1
|
Farid B, Saddique MAB, Tahir MHN, Ikram RM, Ali Z, Akbar W. Expression divergence of BAG gene family in maize under heat stress. BMC PLANT BIOLOGY 2025; 25:16. [PMID: 39754085 PMCID: PMC11699707 DOI: 10.1186/s12870-024-06020-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/26/2024] [Indexed: 01/06/2025]
Abstract
Heat stress poses a significant challenge for maize production, especially during the spring when high temperatures disrupt cellular processes, impeding plant growth and development. The B-cell lymphoma-2 (Bcl-2) associated athanogene (BAG) gene family is known to be relatively conserved across various species. It plays a crucial role as molecular chaperone cofactors that are responsible for programmed cell death and tumorigenesis. Once the plant is under heat stress, the BAG genes act as co-chaperones and modulate the molecular functions of HSP70/HSC70 saving the plant from the damage of high temperature stress. The study was planned to identify and characterize the BAG genes for heat stress responsiveness in maize. Twenty-one (21) BAG genes were identified in the latest maize genome. The evolutionary relationship of Zea mays BAGs (ZmBAGs) with Arabidopsis thaliana, Solanum lycopersicum, Theobroma cacao, Sorghum bicolor, Ananas comosus, Physcomitrium patens, Oryza sativa and Populus trichocarpa were represented by the phylogenetic analysis. Differential expressions of BAG gene family in leaf, endosperm, anther, silk, seed and developing embryo depict their contribution to the growth and development. The in-silico gene expression analysis indicated ZmBAG-8 (Zm00001eb170080), and ZmBAG-11 (Zm00001eb237960) showed higher expression under abiotic stresses (cold, heat and salinity). The RT-qPCR further confirmed the expression of ZmBAG-8 and ZmBAG-11 in plant leaf tissue across the contrasting inbred lines and their F1 hybrid (DR-139, UML-1 and DR-139 × UML-1) when exposed to heat stress. Furthermore, the protein-protein interaction networks of ZmBAG-8 and ZmBAG-11 further elucidated their role in stress tolerance related pathways. This research offers a roadmap to plan functional research and utilize ZmBAG genes to enhance heat tolerance in grasses.
Collapse
Affiliation(s)
- Babar Farid
- Institute of Plant Breeding and Biotechnology, MNS University of Agriculture, Multan, Pakistan
| | | | | | | | - Zulfiqar Ali
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Pakistan
- Programs and Projects Department, Islamic Organization for Food Security, Astana, Republic of Kazakhstan
| | - Waseem Akbar
- Maize and Millet Research Institute, Yousafwala, Sahiwal, Pakistan
| |
Collapse
|
2
|
Ravikiran KT, Thribhuvan R, Anilkumar C, Kallugudi J, Prakash NR, Adavi B S, Sunitha NC, Abhijith KP. Harnessing the power of genomics to develop climate-smart crop varieties: A comprehensive review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123461. [PMID: 39622137 DOI: 10.1016/j.jenvman.2024.123461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 10/25/2024] [Accepted: 11/22/2024] [Indexed: 01/15/2025]
Abstract
Abiotic stresses arising as consequences of climate change pose a serious threat to agricultural productivity on a global scale. Most cultivated crop varieties exhibit susceptibility to such environmental pressures as drought, salinity, and waterlogging. Addressing these abiotic stresses through agronomic means is not only financially burdensome but also often impractical, particularly in the case of abiotic stresses like heat stress. Cultivating resilient varieties that can withstand such pressures emerges as an economically feasible strategy to mitigate these challenges. Nevertheless, the development of stress-tolerant cultivars is hindered by the intricate nature of abiotic stress tolerance, often characterized by low heritability values. Compounding this complexity is the dynamic and multifaceted nature of these stresses, which impede conventional breeding efforts, rendering them painstakingly slow. The identification of molecular markers has emerged as a pivotal advancement in this arena. By pinpointing genomic regions associated with tolerance to abiotic stresses, these markers serve as effective tools for selection and trait introgression. In the post-genomic era, the proliferation of high-density SNP markers has revolutionized breeding strategies. Genomic selection, leveraging these markers, has become the method of choice for addressing polygenic traits with low heritability, such as abiotic stress tolerance. With the functional characterization of many genes being done, precise manipulation through genome editing techniques is gaining significant traction. This review delves into the application of molecular markers in breeding stress-tolerant crop varieties, alongside role of recent genomic techniques in enhancing abiotic stress tolerance. It also explores success stories and identifies potential targets for marker-assisted selection.
Collapse
Affiliation(s)
- K T Ravikiran
- Indian Council of Agricultural Research-Central Soil Salinity Research Institute, Regional Research Station, Lucknow, Uttar Pradesh, India
| | - R Thribhuvan
- ICAR-Central Institute of Jute and Allied Fibres, Barrakpore, West Bengal, India
| | - C Anilkumar
- ICAR-National Rice Research Institute, Cuttak, Odisha, India; Department of Agronomy and Plant Genetics, University of Minnesota, MN, USA
| | - Jayanth Kallugudi
- ICAR-Indian Institute of Wheat and Barley Research, Regional Station, Flowerdale, Shimla, Himachal Pradesh, India
| | - N R Prakash
- ICAR-CSSRI, Regional Research Station, Canning Town, West Bengal, India
| | - Sandeep Adavi B
- ICAR-National Institute of Biotic Stress Management, Raipur, Chhatisgarh, India
| | - N C Sunitha
- ICAR-National Rice Research Institute, Cuttak, Odisha, India
| | - Krishnan P Abhijith
- ICAR-Indian Agricultural Research Institute, Assam, Gogamukh, Dhemaji, Assam, India.
| |
Collapse
|
3
|
Horvath J, Jedlicka P, Kratka M, Kubat Z, Kejnovsky E, Lexa M. Detection and classification of long terminal repeat sequences in plant LTR-retrotransposons and their analysis using explainable machine learning. BioData Min 2024; 17:57. [PMID: 39696434 DOI: 10.1186/s13040-024-00410-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 11/22/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Long terminal repeats (LTRs) represent important parts of LTR retrotransposons and retroviruses found in high copy numbers in a majority of eukaryotic genomes. LTRs contain regulatory sequences essential for the life cycle of the retrotransposon. Previous experimental and sequence studies have provided only limited information about LTR structure and composition, mostly from model systems. To enhance our understanding of these key sequence modules, we focused on the contrasts between LTRs of various retrotransposon families and other genomic regions. Furthermore, this approach can be utilized for the classification and prediction of LTRs. RESULTS We used machine learning methods suitable for DNA sequence classification and applied them to a large dataset of plant LTR retrotransposon sequences. We trained three machine learning models using (i) traditional model ensembles (Gradient Boosting), (ii) hybrid convolutional/long and short memory network models, and (iii) a DNA pre-trained transformer-based model using k-mer sequence representation. All three approaches were successful in classifying and isolating LTRs in this data, as well as providing valuable insights into LTR sequence composition. The best classification (expressed as F1 score) achieved for LTR detection was 0.85 using the hybrid network model. The most accurate classification task was superfamily classification (F1=0.89) while the least accurate was family classification (F1=0.74). The trained models were subjected to explainability analysis. Positional analysis identified a mixture of interesting features, many of which had a preferred absolute position within the LTR and/or were biologically relevant, such as a centrally positioned TATA-box regulatory sequence, and TG..CA nucleotide patterns around both LTR edges. CONCLUSIONS Our results show that the models used here recognized biologically relevant motifs, such as core promoter elements in the LTR detection task, and a development and stress-related subclass of transcription factor binding sites in the family classification task. Explainability analysis also highlighted the importance of 5'- and 3'- edges in LTR identity and revealed need to analyze more than just dinucleotides at these ends. Our work shows the applicability of machine learning models to regulatory sequence analysis and classification, and demonstrates the important role of the identified motifs in LTR detection.
Collapse
Affiliation(s)
- Jakub Horvath
- Faculty of Informatics, Masaryk University, Botanicka 68a, Brno, 60200, Czech Republic.
| | - Pavel Jedlicka
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, Brno, 61200, Czech Republic
| | - Marie Kratka
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, Brno, 61200, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, Brno, 62500, Czech Republic
| | - Zdenek Kubat
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, Brno, 61200, Czech Republic
| | - Eduard Kejnovsky
- Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Kralovopolska 135, Brno, 61200, Czech Republic
| | - Matej Lexa
- Faculty of Informatics, Masaryk University, Botanicka 68a, Brno, 60200, Czech Republic.
| |
Collapse
|
4
|
Catlin NS, Agha HI, Platts AE, Munasinghe M, Hirsch CN, Josephs EB. Structural variants contribute to phenotypic variation in maize. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.14.599082. [PMID: 38948717 PMCID: PMC11212879 DOI: 10.1101/2024.06.14.599082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Comprehensively identifying the loci shaping trait variation has been challenging, in part because standard approaches often miss many types of genetic variants. Structural variants (SVs), especially transposable elements (TEs), are likely to affect phenotypic variation but we lack methods that can detect polymorphic structural variants and TEs using short-read sequencing data. Here, we used a whole genome alignment between two maize genotypes to identify polymorphic structural variants and then genotyped a large maize diversity panel for these variants using short-read sequencing data. After characterizing SV variation in the panel, we identified SV polymorphisms that are associated with life history traits and genotype-by-environment (GxE) interactions. While most of the SVs associated with traits contained TEs, only two of the SVs had boundaries that clearly matched TE breakpoints indicative of a TE insertion, while the other polymorphisms were likely caused by deletions. One of the SVs that appeared to be caused by a TE insertion had the most associations with gene expression compared to other trait-associated SVs. All of the SVs associated with traits were in linkage disequilibrium with nearby single nucleotide polymorphisms (SNPs), suggesting that the approach used here did not identify unique associations that would have been missed in a SNP association study. Overall, we have created a technique to genotype SV polymorphisms across a large diversity panel using support from genomic short-read sequencing alignments and connecting this presence/absence SV variation to diverse traits and GxE interactions.
Collapse
Affiliation(s)
- Nathan S. Catlin
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI, 48824, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI, 48824, USA
| | - Husain I. Agha
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI, 48824, USA
| | - Adrian E. Platts
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Manisha Munasinghe
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, 55108, USA
| | - Candice N. Hirsch
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108, USA
| | - Emily B. Josephs
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, MI, 48824, USA
- Plant Resilience Institute, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
5
|
Zou LH, Zhu B, Chen Y, Lu Y, Ramkrishnan M, Xu C, Zhou X, Ding Y, Cho J, Zhou M. Genetic and epigenetic reprogramming in response to internal and external cues by induced transposon mobilization in Moso bamboo. THE NEW PHYTOLOGIST 2024; 244:1916-1930. [PMID: 39238152 DOI: 10.1111/nph.20107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 08/21/2024] [Indexed: 09/07/2024]
Abstract
Long terminal repeat retroelements (LTR-REs) have profound effects on DNA methylation and gene regulation. Despite the vast abundance of LTR-REs in the genome of Moso bamboo (Phyllostachys edulis), an industrial crop in underdeveloped countries, their precise implication of the LTR-RE mobility in stress response and development remains unknown. We investigated the RNA and DNA products of LTR-REs in Moso bamboo under various developmental stages and stressful conditions. Surprisingly, our analyses identified thousands of active LTR-REs, particularly those located near genes involved in stress response and developmental regulation. These genes adjacent to active LTR-REs exhibited an increased expression under stress and are associated with reduced DNA methylation that is likely affected by the induced LTR-REs. Moreover, the analyses of simultaneous mapping of insertions and DNA methylation showed that the LTR-REs effectively alter the epigenetic status of the genomic regions where they inserted, and concomitantly their transcriptional competence which might impact the stress resilience and growth of the host. Our work unveils the unusually strong LTR-RE mobility in Moso bamboo and its close association with (epi)genetic changes, which supports the co-evolution of the parasitic DNAs and host genome in attaining stress tolerance and developmental robustness.
Collapse
Affiliation(s)
- Long-Hai Zou
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Bailiang Zhu
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Yaxin Chen
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Yaping Lu
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Muthusamy Ramkrishnan
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Chao Xu
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Xiaohong Zhou
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Yiqian Ding
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Jungnam Cho
- Department of Biosciences, Durham University, Durham, DH1 3LE, UK
| | - Mingbing Zhou
- State Key Laboratory of Subtropical Silviculture, Bamboo Industry Institute, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| |
Collapse
|
6
|
Kumar S, Singh S, Kumar R, Gupta D. The Genomic SSR Millets Database (GSMDB): enhancing genetic resources for sustainable agriculture. Database (Oxford) 2024; 2024:baae114. [PMID: 39546404 PMCID: PMC11566590 DOI: 10.1093/database/baae114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/27/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
The global population surge demands increased food production and nutrient-rich options to combat rising food insecurity. Climate-resilient crops are vital, with millets emerging as superfoods due to nutritional richness and stress tolerance. Given limited genomic information, a comprehensive genetic resource is crucial to advance millet research. Whole-genome sequencing provides an unprecedented opportunity, and molecular genetic methodologies, particularly simple sequence repeats (SSRs), play a pivotal role in DNA fingerprinting, constructing linkage maps, and conducting population genetic studies. SSRs are composed of repetitive DNA sequences where one to six nucleotides are repeated in tandem and distributed throughout the genome. Different millet species exhibit genomic variations attributed to the presence of SSRs. While SSRs have been identified in a few millet species, the existing information only covers some of the sequenced genomes. Moreover, there is an absence of complete gene annotation and visualization features for SSRs. Addressing this disparity and leveraging the de-novo millet genome assembly available from the NCBI, we have developed the Genomic SSR Millets Database (GSMDB; https://bioinfo.icgeb.res.in/gsmdb/). This open-access repository provides a web-based tool offering search functionalities and comprehensive details on 6.747645 million SSRs mined from the genomic sequences of seven millet species. The database, featuring unrestricted public access and JBrowse visualization, is a pioneering resource for the research community dedicated to advancing millet cultivars and related species. GSMDB holds immense potential to support myriad studies, including genetic diversity assessments, genetic mapping, marker-assisted selection, and comparative population investigations aiming to facilitate the millet breeding programs geared toward ensuring global food security. Database URL: https://bioinfo.icgeb.res.in/gsmdb/.
Collapse
Affiliation(s)
- Sonu Kumar
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, Delhi 110067, India
| | - Sangeeta Singh
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, Delhi 110067, India
| | - Rakesh Kumar
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, Delhi 110067, India
| | - Dinesh Gupta
- Translational Bioinformatics Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi, Delhi 110067, India
| |
Collapse
|
7
|
Hsieh JWA, Yen MR, Hung FY, Wu K, Chen PY. Epigenetic factors direct synergistic and antagonistic regulation of transposable elements in Arabidopsis. PLANT PHYSIOLOGY 2024; 196:1939-1952. [PMID: 39041412 PMCID: PMC11531835 DOI: 10.1093/plphys/kiae392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/24/2024]
Abstract
Arabidopsis (Arabidopsis thaliana) HISTONE DEACETYLASE 6 (HDA6) and HISTONE DEMETHYLASES LSD-LIKE 1 (LDL1) and LDL2 synergistically regulate the expression of long non-coding RNAs associated with H3Ac and H3K4me2. The underlying mechanisms of such highly coordinated interactions among genetic and epigenetic factors contributing to this collaborative regulation remain largely unclear. We analyzed all transposable elements (TEs) across the Arabidopsis genome and the individual and combined roles of HDA6 and LDL1/LDL2 by dissecting multilayered epigenomes and their association with transcription. Instead of an individual synergistic effect, we observed dual synergistic and antagonistic effects, which are positively associated with H3Ac and H3K4me2 while maintaining a negative but moderate association with DNA methylation. Specifically, 2 modes of synergistic regulation were discovered in TEs: 74% are primarily regulated by HDA6, with less dependence on LDL1/LDL2, and the remaining 26% are co-regulated by both. Between the 2 modes, we showed that HDA6 has a strong effect on TE silencing, whereas LDL1/LDL2 plays a weaker yet crucial role in co-regulation with HDA6. Our results led to a model of epigenomic regulation-the differential de-repression between the 2 modes of synergistic regulation of TEs was determined by H3Ac and H3K4me2 levels, where TEs are in accessible chromatins free of DNA methylation, and this open chromatin environment precedes transcriptional changes and epigenome patterning. Our results discovered unbalanced effects of genetic factors in synergistic regulation through delicately coordinated multilayered epigenomes and chromatin accessibility.
Collapse
Affiliation(s)
- Jo-Wei Allison Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115201, Taiwan
- Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei 10617, Taiwan
| | - Ming-Ren Yen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115201, Taiwan
| | - Fu-Yu Hung
- Institute of Plant Biology, National Taiwan University, Taipei 10617, Taiwan
- RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan
| | - Keqiang Wu
- Institute of Plant Biology, National Taiwan University, Taipei 10617, Taiwan
| | - Pao-Yang Chen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115201, Taiwan
- Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
8
|
Zeng R, Zhang X, Song G, Lv Q, Li M, Fu D, Zhang Z, Gao L, Zhang S, Yang X, Tian F, Yang S, Shi Y. Genetic variation in the aquaporin TONOPLAST INTRINSIC PROTEIN 4;3 modulates maize cold tolerance. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:3037-3050. [PMID: 39024420 PMCID: PMC11500999 DOI: 10.1111/pbi.14426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/18/2024] [Accepted: 06/25/2024] [Indexed: 07/20/2024]
Abstract
Cold stress is a major abiotic stress that threatens maize (Zea mays L.) production worldwide. Understanding the molecular mechanisms underlying cold tolerance is crucial for breeding resilient maize varieties. Tonoplast intrinsic proteins (TIPs) are a subfamily of aquaporins in plants. Here, we report that TIP family proteins are involved in maize cold tolerance. The expression of most TIP genes was responsive to cold stress. Overexpressing TIP2;1, TIP3;2 or TIP4;3 reduced the cold tolerance of maize seedlings, while loss-of-function mutants of TIP4;3 exhibited enhanced cold tolerance. Candidate gene-based association analysis revealed that a 328-bp transposon insertion in the promoter region of TIP4;3 was strongly associated with maize cold tolerance. This transposon insertion conferred cold tolerance by repressing TIP4;3 expression through increased methylation of its promoter region. Moreover, TIP4;3 was found to suppress stomatal closure and facilitate reactive oxygen species (ROS) accumulation under cold stress, thereby inhibiting the expression of cold-responsive genes, including DEHYDRATION-RESPONSIVE ELEMENT BINDING FACTOR 1 (DREB1) genes and a subset of peroxidase genes, ultimately attenuating maize cold tolerance. This study thus elucidates the mechanism underlying TIP-mediated cold tolerance and identifies a favourable TIP4;3 allele as a potential genetic resource for breeding cold-tolerant maize varieties.
Collapse
Affiliation(s)
- Rong Zeng
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding, Center for Crop Functional Genomics and Molecular BreedingChina Agricultural UniversityBeijingChina
| | - Xiaoyan Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding, Center for Crop Functional Genomics and Molecular BreedingChina Agricultural UniversityBeijingChina
| | - Guangshu Song
- Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China)ChangchunChina
| | - Qingxue Lv
- Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China)ChangchunChina
| | - Minze Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding, Center for Crop Functional Genomics and Molecular BreedingChina Agricultural UniversityBeijingChina
| | - Diyi Fu
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding, Center for Crop Functional Genomics and Molecular BreedingChina Agricultural UniversityBeijingChina
| | - Zhuo Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding, Center for Crop Functional Genomics and Molecular BreedingChina Agricultural UniversityBeijingChina
| | - Lei Gao
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding, Center for Crop Functional Genomics and Molecular BreedingChina Agricultural UniversityBeijingChina
| | - Shuaisong Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding, Center for Crop Functional Genomics and Molecular BreedingChina Agricultural UniversityBeijingChina
| | - Xiaohong Yang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding, Center for Crop Functional Genomics and Molecular BreedingChina Agricultural UniversityBeijingChina
- National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, Department of Plant Genetics and BreedingChina Agricultural UniversityBeijingChina
| | - Feng Tian
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding, Center for Crop Functional Genomics and Molecular BreedingChina Agricultural UniversityBeijingChina
- National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, Department of Plant Genetics and BreedingChina Agricultural UniversityBeijingChina
| | - Shuhua Yang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding, Center for Crop Functional Genomics and Molecular BreedingChina Agricultural UniversityBeijingChina
| | - Yiting Shi
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Frontiers Science Center for Molecular Design Breeding, Center for Crop Functional Genomics and Molecular BreedingChina Agricultural UniversityBeijingChina
| |
Collapse
|
9
|
Xu W, Thieme M, Roulin AC. Natural Diversity of Heat-Induced Transcription of Retrotransposons in Arabidopsis thaliana. Genome Biol Evol 2024; 16:evae242. [PMID: 39523776 PMCID: PMC11580521 DOI: 10.1093/gbe/evae242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 09/12/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Transposable elements (TEs) are major components of plant genomes, profoundly impacting the fitness of their hosts. However, technical bottlenecks have long hindered our mechanistic understanding of TEs. Using RNA-Seq and long-read sequencing with Oxford Nanopore Technologies' (ONT) direct cDNA sequencing, we analyzed the heat-induced transcription of TEs in three natural accessions of Arabidopsis thaliana (Cvi-0, Col-0, and Ler-1). In addition to the well-studied ONSEN retrotransposon family, we confirmed Copia-35 as a second heat-responsive retrotransposon family with particularly high activity in the relict accession Cvi-0. Our analysis revealed distinct expression patterns of individual TE copies and suggest different mechanisms regulating the GAG protein production in the ONSEN versus Copia-35 families. In addition, analogously to ONSEN, Copia-35 activation led to the upregulation of flanking genes such as APUM9 and potentially to the quantitative modulation of flowering time. ONT data allowed us to test the extent to which read-through formation is important in the regulation of adjacent genes. Unexpectedly, our results indicate that for both families, the upregulation of flanking genes is not predominantly directly initiated by transcription from their 3' long terminal repeats. These findings highlight the intraspecific expressional diversity linked to retrotransposon activation under stress.
Collapse
Affiliation(s)
- Wenbo Xu
- Department of Plant and Microbial Biology, University of Zürich, 8008 Zürich, Switzerland
| | - Michael Thieme
- Department of Plant and Microbial Biology, University of Zürich, 8008 Zürich, Switzerland
| | - Anne C Roulin
- Department of Plant and Microbial Biology, University of Zürich, 8008 Zürich, Switzerland
- Agroscope, 8820 Wädenswil, Switzerland
| |
Collapse
|
10
|
Garg V, Bohra A, Mascher M, Spannagl M, Xu X, Bevan MW, Bennetzen JL, Varshney RK. Unlocking plant genetics with telomere-to-telomere genome assemblies. Nat Genet 2024; 56:1788-1799. [PMID: 39048791 DOI: 10.1038/s41588-024-01830-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/12/2024] [Indexed: 07/27/2024]
Abstract
Contiguous genome sequence assemblies will help us to realize the full potential of crop translational genomics. Recent advances in sequencing technologies, especially long-read sequencing strategies, have made it possible to construct gapless telomere-to-telomere (T2T) assemblies, thus offering novel insights into genome organization and function. Plant genomes pose unique challenges, such as a continuum of ancient to recent polyploidy and abundant highly similar and long repetitive elements. Owing to progress in sequencing approaches, for most crop plants, chromosome-scale reference genome assemblies are available, but T2T assembly construction remains challenging. Here we describe methods for haplotype-resolved, gapless T2T assembly construction in plants, including various crop species. We outline the impact of T2T assemblies in elucidating the roles of repetitive elements in gene regulation, as well as in pangenomics, functional genomics, genome-assisted breeding and targeted genome manipulation. In conjunction with sequence-enriched germplasm repositories, T2T assemblies thus hold great promise for basic and applied plant sciences.
Collapse
Affiliation(s)
- Vanika Garg
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Abhishek Bohra
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
- ICAR-Indian Institute of Pulses Research, Kanpur, India
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Seeland, Germany
| | - Manuel Spannagl
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
- Plant Genome and Systems Biology, German Research Center for Environmental Health, Helmholtz Zentrum München, Neuherberg, Germany
| | - Xun Xu
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
- BGI-Shenzhen, Shenzhen, China
| | | | | | - Rajeev K Varshney
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia.
| |
Collapse
|
11
|
Bubb KL, Hamm MO, Min JK, Ramirez-Corona B, Mueth NA, Ranchalis J, Vollger MR, Trapnell C, Cuperus JT, Queitsch C, Stergachis AB. The regulatory potential of transposable elements in maize. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.10.602892. [PMID: 39026747 PMCID: PMC11257541 DOI: 10.1101/2024.07.10.602892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Since their initial discovery in maize, transposable elements (TEs) have emerged as being integral to the evolution of maize, accounting for 80% of its genome. However, the repetitive nature of TEs has hindered our understanding of their regulatory potential. Here, we demonstrate that long-read chromatin fiber sequencing (Fiber-seq) permits the comprehensive annotation of the regulatory potential of maize TEs. We uncover that only 94 LTR retrotransposons contain the functional epigenetic architecture required for mobilization within maize leaves. This epigenetic architecture degenerates with evolutionary age, resulting in solo TE enhancers being preferentially marked by simultaneous hyper-CpG methylation and chromatin accessibility, an architecture markedly divergent from canonical enhancers. We find that TEs shape maize gene regulation by creating novel promoters within the TE itself as well as through TE-mediated gene amplification. Lastly, we uncover a pervasive epigenetic code directing TEs to specific loci, including that locus that sparked McClintock's discovery of TEs.
Collapse
Affiliation(s)
- Kerry L. Bubb
- Department of Genome Sciences, University of Washington, Seattle, USA
| | - Morgan O. Hamm
- Department of Genome Sciences, University of Washington, Seattle, USA
| | - Joseph K. Min
- Department of Genome Sciences, University of Washington, Seattle, USA
| | | | - Nicholas A. Mueth
- Department of Genome Sciences, University of Washington, Seattle, USA
| | - Jane Ranchalis
- Division of Medical Genetics, University of Washington School of Medicine, Seattle, WA, USA
| | - Mitchell R. Vollger
- Division of Medical Genetics, University of Washington School of Medicine, Seattle, WA, USA
| | - Cole Trapnell
- Department of Genome Sciences, University of Washington, Seattle, USA
- Molecular & Cellular Biology Program, University of Washington, Seattle, USA
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, USA
| | - Josh T. Cuperus
- Department of Genome Sciences, University of Washington, Seattle, USA
| | - Christine Queitsch
- Department of Genome Sciences, University of Washington, Seattle, USA
- Molecular & Cellular Biology Program, University of Washington, Seattle, USA
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, USA
| | - Andrew B. Stergachis
- Department of Genome Sciences, University of Washington, Seattle, USA
- Division of Medical Genetics, University of Washington School of Medicine, Seattle, WA, USA
- Molecular & Cellular Biology Program, University of Washington, Seattle, USA
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, USA
| |
Collapse
|
12
|
Huang HY, Zhang S, Choucha FA, Verdenaud M, Tan FQ, Pichot C, Parsa HS, Slavkovic F, Chen Q, Troadec C, Marcel F, Dogimont C, Quadrana L, Boualem A, Bendahmane A. Harbinger transposon insertion in ethylene signaling gene leads to emergence of new sexual forms in cucurbits. Nat Commun 2024; 15:4877. [PMID: 38849342 PMCID: PMC11161486 DOI: 10.1038/s41467-024-49250-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/28/2024] [Indexed: 06/09/2024] Open
Abstract
In flowering plants, the predominant sexual morph is hermaphroditism, and the emergence of unisexuality is poorly understood. Using Cucumis melo (melon) as a model system, we explore the mechanisms driving sexual forms. We identify a spontaneous mutant exhibiting a transition from bisexual to unisexual male flower, and identify the causal mutation as a Harbinger transposon impairing the expression of Ethylene Insensitive 2 (CmEIN2) gene. Genetics and transcriptomic analysis reveal a dual role of CmEIN2 in both sex determination and fruit shape formation. Upon expression of CmACS11, EIN2 is recruited to repress the expression of the carpel inhibitor, CmWIP1. Subsequently, EIN2 is recruited to mediate stamina inhibition. Following the sex determination phase, EIN2 promotes fruit shape elongation. Genome-wide analysis reveals that Harbinger transposon mobilization is triggered by environmental cues, and integrates preferentially in active chromatin, particularly within promoter regions. Characterization of a large collection of melon germplasm points to active transpositions in the wild, compared to cultivated accessions. Our study underscores the association between chromatin dynamics and the temporal aspects of mobile genetic element insertions, providing valuable insights into plant adaptation and crop genome evolution.
Collapse
Affiliation(s)
- Hsin-Ya Huang
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif-sur-Yvette, France
| | - Siqi Zhang
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif-sur-Yvette, France
| | - Fadi Abou Choucha
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif-sur-Yvette, France
| | - Marion Verdenaud
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif-sur-Yvette, France
| | - Feng-Quan Tan
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif-sur-Yvette, France
| | - Clement Pichot
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif-sur-Yvette, France
| | - Hadi Shirazi Parsa
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif-sur-Yvette, France
| | - Filip Slavkovic
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif-sur-Yvette, France
| | - Qinghe Chen
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif-sur-Yvette, France
| | - Christelle Troadec
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif-sur-Yvette, France
| | - Fabien Marcel
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif-sur-Yvette, France
| | - Catherine Dogimont
- INRAE, Génétique et Amélioration des Fruits et Légumes (GAFL), 84143, Montfavet, France
| | - Leandro Quadrana
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif-sur-Yvette, France
| | - Adnane Boualem
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif-sur-Yvette, France
| | - Abdelhafid Bendahmane
- Université Paris-Saclay, CNRS, INRAE, Université Evry, Institute of Plant Sciences Paris-Saclay (IPS2), 91190, Gif-sur-Yvette, France.
| |
Collapse
|
13
|
He Z, Zhang J, Jia H, Zhang S, Sun X, Nishawy E, Zhang H, Dai M. Genome-wide identification and analyses of ZmAPY genes reveal their roles involved in maize development and abiotic stress responses. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2024; 44:37. [PMID: 38745883 PMCID: PMC11091030 DOI: 10.1007/s11032-024-01474-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 05/03/2024] [Indexed: 05/16/2024]
Abstract
Apyrase is a class of enzyme that catalyzes the hydrolysis of nucleoside triphosphates/diphosphates (NTP/NDP), which widely involved in regulation of plant growth and stress responses. However, apyrase family genes in maize have not been identified, and their characteristics and functions are largely unknown. In this study, we identified 16 apyrases (named as ZmAPY1-ZmAPY16) in maize genome, and analyzed their phylogenetic relationships, gene structures, chromosomal distribution, upstream regulatory transcription factors and expression patterns. Analysis of the transcriptome database unveiled tissue-specific and abiotic stress-responsive expression of ZmAPY genes in maize. qPCR analysis further confirmed their responsiveness to drought, heat, and cold stresses. Association analyses indicated that variations of ZmAPY5 and ZmAPY16 may regulate maize agronomic traits and drought responses. Our findings shed light on the molecular characteristics and evolutionary history of maize apyrase genes, highlighting their roles in various biological processes and stress responses. This study forms a basis for further exploration of apyrase functions in maize. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-024-01474-9.
Collapse
Affiliation(s)
- Zhenghua He
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement & Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430064 China
| | - Jie Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Haitao Jia
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement & Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430064 China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Shilong Zhang
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement & Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430064 China
| | - Xiaopeng Sun
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement & Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, 430064 China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Elsayed Nishawy
- Laboratory of Genomics and Genome Editing, Department of Genetics, Desert Research Center, Cairo, 11735 Egypt
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences (CAS), Wuhan, 430074 China
| | - Hui Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
- Hubei Hongshan Laboratory, Wuhan, China
| | - Mingqiu Dai
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070 China
- Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
14
|
Manzoor MA, Xu Y, Lv Z, Xu J, Shah IH, Sabir IA, Wang Y, Sun W, Liu X, Wang L, Liu R, Jiu S, Zhang C. Horticulture crop under pressure: Unraveling the impact of climate change on nutrition and fruit cracking. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 357:120759. [PMID: 38554453 DOI: 10.1016/j.jenvman.2024.120759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/09/2024] [Accepted: 03/23/2024] [Indexed: 04/01/2024]
Abstract
Climate change is increasingly affecting the nutritional content and structural integrity of horticultural crops, leading to challenges such as diminished fruit quality and the exacerbation of fruit cracking. This manuscript systematically explores the multifaceted impacts of these changes, with a particular focus on the nutritional quality and increased incidence of fruit cracking. An exhaustive review of current research identifies the critical role of transcription factors in mediating plant responses to climatic stressors, such as drought, temperature extremes, and saline conditions. The significance of transcription factors, including bHLH, bZIP, DOF, MDP, HD-ZIP, MYB, and ERF4, is highlighted in the development of fruit cracking, underscoring the genetic underpinnings behind stress-related phenotypic outcomes. The effectiveness of greenhouse structures in mitigating adverse climatic effects is evaluated, offering a strategic approach to sustain crop productivity amidst CO2 fluctuations and water scarcity, which are shown to influence plant physiology and lead to changes in fruit development, nutrient dynamics, and a heightened risk of cracking. Moreover, the manuscript delves into advanced breeding strategies and genetic engineering techniques, such as genome editing, to enhance crop resilience against climatic challenges. It also discusses adaptation strategies vital for sustainable horticulture, emphasizing the need to integrate novel genetic insights with controlled environment horticulture to counteract climate change's detrimental effects. The synthesis presented here underscores the urgent need for innovative breeding strategies aimed at developing resilient crop varieties that can withstand climatic uncertainty while preserving nutritional integrity.
Collapse
Affiliation(s)
- Muhammad Aamir Manzoor
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Yan Xu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Zhengxin Lv
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Jieming Xu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Iftikhar Hussain Shah
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Irfan Ali Sabir
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Yuxuan Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Wanxia Sun
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Xunju Liu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Li Wang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Ruie Liu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Songtao Jiu
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China.
| | - Caixi Zhang
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, PR China.
| |
Collapse
|
15
|
Miloro F, Kis A, Havelda Z, Dalmadi Á. Barley AGO4 proteins show overlapping functionality with distinct small RNA-binding properties in heterologous complementation. PLANT CELL REPORTS 2024; 43:96. [PMID: 38480545 PMCID: PMC10937801 DOI: 10.1007/s00299-024-03177-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 02/15/2024] [Indexed: 03/17/2024]
Abstract
KEY MESSAGE Barley AGO4 proteins complement expressional changes of epigenetically regulated genes in Arabidopsis ago4-3 mutant and show a distinct affinity for the 5' terminal nucleotide of small RNAs, demonstrating functional conservation and divergence. The function of Argonaute 4 (AGO4) in Arabidopsis thaliana has been extensively characterized; however, its role in monocots, which have large genomes abundantly supplemented with transposable elements (TEs), remains elusive. The study of barley AGO4 proteins can provide insights into the conserved aspects of RNA-directed DNA methylation (RdDM) and could also have further applications in the field of epigenetics or crop improvement. Bioinformatic analysis of RNA sequencing data identified two active AGO4 genes in barley, HvAGO4a and HvAGO4b. These genes function similar to AtAGO4 in an Arabidopsis heterologous complementation system, primarily binding to 24-nucleotide long small RNAs (sRNAs) and triggering methylation at specific target loci. Like AtAGO4, HvAGO4B exhibits a preference for binding sRNAs with 5' adenine residue, while also accepting 5' guanine, uracil, and cytosine residues. In contrast, HvAGO4A selectively binds only sRNAs with a 5' adenine residue. The diverse binding capacity of barley AGO4 proteins is reflected in TE-derived sRNAs and in their varying abundance. Both barley AGO4 proteins effectively restore the levels of extrachromosomal DNA and transcript abundancy of the heat-activated ONSEN retrotransposon to those observed in wild-type Arabidopsis plants. Our study provides insight into the distinct binding specificities and involvement in TE regulation of barley AGO4 proteins in Arabidopsis by heterologous complementation.
Collapse
Affiliation(s)
- Fabio Miloro
- Hungarian University of Agriculture and Life Sciences (MATE), Institute of Genetics and Biotechnology, Gödöllő, Hungary
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Plant Biotechnology Section, Gödöllő, Hungary
| | - András Kis
- Hungarian University of Agriculture and Life Sciences (MATE), Institute of Genetics and Biotechnology, Gödöllő, Hungary
| | - Zoltán Havelda
- Hungarian University of Agriculture and Life Sciences (MATE), Institute of Genetics and Biotechnology, Gödöllő, Hungary
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Plant Biotechnology Section, Gödöllő, Hungary
| | - Ágnes Dalmadi
- Hungarian University of Agriculture and Life Sciences (MATE), Institute of Genetics and Biotechnology, Gödöllő, Hungary.
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Plant Biotechnology Section, Gödöllő, Hungary.
| |
Collapse
|
16
|
Thieme M, Minadakis N, Himber C, Keller B, Xu W, Rutowicz K, Matteoli C, Böhrer M, Rymen B, Laudencia-Chingcuanco D, Vogel JP, Sibout R, Stritt C, Blevins T, Roulin AC. Transposition of HOPPLA in siRNA-deficient plants suggests a limited effect of the environment on retrotransposon mobility in Brachypodium distachyon. PLoS Genet 2024; 20:e1011200. [PMID: 38470914 PMCID: PMC10959353 DOI: 10.1371/journal.pgen.1011200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/22/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Long terminal repeat retrotransposons (LTR-RTs) are powerful mutagens regarded as a major source of genetic novelty and important drivers of evolution. Yet, the uncontrolled and potentially selfish proliferation of LTR-RTs can lead to deleterious mutations and genome instability, with large fitness costs for their host. While population genomics data suggest that an ongoing LTR-RT mobility is common in many species, the understanding of their dual role in evolution is limited. Here, we harness the genetic diversity of 320 sequenced natural accessions of the Mediterranean grass Brachypodium distachyon to characterize how genetic and environmental factors influence plant LTR-RT dynamics in the wild. When combining a coverage-based approach to estimate global LTR-RT copy number variations with mobilome-sequencing of nine accessions exposed to eight different stresses, we find little evidence for a major role of environmental factors in LTR-RT accumulations in B. distachyon natural accessions. Instead, we show that loss of RNA polymerase IV (Pol IV), which mediates RNA-directed DNA methylation in plants, results in high transcriptional and transpositional activities of RLC_BdisC024 (HOPPLA) LTR-RT family elements, and that these effects are not stress-specific. This work supports findings indicating an ongoing mobility in B. distachyon and reveals that host RNA-directed DNA methylation rather than environmental factors controls their mobility in this wild grass model.
Collapse
Affiliation(s)
- Michael Thieme
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Nikolaos Minadakis
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Christophe Himber
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Université de Strasbourg, Strasbourg, France
| | - Bettina Keller
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Wenbo Xu
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Kinga Rutowicz
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Calvin Matteoli
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Université de Strasbourg, Strasbourg, France
| | - Marcel Böhrer
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Université de Strasbourg, Strasbourg, France
| | - Bart Rymen
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Université de Strasbourg, Strasbourg, France
| | - Debbie Laudencia-Chingcuanco
- United States Department of Agriculture Agricultural Research Service Western Regional Research Center, Albany, California, United States of America
| | - John P. Vogel
- United States Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Richard Sibout
- Institut National de la Recherche Agronomique Unité BIA- 1268 Biopolymères Interactions Assemblages Equipe Paroi Végétale et Polymères Pariétaux (PVPP), Nantes, France
| | - Christoph Stritt
- Swiss Tropical and Public Health Institute (Swiss TPH), Allschwil, Switzerland
| | - Todd Blevins
- Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Université de Strasbourg, Strasbourg, France
| | - Anne C. Roulin
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
17
|
Badet T, Tralamazza SM, Feurtey A, Croll D. Recent reactivation of a pathogenicity-associated transposable element is associated with major chromosomal rearrangements in a fungal wheat pathogen. Nucleic Acids Res 2024; 52:1226-1242. [PMID: 38142443 PMCID: PMC10853768 DOI: 10.1093/nar/gkad1214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 11/30/2023] [Accepted: 12/11/2023] [Indexed: 12/26/2023] Open
Abstract
Transposable elements (TEs) are key drivers of genomic variation contributing to recent adaptation in most species. Yet, the evolutionary origins and insertion dynamics within species remain poorly understood. We recapitulate the spread of the pathogenicity-associated Styx element across five species that last diverged ∼11 000 years ago. We show that the element likely originated in the Zymoseptoria fungal pathogen genus and underwent multiple independent reactivation events. Using a global 900-genome panel of the wheat pathogen Zymoseptoria tritici, we assess Styx copy number variation and identify renewed transposition activity in Oceania and South America. We show that the element can mobilize to create additional Styx copies in a four-generation pedigree. Importantly, we find that new copies of the element are not affected by genomic defenses suggesting minimal control against the element. Styx copies are preferentially located in recombination breakpoints and likely triggered multiple types of large chromosomal rearrangements. Taken together, we establish the origin, diversification and reactivation of a highly active TE with likely major consequences for chromosomal integrity and the expression of disease.
Collapse
Affiliation(s)
- Thomas Badet
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, CH-2000 Neuchâtel, Switzerland
| | - Sabina Moser Tralamazza
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, CH-2000 Neuchâtel, Switzerland
| | - Alice Feurtey
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, CH-2000 Neuchâtel, Switzerland
- Plant Pathology, D-USYS, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, CH-2000 Neuchâtel, Switzerland
| |
Collapse
|
18
|
De Fabrizio V, Trotta V, Pariti L, Radice RP, Martelli G. Preliminary characterization of biomolecular processes related to plasticity in Acyrthosiphonpisum. Heliyon 2024; 10:e23650. [PMID: 38187294 PMCID: PMC10770479 DOI: 10.1016/j.heliyon.2023.e23650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 01/09/2024] Open
Abstract
Global warming strongly impacts many organisms' development, distribution and population structure. This problem has attracted the attention of many scientists to understand and study its actual effects, especially on insects influenced by environmental temperatures. Aphids are a model for studies of the genetics and physiology of stress. Aphids are characterized by parthenogenetic reproduction, which limits the effects of recombination on evolutionary processes, and have shown resistance to various biotic and abiotic stresses. This study was based on the hypothesis that aphids have optimized, over time, genetic mechanisms capable to give them plasticity through genome modifications mediated by transposition. To understand and evaluate the effects of heat stress, the expression levels of transposases and methylases were analyzed in mothers and daughters. Our results show that after four days from the thermal shock, methylation decreases in both mothers and daughters, while transposition significantly increases in daughters, thus generating gene variability, essential for adaptation.
Collapse
Affiliation(s)
- Vincenzo De Fabrizio
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano, 10, 85100, Potenza, Italy
| | - Vincenzo Trotta
- School of Agricultural Forestry, Food and Environmental Sciences (SAFE), University of Basilicata, Viale dell’Ateneo Lucano, 10, 85100, Potenza, Italy
| | - Luigi Pariti
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano, 10, 85100, Potenza, Italy
| | - Rosa Paola Radice
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano, 10, 85100, Potenza, Italy
- Bioinnova srls, Via ponte nove luci, 22, 85100, Potenza, Italy
| | - Giuseppe Martelli
- Department of Science, University of Basilicata, Viale dell’Ateneo Lucano, 10, 85100, Potenza, Italy
| |
Collapse
|
19
|
Hassan AH, Mokhtar MM, El Allali A. Transposable elements: multifunctional players in the plant genome. FRONTIERS IN PLANT SCIENCE 2024; 14:1330127. [PMID: 38239225 PMCID: PMC10794571 DOI: 10.3389/fpls.2023.1330127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/06/2023] [Indexed: 01/22/2024]
Abstract
Transposable elements (TEs) are indispensable components of eukaryotic genomes that play diverse roles in gene regulation, recombination, and environmental adaptation. Their ability to mobilize within the genome leads to gene expression and DNA structure changes. TEs serve as valuable markers for genetic and evolutionary studies and facilitate genetic mapping and phylogenetic analysis. They also provide insight into how organisms adapt to a changing environment by promoting gene rearrangements that lead to new gene combinations. These repetitive sequences significantly impact genome structure, function and evolution. This review takes a comprehensive look at TEs and their applications in biotechnology, particularly in the context of plant biology, where they are now considered "genomic gold" due to their extensive functionalities. The article addresses various aspects of TEs in plant development, including their structure, epigenetic regulation, evolutionary patterns, and their use in gene editing and plant molecular markers. The goal is to systematically understand TEs and shed light on their diverse roles in plant biology.
Collapse
Affiliation(s)
- Asmaa H. Hassan
- Bioinformatics Laboratory, College of Computing, Mohammed VI Polytechnic University, Ben Guerir, Morocco
- Agricultural Genetic Engineering Research Institute, Agriculture Research Center, Giza, Egypt
| | - Morad M. Mokhtar
- Bioinformatics Laboratory, College of Computing, Mohammed VI Polytechnic University, Ben Guerir, Morocco
- Agricultural Genetic Engineering Research Institute, Agriculture Research Center, Giza, Egypt
| | - Achraf El Allali
- Bioinformatics Laboratory, College of Computing, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| |
Collapse
|
20
|
Yang W, Liu X, Yu S, Liu J, Jiang L, Lu X, Liu Y, Zhang J, Li X, Zhang S. The maize ATP-binding cassette (ABC) transporter ZmMRPA6 confers cold and salt stress tolerance in plants. PLANT CELL REPORTS 2023; 43:13. [PMID: 38135780 DOI: 10.1007/s00299-023-03094-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/10/2023] [Indexed: 12/24/2023]
Abstract
KEY MESSAGE ZmMRPA6 was cloned and characterized as the first ATP-binding cassette (ABC) transporter in maize to be proven to participate in cold and salt tolerance. Homologous genes AtABCC4 and AtABCC14 of ZmMRPA6 also responded to salt stress. ATP-binding cassette (ABC) proteins are major transmembrane transporters that play significant roles in plant development against various abiotic stresses. However, available information regarding stress-related ABC genes in maize is minimal. In this study, a maize ABC transporter gene, ZmMRPA6, was identified through genome-wide association analysis (GWAS) for cold tolerance in maize seeds germination and functionally characterized. During germination and seedling stages, the zmmrpa6 mutant exhibited enhanced resistance to cold or salt stress. Mutated of ZmMRPA6 did not affect the expression of downstream response genes related cold or salt response at the transcriptional level. Mass spectrometry analysis revealed that most of the differential proteins between zmmrpa6 and wild-type plants were involved in response to stress process including oxidative reduction, hydrolase activity, small molecule metabolism, and photosynthesis process. Meanwhile, the plants which lack the ZmMRPA6 homologous genes AtABCC4 or AtABCC14 were sensitive to salt stress in Arabidopsis. These results indicated that ZmMRPA6 and its homologous genes play a conserved role in cold and salt stress, and functional differentiation occurs in monocotyledonous and dicotyledonous plants. In summary, these findings dramatically improved our understanding of the function of ABC transporters resistance to abiotic stresses in plants.
Collapse
Affiliation(s)
- Wei Yang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Xiao Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Shaowei Yu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Jisheng Liu
- Institute of Molecular Breeding for Maize, Qilu Normal University, Jinan, 250200, Shandong, China
| | - Lijun Jiang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Xiaoduo Lu
- Institute of Molecular Breeding for Maize, Qilu Normal University, Jinan, 250200, Shandong, China
| | - Yinggao Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Jiedao Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Xiang Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China.
| | - Shuxin Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China.
| |
Collapse
|
21
|
Chowdhury NB, Simons-Senftle M, Decouard B, Quillere I, Rigault M, Sajeevan KA, Acharya B, Chowdhury R, Hirel B, Dellagi A, Maranas C, Saha R. A multi-organ maize metabolic model connects temperature stress with energy production and reducing power generation. iScience 2023; 26:108400. [PMID: 38077131 PMCID: PMC10709110 DOI: 10.1016/j.isci.2023.108400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 02/18/2024] Open
Abstract
Climate change has adversely affected maize productivity. Thereby, a holistic understanding of metabolic crosstalk among its organs is important to address this issue. Thus, we reconstructed the first multi-organ maize metabolic model, iZMA6517, and contextualized it with heat and cold stress transcriptomics data using expression distributed reaction flux measurement (EXTREAM) algorithm. Furthermore, implementing metabolic bottleneck analysis on contextualized models revealed differences between these stresses. While both stresses had reducing power bottlenecks, heat stress had additional energy generation bottlenecks. We also performed thermodynamic driving force analysis, revealing thermodynamics-reducing power-energy generation axis dictating the nature of temperature stress responses. Thus, a temperature-tolerant maize ideotype can be engineered by leveraging the proposed thermodynamics-reducing power-energy generation axis. We experimentally inoculated maize root with a beneficial mycorrhizal fungus, Rhizophagus irregularis, and as a proof-of-concept demonstrated its efficacy in alleviating temperature stress. Overall, this study will guide the engineering effort of temperature stress-tolerant maize ideotypes.
Collapse
Affiliation(s)
- Niaz Bahar Chowdhury
- Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| | | | - Berengere Decouard
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
| | - Isabelle Quillere
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
| | - Martine Rigault
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
| | | | - Bibek Acharya
- Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
| | - Ratul Chowdhury
- Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
| | - Bertrand Hirel
- Centre de Versailles-Grignon, Institut National de Recherche pour l’Agriculture, Versailles, France
| | - Alia Dellagi
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
| | - Costas Maranas
- Chemical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Rajib Saha
- Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA
| |
Collapse
|
22
|
Niu Y, Liu L. RNA pseudouridine modification in plants. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6431-6447. [PMID: 37581601 DOI: 10.1093/jxb/erad323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
Pseudouridine is one of the well-known chemical modifications in various RNA species. Current advances to detect pseudouridine show that the pseudouridine landscape is dynamic and affects multiple cellular processes. Although our understanding of this post-transcriptional modification mainly depends on yeast and human models, the recent findings provide strong evidence for the critical role of pseudouridine in plants. Here, we review the current knowledge of pseudouridine in plant RNAs, including its synthesis, degradation, regulatory mechanisms, and functions. Moreover, we propose future areas of research on pseudouridine modification in plants.
Collapse
Affiliation(s)
- Yanli Niu
- Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, Henan University, Kaifeng 475001, China
| | - Lingyun Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475001, China
| |
Collapse
|
23
|
Jung J, Jhang SY, Kim B, Koh B, Ban C, Seo H, Park T, Chi WJ, Kim S, Kim H, Yu J. The first high-quality genome assembly and annotation of Patiria pectinifera. Sci Data 2023; 10:642. [PMID: 37730712 PMCID: PMC10511450 DOI: 10.1038/s41597-023-02508-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/29/2023] [Indexed: 09/22/2023] Open
Abstract
The blue bat star, a highly adaptive species in the East Sea of Korea, has displayed remarkable success in adapting to recent climate change. The genetic mechanisms behind this success were not well-understood, prompting our report on the first chromosome-level assembly of the Patiria genus. We assembled the genome using Nanopore and Illumina sequences, yielding a total length of 615 Mb and a scaffold N50 of 24,204,423 bp. Hi-C analysis allowed us to anchor the scaffold sequences onto 22 pseudochromosomes. K-mer based analysis revealed 5.16% heterozygosity rate of the genome, higher than any previously reported echinoderm species. Our transposable element analysis exposed a substantial number of genome-wide retrotransposons and DNA transposons. These results offer valuable resources for understanding the evolutionary mechanisms behind P. pectinifera's successful adaptation in fluctuating environments.
Collapse
Affiliation(s)
- Jaehoon Jung
- eGnome, Inc., 26 Beobwon-ro 9-gil, Songpa-gu, Seoul, 05836, Republic of Korea
- Department of Agricultural and Life Sciences and Research Institute of Population Genomics, Seoul National University, Seoul, Republic of Korea
| | - So Yun Jhang
- eGnome, Inc., 26 Beobwon-ro 9-gil, Songpa-gu, Seoul, 05836, Republic of Korea
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, 151-742, Republic of Korea
| | - Bongsang Kim
- eGnome, Inc., 26 Beobwon-ro 9-gil, Songpa-gu, Seoul, 05836, Republic of Korea
- Department of Agricultural and Life Sciences and Research Institute of Population Genomics, Seoul National University, Seoul, Republic of Korea
| | - Bomin Koh
- eGnome, Inc., 26 Beobwon-ro 9-gil, Songpa-gu, Seoul, 05836, Republic of Korea
- Department of Agricultural and Life Sciences and Research Institute of Population Genomics, Seoul National University, Seoul, Republic of Korea
| | - Chaeyoung Ban
- eGnome, Inc., 26 Beobwon-ro 9-gil, Songpa-gu, Seoul, 05836, Republic of Korea
| | - Hyojung Seo
- eGnome, Inc., 26 Beobwon-ro 9-gil, Songpa-gu, Seoul, 05836, Republic of Korea
| | - Taeseo Park
- Animal Resources Division, National Institute of Biological Resources, Incheon, 22689, Republic of Korea
| | - Won-Jae Chi
- Microorganism Resources Division, National Institute of Biological Resources, Incheon, 22689, Republic of Korea
| | - Soonok Kim
- Microorganism Resources Division, National Institute of Biological Resources, Incheon, 22689, Republic of Korea
| | - Heebal Kim
- eGnome, Inc., 26 Beobwon-ro 9-gil, Songpa-gu, Seoul, 05836, Republic of Korea
- Department of Agricultural and Life Sciences and Research Institute of Population Genomics, Seoul National University, Seoul, Republic of Korea
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, 151-742, Republic of Korea
| | - Jaewoong Yu
- eGnome, Inc., 26 Beobwon-ro 9-gil, Songpa-gu, Seoul, 05836, Republic of Korea.
| |
Collapse
|
24
|
Rehman S, Ahmad Z, Ramakrishnan M, Kalendar R, Zhuge Q. Regulation of plant epigenetic memory in response to cold and heat stress: towards climate resilient agriculture. Funct Integr Genomics 2023; 23:298. [PMID: 37700098 DOI: 10.1007/s10142-023-01219-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 09/14/2023]
Abstract
Plants have evolved to adapt and grow in hot and cold climatic conditions. Some also adapt to daily and seasonal temperature changes. Epigenetic modifications play an important role in regulating plant tolerance under such conditions. DNA methylation and post-translational modifications of histone proteins influence gene expression during plant developmental stages and under stress conditions, including cold and heat stress. While short-term modifications are common, some modifications may persist and result in stress memory that can be inherited by subsequent generations. Understanding the mechanisms of epigenomes responding to stress and the factors that trigger stress memory is crucial for developing climate-resilient agriculture, but such an integrated view is currently limited. This review focuses on the plant epigenetic stress memory during cold and heat stress. It also discusses the potential of machine learning to modify stress memory through epigenetics to develop climate-resilient crops.
Collapse
Affiliation(s)
- Shamsur Rehman
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology, College of Biology and the Environment, Nanjing Forestry University, Ministry of Education, Nanjing, China
| | - Zishan Ahmad
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
- Bamboo Research Institute, Nanjing Forestry University, Nanjing, 210037, China
| | - Muthusamy Ramakrishnan
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
- Bamboo Research Institute, Nanjing Forestry University, Nanjing, 210037, China
| | - Ruslan Kalendar
- Helsinki Institute of Life Science HiLIFE, Biocenter 3, Viikinkaari 1, FI-00014 University of Helsinki, Helsinki, Finland.
- Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana, Kazakhstan.
| | - Qiang Zhuge
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics and Biotechnology, College of Biology and the Environment, Nanjing Forestry University, Ministry of Education, Nanjing, China.
| |
Collapse
|
25
|
Chakrabarty P, Sen R, Sengupta S. From parasites to partners: exploring the intricacies of host-transposon dynamics and coevolution. Funct Integr Genomics 2023; 23:278. [PMID: 37610667 DOI: 10.1007/s10142-023-01206-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/01/2023] [Accepted: 08/07/2023] [Indexed: 08/24/2023]
Abstract
Transposable elements, often referred to as "jumping genes," have long been recognized as genomic parasites due to their ability to integrate and disrupt normal gene function and induce extensive genomic alterations, thereby compromising the host's fitness. To counteract this, the host has evolved a plethora of mechanisms to suppress the activity of the transposons. Recent research has unveiled the host-transposon relationships to be nuanced and complex phenomena, resulting in the coevolution of both entities. Transposition increases the mutational rate in the host genome, often triggering physiological pathways such as immune and stress responses. Current gene transfer technologies utilizing transposable elements have potential drawbacks, including off-target integration, induction of mutations, and modifications of cellular machinery, which makes an in-depth understanding of the host-transposon relationship imperative. This review highlights the dynamic interplay between the host and transposable elements, encompassing various factors and components of the cellular machinery. We provide a comprehensive discussion of the strategies employed by transposable elements for their propagation, as well as the mechanisms utilized by the host to mitigate their parasitic effects. Additionally, we present an overview of recent research identifying host proteins that act as facilitators or inhibitors of transposition. We further discuss the evolutionary outcomes resulting from the genetic interactions between the host and the transposable elements. Finally, we pose open questions in this field and suggest potential avenues for future research.
Collapse
Affiliation(s)
- Prayas Chakrabarty
- Department of Life Sciences, Presidency University Kolkata, 86/1 College Street, Kolkata, 700073, India
| | - Raneet Sen
- Department of Life Sciences, Presidency University Kolkata, 86/1 College Street, Kolkata, 700073, India
- Institute of Bioorganic Chemistry, Department of RNA Metabolism, Polish Academy of Sciences, Poznan, Poland
| | - Sugopa Sengupta
- Department of Life Sciences, Presidency University Kolkata, 86/1 College Street, Kolkata, 700073, India.
| |
Collapse
|
26
|
Chaudhary J, Gautam T, Gahlaut V, Singh K, Kumar S, Batra R, Gupta PK. Identification and characterization of RuvBL DNA helicase genes for tolerance against abiotic stresses in bread wheat (Triticum aestivum L.) and related species. Funct Integr Genomics 2023; 23:255. [PMID: 37498392 DOI: 10.1007/s10142-023-01177-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 07/13/2023] [Accepted: 07/13/2023] [Indexed: 07/28/2023]
Abstract
Recombination UVB (sensitivity) like (RuvBL) helicase genes represent a conserved family of genes, which are known to be involved in providing tolerance against abiotic stresses like heat and drought. We identified nine wheat RuvBL genes, one each on nine different chromosomes, belonging to homoeologous groups 2, 3, and 4. The lengths of genes ranged from 1647 to 2197 bp and exhibited synteny with corresponding genes in related species including Ae. tauschii, Z. mays, O. sativa, H. vulgare, and B. distachyon. The gene sequences were associated with regulatory cis-elements and transposable elements. Two genes, namely TaRuvBL1a-4A and TaRuvBL1a-4B, also carried targets for a widely known miRNA, tae-miR164. Gene ontology revealed that these genes were closely associated with ATP-dependent formation of histone acetyltransferase complex. Analysis of the structure and function of RuvBL proteins revealed that the proteins were localized mainly in the cytoplasm. A representative gene, namely TaRuvBL1a-4A, was also shown to be involved in protein-protein interactions with ten other proteins. On the basis of phylogeny, RuvBL proteins were placed in two sub-divisions, namely RuvBL1 and RuvBL2, which were further classified into clusters and sub-clusters. In silico studies suggested that these genes were differentially expressed under heat/drought. The qRT-PCR analysis confirmed that expression of TaRuvBL genes differed among wheat cultivars, which differed in the level of thermotolerance. The present study advances our understanding of the biological role of wheat RuvBL genes and should help in planning future studies on RuvBL genes in wheat including use of RuvBL genes in breeding thermotolerant wheat cultivars.
Collapse
Affiliation(s)
- Jyoti Chaudhary
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, 250004, Meerut, India
| | - Tinku Gautam
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, 250004, Meerut, India
- Swift Current Research and Development Centre, Agriculture and Agri-Food Canada, Swift Current, SK, Canada
| | - Vijay Gahlaut
- Council of Scientific & Industrial Research-Institute of Himalayan Bioresource Technology, Palampur, India
- Department of Biotechnology, University Center for Research and Development, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| | - Kalpana Singh
- Department of Bioinformatics, College of animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| | - Sourabh Kumar
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, 250004, Meerut, India
| | - Ritu Batra
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, 250004, Meerut, India
- IIMT University, 'O' Pocket, Ganga Nagar, Meerut, India
| | - Pushpendra Kumar Gupta
- Department of Genetics and Plant Breeding, Ch. Charan Singh University, 250004, Meerut, India.
| |
Collapse
|
27
|
Murphy KM, Dowd T, Khalil A, Char SN, Yang B, Endelman BJ, Shih PM, Topp C, Schmelz EA, Zerbe P. A dolabralexin-deficient mutant provides insight into specialized diterpenoid metabolism in maize. PLANT PHYSIOLOGY 2023; 192:1338-1358. [PMID: 36896653 PMCID: PMC10231366 DOI: 10.1093/plphys/kiad150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 01/19/2023] [Accepted: 02/02/2023] [Indexed: 06/01/2023]
Abstract
Two major groups of specialized metabolites in maize (Zea mays), termed kauralexins and dolabralexins, serve as known or predicted diterpenoid defenses against pathogens, herbivores, and other environmental stressors. To consider the physiological roles of the recently discovered dolabralexin pathway, we examined dolabralexin structural diversity, tissue-specificity, and stress-elicited production in a defined biosynthetic pathway mutant. Metabolomics analyses support a larger number of dolabralexin pathway products than previously known. We identified dolabradienol as a previously undetected pathway metabolite and characterized its enzymatic production. Transcript and metabolite profiling showed that dolabralexin biosynthesis and accumulation predominantly occur in primary roots and show quantitative variation across genetically diverse inbred lines. Generation and analysis of CRISPR-Cas9-derived loss-of-function Kaurene Synthase-Like 4 (Zmksl4) mutants demonstrated dolabralexin production deficiency, thus supporting ZmKSL4 as the diterpene synthase responsible for the conversion of geranylgeranyl pyrophosphate precursors into dolabradiene and downstream pathway products. Zmksl4 mutants further display altered root-to-shoot ratios and root architecture in response to water deficit. Collectively, these results demonstrate dolabralexin biosynthesis via ZmKSL4 as a committed pathway node biochemically separating kauralexin and dolabralexin metabolism, and suggest an interactive role of maize dolabralexins in plant vigor during abiotic stress.
Collapse
Affiliation(s)
- Katherine M Murphy
- Department of Plant Biology, University of California-Davis, Davis, CA 95616, USA
| | - Tyler Dowd
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Ahmed Khalil
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Si Nian Char
- Division of Plant Science and Technology, University of Missouri, Columbia, MO 65211, USA
| | - Bing Yang
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
- Division of Plant Science and Technology, University of Missouri, Columbia, MO 65211, USA
| | - Benjamin J Endelman
- Department of Plant Biology, University of California-Davis, Davis, CA 95616, USA
| | - Patrick M Shih
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Plant and Microbial Biology, UC Berkeley, Berkeley, CA 94720, USA
| | | | - Eric A Schmelz
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Philipp Zerbe
- Department of Plant Biology, University of California-Davis, Davis, CA 95616, USA
| |
Collapse
|
28
|
Yang H, Shi X, Chen C, Hou J, Ji T, Cheng J, Birchler JA. Genomic imbalance modulates transposable element expression in maize. PLANT COMMUNICATIONS 2023; 4:100467. [PMID: 36307986 PMCID: PMC10030319 DOI: 10.1016/j.xplc.2022.100467] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/19/2022] [Accepted: 10/23/2022] [Indexed: 05/04/2023]
Abstract
Genomic imbalance refers to the more severe phenotypic consequences of changing part of a chromosome compared with the whole genome set. Previous genome imbalance studies in maize have identified prevalent inverse modulation of genes on the unvaried chromosomes (trans) with both the addition or subtraction of chromosome arms. Transposable elements (TEs) comprise a substantial fraction of the genome, and their reaction to genomic imbalance is therefore of interest. Here, we analyzed TE expression using RNA-seq data of aneuploidy and ploidy series and found that most aneuploidies showed an inverse modulation of TEs, but reductions in monosomy and increases in disomy and trisomy were also common. By contrast, the ploidy series showed little TE modulation. The modulation of TEs and genes in the same experimental group were compared, and TEs showed greater modulation than genes, especially in disomy. Class I and II TEs were differentially modulated in most aneuploidies, and some superfamilies in each TE class also showed differential modulation. Finally, the significantly upregulated TEs in three disomies (TB-7Lb, TB9Lc, and TB-10L19) did not increase the proportion of adjacent gene expression when compared with non-differentially expressed TEs, indicating that modulations of TEs do not compound the effect on genes. These results suggest that the prevalent inverse TE modulation in aneuploidy results from stoichiometric upset of the regulatory machinery used by TEs, similar to the response of core genes to genomic imbalance.
Collapse
Affiliation(s)
- Hua Yang
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Xiaowen Shi
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Chen Chen
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65211, USA
| | - Jie Hou
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65211, USA
| | - Tieming Ji
- Department of Statistics, University of Missouri, Columbia, MO 65211, USA
| | - Jianlin Cheng
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65211, USA
| | - James A Birchler
- Division of Biological Sciences, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
29
|
Paulsmeyer MN, Juvik JA. R3-MYB repressor Mybr97 is a candidate gene associated with the Anthocyanin3 locus and enhanced anthocyanin accumulation in maize. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:55. [PMID: 36913001 DOI: 10.1007/s00122-023-04275-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 11/10/2022] [Indexed: 06/18/2023]
Abstract
Anthocyanin3 inhibits the anthocyanin and monolignol pathways in maize. Transposon-tagging, RNA-sequencing, and GST-pulldown assays determine Anthocyanin3 may be R3-MYB repressor gene Mybr97. Anthocyanins are colorful molecules receiving recent attention due to their numerous health benefits and applications as natural colorants and nutraceuticals. Purple corn is being investigated as a more economical source of anthocyanins. Anthocyanin3 (A3) is a known recessive intensifier of anthocyanin pigmentation in maize. In this study, anthocyanin content was elevated 100-fold in recessive a3 plants. Two approaches were used to discover candidates involved with the a3 intense purple plant phenotype. First, a large-scale transposon-tagging population was created with a Dissociation (Ds) insertion in the nearby Anthocyanin1 gene. A de novo a3-m1::Ds mutant was generated, and the transposon insertion was found to be located in the promoter of Mybr97, which has homology to R3-MYB repressor CAPRICE in Arabidopsis. Second, a bulked segregant RNA-sequencing population found expression differences between pools of green A3 plants and purple a3 plants. All characterized anthocyanin biosynthetic genes were upregulated in a3 plants along with several genes of the monolignol pathway. Mybr97 was highly downregulated in a3 plants, suggesting its role as a negative regulator of the anthocyanin pathway. Photosynthesis-related gene expression was reduced in a3 plants through an unknown mechanism. Numerous transcription factors and biosynthetic genes were also upregulated and need further investigation. Mybr97 may inhibit anthocyanin synthesis by associating with basic helix-loop helix transcription factors like Booster1. Overall, Mybr97 is the most likely candidate gene for the A3 locus. A3 has a profound effect on the maize plant and has many favorable implications for crop protection, human health, and natural colorant production.
Collapse
Affiliation(s)
- Michael N Paulsmeyer
- Vegetable Crops Research Unit, USDA-ARS, Department of Horticulture, University of Wisconsin at Madison, 1575 Linden Dr., Madison, WI, 53706, USA
| | - John A Juvik
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1201 W. Gregory Dr., Urbana, IL, 61801, USA.
| |
Collapse
|
30
|
Zhang H, Wang X, Yan A, Deng J, Xie Y, Liu S, Liu D, He L, Weng J, Xu J. Evolutionary Analysis of Respiratory Burst Oxidase Homolog (RBOH) Genes in Plants and Characterization of ZmRBOHs. Int J Mol Sci 2023; 24:3858. [PMID: 36835269 PMCID: PMC9965149 DOI: 10.3390/ijms24043858] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/17/2023] Open
Abstract
The respiratory burst oxidase homolog (RBOH), as the key producer of reactive oxygen species (ROS), plays an essential role in plant development. In this study, a bioinformatic analysis was performed on 22 plant species, and 181 RBOH homologues were identified. A typical RBOH family was identified only in terrestrial plants, and the number of RBOHs increased from non-angiosperms to angiosperms. Whole genome duplication (WGD)/segmental duplication played a key role in RBOH gene family expansion. Amino acid numbers of 181 RBOHs ranged from 98 to 1461, and the encoded proteins had molecular weights from 11.1 to 163.6 kDa, respectively. All plant RBOHs contained a conserved NADPH_Ox domain, while some of them lacked the FAD_binding_8 domain. Plant RBOHs were classified into five main subgroups by phylogenetic analysis. Most RBOH members in the same subgroup showed conservation in both motif distribution and gene structure composition. Fifteen ZmRBOHs were identified in maize genome and were positioned in eight maize chromosomes. A total of three pairs of orthologous genes were found in maize, including ZmRBOH6/ZmRBOH8, ZmRBOH4/ZmRBOH10 and ZmRBOH15/ZmRBOH2. A Ka/Ks calculation confirmed that purifying selection was the main driving force in their evolution. ZmRBOHs had typical conserved domains and similar protein structures. cis-element analyses together with the expression profiles of the ZmRBOH genes in various tissues and stages of development suggested that ZmRBOH was involved in distinct biological processes and stress responses. Based on the RNA-Seq data and qRT-PCR analysis, the transcriptional response of ZmRBOH genes was examined under various abiotic stresses, and most of ZmRBOH genes were up-regulated by cold stress. These findings provide valuable information for further revealing the biological roles of ZmRBOH genes in plant development and abiotic stress responses.
Collapse
Affiliation(s)
- Haiyang Zhang
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Xu Wang
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - An Yan
- College of Engineering, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Jie Deng
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Yanping Xie
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Shiyuan Liu
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Debin Liu
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Lin He
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| | - Jianfeng Weng
- Institute of Crop Science, Chinese Academy of Agricultural Science, No. 12 Zhongguancun South Street, Haidian District, Beijing 100081, China
| | - Jingyu Xu
- College of Agriculture, Heilongjiang Bayi Agricultural University, Daqing 163319, China
| |
Collapse
|
31
|
Liang J, Kong L, Hu X, Fu C, Bai S. Chromosomal-level genome assembly of the high-quality Xian/Indica rice (Oryza sativa L.) Xiangyaxiangzhan. BMC PLANT BIOLOGY 2023; 23:94. [PMID: 36782126 PMCID: PMC9926808 DOI: 10.1186/s12870-023-04114-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
The indica rice variety XYXZ carries elite traits including appearance and eating quality. Here, we report the de novo assembly of XYXZ using Illumine paired-end whole-genome shotgun sequencing and Nanopore sequencing. We annotated 39,722 protein-coding genes in the 395.04 Mb assembly. In comparison to other cultivars, XYXZ showed a larger gene size including the transcripts and introns, and more exons per gene. And hundreds of ultra-long genes were also detected. A total of 4362 complete LTRs were annotated, and among them, many were located next to or in protein-coding genes including several genes related to rice quality. We observed the different distributions of LTRs in these genes among XYXZ, Nipponbare, and R498, implying these LTRs might potentially affect expressions of the proximal genes and rice quality. Overall, This chromosome-length genome assembly of XYXZ provides a valuable resource for gene discovery, genetic variation and evolution, and the breeding of high-quality rice.
Collapse
Affiliation(s)
- Jiayan Liang
- Rice Research Institute Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China
| | - Leilei Kong
- Rice Research Institute Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China
| | - Xiaodan Hu
- Rice Research Institute Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China
| | - Chongyun Fu
- Rice Research Institute Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China.
| | - Song Bai
- Rice Research Institute Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China.
| |
Collapse
|
32
|
Ventimiglia M, Marturano G, Vangelisti A, Usai G, Simoni S, Cavallini A, Giordani T, Natali L, Zuccolo A, Mascagni F. Genome-wide identification and characterization of exapted transposable elements in the large genome of sunflower (Helianthus annuus L.). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:734-748. [PMID: 36573648 DOI: 10.1111/tpj.16078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 12/07/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Transposable elements (TEs) are an important source of genome variability, playing many roles in the evolution of eukaryotic species. Besides well-known phenomena, TEs may undergo the exaptation process and generate the so-called exapted transposable element genes (ETEs). Here we present a genome-wide survey of ETEs in the large genome of sunflower (Helianthus annuus L.), in which the massive amount of TEs, provides a significant source for exaptation. A library of sunflower TEs was used to build TE-specific Hidden Markov Model profiles, to search for all available sunflower gene products. In doing so, 20 016 putative ETEs were identified and further investigated for the characteristics that distinguish TEs from genes, leading to the validation of 3530 ETEs. The analysis of ETEs transcription patterns under different stress conditions showed a differential regulation triggered by treatments mimicking biotic and abiotic stress; furthermore, the distribution of functional domains of differentially regulated ETEs revealed a relevant presence of domains involved in many aspects of cellular functions. A comparative genomic investigation was performed including species representative of Asterids and appropriate outgroups: the bulk of ETEs that resulted were specific to the sunflower, while few ETEs presented orthologues in the genome of all analyzed species, making the hypothesis of a conserved function. This study highlights the crucial role played by exaptation, actively contributing to species evolution.
Collapse
Affiliation(s)
- Maria Ventimiglia
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Giovanni Marturano
- Crop Science Research Center, Sant'Anna School of Advanced Studies, Piazza Martiri della Libertà 33, 56127, Pisa, Italy
| | - Alberto Vangelisti
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Gabriele Usai
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Samuel Simoni
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Andrea Cavallini
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Tommaso Giordani
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Lucia Natali
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Andrea Zuccolo
- Crop Science Research Center, Sant'Anna School of Advanced Studies, Piazza Martiri della Libertà 33, 56127, Pisa, Italy
- Center for Desert Agriculture, Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Flavia Mascagni
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| |
Collapse
|
33
|
Wang S, Qian YQ, Zhao RP, Chen LL, Song JM. Graph-based pan-genomes: increased opportunities in plant genomics. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:24-39. [PMID: 36255144 DOI: 10.1093/jxb/erac412] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Due to the development of sequencing technology and the great reduction in sequencing costs, an increasing number of plant genomes have been assembled, and numerous genomes have revealed large amounts of variations. However, a single reference genome does not allow the exploration of species diversity, and therefore the concept of pan-genome was developed. A pan-genome is a collection of all sequences available for a species, including a large number of consensus sequences, large structural variations, and small variations including single nucleotide polymorphisms and insertions/deletions. A simple linear pan-genome does not allow these structural variations to be intuitively characterized, so graph-based pan-genomes have been developed. These pan-genomes store sequence and structural variation information in the form of nodes and paths to store and display species variation information in a more intuitive manner. The key role of graph-based pan-genomes is to expand the coordinate system of the linear reference genome to accommodate more regions of genetic diversity. Here, we review the origin and development of graph-based pan-genomes, explore their application in plant research, and further highlight the application of graph-based pan-genomes for future plant breeding.
Collapse
Affiliation(s)
- Shuo Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, 530004, China
- National Key Laboratory of Crop Genetic Improvement, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yong-Qing Qian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Ru-Peng Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Ling-Ling Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Jia-Ming Song
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| |
Collapse
|
34
|
Eskier D, Arıbaş A, Karakülah G. PlanTEnrichment: A How-to Guide on Rapid Identification of Transposable Elements Associated with Regions of Interest in Select Plant Genomes. Methods Mol Biol 2023; 2703:59-70. [PMID: 37646937 DOI: 10.1007/978-1-0716-3389-2_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Transposable elements (TEs) are repeat elements that can relocate or create novel copies of themselves in the genome and contribute to genomic complexity and expansion, via events such as chromosome recombination or regulation of gene expression. However, given the large number of such repeats across the genome, identifying repeats of interest can be a challenge in even well-annotated genomes, especially in more complex, TE-rich plant genomes. Here, we describe a protocol for PlanTEnrichment, a database we created comprising information on 11 plant genomes to analyze stress-associated TEs using publicly available data. By selecting a genome and providing a list of genes or genomic regions whose TE associations the user wants to identify, the user can rapidly obtain TE subfamilies found near the provided regions, as well as their superfamily and class, and the enrichment values of the repeats. The results also provide the locations of individual repeat instances found, alongside the input regions or genes they are associated with, and a bar graph of the top ten most significant repeat subfamilies identified. PlanTEnrichment is freely available at http://tools.ibg.deu.edu.tr/plantenrichment/ and can be used by researchers with rudimentary or no proficiency in computational analysis of TE elements, allowing for expedience in the identification of TEs of interest and helping further our understanding of the potential contributions of TEs in plant genomes.
Collapse
Affiliation(s)
- Doğa Eskier
- İzmir International Biomedicine and Genome Institute, Dokuz Eylül University, İnciraltı, İzmir, Turkey
- Bioinformatics Platform, İzmir Biomedicine and Genome Center (IBG), İnciraltı, İzmir, Turkey
| | - Alirıza Arıbaş
- Bioinformatics Platform, İzmir Biomedicine and Genome Center (IBG), İnciraltı, İzmir, Turkey
| | - Gökhan Karakülah
- İzmir International Biomedicine and Genome Institute, Dokuz Eylül University, İnciraltı, İzmir, Turkey.
- Bioinformatics Platform, İzmir Biomedicine and Genome Center (IBG), İnciraltı, İzmir, Turkey.
| |
Collapse
|
35
|
Yu L, Ding Y, Zhou M. A long non-coding RNA PelncRNA1 is involved in Phyllostachys edulis response to UV-B stress. PeerJ 2023; 11:e15243. [PMID: 37187514 PMCID: PMC10178214 DOI: 10.7717/peerj.15243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/28/2023] [Indexed: 05/17/2023] Open
Abstract
Phyllostachys edulis (moso bamboo) is China's most widespread bamboo species, with significant economic and ecological values. Long non-coding RNA (lncRNA) is a type of regulatory RNA that is longer than 200 nucleotides and incapable of encoding proteins, and is frequently involved in regulating biotic and abiotic stress and plant development. However, the biological functions of lncRNA in moso bamboo are unknown. In this study, a lncRNA (named PelncRNA1) differentially expressed following UV-B treatment was discovered in the whole transcriptome sequencing database of moso bamboo. The target genes were filtered and defined by correlation analysis of PelncRNA1 and gene expression pattern. The expression levels of PelncRNA1 and its target genes were verified using qRT-PCR. The results demonstrated that the expression levels of PelncRNA1 and its target genes increased during UV-B treatment. In Arabidopsis transgenic seedlings and moso bamboo protoplasts, PelncRNA1 was discovered to influence the expression of its target genes when overexpressed. In addition, transgenic Arabidopsis showed higher tolerance to UV-B stress. These results suggest that PelncRNA1 and its target genes are involved in the response of moso bamboo to UV-B stress. The novel findings would contribute to our understanding of how lncRNAs regulate the response to abiotic stresses in moso bamboo.
Collapse
|
36
|
Bajus M, Macko-Podgórni A, Grzebelus D, Baránek M. A review of strategies used to identify transposition events in plant genomes. FRONTIERS IN PLANT SCIENCE 2022; 13:1080993. [PMID: 36531345 PMCID: PMC9751208 DOI: 10.3389/fpls.2022.1080993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Transposable elements (TEs) were initially considered redundant and dubbed 'junk DNA'. However, more recently they were recognized as an essential element of genome plasticity. In nature, they frequently become active upon exposition of the host to stress conditions. Even though most transposition events are neutral or even deleterious, occasionally they may happen to be beneficial, resulting in genetic novelty providing better fitness to the host. Hence, TE mobilization may promote adaptability and, in the long run, act as a significant evolutionary force. There are many examples of TE insertions resulting in increased tolerance to stresses or in novel features of crops which are appealing to the consumer. Possibly, TE-driven de novo variability could be utilized for crop improvement. However, in order to systematically study the mechanisms of TE/host interactions, it is necessary to have suitable tools to globally monitor any ongoing TE mobilization. With the development of novel potent technologies, new high-throughput strategies for studying TE dynamics are emerging. Here, we present currently available methods applied to monitor the activity of TEs in plants. We divide them on the basis of their operational principles, the position of target molecules in the process of transposition and their ability to capture real cases of actively transposing elements. Their possible theoretical and practical drawbacks are also discussed. Finally, conceivable strategies and combinations of methods resulting in an improved performance are proposed.
Collapse
Affiliation(s)
- Marko Bajus
- Mendeleum—Institute of Genetics, Faculty of Horticulture, Mendel University in Brno, Lednice, Czechia
| | - Alicja Macko-Podgórni
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Kraków, Poland
| | - Dariusz Grzebelus
- Department of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, Kraków, Poland
| | - Miroslav Baránek
- Mendeleum—Institute of Genetics, Faculty of Horticulture, Mendel University in Brno, Lednice, Czechia
| |
Collapse
|
37
|
Thieme M, Brêchet A, Bourgeois Y, Keller B, Bucher E, Roulin AC. Experimentally heat-induced transposition increases drought tolerance in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2022; 236:182-194. [PMID: 35715973 PMCID: PMC9544478 DOI: 10.1111/nph.18322] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 06/10/2022] [Indexed: 05/14/2023]
Abstract
Eukaryotic genomes contain a vast diversity of transposable elements (TEs). Formerly often described as selfish and parasitic DNA sequences, TEs are now recognised as a source of genetic diversity and powerful drivers of evolution. However, because their mobility is tightly controlled by the host, studies experimentally assessing how fast TEs may mediate the emergence of adaptive traits are scarce. We exposed Arabidopsis thaliana high-copy TE lines (hcLines) with up to c. eight-fold increased copy numbers of the heat-responsive ONSEN TE to drought as a straightforward and ecologically highly relevant selection pressure. We provide evidence for increased drought tolerance in five out of the 23 tested hcLines and further pinpoint one of the causative mutations to an exonic insertion of ONSEN in the ribose-5-phosphate-isomerase 2 gene. The resulting loss-of-function mutation caused a decreased rate of photosynthesis, plant size and water consumption. Overall, we show that the heat-induced transposition of a low-copy TE increases phenotypic diversity and leads to the emergence of drought-tolerant individuals in A. thaliana. This is one of the rare empirical examples substantiating the adaptive potential of mobilised stress-responsive TEs in eukaryotes. Our work demonstrates the potential of TE-mediated loss-of-function mutations in stress adaptation.
Collapse
Affiliation(s)
- Michael Thieme
- Department of Plant and Microbial BiologyUniversity of Zurich8008ZürichSwitzerland
| | - Arthur Brêchet
- Department of Environmental Sciences – BotanyUniversity of Basel4056BaselSwitzerland
| | - Yann Bourgeois
- School of Biological SciencesUniversity of PortsmouthPO1 2DTPortsmouthUK
| | - Bettina Keller
- Department of Plant and Microbial BiologyUniversity of Zurich8008ZürichSwitzerland
| | | | - Anne C. Roulin
- Department of Plant and Microbial BiologyUniversity of Zurich8008ZürichSwitzerland
| |
Collapse
|
38
|
Schley RJ, Pellicer J, Ge X, Barrett C, Bellot S, Guignard MS, Novák P, Suda J, Fraser D, Baker WJ, Dodsworth S, Macas J, Leitch AR, Leitch IJ. The ecology of palm genomes: repeat-associated genome size expansion is constrained by aridity. THE NEW PHYTOLOGIST 2022; 236:433-446. [PMID: 35717562 PMCID: PMC9796251 DOI: 10.1111/nph.18323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Genome size varies 2400-fold across plants, influencing their evolution through changes in cell size and cell division rates which impact plants' environmental stress tolerance. Repetitive element expansion explains much genome size diversity, and the processes structuring repeat 'communities' are analogous to those structuring ecological communities. However, which environmental stressors influence repeat community dynamics has not yet been examined from an ecological perspective. We measured genome size and leveraged climatic data for 91% of genera within the ecologically diverse palm family (Arecaceae). We then generated genomic repeat profiles for 141 palm species, and analysed repeats using phylogenetically informed linear models to explore relationships between repeat dynamics and environmental factors. We show that palm genome size and repeat 'community' composition are best explained by aridity. Specifically, Ty3-gypsy and TIR elements were more abundant in palm species from wetter environments, which generally had larger genomes, suggesting amplification. By contrast, Ty1-copia and LINE elements were more abundant in drier environments. Our results suggest that water stress inhibits repeat expansion through selection on upper genome size limits. However, elements that may associate with stress-response genes (e.g. Ty1-copia) have amplified in arid-adapted palm species. Overall, we provide novel evidence of climate influencing the assembly of repeat 'communities'.
Collapse
Affiliation(s)
- Rowan J. Schley
- University of ExeterLaver Building, North Park RoadExeterDevonEX4 4QEUK
- Royal Botanic GardensKewSurreyTW9 3ABUK
| | - Jaume Pellicer
- Royal Botanic GardensKewSurreyTW9 3ABUK
- Institut Botànic de Barcelona (IBB, CSIC‐Ajuntament de Barcelona)Passeig del Migdia sn08038BarcelonaSpain
| | - Xue‐Jun Ge
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical GardenChinese Academy of SciencesGuangzhou510650China
| | - Craig Barrett
- Department of BiologyWest Virginia UniversityMorgantownWV26506USA
| | | | | | - Petr Novák
- Biology Centre, Institute of Plant Molecular BiologyCzech Academy of Sciences370 05České BudějoviceCzech Republic
| | | | | | | | - Steven Dodsworth
- School of Biological SciencesUniversity of PortsmouthPortsmouthHampshirePO1 2DYUK
| | - Jiří Macas
- Biology Centre, Institute of Plant Molecular BiologyCzech Academy of Sciences370 05České BudějoviceCzech Republic
| | | | | |
Collapse
|
39
|
Bo C, Cai R, Fang X, Wu H, Ma Z, Yuan H, Cheng B, Fan J, Ma Q. Transcription factor ZmWRKY20 interacts with ZmWRKY115 to repress expression of ZmbZIP111 for salt tolerance in maize. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:1660-1675. [PMID: 35861696 DOI: 10.1111/tpj.15914] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Maize (Zea mays) is an important cereal crop worldwide. However, its yield and quality are adversely affected by salt stress resulting from soil hypersalinity. Exploring the regulatory mechanisms of stress responses is of vital importance to increase maize seed production. In the present study, we screened ethyl methanesulfonate-induced maize mutants and identified a salt-tolerant mutant. A single base was mutated in ZmWRKY20, leading to the formation of a truncated protein variant. A detailed phenotypic analysis revealed that this mutant had significantly higher resistance to wilting and lower reactive oxygen species levels than the inbred line B73. ZmWRKY20 showed transcriptional activity in yeast and specifically bound W-boxes according to the results of our yeast one-hybrid, electrophoretic mobility shift, and dual-luciferase assays. Overexpression of ZmWRKY20 decreased salt tolerance in maize. Transcriptome profiling revealed that ZmWRKY20 overexpression extensively reprogrammed genes involved in regulating defense and oxidation-reduction responses. The results substantiate that ZmWRKY20 is directly targeted to the basic leucine zipper (bZIP) motif in the transcription factor ZmbZIP111. It was also verified that ZmWRKY20 interacts with ZmWRKY115 and both proteins act jointly to enhance ZmbZIP111 repression. The results indicate that the ZmWRKY20 and ZmWRKY115 transcription factors interact in the nucleus, leading to repression of ZmbZIP111 expression by directly binding its promoter, and increase the sensitivity of maize seedlings to salt stress. The current study improves our understanding of the complicated responses of maize to salt stress.
Collapse
Affiliation(s)
- Chen Bo
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Ronghao Cai
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
- Engineering Research Center for Maize of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Xiu Fang
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Hao Wu
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Zhongxian Ma
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Haotian Yuan
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Beijiu Cheng
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
- Engineering Research Center for Maize of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Jun Fan
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
- Engineering Research Center for Maize of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Qing Ma
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
- Engineering Research Center for Maize of Anhui Province, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| |
Collapse
|
40
|
Yang JS, Qian ZH, Shi T, Li ZZ, Chen JM. Chromosome-level genome assembly of the aquatic plant Nymphoides indica reveals transposable element bursts and NBS-LRR gene family expansion shedding light on its invasiveness. DNA Res 2022; 29:dsac022. [PMID: 35751614 PMCID: PMC9267246 DOI: 10.1093/dnares/dsac022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 06/24/2022] [Indexed: 11/19/2022] Open
Abstract
Nymphoides indica, an aquatic plant, is an invasive species that causes both ecological and economic damage in North America and elsewhere. However, the lack of genomic data of N. indica limits the in-depth analysis of this invasive species. Here, we report a chromosome-level genome assembly of nine pseudochromosomes of N. indica with a total size of ∼ 520 Mb. More than half of the N. indica genome consists of transposable elements (TEs), and a higher density of TEs around genes may play a significant role in response to an ever-changing environment by regulating the nearby gene. Additionally, our analysis revealed that N. indica only experienced a gamma (γ) whole-genome triplication event. Functional enrichment of the N. indica-specific and expanded gene families highlighted genes involved in the responses to hypoxia and plant-pathogen interactions, which may strengthen the ability to adapt to external challenges and improve ecological fitness. Furthermore, we identified 160 members of the nucleotide-binding site and leucine-rich repeat gene family, which may be linked to the defence response. Collectively, the high-quality N. indica genome reported here opens a novel avenue to understand the evolution and rapid invasion of Nymphoides spp.
Collapse
Affiliation(s)
- Jing-Shan Yang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-Hao Qian
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Shi
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
| | - Zhi-Zhong Li
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
| | - Jin-Ming Chen
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
| |
Collapse
|
41
|
Usha T, Middha SK, Babu D, Goyal AK, Das AJ, Saini D, Sarangi A, Krishnamurthy V, Prasannakumar MK, Saini DK, Sidhalinghamurthy KR. Hybrid Assembly and Annotation of the Genome of the Indian Punica granatum, a Superfood. Front Genet 2022; 13:786825. [PMID: 35646087 PMCID: PMC9130716 DOI: 10.3389/fgene.2022.786825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 03/15/2022] [Indexed: 12/13/2022] Open
Abstract
The wonder fruit pomegranate (Punica granatum, family Lythraceae) is one of India’s economically important fruit crops that can grow in different agro-climatic conditions ranging from tropical to temperate regions. This study reports high-quality de novo draft hybrid genome assembly of diploid Punica cultivar “Bhagwa” and identifies its genomic features. This cultivar is most common among the farmers due to its high sustainability, glossy red color, soft seed, and nutraceutical properties with high market value. The draft genome assembly is about 361.76 Mb (N50 = 40 Mb), ∼9.0 Mb more than the genome size estimated by flow cytometry. The genome is 90.9% complete, and only 26.68% of the genome is occupied by transposable elements and has a relative abundance of 369.93 SSRs/Mb of the genome. A total of 30,803 proteins and their putative functions were predicted. Comparative whole-genome analysis revealed Eucalyptus grandis as the nearest neighbor. KEGG-KASS annotations indicated an abundance of genes involved in the biosynthesis of flavonoids, phenylpropanoids, and secondary metabolites, which are responsible for various medicinal properties of pomegranate, including anticancer, antihyperglycemic, antioxidant, and anti-inflammatory activities. The genome and gene annotations provide new insights into the pharmacological properties of the secondary metabolites synthesized in pomegranate. They will also serve as a valuable resource in mining biosynthetic pathways for key metabolites, novel genes, and variations associated with disease resistance, which can facilitate the breeding of new varieties with high yield and superior quality.
Collapse
Affiliation(s)
- Talambedu Usha
- Department of Biochemistry, Bangalore University, Bengaluru, India
| | - Sushil Kumar Middha
- DBT-BIF Facility, Department of Biotechnology, Maharani Lakshmi Ammanni College for Women, Bengaluru, India
| | - Dinesh Babu
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Arvind Kumar Goyal
- Centre for Bamboo Studies, Department of Biotechnology, Bodoland University, Kokrajhar, India
| | | | - Deepti Saini
- Protein Design Private Limited, Bengaluru, India
| | | | | | | | - Deepak Kumar Saini
- Department of Molecular Reproduction Development and Genetics, Indian Institute of Science, Bengaluru, India
| | | |
Collapse
|
42
|
Domb K, Wang N, Hummel G, Liu C. Spatial Features and Functional Implications of Plant 3D Genome Organization. ANNUAL REVIEW OF PLANT BIOLOGY 2022; 73:173-200. [PMID: 35130445 DOI: 10.1146/annurev-arplant-102720-022810] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The advent of high-throughput sequencing-based methods for chromatin conformation, accessibility, and immunoprecipitation assays has been a turning point in 3D genomics. Altogether, these new tools have been pushing upward the interpretation of pioneer cytogenetic evidence for a higher order in chromatin packing. Here, we review the latest development in our understanding of plant spatial genome structures and different levels of organization and discuss their functional implications. Then, we spotlight the complexity of organellar (i.e., mitochondria and plastids) genomes and discuss their 3D packing into nucleoids. Finally, we propose unaddressed research axes to investigate functional links between chromatin-like dynamics and transcriptional regulation within organellar nucleoids.
Collapse
Affiliation(s)
- Katherine Domb
- Institute of Biology, University of Hohenheim, Stuttgart, Germany;
| | - Nan Wang
- Institute of Biology, University of Hohenheim, Stuttgart, Germany;
| | - Guillaume Hummel
- Institute of Biology, University of Hohenheim, Stuttgart, Germany;
| | - Chang Liu
- Institute of Biology, University of Hohenheim, Stuttgart, Germany;
| |
Collapse
|
43
|
Chen TH, Winefield C. Comprehensive analysis of both long and short read transcriptomes of a clonal and a seed-propagated model species reveal the prerequisites for transcriptional activation of autonomous and non-autonomous transposons in plants. Mob DNA 2022; 13:16. [PMID: 35549762 PMCID: PMC9097378 DOI: 10.1186/s13100-022-00271-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 04/13/2022] [Indexed: 11/29/2022] Open
Abstract
Background Transposable element (TE) transcription is a precursor to its mobilisation in host genomes. However, the characteristics of expressed TE loci, the identification of self-competent transposon loci contributing to new insertions, and the genomic conditions permitting their mobilisation remain largely unknown. Results Using Vitis vinifera embryogenic callus, we explored the impact of biotic stressors on transposon transcription through the exposure of the callus to live cultures of an endemic grapevine yeast, Hanseniaspora uvarum. We found that only 1.7–2.5% of total annotated TE loci were transcribed, of which 5–10% of these were full-length, and the expressed TE loci exhibited a strong location bias towards expressed genes. These trends in transposon transcription were also observed in RNA-seq data from Arabidopsis thaliana wild-type plants but not in epigenetically compromised Arabidopsis ddm1 mutants. Moreover, differentially expressed TE loci in the grapevine tended to share expression patterns with co-localised differentially expressed genes. Utilising nanopore cDNA sequencing, we found a strong correlation between the inclusion of intronic TEs in gene transcripts and the presence of premature termination codons in these transcripts. Finally, we identified low levels of full-length transcripts deriving from structurally intact TE loci in the grapevine model. Conclusion Our observations in two disparate plant models representing clonally and seed propagated plant species reveal a closely connected transcriptional relationship between TEs and co-localised genes, particularly when epigenetic silencing is not compromised. We found that the stress treatment alone was insufficient to induce large-scale full-length transcription from structurally intact TE loci, a necessity for non-autonomous and autonomous mobilisation. Supplementary Information The online version contains supplementary material available at 10.1186/s13100-022-00271-5.
Collapse
Affiliation(s)
- Ting-Hsuan Chen
- Department of Wine, Food, and Molecular Biosciences, Lincoln University, Lincoln, 7647, New Zealand.,Present address: The New Zealand Institute for Plant and Food Research Ltd, Lincoln, 7608, New Zealand
| | - Christopher Winefield
- Department of Wine, Food, and Molecular Biosciences, Lincoln University, Lincoln, 7647, New Zealand.
| |
Collapse
|
44
|
Dazenière J, Bousios A, Eyre-Walker A. Patterns of selection in the evolution of a transposable element. G3 GENES|GENOMES|GENETICS 2022; 12:6545286. [PMID: 35262706 PMCID: PMC9073684 DOI: 10.1093/g3journal/jkac056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 02/14/2022] [Indexed: 11/23/2022]
Abstract
Transposable elements are a major component of most eukaryotic genomes. Here, we present a new approach which allows us to study patterns of natural selection in the evolution of transposable elements over short time scales. The method uses the alignment of all elements with intact gag/pol genes of a transposable element family from a single genome. We predict that the ratio of nonsynonymous to synonymous variants in the alignment should decrease as a function of the frequency of the variants, because elements with nonsynonymous variants that reduce transposition will have fewer progeny. We apply our method to Sirevirus long-terminal repeat retrotransposons that are abundant in maize and other plant species and show that nonsynonymous to synonymous variants declines as variant frequency increases, indicating that negative selection is acting strongly on the Sirevirus genome. The asymptotic value of nonsynonymous to synonymous variants suggests that at least 85% of all nonsynonymous mutations in the transposable element reduce transposition. Crucially, these patterns in nonsynonymous to synonymous variants are only predicted to occur if the gene products from a particular transposable element insertion preferentially promote the transposition of the same insertion. Overall, by using large numbers of intact elements, this study sheds new light on the selective processes that act on transposable elements.
Collapse
Affiliation(s)
- Julie Dazenière
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RH, UK
| | - Alexandros Bousios
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RH, UK
| | - Adam Eyre-Walker
- School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RH, UK
| |
Collapse
|
45
|
Transcriptional Contribution of Transposable Elements in Relation to Salinity Conditions in Teleosts and Silencing Mechanisms Involved. Int J Mol Sci 2022; 23:ijms23095215. [PMID: 35563606 PMCID: PMC9101882 DOI: 10.3390/ijms23095215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 12/10/2022] Open
Abstract
Fish are an interesting taxon comprising species adapted to a wide range of environments. In this work, we analyzed the transcriptional contribution of transposable elements (TEs) in the gill transcriptomes of three fish species exposed to different salinity conditions. We considered the giant marbled eel Anguilla marmorata and the chum salmon Oncorhynchus keta, both diadromous, and the marine medaka Oryzias melastigma, an euryhaline organism sensu stricto. Our analyses revealed an interesting activity of TEs in the case of juvenile eels, commonly adapted to salty water, when exposed to brackish and freshwater conditions. Moreover, the expression assessment of genes involved in TE silencing mechanisms (six in heterochromatin formation, fourteen known to be part of the nucleosome remodeling deacetylase (NuRD) complex, and four of the Argonaute subfamily) unveiled that they are active. Finally, our results evidenced for the first time a krüppel-associated box (KRAB)-like domain specific to actinopterygians that, together with TRIM33, might allow the functioning of NuRD complex also in fish species. The possible interaction between these two proteins was supported by structural prediction analyses.
Collapse
|
46
|
Genome-wide analyses of introgression between two sympatric Asian oak species. Nat Ecol Evol 2022; 6:924-935. [PMID: 35513577 DOI: 10.1038/s41559-022-01754-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/29/2022] [Indexed: 12/13/2022]
Abstract
Introgression can be an important source of new alleles for adaption under rapidly changing environments, perhaps even more important than standing variation. Though introgression has been extensively studied in many plants and animals, key questions on the underlying mechanisms of introgression still remain unanswered. In particular, we are yet to determine the genomic distribution of introgressed regions along the genome; whether the extent and patterns of introgression are influenced by ecological factors; and when and how introgression contributes to adaptation. Here, we generated high-quality genomic resources for two sympatric widespread Asian oak species, Quercus acutissima and Q. variabilis, sampled in multiple forests to study introgression between them. We show that introgressed regions are broadly distributed across the genome. Introgression was affected by genetic divergence between pairs of populations and by the similarity of the environments in which they live-populations occupying similar ecological sites tended to share the same introgressed regions. Introgressed genomic footprints of adaptation were preferentially located in regions with suppressed recombination rate. Introgression probably confers adaptation in these oak populations by introducing allelic variation in cis-regulatory elements, in particular through transposable element insertions, thereby altering the regulation of genes related to stress. Our results provide new avenues of research for uncovering mechanisms of adaptation due to hybridization in sympatric species.
Collapse
|
47
|
Sheoran S, Gupta M, Kumari S, Kumar S, Rakshit S. Meta-QTL analysis and candidate genes identification for various abiotic stresses in maize ( Zea mays L.) and their implications in breeding programs. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:26. [PMID: 37309532 PMCID: PMC10248626 DOI: 10.1007/s11032-022-01294-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 03/26/2022] [Indexed: 06/14/2023]
Abstract
Global climate change leads to the concurrence of a number of abiotic stresses including moisture stress (drought, waterlogging), temperature stress (heat, cold), and salinity stress, which are the major factors affecting maize production. To develop abiotic stress tolerance in maize, many quantitative trait loci (QTL) have been identified, but very few of them have been utilized successfully in breeding programs. In this context, the meta-QTL analysis of the reported QTL will enable the identification of stable/real QTL which will pave a reliable way to introgress these QTL into elite cultivars through marker-assisted selection. In this study, a total of 542 QTL were summarized from 33 published studies for tolerance to different abiotic stresses in maize to conduct meta-QTL analysis using BiomercatorV4.2.3. Among those, only 244 major QTL with more than 10% phenotypic variance were preferably utilised to carry out meta-QTL analysis. In total, 32 meta-QTL possessing 1907 candidate genes were detected for different abiotic stresses over diverse genetic and environmental backgrounds. The MQTL2.1, 5.1, 5.2, 5.6, 7.1, 9.1, and 9.2 control different stress-related traits for combined abiotic stress tolerance. The candidate genes for important transcription factor families such as ERF, MYB, bZIP, bHLH, NAC, LRR, ZF, MAPK, HSP, peroxidase, and WRKY have been detected for different stress tolerances. The identified meta-QTL are valuable for future climate-resilient maize breeding programs and functional validation of candidate genes studies, which will help to deepen our understanding of the complexity of these abiotic stresses. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-022-01294-9.
Collapse
Affiliation(s)
- Seema Sheoran
- ICAR-Indian Institute of Maize Research, PAU Campus, Ludhiana, 141004 India
- Present Address: ICAR-Indian Agricultural Research Institute, Regional Station, Karnal, 132001 India
| | - Mamta Gupta
- ICAR-Indian Institute of Maize Research, PAU Campus, Ludhiana, 141004 India
| | - Shweta Kumari
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012 India
| | - Sandeep Kumar
- Present Address: ICAR-Indian Agricultural Research Institute, Regional Station, Karnal, 132001 India
- ICAR-Indian Institute of Pulses Research, Regional Station, Phanda, Bhopal, 462030 India
| | - Sujay Rakshit
- ICAR-Indian Institute of Maize Research, PAU Campus, Ludhiana, 141004 India
| |
Collapse
|
48
|
Li L, Chen X, Fang D, Dong S, Guo X, Li N, Campos‐Dominguez L, Wang W, Liu Y, Lang X, Peng Y, Tian D, Thomas DC, Mu W, Liu M, Wu C, Yang T, Zhang S, Yang L, Yang J, Liu Z, Zhang L, Zhang X, Chen F, Jiao Y, Guo Y, Hughes M, Wang W, Liu X, Zhong C, Li A, Sahu SK, Yang H, Wu E, Sharbrough J, Lisby M, Liu X, Xu X, Soltis DE, Van de Peer Y, Kidner C, Zhang S, Liu H. Genomes shed light on the evolution of Begonia, a mega-diverse genus. THE NEW PHYTOLOGIST 2022; 234:295-310. [PMID: 34997964 PMCID: PMC7612470 DOI: 10.1111/nph.17949] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 12/20/2021] [Indexed: 05/02/2023]
Abstract
Clarifying the evolutionary processes underlying species diversification and adaptation is a key focus of evolutionary biology. Begonia (Begoniaceae) is one of the most species-rich angiosperm genera with c. 2000 species, most of which are shade-adapted. Here, we present chromosome-scale genome assemblies for four species of Begonia (B. loranthoides, B. masoniana, B. darthvaderiana and B. peltatifolia), and whole genome shotgun data for an additional 74 Begonia representatives to investigate lineage evolution and shade adaptation of the genus. The four genome assemblies range in size from 331.75 Mb (B. peltatifolia) to 799.83 Mb (B. masoniana), and harbor 22 059-23 444 protein-coding genes. Synteny analysis revealed a lineage-specific whole-genome duplication (WGD) that occurred just before the diversification of Begonia. Functional enrichment of gene families retained after WGD highlights the significance of modified carbohydrate metabolism and photosynthesis possibly linked to shade adaptation in the genus, which is further supported by expansions of gene families involved in light perception and harvesting. Phylogenomic reconstructions and genomics studies indicate that genomic introgression has also played a role in the evolution of Begonia. Overall, this study provides valuable genomic resources for Begonia and suggests potential drivers underlying the diversity and adaptive evolution of this mega-diverse clade.
Collapse
|
49
|
Perez-Limón S, Li M, Cintora-Martinez GC, Aguilar-Rangel MR, Salazar-Vidal MN, González-Segovia E, Blöcher-Juárez K, Guerrero-Zavala A, Barrales-Gamez B, Carcaño-Macias J, Costich DE, Nieto-Sotelo J, Martinez de la Vega O, Simpson J, Hufford MB, Ross-Ibarra J, Flint-Garcia S, Diaz-Garcia L, Rellán-Álvarez R, Sawers RJH. A B73×Palomero Toluqueño mapping population reveals local adaptation in Mexican highland maize. G3 (BETHESDA, MD.) 2022; 12:jkab447. [PMID: 35100386 PMCID: PMC8896015 DOI: 10.1093/g3journal/jkab447] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/16/2021] [Indexed: 01/31/2023]
Abstract
Generations of farmer selection in the central Mexican highlands have produced unique maize varieties adapted to the challenges of the local environment. In addition to possessing great agronomic and cultural value, Mexican highland maize represents a good system for the study of local adaptation and acquisition of adaptive phenotypes under cultivation. In this study, we characterize a recombinant inbred line population derived from the B73 reference line and the Mexican highland maize variety Palomero Toluqueño. B73 and Palomero Toluqueño showed classic rank-changing differences in performance between lowland and highland field sites, indicative of local adaptation. Quantitative trait mapping identified genomic regions linked to effects on yield components that were conditionally expressed depending on the environment. For the principal genomic regions associated with ear weight and total kernel number, the Palomero Toluqueño allele conferred an advantage specifically in the highland site, consistent with local adaptation. We identified Palomero Toluqueño alleles associated with expression of characteristic highland traits, including reduced tassel branching, increased sheath pigmentation and the presence of sheath macrohairs. The oligogenic architecture of these three morphological traits supports their role in adaptation, suggesting they have arisen from consistent directional selection acting at distinct points across the genome. We discuss these results in the context of the origin of phenotypic novelty during selection, commenting on the role of de novo mutation and the acquisition of adaptive variation by gene flow from endemic wild relatives.
Collapse
Affiliation(s)
- Sergio Perez-Limón
- Laboratorio Nacional de Genómica para la Biodiversidad/Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato 36821, México
- Department of Plant Science, The Pennsylvania State University, State College, PA 16802, USA
| | - Meng Li
- Department of Plant Science, The Pennsylvania State University, State College, PA 16802, USA
| | - G Carolina Cintora-Martinez
- Laboratorio Nacional de Genómica para la Biodiversidad/Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato 36821, México
| | - M Rocio Aguilar-Rangel
- Laboratorio Nacional de Genómica para la Biodiversidad/Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato 36821, México
| | - M Nancy Salazar-Vidal
- Laboratorio Nacional de Genómica para la Biodiversidad/Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato 36821, México
- Department of Evolution and Ecology, UC Davis, CA 95616 USA
| | - Eric González-Segovia
- Laboratorio Nacional de Genómica para la Biodiversidad/Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato 36821, México
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Karla Blöcher-Juárez
- Laboratorio Nacional de Genómica para la Biodiversidad/Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato 36821, México
| | - Alejandro Guerrero-Zavala
- Laboratorio Nacional de Genómica para la Biodiversidad/Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato 36821, México
| | - Benjamin Barrales-Gamez
- Laboratorio Nacional de Genómica para la Biodiversidad/Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato 36821, México
| | - Jessica Carcaño-Macias
- Laboratorio Nacional de Genómica para la Biodiversidad/Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato 36821, México
| | - Denise E Costich
- International Center for Maize and Wheat Improvement (CIMMyT), De México 56237, México
| | - Jorge Nieto-Sotelo
- Jardín Botánico, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México 04510, México
| | - Octavio Martinez de la Vega
- Laboratorio Nacional de Genómica para la Biodiversidad/Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato 36821, México
| | - June Simpson
- Laboratorio Nacional de Genómica para la Biodiversidad/Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato 36821, México
| | - Matthew B Hufford
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA 50011, USA
| | - Jeffrey Ross-Ibarra
- Department of Evolution and Ecology, UC Davis, CA 95616 USA
- Center for Population Biology, and Genome Center, UC Davis, Davis, CA 95616, USA
| | - Sherry Flint-Garcia
- U.S. Department of Agriculture, Agricultural Research Service Plant Genetics Research Unit, Columbia, MO 65211, USA
| | - Luis Diaz-Garcia
- Campo Experimental Pabellón-INIFAP. Carretera Aguascalientes-Zacatecas, Aguascalientes, CP 20660, México
| | - Rubén Rellán-Álvarez
- Laboratorio Nacional de Genómica para la Biodiversidad/Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato 36821, México
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA
| | - Ruairidh J H Sawers
- Laboratorio Nacional de Genómica para la Biodiversidad/Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados, Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato 36821, México
- Department of Plant Science, The Pennsylvania State University, State College, PA 16802, USA
| |
Collapse
|
50
|
Genome-Wide Identification and Expression Analysis of Pseudouridine Synthase Family in Arabidopsis and Maize. Int J Mol Sci 2022; 23:ijms23052680. [PMID: 35269820 PMCID: PMC8910892 DOI: 10.3390/ijms23052680] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 02/04/2023] Open
Abstract
Pseudouridine (Ψ), the isomer of uridine (U), is the most abundant type of RNA modification, which is crucial for gene regulation in various cellular processes. Pseudouridine synthases (PUSs) are the key enzymes for the U-to-Ψ conversion. However, little is known about the genome-wide features and biological function of plant PUSs. In this study, we identified 20 AtPUSs and 22 ZmPUSs from Arabidopsis and maize (Zea mays), respectively. Our phylogenetic analysis indicated that both AtPUSs and ZmPUSs could be clustered into six known subfamilies: RluA, RsuA, TruA, TruB, PUS10, and TruD. RluA subfamily is the largest subfamily in both Arabidopsis and maize. It's noteworthy that except the canonical XXHRLD-type RluAs, another three conserved RluA variants, including XXNRLD-, XXHQID-, and XXHRLG-type were also identified in those key nodes of vascular plants. Subcellular localization analysis of representative AtPUSs and ZmPUSs in each subfamily revealed that PUS proteins were localized in different organelles including nucleus, cytoplasm and chloroplasts. Transcriptional expression analysis indicated that AtPUSs and ZmPUSs were differentially expressed in various tissues and diversely responsive to abiotic stresses, especially suggesting their potential roles in response to heat and salt stresses. All these results would facilitate the functional identification of these pseudouridylation in the future.
Collapse
|