1
|
Ostalé CM, Pulido D, Vega-Cuesta P, López-Varea A, de Celis JF. Developmental analysis of Spalt function in the Drosophila prothoracic gland. Development 2024; 151:dev202751. [PMID: 39087588 PMCID: PMC11385645 DOI: 10.1242/dev.202751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 07/17/2024] [Indexed: 08/02/2024]
Abstract
The Spalt transcriptional regulators participate in a variety of cell fate specification processes during development, regulating transcription through interactions with DNA AT-rich regions. Spalt proteins also bind to heterochromatic regions, and some of their effects require interactions with the NuRD chromatin remodeling and deacetylase complex. Most of the biological roles of Spalt proteins have been characterized in diploid cells engaged in cell proliferation. Here, we address the function of Drosophila Spalt genes in the development of a larval tissue formed by polyploid cells, the prothoracic gland, the cells of which undergo several rounds of DNA replication without mitosis during larval development. We show that prothoracic glands depleted of Spalt expression display severe changes in the size of the nucleolus, the morphology of the nuclear envelope and the disposition of the chromatin within the nucleus, leading to a failure in the synthesis of ecdysone. We propose that loss of ecdysone production in the prothoracic gland of Spalt mutants is primarily caused by defects in nuclear pore complex function that occur as a consequence of faulty interactions between heterochromatic regions and the nuclear envelope.
Collapse
Affiliation(s)
- Cristina M Ostalé
- Centro de Biología Molecular 'Severo Ochoa', CSIC and Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Diego Pulido
- Centro de Biología Molecular 'Severo Ochoa', CSIC and Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Patricia Vega-Cuesta
- Centro de Biología Molecular 'Severo Ochoa', CSIC and Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Ana López-Varea
- Centro de Biología Molecular 'Severo Ochoa', CSIC and Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Jose F de Celis
- Centro de Biología Molecular 'Severo Ochoa', CSIC and Universidad Autónoma de Madrid, Madrid 28049, Spain
| |
Collapse
|
2
|
Pekina YV, Babosha VA, Georgiev PG, Fedotova AA. Study of the Association of Ouib and Nom with Heterochromatin in Drosophila melanogaster. DOKL BIOCHEM BIOPHYS 2023; 513:S26-S29. [PMID: 38472665 DOI: 10.1134/s1607672924700741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/10/2023] [Accepted: 12/11/2023] [Indexed: 03/14/2024]
Abstract
In Drosophila, a large group of actively transcribed genes is located in pericentromeric heterochromatin. It is assumed that heterochromatic proteins recruit transcription factors to gene promoters. Two proteins, Ouib and Nom, were previously shown to bind to the promoters of the heterochromatic genes nvd and spok. Interestingly, Ouib and Nom are paralogs of the M1BP protein, which binds to the promoters of euchromatic genes. We have shown that, like M1BP, the Quib and Nom proteins bind to CP190, which is involved in the recruitment of transcription complexes to promoters. Unlike heterochromatic proteins, Ouib and Nom do not interact with the major heterochromatic protein HP1a and bind to euchromatic promoters on polytene chromosomes from the larval salivary glands. The results suggest a new mechanism for the recruitment of transcription factors into the heterochromatic compartment of the nucleus.
Collapse
Affiliation(s)
- Y V Pekina
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - V A Babosha
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia.
| | - P G Georgiev
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - A A Fedotova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
3
|
Ghosh S, Srinivasan R, Ghanim M. A C2H2 zinc finger transcription factor of the whitefly Bemisia tabaci interacts with the capsid proteins of begomoviruses and inhibits virus retention. INSECT MOLECULAR BIOLOGY 2023; 32:240-250. [PMID: 36571165 DOI: 10.1111/imb.12827] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 12/19/2022] [Indexed: 05/15/2023]
Abstract
Begomoviruses are a group of ssDNA viruses exclusively transmitted by the whitefly Bemisia tabaci and constrain vegetable production in the old and new worlds. Although multiple molecular determinants governing the transmission of begomoviruses by whiteflies have been unravelled, factors critical for transmission majorly remain unknown. In this study, a whitefly C2H2 zinc finger (ZF) protein, 100% identical to the vascular endothelial ZF-like gene (vezf) protein was confirmed to interact with the CP of both old- and new-world begomoviruses. This was achieved by a yeast two-hybrid (Y2H) system screening of a whitefly cDNA library using capsid protein (CP) of TYLCV as a bait. In silico annotation of vezf protein revealed that it contains a N-terminal ZF-associated domain (ZAD) alongside multiple C2H2 ZF domains on the C-terminal end. ZAD-ZF proteins form the most abundant class of transcription factors within insects. Herein, we validated the interaction of vezf with four diverse begomoviruses and its functional role in begomovirus transmission. Silencing of the vezf gene of B. tabaci led to increased retention of three diverse begomoviruses tested. Vezf is the first insect transcription factor identified to interact with plant viruses and can be crucial to understand the possible mechanisms by which plant viruses modulate transcription of their insect vectors during transmission.
Collapse
Affiliation(s)
- Saptarshi Ghosh
- Department of Entomology, Volcani Center, Rishon Lezion, Israel
- Department of Entomology, University of Georgia, Griffin, Georgia, USA
| | | | - Murad Ghanim
- Department of Entomology, Volcani Center, Rishon Lezion, Israel
| |
Collapse
|
4
|
Li M, Kasan K, Saha Z, Yoon Y, Schmidt-Ott U. Twenty-seven ZAD-ZNF genes of Drosophila melanogaster are orthologous to the embryo polarity determining mosquito gene cucoid. PLoS One 2023; 18:e0274716. [PMID: 36595500 PMCID: PMC9810180 DOI: 10.1371/journal.pone.0274716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/16/2022] [Indexed: 01/04/2023] Open
Abstract
The C2H2 zinc finger gene cucoid establishes anterior-posterior (AP) polarity in the early embryo of culicine mosquitoes. This gene is unrelated to genes that establish embryo polarity in other fly species (Diptera), such as the homeobox gene bicoid, which serves this function in the traditional model organism Drosophila melanogaster. The cucoid gene is a conserved single copy gene across lower dipterans but nothing is known about its function in other species, and its evolution in higher dipterans, including Drosophila, is unresolved. We found that cucoid is a member of the ZAD-containing C2H2 zinc finger (ZAD-ZNF) gene family and is orthologous to 27 of the 91 members of this family in D. melanogaster, including M1BP, ranshi, ouib, nom, zaf1, odj, Nnk, trem, Zif, and eighteen uncharacterized genes. Available knowledge of the functions of cucoid orthologs in Drosophila melanogaster suggest that the progenitor of this lineage specific expansion may have played a role in regulating chromatin. We also describe many aspects of the gene duplication history of cucoid in the brachyceran lineage of D. melanogaster, thereby providing a framework for predicting potential redundancies among these genes in D. melanogaster.
Collapse
Affiliation(s)
- Muzi Li
- Dept. of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, United States of America
| | - Koray Kasan
- Dept. of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, United States of America
| | - Zinnia Saha
- Dept. of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, United States of America
| | - Yoseop Yoon
- Dept. of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, United States of America
| | - Urs Schmidt-Ott
- Dept. of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, United States of America
| |
Collapse
|
5
|
Ohhara Y, Kato Y, Kamiyama T, Yamakawa-Kobayashi K. Su(var)2-10- and Su(var)205-dependent upregulation of the heterochromatic gene neverland is required for developmental transition in Drosophila. Genetics 2022; 222:iyac137. [PMID: 36149288 PMCID: PMC9630985 DOI: 10.1093/genetics/iyac137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 08/29/2022] [Indexed: 11/14/2022] Open
Abstract
Animals develop from juveniles to sexually mature adults through the action of steroid hormones. In insect metamorphosis, a surge of the steroid hormone ecdysone prompts the transition from the larval to the adult stage. Ecdysone is synthesized by a series of biosynthetic enzymes that are specifically expressed in an endocrine organ, the prothoracic gland. At the late larval stage, the expression levels of ecdysone biosynthetic enzymes are upregulated through the action of numerous transcription factors, thus initiating metamorphosis. In contrast, the mechanism by which chromatin regulators support the expression of ecdysone biosynthetic genes is largely unknown. Here, we demonstrate that Su(var)2-10 and Su(var)205, suppressor of variegation [Su(var)] genes encoding a chromatin regulator Su(var)2-10 and nonhistone heterochromatic protein 1a, respectively, regulate the transcription of one of the heterochromatic ecdysone biosynthetic genes, neverland, in Drosophila melanogaster. Knockdown of Su(var)2-10 and Su(var)205 in the prothoracic gland caused a decrease in neverland expression, resulting in a defect in larval-to-prepupal transition. Furthermore, overexpression of neverland and administration of 7-dehydrocholesterol, a biosynthetic precursor of ecdysone produced by Neverland, rescued developmental defects in Su(var)2-10 and Su(var)205 knockdown animals. These results indicate that Su(var)2-10- and Su(var)205-mediated proper expression of neverland is required for the initiation of metamorphosis. Given that Su(var)2-10-positive puncta are juxtaposed with the pericentromeric heterochromatic region, we propose that Su(var)2-10- and Su(var)205-dependent regulation of inherent heterochromatin structure at the neverland gene locus is essential for its transcriptional activation.
Collapse
Affiliation(s)
- Yuya Ohhara
- School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, Shizuoka 422-8526, Japan
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka, Shizuoka 422-8526, Japan
| | - Yuki Kato
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka, Shizuoka 422-8526, Japan
| | - Takumi Kamiyama
- College of Biological Sciences, Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Kimiko Yamakawa-Kobayashi
- School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka, Shizuoka 422-8526, Japan
- Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka, Shizuoka 422-8526, Japan
| |
Collapse
|
6
|
Kamiyama T, Niwa R. Transcriptional Regulators of Ecdysteroid Biosynthetic Enzymes and Their Roles in Insect Development. Front Physiol 2022; 13:823418. [PMID: 35211033 PMCID: PMC8863297 DOI: 10.3389/fphys.2022.823418] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 01/12/2022] [Indexed: 12/23/2022] Open
Abstract
Steroid hormones are responsible for coordinating many aspects of biological processes in most multicellular organisms, including insects. Ecdysteroid, the principal insect steroid hormone, is biosynthesized from dietary cholesterol or plant sterols. In the last 20 years, a number of ecdysteroidogenic enzymes, including Noppera-bo, Neverland, Shroud, Spook/Spookier, Cyp6t3, Phantom, Disembodied, Shadow, and Shade, have been identified and characterized in molecular genetic studies using the fruit fly Drosophila melanogaster. These enzymes are encoded by genes collectively called the Halloween genes. The transcriptional regulatory network, governed by multiple regulators of transcription, chromatin remodeling, and endoreplication, has been shown to be essential for the spatiotemporal expression control of Halloween genes in D. melanogaster. In this review, we summarize the latest information on transcriptional regulators that are crucial for controlling the expression of ecdysteroid biosynthetic enzymes and their roles in insect development.
Collapse
Affiliation(s)
- Takumi Kamiyama
- College of Biological Sciences, Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Ryusuke Niwa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
7
|
Zhao Y, Lindberg BG, Esfahani SS, Tang X, Piazza S, Engström Y. Stop codon readthrough alters the activity of a POU/Oct transcription factor during Drosophila development. BMC Biol 2021; 19:185. [PMID: 34479564 PMCID: PMC8417969 DOI: 10.1186/s12915-021-01106-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 07/19/2021] [Indexed: 11/24/2022] Open
Abstract
Background A number of cellular processes have evolved in metazoans that increase the proteome repertoire in relation to the genome, such as alternative splicing and translation recoding. Another such process, translational stop codon readthrough (SCR), generates C-terminally extended protein isoforms in many eukaryotes, including yeast, plants, insects, and humans. While comparative genome analyses have predicted the existence of programmed SCR in many species including humans, experimental proof of its functional consequences are scarce. Results We show that SCR of the Drosophila POU/Oct transcription factor Ventral veins lacking/Drifter (Vvl/Dfr) mRNA is prevalent in certain tissues in vivo, reaching a rate of 50% in the larval prothoracic gland. Phylogenetically, the C-terminal extension is conserved and harbors intrinsically disordered regions and amino acid stretches implied in transcriptional activation. Elimination of Vvl/Dfr translational readthrough by CRISPR/Cas9 mutagenesis changed the expression of a large number of downstream genes involved in processes such as chromatin regulation, neurogenesis, development, and immune response. As a proof-of-principle, we demonstrate that the C-terminal extension of Vvl/Dfr is necessary for correct timing of pupariation, by increasing the capacity to regulate its target genes. The extended Vvl/Dfr isoform acts in synergy with the transcription factor Molting defective (Mld) to increase the expression and biosynthesis of the steroid hormone ecdysone, thereby advancing pupariation. Consequently, late-stage larval development was prolonged and metamorphosis delayed in vvl/dfr readthrough mutants. Conclusions We demonstrate that translational recoding of a POU/Oct transcription factor takes place in a highly tissue-specific and temporally controlled manner. This dynamic and regulated recoding is necessary for normal expression of a large number of genes involved in many cellular and developmental processes. Loss of Vvl/Dfr translational readthrough negatively affects steroid hormone biosynthesis and delays larval development and progression into metamorphosis. Thus, this study demonstrates how SCR of a transcription factor can act as a developmental switch in a spatiotemporal manner, feeding into the timing of developmental transitions between different life-cycle stages. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01106-0.
Collapse
Affiliation(s)
- Yunpo Zhao
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91, Stockholm, Sweden.,Present address: Department of Molecular Biology, Umeå University, SE-901 87, Umeå, SE, Sweden
| | - Bo Gustav Lindberg
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Shiva Seyedoleslami Esfahani
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Xiongzhuo Tang
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91, Stockholm, Sweden.,Present address: Yale Stem Cell Center, Yale University School of Medicine, New Haven, Connecticut, 06520, USA
| | - Stefano Piazza
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91, Stockholm, Sweden.,Present address: Research and Innovation Centre, Fondazione Edmund Mach, via E Mach 1, 38010, San Michele a/Adige, Italy
| | - Ylva Engström
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, SE-106 91, Stockholm, Sweden.
| |
Collapse
|
8
|
Bonchuk A, Boyko K, Fedotova A, Nikolaeva A, Lushchekina S, Khrustaleva A, Popov V, Georgiev P. Structural basis of diversity and homodimerization specificity of zinc-finger-associated domains in Drosophila. Nucleic Acids Res 2021; 49:2375-2389. [PMID: 33638995 PMCID: PMC7913770 DOI: 10.1093/nar/gkab061] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/20/2021] [Accepted: 01/25/2021] [Indexed: 11/13/2022] Open
Abstract
In arthropods, zinc finger-associated domains (ZADs) are found at the N-termini of many DNA-binding proteins with tandem arrays of Cys2-His2 zinc fingers (ZAD-C2H2 proteins). ZAD-C2H2 proteins undergo fast evolutionary lineage-specific expansion and functional diversification. Here, we show that all ZADs from Drosophila melanogaster form homodimers, but only certain ZADs with high homology can also heterodimerize. CG2712, for example, is unable to heterodimerize with its paralog, the previously characterized insulator protein Zw5, with which it shares 46% homology. We obtained a crystal structure of CG2712 protein's ZAD domain that, in spite of a low sequence homology, has similar spatial organization with the only known ZAD structure (from Grauzone protein). Steric clashes prevented the formation of heterodimers between Grauzone and CG2712 ZADs. Using detailed structural analysis, site-directed mutagenesis, and molecular dynamics simulations, we demonstrated that rapid evolutionary acquisition of interaction specificity was mediated by the more energy-favorable formation of homodimers in comparison to heterodimers, and that this specificity was achieved by multiple amino acid substitutions resulting in the formation or breaking of stabilizing interactions. We speculate that specific homodimerization of ZAD-C2H2 proteins is important for their architectural role in genome organization.
Collapse
Affiliation(s)
- Artem Bonchuk
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Konstantin Boyko
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia
| | - Anna Fedotova
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Alena Nikolaeva
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
- National Research Center «Kurchatov Institute», Moscow 123182, Russia
| | - Sofya Lushchekina
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow 119334, Russia
| | - Anastasia Khrustaleva
- Department of the Bioinformatics, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Vladimir Popov
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow 119071, Russia
- National Research Center «Kurchatov Institute», Moscow 123182, Russia
| | - Pavel Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia
| |
Collapse
|
9
|
Kasinathan B, Colmenares SU, McConnell H, Young JM, Karpen GH, Malik HS. Innovation of heterochromatin functions drives rapid evolution of essential ZAD-ZNF genes in Drosophila. eLife 2020; 9:e63368. [PMID: 33169670 PMCID: PMC7655104 DOI: 10.7554/elife.63368] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 10/12/2020] [Indexed: 12/12/2022] Open
Abstract
Contrary to dogma, evolutionarily young and dynamic genes can encode essential functions. We find that evolutionarily dynamic ZAD-ZNF genes, which encode the most abundant class of insect transcription factors, are more likely to encode essential functions in Drosophila melanogaster than ancient, conserved ZAD-ZNF genes. We focus on the Nicknack ZAD-ZNF gene, which is evolutionarily young, poorly retained in Drosophila species, and evolves under strong positive selection. Yet we find that it is necessary for larval development in D. melanogaster. We show that Nicknack encodes a heterochromatin-localizing protein like its paralog Oddjob, also an evolutionarily dynamic yet essential ZAD-ZNF gene. We find that the divergent D. simulans Nicknack protein can still localize to D. melanogaster heterochromatin and rescue viability of female but not male Nicknack-null D. melanogaster. Our findings suggest that innovation for rapidly changing heterochromatin functions might generally explain the essentiality of many evolutionarily dynamic ZAD-ZNF genes in insects.
Collapse
Affiliation(s)
- Bhavatharini Kasinathan
- Medical Scientist Training Program, University of Washington School of MedicineSeattleUnited States
- Molecular and Cellular Biology Graduate program, University of Washington School of MedicineSeattleUnited States
- Division of Basic Sciences, Fred Hutchinson Cancer Research CenterSeattleUnited States
| | - Serafin U Colmenares
- Biological Systems and Engineering Division, Lawrence Berkeley National LaboratoryBerkeleyUnited States
- Department of Molecular and Cell Biology, University of California at BerkeleyBerkeleyUnited States
- Innovative Genomics InstituteBerkeleyUnited States
| | - Hannah McConnell
- Division of Basic Sciences, Fred Hutchinson Cancer Research CenterSeattleUnited States
| | - Janet M Young
- Division of Basic Sciences, Fred Hutchinson Cancer Research CenterSeattleUnited States
| | - Gary H Karpen
- Biological Systems and Engineering Division, Lawrence Berkeley National LaboratoryBerkeleyUnited States
- Department of Molecular and Cell Biology, University of California at BerkeleyBerkeleyUnited States
- Innovative Genomics InstituteBerkeleyUnited States
| | - Harmit S Malik
- Division of Basic Sciences, Fred Hutchinson Cancer Research CenterSeattleUnited States
- Howard Hughes Medical Institute, Fred Hutchinson Cancer Research CenterSeattleUnited States
| |
Collapse
|
10
|
Texada MJ, Koyama T, Rewitz K. Regulation of Body Size and Growth Control. Genetics 2020; 216:269-313. [PMID: 33023929 PMCID: PMC7536854 DOI: 10.1534/genetics.120.303095] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/29/2020] [Indexed: 12/20/2022] Open
Abstract
The control of body and organ growth is essential for the development of adults with proper size and proportions, which is important for survival and reproduction. In animals, adult body size is determined by the rate and duration of juvenile growth, which are influenced by the environment. In nutrient-scarce environments in which more time is needed for growth, the juvenile growth period can be extended by delaying maturation, whereas juvenile development is rapidly completed in nutrient-rich conditions. This flexibility requires the integration of environmental cues with developmental signals that govern internal checkpoints to ensure that maturation does not begin until sufficient tissue growth has occurred to reach a proper adult size. The Target of Rapamycin (TOR) pathway is the primary cell-autonomous nutrient sensor, while circulating hormones such as steroids and insulin-like growth factors are the main systemic regulators of growth and maturation in animals. We discuss recent findings in Drosophila melanogaster showing that cell-autonomous environment and growth-sensing mechanisms, involving TOR and other growth-regulatory pathways, that converge on insulin and steroid relay centers are responsible for adjusting systemic growth, and development, in response to external and internal conditions. In addition to this, proper organ growth is also monitored and coordinated with whole-body growth and the timing of maturation through modulation of steroid signaling. This coordination involves interorgan communication mediated by Drosophila insulin-like peptide 8 in response to tissue growth status. Together, these multiple nutritional and developmental cues feed into neuroendocrine hubs controlling insulin and steroid signaling, serving as checkpoints at which developmental progression toward maturation can be delayed. This review focuses on these mechanisms by which external and internal conditions can modulate developmental growth and ensure proper adult body size, and highlights the conserved architecture of this system, which has made Drosophila a prime model for understanding the coordination of growth and maturation in animals.
Collapse
Affiliation(s)
| | - Takashi Koyama
- Department of Biology, University of Copenhagen, 2100, Denmark
| | - Kim Rewitz
- Department of Biology, University of Copenhagen, 2100, Denmark
| |
Collapse
|
11
|
Kamiyama T, Sun W, Tani N, Nakamura A, Niwa R. Poly(A) Binding Protein Is Required for Nuclear Localization of the Ecdysteroidogenic Transcription Factor Molting Defective in the Prothoracic Gland of Drosophila melanogaster. Front Genet 2020; 11:636. [PMID: 32676099 PMCID: PMC7333772 DOI: 10.3389/fgene.2020.00636] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/26/2020] [Indexed: 11/28/2022] Open
Abstract
Steroid hormone signaling contributes to the development of multicellular organisms. In insects, ecdysteroids, like ecdysone and the more biologically-active derivative 20-hydroxyecdysone (20E), promote molting and metamorphosis. Ecdysone is biosynthesized in the prothoracic gland (PG), via several steps catalyzed by ecdysteroidogenic enzymes that are encoded by Halloween genes. The spatio-temporal expression pattern of ecdysteroidogenic genes is strictly controlled, resulting in a proper fluctuation of the 20E titer during insect development. However, their transcriptional regulatory mechanism is still elusive. A previous study has found that the polyadenylated tail [poly(A)] deadenylation complex, called Carbon catabolite repressor 4-Negative on TATA (CCR4-NOT) regulates the expression of spookier (spok), which encodes one of the ecdysteroidogenic enzymes in the fruit fly Drosophila melanogaster. Based on this finding, we speculated whether any other poly(A)-related protein also regulates spok expression. In this study, we reported that poly(A) binding protein (Pabp) is involved in spok expression by regulating nuclear localization of the transcription factor molting defective (Mld). When pabp was knocked down specifically in the PG by transgenic RNAi, both spok mRNA and Spok protein levels were significantly reduced. In addition, the spok promoter-driven green fluorescence protein (GFP) signal was also reduced in the pabp-RNAi PG, suggesting that Pabp is involved in the transcriptional regulation of spok. We next examined which transcription factors are responsible for Pabp-dependent transcriptional regulation. Among the transcription factors acting in the PG, we primarily focused on the zinc-finger transcription factor Mld, as Mld is essential for spok transcription. Mld was localized in the nucleus of the control PG cells, while Mld abnormally accumulated in the cytoplasm of pabp-RNAi PG cells. In contrast, pabp-RNAi did not affect the nuclear localization of other transcription factors, including ventral vein lacking (Vvl) and POU domain motif 3 (Pdm3), in PG cells. From these results, we propose that Pabp regulates subcellular localization in the PG, specifically of the transcription factor Mld, in the context of ecdysone biosynthesis.
Collapse
Affiliation(s)
- Takumi Kamiyama
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Wei Sun
- Laboratory of Evolutionary and Functional Genomics, School of Life Sciences, Chongqing University, Chongqing, China.,Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan
| | - Naoki Tani
- Department of Germline Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Akira Nakamura
- Department of Germline Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Ryusuke Niwa
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
12
|
Zeng J, Huynh N, Phelps B, King-Jones K. Snail synchronizes endocycling in a TOR-dependent manner to coordinate entry and escape from endoreplication pausing during the Drosophila critical weight checkpoint. PLoS Biol 2020; 18:e3000609. [PMID: 32097403 PMCID: PMC7041797 DOI: 10.1371/journal.pbio.3000609] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 01/28/2020] [Indexed: 12/30/2022] Open
Abstract
The final body size of any given individual underlies both genetic and environmental constraints. Both mammals and insects use target of rapamycin (TOR) and insulin signaling pathways to coordinate growth with nutrition. In holometabolous insects, the growth period is terminated through a cascade of peptide and steroid hormones that end larval feeding behavior and trigger metamorphosis, a nonfeeding stage during which the larval body plan is remodeled to produce an adult. This irreversible decision, termed the critical weight (CW) checkpoint, ensures that larvae have acquired sufficient nutrients to complete and survive development to adulthood. How insects assess body size via the CW checkpoint is still poorly understood on the molecular level. We show here that the Drosophila transcription factor Snail plays a key role in this process. Before and during the CW checkpoint, snail is highly expressed in the larval prothoracic gland (PG), an endocrine tissue undergoing endoreplication and primarily dedicated to the production of the steroid hormone ecdysone. We observed two Snail peaks in the PG, one before and one after the molt from the second to the third instar. Remarkably, these Snail peaks coincide with two peaks of PG cells entering S phase and a slowing of DNA synthesis between the peaks. Interestingly, the second Snail peak occurs at the exit of the CW checkpoint. Snail levels then decline continuously, and endoreplication becomes nonsynchronized in the PG after the CW checkpoint. This suggests that the synchronization of PG cells into S phase via Snail represents the mechanistic link used to terminate the CW checkpoint. Indeed, PG-specific loss of snail function prior to the CW checkpoint causes larval arrest due to a cessation of endoreplication in PG cells, whereas impairing snail after the CW checkpoint no longer affected endoreplication and further development. During the CW window, starvation or loss of TOR signaling disrupted the formation of Snail peaks and endocycle synchronization, whereas later starvation had no effect on snail expression. Taken together, our data demonstrate that insects use the TOR pathway to assess nutrient status during larval development to regulate Snail in ecdysone-producing cells as an effector protein to coordinate endoreplication and CW attainment. During Drosophila development, the time window when larvae assess their readiness for metamorphosis is marked by slowing of cell growth in the prothoracic gland that produces the molting hormone; cell growth (via DNA endoreplication) then increases, allowing the production of the amount of hormone required to trigger metamorphosis. This study shows that these processes depend on the transcription factor Snail.
Collapse
Affiliation(s)
- Jie Zeng
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - Nhan Huynh
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - Brian Phelps
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | - Kirst King-Jones
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
- * E-mail:
| |
Collapse
|
13
|
Ray M, Singh G, Lakhotia SC. Altered levels of hsromega lncRNAs further enhance Ras signaling during ectopically activated Ras induced R7 differentiation in Drosophila. Gene Expr Patterns 2019; 33:20-36. [DOI: 10.1016/j.gep.2019.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 05/07/2019] [Indexed: 12/15/2022]
|
14
|
A Drosophila CRISPR/Cas9 Toolkit for Conditionally Manipulating Gene Expression in the Prothoracic Gland as a Test Case for Polytene Tissues. G3-GENES GENOMES GENETICS 2018; 8:3593-3605. [PMID: 30213867 PMCID: PMC6222582 DOI: 10.1534/g3.118.200539] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Targeting gene function with spatial or temporal specificity is a key goal in molecular genetics. CRISPR-Cas9 has greatly facilitated this strategy, but some standard approaches are problematic. For instance, simple tissue-specific or global overexpression of Cas9 can cause significant lethality or developmental delays even in the absence of gRNAs. In particular, we found that Gal4-mediated expression of UAS-Cas9 in the Drosophila prothoracic gland (PG) was not a suitable strategy to disrupt gene expression, since Cas9 alone caused widespread lethality. The PG is widely used for studying endocrine gland function during animal development, but tools validating PG-specific RNAi phenotypes are lacking. Here, we present a collection of modular gateway-compatible CRISPR-Cas9 tools that allow precise modulation of target gene activity with temporal and spatial specificity. We also demonstrate that Cas9 fused to the progesterone ligand-binding domain can be used to activate gene expression via RU486. Using these approaches, we were able to avoid the lethality associated with simple GAL4-mediated overexpression of Cas9 in the PG. Given that the PG is a polytene tissue, we conclude that these tools work effectively in endoreplicating cells where Cas9 has to target multiple copies of the same locus. Our toolkit can be easily adapted for other tissues and can be used both for gain- and loss-of-function studies.
Collapse
|
15
|
Zeng J, Kamiyama T, Niwa R, King-Jones K. The Drosophila CCR4-NOT complex is required for cholesterol homeostasis and steroid hormone synthesis. Dev Biol 2018; 443:10-18. [PMID: 30149007 DOI: 10.1016/j.ydbio.2018.08.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 07/17/2018] [Accepted: 08/23/2018] [Indexed: 12/25/2022]
Abstract
CCR4-NOT is a highly conserved protein complex that regulates gene expression at multiple levels. In yeast, CCR4-NOT functions in transcriptional initiation, heterochromatin formation, mRNA deadenylation and other processes. The range of functions for Drosophila CCR4-NOT is less clear, except for a well-established role as a deadenylase for maternal mRNAs during early embryogenesis. We report here that CCR4-NOT has an essential function in the Drosophila prothoracic gland (PG), a tissue that predominantly produces the steroid hormone ecdysone. Interfering with the expression of the CCR4-NOT components twin, Pop2, Not1, and Not3 in a PG-specific manner resulted in larval arrest and a failure to initiate metamorphosis. Transcriptome analysis of PG-specific Pop2-RNAi samples revealed that Pop2 is required for the normal expression of ecdysone biosynthetic gene spookier (spok) as well as cholesterol homeostasis genes of the NPC2 family. Interestingly, dietary supplementation with ecdysone and its various sterol precursors showed that 7-dehydrocholesterol and cholesterol completely rescued the larval arrest phenotype, allowing Pop2-RNAi animals to reach pupal stage, and, to a low degree, even survival to adulthood, while the biologically active hormone, 20-Hydroxyecdysone (20E), was significantly less effective. Also, we present genetic evidence that CCR4-NOT has a nuclear function where CCR4-NOT-depleted cells exhibit aberrant chromatin and nucleoli structures. In summary, our findings indicate that the Drosophila CCR4-NOT complex has essential roles in the PG, where it is required for Drosophila steroid hormone production and cholesterol homeostasis, and likely has functions beyond a mere mRNA deadenylase in Drosophila.
Collapse
Affiliation(s)
- Jie Zeng
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Takumi Kamiyama
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan
| | - Ryusuke Niwa
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan
| | - Kirst King-Jones
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
16
|
Moulos P, Alexandratos A, Nellas I, Dedos SG. Refining a steroidogenic model: an analysis of RNA-seq datasets from insect prothoracic glands. BMC Genomics 2018; 19:537. [PMID: 30005604 PMCID: PMC6045881 DOI: 10.1186/s12864-018-4896-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 06/25/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The prothoracic gland (PG), the principal steroidogenic organ of insects, has been proposed as a model for steroid hormone biosynthesis and regulation. RESULTS To validate the robustness of the model, we present an analysis of accumulated transcriptomic data from PGs of two model species, Drosophila melanogaster and Bombyx mori. We identify that the common core components of the model in both species are encoded by nine genes. Five of these are Halloween genes whose expression differs substantially between the PGs of these species. CONCLUSIONS We conclude that the PGs can be a model for steroid hormone synthesis and regulation within the context of mitochondrial cholesterol transport and steroid biosynthesis but beyond these core mechanisms, gene expression in insect PGs is too diverse to fit in a context-specific model and should be analysed within a species-specific framework.
Collapse
Affiliation(s)
- Panagiotis Moulos
- HybridStat Predictive Analytics, Aiolou 19, 10551 Athens, Greece
- Biomedical Sciences Research Center ‘Alexander Fleming’, Fleming 34, 16672 Vari, Greece
| | | | - Ioannis Nellas
- Department of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Skarlatos G. Dedos
- Department of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece
| |
Collapse
|
17
|
Shyamal S, Das S, Guruacharya A, Mykles DL, Durica DS. Transcriptomic analysis of crustacean molting gland (Y-organ) regulation via the mTOR signaling pathway. Sci Rep 2018; 8:7307. [PMID: 29743490 PMCID: PMC5943448 DOI: 10.1038/s41598-018-25368-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 04/20/2018] [Indexed: 12/24/2022] Open
Abstract
The intermolt crustacean Y-organ (YO) maintains a basal state mediated by pulsatile release of molt inhibiting hormone (MIH), a neuropeptide produced in the eyestalk ganglia, inhibiting YO ecdysteroidogenesis. Reduction of MIH results in YO activation and the animal enters premolt. In the crab, Gecarcinus lateralis, molting was induced by eyestalk ablation (ESA). ESA animals were injected with either rapamycin, an mTOR inhibitor, or DMSO vehicle at Day 0. YOs were harvested at 1, 3, and 7 days post-ESA and processed for high throughput RNA sequencing. ESA-induced increases in mRNA levels of mTOR signaling genes (e.g., mTOR, Rheb, TSC1/2, Raptor, Akt, and S6 kinase) declined following rapamycin treatment. In concert with mTOR inhibition, mRNA levels of ecdysteroid biosynthesis genes (e.g., Nvd, Spo, Sad, Dib, and Phm) were decreased and accompanied by a decrease in hemolymph ecdysteroid titer. By contrast, rapamycin increased the mRNA level of FKBP12, the rapamycin-binding protein, as well as the mRNA levels of genes associated with Wnt and insulin-like growth factor signaling pathways. Many MIH and transforming growth factor-β signaling genes were down regulated in ESA animals. These results indicate that mTOR activity either directly or indirectly controls transcription of genes that drive activation of the YO.
Collapse
Affiliation(s)
- S Shyamal
- Department of Biology, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - S Das
- Department of Biology, Colorado State University, Fort Collins, Colorado, 80523, USA
| | - A Guruacharya
- Department of Biology, University of Oklahoma, Norman, Oklahoma, 73019, USA
| | - D L Mykles
- Department of Biology, Colorado State University, Fort Collins, Colorado, 80523, USA
| | - D S Durica
- Department of Biology, University of Oklahoma, Norman, Oklahoma, 73019, USA.
| |
Collapse
|
18
|
Shimell M, Pan X, Martin FA, Ghosh AC, Leopold P, O'Connor MB, Romero NM. Prothoracicotropic hormone modulates environmental adaptive plasticity through the control of developmental timing. Development 2018; 145:dev.159699. [PMID: 29467242 DOI: 10.1242/dev.159699] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 02/12/2018] [Indexed: 12/19/2022]
Abstract
Adult size and fitness are controlled by a combination of genetics and environmental cues. In Drosophila, growth is confined to the larval phase and final body size is impacted by the duration of this phase, which is under neuroendocrine control. The neuropeptide prothoracicotropic hormone (PTTH) has been proposed to play a central role in controlling the length of the larval phase through regulation of ecdysone production, a steroid hormone that initiates larval molting and metamorphosis. Here, we test this by examining the consequences of null mutations in the Ptth gene for Drosophila development. Loss of Ptth causes several developmental defects, including a delay in developmental timing, increase in critical weight, loss of coordination between body and imaginal disc growth, and reduced adult survival in suboptimal environmental conditions such as nutritional deprivation or high population density. These defects are caused by a decrease in ecdysone production associated with altered transcription of ecdysone biosynthetic genes. Therefore, the PTTH signal contributes to coordination between environmental cues and the developmental program to ensure individual fitness and survival.
Collapse
Affiliation(s)
- MaryJane Shimell
- Department of Genetics Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Xueyang Pan
- Department of Genetics Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Francisco A Martin
- University Côte d'Azur, CNRS, Inserm, Institute of Biology Valrose, Parc Valrose, 06108 Nice, France.,Cajal Institute, Av Doctor Arce 37, 28002 Madrid, Spain
| | - Arpan C Ghosh
- Department of Genetics Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Pierre Leopold
- University Côte d'Azur, CNRS, Inserm, Institute of Biology Valrose, Parc Valrose, 06108 Nice, France
| | - Michael B O'Connor
- Department of Genetics Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Nuria M Romero
- University Côte d'Azur, CNRS, Inserm, Institute of Biology Valrose, Parc Valrose, 06108 Nice, France
| |
Collapse
|
19
|
Cooperative Control of Ecdysone Biosynthesis in Drosophila by Transcription Factors Séance, Ouija Board, and Molting Defective. Genetics 2017; 208:605-622. [PMID: 29187506 PMCID: PMC5788525 DOI: 10.1534/genetics.117.300268] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 11/27/2017] [Indexed: 12/20/2022] Open
Abstract
Ecdysteroids are steroid hormones that control many aspects of development and physiology. During larval development, ecdysone is synthesized in an endocrine organ called the prothoracic gland through a series of ecdysteroidogenic enzymes encoded by the Halloween genes. The expression of the Halloween genes is highly restricted and dynamic, indicating that their spatiotemporal regulation is mediated by their tight transcriptional control. In this study, we report that three zinc finger-associated domain (ZAD)-C2H2 zinc finger transcription factors—Séance (Séan), Ouija board (Ouib), and Molting defective (Mld)—cooperatively control ecdysone biosynthesis in the fruit fly Drosophila melanogaster. Séan and Ouib act in cooperation with Mld to positively regulate the transcription of neverland and spookier, respectively, two Halloween genes. Remarkably, loss-of-function mutations in séan, ouib, or mld can be rescued by the expression of neverland, spookier, or both, respectively. These results suggest that the three transcription factors have distinct roles in coordinating the expression of just two genes in Drosophila. Given that neverland and spookier are located in constitutive heterochromatin, Séan, Ouib, and Mld represent the first example of a transcription factor subset that regulates genes located in constitutive heterochromatin.
Collapse
|
20
|
A Drosophila Genome-Wide Screen Identifies Regulators of Steroid Hormone Production and Developmental Timing. Dev Cell 2017; 37:558-70. [PMID: 27326933 DOI: 10.1016/j.devcel.2016.05.015] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 05/05/2016] [Accepted: 05/20/2016] [Indexed: 11/24/2022]
Abstract
Steroid hormones control important developmental processes and are linked to many diseases. To systematically identify genes and pathways required for steroid production, we performed a Drosophila genome-wide in vivo RNAi screen and identified 1,906 genes with potential roles in steroidogenesis and developmental timing. Here, we use our screen as a resource to identify mechanisms regulating intracellular levels of cholesterol, a substrate for steroidogenesis. We identify a conserved fatty acid elongase that underlies a mechanism that adjusts cholesterol trafficking and steroidogenesis with nutrition and developmental programs. In addition, we demonstrate the existence of an autophagosomal cholesterol mobilization mechanism and show that activation of this system rescues Niemann-Pick type C1 deficiency that causes a disorder characterized by cholesterol accumulation. These cholesterol-trafficking mechanisms are regulated by TOR and feedback signaling that couples steroidogenesis with growth and ensures proper maturation timing. These results reveal genes regulating steroidogenesis during development that likely modulate disease mechanisms.
Collapse
|
21
|
Imura E, Yoshinari Y, Shimada-Niwa Y, Niwa R. Protocols for Visualizing Steroidogenic Organs and Their Interactive Organs with Immunostaining in the Fruit Fly Drosophila melanogaster. J Vis Exp 2017. [PMID: 28448012 DOI: 10.3791/55519] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In multicellular organisms, a small group of cells is endowed with a specialized function in their biogenic activity, inducing a systemic response to growth and reproduction. In insects, the larval prothoracic gland (PG) and the adult female ovary play essential roles in biosynthesizing the principal steroid hormones called ecdysteroids. These ecdysteroidogenic organs are innervated from the nervous system, through which the timing of biosynthesis is affected by environmental cues. Here we describe a protocol for visualizing ecdysteroidogenic organs and their interactive organs in larvae and adults of the fruit fly Drosophila melanogaster, which provides a suitable model system for studying steroid hormone biosynthesis and its regulatory mechanism. Skillful dissection allows us to maintain the positions of ecdysteroidogenic organs and their interactive organs including the brain, the ventral nerve cord, and other tissues. Immunostaining with antibodies against ecdysteroidogenic enzymes, along with transgenic fluorescence proteins driven by tissue-specific promoters, are available to label ecdysteroidogenic cells. Moreover, the innervations of the ecdysteroidogenic organs can also be labeled by specific antibodies or a collection of GAL4 drivers in various types of neurons. Therefore, the ecdysteroidogenic organs and their neuronal connections can be visualized simultaneously by immunostaining and transgenic techniques. Finally, we describe how to visualize germline stem cells, whose proliferation and maintenance are controlled by ecdysteroids. This method contributes to comprehensive understanding of steroid hormone biosynthesis and its neuronal regulatory mechanism.
Collapse
Affiliation(s)
- Eisuke Imura
- Graduate School of Life and Environmental Sciences, University of Tsukuba
| | - Yuto Yoshinari
- Graduate School of Life and Environmental Sciences, University of Tsukuba
| | - Yuko Shimada-Niwa
- Life Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba;
| | - Ryusuke Niwa
- Faculty of Life and Environmental Sciences, University of Tsukuba;
| |
Collapse
|
22
|
Deep sequencing of the prothoracic gland transcriptome reveals new players in insect ecdysteroidogenesis. PLoS One 2017; 12:e0172951. [PMID: 28257485 PMCID: PMC5336252 DOI: 10.1371/journal.pone.0172951] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 02/13/2017] [Indexed: 12/28/2022] Open
Abstract
Ecdysteroids are steroid hormones that induce molting and determine developmental timing in arthropods. In insect larva, the prothoracic gland (PG) is a major organ for ecdysone synthesis and release. Released ecdysone is converted into the active form, 20-hydroxyecdysone (20E) in the peripheral tissues. All processes from ecdysone synthesis and release from the PG to its conversion to 20E are called ecdysteroidogenesis and are under the regulation of numerous factors expressed in the PG and peripheral tissues. Classical genetic approaches and recent transcriptomic screening in the PG identified several genes responsible for ecdysone synthesis and release, whereas the regulatory mechanism remains largely unknown. We analyzed RNA-seq data of the silkworm Bombyx mori PG and employed the fruit fly Drosophila melanogaster GAL4/UAS binary RNAi system to comprehensively screen for genes involved in ecdysone synthesis and/or release. We found that the genes encoding δ-aminolevulinic acid synthase (CG3017/alas) and putative NAD kinase (CG33156) were highly expressed in the PG of both B. mori and D. melanogaster. Neither alas nor CG33156 RNAi-induced larvae could enter into the pupal stage, and they had a lower abundance of the active form ecdysteroids in their prolonged larval stage. These results demonstrated that alas and CG33156 are indispensable for ecdysteroidogenesis.
Collapse
|
23
|
Di Cara F, King-Jones K. The Circadian Clock Is a Key Driver of Steroid Hormone Production in Drosophila. Curr Biol 2016; 26:2469-2477. [PMID: 27546572 DOI: 10.1016/j.cub.2016.07.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 05/17/2016] [Accepted: 07/05/2016] [Indexed: 11/19/2022]
Abstract
Biological clocks allow organisms to anticipate daily environmental changes such as temperature fluctuations, abundance of daylight, and nutrient availability. Many circadian-controlled physiological states are coordinated by the release of systemically acting hormones, including steroids and insulin [1-7]. Thus, hormones relay circadian outputs to target tissues, and disrupting these endocrine rhythms impairs human health by affecting sleep patterns, energy homeostasis, and immune functions [8-10]. It is largely unclear, however, whether circadian circuits control hormone levels indirectly via central timekeeping neurons or whether peripheral endocrine clocks can modulate hormone synthesis directly. We show here that perturbing the circadian clock, specifically in the major steroid hormone-producing gland of Drosophila, the prothoracic gland (PG), unexpectedly blocks larval development due to an inability to produce sufficient steroids. This is surprising, because classic circadian null mutants are viable and result in arrhythmic adults [4, 11-14]. We found that Timeless and Period, both core components of the insect clock [15], are required for transcriptional upregulation of steroid hormone-producing enzymes. Timeless couples the circadian machinery directly to the two canonical pathways that regulate steroid synthesis in insects, insulin and PTTH signaling [16], respectively. Activating insulin signaling directly modulates Timeless function, suggesting that the local clock in the PG is normally synced with systemic insulin cues. Because both PTTH and systemic insulin signaling are themselves under circadian control, we conclude that de-synchronization of a local endocrine clock with external circadian cues is the primary cause for steroid production to fail.
Collapse
Affiliation(s)
- Francesca Di Cara
- Department of Cell Biology, University of Alberta, 5-19 Medical Sciences Building, Edmonton, AB T6G 2H7, Canada
| | - Kirst King-Jones
- Department of Biological Sciences, University of Alberta, G-504 Biological Sciences Building, Edmonton, AB T6G 2E9, Canada.
| |
Collapse
|
24
|
Niwa YS, Niwa R. Ouija board: A transcription factor evolved for only one target in steroid hormone biosynthesis in the fruit fly Drosophila melanogaster. Transcription 2016; 7:196-202. [PMID: 27434771 PMCID: PMC5066509 DOI: 10.1080/21541264.2016.1210370] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Transcription factors generally regulate gene expression of multiple targets. In contrast, our recent finding suggests that the zinc finger protein Ouija board controls steroid hormone biosynthesis through specific regulation of only one gene spookier in Drosophila. It sheds light on a specialized but essential factor that evolved for one target.
Collapse
Affiliation(s)
- Yuko S Niwa
- a Life Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba , Tsukuba , Ibaraki , Japan
| | - Ryusuke Niwa
- b Faculty of Life and Environmental Sciences , University of Tsukuba , Tsukuba , Ibaraki , Japan
| |
Collapse
|
25
|
Ou Q, Zeng J, Yamanaka N, Brakken-Thal C, O'Connor MB, King-Jones K. The Insect Prothoracic Gland as a Model for Steroid Hormone Biosynthesis and Regulation. Cell Rep 2016; 16:247-262. [PMID: 27320926 DOI: 10.1016/j.celrep.2016.05.053] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 04/01/2016] [Accepted: 05/12/2016] [Indexed: 11/17/2022] Open
Abstract
Steroid hormones are ancient signaling molecules found in vertebrates and insects alike. Both taxa show intriguing parallels with respect to how steroids function and how their synthesis is regulated. As such, insects are excellent models for studying universal aspects of steroid physiology. Here, we present a comprehensive genomic and genetic analysis of the principal steroid hormone-producing organs in two popular insect models, Drosophila and Bombyx. We identified 173 genes with previously unknown specific expression in steroid-producing cells, 15 of which had critical roles in development. The insect neuropeptide PTTH and its vertebrate counterpart ACTH both regulate steroid production, but molecular targets of these pathways remain poorly characterized. Identification of PTTH-dependent gene sets identified the nuclear receptor HR4 as a highly conserved target in both Drosophila and Bombyx. We consider this study to be a critical step toward understanding how steroid hormone production and release are regulated in all animal models.
Collapse
Affiliation(s)
- Qiuxiang Ou
- Department of Biological Sciences, University of Alberta, G-504 Biological Sciences Building, Edmonton, AB T6G 2E9, Canada
| | - Jie Zeng
- Department of Biological Sciences, University of Alberta, G-504 Biological Sciences Building, Edmonton, AB T6G 2E9, Canada
| | - Naoki Yamanaka
- Institute for Integrative Genome Biology, Center for Disease Vector Research, and Department of Entomology, University of California, Riverside, Riverside, CA 92521, USA
| | - Christina Brakken-Thal
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Michael B O'Connor
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kirst King-Jones
- Department of Biological Sciences, University of Alberta, G-504 Biological Sciences Building, Edmonton, AB T6G 2E9, Canada.
| |
Collapse
|
26
|
Niwa YS, Niwa R. Transcriptional regulation of insect steroid hormone biosynthesis and its role in controlling timing of molting and metamorphosis. Dev Growth Differ 2015; 58:94-105. [PMID: 26667894 DOI: 10.1111/dgd.12248] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 10/11/2015] [Accepted: 10/11/2015] [Indexed: 01/11/2023]
Abstract
The developmental transition from juvenile to adult is often accompanied by many systemic changes in morphology, metabolism, and reproduction. Curiously, both mammalian puberty and insect metamorphosis are triggered by a pulse of steroid hormones, which can harmonize gene expression profiles in the body and thus orchestrate drastic biological changes. However, understanding of how the timing of steroid hormone biosynthesis is regulated at the molecular level is poor. The principal insect steroid hormone, ecdysteroid, is biosynthesized from dietary cholesterol in the specialized endocrine organ called the prothoracic gland. The periodic pulses of ecdysteroid titers determine the timing of molting and metamorphosis. To date, at least nine families of ecdysteroidogenic enzyme genes have been identified. Expression levels of these genes correlate well with ecdysteroid titers, indicating that the transcriptional regulatory network plays a critical role in regulating the ecdysteroid biosynthesis pathway. In this article, we summarize the transcriptional regulation of ecdysteroid biosynthesis. We first describe the development of prothoracic gland cells during Drosophila embryogenesis, and then provide an overview of the transcription factors that act in ecdysteroid biosynthesis and signaling. We also discuss the external signaling pathways that target these transcriptional regulators. Furthermore, we describe conserved and/or diverse aspects of steroid hormone biosynthesis in insect species as well as vertebrates.
Collapse
Affiliation(s)
- Yuko S Niwa
- Life Science Center, Tsukuba Advanced Research Alliance, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki, 305-8572, Japan
| | - Ryusuke Niwa
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki, 305-8572, Japan.,PRESTO, Japan Science and Technology Agency, Honcho 4-1-8, Kawaguchi, 332-0012, Saitama, Japan
| |
Collapse
|