in somatic cells provides the opportunity of interchromosomal interaction between homologous gene regions. In the Drosophila male germline, the Stat92E gene is highly expressed in a germline stem cell (GSC) and gradually downregulated during the differentiation. Here we show that the pairing of Stat92E is always tight in GSCs and immediately loosened in differentiating daughter cells, gonialblasts (GBs). Disturbance of Stat92E pairing by relocation of one locus to another chromosome or by knockdown of global pairing/anti-pairing factors both result in a failure of Stat92E downregulation, suggesting that the pairing is required for the decline in transcription. Furthermore, the Stat92E enhancer, but not its transcription, is required for the change in pairing state, indicating that pairing is not a consequence of transcriptional changes. Finally, we show that the change in Stat92E pairing is dependent on asymmetric histone inheritance during the asymmetric division of GSCs. Taken together, we propose that the changes in Stat92E pairing status is an intrinsically programmed mechanism for enabling prompt cell fate switch during the differentiation of stem cells. Asymmetric inheritance of organelles, proteins and RNAs occurs during stem cell division. Here the authors show the strength of pairing of homologous Stat92E loci, a stem cell-specific gene, changes immediately after the asymmetric division due to asymmetric inheritance of new histones to one of the daughter cells and is important for turning off gene expression in this cell as it differentiates.
Collapse
Affiliation(s)
- Matthew Antel
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, USA
| | - Romir Raj
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, USA
| | - Madona Y G Masoud
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, USA
| | - Ziwei Pan
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.,Department of Genetics and Genomic Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | - Sheng Li
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.,Department of Genetics and Genomic Sciences, University of Connecticut Health Center, Farmington, CT, USA
| | - Barbara G Mellone
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA.,Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
| | - Mayu Inaba
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, USA.
| |
Collapse
|
16
|
Zhang R, Liu Y, Gao J. Phase separation in controlling meiotic chromosome dynamics. Curr Top Dev Biol 2022; 151:69-90. [PMID: 36681478 DOI: 10.1016/bs.ctdb.2022.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Sexually reproducing organisms produce haploid gametes through meiotic cell division, during which a single round of DNA replication is followed by two consecutive chromosome segregation. A series of meiosis-specific events take place during the meiotic prophase to ensure successful chromosome segregation. These events include programmed DNA double-strand break formation, chromosome movement driven by cytoplasmic forces, homologous pairing, synaptonemal complex installation, and inter-homolog crossover formation. Phase separation has emerged as a key principle controlling cellular biomolecular material organization and biological processes. Recent studies have revealed the involvements of phase separation in assembling meiotic chromosome-associated structures. Here we review and discuss how phase separation may participate in meiotic chromosome dynamics and propose that it may provide opportunities to understand the mysteries in meiotic regulations.
Collapse
Affiliation(s)
- Ruirui Zhang
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, China
| | - Yuanyuan Liu
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, China
| | - Jinmin Gao
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, China.
| |
Collapse
|
17
|
Differential MC5R loss in whales and manatees reveals convergent evolution to the marine environment. Dev Genes Evol 2022; 232:81-87. [PMID: 35648215 DOI: 10.1007/s00427-022-00688-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/16/2022] [Indexed: 02/05/2023]
Abstract
Melanocortin 5 receptor (MC5R), which is expressed in the terminally differentiated sebaceous gland, is a G protein-coupled receptor (GPCR). MC5R exists mostly in mammals but is completely lost in whales; only the relic of MC5R can be detected in manatees, and phenotypically, they have lost sebaceous glands. Interestingly, whales and manatees are both aquatic mammals but have no immediate common ancestors. The loss of MC5R and sebaceous glands in whales and manatees is likely to be a result of convergent evolution. Here, we find that MC5R in whales and manatees are lost by two different mechanisms. Homologous recombination of MC5R in manatees and the insertion of reverse transcriptase in whales lead to the gene loss, respectively. On one hand, in manatees, there are two "TTATC" sequences flanking MC5R, and homologous recombination of the segments between the two "TTATC" sequences resulted in the partial loss of the sequence of MC5R. On the other hand, in whales, reverse transcriptase inserts between MC2R and RNMT on the chromosome led to the loss of MC5R. Based on these two different mechanisms for gene loss in whales and manatees, we finally concluded that MC5R loss might be the result of convergent evolution to the marine environment, and we explored the impact on biological function that is significant to environmental adaptation.
Collapse
|
18
|
Kim HJ, Liu C, Dernburg AF. How and Why Chromosomes Interact with the Cytoskeleton during Meiosis. Genes (Basel) 2022; 13:genes13050901. [PMID: 35627285 PMCID: PMC9140367 DOI: 10.3390/genes13050901] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 11/28/2022] Open
Abstract
During the early meiotic prophase, connections are established between chromosomes and cytoplasmic motors via a nuclear envelope bridge, known as a LINC (linker of nucleoskeleton and cytoskeleton) complex. These widely conserved links can promote both chromosome and nuclear motions. Studies in diverse organisms have illuminated the molecular architecture of these connections, but important questions remain regarding how they contribute to meiotic processes. Here, we summarize the current knowledge in the field, outline the challenges in studying these chromosome dynamics, and highlight distinctive features that have been characterized in major model systems.
Collapse
Affiliation(s)
- Hyung Jun Kim
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3200, USA;
| | - Chenshu Liu
- Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, MD 20815-6789, USA;
| | - Abby F. Dernburg
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720-3200, USA;
- Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, MD 20815-6789, USA;
- Correspondence:
| |
Collapse
|
19
|
Martin ET, Sarkar K, McCarthy A, Rangan P. Oo-site: A dashboard to visualize gene expression during Drosophila oogenesis suggests meiotic entry is regulated post-transcriptionally. Biol Open 2022; 11:bio059286. [PMID: 35579517 PMCID: PMC9148541 DOI: 10.1242/bio.059286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/19/2022] [Indexed: 11/20/2022] Open
Abstract
Determining how stem cell differentiation is controlled has important implications for understanding the etiology of degenerative disease and designing regenerative therapies. In vivo analyses of stem cell model systems have revealed regulatory paradigms for stem cell self-renewal and differentiation. The germarium of the female Drosophila gonad, which houses both germline and somatic stem cells, is one such model system. Bulk mRNA sequencing (RNA-seq), single-cell RNA-seq (scRNA-seq), and bulk translation efficiency (polysome-seq) of mRNAs are available for stem cells and their differentiating progeny within the Drosophila germarium. However, visualizing those data is hampered by the lack of a tool to spatially map gene expression and translational data in the germarium. Here, we have developed Oo-site (https://www.ranganlab.com/Oo-site), a tool for visualizing bulk RNA-seq, scRNA-seq, and translational efficiency data during different stages of germline differentiation, which makes these data accessible to non-bioinformaticians. Using this tool, we recapitulated previously reported expression patterns of developmentally regulated genes and discovered that meiotic genes, such as those that regulate the synaptonemal complex, are regulated at the level of translation.
Collapse
Affiliation(s)
- Elliot T. Martin
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, NY 12202, USA
| | - Kahini Sarkar
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, NY 12202, USA
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Alicia McCarthy
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, NY 12202, USA
| | - Prashanth Rangan
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, NY 12202, USA
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| |
Collapse
|
20
|
A Brief History of Drosophila (Female) Meiosis. Genes (Basel) 2022; 13:genes13050775. [PMID: 35627159 PMCID: PMC9140851 DOI: 10.3390/genes13050775] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/16/2022] [Accepted: 04/20/2022] [Indexed: 02/07/2023] Open
Abstract
Drosophila has been a model system for meiosis since the discovery of nondisjunction. Subsequent studies have determined that crossing over is required for chromosome segregation, and identified proteins required for the pairing of chromosomes, initiating meiotic recombination, producing crossover events, and building a spindle to segregate the chromosomes. With a variety of genetic and cytological tools, Drosophila remains a model organism for the study of meiosis. This review focusses on meiosis in females because in male meiosis, the use of chiasmata to link homologous chromosomes has been replaced by a recombination-independent mechanism. Drosophila oocytes are also a good model for mammalian meiosis because of biological similarities such as long pauses between meiotic stages and the absence of centrosomes during the meiotic divisions.
Collapse
|
21
|
Hua LL, Casas C, Mikawa T. Mitotic Antipairing of Homologous Chromosomes. Results Probl Cell Differ 2022; 70:191-220. [PMID: 36348108 PMCID: PMC9731508 DOI: 10.1007/978-3-031-06573-6_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chromosome organization is highly dynamic and plays an essential role during cell function. It was recently found that pairs of the homologous chromosomes are continuously separated at mitosis and display a haploid (1n) chromosome set, or "antipairing," organization in human cells. Here, we provide an introduction to the current knowledge of homologous antipairing in humans and its implications in human disease.
Collapse
Affiliation(s)
- Lisa L. Hua
- Department of Biology, Sonoma State University, San Francisco
| | - Christian Casas
- Department of Biology, Sonoma State University, San Francisco
| | - Takashi Mikawa
- Department of Anatomy, Cardiovascular Research Institute, University of California, San Francisco,Corresponding author:
| |
Collapse
|
22
|
Rosin LF, Gil J, Drinnenberg IA, Lei EP. Oligopaint DNA FISH reveals telomere-based meiotic pairing dynamics in the silkworm, Bombyx mori. PLoS Genet 2021; 17:e1009700. [PMID: 34319984 PMCID: PMC8351950 DOI: 10.1371/journal.pgen.1009700] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/09/2021] [Accepted: 07/07/2021] [Indexed: 12/04/2022] Open
Abstract
Accurate chromosome segregation during meiosis is essential for reproductive success. Yet, many fundamental aspects of meiosis remain unclear, including the mechanisms regulating homolog pairing across species. This gap is partially due to our inability to visualize individual chromosomes during meiosis. Here, we employ Oligopaint FISH to investigate homolog pairing and compaction of meiotic chromosomes and resurrect a classical model system, the silkworm Bombyx mori. Our Oligopaint design combines multiplexed barcoding with secondary oligo labeling for high flexibility and low cost. These studies illustrate that Oligopaints are highly specific in whole-mount gonads and on meiotic squashes. We show that meiotic pairing is robust in both males and females and that pairing can occur through numerous partially paired intermediate structures. We also show that pairing in male meiosis occurs asynchronously and seemingly in a transcription-biased manner. Further, we reveal that meiotic bivalent formation in B. mori males is highly similar to bivalent formation in C. elegans, with both of these pathways ultimately resulting in the pairing of chromosome ends with non-paired ends facing the spindle pole. Additionally, microtubule recruitment in both C. elegans and B. mori is likely dependent on kinetochore proteins but independent of the centromere-specifying histone CENP-A. Finally, using super-resolution microscopy in the female germline, we show that homologous chromosomes remain associated at telomere domains in the absence of chiasma and after breakdown and modification to the synaptonemal complex in pachytene. These studies reveal novel insights into mechanisms of meiotic homolog pairing both with or without recombination.
Collapse
Affiliation(s)
- Leah F. Rosin
- Nuclear Organization and Gene Expression Section; Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jose Gil
- Institut Curie, PSL Research University, CNRS, Paris, France; Sorbonne Université, Institut Curie, CNRS, Paris, France
| | - Ines A. Drinnenberg
- Institut Curie, PSL Research University, CNRS, Paris, France; Sorbonne Université, Institut Curie, CNRS, Paris, France
| | - Elissa P. Lei
- Nuclear Organization and Gene Expression Section; Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
23
|
Kahney EW, Zion EH, Sohn L, Viets-Layng K, Johnston R, Chen X. Characterization of histone inheritance patterns in the Drosophila female germline. EMBO Rep 2021; 22:e51530. [PMID: 34031963 PMCID: PMC8406404 DOI: 10.15252/embr.202051530] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 04/02/2021] [Accepted: 04/16/2021] [Indexed: 11/30/2022] Open
Abstract
Stem cells have the unique ability to undergo asymmetric division which produces two daughter cells that are genetically identical, but commit to different cell fates. The loss of this balanced asymmetric outcome can lead to many diseases, including cancer and tissue dystrophy. Understanding this tightly regulated process is crucial in developing methods to treat these abnormalities. Here, we report that during a Drosophila female germline stem cell asymmetric division, the two daughter cells differentially inherit histones at key genes related to either maintaining the stem cell state or promoting differentiation, but not at constitutively active or silenced genes. We combine histone labeling with DNA Oligopaints to distinguish old versus new histones and visualize their inheritance patterns at a single‐gene resolution in asymmetrically dividing cells in vivo. This strategy can be applied to other biological systems involving cell fate change during development or tissue homeostasis in multicellular organisms.
Collapse
Affiliation(s)
| | - Emily H Zion
- Department of Biology, The Johns Hopkins University, Baltimore, MD, USA
| | - Lydia Sohn
- Department of Biology, The Johns Hopkins University, Baltimore, MD, USA
| | - Kayla Viets-Layng
- Department of Biology, The Johns Hopkins University, Baltimore, MD, USA
| | - Robert Johnston
- Department of Biology, The Johns Hopkins University, Baltimore, MD, USA
| | - Xin Chen
- Department of Biology, The Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
24
|
Chen HM, Yao X, Ren Q, Chang CC, Liu LY, Miyares RL, Lee T. Enhanced Golic+: highly effective CRISPR gene targeting and transgene HACKing in Drosophila. Development 2020; 147:dev181974. [PMID: 32467238 DOI: 10.1242/dev.181974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 05/04/2020] [Indexed: 11/20/2022]
Abstract
Gene targeting is an incredibly valuable technique. Sometimes, however, it can also be extremely challenging for various intrinsic reasons (e.g. low target accessibility or nature/extent of gene modification). To bypass these barriers, we designed a transgene-based system in Drosophila that increases the number of independent gene targeting events while at the same time enriching for correctly targeted progeny. Unfortunately, with particularly challenging gene targeting experiments, our original design yielded numerous false positives. Here, we deliver a much-improved technique, named Enhanced Golic+ (E-Golic+). E-Golic+ incorporates genetic modifications to tighten lethality-based selection while simultaneously boosting efficiency. With E-Golic+, we easily achieve previously unattainable gene targeting. Additionally, we built an E-Golic+-based, high-efficiency genetic pipeline for transgene swapping. We demonstrate its utility by transforming GAL4 enhancer-trap lines into tissue-specific Cas9-expressing lines. Given the superior efficiency, specificity and scalability, E-Golic+ promises to expedite development of additional sophisticated genetic/genomic tools in Drosophila.
Collapse
Affiliation(s)
- Hui-Min Chen
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Xiaohao Yao
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Qingzhong Ren
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Chuan-Chie Chang
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Ling-Yu Liu
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Rosa Linda Miyares
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Tzumin Lee
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| |
Collapse
|
25
|
Mixing and Matching Chromosomes during Female Meiosis. Cells 2020; 9:cells9030696. [PMID: 32178277 PMCID: PMC7140621 DOI: 10.3390/cells9030696] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/08/2020] [Accepted: 03/11/2020] [Indexed: 01/17/2023] Open
Abstract
Meiosis is a key event in the manufacturing of an oocyte. During this process, the oocyte creates a set of unique chromosomes by recombining paternal and maternal copies of homologous chromosomes, and by eliminating one set of chromosomes to become haploid. While meiosis is conserved among sexually reproducing eukaryotes, there is a bewildering diversity of strategies among species, and sometimes within sexes of the same species, to achieve proper segregation of chromosomes. Here, we review the very first steps of meiosis in females, when the maternal and paternal copies of each homologous chromosomes have to move, find each other and pair. We explore the similarities and differences observed in C. elegans, Drosophila, zebrafish and mouse females.
Collapse
|
26
|
Hylton CA, Hansen K, Bourgeois A, Tomkiel Dean JE. Sex Chromosome Pairing Mediated by Euchromatic Homology in Drosophila Male Meiosis. Genetics 2020; 214:605-616. [PMID: 31915134 PMCID: PMC7054017 DOI: 10.1534/genetics.119.302936] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 01/03/2020] [Indexed: 01/15/2023] Open
Abstract
Diploid germline cells must undergo two consecutive meiotic divisions before differentiating as haploid sex cells. During meiosis I, homologs pair and remain conjoined until segregation at anaphase. Drosophila melanogaster spermatocytes are unique in that the canonical events of meiosis I including synaptonemal complex formation, double-strand DNA breaks, and chiasmata are absent. Sex chromosomes pair at intergenic spacer sequences within the ribosomal DNA (rDNA). Autosomes pair at numerous euchromatic homologies, but not at heterochromatin, suggesting that pairing may be limited to specific sequences. However, previous work generated from genetic segregation assays or observations of late prophase I/prometaphase I chromosome associations fail to differentiate pairing from maintenance of pairing (conjunction). Here, we separately examined the capability of X euchromatin to pair and conjoin using an rDNA-deficient X and a series of Dp(1;Y) chromosomes. Genetic assays showed that duplicated X euchromatin can substitute for endogenous rDNA pairing sites. Segregation was not proportional to homology length, and pairing could be mapped to nonoverlapping sequences within a single Dp(1;Y) Using fluorescence in situ hybridization to early prophase I spermatocytes, we showed that pairing occurred with high fidelity at all homologies tested. Pairing was unaffected by the presence of X rDNA, nor could it be explained by rDNA magnification. By comparing genetic and cytological data, we determined that centromere proximal pairings were best at segregation. Segregation was dependent on the conjunction protein Stromalin in Meiosis, while the autosomal-specific Teflon was dispensable. Overall, our results suggest that pairing may occur at all homologies, but there may be sequence or positional requirements for conjunction.
Collapse
Affiliation(s)
- Christopher A Hylton
- Department of Biology, University of North Carolina, Greensboro, North Carolina 27402
| | - Katie Hansen
- Department of Biology, University of North Carolina, Greensboro, North Carolina 27402
| | - Andrew Bourgeois
- Department of Biology, University of North Carolina, Greensboro, North Carolina 27402
| | - John E Tomkiel Dean
- Department of Biology, University of North Carolina, Greensboro, North Carolina 27402
| |
Collapse
|
27
|
Hinnant TD, Merkle JA, Ables ET. Coordinating Proliferation, Polarity, and Cell Fate in the Drosophila Female Germline. Front Cell Dev Biol 2020; 8:19. [PMID: 32117961 PMCID: PMC7010594 DOI: 10.3389/fcell.2020.00019] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 01/10/2020] [Indexed: 01/05/2023] Open
Abstract
Gametes are highly specialized cell types produced by a complex differentiation process. Production of viable oocytes requires a series of precise and coordinated molecular events. Early in their development, germ cells are an interconnected group of mitotically dividing cells. Key regulatory events lead to the specification of mature oocytes and initiate a switch to the meiotic cell cycle program. Though the chromosomal events of meiosis have been extensively studied, it is unclear how other aspects of oocyte specification are temporally coordinated. The fruit fly, Drosophila melanogaster, has long been at the forefront as a model system for genetics and cell biology research. The adult Drosophila ovary continuously produces germ cells throughout the organism’s lifetime, and many of the cellular processes that occur to establish oocyte fate are conserved with mammalian gamete development. Here, we review recent discoveries from Drosophila that advance our understanding of how early germ cells balance mitotic exit with meiotic initiation. We discuss cell cycle control and establishment of cell polarity as major themes in oocyte specification. We also highlight a germline-specific organelle, the fusome, as integral to the coordination of cell division, cell polarity, and cell fate in ovarian germ cells. Finally, we discuss how the molecular controls of the cell cycle might be integrated with cell polarity and cell fate to maintain oocyte production.
Collapse
Affiliation(s)
- Taylor D Hinnant
- Department of Biology, East Carolina University, Greenville, NC, United States
| | - Julie A Merkle
- Department of Biology, University of Evansville, Evansville, IN, United States
| | - Elizabeth T Ables
- Department of Biology, East Carolina University, Greenville, NC, United States
| |
Collapse
|
28
|
Duan T, Green N, Tootle TL, Geyer PK. Nuclear architecture as an intrinsic regulator of Drosophila female germline stem cell maintenance. CURRENT OPINION IN INSECT SCIENCE 2020; 37:30-38. [PMID: 32087561 PMCID: PMC7089816 DOI: 10.1016/j.cois.2019.11.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 11/08/2019] [Accepted: 11/13/2019] [Indexed: 05/08/2023]
Abstract
Homeostasis of Drosophila germline stem cells (GSC) depends upon the integration of intrinsic and extrinsic signals. This review highlights emerging data that support nuclear architecture as an intrinsic regulator of GSC maintenance and germ cell differentiation. Here, we focus on the nuclear lamina (NL) and the nucleolus, two compartments that undergo alterations in composition upon germ cell differentiation. Loss of NL or nucleolar components leads to GSC loss, resulting from activation of GSC quality control checkpoint pathways. We suggest that the NL and nucleolus integrate signals needed for the switch between GSC maintenance and germ cell differentiation, and propose regulation of nuclear actin pools as one mechanism that connects these compartments.
Collapse
Affiliation(s)
- Tingting Duan
- Departments of Biochemistry, University of Iowa, College of Medicine, Iowa City, IA 52242, USA
| | - Nicole Green
- Anatomy and Cell Biology, University of Iowa, College of Medicine, Iowa City, IA 52242, USA
| | - Tina L Tootle
- Anatomy and Cell Biology, University of Iowa, College of Medicine, Iowa City, IA 52242, USA
| | - Pamela K Geyer
- Departments of Biochemistry, University of Iowa, College of Medicine, Iowa City, IA 52242, USA.
| |
Collapse
|
29
|
Hatkevich T, Boudreau V, Rubin T, Maddox PS, Huynh JR, Sekelsky J. Centromeric SMC1 promotes centromere clustering and stabilizes meiotic homolog pairing. PLoS Genet 2019; 15:e1008412. [PMID: 31609962 PMCID: PMC6812850 DOI: 10.1371/journal.pgen.1008412] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/24/2019] [Accepted: 09/10/2019] [Indexed: 01/16/2023] Open
Abstract
During meiosis, each chromosome must selectively pair and synapse with its own unique homolog to enable crossover formation and subsequent segregation. How homolog pairing is maintained in early meiosis to ensure synapsis occurs exclusively between homologs is unknown. We aimed to further understand this process by examining the meiotic defects of a unique Drosophila mutant, Mcm5A7. We found that Mcm5A7 mutants are proficient in homolog pairing at meiotic onset yet fail to maintain pairing as meiotic synapsis ensues, causing seemingly normal synapsis between non-homologous loci. This pairing defect corresponds with a reduction of SMC1-dependent centromere clustering at meiotic onset. Overexpressing SMC1 in this mutant significantly restores centromere clustering, homolog pairing, and crossover formation. These data indicate that the initial meiotic pairing of homologs is not sufficient to yield synapsis exclusively between homologs and provide a model in which meiotic homolog pairing must be stabilized by centromeric SMC1 to ensure proper synapsis. Sexually reproducing organisms must produce gametes (sperm and eggs) that have one copy of each chromosome. This is accomplished through a special cell division called meiosis. Each chromosome replicates to generate identical sister chromatids, then finds and pairs with its unique partner chromosome. A well-regulated recombination process then generates crossovers between paired maternal/paternal partners; these crossovers ensure accurate chromosome segregation in meiosis. The pairing process is very poorly understood. The Drosophila melanogaster (fruit fly) Mcm5A7 mutation was previously shown to reduce crossovers but we show here that this is due to defects in meiotic chromosome pairing. We trace the primary defect to failure to load cohesins, which hold sister chromatids together but have additional roles in meiosis, at the centromere–the region that will later direct chromosome segregation. Thus, defects in centromeric cohesion lead to loss of chromosome pairing and loss of recombination along the arms of the chromosomes, and ultimately loss of fidelity during chromosome segregation.
Collapse
Affiliation(s)
- Talia Hatkevich
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Vincent Boudreau
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Thomas Rubin
- CIRB, Collège de France, PSL Research University, CNRS UMR7241, Inserm U1050, Paris, France
| | - Paul S. Maddox
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Jean-René Huynh
- CIRB, Collège de France, PSL Research University, CNRS UMR7241, Inserm U1050, Paris, France
| | - Jeff Sekelsky
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Integrative Program in Biological and Genome Sciences, University of North Carolina, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
30
|
Erceg J, AlHaj Abed J, Goloborodko A, Lajoie BR, Fudenberg G, Abdennur N, Imakaev M, McCole RB, Nguyen SC, Saylor W, Joyce EF, Senaratne TN, Hannan MA, Nir G, Dekker J, Mirny LA, Wu CT. The genome-wide multi-layered architecture of chromosome pairing in early Drosophila embryos. Nat Commun 2019; 10:4486. [PMID: 31582744 PMCID: PMC6776651 DOI: 10.1038/s41467-019-12211-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 08/27/2019] [Indexed: 12/13/2022] Open
Abstract
Genome organization involves cis and trans chromosomal interactions, both implicated in gene regulation, development, and disease. Here, we focus on trans interactions in Drosophila, where homologous chromosomes are paired in somatic cells from embryogenesis through adulthood. We first address long-standing questions regarding the structure of embryonic homolog pairing and, to this end, develop a haplotype-resolved Hi-C approach to minimize homolog misassignment and thus robustly distinguish trans-homolog from cis contacts. This computational approach, which we call Ohm, reveals pairing to be surprisingly structured genome-wide, with trans-homolog domains, compartments, and interaction peaks, many coinciding with analogous cis features. We also find a significant genome-wide correlation between pairing, transcription during zygotic genome activation, and binding of the pioneer factor Zelda. Our findings reveal a complex, highly structured organization underlying homolog pairing, first discovered a century ago in Drosophila. Finally, we demonstrate the versatility of our haplotype-resolved approach by applying it to mammalian embryos.
Collapse
Affiliation(s)
- Jelena Erceg
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Jumana AlHaj Abed
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Anton Goloborodko
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, 02139, USA
| | - Bryan R Lajoie
- Howard Hughes Medical Institute and Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605-0103, USA
- Illumina, San Diego, CA, USA
| | - Geoffrey Fudenberg
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, 02139, USA
- Gladstone Institutes of Data Science and Biotechnology, San Francisco, CA, 94158, USA
| | - Nezar Abdennur
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, 02139, USA
| | - Maxim Imakaev
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, 02139, USA
| | - Ruth B McCole
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Son C Nguyen
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- Department of Genetics, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104-6145, USA
| | - Wren Saylor
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Eric F Joyce
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- Department of Genetics, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104-6145, USA
| | - T Niroshini Senaratne
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Mohammed A Hannan
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Guy Nir
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
| | - Job Dekker
- Howard Hughes Medical Institute and Program in Systems Biology, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, 01605-0103, USA
| | - Leonid A Mirny
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology (MIT), Cambridge, MA, 02139, USA.
- Department of Physics, Massachusetts Institute of Technology (MIT), Cambridge, MA, 02139, USA.
| | - C-Ting Wu
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA.
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA.
| |
Collapse
|
31
|
X chromosome and autosomal recombination are differentially sensitive to disruptions in SC maintenance. Proc Natl Acad Sci U S A 2019; 116:21641-21650. [PMID: 31570610 DOI: 10.1073/pnas.1910840116] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The synaptonemal complex (SC) is a conserved meiotic structure that regulates the repair of double-strand breaks (DSBs) into crossovers or gene conversions. The removal of any central-region SC component, such as the Drosophila melanogaster transverse filament protein C(3)G, causes a complete loss of SC structure and crossovers. To better understand the role of the SC in meiosis, we used CRISPR/Cas9 to construct 3 in-frame deletions within the predicted coiled-coil region of the C(3)G protein. Since these 3 deletion mutations disrupt SC maintenance at different times during pachytene and exhibit distinct defects in key meiotic processes, they allow us to define the stages of pachytene when the SC is necessary for homolog pairing and recombination during pachytene. Our studies demonstrate that the X chromosome and the autosomes display substantially different defects in pairing and recombination when SC structure is disrupted, suggesting that the X chromosome is potentially regulated differently from the autosomes.
Collapse
|
32
|
Kizer M, Huntress ID, Walcott BD, Fraser K, Bystroff C, Wang X. Complex between a Multicrossover DNA Nanostructure, PX-DNA, and T7 Endonuclease I. Biochemistry 2019; 58:1332-1342. [PMID: 30794750 DOI: 10.1021/acs.biochem.9b00057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Paranemic crossover DNA (PX-DNA) is a four-stranded multicrossover structure that has been implicated in recombination-independent recognition of homology. Although existing evidence has suggested that PX is the DNA motif in homologous pairing (HP), this conclusion remains ambiguous. Further investigation is needed but will require development of new tools. Here, we report characterization of the complex between PX-DNA and T7 endonuclease I (T7endoI), a junction-resolving protein that could serve as the prototype of an anti-PX ligand (a critical prerequisite for the future development of such tools). Specifically, nuclease-inactive T7endoI was produced and its ability to bind to PX-DNA was analyzed using a gel retardation assay. The molar ratio of PX to T7endoI was determined using gel electrophoresis and confirmed by the Hill equation. Hydroxyl radical footprinting of T7endoI on PX-DNA is used to verify the positive interaction between PX and T7endoI and to provide insight into the binding region. Cleavage of PX-DNA by wild-type T7endoI produces DNA fragments, which were used to identify the interacting sites on PX for T7endoI and led to a computational model of their interaction. Altogether, this study has identified a stable complex of PX-DNA and T7endoI and lays the foundation for engineering an anti-PX ligand, which can potentially assist in the study of molecular mechanisms for HP at an advanced level.
Collapse
Affiliation(s)
- Megan Kizer
- Department of Chemistry and Chemical Biology , Rensselaer Polytechnic Institute , Troy , New York 12180 , United States.,Center for Biotechnology and Interdisciplinary Studies , Rensselaer Polytechnic Institute , Troy , New York 12180 , United States
| | - Ian D Huntress
- Programs of Bioinformatics and Molecular Biology , Rensselaer Polytechnic Institute , Troy , New York 12180 , United States.,Center for Biotechnology and Interdisciplinary Studies , Rensselaer Polytechnic Institute , Troy , New York 12180 , United States
| | - Benjamin D Walcott
- Department of Biology , Rensselaer Polytechnic Institute , Troy , New York 12180 , United States.,Center for Biotechnology and Interdisciplinary Studies , Rensselaer Polytechnic Institute , Troy , New York 12180 , United States
| | - Keith Fraser
- Department of Biology , Rensselaer Polytechnic Institute , Troy , New York 12180 , United States.,Center for Biotechnology and Interdisciplinary Studies , Rensselaer Polytechnic Institute , Troy , New York 12180 , United States
| | - Christopher Bystroff
- Department of Biology , Rensselaer Polytechnic Institute , Troy , New York 12180 , United States.,Center for Biotechnology and Interdisciplinary Studies , Rensselaer Polytechnic Institute , Troy , New York 12180 , United States
| | - Xing Wang
- Department of Chemistry and Chemical Biology , Rensselaer Polytechnic Institute , Troy , New York 12180 , United States.,Center for Biotechnology and Interdisciplinary Studies , Rensselaer Polytechnic Institute , Troy , New York 12180 , United States
| |
Collapse
|
33
|
Habig M, Kema GHJ, Holtgrewe Stukenbrock E. Meiotic drive of female-inherited supernumerary chromosomes in a pathogenic fungus. eLife 2018; 7:e40251. [PMID: 30543518 PMCID: PMC6331196 DOI: 10.7554/elife.40251] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 12/13/2018] [Indexed: 01/03/2023] Open
Abstract
Meiosis is a key cellular process of sexual reproduction that includes pairing of homologous sequences. In many species however, meiosis can also involve the segregation of supernumerary chromosomes, which can lack a homolog. How these unpaired chromosomes undergo meiosis is largely unknown. In this study we investigated chromosome segregation during meiosis in the haploid fungus Zymoseptoria tritici that possesses a large complement of supernumerary chromosomes. We used isogenic whole chromosome deletion strains to compare meiotic transmission of chromosomes when paired and unpaired. Unpaired chromosomes inherited from the male parent as well as paired supernumerary chromosomes in general showed Mendelian inheritance. In contrast, unpaired chromosomes inherited from the female parent showed non-Mendelian inheritance but were amplified and transmitted to all meiotic products. We concluded that the supernumerary chromosomes of Z. tritici show a meiotic drive and propose an additional feedback mechanism during meiosis, which initiates amplification of unpaired female-inherited chromosomes.
Collapse
Affiliation(s)
- Michael Habig
- Environmental GenomicsChristian-Albrechts University of KielKielGermany
- Max Planck Institute for Evolutionary BiologyPlönGermany
| | - Gert HJ Kema
- Wageningen Plant ResearchWageningen University and ResearchWageningenThe Netherlands
- Laboratory of PhytopathologyWageningen University and ResearchWageningenThe Netherlands
| | - Eva Holtgrewe Stukenbrock
- Environmental GenomicsChristian-Albrechts University of KielKielGermany
- Max Planck Institute for Evolutionary BiologyPlönGermany
| |
Collapse
|
34
|
Female Meiosis: Synapsis, Recombination, and Segregation in Drosophila melanogaster. Genetics 2018; 208:875-908. [PMID: 29487146 PMCID: PMC5844340 DOI: 10.1534/genetics.117.300081] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 10/18/2017] [Indexed: 12/11/2022] Open
Abstract
A century of genetic studies of the meiotic process in Drosophila melanogaster females has been greatly augmented by both modern molecular biology and major advances in cytology. These approaches, and the findings they have allowed, are the subject of this review. Specifically, these efforts have revealed that meiotic pairing in Drosophila females is not an extension of somatic pairing, but rather occurs by a poorly understood process during premeiotic mitoses. This process of meiotic pairing requires the function of several components of the synaptonemal complex (SC). When fully assembled, the SC also plays a critical role in maintaining homolog synapsis and in facilitating the maturation of double-strand breaks (DSBs) into mature crossover (CO) events. Considerable progress has been made in elucidating not only the structure, function, and assembly of the SC, but also the proteins that facilitate the formation and repair of DSBs into both COs and noncrossovers (NCOs). The events that control the decision to mature a DSB as either a CO or an NCO, as well as determining which of the two CO pathways (class I or class II) might be employed, are also being characterized by genetic and genomic approaches. These advances allow a reconsideration of meiotic phenomena such as interference and the centromere effect, which were previously described only by genetic studies. In delineating the mechanisms by which the oocyte controls the number and position of COs, it becomes possible to understand the role of CO position in ensuring the proper orientation of homologs on the first meiotic spindle. Studies of bivalent orientation have occurred in the context of numerous investigations into the assembly, structure, and function of the first meiotic spindle. Additionally, studies have examined the mechanisms ensuring the segregation of chromosomes that have failed to undergo crossing over.
Collapse
|
35
|
Barton LJ, Duan T, Ke W, Luttinger A, Lovander KE, Soshnev AA, Geyer PK. Nuclear lamina dysfunction triggers a germline stem cell checkpoint. Nat Commun 2018; 9:3960. [PMID: 30262885 PMCID: PMC6160405 DOI: 10.1038/s41467-018-06277-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 08/13/2018] [Indexed: 12/13/2022] Open
Abstract
LEM domain (LEM-D) proteins are conserved components of the nuclear lamina (NL) that contribute to stem cell maintenance through poorly understood mechanisms. The Drosophila emerin homolog Otefin (Ote) is required for maintenance of germline stem cells (GSCs) and gametogenesis. Here, we show that ote mutants carry germ cell-specific changes in nuclear architecture that are linked to GSC loss. Strikingly, we found that both GSC death and gametogenesis are rescued by inactivation of the DNA damage response (DDR) kinases, ATR and Chk2. Whereas the germline checkpoint draws from components of the DDR pathway, genetic and cytological features of the GSC checkpoint differ from the canonical pathway. Instead, structural deformation of the NL correlates with checkpoint activation. Despite remarkably normal oogenesis, rescued oocytes do not support embryogenesis. Taken together, these data suggest that NL dysfunction caused by Otefin loss triggers a GSC-specific checkpoint that contributes to maintenance of gamete quality. Otefin is a nuclear lamina protein required for survival of Drosophila germ stem cells. Here the authors show that nuclear lamina dysfunction resulting from loss of Otefin activates a DNA damage-independent germ stem cell-specific checkpoint, mediated by the ATR and Chk2 kinases, which ensures that healthy gametes are passed on to the next generation.
Collapse
Affiliation(s)
- Lacy J Barton
- Department of Biochemistry, University of Iowa, Iowa City, IA, 52242, USA.,Department of Cell Biology, Skirball Institute, NYU School of Medicine, 540 First Avenue, New York, NY, 10016, USA
| | - Tingting Duan
- Department of Biochemistry, University of Iowa, Iowa City, IA, 52242, USA
| | - Wenfan Ke
- Department of Biochemistry, University of Iowa, Iowa City, IA, 52242, USA.,Department of Biology, University of Virginia, 485 McCormick Rd, Charlottesville, VA, 22904, USA
| | - Amy Luttinger
- Department of Biochemistry, University of Iowa, Iowa City, IA, 52242, USA
| | - Kaylee E Lovander
- Department of Biochemistry, University of Iowa, Iowa City, IA, 52242, USA
| | - Alexey A Soshnev
- Department of Biochemistry, University of Iowa, Iowa City, IA, 52242, USA.,Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Pamela K Geyer
- Department of Biochemistry, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
36
|
Rosin LF, Nguyen SC, Joyce EF. Condensin II drives large-scale folding and spatial partitioning of interphase chromosomes in Drosophila nuclei. PLoS Genet 2018; 14:e1007393. [PMID: 30001329 PMCID: PMC6042687 DOI: 10.1371/journal.pgen.1007393] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 05/03/2018] [Indexed: 12/26/2022] Open
Abstract
Metazoan chromosomes are folded into discrete sub-nuclear domains, referred to as chromosome territories (CTs). The molecular mechanisms that underlie the formation and maintenance of CTs during the cell cycle remain largely unknown. Here, we have developed high-resolution chromosome paints to investigate CT organization in Drosophila cycling cells. We show that large-scale chromosome folding patterns and levels of chromosome intermixing are remarkably stable across various cell types. Our data also suggest that the nucleus scales to accommodate fluctuations in chromosome size throughout the cell cycle, which limits the degree of intermixing between neighboring CTs. Finally, we show that the cohesin and condensin complexes are required for different scales of chromosome folding, with condensin II being especially important for the size, shape, and level of intermixing between CTs in interphase. These findings suggest that large-scale chromosome folding driven by condensin II influences the extent to which chromosomes interact, which may have direct consequences for cell-type specific genome stability.
Collapse
Affiliation(s)
- Leah F. Rosin
- Department of Genetics, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Son C. Nguyen
- Department of Genetics, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Eric F. Joyce
- Department of Genetics, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
37
|
Wang X, Chandrasekaran AR, Shen Z, Ohayon YP, Wang T, Kizer ME, Sha R, Mao C, Yan H, Zhang X, Liao S, Ding B, Chakraborty B, Jonoska N, Niu D, Gu H, Chao J, Gao X, Li Y, Ciengshin T, Seeman NC. Paranemic Crossover DNA: There and Back Again. Chem Rev 2018; 119:6273-6289. [PMID: 29911864 DOI: 10.1021/acs.chemrev.8b00207] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Over the past 35 years, DNA has been used to produce various nanometer-scale constructs, nanomechanical devices, and walkers. Construction of complex DNA nanostructures relies on the creation of rigid DNA motifs. Paranemic crossover (PX) DNA is one such motif that has played many roles in DNA nanotechnology. Specifically, PX cohesion has been used to connect topologically closed molecules, to assemble a three-dimensional object, and to create two-dimensional DNA crystals. Additionally, a sequence-dependent nanodevice based on conformational change between PX and its topoisomer, JX2, has been used in robust nanoscale assembly lines, as a key component in a DNA transducer, and to dictate polymer assembly. Furthermore, the PX motif has recently found a new role directly in basic biology, by possibly serving as the molecular structure for double-stranded DNA homology recognition, a prominent feature of molecular biology and essential for many crucial biological processes. This review discusses the many attributes and usages of PX-DNA-its design, characteristics, applications, and potential biological relevance-and aims to accelerate the understanding of PX-DNA motif in its many roles and manifestations.
Collapse
Affiliation(s)
- Xing Wang
- Department of Chemistry and Chemical Biology and The Center for Biotechnology and Interdisciplinary Studies , Rensselaer Polytechnic Institute , Troy , New York 12180 , United States
| | | | - Zhiyong Shen
- College of Chemistry and Materials Science , Anhui Normal University , Wuhu , Anhui 241000 , China
| | - Yoel P Ohayon
- Department of Chemistry , New York University , New York , New York 10012 , United States
| | - Tong Wang
- Department of Chemistry , New York University , New York , New York 10012 , United States
| | - Megan E Kizer
- Department of Chemistry and Chemical Biology and The Center for Biotechnology and Interdisciplinary Studies , Rensselaer Polytechnic Institute , Troy , New York 12180 , United States
| | - Ruojie Sha
- Department of Chemistry , New York University , New York , New York 10012 , United States
| | - Chengde Mao
- Department of Chemistry , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Hao Yan
- Department of Chemistry and Biochemistry and The Biodesign Institute , Arizona State University , Tempe , Arizona 85287 , United States
| | - Xiaoping Zhang
- Department of Chemistry , New York University , New York , New York 10012 , United States
| | - Shiping Liao
- Department of Chemistry , New York University , New York , New York 10012 , United States
| | - Baoquan Ding
- Department of Chemistry , New York University , New York , New York 10012 , United States
| | - Banani Chakraborty
- Department of Chemistry , New York University , New York , New York 10012 , United States
| | - Natasha Jonoska
- Department of Mathematics and Statistics , University of South Florida , Tampa , Florida 33620 , United States
| | - Dong Niu
- Department of Chemistry , New York University , New York , New York 10012 , United States
| | - Hongzhou Gu
- Department of Chemistry , New York University , New York , New York 10012 , United States
| | - Jie Chao
- Department of Chemistry , New York University , New York , New York 10012 , United States
| | - Xiang Gao
- Department of Chemistry , New York University , New York , New York 10012 , United States
| | - Yuhang Li
- Department of Chemistry , New York University , New York , New York 10012 , United States
| | - Tanashaya Ciengshin
- Department of Chemistry , New York University , New York , New York 10012 , United States
| | - Nadrian C Seeman
- Department of Chemistry , New York University , New York , New York 10012 , United States
| |
Collapse
|
38
|
Spermiogenesis and Male Fertility Require the Function of Suppressor of Hairy-Wing in Somatic Cyst Cells of Drosophila. Genetics 2018; 209:757-772. [PMID: 29739818 DOI: 10.1534/genetics.118.301088] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 05/01/2018] [Indexed: 02/07/2023] Open
Abstract
Drosophila Suppressor of Hairy-wing [Su(Hw)] protein is an example of a multivalent transcription factor. Although best known for its role in establishing the chromatin insulator of the gypsy retrotransposon, Su(Hw) functions as an activator and repressor at non-gypsy genomic sites. It remains unclear how the different regulatory activities of Su(Hw) are utilized during development. Motivated from observations of spatially restricted expression of Su(Hw) in the testis, we investigated the role of Su(Hw) in spermatogenesis to advance an understanding of its developmental contributions as an insulator, repressor, and activator protein. We discovered that Su(Hw) is required for sustained male fertility. Although dynamics of Su(Hw) expression coincide with changes in nuclear architecture and activation of coregulated testis-specific gene clusters, we show that loss of Su(Hw) does not disrupt meiotic chromosome pairing or transcription of testis-specific genes, suggesting that Su(Hw) has minor architectural or insulator functions in the testis. Instead, Su(Hw) has a prominent role as a repressor of neuronal genes, consistent with suggestions that Su(Hw) is a functional homolog of mammalian REST, a repressor of neuronal genes in non-neuronal tissues. We show that Su(Hw) regulates transcription in both germline and somatic cells. Surprisingly, the essential spermatogenesis function of Su(Hw) resides in somatic cyst cells, implying context-specific consequences due to loss of this transcription factor. Together, our studies highlight that Su(Hw) has a major developmental function as a transcriptional repressor, with the effect of its loss dependent upon the cell-specific factors.
Collapse
|
39
|
Lu KL, Nelson JO, Watase GJ, Warsinger-Pepe N, Yamashita YM. Transgenerational dynamics of rDNA copy number in Drosophila male germline stem cells. eLife 2018; 7:32421. [PMID: 29436367 PMCID: PMC5811208 DOI: 10.7554/elife.32421] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 01/19/2018] [Indexed: 02/02/2023] Open
Abstract
rDNA loci, composed of hundreds of tandemly duplicated arrays of rRNA genes, are known to be among the most unstable genetic elements due to their repetitive nature. rDNA instability underlies aging (replicative senescence) in yeast cells, however, its contribution to the aging of multicellular organisms is poorly understood. In this study, we investigate the dynamics of rDNA loci during aging in the Drosophila male germline stem cell (GSC) lineage, and show that rDNA copy number decreases during aging. Our study further reveals that this age-dependent decrease in rDNA copy number is heritable from generation to generation, yet GSCs in young animals that inherited reduced rDNA copy number are capable of recovering normal rDNA copy number. Based on these findings, we propose that rDNA loci are dynamic genetic elements, where rDNA copy number changes dynamically yet is maintained through a recovery mechanism in the germline.
Collapse
Affiliation(s)
- Kevin L Lu
- Life Sciences Institute, University of Michigan, Ann Arbor, United States.,Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, United States.,Medical Scientist Training Program, University of Michigan, Ann Arbor, United States
| | - Jonathan O Nelson
- Life Sciences Institute, University of Michigan, Ann Arbor, United States.,Howard Hughes Medical Institute, University of Michigan, Ann Arbor, United States
| | - George J Watase
- Life Sciences Institute, University of Michigan, Ann Arbor, United States.,Howard Hughes Medical Institute, University of Michigan, Ann Arbor, United States
| | - Natalie Warsinger-Pepe
- Life Sciences Institute, University of Michigan, Ann Arbor, United States.,Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, United States
| | - Yukiko M Yamashita
- Life Sciences Institute, University of Michigan, Ann Arbor, United States.,Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, United States.,Howard Hughes Medical Institute, University of Michigan, Ann Arbor, United States.,Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, United States
| |
Collapse
|
40
|
Stevison LS, Sefick S, Rushton C, Graze RM. Recombination rate plasticity: revealing mechanisms by design. Philos Trans R Soc Lond B Biol Sci 2017; 372:20160459. [PMID: 29109222 PMCID: PMC5698621 DOI: 10.1098/rstb.2016.0459] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2017] [Indexed: 12/13/2022] Open
Abstract
For over a century, scientists have known that meiotic recombination rates can vary considerably among individuals, and that environmental conditions can modify recombination rates relative to the background. A variety of external and intrinsic factors such as temperature, age, sex and starvation can elicit 'plastic' responses in recombination rate. The influence of recombination rate plasticity on genetic diversity of the next generation has interesting and important implications for how populations evolve. Further, many questions remain regarding the mechanisms and molecular processes that contribute to recombination rate plasticity. Here, we review 100 years of experimental work on recombination rate plasticity conducted in Drosophila melanogaster We categorize this work into four major classes of experimental designs, which we describe via classic studies in D. melanogaster Based on these studies, we highlight molecular mechanisms that are supported by experimental results and relate these findings to studies in other systems. We synthesize lessons learned from this model system into experimental guidelines for using recent advances in genotyping technologies, to study recombination rate plasticity in non-model organisms. Specifically, we recommend (1) using fine-scale genome-wide markers, (2) collecting time-course data, (3) including crossover distribution measurements, and (4) using mixed effects models to analyse results. To illustrate this approach, we present an application adhering to these guidelines from empirical work we conducted in Drosophila pseudoobscuraThis article is part of the themed issue 'Evolutionary causes and consequences of recombination rate variation in sexual organisms'.
Collapse
Affiliation(s)
- Laurie S Stevison
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Stephen Sefick
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Chase Rushton
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| | - Rita M Graze
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
41
|
Perkins AT, Bickel SE. Using Fluorescence In Situ Hybridization (FISH) to Monitor the State of Arm Cohesion in Prometaphase and Metaphase I Drosophila Oocytes. J Vis Exp 2017. [PMID: 29286418 DOI: 10.3791/56802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
In humans, chromosome segregation errors in oocytes are responsible for the majority of miscarriages and birth defects. Moreover, as women age, their risk of conceiving an aneuploid fetus increases dramatically and this phenomenon is known as the maternal age effect. One requirement for accurate chromosome segregation during the meiotic divisions is maintenance of sister chromatid cohesion during the extended prophase period that oocytes experience. Cytological evidence in both humans and model organisms suggests that meiotic cohesion deteriorates during the aging process. In addition, segregation errors in human oocytes are most prevalent during meiosis I, consistent with premature loss of arm cohesion. The use of model organisms is critical for unraveling the mechanisms that underlie age-dependent loss of cohesion. Drosophila melanogaster offers several advantages for studying the regulation of meiotic cohesion in oocytes. However, until recently, only genetic tests were available to assay for loss of arm cohesion in oocytes of different genotypes or under different experimental conditions. Here, a detailed protocol is provided for using fluorescence in situ hybridization (FISH) to directly visualize defects in arm cohesion in prometaphase I and metaphase I arrested Drosophila oocytes. By generating a FISH probe that hybridizes to the distal arm of the X chromosome and collecting confocal Z stacks, a researcher can visualize the number of individual FISH signals in three dimensions and determine whether sister chromatid arms are separated. The procedure outlined makes it possible to quantify arm cohesion defects in hundreds of Drosophila oocytes. As such, this method provides an important tool for investigating the mechanisms that contribute to cohesion maintenance as well as the factors that lead to its demise during the aging process.
Collapse
|
42
|
Regulating the construction and demolition of the synaptonemal complex. Nat Struct Mol Biol 2017; 23:369-77. [PMID: 27142324 DOI: 10.1038/nsmb.3208] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 03/18/2016] [Indexed: 01/11/2023]
Abstract
The synaptonemal complex (SC) is a meiosis-specific scaffold that links homologous chromosomes from end to end during meiotic prophase and is required for the formation of meiotic crossovers. Assembly of SC components is regulated by a combination of associated nonstructural proteins and post-translational modifications, such as SUMOylation, which together coordinate the timing between homologous chromosome pairing, double-strand-break formation and recombination. In addition, transcriptional and translational control mechanisms ensure the timely disassembly of the SC after crossover resolution and before chromosome segregation at anaphase I.
Collapse
|
43
|
Comparative Analysis of Satellite DNA in the Drosophila melanogaster Species Complex. G3-GENES GENOMES GENETICS 2017; 7:693-704. [PMID: 28007840 PMCID: PMC5295612 DOI: 10.1534/g3.116.035352] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Satellite DNAs are highly repetitive sequences that account for the majority of constitutive heterochromatin in many eukaryotic genomes. It is widely recognized that sequences and locations of satellite DNAs are highly divergent even in closely related species, contributing to the hypothesis that satellite DNA differences may underlie speciation. However, due to its repetitive nature, the mapping of satellite DNAs has been mostly left out of recent genomics analyses, hampering the use of molecular genetics techniques to better understand their role in speciation and evolution. Satellite DNAs are most extensively and comprehensively mapped in Drosophila melanogaster, a species that is also an excellent model system with which to study speciation. Yet the lack of comprehensive knowledge regarding satellite DNA identity and location in its sibling species (D. simulans, D. mauritiana, and D. sechellia) has prevented the full utilization of D. melanogaster in studying speciation. To overcome this problem, we initiated the mapping of satellite DNAs on the genomes of the D. melanogaster species complex (D. melanogaster, D. simulans, D. mauritiana, and D. sechellia) using multi-color fluorescent in situ hybridization (FISH) probes. Our study confirms a striking divergence of satellite DNAs in the D. melanogaster species complex, even among the closely related species of the D. simulans clade (D. simulans, D. mauritiana, and D. sechellia), and suggests the presence of unidentified satellite sequences in these species.
Collapse
|
44
|
Rana V, Bosco G. Condensin Regulation of Genome Architecture. J Cell Physiol 2017; 232:1617-1625. [PMID: 27888504 DOI: 10.1002/jcp.25702] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 11/22/2016] [Indexed: 02/06/2023]
Abstract
Condensin complexes exist across all domains of life and are central to the structure and organization of chromatin. As architectural proteins, condensins control chromatin compaction during interphase and mitosis. Condensin activity has been well studied in mitosis but have recently emerged as important regulators of genome organization and gene expression during interphase. Here, we focus our discussion on recent findings on the molecular mechanism and how condensins are used to shape chromosomes during interphase. These findings suggest condensin activity during interphase is required for proper chromosome organization. J. Cell. Physiol. 232: 1617-1625, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Vibhuti Rana
- Department of Molecular Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| | - Giovanni Bosco
- Department of Molecular Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire
| |
Collapse
|
45
|
Affiliation(s)
- Thomas Rubin
- a Department of Genetics and Developmental Biology , Institut Curie , Paris , France.,b CNRS UMR3215 , Inserm U934 F-75248, Paris , France
| | - Nicolas Christophorou
- a Department of Genetics and Developmental Biology , Institut Curie , Paris , France.,b CNRS UMR3215 , Inserm U934 F-75248, Paris , France
| | - Jean-René Huynh
- a Department of Genetics and Developmental Biology , Institut Curie , Paris , France.,b CNRS UMR3215 , Inserm U934 F-75248, Paris , France
| |
Collapse
|
46
|
Investigating the Interplay between Sister Chromatid Cohesion and Homolog Pairing in Drosophila Nuclei. PLoS Genet 2016; 12:e1006169. [PMID: 27541002 PMCID: PMC4991795 DOI: 10.1371/journal.pgen.1006169] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 06/14/2016] [Indexed: 11/19/2022] Open
Abstract
Following DNA replication, sister chromatids must stay connected for the remainder of the cell cycle in order to ensure accurate segregation in the subsequent cell division. This important function involves an evolutionarily conserved protein complex known as cohesin; any loss of cohesin causes premature sister chromatid separation in mitosis. Here, we examined the role of cohesin in sister chromatid cohesion prior to mitosis, using fluorescence in situ hybridization (FISH) to assay the alignment of sister chromatids in interphase Drosophila cells. Surprisingly, we found that sister chromatid cohesion can be maintained in G2 with little to no cohesin. This capacity to maintain cohesion is widespread in Drosophila, unlike in other systems where a reduced dependence on cohesin for sister chromatid segregation has been observed only at specific chromosomal regions, such as the rDNA locus in budding yeast. Additionally, we show that condensin II antagonizes the alignment of sister chromatids in interphase, supporting a model wherein cohesin and condensin II oppose each other’s functions in the alignment of sister chromatids. Finally, because the maternal and paternal homologs are paired in the somatic cells of Drosophila, and because condensin II has been shown to antagonize this pairing, we consider the possibility that condensin II-regulated mechanisms for aligning homologous chromosomes may also contribute to sister chromatid cohesion. As cells grow, they replicate their DNA to give rise to two copies of each chromosome, known as sister chromatids, which separate from each other once the cell divides. To ensure that sister chromatids end up in different daughter cells, they are kept together from DNA replication until mitosis via a connection known as cohesion. A protein complex known as cohesin is essential for this process. Our work in Drosophila cells suggests that factors other than cohesin also contribute to sister chromatid cohesion in interphase. Additionally, we observed that the alignment of sister chromatids is regulated by condensin II, a protein complex involved in the compaction of chromosomes prior to division as well as the regulation of inter-chromosomal associations. These findings highlight that, in addition to their important individual functions, cohesin and condensin II proteins may interact to organize chromosomes over the course of the cell cycle. Finally, building on prior observations that condensin II is involved in the regulation of somatic homolog pairing in Drosophila, our work suggests that the mechanisms underlying homolog pairing may also contribute to sister chromatid cohesion.
Collapse
|
47
|
Zhaunova L, Ohkura H, Breuer M. Kdm5/Lid Regulates Chromosome Architecture in Meiotic Prophase I Independently of Its Histone Demethylase Activity. PLoS Genet 2016; 12:e1006241. [PMID: 27494704 PMCID: PMC4975413 DOI: 10.1371/journal.pgen.1006241] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 07/13/2016] [Indexed: 12/03/2022] Open
Abstract
During prophase of the first meiotic division (prophase I), chromatin dynamically reorganises to recombine and prepare for chromosome segregation. Histone modifying enzymes are major regulators of chromatin structure, but our knowledge of their roles in prophase I is still limited. Here we report on crucial roles of Kdm5/Lid, one of two histone demethylases in Drosophila that remove one of the trimethyl groups at Lys4 of Histone 3 (H3K4me3). In the absence of Kdm5/Lid, the synaptonemal complex was only partially formed and failed to be maintained along chromosome arms, while localisation of its components at centromeres was unaffected. Kdm5/Lid was also required for karyosome formation and homologous centromere pairing in prophase I. Although loss of Kdm5/Lid dramatically increased the level of H3K4me3 in oocytes, catalytically inactive Kdm5/Lid can rescue the above cytological defects. Therefore Kdm5/Lid controls chromatin architecture in meiotic prophase I oocytes independently of its demethylase activity. Accurate transmission of chromosomes carrying genetic materials from generation to generation is essential for life. Cell divisions that generate gametes, such as eggs and sperm, are critical, as chromosomes inherited from both parents recombine and are accurately sorted into gametes. Errors in these cell divisions often result in infertility, miscarriages or birth defects such as Down syndrome in humans. During these divisions, chromosomes undergo dramatic reorganisation but the molecular mechanisms are not well understood. Chromosome organisation is known to be regulated by various epigenetic marks, which are chemical marks on chromatin crucial for regulating gene expression. We found that an enzyme (Kdm5/Lid) that erases a mark linked to active gene expression regulates multiple aspects of meiotic chromatin organisation in oocytes, including stability of the recombination machinery. Unexpectedly, this function does not require its enzymatic activity. Our findings provide novel insights into how chromosomes are reorganised during reproduction and prompt re-evaluation of the role of this eraser enzyme.
Collapse
Affiliation(s)
- Liudmila Zhaunova
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Hiroyuki Ohkura
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- * E-mail:
| | - Manuel Breuer
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
48
|
Gladyshev E, Kleckner N. Recombination-Independent Recognition of DNA Homology for Repeat-Induced Point Mutation (RIP) Is Modulated by the Underlying Nucleotide Sequence. PLoS Genet 2016; 12:e1006015. [PMID: 27148882 PMCID: PMC4858203 DOI: 10.1371/journal.pgen.1006015] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 04/06/2016] [Indexed: 11/18/2022] Open
Abstract
Haploid germline nuclei of many filamentous fungi have the capacity to detect homologous nucleotide sequences present on the same or different chromosomes. Once recognized, such sequences can undergo cytosine methylation or cytosine-to-thymine mutation specifically over the extent of shared homology. In Neurospora crassa this process is known as Repeat-Induced Point mutation (RIP). Previously, we showed that RIP did not require MEI-3, the only RecA homolog in Neurospora, and that it could detect homologous trinucleotides interspersed with a matching periodicity of 11 or 12 base-pairs along participating chromosomal segments. This pattern was consistent with a mechanism of homology recognition that involved direct interactions between co-aligned double-stranded (ds) DNA molecules, where sequence-specific dsDNA/dsDNA contacts could be established using no more than one triplet per turn. In the present study we have further explored the DNA sequence requirements for RIP. In our previous work, interspersed homologies were always examined in the context of a relatively long adjoining region of perfect homology. Using a new repeat system lacking this strong interaction, we now show that interspersed homologies with overall sequence identity of only 36% can be efficiently detected by RIP in the absence of any perfect homology. Furthermore, in this new system, where the total amount of homology is near the critical threshold required for RIP, the nucleotide composition of participating DNA molecules is identified as an important factor. Our results specifically pinpoint the triplet 5'-GAC-3' as a particularly efficient unit of homology recognition. Finally, we present experimental evidence that the process of homology sensing can be uncoupled from the downstream mutation. Taken together, our results advance the notion that sequence information can be compared directly between double-stranded DNA molecules during RIP and, potentially, in other processes where homologous pairing of intact DNA molecules is observed.
Collapse
Affiliation(s)
- Eugene Gladyshev
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
- * E-mail: (EG); (NK)
| | - Nancy Kleckner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, United States of America
- * E-mail: (EG); (NK)
| |
Collapse
|
49
|
Hemmer LW, Blumenstiel JP. Holding it together: rapid evolution and positive selection in the synaptonemal complex of Drosophila. BMC Evol Biol 2016; 16:91. [PMID: 27150275 PMCID: PMC4857336 DOI: 10.1186/s12862-016-0670-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 04/27/2016] [Indexed: 11/21/2022] Open
Abstract
Background The synaptonemal complex (SC) is a highly conserved meiotic structure that functions to pair homologs and facilitate meiotic recombination in most eukaryotes. Five Drosophila SC proteins have been identified and localized within the complex: C(3)G, C(2)M, CONA, ORD, and the newly identified Corolla. The SC is required for meiotic recombination in Drosophila and absence of these proteins leads to reduced crossing over and chromosomal nondisjunction. Despite the conserved nature of the SC and the key role that these five proteins have in meiosis in D. melanogaster, they display little apparent sequence conservation outside the genus. To identify factors that explain this lack of apparent conservation, we performed a molecular evolutionary analysis of these genes across the Drosophila genus. Results For the five SC components, gene sequence similarity declines rapidly with increasing phylogenetic distance and only ORD and C(2)M are identifiable outside of the Drosophila genus. SC gene sequences have a higher dN/dS (ω) rate ratio than the genome wide average and this can in part be explained by the action of positive selection in almost every SC component. Across the genus, there is significant variation in ω for each protein. It further appears that ω estimates for the five SC components are in accordance with their physical position within the SC. Components interacting with chromatin evolve slowest and components comprising the central elements evolve the most rapidly. Finally, using population genetic approaches, we demonstrate that positive selection on SC components is ongoing. Conclusions SC components within Drosophila show little apparent sequence homology to those identified in other model organisms due to their rapid evolution. We propose that the Drosophila SC is evolving rapidly due to two combined effects. First, we propose that a high rate of evolution can be partly explained by low purifying selection on protein components whose function is to simply hold chromosomes together. We also propose that positive selection in the SC is driven by its sex-specificity combined with its role in facilitating both recombination and centromere clustering in the face of recurrent bouts of drive in female meiosis. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0670-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lucas W Hemmer
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, 66045, USA.
| | - Justin P Blumenstiel
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, 66045, USA
| |
Collapse
|
50
|
Joyce EF, Erceg J, Wu CT. Pairing and anti-pairing: a balancing act in the diploid genome. Curr Opin Genet Dev 2016; 37:119-128. [PMID: 27065367 DOI: 10.1016/j.gde.2016.03.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/02/2016] [Accepted: 03/05/2016] [Indexed: 12/22/2022]
Abstract
The presence of maternal and paternal homologs appears to be much more than just a doubling of genetic material. We know this because genomes have evolved elaborate mechanisms that permit homologous regions to sense and then respond to each other. One way in which homologs communicate is to come into contact and, in fact, Dipteran insects such as Drosophila excel at this task, aligning all pairs of maternal and paternal chromosomes, end-to-end, in essentially all somatic tissues throughout development. Here, we reexamine the widely held tenet that extensive somatic pairing of homologous sequences cannot occur in mammals and suggest, instead, that pairing may be a widespread and significant potential that has gone unnoticed in mammals because they expend considerable effort to prevent it. We then extend this discussion to interchromosomal interactions, in general, and speculate about the potential of nuclear organization and pairing to impact inheritance.
Collapse
Affiliation(s)
- Eric F Joyce
- Department of Genetics, Harvard Medical School, Boston, MA 02115, United States.
| | - Jelena Erceg
- Department of Genetics, Harvard Medical School, Boston, MA 02115, United States
| | - C-Ting Wu
- Department of Genetics, Harvard Medical School, Boston, MA 02115, United States.
| |
Collapse
|