1
|
Štimac I, Marcelić M, Radić B, Viduka I, Blagojević Zagorac G, Lukanović Jurić S, Rožmanić C, Messerle M, Brizić I, Lučin P, Mahmutefendić Lučin H. SNX27:Retromer:ESCPE-1-mediated early endosomal tubulation impacts cytomegalovirus replication. Front Cell Infect Microbiol 2024; 14:1399761. [PMID: 39359939 PMCID: PMC11445146 DOI: 10.3389/fcimb.2024.1399761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/23/2024] [Indexed: 10/04/2024] Open
Abstract
Introduction Cytomegaloviruses (CMVs) extensively reorganize the membrane system of the cell and establish a new structure as large as the cell nucleus called the assembly compartment (AC). Our previous studies on murine CMV (MCMV)-infected fibroblasts indicated that the inner part of the AC contains rearranged early endosomes, recycling endosomes, endosomal recycling compartments and trans-Golgi membrane structures that are extensively tubulated, including the expansion and retention of tubular Rab10 elements. An essential process that initiates Rab10-associated tubulation is cargo sorting and retrieval mediated by SNX27, Retromer, and ESCPE-1 (endosomal SNX-BAR sorting complex for promoting exit 1) complexes. Objective The aim of this study was to investigate the role of SNX27:Retromer:ESCPE-1 complexes in the biogenesis of pre-AC in MCMV-infected cells and subsequently their role in secondary envelopment and release of infectious virions. Results Here we show that SNX27:Retromer:ESCPE1-mediated tubulation is essential for the establishment of a Rab10-decorated subset of membranes within the pre-AC, a function that requires an intact F3 subdomain of the SNX27 FERM domain. Suppression of SNX27-mediated functions resulted in an almost tenfold decrease in the release of infectious virions. However, these effects cannot be directly linked to the contribution of SNX27:Retromer:ESCPE-1-dependent tubulation to the secondary envelopment, as suppression of these components, including the F3-FERM domain, led to a decrease in MCMV protein expression and inhibited the progression of the replication cycle. Conclusion This study demonstrates a novel and important function of membrane tubulation within the pre-AC associated with the control of viral protein expression.
Collapse
Affiliation(s)
- Igor Štimac
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Marina Marcelić
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Barbara Radić
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Ivona Viduka
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Gordana Blagojević Zagorac
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
- University North, University Center Varaždin, Varaždin, Croatia
| | - Silvija Lukanović Jurić
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Carmen Rožmanić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Martin Messerle
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Ilija Brizić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Pero Lučin
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
- University North, University Center Varaždin, Varaždin, Croatia
| | - Hana Mahmutefendić Lučin
- Department of Physiology, Immunology and Pathophysiology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
- University North, University Center Varaždin, Varaždin, Croatia
| |
Collapse
|
2
|
Singh V, Menard MA, Serrano GE, Beach TG, Zhao HT, Riley-DiPaolo A, Subrahmanian N, LaVoie MJ, Volpicelli-Daley LA. Cellular and subcellular localization of Rab10 and phospho-T73 Rab10 in the mouse and human brain. Acta Neuropathol Commun 2023; 11:201. [PMID: 38110990 PMCID: PMC10726543 DOI: 10.1186/s40478-023-01704-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 12/03/2023] [Indexed: 12/20/2023] Open
Abstract
Autosomal dominant pathogenic mutations in Leucine-rich repeat kinase 2 (LRRK2) cause Parkinson's disease (PD). The most common mutation, G2019S-LRRK2, increases the kinase activity of LRRK2 causing hyper-phosphorylation of its substrates. One of these substrates, Rab10, is phosphorylated at a conserved Thr73 residue (pRab10), and is one of the most abundant LRRK2 Rab GTPases expressed in various tissues. The involvement of Rab10 in neurodegenerative disease, including both PD and Alzheimer's disease makes pinpointing the cellular and subcellular localization of Rab10 and pRab10 in the brain an important step in understanding its functional role, and how post-translational modifications could impact function. To establish the specificity of antibodies to the phosphorylated form of Rab10 (pRab10), Rab10 specific antisense oligonucleotides were intraventricularly injected into the brains of mice. Further, Rab10 knock out induced neurons, differentiated from human induced pluripotent stem cells were used to test the pRab10 antibody specificity. To amplify the weak immunofluorescence signal of pRab10, tyramide signal amplification was utilized. Rab10 and pRab10 were expressed in the cortex, striatum and the substantia nigra pars compacta. Immunofluorescence for pRab10 was increased in G2019S-LRRK2 knockin mice. Neurons, astrocytes, microglia and oligodendrocytes all showed Rab10 and pRab10 expression. While Rab10 colocalized with endoplasmic reticulum, lysosome and trans-Golgi network markers, pRab10 did not localize to these organelles. However, pRab10, did overlap with markers of the presynaptic terminal in both mouse and human cortex, including α-synuclein. Results from this study suggest Rab10 and pRab10 are expressed in all brain areas and cell types tested in this study, but pRab10 is enriched at the presynaptic terminal. As Rab10 is a LRRK2 kinase substrate, increased kinase activity of G2019S-LRRK2 in PD may affect Rab10 mediated membrane trafficking at the presynaptic terminal in neurons in disease.
Collapse
Affiliation(s)
- Vijay Singh
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Marissa A Menard
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Geidy E Serrano
- Department of Neuropathology, Banner Sun Health Research Institute, Sun City, AZ, 85351, USA
| | - Thomas G Beach
- Department of Neuropathology, Banner Sun Health Research Institute, Sun City, AZ, 85351, USA
| | - Hien T Zhao
- Ionis Pharmaceuticals Inc, Carlsbad, CA, 92010, USA
| | - Alexis Riley-DiPaolo
- Department of Neuroscience at the University of Florida, Gainesville, FL, 32611, USA
| | - Nitya Subrahmanian
- Department of Neurology, Center for Translational Research in Neurodegenerative Disease, Fixel Institute for Neurologic Disease, University of Florida, Gainesville, FL, 32610, USA
| | - Matthew J LaVoie
- Department of Neurology, Center for Translational Research in Neurodegenerative Disease, Fixel Institute for Neurologic Disease, University of Florida, Gainesville, FL, 32610, USA
| | - Laura A Volpicelli-Daley
- Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL, 35294, USA.
| |
Collapse
|
3
|
Zhang J, Jiang Z, Chen C, Yao L, Gao Z, Cheng Z, Yan Y, Liu H, Shi A. Age-associated decline in RAB-10 efficacy impairs intestinal barrier integrity. NATURE AGING 2023; 3:1107-1127. [PMID: 37640905 DOI: 10.1038/s43587-023-00475-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 07/24/2023] [Indexed: 08/31/2023]
Abstract
The age-related decline in the ability of the intestinal barrier to maintain selective permeability can lead to various physiological disturbances. Adherens junctions play a vital role in regulating intestinal permeability, and their proper assembly is contingent upon endocytic recycling. However, how aging affects the recycling efficiency and, consequently, the integrity of adherens junctions remains unclear. Here we show that RAB-10/Rab10 functionality is reduced during senescence, leading to impaired adherens junctions in the Caenorhabditis elegans intestine. Mechanistic analysis reveals that SDPN-1/PACSINs is upregulated in aging animals, suppressing RAB-10 activation by competing with DENN-4/GEF. Consistently, SDPN-1 knockdown alleviates age-related abnormalities in adherens junction integrity and intestinal barrier permeability. Of note, the inhibitory effect of SDPN-1 on RAB-10 requires KGB-1/JUN kinase, which presumably enhances the potency of SDPN-1 by altering its oligomerization state. Together, by examining age-associated changes in endocytic recycling, our study sheds light on how aging can impact intestinal barrier permeability.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Zongyan Jiang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Changling Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Longfeng Yao
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Ziwei Gao
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Zihang Cheng
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Yanling Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Hang Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China.
| | - Anbing Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China.
- Cell Architecture Research Center, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
4
|
Khan SA, Reed L, Schoolcraft WB, Yuan Y, Krisher RL. Control of mitochondrial integrity influences oocyte quality during reproductive aging. Mol Hum Reprod 2023; 29:gaad028. [PMID: 37594790 DOI: 10.1093/molehr/gaad028] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 07/07/2023] [Indexed: 08/19/2023] Open
Abstract
Reduced quality in oocytes from women of advanced maternal age (AMA) is associated with dysfunctional mitochondria. The objective of this study was to investigate the mechanisms controlling mitochondrial quality during maternal aging in mouse and human oocytes. We first evaluated the expression of proteins involved in the mitochondrial unfolded protein response (UPRmt) and mitophagy in in vivo matured metaphase II (MII) oocytes collected from young and aged mice. Expression of UPRmt proteins, HSPD1 and LONP1, and mitophagy proteins, total-PRKN and phosphorylated-PRKN, was significantly decreased in aged compared to young oocytes. Treatment of aged oocytes during in vitro maturation with the mitochondrially targeted antioxidant mitoquinone (MQ) specifically restored total-PRKN and phosphorylated-PRKN expression to levels seen in young oocytes. We next investigated whether maturing young oocytes under a high-oxygen environment would mimic the effects observed in oocytes from aged females. Phosphorylated-PRKN expression in oxidatively stressed young oocytes was reduced compared to that in oocytes matured under normal oxygen levels, and the mitochondrial DNA (mtDNA) copy number was increased. Treating oxidatively challenged young oocytes with MQ restored the phosphorylated-PRKN expression and mtDNA copy numbers. Treatment of oxidatively challenged oocytes with MQ also increased the co-localization of mitochondria and lysosomes, suggesting increased mitophagy. These data correlated with the developmental potential of the oocytes, as blastocyst development and hatching of oxidatively stressed oocytes were reduced, while treatment with MQ resulted in a significant increase in blastocyst development and hatching, and in the percentage of inner cell mass. Consistent with our results in mice, MII oocytes from women of AMA exhibited a significant decrease in phosphorylated-PKRN and total-PRKN compared to those of young women. Our findings suggest that the protein machinery to control the health of the mitochondria via UPRmt and mitophagy may be compromised in oocytes from aged females, which may result in inefficient clearance of dysfunctional mitochondria and reduced oocyte quality.
Collapse
Affiliation(s)
- Shaihla A Khan
- Colorado Center for Reproductive Medicine, Lone Tree, CO, USA
- Genus plc, DeForest, WI, USA
| | - Laura Reed
- Colorado Center for Reproductive Medicine, Lone Tree, CO, USA
| | | | - Ye Yuan
- Colorado Center for Reproductive Medicine, Lone Tree, CO, USA
| | - Rebecca L Krisher
- Colorado Center for Reproductive Medicine, Lone Tree, CO, USA
- Genus plc, DeForest, WI, USA
| |
Collapse
|
5
|
Lazo OM, Schiavo G. Rab10 regulates the sorting of internalised TrkB for retrograde axonal transport. eLife 2023; 12:81532. [PMID: 36897066 PMCID: PMC10005780 DOI: 10.7554/elife.81532] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 02/15/2023] [Indexed: 03/11/2023] Open
Abstract
Neurons process real-time information from axon terminals to coordinate gene expression, growth, and plasticity. Inputs from distal axons are encoded as a stream of endocytic organelles, termed signalling endosomes, targeted to the soma. Formation of these organelles depends on target-derived molecules, such as brain-derived neurotrophic factor (BDNF), which is recognised by TrkB receptors on the plasma membrane, endocytosed, and transported to the cell body along the microtubules network. Notwithstanding its physiological and neuropathological importance, the mechanism controlling the sorting of TrkB to signalling endosomes is currently unknown. In this work, we use primary mouse neurons to uncover the small GTPase Rab10 as critical for TrkB sorting and propagation of BDNF signalling from axon terminals to the soma. Our data demonstrate that Rab10 defines a novel membrane compartment that is rapidly mobilised towards the axon terminal upon BDNF stimulation, enabling the axon to fine-tune retrograde signalling depending on BDNF availability at the synapse. These results help clarifying the neuroprotective phenotype recently associated to Rab10 polymorphisms in Alzheimer's disease and provide a new therapeutic target to halt neurodegeneration.
Collapse
Affiliation(s)
- Oscar Marcelo Lazo
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, University College LondonLondonUnited Kingdom
- UK Dementia Research Institute at UCLLondonUnited Kingdom
| | - Giampietro Schiavo
- Department of Neuromuscular Diseases and UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, University College LondonLondonUnited Kingdom
- UK Dementia Research Institute at UCLLondonUnited Kingdom
| |
Collapse
|
6
|
Wang Y, Arnold ML, Smart AJ, Wang G, Androwski RJ, Morera A, Nguyen KCQ, Schweinsberg PJ, Bai G, Cooper J, Hall DH, Driscoll M, Grant BD. Large vesicle extrusions from C. elegans neurons are consumed and stimulated by glial-like phagocytosis activity of the neighboring cell. eLife 2023; 12:e82227. [PMID: 36861960 PMCID: PMC10023159 DOI: 10.7554/elife.82227] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 02/28/2023] [Indexed: 03/03/2023] Open
Abstract
Caenorhabditis elegans neurons under stress can produce giant vesicles, several microns in diameter, called exophers. Current models suggest that exophers are neuroprotective, providing a mechanism for stressed neurons to eject toxic protein aggregates and organelles. However, little is known of the fate of the exopher once it leaves the neuron. We found that exophers produced by mechanosensory neurons in C. elegans are engulfed by surrounding hypodermal skin cells and are then broken up into numerous smaller vesicles that acquire hypodermal phagosome maturation markers, with vesicular contents gradually degraded by hypodermal lysosomes. Consistent with the hypodermis acting as an exopher phagocyte, we found that exopher removal requires hypodermal actin and Arp2/3, and the hypodermal plasma membrane adjacent to newly formed exophers accumulates dynamic F-actin during budding. Efficient fission of engulfed exopher-phagosomes to produce smaller vesicles and degrade their contents requires phagosome maturation factors SAND-1/Mon1, GTPase RAB-35, the CNT-1 ARF-GAP, and microtubule motor-associated GTPase ARL-8, suggesting a close coupling of phagosome fission and phagosome maturation. Lysosome activity was required to degrade exopher contents in the hypodermis but not for exopher-phagosome resolution into smaller vesicles. Importantly, we found that GTPase ARF-6 and effector SEC-10/exocyst activity in the hypodermis, along with the CED-1 phagocytic receptor, is required for efficient production of exophers by the neuron. Our results indicate that the neuron requires specific interaction with the phagocyte for an efficient exopher response, a mechanistic feature potentially conserved with mammalian exophergenesis, and similar to neuronal pruning by phagocytic glia that influences neurodegenerative disease.
Collapse
Affiliation(s)
- Yu Wang
- Department of Molecular Biology and Biochemistry, Rutgers UniversityPiscatawayUnited States
| | - Meghan Lee Arnold
- Department of Molecular Biology and Biochemistry, Rutgers UniversityPiscatawayUnited States
| | - Anna Joelle Smart
- Department of Molecular Biology and Biochemistry, Rutgers UniversityPiscatawayUnited States
| | - Guoqiang Wang
- Department of Molecular Biology and Biochemistry, Rutgers UniversityPiscatawayUnited States
| | - Rebecca J Androwski
- Department of Molecular Biology and Biochemistry, Rutgers UniversityPiscatawayUnited States
| | - Andres Morera
- Department of Molecular Biology and Biochemistry, Rutgers UniversityPiscatawayUnited States
| | - Ken CQ Nguyen
- Department of Neuroscience, Albert Einstein College of Medicine, Rose F. Kennedy Center, BronxNew YorkUnited States
| | - Peter J Schweinsberg
- Department of Molecular Biology and Biochemistry, Rutgers UniversityPiscatawayUnited States
| | - Ge Bai
- Department of Molecular Biology and Biochemistry, Rutgers UniversityPiscatawayUnited States
| | - Jason Cooper
- Department of Molecular Biology and Biochemistry, Rutgers UniversityPiscatawayUnited States
| | - David H Hall
- Department of Neuroscience, Albert Einstein College of Medicine, Rose F. Kennedy Center, BronxNew YorkUnited States
| | - Monica Driscoll
- Department of Molecular Biology and Biochemistry, Rutgers UniversityPiscatawayUnited States
| | - Barth D Grant
- Department of Molecular Biology and Biochemistry, Rutgers UniversityPiscatawayUnited States
- Rutgers Center for Lipid ResearchNew BrunswickUnited States
| |
Collapse
|
7
|
Traa A, Soo SK, AlOkda A, Ko B, Rocheleau CE, Van Raamsdonk JM. Endosomal trafficking protein TBC-2 modulates stress resistance and lifespan through DAF-16-dependent and independent mechanisms. Aging Cell 2023; 22:e13762. [PMID: 36794357 PMCID: PMC10014066 DOI: 10.1111/acel.13762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 11/28/2022] [Accepted: 12/08/2022] [Indexed: 02/17/2023] Open
Abstract
The FOXO transcription factor, DAF-16, plays an integral role in insulin/IGF-1 signaling (IIS) and stress response. In conditions of stress or decreased IIS, DAF-16 moves to the nucleus where it activates genes that promote survival. To gain insight into the role of endosomal trafficking in resistance to stress, we disrupted tbc-2, which encodes a GTPase activating protein that inhibits RAB-5 and RAB-7. We found that tbc-2 mutants have decreased nuclear localization of DAF-16 in response to heat stress, anoxia, and bacterial pathogen stress, but increased nuclear localization of DAF-16 in response to chronic oxidative stress and osmotic stress. tbc-2 mutants also exhibit decreased upregulation of DAF-16 target genes in response to stress. To determine whether the rate of nuclear localization of DAF-16 affected stress resistance in these animals, we examined survival after exposure to multiple exogenous stressors. Disruption of tbc-2 decreased resistance to heat stress, anoxia, and bacterial pathogen stress in both wild-type worms and stress-resistant daf-2 insulin/IGF-1 receptor mutants. Similarly, deletion of tbc-2 decreases lifespan in both wild-type worms and daf-2 mutants. When DAF-16 is absent, the loss of tbc-2 is still able to decrease lifespan but has little or no impact on resistance to most stresses. Combined, this suggests that disruption of tbc-2 affects lifespan through both DAF-16-dependent and DAF-16-independent pathways, while the effect of tbc-2 deletion on resistance to stress is primarily DAF-16-dependent. Overall, this work demonstrates the importance of endosomal trafficking for the proper nuclear localization of DAF-16 during stress and that perturbation of normal endosomal trafficking is sufficient to decrease both stress resistance and lifespan.
Collapse
Affiliation(s)
- Annika Traa
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada.,Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.,Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Sonja K Soo
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada.,Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.,Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Abdelrahman AlOkda
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada.,Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.,Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Bokang Ko
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada.,Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.,Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Christian E Rocheleau
- Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.,Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Jeremy M Van Raamsdonk
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada.,Metabolic Disorders and Complications Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.,Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.,Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
8
|
Meraş İ, Chotard L, Liontis T, Ratemi Z, Wiles B, Seo JH, Van Raamsdonk JM, Rocheleau CE. The Rab GTPase activating protein TBC-2 regulates endosomal localization of DAF-16 FOXO and lifespan. PLoS Genet 2022; 18:e1010328. [PMID: 35913999 PMCID: PMC9371356 DOI: 10.1371/journal.pgen.1010328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/11/2022] [Accepted: 07/06/2022] [Indexed: 12/02/2022] Open
Abstract
FOXO transcription factors have been shown to regulate longevity in model organisms and are associated with longevity in humans. To gain insight into how FOXO functions to increase lifespan, we examined the subcellular localization of DAF-16 in C. elegans. We show that DAF-16 is localized to endosomes and that this endosomal localization is increased by the insulin-IGF signaling (IIS) pathway. Endosomal localization of DAF-16 is modulated by endosomal trafficking proteins. Disruption of the Rab GTPase activating protein TBC-2 increases endosomal localization of DAF-16, while inhibition of TBC-2 targets, RAB-5 or RAB-7 GTPases, decreases endosomal localization of DAF-16. Importantly, the amount of DAF-16 that is localized to endosomes has functional consequences as increasing endosomal localization through mutations in tbc-2 reduced the lifespan of long-lived daf-2 IGFR mutants, depleted their fat stores, and DAF-16 target gene expression. Overall, this work identifies endosomal localization as a mechanism regulating DAF-16 FOXO, which is important for its functions in metabolism and aging. FOXO transcription factors have been shown to modulate lifespan in multiple model organisms and to be associated with longevity in humans. Here we describe a new localization of the C. elegans FOXO transcription factor, called DAF-16. We report that DAF-16 localizes to endosomes, membrane compartments internalized from the plasma membrane at the cell surface. We demonstrate that expansion of these endosome compartments by disruption of an endosomal regulator called TBC-2 results in increased localization of DAF-16 on endosomes at the expense of nuclear localization in the intestinal cells. This results in altered expression of DAF-16 target genes, reduced fat storage and decreased lifespan. These results demonstrate the importance of endosomal trafficking for proper localization of DAF-16 and suggest that the endosome is an important site of FOXO regulation. An intriguing possibility based on our results is that storage of FOXO on endosomes facilitates the mobilization of FOXO as a rapid response to environmental stress.
Collapse
Affiliation(s)
- İçten Meraş
- Department of Anatomy and Cell Biology, McGill University, Montreal, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McGill University, Montreal, Canada
- Metabolic Disorders and Complications Program, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Laëtitia Chotard
- Division of Endocrinology and Metabolism, Department of Medicine, McGill University, Montreal, Canada
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Canada
| | - Thomas Liontis
- Metabolic Disorders and Complications Program, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montreal, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
- Brain Repair and Integrative Neuroscience Program, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Zakaria Ratemi
- Metabolic Disorders and Complications Program, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Benjamin Wiles
- Metabolic Disorders and Complications Program, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Jung Hwa Seo
- Metabolic Disorders and Complications Program, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Jeremy M. Van Raamsdonk
- Metabolic Disorders and Complications Program, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montreal, Canada
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
- Brain Repair and Integrative Neuroscience Program, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Christian E. Rocheleau
- Department of Anatomy and Cell Biology, McGill University, Montreal, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McGill University, Montreal, Canada
- Metabolic Disorders and Complications Program, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montreal, Canada
- Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, Canada
- * E-mail:
| |
Collapse
|
9
|
Zhang J, Jiang Z, Shi A. Rab GTPases: The principal players in crafting the regulatory landscape of endosomal trafficking. Comput Struct Biotechnol J 2022; 20:4464-4472. [PMID: 36051867 PMCID: PMC9418685 DOI: 10.1016/j.csbj.2022.08.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/05/2022] [Accepted: 08/07/2022] [Indexed: 11/16/2022] Open
Abstract
After endocytosis, diverse cargos are sorted into endosomes and directed to various destinations, including extracellular macromolecules, membrane lipids, and membrane proteins. Some cargos are returned to the plasma membrane via endocytic recycling. In contrast, others are delivered to the Golgi apparatus through the retrograde pathway, while the rest are transported to late endosomes and eventually to lysosomes for degradation. Rab GTPases are major regulators that ensure cargos are delivered to their proper destinations. Rabs are localized to distinct endosomes and play predominant roles in membrane budding, vesicle formation and motility, vesicle tethering, and vesicle fusion by recruiting effectors. The cascades between Rabs via shared effectors or the recruitment of Rab activators provide an additional layer of spatiotemporal regulation of endocytic trafficking. Notably, several recent studies have indicated that disorders of Rab-mediated endocytic transports are closely associated with diseases such as immunodeficiency, cancer, and neurological disorders.
Collapse
|
10
|
Picatoste B, Yammine L, Leahey RA, Soares D, Johnson EF, Cohen P, McGraw TE. Defective insulin-stimulated GLUT4 translocation in brown adipocytes induces systemic glucose homeostasis dysregulation independent of thermogenesis in female mice. Mol Metab 2021; 53:101305. [PMID: 34303022 PMCID: PMC8363886 DOI: 10.1016/j.molmet.2021.101305] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 06/24/2021] [Accepted: 07/14/2021] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVE Recent studies indicate that brown adipose tissue, in addition to its role in thermogenesis, has a role in the regulation of whole-body metabolism. Here we characterize the metabolic effects of deleting Rab10, a protein key for insulin stimulation of glucose uptake into white adipocytes, solely from brown adipocytes. METHODS We used a murine brown adipocyte cell line and stromal vascular fraction-derived in vitro differentiated brown adipocytes to study the role of Rab10 in insulin-stimulated GLUT4 translocation to the plasma membrane and insulin-stimulated glucose uptake. We generated a brown adipocyte-specific Rab10 knockout for in vivo studies of metabolism and thermoregulation. RESULTS We demonstrate that deletion of Rab10 from brown adipocytes results in a two-fold reduction of insulin-stimulated glucose transport by reducing translocation of the GLUT4 glucose transporter to the plasma membrane, an effect linked to whole-body glucose intolerance and insulin resistance in female mice. This effect on metabolism is independent of the thermogenic function of brown adipocytes, thereby revealing a metabolism-specific role for brown adipocytes in female mice. The reduced glucose uptake induced by Rab10 deletion disrupts ChREBP regulation of de novo lipogenesis (DNL) genes, providing a potential link between DNL in brown adipocytes and whole-body metabolic regulation in female mice. However, deletion of Rab10 from male mice does not induce systemic insulin resistance, although ChREBP regulation is disrupted. CONCLUSIONS Our studies of Rab10 reveal the role of insulin-regulated glucose transport into brown adipocytes in whole-body metabolic homeostasis of female mice. Importantly, the contribution of brown adipocytes to whole-body metabolic regulation is independent of its role in thermogenesis. It is unclear whether the whole-body metabolic sexual dimorphism is because female mice are permissive to the effects of Rab10 deletion from brown adipocytes or because male mice are resistant to the effect.
Collapse
Affiliation(s)
- Belén Picatoste
- Department of Biochemistry, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Lucie Yammine
- Department of Biochemistry, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Rosemary A. Leahey
- Department of Biochemistry, Weill Cornell Medical College, New York, NY, 10065, USA
| | - David Soares
- Department of Biochemistry, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Emma F. Johnson
- Department of Biochemistry, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Paul Cohen
- Laboratory of Molecular Metabolism, The Rockefeller University, New York, NY, 10065, USA
| | - Timothy E. McGraw
- Department of Biochemistry, Weill Cornell Medical College, New York, NY, 10065, USA,Department of Cardiothoracic Surgery, Weill Cornell Medical College, New York, NY, 10065, USA,Corresponding author. Department of Biochemistry, Weill Cornell Medical College, New York, NY, 10065, USA.
| |
Collapse
|
11
|
Zhang W, Wang S, Yang C, Hu C, Chen D, Luo Q, He Z, Liao Y, Yao Y, Chen J, He J, Hu J, Xia T, Lin L, Shi A. LET-502/ROCK Regulates Endocytic Recycling by Promoting Activation of RAB-5 in a Distinct Subpopulation of Sorting Endosomes. Cell Rep 2021; 32:108173. [PMID: 32966783 DOI: 10.1016/j.celrep.2020.108173] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 07/17/2020] [Accepted: 08/28/2020] [Indexed: 11/24/2022] Open
Abstract
To explore the mechanism of Rab5/RAB-5 activation during endocytic recycling, we perform a genome-wide RNAi screen and identify a recycling regulator, LET-502/ROCK. LET-502 preferentially interacts with RAB-5(GDP) and activates RABX-5 GEF activity toward RAB-5, presumably by disrupting the self-inhibiting conformation of RABX-5. Furthermore, we find that the concomitant loss of LET-502 and another CED-10 effector, TBC-2/RAB-5-GAP, results in an endosomal buildup of RAB-5, indicating that CED-10 directs TBC-2-mediated RAB-5 inactivation and re-activates RAB-5 via LET-502 afterward. Then, we compare the functional position of LET-502 with that of RME-6/RAB-5-GEF. Loss of LET-502-RABX-5 module or RME-6 leads to diminished RAB-5 presence in spatially distinct endosome groups. We conclude that in the intestine of C. elegans, RAB-5 resides in discrete endosome subpopulations. Under the oversight of CED-10, LET-502 synergizes with RABX-5 to revitalize RAB-5 on a subset of endosomes in the deep cytosol, ensuring the progress of basolateral recycling.
Collapse
Affiliation(s)
- Wenjuan Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei, China; Department of Pathology, Maternal and Child Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430070 Hubei, China
| | - Shimin Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei, China
| | - Chao Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei, China
| | - Can Hu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei, China
| | - Dan Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei, China
| | - Qian Luo
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei, China
| | - Zhen He
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei, China
| | - Yuhan Liao
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei, China
| | - Yuxin Yao
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei, China
| | - Juan Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei, China
| | - Jun He
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei, China
| | - Junbo Hu
- Department of Pathology, Maternal and Child Hospital of Hubei Province, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430070 Hubei, China
| | - Tian Xia
- Department of Informatics Engineering, School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan, 430074 Hubei, China
| | - Long Lin
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei, China.
| | - Anbing Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei, China.
| |
Collapse
|
12
|
Chen D, Xu W, Wang Y, Ye Y, Wang Y, Yu M, Gao J, Wei J, Dong Y, Zhang H, Fu X, Ma K, Wang H, Yang Z, Zhou J, Cheng W, Wang S, Chen J, Grant BD, Myers CL, Shi A, Xia T. Revealing Functional Crosstalk between Distinct Bioprocesses through Reciprocal Functional Tests of Genetically Interacting Genes. Cell Rep 2020; 29:2646-2658.e5. [PMID: 31775035 DOI: 10.1016/j.celrep.2019.10.076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/08/2019] [Accepted: 10/17/2019] [Indexed: 12/30/2022] Open
Abstract
To systematically explore the genes mediating functional crosstalk between metazoan biological processes, we apply comparative genetic interaction (GI) mapping in Saccharomyces cerevisiae and Caenorhabditis elegans to generate an inter-bioprocess network consisting of 178 C. elegans GIs. The GI network spans six annotated biological processes including aging, intracellular transport, microtubule-based processes, cytokinesis, lipid metabolic processes, and anatomical structure development. By proposing a strategy called "reciprocal functional test" for interacting gene pairs, we discover a group of genes that mediate crosstalk between distinct biological processes. In particular, we identify the ribosomal S6 Kinase/RSKS-1, previously characterized as an mTOR (mechanistic target of rapamycin) effector, as a regulator of DAF-2 endosomal recycling transport, which traces a functional correlation between endocytic recycling and aging processes. Together, our results provide an alternative and effective strategy for identifying genes and pathways that mediate crosstalk between bioprocesses with little prior knowledge.
Collapse
Affiliation(s)
- Dan Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wei Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Informatics Engineering, School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yu Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yongshen Ye
- Department of Informatics Engineering, School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yue Wang
- Department of Informatics Engineering, School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Miao Yu
- Department of Informatics Engineering, School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jinghu Gao
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jielin Wei
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yiming Dong
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Honghua Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xin Fu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ke Ma
- Department of Informatics Engineering, School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hui Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhenrong Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jie Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wenqing Cheng
- Department of Informatics Engineering, School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shu Wang
- Department of Informatics Engineering, School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Juan Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Barth D Grant
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Chad L Myers
- Department of Computer Science & Engineering, University of Minnesota-Twin Cities, 200 Union St., Minneapolis MN 55455, USA
| | - Anbing Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Institute for Brain Research, Huazhong University of Science and Technology, Wuhan 430030, China; Key Laboratory of Neurological Disease of National Education Ministry, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Tian Xia
- Department of Informatics Engineering, School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
13
|
Lučin P, Jug Vučko N, Karleuša L, Mahmutefendić Lučin H, Blagojević Zagorac G, Lisnić B, Pavišić V, Marcelić M, Grabušić K, Brizić I, Lukanović Jurić S. Cytomegalovirus Generates Assembly Compartment in the Early Phase of Infection by Perturbation of Host-Cell Factors Recruitment at the Early Endosome/Endosomal Recycling Compartment/Trans-Golgi Interface. Front Cell Dev Biol 2020; 8:563607. [PMID: 33042998 PMCID: PMC7516400 DOI: 10.3389/fcell.2020.563607] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/18/2020] [Indexed: 12/02/2022] Open
Abstract
Beta-herpesviruses develop a unique structure within the infected cell known as an assembly compartment (AC). This structure, as large as the nucleus, is composed of host-cell-derived membranous elements. The biogenesis of the AC and its contribution to the final stages of beta-herpesvirus assembly are still unclear. In this study, we performed a spatial and temporal analysis of the AC in cells infected with murine CMV (MCMV), a member of the beta-herpesvirus family, using a panel of markers that characterize membranous organelle system. Out of 64 markers that were analyzed, 52 were cytosolic proteins that are recruited to membranes as components of membrane-shaping regulatory cascades. The analysis demonstrates that MCMV infection extensively reorganizes interface between early endosomes (EE), endosomal recycling compartment (ERC), and the trans-Golgi network (TGN), resulting in expansion of various EE-ERC-TGN intermediates that fill the broad area of the inner AC. These intermediates are displayed as over-recruitment of host-cell factors that control membrane flow at the EE-ERC-TGN interface. Most of the reorganization is accomplished in the early (E) phase of infection, indicating that the AC biogenesis is controlled by MCMV early genes. Although it is known that CMV infection affects the expression of a large number of host-cell factors that control membranous system, analysis of the host-cell transcriptome and protein expression in the E phase of infection demonstrated no sufficiently significant alteration in expression levels of analyzed markers. Thus, our study demonstrates that MCMV-encoded early phase function targets recruitment cascades of host cell-factors that control membranous flow at the EE-ERC-TGN interface in order to initiate the development of the AC.
Collapse
Affiliation(s)
- Pero Lučin
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia.,University North, University Center Varaždin, Varaždin, Croatia
| | - Natalia Jug Vučko
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Ljerka Karleuša
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Hana Mahmutefendić Lučin
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia.,University North, University Center Varaždin, Varaždin, Croatia
| | - Gordana Blagojević Zagorac
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia.,University North, University Center Varaždin, Varaždin, Croatia
| | - Berislav Lisnić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Valentino Pavišić
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Marina Marcelić
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Kristina Grabušić
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Ilija Brizić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Silvija Lukanović Jurić
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| |
Collapse
|
14
|
Buechner M, Yang Z, Al-Hashimi H. A Series of Tubes: The C. elegans Excretory Canal Cell as a Model for Tubule Development. J Dev Biol 2020; 8:jdb8030017. [PMID: 32906663 PMCID: PMC7557474 DOI: 10.3390/jdb8030017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 08/31/2020] [Accepted: 09/02/2020] [Indexed: 12/25/2022] Open
Abstract
Formation and regulation of properly sized epithelial tubes is essential for multicellular life. The excretory canal cell of C. elegans provides a powerful model for investigating the integration of the cytoskeleton, intracellular transport, and organismal physiology to regulate the developmental processes of tube extension, lumen formation, and lumen diameter regulation in a narrow single cell. Multiple studies have provided new understanding of actin and intermediate filament cytoskeletal elements, vesicle transport, and the role of vacuolar ATPase in determining tube size. Most of the genes discovered have clear homologues in humans, with implications for understanding these processes in mammalian tissues such as Schwann cells, renal tubules, and brain vasculature. The results of several new genetic screens are described that provide a host of new targets for future studies in this informative structure.
Collapse
Affiliation(s)
- Matthew Buechner
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA;
- Correspondence:
| | - Zhe Yang
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045, USA;
| | | |
Collapse
|
15
|
Norris A, Grant BD. Endosomal microdomains: Formation and function. Curr Opin Cell Biol 2020; 65:86-95. [PMID: 32247230 PMCID: PMC7529669 DOI: 10.1016/j.ceb.2020.02.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/24/2020] [Accepted: 02/25/2020] [Indexed: 12/18/2022]
Abstract
It is widely recognized that after endocytosis, internalized cargo is delivered to endosomes that act as sorting stations. The limiting membrane of endosomes contain specialized subregions, or microdomains, that represent distinct functions of the endosome, including regions competing for cargo capture leading to degradation or recycling. Great progress has been made in defining the endosomal protein coats that sort cargo in these domains, including Retromer that recycles transmembrane cargo, and ESCRT (endosomal sorting complex required for transport) that degrades transmembrane cargo. In this review, we discuss recent work that is beginning to unravel how such coat complexes contribute to the creation and maintenance of endosomal microdomains. We highlight data that indicates that adjacent microdomains do not act independently but rather interact to cross-regulate. We posit that these interactions provide an agile means for the cell to adjust sorting in response to extracellular signals and intracellular metabolic cues.
Collapse
Affiliation(s)
- Anne Norris
- Rutgers University, Department of Molecular Biology and Biochemistry, Piscataway, NJ, 08854, USA
| | - Barth D Grant
- Rutgers University, Department of Molecular Biology and Biochemistry, Piscataway, NJ, 08854, USA.
| |
Collapse
|
16
|
Gao J, Zhao L, Luo Q, Liu S, Lin Z, Wang P, Fu X, Chen J, Zhang H, Lin L, Shi A. An EHBP-1-SID-3-DYN-1 axis promotes membranous tubule fission during endocytic recycling. PLoS Genet 2020; 16:e1008763. [PMID: 32384077 PMCID: PMC7239482 DOI: 10.1371/journal.pgen.1008763] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 05/20/2020] [Accepted: 04/07/2020] [Indexed: 12/16/2022] Open
Abstract
The ACK family tyrosine kinase SID-3 is involved in the endocytic uptake of double-stranded RNA. Here we identified SID-3 as a previously unappreciated recycling regulator in the Caenorhabditis elegans intestine. The RAB-10 effector EHBP-1 is required for the endosomal localization of SID-3. Accordingly, animals with loss of SID-3 phenocopied the recycling defects observed in ehbp-1 and rab-10 single mutants. Moreover, we detected sequential protein interactions between EHBP-1, SID-3, NCK-1, and DYN-1. In the absence of SID-3, DYN-1 failed to localize at tubular recycling endosomes, and membrane tubules breaking away from endosomes were mostly absent, suggesting that SID-3 acts synergistically with the downstream DYN-1 to promote endosomal tubule fission. In agreement with these observations, overexpression of DYN-1 significantly increased recycling transport in SID-3-deficient cells. Finally, we noticed that loss of RAB-10 or EHBP-1 compromised feeding RNAi efficiency in multiple tissues, implicating basolateral recycling in the transport of RNA silencing signals. Taken together, our study demonstrated that in C. elegans intestinal epithelia, SID-3 acts downstream of EHBP-1 to direct fission of recycling endosomal tubules in concert with NCK-1 and DYN-1. After endocytic uptake, a recycling transport system is deployed to deliver endocytosed macromolecules, fluid, membranes, and membrane proteins back to the cell surface. This process is essential for a series of biological processes such as cytokinesis, cell migration, maintenance of cell polarity, and synaptic plasticity. Recycling endosomes mainly consist of membrane tubules and often undergo membrane fission to generate vesicular carriers, which mediates the delivery of cargo proteins back to the plasma membrane. Previous studies suggested that RAB-10 and its effector protein EHBP-1 function jointly to generate and maintain recycling endosomal tubules. However, the mechanism coupling recycling endosomal tubulation and membrane fission remains elusive. Here, we identified SID-3 as a new interactor of EHBP-1. EHBP-1 is required for the endosomal localization of SID-3 and initiates a protein interaction cascade involving SID-3, NCK-1, and DYN-1/dynamin. We also found that SID-3 functions downstream of EHBP-1 to encourage membrane scission, and that ectopic expression of DYN-1 improves recycling transport in SID-3-depleted cells. Our findings revealed EHBP-1 as a point of convergence between RAB-10-mediated endosomal tubulation and SID-3-assisted membrane tubule fission during endocytic recycling.
Collapse
Affiliation(s)
- Jinghu Gao
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Linyue Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qian Luo
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shuyao Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ziyang Lin
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Peixiang Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xin Fu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Juan Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hongjie Zhang
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau SAR, China
| | - Long Lin
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- * E-mail: (LL); (AS)
| | - Anbing Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Neurological Disease of National Education Ministry, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- * E-mail: (LL); (AS)
| |
Collapse
|
17
|
Lučin P, Kareluša L, Blagojević Zagorac G, Mahmutefendić Lučin H, Pavišić V, Jug Vučko N, Lukanović Jurić S, Marcelić M, Lisnić B, Jonjić S. Cytomegaloviruses Exploit Recycling Rab Proteins in the Sequential Establishment of the Assembly Compartment. Front Cell Dev Biol 2018; 6:165. [PMID: 30564576 PMCID: PMC6288171 DOI: 10.3389/fcell.2018.00165] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 11/19/2018] [Indexed: 12/19/2022] Open
Abstract
Cytomegaloviruses (CMV) reorganize membranous system of the cell in order to develop a virion assembly compartment (VAC). The development starts in the early (E) phase of infection with the reorganization of the endosomal system and the Golgi and proceeds to the late phase until newly formed virions are assembled and released. The events in the E phase involve reorganization of the endosomal recycling compartment (ERC) in a series of cellular alterations that are mostly unknown. In this minireview, we discuss the effect of murine CMV infection on Rab proteins, master regulators of membrane trafficking pathways, which in the cascades with their GEFs and GAPs organize the flow of membranes through the ERC. Immunofluorescence analyzes of murine CMV infected cells suggest perturbations of Rab cascades that operate at the ERC. Analysis of cellular transcriptome in the course of both murine and human CMV infection demonstrates the alteration in expression of cellular genes whose products are known to build Rab cascades. These alterations, however, cannot explain perturbations of the ERC. Cellular proteome data available for human CMV infected cells suggests the potential role of RabGAP downregulation at the end of the E phase. However, the very early onset of the ERC alterations in the course of MCMV infection indicates that CMVs exploit Rab cascades to reorganize the ERC, which represents the earliest step in the sequential establishment of the cVAC.
Collapse
Affiliation(s)
- Pero Lučin
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia.,University North - University Center Varaždin, Varaždin, Croatia
| | - Ljerka Kareluša
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | | | - Hana Mahmutefendić Lučin
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia.,University North - University Center Varaždin, Varaždin, Croatia
| | - Valentino Pavišić
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Natalia Jug Vučko
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Silvija Lukanović Jurić
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Marina Marcelić
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Berislav Lisnić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Stipan Jonjić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| |
Collapse
|
18
|
Julien C, Tomberlin C, Roberts CM, Akram A, Stein GH, Silverman MA, Link CD. In vivo induction of membrane damage by β-amyloid peptide oligomers. Acta Neuropathol Commun 2018; 6:131. [PMID: 30497524 PMCID: PMC6263551 DOI: 10.1186/s40478-018-0634-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 11/13/2018] [Indexed: 01/17/2023] Open
Abstract
Exposure to the β-amyloid peptide (Aβ) is toxic to neurons and other cell types, but the mechanism(s) involved are still unresolved. Synthetic Aβ oligomers can induce ion-permeable pores in synthetic membranes, but whether this ability to damage membranes plays a role in the ability of Aβ oligomers to induce tau hyperphosphorylation, or other disease-relevant pathological changes, is unclear. To examine the cellular responses to Aβ exposure independent of possible receptor interactions, we have developed an in vivo C. elegans model that allows us to visualize these cellular responses in living animals. We find that feeding C. elegans E. coli expressing human Aβ induces a membrane repair response similar to that induced by exposure to the CRY5B, a known pore-forming toxin produced by B. thuringensis. This repair response does not occur when C. elegans is exposed to an Aβ Gly37Leu variant, which we have previously shown to be incapable of inducing tau phosphorylation in hippocampal neurons. The repair response is also blocked by loss of calpain function, and is altered by loss-of-function mutations in the C. elegans orthologs of BIN1 and PICALM, well-established risk genes for late onset Alzheimer's disease. To investigate the role of membrane repair on tau phosphorylation directly, we exposed hippocampal neurons to streptolysin O (SLO), a pore-forming toxin that induces a well-characterized membrane repair response. We find that SLO induces tau hyperphosphorylation, which is blocked by calpain inhibition. Finally, we use a novel biarsenical dye-tagging approach to show that the Gly37Leu substitution interferes with Aβ multimerization and thus the formation of potentially pore-forming oligomers. We propose that Aβ-induced tau hyperphosphorylation may be a downstream consequence of induction of a membrane repair process.
Collapse
|
19
|
Chua CEL, Tang BL. Rab 10-a traffic controller in multiple cellular pathways and locations. J Cell Physiol 2018; 233:6483-6494. [PMID: 29377137 DOI: 10.1002/jcp.26503] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/24/2018] [Indexed: 12/29/2022]
Abstract
Rab GTPases are key regulators of eukaryotic membrane traffic, and their functions and activities are limited to particular intracellular transport steps and their membrane localization is by and large restricted. Some Rabs do participate in more than one transport steps, but broadly speaking, there is a clear demarcation between exocytic and endocytic Rabs. One Rab protein, Rab10, however, appears to be anomalous in this regard and has a diverse array of functions and subcellular localizations. Rab10 has been implicated in a myriad of activities ranging from polarized exocytosis and endosomal sorting in polarized cells, insulin-dependent Glut4 transport in adipocytes, axonal growth in neurons, and endo-phagocytic processes in macrophages. It's reported subcellular localizations include the endoplasmic reticulum (ER), Golgi/TGN, the endosomes/phagosomes and the primary cilia. In this review, we summarize and discuss the multitude of known roles of Rab10 in cellular membrane transport and the molecular players and mechanisms associated with these roles.
Collapse
Affiliation(s)
- Christelle En Lin Chua
- Singapore Nuclear Research and Safety Initiative, National University of Singapore, Singapore
| | - Bor L Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore
| |
Collapse
|
20
|
Chen D, Yang C, Liu S, Hang W, Wang X, Chen J, Shi A. SAC-1 ensures epithelial endocytic recycling by restricting ARF-6 activity. J Cell Biol 2018; 217:2121-2139. [PMID: 29563216 PMCID: PMC5987724 DOI: 10.1083/jcb.201711065] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 02/06/2018] [Accepted: 02/28/2018] [Indexed: 11/22/2022] Open
Abstract
Arf6/ARF-6 is a crucial regulator of the endosomal phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) pool in endocytic recycling. To further characterize ARF-6 regulation, we performed an ARF-6 interactor screen in Caenorhabditis elegans and identified SAC-1, the homologue of the phosphoinositide phosphatase Sac1p in yeast, as a novel ARF-6 partner. In the absence of ARF-6, basolateral endosomes show a loss of SAC-1 staining in epithelial cells. Steady-state cargo distribution assays revealed that loss of SAC-1 specifically affected apical secretory delivery and basolateral recycling. PI(4,5)P2 levels and the endosomal labeling of the ARF-6 effector UNC-16 were significantly elevated in sac-1 mutants, suggesting that SAC-1 functions as a negative regulator of ARF-6. Further analyses revealed an interaction between SAC-1 and the ARF-6-GEF BRIS-1. This interaction outcompeted ARF-6(guanosine diphosphate [GDP]) for binding to BRIS-1 in a concentration-dependent manner. Consequently, loss of SAC-1 promotes the intracellular overlap between ARF-6 and BRIS-1. BRIS-1 knockdown resulted in a significant reduction in PI(4,5)P2 levels in SAC-1-depleted cells. Interestingly, the action of SAC-1 in sequestering BRIS-1 is independent of SAC-1's catalytic activity. Our results suggest that the interaction of SAC-1 with ARF-6 curbs ARF-6 activity by limiting the access of ARF-6(GDP) to its guanine nucleotide exchange factor, BRIS-1.
Collapse
Affiliation(s)
- Dan Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chao Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Sha Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Weijian Hang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xianghong Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Juan Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Anbing Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China .,Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Key Laboratory of Neurological Disease of National Education Ministry, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
21
|
Law F, Rocheleau CE. Vps34 and the Armus/TBC-2 Rab GAPs: Putting the brakes on the endosomal Rab5 and Rab7 GTPases. CELLULAR LOGISTICS 2017; 7:e1403530. [PMID: 29296513 PMCID: PMC5739090 DOI: 10.1080/21592799.2017.1403530] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 11/07/2017] [Indexed: 11/30/2022]
Abstract
Rab5 and Rab7 GTPases are key regulators of endosome maturation and lysosome fusion. They activate the class III phosphoinositide 3-kinase (PI3K) Vps34 to generate pools of phosphatidylinositol-3 phosphate [PI(3)P] on endosomes. Together PI(3)P and the GTP-bound Rabs coordinate the recruitment of endosomal regulators to drive early to late endosome maturation and ultimately lysosome fusion. Counterintuitively, loss of Vps34 results in enlarged endosomes, like those seen from expressing activated Rab GTPases. Two recent papers in the Journal of Cell Science, Jaber et al., 2016 and Law, Seo et al., 2017, demonstrate that a function of Vps34 is to inactive the Rab5 and Rab7 GTPases via recruitment of the TBC1D2 family of Rab GTPase Activating Proteins (GAPs).
Collapse
Affiliation(s)
- Fiona Law
- Division of Endocrinology and Metabolism, Department of Medicine and the Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada.,Program in Metabolic Disorders and Complications, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Christian E Rocheleau
- Division of Endocrinology and Metabolism, Department of Medicine and the Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada.,Program in Metabolic Disorders and Complications, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| |
Collapse
|
22
|
Liu H, Wang S, Hang W, Gao J, Zhang W, Cheng Z, Yang C, He J, Zhou J, Chen J, Shi A. LET-413/Erbin acts as a RAB-5 effector to promote RAB-10 activation during endocytic recycling. J Cell Biol 2017; 217:299-314. [PMID: 29079669 PMCID: PMC5748983 DOI: 10.1083/jcb.201705136] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 08/28/2017] [Accepted: 09/25/2017] [Indexed: 02/08/2023] Open
Abstract
RAB-10 is a master regulator of endocytic recycling in polarized epithelial cells. Liu et al. identify LET-413, the Caenorhabditis elegans homolog of Scrib/Erbin, as a RAB-5 effector that is required for the DENN-4–mediated activation of RAB-10 and the control of membrane expansion in the C. elegans intestine. RAB-10/Rab10 is a master regulator of endocytic recycling in epithelial cells. To better understand the regulation of RAB-10 activity, we sought to identify RAB-10(GDP)–interacting proteins. One novel RAB-10(GDP)–binding partner that we identified, LET-413, is the Caenorhabditis elegans homologue of Scrib/Erbin. Here, we focus on the mechanistic role of LET-413 in the regulation of RAB-10 within the C. elegans intestine. We show that LET-413 is a RAB-5 effector and colocalizes with RAB-10 on endosomes, and the overlap of LET-413 with RAB-10 is RAB-5 dependent. Notably, LET-413 enhances the interaction of DENN-4 with RAB-10(GDP) and promotes DENN-4 guanine nucleotide exchange factor activity toward RAB-10. Loss of LET-413 leads to cytosolic dispersion of the RAB-10 effectors TBC-2 and CNT-1. Finally, we demonstrate that the loss of RAB-10 or LET-413 results in abnormal overextensions of lateral membrane. Hence, our studies indicate that LET-413 is required for DENN-4–mediated RAB-10 activation, and the LET-413–assisted RAB-5 to RAB-10 cascade contributes to the integrity of C. elegans intestinal epithelia.
Collapse
Affiliation(s)
- Hang Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shimin Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Weijian Hang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jinghu Gao
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wenjuan Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zihang Cheng
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chao Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jun He
- Department of Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jie Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Juan Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Anbing Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China .,Institute for Brain Research, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Key Laboratory of Neurological Disease of National Education Ministry, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
23
|
Palmisano NJ, Rosario N, Wysocki M, Hong M, Grant B, Meléndez A. The recycling endosome protein RAB-10 promotes autophagic flux and localization of the transmembrane protein ATG-9. Autophagy 2017; 13:1742-1753. [PMID: 28872980 DOI: 10.1080/15548627.2017.1356976] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Macroautophagy/autophagy involves the formation of an autophagosome, a double-membrane vesicle that delivers sequestered cytoplasmic cargo to lysosomes for degradation and recycling. Closely related, endocytosis mediates the sorting and transport of cargo throughout the cell, and both processes are important for cellular homeostasis. However, how endocytic proteins functionally intersect with autophagy is not clear. Mutations in the DAF-2/insulin-like IGF-1 (INSR) receptor at the permissive temperature result in a small increase in GFP::LGG-1 foci, i.e. autophagosomes, but a large increase at the nonpermissive temperature, allowing us to control the level of autophagy. In a RNAi screen for endocytic genes that alter the expression of GFP::LGG-1 in daf-2 mutants, we identified RAB-10, a small GTPase that regulates basolateral endocytosis. Loss of rab-10 in daf-2 mutants results in more GFP::LGG-1-positive foci at the permissive, but less GFP::LGG-1 or SQST-1::GFP foci at the nonpermissive temperature. As previously reported, loss of rab-10 alone resulted in an increase of GFP:LGG-1 foci. Exposure of rab-10 mutant animals to chloroquine, a known inhibitor of autophagic flux, failed to increase the number of GFP::LGG-1 foci. Moreover, colocalization between LMP-1::tagRFP and GFP::LGG-1 (the lysosome and autophagosome reporters) was decreased in daf-2; rab-10 dauers at the nonpermissive temperature. Intriguingly, RAB-10 was required to maintain the normal size of GFP::ATG-9-positive structures in daf-2 mutants at both the permissive and nonpermissive temperature. Finally, we found that RAB-10 GTPase cycling was required to control the size of GFP::ATG-9 foci. Collectively, our data support a model where rab-10 controls autophagic flux by regulating autophagosome formation and maturation.
Collapse
Affiliation(s)
- N J Palmisano
- a Biology Department, Queens College, CUNY , Flushing , NY , USA.,b Biology and Biochemistry Ph.D. Programs , The Graduate Center of the City University of New York , NY , USA
| | - N Rosario
- a Biology Department, Queens College, CUNY , Flushing , NY , USA
| | - M Wysocki
- a Biology Department, Queens College, CUNY , Flushing , NY , USA
| | - M Hong
- a Biology Department, Queens College, CUNY , Flushing , NY , USA
| | - B Grant
- c Department of Molecular Biology and Biochemistry , Rutgers University , Piscataway , NJ , USA
| | - A Meléndez
- a Biology Department, Queens College, CUNY , Flushing , NY , USA.,b Biology and Biochemistry Ph.D. Programs , The Graduate Center of the City University of New York , NY , USA
| |
Collapse
|
24
|
Law F, Seo JH, Wang Z, DeLeon JL, Bolis Y, Brown A, Zong WX, Du G, Rocheleau CE. The VPS34 PI3K negatively regulates RAB-5 during endosome maturation. J Cell Sci 2017; 130:2007-2017. [PMID: 28455411 DOI: 10.1242/jcs.194746] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 04/25/2017] [Indexed: 12/20/2022] Open
Abstract
The GTPase Rab5 and phosphatidylinositol-3 phosphate [PI(3)P] coordinately regulate endosome trafficking. Rab5 recruits Vps34, the class III phosphoinositide 3-kinase (PI3K), to generate PI(3)P and recruit PI(3)P-binding proteins. Loss of Rab5 and loss of Vps34 have opposite effects on endosome size, suggesting that our understanding of how Rab5 and PI(3)P cooperate is incomplete. Here, we report a novel regulatory loop whereby Caenorhabditis elegans VPS-34 inactivates RAB-5 via recruitment of the TBC-2 Rab GTPase-activating protein. We found that loss of VPS-34 caused a phenotype with large late endosomes, as with loss of TBC-2, and that Rab5 activity (mice have two Rab5 isoforms, Rab5a and Rab5b) is increased in Vps34-knockout mouse embryonic fibroblasts (Vps34 is also known as PIK3C3 in mammals). We found that VPS-34 is required for TBC-2 endosome localization and that the pleckstrin homology (PH) domain of TBC-2 bound PI(3)P. Deletion of the PH domain enhanced TBC-2 localization to endosomes in a VPS-34-dependent manner. Thus, PI(3)P binding of the PH domain might be permissive for another PI(3)P-regulated interaction that recruits TBC-2 to endosomes. Therefore, VPS-34 recruits TBC-2 to endosomes to inactivate RAB-5 to ensure the directionality of endosome maturation.
Collapse
Affiliation(s)
- Fiona Law
- Division of Endocrinology and Metabolism, Departments of Medicine, and Anatomy and Cell Biology, McGill University, and the Program in Metabolic Disorders and Complications, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada H4A 3J1
| | - Jung Hwa Seo
- Division of Endocrinology and Metabolism, Departments of Medicine, and Anatomy and Cell Biology, McGill University, and the Program in Metabolic Disorders and Complications, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada H4A 3J1
| | - Ziqing Wang
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Jennifer L DeLeon
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Yousstina Bolis
- Division of Endocrinology and Metabolism, Departments of Medicine, and Anatomy and Cell Biology, McGill University, and the Program in Metabolic Disorders and Complications, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada H4A 3J1
| | - Ashley Brown
- Division of Endocrinology and Metabolism, Departments of Medicine, and Anatomy and Cell Biology, McGill University, and the Program in Metabolic Disorders and Complications, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada H4A 3J1
| | - Wei-Xing Zong
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794, USA.,Department of Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Guangwei Du
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Christian E Rocheleau
- Division of Endocrinology and Metabolism, Departments of Medicine, and Anatomy and Cell Biology, McGill University, and the Program in Metabolic Disorders and Complications, Centre for Translational Biology, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada H4A 3J1
| |
Collapse
|
25
|
Abstract
Neurons are highly polarized cells that exhibit one of the more complex morphology and function. Neuronal intracellular trafficking plays a key role in dictating the directionality and specificity of vesicle formation, transport and fusion, allowing the transmission of information in sophisticate cellular network. Thus, the integrity of protein trafficking and spatial organization is especially important in neuronal cells. RAB proteins, small monomeric GTPases belonging to the RAS superfamily, spatially and temporally orchestrate specific vesicular trafficking steps. In this review we summarise the known roles of RAB GTPases involved in the maintenance of neuronal vesicular trafficking in the central nervous system. In particular, we discriminate the axonal pre-synaptic trafficking and dendritic post-synaptic trafficking, to better underlie how a correct orchestration of vesicle movement is necessary to maintain neuronal polarity and then, to permit an accurate architecture and functionality of synaptic activity.
Collapse
Affiliation(s)
- Maria Lidia Mignogna
- a Molecular Genetics of Intellectual Disabilities Unit, Division of Neuroscience at IRCCS San Raffaele Scientific Institute , Milan , Italy
| | - Patrizia D'Adamo
- a Molecular Genetics of Intellectual Disabilities Unit, Division of Neuroscience at IRCCS San Raffaele Scientific Institute , Milan , Italy
| |
Collapse
|
26
|
Gleason AM, Nguyen KCQ, Hall DH, Grant BD. Syndapin/SDPN-1 is required for endocytic recycling and endosomal actin association in the C. elegans intestine. Mol Biol Cell 2016; 27:mbc.E16-02-0116. [PMID: 27630264 PMCID: PMC5170557 DOI: 10.1091/mbc.e16-02-0116] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 08/18/2016] [Accepted: 09/08/2016] [Indexed: 11/11/2022] Open
Abstract
Syndapin/Pascin family F-BAR domain proteins bind directly to membrane lipids and are associated with actin dynamics at the plasma membrane. Previous reports have also implicated mammalian syndapin 2 in endosome function during receptor recycling, but precise analysis of a putative recycling function for syndapin in mammalian systems is difficult because of syndapin effects on the earlier step of endocytic uptake, and potential redundancy among the three separate genes that encode mammalian syndapin isoforms. Here we analyze the endocytic transport function of the only C. elegans syndapin, SDPN-1. We find that SDPN-1 is a resident protein of the early and basolateral recycling endosomes in the C. elegans intestinal epithelium, and sdpn-1 deletion mutants display phenotypes indicating a block in basolateral recycling transport. sdpn-1 mutants accumulate abnormal endosomes positive for early endosome and recycling endosome markers that are normally separate, and such endosomes accumulate high levels of basolateral recycling cargo. Furthermore, we observed strong colocalization of endosomal SDPN-1 with the F-actin biosensor Lifeact, and found that loss of SDPN-1 greatly reduced Lifeact accumulation on early endosomes. Taken together our results provide strong evidence for an in vivo function of syndapin in endocytic recycling, and suggest that syndapin promotes transport via endosomal fission.
Collapse
Affiliation(s)
- Adenrele M Gleason
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854
| | - Ken C Q Nguyen
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461
| | - David H Hall
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Barth D Grant
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854
| |
Collapse
|