1
|
Goldberg LR, Baskin BM, Beierle JA, Adla Y, Kelliher JC, Yao EJ, Kirkpatrick SL, Reed ER, Jenkins DF, Cox J, Luong AM, Luttik KP, Scotellaro JA, Drescher TA, Crotts SB, Yazdani N, Ferris MT, Johnson WE, Mulligan MK, Bryant CD. Atp1a2 and Kcnj9 Are Candidate Genes Underlying Sensitivity to Oxycodone-Induced Locomotor Activation and Withdrawal-Induced Anxiety-Like Behaviors in C57BL/6 Substrains. GENES, BRAIN, AND BEHAVIOR 2025; 24:e70009. [PMID: 39801366 PMCID: PMC11725984 DOI: 10.1111/gbb.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/22/2024] [Accepted: 12/10/2024] [Indexed: 01/16/2025]
Abstract
Opioid use disorder is heritable, yet its genetic etiology is largely unknown. C57BL/6J and C57BL/6NJ mouse substrains exhibit phenotypic diversity in the context of limited genetic diversity which together can facilitate genetic discovery. Here, we found C57BL/6NJ mice were less sensitive to oxycodone (OXY)-induced locomotor activation versus C57BL/6J mice in a conditioned place preference paradigm. Narrow-sense heritability of OXY-induced locomotor activity traits ranged from 0.22 to 0.31, implicating suitability for genetic analysis. Quantitative trait locus (QTL) mapping in an F2 cross identified a chromosome 1 QTL explaining 7%-12% of the variance in OXY locomotion and anxiety-like withdrawal in the elevated plus maze. A second QTL for EPM withdrawal behavior on chromosome 5 near Gabra2 (alpha-2 subunit of GABA-A receptor) explained 9% of the variance. To narrow the chromosome 1 locus, we generated recombinant lines spanning 163-181 Mb, captured the QTL for OXY locomotor traits and withdrawal, and fine-mapped a 2.45-Mb region (170.16-172.61 Mb). Transcriptome analysis identified five, localized striatal cis-eQTL transcripts and two were confirmed at the protein level (KCNJ9, ATP1A2). Kcnj9 codes for a potassium channel (GIRK3) that is a major effector of mu opioid receptor signaling. Atp1a2 codes for a subunit of a Na+/K+ ATPase enzyme that regulates neuronal excitability and shows functional adaptations following chronic opioid administration. To summarize, we identified two candidate genes underlying the physiological and behavioral properties of opioids, with direct preclinical relevance to investigators employing these widely used substrains and clinical relevance to human genetic studies of opioid use disorder.
Collapse
Affiliation(s)
- Lisa R. Goldberg
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug DiscoveryNortheastern UniversityBostonMassachusettsUSA
- Graduate Program in Biomolecular Pharmacology, Department of Pharmacology, Physiology & BiophysicsBoston University Chobanian and Avedisian School of MedicineBostonMassachusettsUSA
| | - Britahny M. Baskin
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug DiscoveryNortheastern UniversityBostonMassachusettsUSA
- T32 Training Program on Development of Medications for Substance Use Disorder, Center for Drug DiscoveryNortheastern UniversityBostonMassachusettsUSA
| | - Jacob A. Beierle
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug DiscoveryNortheastern UniversityBostonMassachusettsUSA
- Graduate Program in Biomolecular Pharmacology, Department of Pharmacology, Physiology & BiophysicsBoston University Chobanian and Avedisian School of MedicineBostonMassachusettsUSA
- Transformative Training Program in Addiction ScienceBoston UniversityBostonMassachusettsUSA
| | - Yahia Adla
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug DiscoveryNortheastern UniversityBostonMassachusettsUSA
| | - Julia C. Kelliher
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug DiscoveryNortheastern UniversityBostonMassachusettsUSA
| | - Emily J. Yao
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug DiscoveryNortheastern UniversityBostonMassachusettsUSA
| | - Stacey L. Kirkpatrick
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug DiscoveryNortheastern UniversityBostonMassachusettsUSA
| | - Eric R. Reed
- Graduate Program in BioinformaticsBoston UniversityBostonMassachusettsUSA
| | - David F. Jenkins
- Graduate Program in BioinformaticsBoston UniversityBostonMassachusettsUSA
| | - Jiayi Cox
- Genetics and Graduate Program in Genetics and Genomics, Program in Biomedical SciencesBoston University Chobanian & Avedisian School of MedicineBostonMassachusettsUSA
| | - Alexander M. Luong
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug DiscoveryNortheastern UniversityBostonMassachusettsUSA
| | - Kimberly P. Luttik
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug DiscoveryNortheastern UniversityBostonMassachusettsUSA
| | - Julia A. Scotellaro
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug DiscoveryNortheastern UniversityBostonMassachusettsUSA
- Undergraduate Research Opportunity Program (UROP)Boston UniversityBostonMassachusettsUSA
| | - Timothy A. Drescher
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug DiscoveryNortheastern UniversityBostonMassachusettsUSA
| | - Sydney B. Crotts
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug DiscoveryNortheastern UniversityBostonMassachusettsUSA
| | - Neema Yazdani
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug DiscoveryNortheastern UniversityBostonMassachusettsUSA
- Graduate Program in Biomolecular Pharmacology, Department of Pharmacology, Physiology & BiophysicsBoston University Chobanian and Avedisian School of MedicineBostonMassachusettsUSA
- Transformative Training Program in Addiction ScienceBoston UniversityBostonMassachusettsUSA
| | - Martin T. Ferris
- Department of GeneticsUniversity of North CarolinaChapel HillNorth CarolinaUSA
| | - W. Evan Johnson
- Division of Infectious Disease, Department of Medicine, Center for Data ScienceRutgers UniversityNew BrunswickNew JerseyUSA
| | - Megan K. Mulligan
- Department of Genetics, Genomics, and InformaticsUniversity of Tennessee Health Science CenterMemphisTennesseeUSA
| | - Camron D. Bryant
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug DiscoveryNortheastern UniversityBostonMassachusettsUSA
- T32 Training Program on Development of Medications for Substance Use Disorder, Center for Drug DiscoveryNortheastern UniversityBostonMassachusettsUSA
| |
Collapse
|
2
|
Goldberg LR, Baskin BM, Adla Y, Beierle JA, Kelliher JC, Yao EJ, Kirkpatrick SL, Reed ER, Jenkins DF, Cox J, Luong AM, Luttik KP, Scotellaro JA, Drescher TA, Crotts SB, Yazdani N, Ferris MT, Johnson WE, Mulligan MK, Bryant CD. Atp1a2 and Kcnj9 are candidate genes underlying sensitivity to oxycodone-induced locomotor activation and withdrawal-induced anxiety-like behaviors in C57BL/6 substrains. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.16.589731. [PMID: 38798314 PMCID: PMC11123399 DOI: 10.1101/2024.04.16.589731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Opioid use disorder is heritable, yet its genetic etiology is largely unknown. C57BL/6J and C57BL/6NJ mouse substrains exhibit phenotypic diversity in the context of limited genetic diversity which together can facilitate genetic discovery. Here, we found C57BL/6NJ mice were less sensitive to oxycodone (OXY)-induced locomotor activation versus C57BL/6J mice in a conditioned place preference paradigm. Narrow-sense heritability was estimated at 0.22-0.31, implicating suitability for genetic analysis. Quantitative trait locus (QTL) mapping in an F2 cross identified a chromosome 1 QTL explaining 7-12% of the variance in OXY locomotion and anxiety-like withdrawal in the elevated plus maze. A second QTL for EPM withdrawal behavior on chromosome 5 near Gabra2 (alpha-2 subunit of GABA-A receptor) explained 9% of the variance. To narrow the chromosome 1 locus, we generated recombinant lines spanning 163-181 Mb, captured the QTL for OXY locomotor traits and withdrawal, and fine-mapped a 2.45-Mb region (170.16-172.61 Mb). Transcriptome analysis identified five, localized striatal cis-eQTL transcripts and two were confirmed at the protein level (KCNJ9, ATP1A2). Kcnj9 codes for a potassium channel (GIRK3) that is a major effector of mu opioid receptor signaling. Atp1a2 codes for a subunit of a Na+/K+ ATPase enzyme that regulates neuronal excitability and shows functional adaptations following chronic opioid administration. To summarize, we identified two candidate genes underlying the physiological and behavioral properties of opioids, with direct preclinical relevance to investigators employing these widely used substrains and clinical relevance to human genetic studies of opioid use disorder.
Collapse
Affiliation(s)
- Lisa R. Goldberg
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug Discovery, Northeastern University, Boston, MA USA
- Graduate Program in Biomolecular Pharmacology, Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, MA USA
| | - Britahny M. Baskin
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug Discovery, Northeastern University, Boston, MA USA
- T32 Training Program on Development of Medications for Substance Use Disorder, Center for Drug Discovery, Northeastern University
| | - Yahia Adla
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug Discovery, Northeastern University, Boston, MA USA
| | - Jacob A. Beierle
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug Discovery, Northeastern University, Boston, MA USA
- Graduate Program in Biomolecular Pharmacology, Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, MA USA
- Transformative Training Program in Addiction Science, Boston University
| | - Julia C. Kelliher
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug Discovery, Northeastern University, Boston, MA USA
| | - Emily J. Yao
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug Discovery, Northeastern University, Boston, MA USA
| | - Stacey L. Kirkpatrick
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug Discovery, Northeastern University, Boston, MA USA
| | - Eric R. Reed
- Graduate Program in Bioinformatics, Boston University, Boston, MA USA
| | - David F. Jenkins
- Graduate Program in Bioinformatics, Boston University, Boston, MA USA
| | - Jiayi Cox
- Genetics and Graduate Program in Genetics and Genomics, Program in Biomedical Sciences, Boston University Chobanian & Avedisian School of Medicine
| | - Alexander M. Luong
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug Discovery, Northeastern University, Boston, MA USA
| | - Kimberly P. Luttik
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug Discovery, Northeastern University, Boston, MA USA
| | - Julia A. Scotellaro
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug Discovery, Northeastern University, Boston, MA USA
- Undergraduate Research Opportunity Program (UROP), Boston University
| | - Timothy A. Drescher
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug Discovery, Northeastern University, Boston, MA USA
| | - Sydney B. Crotts
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug Discovery, Northeastern University, Boston, MA USA
| | - Neema Yazdani
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug Discovery, Northeastern University, Boston, MA USA
- Graduate Program in Biomolecular Pharmacology, Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, MA USA
- Transformative Training Program in Addiction Science, Boston University
| | - Martin T. Ferris
- Department of Genetics, University of North Carolina, Chapel Hill, NC USA
| | - W. Evan Johnson
- Division of Infectious Disease, Department of Medicine, Center for Data Science, Rutgers University, New Jersey, USA
| | - Megan K. Mulligan
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN USA
| | - Camron D. Bryant
- Laboratory of Addiction Genetics, Department of Pharmaceutical Sciences and Center for Drug Discovery, Northeastern University, Boston, MA USA
- T32 Training Program on Development of Medications for Substance Use Disorder, Center for Drug Discovery, Northeastern University
| |
Collapse
|
3
|
Borrelli KN, Wingfield KK, Yao EJ, Zamorano CA, Sena KD, Beierle JA, Roos MA, Zhang H, Wachman EM, Bryant CD. Decreased myelin-related gene expression in the nucleus accumbens during spontaneous neonatal opioid withdrawal in the absence of long-term behavioral effects in adult outbred CFW mice. Neuropharmacology 2023; 240:109732. [PMID: 37774943 PMCID: PMC10598517 DOI: 10.1016/j.neuropharm.2023.109732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 10/01/2023]
Abstract
Prenatal opioid exposure is a major health concern in the United States, with the incidence of neonatal opioid withdrawal syndrome (NOWS) escalating in recent years. NOWS occurs upon cessation of in utero opioid exposure and is characterized by increased irritability, disrupted sleep patterns, high-pitched crying, and dysregulated feeding. The main pharmacological strategy for alleviating symptoms is treatment with replacement opioids. The neural mechanisms mediating NOWS and the long-term neurobehavioral effects are poorly understood. We used a third trimester-approximate model in which neonatal outbred pups (Carworth Farms White; CFW) were administered once-daily morphine (15 mg/kg, s.c.) from postnatal day (P) day 1 through P14 and were then assessed for behavioral and transcriptomic adaptations within the nucleus accumbens (NAc) on P15. We also investigated the long-term effects of perinatal morphine exposure on adult learning and reward sensitivity. We observed significant weight deficits, spontaneous thermal hyperalgesia, and altered ultrasonic vocalization (USV) profiles following repeated morphine and during spontaneous withdrawal. Transcriptome analysis of NAc from opioid-withdrawn P15 neonates via bulk mRNA sequencing identified an enrichment profile consistent with downregulation of myelin-associated transcripts. Despite the neonatal behavioral and molecular effects, there were no significant long-term effects of perinatal morphine exposure on adult spatial memory function in the Barnes Maze, emotional learning in fear conditioning, or in baseline or methamphetamine-potentiated reward sensitivity as measured via intracranial self-stimulation. Thus, the once daily third trimester-approximate exposure regimen, while inducing NOWS model traits and significant transcriptomic effects in neonates, had no significant long-term effects on adult behaviors.
Collapse
Affiliation(s)
- Kristyn N Borrelli
- Graduate Program for Neuroscience, Boston University, 610 Commonwealth Av, Boston, MA, 02215, USA; T32 Biomolecular Pharmacology PhD Program, Boston University Chobanian & Avedisian School of Medicine, USA; Boston University's Transformative Training Program in Addiction Science, Boston University Chobanian & Avedisian School of Medicine, 72 E. Concord St., L-317, Boston, MA, 02118, USA
| | - Kelly K Wingfield
- T32 Biomolecular Pharmacology PhD Program, Boston University Chobanian & Avedisian School of Medicine, USA; Laboratory of Addiction Genetics, Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian & Avedisian School of Medicine, 72 E. Concord St., L-606, Boston, MA, 02118, USA; Department of Pharmaceutical Sciences, Center for Drug Discovery, Northeastern University, 360 Huntington Av, 140 The Fenway Building, X138, Boston, MA, 02115, USA
| | - Emily J Yao
- Laboratory of Addiction Genetics, Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian & Avedisian School of Medicine, 72 E. Concord St., L-606, Boston, MA, 02118, USA; Department of Pharmaceutical Sciences, Center for Drug Discovery, Northeastern University, 360 Huntington Av, 140 The Fenway Building, X138, Boston, MA, 02115, USA
| | - Catalina A Zamorano
- Boston University's Undergraduate Research Opportunity Program, George Sherman Union, 775 Commonwealth Av, 5th floor, Boston, MA, 02215, USA
| | - Katherine D Sena
- Boston University's Undergraduate Research Opportunity Program, George Sherman Union, 775 Commonwealth Av, 5th floor, Boston, MA, 02215, USA
| | - Jacob A Beierle
- T32 Biomolecular Pharmacology PhD Program, Boston University Chobanian & Avedisian School of Medicine, USA; Boston University's Transformative Training Program in Addiction Science, Boston University Chobanian & Avedisian School of Medicine, 72 E. Concord St., L-317, Boston, MA, 02118, USA; Laboratory of Addiction Genetics, Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian & Avedisian School of Medicine, 72 E. Concord St., L-606, Boston, MA, 02118, USA; Department of Pharmaceutical Sciences, Center for Drug Discovery, Northeastern University, 360 Huntington Av, 140 The Fenway Building, X138, Boston, MA, 02115, USA
| | - Michelle A Roos
- Laboratory of Addiction Genetics, Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian & Avedisian School of Medicine, 72 E. Concord St., L-606, Boston, MA, 02118, USA; Department of Pharmaceutical Sciences, Center for Drug Discovery, Northeastern University, 360 Huntington Av, 140 The Fenway Building, X138, Boston, MA, 02115, USA
| | - Huiping Zhang
- Department of Psychiatry, Boston University Chobanian and Avedisian School of Medicine, 72 E. Concord St., Boston, MA, 02118, USA
| | - Elisha M Wachman
- Department of Pediatrics, Boston University Chobanian and Avedisian School of Medicine and Boston Medical Center, 1 Boston Medical Center Pl, Boston, MA, 02118, USA
| | - Camron D Bryant
- Laboratory of Addiction Genetics, Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian & Avedisian School of Medicine, 72 E. Concord St., L-606, Boston, MA, 02118, USA; Department of Pharmaceutical Sciences, Center for Drug Discovery, Northeastern University, 360 Huntington Av, 140 The Fenway Building, X138, Boston, MA, 02115, USA.
| |
Collapse
|
4
|
Brownmiller T, Caplen NJ. The HNRNPF/H RNA binding proteins and disease. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1788. [PMID: 37042074 PMCID: PMC10523889 DOI: 10.1002/wrna.1788] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 04/13/2023]
Abstract
The members of the HNRNPF/H family of heterogeneous nuclear RNA proteins-HNRNPF, HNRNPH1, HNRNPH2, HNRNPH3, and GRSF1, are critical regulators of RNA maturation. Documented functions of these proteins include regulating splicing, particularly alternative splicing, 5' capping and 3' polyadenylation of RNAs, and RNA export. The assignment of these proteins to the HNRNPF/H protein family members relates to differences in the amino acid composition of their RNA recognition motifs, which differ from those of other RNA binding proteins (RBPs). HNRNPF/H proteins typically bind RNA sequences enriched with guanine (G) residues, including sequences that, in the presence of a cation, have the potential to form higher-order G-quadruplex structures. The need to further investigate members of the HNRNPF/H family of RBPs has intensified with the recent descriptions of their involvement in several disease states, including the pediatric tumor Ewing sarcoma and the hematological malignancy mantle cell lymphoma; newly described groups of developmental syndromes; and neuronal-related disorders, including addictive behavior. Here, to foster the study of the HNRNPF/H family of RBPs, we discuss features of the genes encoding these proteins, their structures and functions, and emerging contributions to disease. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Processing > Splicing Regulation/Alternative Splicing RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Tayvia Brownmiller
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, DHHS, Bethesda, Maryland, USA
| | - Natasha J Caplen
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, DHHS, Bethesda, Maryland, USA
| |
Collapse
|
5
|
Borrelli KN, Wingfield KK, Yao EJ, Zamorano CA, Sena KD, Beierle JA, Roos MA, Zhang H, Wachman EM, Bryant CD. Decreased myelin-related gene expression in the nucleus accumbens during spontaneous neonatal opioid withdrawal in the absence of long-term behavioral effects in adult outbred CFW mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.04.552033. [PMID: 37609129 PMCID: PMC10441327 DOI: 10.1101/2023.08.04.552033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Prenatal opioid exposure is a major health concern in the United States, with the incidence of neonatal opioid withdrawal syndrome (NOWS) escalating in recent years. NOWS occurs upon cessation of in utero opioid exposure and is characterized by increased irritability, disrupted sleep patterns, high-pitched crying, and dysregulated feeding. The main pharmacological strategy for alleviating symptoms is treatment with replacement opioids. The neural mechanisms mediating NOWS and the long-term neurobehavioral effects are poorly understood. We used a third trimester-approximate model in which neonatal outbred pups (Carworth Farms White; CFW) were administered once-daily morphine (15 mg/kg, s.c.) from postnatal day (P) day 1 through P14 and were then assessed for behavioral and transcriptomic adaptations within the nucleus accumbens (NAc) on P15. We also investigated the long-term effects of perinatal morphine exposure on adult learning and reward sensitivity. We observed significant weight deficits, spontaneous thermal hyperalgesia, and altered ultrasonic vocalization (USV) profiles following repeated morphine and during spontaneous withdrawal. Transcriptome analysis of NAc from opioid-withdrawn P15 neonates via bulk mRNA sequencing identified an enrichment profile consistent with downregulation of myelin-associated transcripts. Despite the neonatal behavioral and molecular effects, there were no significant long-term effects of perinatal morphine exposure on adult spatial memory function in the Barnes Maze, emotional learning in fear conditioning, or in baseline or methamphetamine-potentiated reward sensitivity as measured via intracranial self-stimulation. Thus, the once daily third trimester-approximate exposure regimen, while inducing NOWS model traits and significant transcriptomic effects in neonates, had no significant long-term effects on adult behaviors. HIGHLIGHTS We replicated some NOWS model traits via 1x-daily morphine (P1-P14).We found a downregulation of myelination genes in nucleus accumbens on P15.There were no effects on learning/memory or reward sensitivity in adults.
Collapse
Affiliation(s)
- Kristyn N. Borrelli
- Laboratory of Addiction Genetics, Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, 72 E. Concord St., L-606B, Boston, MA 02118
- Graduate Program for Neuroscience, Boston University, 610 Commonwealth Av, Boston, MA 02215
- Boston University’s Transformative Training Program in Addiction Science, Boston University Chobanian & Avedisian School of Medicine, 72 E. Concord St., L-317, Boston, MA 02118
| | - Kelly K. Wingfield
- Laboratory of Addiction Genetics, Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, 72 E. Concord St., L-606B, Boston, MA 02118
- T32 Biomolecular Pharmacology PhD Program, Boston University Chobanian and Avedisian School of Medicine
| | - Emily J. Yao
- Laboratory of Addiction Genetics, Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, 72 E. Concord St., L-606B, Boston, MA 02118
| | - Catalina A. Zamorano
- Laboratory of Addiction Genetics, Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, 72 E. Concord St., L-606B, Boston, MA 02118
- Boston University’s Undergraduate Research Opportunity Program, George Sherman Union, 775 Commonwealth Av, 5 floor, Boston, MA 02215
| | - Katherine D. Sena
- Laboratory of Addiction Genetics, Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, 72 E. Concord St., L-606B, Boston, MA 02118
- Boston University’s Undergraduate Research Opportunity Program, George Sherman Union, 775 Commonwealth Av, 5 floor, Boston, MA 02215
| | - Jacob A. Beierle
- Laboratory of Addiction Genetics, Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, 72 E. Concord St., L-606B, Boston, MA 02118
- T32 Biomolecular Pharmacology PhD Program, Boston University Chobanian and Avedisian School of Medicine
- Boston University’s Transformative Training Program in Addiction Science, Boston University Chobanian & Avedisian School of Medicine, 72 E. Concord St., L-317, Boston, MA 02118
| | - Michelle A. Roos
- Laboratory of Addiction Genetics, Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, 72 E. Concord St., L-606B, Boston, MA 02118
| | - Huiping Zhang
- Department of Psychiatry, Boston University Chobanian and Avedisian School of Medicine, 72 E. Concord St., Boston, MA 02118
| | - Elisha M. Wachman
- Department of Pediatrics, Boston University Chobanian and Avedisian School of Medicine and Boston Medical Center, 1 Boston Medical Center Pl, Boston, MA 02118
| | - Camron D. Bryant
- Laboratory of Addiction Genetics, Department of Pharmacology, Physiology & Biophysics, Boston University Chobanian and Avedisian School of Medicine, 72 E. Concord St., L-606B, Boston, MA 02118
- Department of Psychiatry, Boston University Chobanian and Avedisian School of Medicine, 72 E. Concord St., Boston, MA 02118
| |
Collapse
|
6
|
Sayson LV, Ortiz DM, Lee HJ, Kim M, Custodio RJP, Yun J, Lee CH, Lee YS, Cha HJ, Cheong JH, Kim HJ. Deletion of Cryab increases the vulnerability of mice to the addiction-like effects of the cannabinoid JWH-018 via upregulation of striatal NF-κB expression. Front Pharmacol 2023; 14:1135929. [PMID: 37007015 PMCID: PMC10060981 DOI: 10.3389/fphar.2023.1135929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/07/2023] [Indexed: 03/18/2023] Open
Abstract
Synthetic cannabinoids have exhibited unpredictable abuse liabilities, especially self-administration (SA) responses in normal rodent models, despite seemingly inducing addiction-like effects in humans. Thus, an efficient pre-clinical model must be developed to determine cannabinoid abuse potential in animals and describe the mechanism that may mediate cannabinoid sensitivity. The Cryab knockout (KO) mice were recently discovered to be potentially sensitive to the addictive effects of psychoactive drugs. Herein, we examined the responses of Cryab KO mice to JWH-018 using SA, conditioned place preference, and electroencephalography. Additionally, the effects of repeated JWH-018 exposure on endocannabinoid- and dopamine-related genes in various addiction-associated brain regions were examined, along with protein expressions involving neuroinflammation and synaptic plasticity. Cryab KO mice exhibited greater cannabinoid-induced SA responses and place preference, along with divergent gamma wave alterations, compared to wild-type (WT) mice, implying their higher sensitivity to cannabinoids. Endocannabinoid- or dopamine-related mRNA expressions and accumbal dopamine concentrations after repeated JWH-018 exposure were not significantly different between the WT and Cryab KO mice. Further analyses revealed that repeated JWH-018 administration led to possibly greater neuroinflammation in Cryab KO mice, which may arise from upregulated NF-κB, accompanied by higher expressions of synaptic plasticity markers, which might have contributed to the development of cannabinoid addiction-related behavior in Cryab KO mice. These findings signify that increased neuroinflammation via NF-κB may mediate the enhanced addiction-like responses of Cryab KO mice to cannabinoids. Altogether, Cryab KO mice may be a potential model for cannabinoid abuse susceptibility.
Collapse
Affiliation(s)
- Leandro Val Sayson
- Department of Pharmacy, Uimyung Research Institute for Neuroscience, Sahmyook University, Seoul, Republic of Korea
| | - Darlene Mae Ortiz
- Department of Pharmacy, Uimyung Research Institute for Neuroscience, Sahmyook University, Seoul, Republic of Korea
| | - Hyun Jun Lee
- Department of Pharmacy, Uimyung Research Institute for Neuroscience, Sahmyook University, Seoul, Republic of Korea
| | - Mikyung Kim
- Department of Chemistry and Life Science, Sahmyook University, Seoul, Republic of Korea
| | - Raly James Perez Custodio
- Department of Ergonomics, Leibniz Research Centre for Working Environment and Human Factors—IfADo, Dortmund, Germany
| | - Jaesuk Yun
- College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Chungcheongbuk-do, Republic of Korea
| | - Chae Hyeon Lee
- Medicinal Chemistry Laboratory, Department of Fundamental Pharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Yong Sup Lee
- Medicinal Chemistry Laboratory, Department of Fundamental Pharmaceutical Sciences, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Hye Jin Cha
- College of Veterinary Medicine, Gyeongsang National University, Jinju, Gyeongsangnam–do, Republic of Korea
| | - Jae Hoon Cheong
- Institute for New Drug Development, School of Pharmacy, Jeonbuk National University, Jeonju, Jeollabuk-do, Republic of Korea
- *Correspondence: Jae Hoon Cheong, ; Hee Jin Kim,
| | - Hee Jin Kim
- Department of Pharmacy, Uimyung Research Institute for Neuroscience, Sahmyook University, Seoul, Republic of Korea
- *Correspondence: Jae Hoon Cheong, ; Hee Jin Kim,
| |
Collapse
|
7
|
Ramos A, Granzotto N, Kremer R, Boeder AM, de Araújo JFP, Pereira AG, Izídio GS. Hunting for Genes Underlying Emotionality in the Laboratory Rat: Maps, Tools and Traps. Curr Neuropharmacol 2023; 21:1840-1863. [PMID: 36056863 PMCID: PMC10514530 DOI: 10.2174/1570159x20666220901154034] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/13/2022] [Accepted: 07/28/2022] [Indexed: 11/22/2022] Open
Abstract
Scientists have systematically investigated the hereditary bases of behaviors since the 19th century, moved by either evolutionary questions or clinically-motivated purposes. The pioneer studies on the genetic selection of laboratory animals had already indicated, one hundred years ago, the immense complexity of analyzing behaviors that were influenced by a large number of small-effect genes and an incalculable amount of environmental factors. Merging Mendelian, quantitative and molecular approaches in the 1990s made it possible to map specific rodent behaviors to known chromosome regions. From that point on, Quantitative Trait Locus (QTL) analyses coupled with behavioral and molecular techniques, which involved in vivo isolation of relevant blocks of genes, opened new avenues for gene mapping and characterization. This review examines the QTL strategy applied to the behavioral study of emotionality, with a focus on the laboratory rat. We discuss the challenges, advances and limitations of the search for Quantitative Trait Genes (QTG) playing a role in regulating emotionality. For the past 25 years, we have marched the long journey from emotionality-related behaviors to genes. In this context, our experiences are used to illustrate why and how one should move forward in the molecular understanding of complex psychiatric illnesses. The promise of exploring genetic links between immunological and emotional responses are also discussed. New strategies based on humans, rodents and other animals (such as zebrafish) are also acknowledged, as they are likely to allow substantial progress to be made in the near future.
Collapse
Affiliation(s)
- André Ramos
- Behavior Genetics Laboratory, Department of Cell Biology, Embryology and Genetics, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Natalli Granzotto
- Behavior Genetics Laboratory, Department of Cell Biology, Embryology and Genetics, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
- Graduate Program of Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Rafael Kremer
- Behavior Genetics Laboratory, Department of Cell Biology, Embryology and Genetics, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
- Graduate Program of Developmental and Cellular Biology, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Ariela Maína Boeder
- Behavior Genetics Laboratory, Department of Cell Biology, Embryology and Genetics, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
- Graduate Program of Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Julia Fernandez Puñal de Araújo
- Behavior Genetics Laboratory, Department of Cell Biology, Embryology and Genetics, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
- Graduate Program of Developmental and Cellular Biology, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Aline Guimarães Pereira
- Behavior Genetics Laboratory, Department of Cell Biology, Embryology and Genetics, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
- Graduate Program of Developmental and Cellular Biology, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Geison Souza Izídio
- Behavior Genetics Laboratory, Department of Cell Biology, Embryology and Genetics, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
- Graduate Program of Pharmacology, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
- Graduate Program of Developmental and Cellular Biology, Center of Biological Sciences, Federal University of Santa Catarina, Florianopolis, Brazil
| |
Collapse
|
8
|
Vo T, Brownmiller T, Hall K, Jones TL, Choudhari S, Grammatikakis I, Ludwig K, Caplen N. HNRNPH1 destabilizes the G-quadruplex structures formed by G-rich RNA sequences that regulate the alternative splicing of an oncogenic fusion transcript. Nucleic Acids Res 2022; 50:6474-6496. [PMID: 35639772 PMCID: PMC9226515 DOI: 10.1093/nar/gkac409] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 04/07/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
In the presence of physiological monovalent cations, thousands of RNA G-rich sequences can form parallel G-quadruplexes (G4s) unless RNA-binding proteins inhibit, destabilize, or resolve the formation of such secondary RNA structures. Here, we have used a disease-relevant model system to investigate the biophysical properties of the RNA-binding protein HNRNPH1's interaction with G-rich sequences. We demonstrate the importance of two EWSR1-exon 8 G-rich regions in mediating the exclusion of this exon from the oncogenic EWS-FLI1 transcripts expressed in a subset of Ewing sarcomas, using complementary analysis of tumor data, long-read sequencing, and minigene studies. We determined that HNRNPH1 binds the EWSR1-exon 8 G-rich sequences with low nM affinities irrespective of whether in a non-G4 or G4 state but exhibits different kinetics depending on RNA structure. Specifically, HNRNPH1 associates and dissociates from G4-folded RNA faster than the identical sequences in a non-G4 state. Importantly, we demonstrate using gel shift and spectroscopic assays that HNRNPH1, particularly the qRRM1-qRRM2 domains, destabilizes the G4s formed by the EWSR1-exon 8 G-rich sequences in a non-catalytic fashion. Our results indicate that HNRNPH1's binding of G-rich sequences favors the accumulation of RNA in a non-G4 state and that this contributes to its regulation of RNA processing.
Collapse
Affiliation(s)
- Tam Vo
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tayvia Brownmiller
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Katherine Hall
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tamara L Jones
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sulbha Choudhari
- CCR-SF Bioinformatics Group, Biomedical Informatics and Data Science Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Ioannis Grammatikakis
- Regulatory RNAs and Cancer Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Katelyn R Ludwig
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Natasha J Caplen
- Functional Genetics Section, Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
9
|
Parker CC, Philip VM, Gatti DM, Kasparek S, Kreuzman AM, Kuffler L, Mansky B, Masneuf S, Sharif K, Sluys E, Taterra D, Taylor WM, Thomas M, Polesskaya O, Palmer AA, Holmes A, Chesler EJ. Genome-wide association mapping of ethanol sensitivity in the Diversity Outbred mouse population. Alcohol Clin Exp Res 2022; 46:941-960. [PMID: 35383961 DOI: 10.1111/acer.14825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 03/04/2022] [Accepted: 03/30/2022] [Indexed: 12/01/2022]
Abstract
BACKGROUND A strong predictor for the development of alcohol use disorder (AUD) is altered sensitivity to the intoxicating effects of alcohol. Individual differences in the initial sensitivity to alcohol are controlled in part by genetic factors. Mice offer a powerful tool to elucidate the genetic basis of behavioral and physiological traits relevant to AUD, but conventional experimental crosses have only been able to identify large chromosomal regions rather than specific genes. Genetically diverse, highly recombinant mouse populations make it possible to observe a wider range of phenotypic variation, offer greater mapping precision, and thus increase the potential for efficient gene identification. METHODS We have taken advantage of the Diversity Outbred (DO) mouse population to identify and precisely map quantitative trait loci (QTL) associated with ethanol sensitivity. We phenotyped 798 male J:DO mice for three measures of ethanol sensitivity: ataxia, hypothermia, and loss of the righting response. We used high-density MegaMUGA and GigaMUGA to obtain genotypes ranging from 77,808 to 143,259 SNPs. We also performed RNA sequencing in striatum to map expression QTLs and identify gene expression-trait correlations. We then applied a systems genetic strategy to identify narrow QTLs and construct the network of correlations that exists between DNA sequence, gene expression values, and ethanol-related phenotypes to prioritize our list of positional candidate genes. RESULTS We observed large amounts of phenotypic variation with the DO population and identified suggestive and significant QTLs associated with ethanol sensitivity on chromosomes 1, 2, and 16. The implicated regions were narrow (4.5-6.9 Mb in size) and each QTL explained ~4-5% of the variance. CONCLUSIONS Our results can be used to identify alleles that contribute to AUD in humans, elucidate causative biological mechanisms, or assist in the development of novel therapeutic interventions.
Collapse
Affiliation(s)
- Clarissa C Parker
- Department of Psychology and Program in Neuroscience, Middlebury College, Middlebury, Vermont, USA
| | - Vivek M Philip
- Center for Computational Sciences, The Jackson Laboratory, Bar Harbor, Maine, USA
| | - Daniel M Gatti
- Center for Computational Sciences, The Jackson Laboratory, Bar Harbor, Maine, USA
| | - Steven Kasparek
- Department of Psychology and Program in Neuroscience, Middlebury College, Middlebury, Vermont, USA
| | - Andrew M Kreuzman
- Department of Psychology and Program in Neuroscience, Middlebury College, Middlebury, Vermont, USA
| | - Lauren Kuffler
- Center for Mammalian Genetics, The Jackson Laboratory, Bar Harbor, Maine, USA
| | - Benjamin Mansky
- Department of Psychology and Program in Neuroscience, Middlebury College, Middlebury, Vermont, USA
| | - Sophie Masneuf
- Laboratory of Behavioral and Genomic Neuroscience, NIAAA, NIH, Rockville, MD, USA
| | - Kayvon Sharif
- Department of Psychology and Program in Neuroscience, Middlebury College, Middlebury, Vermont, USA
| | - Erica Sluys
- Laboratory of Behavioral and Genomic Neuroscience, NIAAA, NIH, Rockville, MD, USA
| | - Dominik Taterra
- Department of Psychology and Program in Neuroscience, Middlebury College, Middlebury, Vermont, USA
| | - Walter M Taylor
- Department of Psychology and Program in Neuroscience, Middlebury College, Middlebury, Vermont, USA
| | - Mary Thomas
- Department of Psychology and Program in Neuroscience, Middlebury College, Middlebury, Vermont, USA
| | - Oksana Polesskaya
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA.,Institute for Genomic Medicine, University of California San Diego, La Jolla, California, USA
| | - Abraham A Palmer
- Department of Psychiatry, University of California San Diego, La Jolla, California, USA.,Institute for Genomic Medicine, University of California San Diego, La Jolla, California, USA
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, NIAAA, NIH, Rockville, MD, USA
| | - Elissa J Chesler
- Center for Mammalian Genetics, The Jackson Laboratory, Bar Harbor, Maine, USA
| |
Collapse
|
10
|
Gaines CH, Schoenrock SA, Farrington J, Lee DF, Aponte-Collazo LJ, Shaw GD, Miller DR, Ferris MT, Pardo-Manuel de Villena F, Tarantino LM. Cocaine-Induced Locomotor Activation Differs Across Inbred Mouse Substrains. Front Psychiatry 2022; 13:800245. [PMID: 35599758 PMCID: PMC9120424 DOI: 10.3389/fpsyt.2022.800245] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
Cocaine use disorders (CUD) are devastating for affected individuals and impose a significant societal burden, but there are currently no FDA-approved therapies. The development of novel and effective treatments has been hindered by substantial gaps in our knowledge about the etiology of these disorders. The risk for developing a CUD is influenced by genetics, the environment and complex interactions between the two. Identifying specific genes and environmental risk factors that increase CUD risk would provide an avenue for the development of novel treatments. Rodent models of addiction-relevant behaviors have been a valuable tool for studying the genetics of behavioral responses to drugs of abuse. Traditional genetic mapping using genetically and phenotypically divergent inbred mice has been successful in identifying numerous chromosomal regions that influence addiction-relevant behaviors, but these strategies rarely result in identification of the causal gene or genetic variant. To overcome this challenge, reduced complexity crosses (RCC) between closely related inbred mouse strains have been proposed as a method for rapidly identifying and validating functional variants. The RCC approach is dependent on identifying phenotypic differences between substrains. To date, however, the study of addiction-relevant behaviors has been limited to very few sets of substrains, mostly comprising the C57BL/6 lineage. The present study expands upon the current literature to assess cocaine-induced locomotor activation in 20 inbred mouse substrains representing six inbred strain lineages (A/J, BALB/c, FVB/N, C3H/He, DBA/2 and NOD) that were either bred in-house or supplied directly by a commercial vendor. To our knowledge, we are the first to identify significant differences in cocaine-induced locomotor response in several of these inbred substrains. The identification of substrain differences allows for the initiation of RCC populations to more rapidly identify specific genetic variants associated with acute cocaine response. The observation of behavioral profiles that differ between mice generated in-house and those that are vendor-supplied also presents an opportunity to investigate the influence of environmental factors on cocaine-induced locomotor activity.
Collapse
Affiliation(s)
- Christiann H. Gaines
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Neuroscience Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Sarah A. Schoenrock
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Joseph Farrington
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - David F. Lee
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Pharmacology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Lucas J. Aponte-Collazo
- Pharmacology Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Ginger D. Shaw
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Darla R. Miller
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Martin T. Ferris
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Fernando Pardo-Manuel de Villena
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Lisa M. Tarantino
- Department of Genetics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
11
|
Sayson LV, Kim M, Jeon SJ, Custodio RJP, Lee HJ, Ortiz DM, Cheong JH, Kim HJ. Differentially Expressed Genes in Period 2-Overexpressing Mice Striatum May Underlie Their Lower Sensitivity to Methamphetamine Addiction-Like Behavior. Biomol Ther (Seoul) 2022; 30:238-245. [PMID: 35477688 PMCID: PMC9047490 DOI: 10.4062/biomolther.2021.184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/18/2022] [Accepted: 01/26/2022] [Indexed: 11/25/2022] Open
Abstract
Previous reports have demonstrated that genetic mechanisms greatly mediate responses to drugs of abuse, including methamphetamine (METH). The circadian gene Period 2 (Per2) has been previously associated with differential responses towards METH in mice. While the behavioral consequences of eliminating Per2 have been illustrated previously, Per2 overexpression has not yet been comprehensively described; although, Per2-overexpressing (Per2 OE) mice previously showed reduced sensitivity towards METH-induced addiction-like behaviors. To further elucidate this distinct behavior of Per2 OE mice to METH, we identified possible candidate biomarkers by determining striatal differentially expressed genes (DEGs) in both drug-naïve and METH-treated Per2 OE mice relative to wild-type (WT), through RNA sequencing. Of the several DEGs in drug naïve Per2 OE mice, we identified six genes that were altered after repeated METH treatment in WT mice, but not in Per2 OE mice. These results, validated by quantitative real-time polymerase chain reaction, could suggest that the identified DEGs might underlie the previously reported weaker METH-induced responses of Per2 OE mice compared to WT. Gene network analysis also revealed that Asic3, Hba-a1, and Rnf17 are possibly associated with Per2 through physical interactions and predicted correlations, and might potentially participate in addiction. Inhibiting the functional protein of Asic3 prior to METH administration resulted in the partial reduction of METH-induced conditioned place preference in WT mice, supporting a possible involvement of Asic3 in METH-induced reward. Although encouraging further investigations, our findings suggest that these DEGs, including Asic3, may play significant roles in the lower sensitivity of Per2 OE mice to METH.
Collapse
Affiliation(s)
- Leandro Val Sayson
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, Seoul 01795, Republic of Korea
| | - Mikyung Kim
- Department of Chemistry & Life Science, Sahmyook University, Seoul 01795, Republic of Korea
| | - Se Jin Jeon
- School of Medicine and Center for Neuroscience Research, Konkuk University, Seoul 05029, Republic of Korea
| | | | - Hyun Jun Lee
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, Seoul 01795, Republic of Korea
| | - Darlene Mae Ortiz
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, Seoul 01795, Republic of Korea
| | - Jae Hoon Cheong
- School of Pharmacy, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Hee Jin Kim
- Uimyung Research Institute for Neuroscience, Department of Pharmacy, Sahmyook University, Seoul 01795, Republic of Korea
| |
Collapse
|
12
|
Li F, Wang M, Li X, Long Y, Chen K, Wang X, Zhong M, Cheng W, Tian X, Wang P, Ji M, Ma X. Inflammatory-miR-301a circuitry drives mTOR and Stat3-dependent PSC activation in chronic pancreatitis and PanIN. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 27:970-982. [PMID: 35211358 PMCID: PMC8829454 DOI: 10.1016/j.omtn.2022.01.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 01/17/2022] [Indexed: 02/09/2023]
Abstract
Activated pancreatic stellate cells (PSCs) are the main cells involved in chronic pancreatitis and pancreatic intraepithelial neoplasia lesion (PanIN). Fine-tuning the precise molecular targets in PSC activation might help the development of PSC-specific therapeutic strategies to tackle progression of pancreatic cancer-related fibrosis. miR-301a is a pro-inflammatory microRNA known to be activated by multiple inflammatory factors in the tumor stroma. Here, we show that miR-301a is highly expressed in activated PSCs in mice, sustained tissue fibrosis in caerulein-induced chronic pancreatitis, and accelerated PanIN formation. Genetic ablation of miR-301a reduced pancreatic fibrosis in mouse models with chronic pancreatitis and PanIN. Cell proliferation and activation of PSCs was inhibited by downregulation of miR-301a via two of its targets, Tsc1 and Gadd45g. Moreover, aberrant PSC expression of miR-301a and Gadd45g restricted the interplay between PSCs and pancreatic cancer cells in tumorigenesis. Our findings suggest that miR-301a activates two major cell proliferation pathways, Tsc1/mTOR and Gadd45g/Stat3, in vivo, to facilitate development of inflammatory-induced PanIN and maintenance of PSC activation and desmoplasia in pancreatic cancer.
Collapse
Affiliation(s)
- Fugui Li
- Cancer Research Institute of Zhongshan City, Zhongshan City People's Hospital, 528403 Zhongshan, China
| | - Miaomiao Wang
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, Institute for Brain Research and Rehabilitation, South China Normal University, 510631 Guangzhou, China
| | - Xun Li
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, Institute for Brain Research and Rehabilitation, South China Normal University, 510631 Guangzhou, China
| | - Yihao Long
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, Institute for Brain Research and Rehabilitation, South China Normal University, 510631 Guangzhou, China
| | - Kaizhao Chen
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, Institute for Brain Research and Rehabilitation, South China Normal University, 510631 Guangzhou, China
| | - Xinjie Wang
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, Institute for Brain Research and Rehabilitation, South China Normal University, 510631 Guangzhou, China
| | - Mingtian Zhong
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, Institute for Brain Research and Rehabilitation, South China Normal University, 510631 Guangzhou, China
| | - Weimin Cheng
- Cancer Research Institute of Zhongshan City, Zhongshan City People's Hospital, 528403 Zhongshan, China
| | - Xuemei Tian
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, Institute for Brain Research and Rehabilitation, South China Normal University, 510631 Guangzhou, China
| | - Ping Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120 Guangdong Province, China
| | - Mingfang Ji
- Cancer Research Institute of Zhongshan City, Zhongshan City People's Hospital, 528403 Zhongshan, China
| | - Xiaodong Ma
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, Institute for Brain Research and Rehabilitation, South China Normal University, 510631 Guangzhou, China
| |
Collapse
|
13
|
Beierle JA, Yao EJ, Goldstein SI, Scotellaro JL, Sena KD, Linnertz CA, Willits AB, Kader L, Young EE, Peltz G, Emili A, Ferris MT, Bryant CD. Genetic basis of thermal nociceptive sensitivity and brain weight in a BALB/c reduced complexity cross. Mol Pain 2022; 18:17448069221079540. [PMID: 35088629 PMCID: PMC8891926 DOI: 10.1177/17448069221079540] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 01/20/2022] [Indexed: 11/30/2022] Open
Abstract
Thermal nociception involves the transmission of temperature-related noxious information from the periphery to the CNS and is a heritable trait that could predict transition to persistent pain. Rodent forward genetics complement human studies by controlling genetic complexity and environmental factors, analysis of end point tissue, and validation of variants on appropriate genetic backgrounds. Reduced complexity crosses between nearly identical inbred substrains with robust trait differences can greatly facilitate unbiased discovery of novel genes and variants. We found BALB/cByJ mice showed enhanced sensitivity on the 53.5°C hot plate and mechanical stimulation in the von Frey test compared to BALB/cJ mice and replicated decreased gross brain weight in BALB/cByJ versus BALB/cJ. We then identified a quantitative trait locus (QTL) on chromosome 13 for hot plate sensitivity (LOD = 10.7; p < 0.001; peak = 56 Mb) and a QTL for brain weight on chromosome 5 (LOD = 8.7; p < 0.001). Expression QTL mapping of brain tissues identified H2afy (56.07 Mb) as the top transcript with the strongest association at the hot plate locus (FDR = 0.0002) and spliceome analysis identified differential exon usage within H2afy associated with the same locus. Whole brain proteomics further supported decreased H2AFY expression could underlie enhanced hot plate sensitivity, and identified ACADS as a candidate for reduced brain weight. To summarize, a BALB/c reduced complexity cross combined with multiple-omics approaches facilitated identification of candidate genes underlying thermal nociception and brain weight. These substrains provide a powerful, reciprocal platform for future validation of candidate variants.
Collapse
Affiliation(s)
- Jacob A Beierle
- Program in Biomolecular Pharmacology, Boston University School of Medicine, Boston, MA, USA
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Emily J Yao
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Stanley I Goldstein
- Program in Biomolecular Pharmacology, Boston University School of Medicine, Boston, MA, USA
- Department of Biology and Biochemistry, Center for Network Systems Biology, Boston University School of Medicine, Boston, MA, USA
| | - Julia L Scotellaro
- Department of Biology and Biochemistry, Center for Network Systems Biology, Boston University School of Medicine, Boston, MA, USA
- Undergraduate Research Opportunity Program, Boston University, Boston, MA, USA
| | - Katherine D Sena
- Department of Biology and Biochemistry, Center for Network Systems Biology, Boston University School of Medicine, Boston, MA, USA
- Undergraduate Research Opportunity Program, Boston University, Boston, MA, USA
| | - Colton A Linnertz
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Adam B Willits
- Neuroscience Program, University of Kansas Medical Center, Kansas City, KS, USA
| | - Leena Kader
- Neuroscience Program, University of Kansas Medical Center, Kansas City, KS, USA
| | - Erin E Young
- Department of Anesthesiology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Gary Peltz
- Department of Anesthesiology, Pain, and Preoperative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Andrew Emili
- Department of Biology and Biochemistry, Center for Network Systems Biology, Boston University School of Medicine, Boston, MA, USA
| | - Martin T Ferris
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Camron D Bryant
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
14
|
Goldberg LR, Yao EJ, Kelliher JC, Reed ER, Cox JW, Parks C, Kirkpatrick SL, Beierle JA, Chen MM, Johnson WE, Homanics GE, Williams RW, Bryant CD, Mulligan MK. A quantitative trait variant in Gabra2 underlies increased methamphetamine stimulant sensitivity. GENES, BRAIN, AND BEHAVIOR 2021; 20:e12774. [PMID: 34677900 PMCID: PMC9083095 DOI: 10.1111/gbb.12774] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/19/2021] [Accepted: 09/15/2021] [Indexed: 12/24/2022]
Abstract
Psychostimulant (methamphetamine, cocaine) use disorders have a genetic component that remains mostly unknown. We conducted genome-wide quantitative trait locus (QTL) analysis of methamphetamine stimulant sensitivity. To facilitate gene identification, we employed a Reduced Complexity Cross between closely related C57BL/6 mouse substrains and examined maximum speed and distance traveled over 30 min following methamphetamine (2 mg/kg, i.p.). For maximum methamphetamine-induced speed following the second and third administration, we identified a single genome-wide significant QTL on chromosome 11 that peaked near the Cyfip2 locus (LOD = 3.5, 4.2; peak = 21 cM [36 Mb]). For methamphetamine-induced distance traveled following the first and second administration, we identified a genome-wide significant QTL on chromosome 5 that peaked near a functional intronic indel in Gabra2 coding for the alpha-2 subunit of the GABA-A receptor (LOD = 3.6-5.2; peak = 34-35 cM [66-67 Mb]). Striatal cis-expression QTL mapping corroborated Gabra2 as a functional candidate gene underlying methamphetamine-induced distance traveled. CRISPR/Cas9-mediated correction of the mutant intronic deletion on the C57BL/6J background to the wild-type C57BL/6NJ allele was sufficient to reduce methamphetamine-induced locomotor activity toward the wild-type C57BL/6NJ-like level, thus validating the quantitative trait variant (QTV). These studies show the power and efficiency of Reduced Complexity Crosses in identifying causal variants underlying complex traits. Functionally restoring Gabra2 expression decreased methamphetamine stimulant sensitivity and supports preclinical and human genetic studies implicating the GABA-A receptor in psychostimulant addiction-relevant traits. Importantly, our findings have major implications for studying psychostimulants in the C57BL/6J strain-the gold standard strain in biomedical research.
Collapse
Affiliation(s)
- Lisa R. Goldberg
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry, Boston, Massachusetts, USA
- NIGMS T32 Ph.D. Training Program in Biomolecular Pharmacology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Emily J. Yao
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry, Boston, Massachusetts, USA
| | - Julia C. Kelliher
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry, Boston, Massachusetts, USA
| | - Eric R. Reed
- Ph.D. Program in Bioinformatics, Boston University, Boston, Massachusetts, USA
| | - Jiayi Wu Cox
- Program in Biomedical Sciences, Graduate Program in Genetics and Genomics, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Cory Parks
- Department of Agricultural, Biology, and Health Sciences, Cameron University, Lawton, Oklahoma, USA
| | - Stacey L. Kirkpatrick
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry, Boston, Massachusetts, USA
| | - Jacob A. Beierle
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry, Boston, Massachusetts, USA
- NIGMS T32 Ph.D. Training Program in Biomolecular Pharmacology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Melanie M. Chen
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry, Boston, Massachusetts, USA
| | - William E. Johnson
- Department of Medicine, Computational Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Gregg E. Homanics
- Departments of Anesthesiology, Neurobiology, and Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Robert W. Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| | - Camron D. Bryant
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry, Boston, Massachusetts, USA
| | - Megan K. Mulligan
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, Tennessee, USA
| |
Collapse
|
15
|
Borrelli KN, Yao EJ, Yen WW, Phadke RA, Ruan QT, Chen MM, Kelliher JC, Langan CR, Scotellaro JL, Babbs RK, Beierle JC, Logan RW, Johnson WE, Wachman EM, Cruz-Martín A, Bryant CD. Sex Differences in Behavioral and Brainstem Transcriptomic Neuroadaptations following Neonatal Opioid Exposure in Outbred Mice. eNeuro 2021; 8:ENEURO.0143-21.2021. [PMID: 34479978 PMCID: PMC8454922 DOI: 10.1523/eneuro.0143-21.2021] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/02/2021] [Accepted: 08/25/2021] [Indexed: 12/13/2022] Open
Abstract
The opioid epidemic led to an increase in the number of neonatal opioid withdrawal syndrome (NOWS) cases in infants born to opioid-dependent mothers. Hallmark features of NOWS include weight loss, severe irritability, respiratory problems, and sleep fragmentation. Mouse models provide an opportunity to identify brain mechanisms that contribute to NOWS. Neonatal outbred Swiss Webster Cartworth Farms White (CFW) mice were administered morphine (15 mg/kg, s.c.) twice daily from postnatal day 1 (P1) to P14, an approximation of the third trimester of human gestation. Female and male mice underwent behavioral testing on P7 and P14 to determine the impact of opioid exposure on anxiety and pain sensitivity. Ultrasonic vocalizations (USVs) and daily body weights were also recorded. Brainstems containing pons and medulla were collected during morphine withdrawal on P14 for RNA sequencing. Morphine induced weight loss from P2 to P14, which persisted during adolescence (P21) and adulthood (P50). USVs markedly increased at P7 in females, emerging earlier than males. On P7 and P14, both morphine-exposed female and male mice displayed hyperalgesia on the hot plate and tail-flick assays, with females showing greater hyperalgesia than males. Morphine-exposed mice exhibited increased anxiety-like behavior in the open-field arena on P21. Transcriptome analysis of the brainstem, an area implicated in opioid withdrawal and NOWS, identified pathways enriched for noradrenergic signaling in females and males. We also found sex-specific pathways related to mitochondrial function and neurodevelopment in females and circadian entrainment in males. Sex-specific transcriptomic neuroadaptations implicate unique neurobiological mechanisms underlying NOWS-like behaviors.
Collapse
Affiliation(s)
- Kristyn N Borrelli
- Laboratory of Addiction Genetics, Departments of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, Boston, Massachusetts 02118
- Graduate Program for Neuroscience, Boston University, Boston, Massachusetts 02118
- Transformative Training Program in Addiction Science, Boston University, Boston, Massachusetts 02118
- NIGMS Training Program in Biomolecular Pharmacology, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Emily J Yao
- Laboratory of Addiction Genetics, Departments of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - William W Yen
- Neurobiology Section, Department of Biology, Boston University, Boston, Massachusetts 02215
| | - Rhushikesh A Phadke
- Neurobiology Section, Department of Biology, Boston University, Boston, Massachusetts 02215
- Molecular Biology, Cell Biology, and Biochemistry (MCBB), Boston University, Boston, Massachusetts 02215
| | - Qiu T Ruan
- Laboratory of Addiction Genetics, Departments of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, Boston, Massachusetts 02118
- Transformative Training Program in Addiction Science, Boston University, Boston, Massachusetts 02118
- NIGMS Training Program in Biomolecular Pharmacology, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Melanie M Chen
- Laboratory of Addiction Genetics, Departments of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Julia C Kelliher
- Laboratory of Addiction Genetics, Departments of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Carly R Langan
- Laboratory of Addiction Genetics, Departments of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Julia L Scotellaro
- Laboratory of Addiction Genetics, Departments of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, Boston, Massachusetts 02118
- Undergraduate Research Opportunity Program, Boston University, Boston, Massachusetts 02118
| | - Richard K Babbs
- Laboratory of Addiction Genetics, Departments of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Jacob C Beierle
- Laboratory of Addiction Genetics, Departments of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, Boston, Massachusetts 02118
- Transformative Training Program in Addiction Science, Boston University, Boston, Massachusetts 02118
- NIGMS Training Program in Biomolecular Pharmacology, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Ryan W Logan
- Laboratory of Sleep, Rhythms, and Addiction, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts 02118
- Center for Systems Neurogenetics of Addiction, The Jackson Laboratory, Bar Harbor, Maine 04609
| | - William Evan Johnson
- Department of Medicine, Computational Biomedicine, Boston University School of Medicine, Boston, Massachusetts 02118
| | - Elisha M Wachman
- Department of Pediatrics, Boston University School of Medicine, Boston Medical Center, Boston, Massachusetts 02118
| | - Alberto Cruz-Martín
- Neurobiology Section, Department of Biology, Boston University, Boston, Massachusetts 02215
| | - Camron D Bryant
- Laboratory of Addiction Genetics, Departments of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, Boston, Massachusetts 02118
| |
Collapse
|
16
|
Kantak KM, Stots C, Mathieson E, Bryant CD. Spontaneously Hypertensive Rat substrains show differences in model traits for addiction risk and cocaine self-administration: Implications for a novel rat reduced complexity cross. Behav Brain Res 2021; 411:113406. [PMID: 34097899 PMCID: PMC8265396 DOI: 10.1016/j.bbr.2021.113406] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/28/2021] [Accepted: 06/03/2021] [Indexed: 12/17/2022]
Abstract
Forward genetic mapping of F2 crosses between closely related substrains of inbred rodents - referred to as a reduced complexity cross (RCC) - is a relatively new strategy for accelerating the pace of gene discovery for complex traits, such as drug addiction. RCCs to date were generated in mice, but rats are thought to be optimal for addiction genetic studies. Based on past literature, one inbred Spontaneously Hypertensive Rat substrain, SHR/NCrl, is predicted to exhibit a distinct behavioral profile as it relates to cocaine self-administration traits relative to another substrain, SHR/NHsd. Direct substrain comparisons are a necessary first step before implementing an RCC. We evaluated model traits for cocaine addiction risk and cocaine self-administration behaviors using a longitudinal within-subjects design. Impulsive-like and compulsive-like traits were greater in SHR/NCrl than SHR/NHsd, as were reactivity to sucrose reward, sensitivity to acute psychostimulant effects of cocaine, and cocaine use studied under fixed-ratio and tandem schedules of cocaine self-administration. Compulsive-like behavior correlated with the acute psychostimulant effects of cocaine, which in turn correlated with cocaine taking under the tandem schedule. Compulsive-like behavior also was the best predictor of cocaine seeking responses. Heritability estimates indicated that 22 %-40 % of the variances for the above phenotypes can be explained by additive genetic factors, providing sufficient genetic variance to conduct genetic mapping in F2 crosses of SHR/NCrl and SHR/NHsd. These results provide compelling support for using an RCC approach in SHR substrains to uncover candidate genes and variants that are of relevance to cocaine use disorders.
Collapse
Affiliation(s)
- Kathleen M Kantak
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA; Center for Systems Neuroscience, Boston University, Boston, MA, USA.
| | - Carissa Stots
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA
| | - Elon Mathieson
- Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA
| | - Camron D Bryant
- Departments of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, Boston, MA, USA; Center for Systems Neuroscience, Boston University, Boston, MA, USA
| |
Collapse
|
17
|
Borrelli KN, Langan CR, Dubinsky KR, Szumlinski KK, Carlezon WA, Chartoff EH, Bryant CD. Intracranial self-stimulation and concomitant behaviors following systemic methamphetamine administration in Hnrnph1 mutant mice. Psychopharmacology (Berl) 2021; 238:2031-2041. [PMID: 33758972 PMCID: PMC8715365 DOI: 10.1007/s00213-021-05829-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 03/15/2021] [Indexed: 11/30/2022]
Abstract
RATIONALE Methamphetamine (MA) addiction is a major public health issue in the USA, with a poorly understood genetic component. We previously identified heterogeneous nuclear ribonucleoprotein H1 (Hnrnph1; H1) as a quantitative trait gene underlying sensitivity to MA-induced behavioral sensitivity. Mice heterozygous for a frameshift deletion in the first coding exon of H1 (H1+/-) showed reduced MA phenotypes including oral self-administration, locomotor activity, dopamine release, and dose-dependent differences in MA conditioned place preference. However, the effects of H1+/- on innate and MA-modulated reward sensitivity are not known. OBJECTIVES We examined innate reward sensitivity and facilitation by MA in H1+/- mice via intracranial self-stimulation (ICSS). METHODS We used intracranial self-stimulation (ICSS) of the medial forebrain bundle to assess shifts in reward sensitivity following acute, ascending doses of MA (0.5-4.0 mg/kg, i.p.) using a within-subjects design. We also assessed video-recorded behaviors during ICSS testing sessions. RESULTS H1+/- mice displayed reduced normalized maximum response rates in response to MA. H1+/- females had lower normalized M50 values compared to wild-type females, suggesting enhanced reward facilitation by MA. Finally, regardless of genotype, there was a dose-dependent reduction in distance to the response wheel following MA administration, providing an additional measure of MA-induced reward-driven behavior. CONCLUSIONS H1+/- mice displayed a complex ICSS phenotype following MA, displaying indications of both blunted reward magnitude (lower normalized maximum response rates) and enhanced reward sensitivity specific to H1+/- females (lower normalized M50 values).
Collapse
Affiliation(s)
- Kristyn N Borrelli
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, 72 E. Concord St, L-606C, Boston, MA, 02118, USA
- Ph.D. Training Program in Biomolecular Pharmacology, Boston University School of Medicine, Boston, MA, USA
- Graduate Program for Neuroscience, Boston University, Boston, MA, USA
- Transformative Training Program in Addiction Science, Boston University, Boston, MA, USA
| | - Carly R Langan
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, 72 E. Concord St, L-606C, Boston, MA, 02118, USA
| | - Kyra R Dubinsky
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, 72 E. Concord St, L-606C, Boston, MA, 02118, USA
| | - Karen K Szumlinski
- Department of Psychological and Brain Sciences; Department of Molecular, Cellular and Developmental Biology; and the Neuroscience Research Institute, University of California, Santa Barbara, CA, USA
| | - William A Carlezon
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, USA
| | - Elena H Chartoff
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, USA
| | - Camron D Bryant
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, 72 E. Concord St, L-606C, Boston, MA, 02118, USA.
| |
Collapse
|
18
|
Yao EJ, Babbs RK, Kelliher JC, Luttik KP, Borrelli KN, Damaj MI, Mulligan MK, Bryant CD. Systems genetic analysis of binge-like eating in a C57BL/6J x DBA/2J-F2 cross. GENES, BRAIN, AND BEHAVIOR 2021; 20:e12751. [PMID: 33978997 PMCID: PMC9361732 DOI: 10.1111/gbb.12751] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 05/04/2021] [Accepted: 05/11/2021] [Indexed: 12/19/2022]
Abstract
Binge eating is a heritable trait associated with eating disorders and refers to the rapid consumption of a large quantity of energy-dense food that is, associated with loss of control and negative affect. Binge eating disorder is the most common eating disorder in the United States; however, the genetic basis is unknown. We previously identified robust mouse inbred strain differences between C57BL/6J and DBA/2J in binge-like eating of sweetened palatable food in an intermittent access, conditioned place preference paradigm. To map the genetic basis of changes in body weight and binge-like eating (BLE) and to identify candidate genes, we conducted quantitative trait locus (QTL) analysis in 128 C57BL/6J x DBA/2J-F2 mice combined with PheQTL and trait covariance analysis in GeneNetwork2 using legacy BXD-RI trait datasets. We identified a QTL on Chromosome 18 influencing changes in body weight across days in females (log of the odds [LOD] = 6.3; 1.5-LOD: 3-12 cM) that contains the candidate gene Zeb1. We also identified a sex-combined QTL influencing initial palatable food intake on Chromosome 5 (LOD = 5.8; 1.5-LOD: 21-28 cM) that contains the candidate gene Lcorl and a second QTL influencing escalated palatable food intake on Chromosome 6 in males (LOD = 5.4; 1.5-LOD: 50-59 cM) that contains the candidate genes Adipor2 and Plxnd1. Finally, we identified a suggestive QTL in females for slope of BLE on distal Chromosome 18 (LOD = 4.1; p = 0.055; 1.5-LOD: 23-35 cM). Future studies will use BXD-RI strains to fine map loci and support candidate gene nomination for gene editing.
Collapse
Affiliation(s)
- Emily J. Yao
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, Boston, MA 02118 USA
| | - Richard K. Babbs
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, Boston, MA 02118 USA
| | - Julia C. Kelliher
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, Boston, MA 02118 USA
| | - Kimberly P. Luttik
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, Boston, MA 02118 USA
| | - Kristyn N. Borrelli
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, Boston, MA 02118 USA
- Graduate Program for Neuroscience, Boston University, Boston, MA 02215 USA
- Tranformative Training Program in Addiction Science (TTPAS), Boston University, Boston, MA 02118 USA
- Biomolecluar Pharmacology Training Program, Boston University School of Medicine, Boston, MA 02118 USA
| | - M. Imad Damaj
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298 USA
| | - Megan K. Mulligan
- Department of Genetics, Genomics, and Informatics, The University of Tennessee Health Science Center, Memphis, TN 38163 USA
| | - Camron D. Bryant
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, Boston, MA 02118 USA
- Graduate Program for Neuroscience, Boston University, Boston, MA 02215 USA
- Tranformative Training Program in Addiction Science (TTPAS), Boston University, Boston, MA 02118 USA
- Biomolecluar Pharmacology Training Program, Boston University School of Medicine, Boston, MA 02118 USA
| |
Collapse
|
19
|
Fultz EK, Coelho MA, Lieberman D, Jimenez-Chavez CL, Bryant CD, Szumlinski KK. Hnrnph1 is a novel regulator of alcohol reward. Drug Alcohol Depend 2021; 220:108518. [PMID: 33454624 PMCID: PMC7899125 DOI: 10.1016/j.drugalcdep.2021.108518] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/09/2020] [Accepted: 12/22/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Hnrnph1 is a validated quantitative trait gene for methamphetamine behavioral sensitivity that encodes for heterogeneous nuclear ribonucleoprotein H1 (hnRNP H1). This RNA-binding protein is involved in all stages of RNA metabolism that impacts mesocorticolimbic dopamine neurotransmission to influence addiction-related behavior. METHODS We characterized the alcohol behavioral phenotypes of mice heterozygous for a deletion in the first coding exon of Hnrnph1 (Hnrnph1+/-). We examined alcohol intake under both continuous- and limited-access procedures, as well as alcohol-induced place-conditioning. Follow-up studies examined genotypic differences in the psychomotor-activating and sedative-hypnotic effects of acute and repeated alcohol, and a behavioral test battery was employed to determine the effects of Hnrnph1 deletion on the manifestation of negative affect during alcohol withdrawal. RESULTS Relative to wild-type (WT) controls, Hnrnph1+/- males exhibited blunted intake of high alcohol concentrations under both drinking procedures. Hnrnph1 deletion did not impact the conditioned rewarding properties of low-dose alcohol, but reversed the conditioned place-aversion elicited by higher alcohol doses (2 and 4 g/kg), with more robust effects in male versus female mice. No genotypic differences were observed for alcohol-induced locomotor activity. Hnrnph1+/- mice exhibited a modest increase in sensitivity to alcohol's sedative-hypnotic effects, but did not differ from WT mice with regard to tolerance to alcohol's sedative-hypnotic effects or alcohol metabolism, Inconsistent effects of Hnrnph1 deletion were observed in models for withdrawal-induced negative affect. CONCLUSIONS These data identify Hnrnph1 as a novel, male-selective, driver of alcohol consumption and high-dose alcohol aversion that is potentially relevant to the neurobiology of alcohol abuse and alcoholism.
Collapse
Affiliation(s)
- Elissa K Fultz
- Department of Psychological Brain Sciences, University of California, Santa Barbara, United States
| | - Michal A Coelho
- Department of Psychological Brain Sciences, University of California, Santa Barbara, United States
| | - Dylan Lieberman
- Department of Psychological Brain Sciences, University of California, Santa Barbara, United States
| | | | - Camron D Bryant
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, United States
| | - Karen K Szumlinski
- Department of Psychological Brain Sciences, University of California, Santa Barbara, United States; Department of Molecular, Developmental and Cellular Biology and the Neuroscience Research Institute, University of California, Santa Barbara, United States.
| |
Collapse
|
20
|
Phillips TJ, Roy T, Aldrich SJ, Baba H, Erk J, Mootz JRK, Reed C, Chesler EJ. Confirmation of a Causal Taar1 Allelic Variant in Addiction-Relevant Methamphetamine Behaviors. Front Psychiatry 2021; 12:725839. [PMID: 34512422 PMCID: PMC8428522 DOI: 10.3389/fpsyt.2021.725839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/02/2021] [Indexed: 11/13/2022] Open
Abstract
Sensitivity to rewarding and reinforcing drug effects has a critical role in initial use, but the role of initial aversive drug effects has received less attention. Methamphetamine effects on dopamine re-uptake and efflux are associated with its addiction potential. However, methamphetamine also serves as a substrate for the trace amine-associated receptor 1 (TAAR1). Growing evidence in animal models indicates that increasing TAAR1 function reduces drug self-administration and intake. We previously determined that a non-synonymous single nucleotide polymorphism (SNP) in Taar1 predicts a conformational change in the receptor that has functional consequences. A Taar1 m1J mutant allele existing in DBA/2J mice expresses a non-functional receptor. In comparison to mice that possess one or more copies of the reference Taar1 allele (Taar1 +/+ or Taar1 +/m1J ), mice with the Taar1 m1J/m1J genotype readily consume methamphetamine, express low sensitivity to aversive effects of methamphetamine, and lack sensitivity to acute methamphetamine-induced hypothermia. We used three sets of knock-in and control mice in which one Taar1 allele was exchanged with the alternative allele to determine if other methamphetamine-related traits and an opioid trait are impacted by the same Taar1 SNP proven to affect MA consumption and hypothermia. First, we measured sensitivity to conditioned rewarding and aversive effects of methamphetamine to determine if an impact of the Taar1 SNP on these traits could be proven. Next, we used multiple genetic backgrounds to study the consistency of Taar1 allelic effects on methamphetamine intake and hypothermia. Finally, we studied morphine-induced hypothermia to confirm prior data suggesting that a gene in linkage disequilibrium with Taar1, rather than Taar1, accounts for prior observed differences in sensitivity. We found that a single SNP exchange reduced sensitivity to methamphetamine conditioned reward and increased sensitivity to conditioned aversion. Profound differences in methamphetamine intake and hypothermia consistently corresponded with genotype at the SNP location, with only slight variation in magnitude across genetic backgrounds. Morphine-induced hypothermia was not dependent on Taar1 genotype. Thus, Taar1 genotype and TAAR1 function impact multiple methamphetamine-related effects that likely predict the potential for methamphetamine use. These data support further investigation of their potential roles in risk for methamphetamine addiction and therapeutic development.
Collapse
Affiliation(s)
- Tamara J Phillips
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, United States.,Veterans Affairs Portland Health Care System, Portland, OR, United States
| | - Tyler Roy
- The Jackson Laboratory and Center for Systems Neurogenetics of Addiction, Bar Harbor, ME, United States
| | - Sara J Aldrich
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, United States
| | - Harue Baba
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, United States
| | - Jason Erk
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, United States
| | - John R K Mootz
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, United States
| | - Cheryl Reed
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, United States
| | - Elissa J Chesler
- The Jackson Laboratory and Center for Systems Neurogenetics of Addiction, Bar Harbor, ME, United States
| |
Collapse
|
21
|
Bryant CD, Healy AF, Ruan QT, Coehlo MA, Lustig E, Yazdani N, Luttik KP, Tran T, Swancy I, Brewin LW, Chen MM, Szumlinski KK. Sex‐dependent effects of an
Hnrnph1
mutation on fentanyl addiction‐relevant behaviors but not antinociception in mice. GENES BRAIN AND BEHAVIOR 2020; 20:e12711. [DOI: 10.1111/gbb.12711] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 11/01/2020] [Accepted: 11/02/2020] [Indexed: 01/01/2023]
Affiliation(s)
- Camron D. Bryant
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry Boston University School of Medicine Boston Massachusetts USA
| | - Aidan F. Healy
- Department of Psychological and Brain Sciences University of California Santa Barbara California USA
| | - Qiu T. Ruan
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry Boston University School of Medicine Boston Massachusetts USA
- T32 Biomolecular Pharmacology Ph.D. Program Boston University School of Medicine Boston Massachusetts USA
- Transformative Training Program in Addiction Science Boston University Boston Massachusetts USA
| | - Michal A. Coehlo
- Department of Psychological and Brain Sciences University of California Santa Barbara California USA
| | - Elijah Lustig
- Department of Psychological and Brain Sciences University of California Santa Barbara California USA
| | - Neema Yazdani
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry Boston University School of Medicine Boston Massachusetts USA
- T32 Biomolecular Pharmacology Ph.D. Program Boston University School of Medicine Boston Massachusetts USA
- Transformative Training Program in Addiction Science Boston University Boston Massachusetts USA
| | - Kimberly P. Luttik
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry Boston University School of Medicine Boston Massachusetts USA
- Undergraduate Research Opportunity Program (UROP) Boston University Boston Massachusetts USA
| | - Tori Tran
- Department of Psychological and Brain Sciences University of California Santa Barbara California USA
| | - Isaiah Swancy
- Department of Psychological and Brain Sciences University of California Santa Barbara California USA
| | - Lindsey W. Brewin
- Department of Psychological and Brain Sciences University of California Santa Barbara California USA
| | - Melanie M. Chen
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry Boston University School of Medicine Boston Massachusetts USA
| | - Karen K. Szumlinski
- Department of Psychological and Brain Sciences University of California Santa Barbara California USA
- Department of Molecular, Developmental and Cellular Biology and the Neuroscience Research Institute University of California Santa Barbara California USA
| |
Collapse
|
22
|
Bubier JA, Philip VM, Dickson PE, Mittleman G, Chesler EJ. Discovery of a Role for Rab3b in Habituation and Cocaine Induced Locomotor Activation in Mice Using Heterogeneous Functional Genomic Analysis. Front Neurosci 2020; 14:721. [PMID: 32742255 PMCID: PMC7364128 DOI: 10.3389/fnins.2020.00721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/16/2020] [Indexed: 12/21/2022] Open
Abstract
Substance use disorders are prevalent and present a tremendous societal cost but the mechanisms underlying addiction behavior are poorly understood and few biological treatments exist. One strategy to identify novel molecular mechanisms of addiction is through functional genomic experimentation. However, results from individual experiments are often noisy. To address this problem, the convergent analysis of multiple genomic experiments can discern signal from these studies. In the present study, we examine genetic loci that modulate the locomotor response to cocaine identified in the recombinant inbred (BXD RI) genetic reference population. We then applied the GeneWeaver software system for heterogeneous functional genomic analysis to integrate and aggregate multiple studies of addiction genomics, resulting in the identification of Rab3b as a functional correlate of the locomotor response to cocaine in rodents. This gene encodes a member of the RAB family of Ras-like GTPases known to be involved in trafficking of secretory and endocytic vesicles in eukaryotic cells. The convergent evidence for a role of Rab3b includes co-occurrence in previously published genetic mapping studies of cocaine related behaviors; methamphetamine response and cocaine- and amphetamine-regulated transcript prepropeptide (Cartpt) transcript abundance; evidence related to other addictive substances; density of polymorphisms; and its expression pattern in reward pathways. To evaluate this finding, we examined the effect of RAB3 complex perturbation in cocaine response. B6;129-Rab3btm1Sud Rab3ctm1sud Rab3dtm1sud triple null mice (Rab3bcd -/-) exhibited significant deficits in habituation, and increased acute and repeated cocaine responses. This previously unidentified mechanism of the behavioral predisposition and response to cocaine is an example of many that can be identified and validated using aggregate genomic studies.
Collapse
Affiliation(s)
| | | | - Price E. Dickson
- The Jackson Laboratory, Bar Harbor, ME, United States
- Department of Biomedical Sciences, Marshall University, Huntington, WV, United States
| | - Guy Mittleman
- Department of Psychological Science, Ball State University, Muncie, IN, United States
| | | |
Collapse
|
23
|
Facilitating Complex Trait Analysis via Reduced Complexity Crosses. Trends Genet 2020; 36:549-562. [PMID: 32482413 DOI: 10.1016/j.tig.2020.05.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 05/05/2020] [Accepted: 05/12/2020] [Indexed: 01/02/2023]
Abstract
Genetically diverse inbred strains are frequently used in quantitative trait mapping to identify sequence variants underlying trait variation. Poor locus resolution and high genetic complexity impede variant discovery. As a solution, we explore reduced complexity crosses (RCCs) between phenotypically divergent, yet genetically similar, rodent substrains. RCCs accelerate functional variant discovery via decreasing the number of segregating variants by orders of magnitude. The simplified genetic architecture of RCCs often permit immediate identification of causal variants or rapid fine-mapping of broad loci to smaller intervals. Whole-genome sequences of substrains make RCCs possible by supporting the development of array- and targeted sequencing-based genotyping platforms, coupled with rapid genome editing for variant validation. In summary, RCCs enhance discovery-based genetics of complex traits.
Collapse
|
24
|
Ruan QT, Yazdani N, Reed ER, Beierle JA, Peterson LP, Luttik KP, Szumlinski KK, Johnson WE, Ash PEA, Wolozin B, Bryant CD. 5' UTR variants in the quantitative trait gene Hnrnph1 support reduced 5' UTR usage and hnRNP H protein as a molecular mechanism underlying reduced methamphetamine sensitivity. FASEB J 2020; 34:9223-9244. [PMID: 32401417 DOI: 10.1096/fj.202000092r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 04/17/2020] [Accepted: 04/24/2020] [Indexed: 12/20/2022]
Abstract
We previously identified a 210 kb region on chromosome 11 (50.37-50.58 Mb, mm10) containing two protein-coding genes (Hnrnph1, Rufy1) that was necessary for reduced methamphetamine-induced locomotor activity in C57BL/6J congenic mice harboring DBA/2J polymorphisms. Gene editing of a small deletion in the first coding exon supported Hnrnph1 as a quantitative trait gene. We have since shown that Hnrnph1 mutants also exhibit reduced methamphetamine-induced reward, reinforcement, and dopamine release. However, the quantitative trait variants (QTVs) that modulate Hnrnph1 function at the molecular level are not known. Nine single nucleotide polymorphisms and seven indels distinguish C57BL/6J from DBA/2J within Hnrnph1, including four variants within the 5' untranslated region (UTR). Here, we show that a 114 kb introgressed region containing Hnrnph1 and Rufy1 was sufficient to cause a decrease in MA-induced locomotor activity. Gene-level transcriptome analysis of striatal tissue from 114 kb congenics vs Hnrnph1 mutants identified a nearly perfect correlation of fold-change in expression for those differentially expressed genes that were common to both mouse lines, indicating functionally similar effects on the transcriptome and behavior. Exon-level analysis (including noncoding exons) revealed decreased 5' UTR usage of Hnrnph1 and immunoblot analysis identified a corresponding decrease in hnRNP H protein in 114 kb congenic mice. Molecular cloning of the Hnrnph1 5' UTR containing all four variants (but none of them individually) upstream of a reporter induced a decrease in reporter signal in both HEK293 and N2a cells, thus, identifying a set of QTVs underlying molecular regulation of Hnrnph1.
Collapse
Affiliation(s)
- Qiu T Ruan
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, Boston, MA, USA.,Biomolecular Pharmacology Training Program, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA.,Transformative Training Program in Addiction Science, Boston University School of Medicine, Boston, MA, USA
| | - Neema Yazdani
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, Boston, MA, USA.,Biomolecular Pharmacology Training Program, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA.,Transformative Training Program in Addiction Science, Boston University School of Medicine, Boston, MA, USA
| | - Eric R Reed
- Ph.D. Program in Bioinformatics, Boston University, Boston, MA, USA
| | - Jacob A Beierle
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, Boston, MA, USA.,Biomolecular Pharmacology Training Program, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA.,Transformative Training Program in Addiction Science, Boston University School of Medicine, Boston, MA, USA
| | - Lucy P Peterson
- Biomolecular Pharmacology Training Program, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Kimberly P Luttik
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Karen K Szumlinski
- Department of Psychological and Brain Sciences, Molecular, Cellular and Developmental Biology, Neuroscience Research Institute, University of California, Santa Barbara, CA, USA
| | - William E Johnson
- Department of Medicine, Computational Biomedicine, Boston University School of Medicine, Boston, MA, USA
| | - Peter E A Ash
- Laboratory of Neurodegeneration, Department of Pharmacology and Experimental Therapeutics and Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Benjamin Wolozin
- Laboratory of Neurodegeneration, Department of Pharmacology and Experimental Therapeutics and Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Camron D Bryant
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, Boston, MA, USA.,Biomolecular Pharmacology Training Program, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA.,Transformative Training Program in Addiction Science, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
25
|
Babbs RK, Beierle JA, Yao EJ, Kelliher JC, Medeiros AR, Anandakumar J, Shah AA, Chen MM, Johnson WE, Bryant CD. The effect of the demyelinating agent cuprizone on binge-like eating of sweetened palatable food in female and male C57BL/6 substrains. Appetite 2020; 150:104678. [PMID: 32209386 DOI: 10.1016/j.appet.2020.104678] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/26/2020] [Accepted: 03/18/2020] [Indexed: 12/16/2022]
Abstract
Binge eating is a heritable symptom of eating disorders with an unknown genetic etiology. Rodent models for binge-like eating (BLE) of palatable food permit the study of genetic and biological mechanisms. We previously genetically mapped a coding mutation in Cyfip2 associated with increased BLE of sweetened palatable food in the C57BL/6NJ versus C57BL/6J substrain. The increase in BLE in C57BL/6NJ mice was associated with a decrease in transcription of genes enriched for myelination in the striatum. Here, we tested the hypothesis that decreasing myelin levels with the demyelinating agent cuprizone would enhance BLE. Mice were treated with a 0.3% cuprizone home cage diet for two weeks. Cuprizone induced similar weight loss in both substrains and sexes that recovered within 48 h after removal of cuprizone. Following a three-week recovery period, mice were trained for BLE in an intermittent, limited access procedure. Surprisingly, cuprizone significantly reduced BLE in male but not female C57BL/6NJ mice while having no effect in C57BL/6J mice. Cuprizone also reduced myelin basic protein (MBP) at seven weeks post-cuprizone removal while having no effect on myelin-associated glycoprotein at this time point. C57BL/6NJ mice also showed less MBP than C57BL/6J mice. There were no statistical interactions of Treatment with Sex on MBP levels, indicating that differences in MBP reduction are unlikely to account for sex differences in BLE. To summarize, cuprizone induced an unexpected, significant reduction in BLE in C57BL/6NJ males, which could indicate genotype-dependent sex differences in the biological mechanisms of BLE.
Collapse
Affiliation(s)
- Richard K Babbs
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, 72 E. Concord St., L-606C, Boston, MA, 02118, USA
| | - Jacob A Beierle
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, 72 E. Concord St., L-606C, Boston, MA, 02118, USA; Biomolecular Pharmacology Ph.D. Program, Boston University School of Medicine, USA; Boston University's Transformative Training Program in Addiction Science (TTPAS), Biomedical Genetics, Boston University School of Medicine, 72 E. Concord St., E-200, Boston, MA, 02118, USA
| | - Emily J Yao
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, 72 E. Concord St., L-606C, Boston, MA, 02118, USA
| | - Julia C Kelliher
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, 72 E. Concord St., L-606C, Boston, MA, 02118, USA
| | - Arthurine R Medeiros
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, 72 E. Concord St., L-606C, Boston, MA, 02118, USA; National Institute on Drug Abuse Diversity Scholars Program, 6001 Executive Boulevard, Room 3105, MSC 9567, Bethesda, MD, USA, 20892-9567
| | - Jeya Anandakumar
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, 72 E. Concord St., L-606C, Boston, MA, 02118, USA; National Institute on Drug Abuse Diversity Scholars Program, 6001 Executive Boulevard, Room 3105, MSC 9567, Bethesda, MD, USA, 20892-9567
| | - Anyaa A Shah
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, 72 E. Concord St., L-606C, Boston, MA, 02118, USA
| | - Melanie M Chen
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, 72 E. Concord St., L-606C, Boston, MA, 02118, USA
| | - William E Johnson
- Department of Medicine, Division of Computational Biomedicine, Boston University, 72 E. Concord St., E-609, Boston, MA, 02118, USA
| | - Camron D Bryant
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, 72 E. Concord St., L-606C, Boston, MA, 02118, USA.
| |
Collapse
|
26
|
A Mutation in Hnrnph1 That Decreases Methamphetamine-Induced Reinforcement, Reward, and Dopamine Release and Increases Synaptosomal hnRNP H and Mitochondrial Proteins. J Neurosci 2019; 40:107-130. [PMID: 31704785 DOI: 10.1523/jneurosci.1808-19.2019] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 01/03/2023] Open
Abstract
Individual variation in the addiction liability of amphetamines has a heritable genetic component. We previously identified Hnrnph1 (heterogeneous nuclear ribonucleoprotein H1) as a quantitative trait gene underlying decreased methamphetamine-induced locomotor activity in mice. Here, we showed that mice (both females and males) with a heterozygous mutation in the first coding exon of Hnrnph1 (H1+/-) showed reduced methamphetamine reinforcement and intake and dose-dependent changes in methamphetamine reward as measured via conditioned place preference. Furthermore, H1+/- mice showed a robust decrease in methamphetamine-induced dopamine release in the NAc with no change in baseline extracellular dopamine, striatal whole-tissue dopamine, dopamine transporter protein, dopamine uptake, or striatal methamphetamine and amphetamine metabolite levels. Immunohistochemical and immunoblot staining of midbrain dopaminergic neurons and their forebrain projections for TH did not reveal any major changes in staining intensity, cell number, or forebrain puncta counts. Surprisingly, there was a twofold increase in hnRNP H protein in the striatal synaptosome of H1+/- mice with no change in whole-tissue levels. To gain insight into the mechanisms linking increased synaptic hnRNP H with decreased methamphetamine-induced dopamine release and behaviors, synaptosomal proteomic analysis identified an increased baseline abundance of several mitochondrial complex I and V proteins that rapidly decreased at 30 min after methamphetamine administration in H1+/- mice. In contrast, the much lower level of basal synaptosomal mitochondrial proteins in WT mice showed a rapid increase. We conclude that H1+/- decreases methamphetamine-induced dopamine release, reward, and reinforcement and induces dynamic changes in basal and methamphetamine-induced synaptic mitochondrial function.SIGNIFICANCE STATEMENT Methamphetamine dependence is a significant public health concern with no FDA-approved treatment. We discovered a role for the RNA binding protein hnRNP H in methamphetamine reward and reinforcement. Hnrnph1 mutation also blunted methamphetamine-induced dopamine release in the NAc, a key neurochemical event contributing to methamphetamine addiction liability. Finally, Hnrnph1 mutants showed a marked increase in basal level of synaptosomal hnRNP H and mitochondrial proteins that decreased in response to methamphetamine, whereas WT mice showed a methamphetamine-induced increase in synaptosomal mitochondrial proteins. Thus, we identified a potential role for hnRNP H in basal and dynamic mitochondrial function that informs methamphetamine-induced cellular adaptations associated with reduced addiction liability.
Collapse
|
27
|
Babbs RK, Beierle JA, Ruan QT, Kelliher JC, Chen MM, Feng AX, Kirkpatrick SL, Benitez FA, Rodriguez FA, Pierre JJ, Anandakumar J, Kumar V, Mulligan MK, Bryant CD. Cyfip1 Haploinsufficiency Increases Compulsive-Like Behavior and Modulates Palatable Food Intake in Mice: Dependence on Cyfip2 Genetic Background, Parent-of Origin, and Sex. G3 (BETHESDA, MD.) 2019; 9:3009-3022. [PMID: 31324746 PMCID: PMC6723122 DOI: 10.1534/g3.119.400470] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 07/18/2019] [Indexed: 12/11/2022]
Abstract
Binge eating (BE) is a heritable trait associated with eating disorders and involves episodes of rapid, large amounts of food consumption. We previously identified cytoplasmic FMR1-interacting protein 2 (Cyfip2) as a genetic factor underlying compulsive-like BE in mice. CYFIP2 is a homolog of CYFIP1 which is one of four paternally-deleted genes in patients with Type I Prader-Willi Syndrome (PWS), a neurodevelopmental disorder whereby 70% of cases involve paternal 15q11-q13 deletion. PWS symptoms include hyperphagia, obesity (if untreated), cognitive deficits, and obsessive-compulsive behaviors. We tested whether Cyfip1 haploinsufficiency (+/-) would enhance compulsive-like behavior and palatable food (PF) intake in a parental origin- and sex-dependent manner on two Cyfip2 genetic backgrounds, including the BE-prone C57BL/6N (Cyfip2N/N) background and the BE-resistant C57BL/6J (Cyfip2J/J) background. Cyfip1+/- mice showed increased compulsive-like behavior on both backgrounds and increased PF intake on the Cyfip2N/N background. In contrast, maternal Cyfip1 haploinsufficiency on the BE-resistant Cyfip2J/J background induced a robust escalation in PF intake in wild-type Cyfip1J/J males while having no effect in Cyfip1J/- males. Notably, induction of behavioral phenotypes in wild-type males following maternal Fmr1+/- has previously been reported. In the hypothalamus, there was a paternally-enhanced reduction in CYFIP1 protein whereas in the nucleus accumbens, there was a maternally-enhanced reduction in CYFIP1 protein. Nochange in FMR1 protein (FMRP) was observed in Cyfip1+/- mice, regardless of parental origin. To summarize, Cyfip1 haploinsufficiency increased compulsive-like behavior and induced genetic background-dependent, sex-dependent, and parent-of-origin-dependent effects on PF consumption and CYFIP1 expression that could have relevance for neurodevelopmental and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Richard K Babbs
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry
| | - Jacob A Beierle
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry
- T32 NIGMS Training Program in Biomolecular Pharmacology
- Boston University's Transformative Training Program in Addiction Science (TTPAS), Biomedical Genetics, Boston University School of Medicine, Boston, MA 02118
| | - Qiu T Ruan
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry
- T32 NIGMS Training Program in Biomolecular Pharmacology
- Boston University's Transformative Training Program in Addiction Science (TTPAS), Biomedical Genetics, Boston University School of Medicine, Boston, MA 02118
| | - Julia C Kelliher
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry
| | - Melanie M Chen
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry
| | - Ashley X Feng
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry
| | - Stacey L Kirkpatrick
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry
| | - Fabiola A Benitez
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry
| | - Fred A Rodriguez
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry
| | - Johanne J Pierre
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry
| | - Jeya Anandakumar
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry
| | - Vivek Kumar
- The Jackson Laboratory, 600 Main St., Bar Harbor, ME 04609, and
| | - Megan K Mulligan
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, 71 S. Manassas St, Memphis, TN 38163
| | - Camron D Bryant
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry
| |
Collapse
|
28
|
Regional Analysis of the Brain Transcriptome in Mice Bred for High and Low Methamphetamine Consumption. Brain Sci 2019; 9:brainsci9070155. [PMID: 31262025 PMCID: PMC6681006 DOI: 10.3390/brainsci9070155] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 06/20/2019] [Accepted: 06/26/2019] [Indexed: 01/08/2023] Open
Abstract
Transcriptome profiling can broadly characterize drug effects and risk for addiction in the absence of drug exposure. Modern large-scale molecular methods, including RNA-sequencing (RNA-Seq), have been extensively applied to alcohol-related disease traits, but rarely to risk for methamphetamine (MA) addiction. We used RNA-Seq data from selectively bred mice with high or low risk for voluntary MA intake to construct coexpression and cosplicing networks for differential risk. Three brain reward circuitry regions were explored, the nucleus accumbens (NAc), prefrontal cortex (PFC), and ventral midbrain (VMB). With respect to differential gene expression and wiring, the VMB was more strongly affected than either the PFC or NAc. Coexpression network connectivity was higher in the low MA drinking line than in the high MA drinking line in the VMB, oppositely affected in the NAc, and little impacted in the PFC. Gene modules protected from the effects of selection may help to eliminate certain mechanisms from significant involvement in risk for MA intake. One such module was enriched in genes with dopamine-associated annotations. Overall, the data suggest that mitochondrial function and glutamate-mediated synaptic plasticity have key roles in the outcomes of selective breeding for high versus low levels of MA intake.
Collapse
|
29
|
Li X, Zhong M, Wang J, Wang L, Lin Z, Cao Z, Huang Z, Zhang F, Li Y, Liu M, Ma X. miR-301a promotes lung tumorigenesis by suppressing Runx3. Mol Cancer 2019; 18:99. [PMID: 31122259 PMCID: PMC6532219 DOI: 10.1186/s12943-019-1024-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Accepted: 05/02/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Our previous report demonstrated that genetic ablation of miR-301a reduces Kras-driven lung tumorigenesis in mice. However, the impact of miR-301a on host anti-tumor immunity remains unexplored. Here we assessed the underlying molecular mechanisms of miR-301a in the tumor microenvironment. METHODS The differentially expressed genes were identified by using deep sequencing. The immune cell counts, and cytokines expression were analyzed by realtime PCR, immunohistochemistry and flow cytometry. The role of miR-301a/Runx3 in lung tumor was evaluated on cell growth, migration and invasion. The function of miR-301a/Runx3 in regulating tumor microenvironment and tumor metastasis were evaluated in Kras transgenic mice and B16/LLC1 syngeneic xenografts tumor models. RESULTS In this work, we identified 1166 up-regulated and 475 down-regulated differentially expressed genes in lung tumor tissues between KrasLA2 and miR-301a-/-; KrasLA2 mice. Immune response and cell cycle were major pathways involved in the protective role of miR-301a deletion in lung tumorigenesis. Overexpression of the miR-301a target, Runx3, was an early event identified in miR-301a-/-; KrasLA2 mice compared to WT-KrasLA2 mice. We found that miR-301a deletion enhanced CD8+ T cell accumulation and IFN-γ production in the tumor microenvironment and mediated antitumor immunity. Further studies revealed that miR-301a deficiency in the tumor microenvironment effectively reduced tumor metastasis by elevating Runx3 and recruiting CD8+ T cells, whereas miR-301a knockdown in tumor cells themselves restrained cell migration by elevating Runx3 expression. CONCLUSIONS Our findings further underscore that miR-301a facilitates tumor microenvironment antitumor immunity by Runx3 suppression in lung tumorigenesis.
Collapse
Affiliation(s)
- Xun Li
- Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631 China
| | - Mingtian Zhong
- The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006 China
| | - Jiexuan Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120 China
| | - Lei Wang
- Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631 China
| | - Zhanwen Lin
- Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631 China
| | - Zhi Cao
- The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006 China
| | - Zhujuan Huang
- The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006 China
| | - Fengxue Zhang
- The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006 China
| | - Yong Li
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH USA
| | - Ming Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, 510120 China
| | - Xiaodong Ma
- Institute for Brain Research and Rehabilitation, Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, South China Normal University, Guangzhou, 510631 China
- The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006 China
| |
Collapse
|
30
|
Guo H, Tian L, Zhang JZ, Kitani T, Paik DT, Lee WH, Wu JC. Single-Cell RNA Sequencing of Human Embryonic Stem Cell Differentiation Delineates Adverse Effects of Nicotine on Embryonic Development. Stem Cell Reports 2019; 12:772-786. [PMID: 30827876 PMCID: PMC6449785 DOI: 10.1016/j.stemcr.2019.01.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 01/28/2019] [Accepted: 01/28/2019] [Indexed: 12/22/2022] Open
Abstract
Nicotine, the main chemical constituent of tobacco, is highly detrimental to the developing fetus by increasing the risk of gestational complications and organ disorders. The effects of nicotine on human embryonic development and related mechanisms, however, remain poorly understood. Here, we performed single-cell RNA sequencing (scRNA-seq) of human embryonic stem cell (hESC)-derived embryoid body (EB) in the presence or absence of nicotine. Nicotine-induced lineage-specific responses and dysregulated cell-to-cell communication in EBs, shedding light on the adverse effects of nicotine on human embryonic development. In addition, nicotine reduced cell viability, increased reactive oxygen species (ROS), and altered cell cycling in EBs. Abnormal Ca2+ signaling was found in muscle cells upon nicotine exposure, as verified in hESC-derived cardiomyocytes. Consequently, our scRNA-seq data suggest direct adverse effects of nicotine on hESC differentiation at the single-cell level and offer a new method for evaluating drug and environmental toxicity on human embryonic development in utero.
Collapse
Affiliation(s)
- Hongchao Guo
- Stanford Cardiovascular Institute, 265 Campus Drive G1120B, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA 94305, USA; Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lei Tian
- Stanford Cardiovascular Institute, 265 Campus Drive G1120B, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA 94305, USA; Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Joe Z Zhang
- Stanford Cardiovascular Institute, 265 Campus Drive G1120B, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA 94305, USA; Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Tomoya Kitani
- Stanford Cardiovascular Institute, 265 Campus Drive G1120B, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA 94305, USA; Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - David T Paik
- Stanford Cardiovascular Institute, 265 Campus Drive G1120B, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA 94305, USA; Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Won Hee Lee
- Department of Basic Medical Sciences, University of Arizona College of Medicine, Phoenix, AZ 85004, USA
| | - Joseph C Wu
- Stanford Cardiovascular Institute, 265 Campus Drive G1120B, Stanford, CA 94305, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA 94305, USA; Division of Cardiology, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
31
|
Bryant CD, Bagdas D, Goldberg LR, Khalefa T, Reed ER, Kirkpatrick SL, Kelliher JC, Chen MM, Johnson WE, Mulligan MK, Imad Damaj M. C57BL/6 substrain differences in inflammatory and neuropathic nociception and genetic mapping of a major quantitative trait locus underlying acute thermal nociception. Mol Pain 2019; 15:1744806918825046. [PMID: 30632432 PMCID: PMC6365993 DOI: 10.1177/1744806918825046] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/26/2018] [Accepted: 12/21/2018] [Indexed: 11/17/2022] Open
Abstract
Sensitivity to different pain modalities has a genetic basis that remains largely unknown. Employing closely related inbred mouse substrains can facilitate gene mapping of nociceptive behaviors in preclinical pain models. We previously reported enhanced sensitivity to acute thermal nociception in C57BL/6J (B6J) versus C57BL/6N (B6N) substrains. Here, we expanded on nociceptive phenotypes and observed an increase in formalin-induced inflammatory nociceptive behaviors and paw diameter in B6J versus B6N mice (Charles River Laboratories). No strain differences were observed in mechanical or thermal hypersensitivity or in edema following the Complete Freund's Adjuvant model of inflammatory pain, indicating specificity in the inflammatory nociceptive stimulus. In the chronic constrictive nerve injury, a model of neuropathic pain, no strain differences were observed in baseline mechanical threshold or in mechanical hypersensitivity up to one month post-chronic constrictive nerve injury. We replicated the enhanced thermal nociception in the 52.5°C hot plate test in B6J versus B6N mice from The Jackson Laboratory. Using a B6J × B6N-F2 cross (N = 164), we mapped a major quantitative trait locus underlying hot plate sensitivity to chromosome 7 that peaked at 26 Mb (log of the odds [LOD] = 3.81, p < 0.01; 8.74 Mb-36.50 Mb) that was more pronounced in males. Genes containing expression quantitative trait loci associated with the peak nociceptive marker that are implicated in pain and inflammation include Ryr1, Cyp2a5, Pou2f2, Clip3, Sirt2, Actn4, and Ltbp4 (false discovery rate < 0.05). Future studies involving positional cloning and gene editing will determine the quantitative trait gene(s) and potential pleiotropy of this locus across pain modalities.
Collapse
Affiliation(s)
- Camron D Bryant
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Deniz Bagdas
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, USA
- Translational Research Initiative for Pain and Neuropathy, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, USA
| | - Lisa R Goldberg
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
- Program in Biomolecular Pharmacology, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
| | - Tala Khalefa
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, USA
- Translational Research Initiative for Pain and Neuropathy, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, USA
| | - Eric R Reed
- Department of Medicine, Computational Biomedicine, Bioinformatics Program, Boston University, Boston, MA, USA
| | - Stacey L Kirkpatrick
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Julia C Kelliher
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Melanie M Chen
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, USA
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - William E Johnson
- Department of Medicine, Computational Biomedicine, Boston University School of Medicine, Boston, MA, USA
| | - Megan K Mulligan
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN, USA
| | - M Imad Damaj
- Department of Pharmacology and Toxicology, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, USA
- Translational Research Initiative for Pain and Neuropathy, Medical College of Virginia Campus, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
32
|
Babbs RK, Kelliher JC, Scotellaro JL, Luttik KP, Mulligan MK, Bryant CD. Genetic differences in the behavioral organization of binge eating, conditioned food reward, and compulsive-like eating in C57BL/6J and DBA/2J strains. Physiol Behav 2018; 197:51-66. [PMID: 30261172 DOI: 10.1016/j.physbeh.2018.09.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/20/2018] [Accepted: 09/21/2018] [Indexed: 12/25/2022]
Abstract
Binge eating (BE) is a heritable symptom of eating disorders associated with anxiety, depression, malnutrition, and obesity. Genetic analysis of BE could facilitate therapeutic discovery. We used an intermittent, limited access BE paradigm involving sweetened palatable food (PF) to examine genetic differences in BE, conditioned food reward, and compulsive-like eating between C57BL/6J (B6J) and DBA/2J (D2J) inbred mouse strains. D2J mice showed a robust escalation in intake and conditioned place preference for the PF-paired side. D2J mice also showed a unique style of compulsive-like eating in the light/dark conflict test where they rapidly hoarded and consumed PF in the preferred unlit environment. BE and compulsive-like eating exhibited narrow-sense heritability estimates between 56 and 73%. To gain insight into the genetic basis, we phenotyped and genotyped a small cohort of 133 B6J × D2J-F2 mice at the peak location of three quantitative trait loci (QTL) previously identified in F2 mice for sweet taste (chromosome 4: 156 Mb), bitter taste (chromosome 6: 133 Mb) and behavioral sensitivity to drugs of abuse (chromosome 11: 50 Mb). The D2J allele on chromosome 6 was associated with greater PF intake on training days and greater compulsive-like PF intake, but only in males, suggesting that decreased bitter taste may increase BE in males. The D2J allele on chromosome 11 was associated with an increase in final PF intake and slope of escalation across days. Future studies employing larger crosses and genetic reference panels comprising B6J and D2J alleles will identify causal genes and neurobiological mechanisms.
Collapse
Affiliation(s)
- Richard K Babbs
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, United States
| | - Julia C Kelliher
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, United States
| | - Julia L Scotellaro
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, United States; Boston University Undergraduate Research Opportunity Program (UROP), United States
| | - Kimberly P Luttik
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, United States; Boston University Undergraduate Research Opportunity Program (UROP), United States
| | - Megan K Mulligan
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, United States
| | - Camron D Bryant
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA 02118, United States.
| |
Collapse
|
33
|
Ruan QT, Yazdani N, Beierle JA, Hixson KM, Hokenson KE, Apicco DJ, Luttik KP, Zheng K, Maziuk BF, Ash PEA, Szumlinski KK, Russek SJ, Wolozin B, Bryant CD. Changes in neuronal immunofluorescence in the C- versus N-terminal domains of hnRNP H following D1 dopamine receptor activation. Neurosci Lett 2018; 684:109-114. [PMID: 30003938 DOI: 10.1016/j.neulet.2018.07.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 07/04/2018] [Accepted: 07/08/2018] [Indexed: 12/23/2022]
Abstract
RNA binding proteins are a diverse class of proteins that regulate all aspects of RNA metabolism. Accumulating studies indicate that heterogeneous nuclear ribonucleoproteins are associated with cellular adaptations in response to drugs of abuse. We recently mapped and validated heterogeneous nuclear ribonucleoprotein H1 (Hnrnph1) as a quantitative trait gene underlying differential behavioral sensitivity to methamphetamine. The molecular mechanisms by which hnRNP H1 alters methamphetamine behaviors are unknown but could involve pre- and/or post-synaptic changes in protein localization and function. Methamphetamine initiates post-synaptic D1 dopamine receptor signaling indirectly by binding to pre-synaptic dopamine transporters and vesicular monoamine transporters of midbrain dopaminergic neurons which triggers reverse transport and accumulation of dopamine at the synapse. Here, we examined changes in neuronal localization of hnRNP H in primary rat cortical neurons that express dopamine receptors that can be modulated by the D1 or D2 dopamine receptor agonists SKF38393 and (-)-Quinpirole HCl, respectively. Basal immunostaining of hnRNP H was localized primarily to the nucleus. D1 dopamine receptor activation induced an increase in hnRNP H nuclear immunostaining as detected by immunocytochemistry with a C-domain directed antibody containing epitope near the glycine-rich domain but not with an N-domain specific antibody. Although there was no change in hnRNP H protein in the nucleus or cytoplasm, there was a decrease in Hnrnph1 transcript following D1 receptor stimulation. Taken together, these results suggest that D1 receptor activation increases availability of the hnRNP H C-terminal epitope, which could potentially reflect changes in protein-protein interactions. Thus, D1 receptor signaling could represent a key molecular post-synaptic event linking Hnrnph1 polymorphisms to drug-induced behavior.
Collapse
Affiliation(s)
- Qiu T Ruan
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, United States; Biomolecular Pharmacology Training Program, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, United States; Transformative Training Program in Addiction Science, Boston University, United States
| | - Neema Yazdani
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, United States; Biomolecular Pharmacology Training Program, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, United States; Transformative Training Program in Addiction Science, Boston University, United States
| | - Jacob A Beierle
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, United States; Biomolecular Pharmacology Training Program, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, United States; Transformative Training Program in Addiction Science, Boston University, United States
| | - Kathryn M Hixson
- Biomolecular Pharmacology Training Program, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, United States; Laboratory of Translational Epilepsy, Department of Pharmacology and Experimental Therapeutics and Biology, Boston University School of Medicine, United States
| | - Kristen E Hokenson
- Biomolecular Pharmacology Training Program, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, United States; Laboratory of Translational Epilepsy, Department of Pharmacology and Experimental Therapeutics and Biology, Boston University School of Medicine, United States
| | - Daniel J Apicco
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, United States; Laboratory of Neurodegeneration, Department of Pharmacology and Experimental Therapeutics and Neurology, Boston University School of Medicine, United States
| | - Kimberly P Luttik
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, United States
| | - Karen Zheng
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, United States
| | - Brandon F Maziuk
- Laboratory of Neurodegeneration, Department of Pharmacology and Experimental Therapeutics and Neurology, Boston University School of Medicine, United States
| | - Peter E A Ash
- Laboratory of Neurodegeneration, Department of Pharmacology and Experimental Therapeutics and Neurology, Boston University School of Medicine, United States
| | - Karen K Szumlinski
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, United States
| | - Shelley J Russek
- Laboratory of Translational Epilepsy, Department of Pharmacology and Experimental Therapeutics and Biology, Boston University School of Medicine, United States
| | - Benjamin Wolozin
- Laboratory of Neurodegeneration, Department of Pharmacology and Experimental Therapeutics and Neurology, Boston University School of Medicine, United States
| | - Camron D Bryant
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, United States.
| |
Collapse
|
34
|
Intravenous cocaine self-administration in a panel of inbred mouse strains differing in acute locomotor sensitivity to cocaine. Psychopharmacology (Berl) 2018; 235:1179-1189. [PMID: 29423710 PMCID: PMC5874174 DOI: 10.1007/s00213-018-4834-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 01/14/2018] [Indexed: 12/21/2022]
Abstract
RATIONALE Initial sensitivity to drugs of abuse often predicts subsequent use and abuse, but this relationship is not always observed in human studies. Moreover, studies examining the relationship between initial locomotor sensitivity and the rewarding and reinforcing effects of drugs in animal models have also been equivocal. Understanding the relationship between initial drug effects and propensity to continue use, potentially resulting in the development of a substance use disorder, may help to identify key targets for prevention and treatment. OBJECTIVES We examined intravenous cocaine self-administration in a set of mouse strains that were previously identified to be at the phenotypic extremes for cocaine-induced locomotor activation to determine if initial locomotor sensitivity predicted acquisition, extinction, dose response, or progressive ratio (PR) breakpoint. METHODS We selected eight inbred mouse strains based on locomotor sensitivity to 20 mg/kg cocaine. These strains, designated as low and high responders, were tested in an intravenous self-administration paradigm that included acquisition of 0.5 mg/(kg*inf) under a FR1 schedule, extinction, re-acquisition, dose response to 0.125, 0.25, 0.5, 1, and 2 mg/(kg*inf), and progressive ratio. RESULTS We observed overall differences in self-administration behavior between high and low responders. Low responders self-administered less cocaine and had lower breakpoints under the PR schedule. However, we also observed strain differences within each group. Self-administration in the low responder, LG/J, more closely resembled the behavior of the high-responding group, and the high responder, P/J, had self-administration behavior that more closely resembled the low-responding group. CONCLUSIONS We conclude that acute cocaine-induced locomotor activation does predict self-administration behavior, but in a strain-specific manner. These data support the idea that genetic background influences the relationship among addiction-related behaviors.
Collapse
|
35
|
Reed C, Baba H, Zhu Z, Erk J, Mootz JR, Varra NM, Williams RW, Phillips TJ. A Spontaneous Mutation in Taar1 Impacts Methamphetamine-Related Traits Exclusively in DBA/2 Mice from a Single Vendor. Front Pharmacol 2018; 8:993. [PMID: 29403379 PMCID: PMC5786530 DOI: 10.3389/fphar.2017.00993] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 12/26/2017] [Indexed: 01/01/2023] Open
Abstract
Major gene effects on traits associated with substance use disorders are rare. Previous findings in methamphetamine drinking (MADR) lines of mice, bred for high or low voluntary MA intake, and in null mutants demonstrate a major impact of the trace amine-associated receptor 1 (Taar1) gene on a triad of MA-related traits: MA consumption, MA-induced conditioned taste aversion and MA-induced hypothermia. While inbred strains are fundamentally genetically stable, rare spontaneous mutations can become fixed and result in new or aberrant phenotypes. A single nucleotide polymorphism in Taar1 that encodes a missense proline to threonine mutation in the second transmembrane domain (Taar1m1J) has been identified in the DBA/2J strain. MA is an agonist at this receptor, but the receptor produced by Taar1m1J does not respond to MA or endogenous ligands. In the present study, we used progeny of the C57BL/6J × DBA/2J F2 cross, the MADR lines, C57BL/6J × DBA/2J recombinant inbred strains, and DBA/2 mice sourced from four vendors to further examine Taar1-MA phenotype relations and to define the chronology of the fixation of the Taar1m1J mutation. Mice homozygous for Taar1m1J were found at high frequency early in selection for high MA intake in multiple replicates of the high MADR line, whereas Taar1m1J homozygotes were absent in the low MADR line. The homozygous Taar1m1J genotype is causally linked to increased MA intake, reduced MA-induced conditioned taste aversion, and reduced MA-induced hypothermia across models. Genotype-phenotype correlations range from 0.68 to 0.96. This Taar1 polymorphism exists in DBA/2J mice sourced directly from The Jackson Laboratory, but not DBA/2 mice sourced from Charles River (DBA/2NCrl), Envigo (formerly Harlan Sprague Dawley; DBA/2NHsd) or Taconic (DBA/2NTac). By genotyping archived samples from The Jackson Laboratory, we have determined that this mutation arose in 2001–2003. Our data strengthen the conclusion that the mutant Taar1m1J allele, which codes for a non-functional receptor protein, increases risk for multiple MA-related traits, including MA intake, in homozygous Taar1m1J individuals.
Collapse
Affiliation(s)
- Cheryl Reed
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, United States
| | - Harue Baba
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, United States
| | - Zhen Zhu
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, United States
| | - Jason Erk
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, United States
| | - John R Mootz
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, United States
| | - Nicholas M Varra
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, United States
| | - Robert W Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Sciences Center, Memphis, TN, United States
| | - Tamara J Phillips
- Department of Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University, Portland, OR, United States.,VA Portland Health Care System, Portland, OR, United States
| |
Collapse
|
36
|
Goldberg LR, Kirkpatrick SL, Yazdani N, Luttik KP, Lacki OA, Babbs RK, Jenkins DF, Johnson WE, Bryant CD. Casein kinase 1-epsilon deletion increases mu opioid receptor-dependent behaviors and binge eating1. GENES, BRAIN, AND BEHAVIOR 2017; 16:725-738. [PMID: 28594147 PMCID: PMC6180211 DOI: 10.1111/gbb.12397] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/01/2017] [Accepted: 06/05/2017] [Indexed: 12/20/2022]
Abstract
Genetic and pharmacological studies indicate that casein kinase 1 epsilon (Csnk1e) contributes to psychostimulant, opioid, and ethanol motivated behaviors. We previously used pharmacological inhibition to demonstrate that Csnk1e negatively regulates the locomotor stimulant properties of opioids and psychostimulants. Here, we tested the hypothesis that Csnk1e negatively regulates opioid and psychostimulant reward using genetic inhibition and the conditioned place preference assay in Csnk1e knockout mice. Similar to pharmacological inhibition, Csnk1e knockout mice showed enhanced opioid-induced locomotor activity with the mu opioid receptor agonist fentanyl (0.2 mg/kg i.p.) as well as enhanced sensitivity to low-dose fentanyl reward (0.05 mg/kg). Interestingly, female knockout mice also showed a markedly greater escalation in consumption of sweetened palatable food - a behavioral pattern consistent with binge eating that also depends on mu opioid receptor activation. No difference was observed in fentanyl analgesia in the 52.5°C hot plate assay (0-0.4 mg/kg), naloxone conditioned place aversion (4 mg/kg), or methamphetamine conditioned place preference (0-4 mg/kg). To identify molecular adaptations associated with increased drug and food behaviors in knockout mice, we completed transcriptome analysis via mRNA sequencing of the striatum. Enrichment analysis identified terms associated with myelination and axon guidance and pathway analysis identified a differentially expressed gene set predicted to be regulated by the Wnt signaling transcription factor, Tcf7l2. To summarize, Csnk1e deletion increased mu opioid receptor-dependent behaviors, supporting previous studies indicating an endogenous negative regulatory role of Csnk1e in opioid behavior.
Collapse
Affiliation(s)
- Lisa R. Goldberg
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Department of Psychiatry, Boston University, Boston, MA USA
- Graduate Program in Biomolecular Pharmacology, Boston University, Boston, MA USA
| | - Stacey L. Kirkpatrick
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Department of Psychiatry, Boston University, Boston, MA USA
| | - Neema Yazdani
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Department of Psychiatry, Boston University, Boston, MA USA
- Graduate Program in Biomolecular Pharmacology, Boston University, Boston, MA USA
- Transformative Training Program in Addiction Science, Boston University, Boston, MA USA
| | - Kimberly P. Luttik
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Department of Psychiatry, Boston University, Boston, MA USA
| | - Olga A. Lacki
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Department of Psychiatry, Boston University, Boston, MA USA
| | - R. Keith Babbs
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Department of Psychiatry, Boston University, Boston, MA USA
| | - David F. Jenkins
- Graduate Program in Bioinformatics, Boston University, Boston, MA USA
- Computational Biomedicine, Boston University School of Medicine, Boston, MA, USA
| | - W. Evan Johnson
- Computational Biomedicine, Boston University School of Medicine, Boston, MA, USA
| | - Camron D. Bryant
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Department of Psychiatry, Boston University, Boston, MA USA
| |
Collapse
|
37
|
Szumlinski KK, Lominac KD, Campbell RR, Cohen M, Fultz EK, Brown CN, Miller BW, Quadir SG, Martin D, Thompson AB, von Jonquieres G, Klugmann M, Phillips TJ, Kippin TE. Methamphetamine Addiction Vulnerability: The Glutamate, the Bad, and the Ugly. Biol Psychiatry 2017; 81:959-970. [PMID: 27890469 PMCID: PMC5391296 DOI: 10.1016/j.biopsych.2016.10.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/30/2016] [Accepted: 10/05/2016] [Indexed: 01/23/2023]
Abstract
BACKGROUND The high prevalence and severity of methamphetamine (MA) abuse demands greater neurobiological understanding of its etiology. METHODS We conducted immunoblotting and in vivo microdialysis procedures in MA high/low drinking mice, as well as in isogenic C57BL/6J mice that varied in their MA preference/taking, to examine the glutamate underpinnings of MA abuse vulnerability. Neuropharmacological and Homer2 knockdown approaches were also used in C57BL/6J mice to confirm the role for nucleus accumbens (NAC) glutamate/Homer2 expression in MA preference/aversion. RESULTS We identified a hyperglutamatergic state within the NAC as a biochemical trait corresponding with both genetic and idiopathic vulnerability for high MA preference and taking. We also confirmed that subchronic subtoxic MA experience elicits a hyperglutamatergic state within the NAC during protracted withdrawal, characterized by elevated metabotropic glutamate 1/5 receptor function and Homer2 receptor-scaffolding protein expression. A high MA-preferring phenotype was recapitulated by elevating endogenous glutamate within the NAC shell of mice and we reversed MA preference/taking by lowering endogenous glutamate and/or Homer2 expression within this subregion. CONCLUSIONS Our data point to an idiopathic, genetic, or drug-induced hyperglutamatergic state within the NAC as a mediator of MA addiction vulnerability.
Collapse
Affiliation(s)
- Karen K Szumlinski
- Department of Psychological and Brain Sciences, University of California at Santa Barbara, Santa Barbara, California; Molecular, Cellular and Developmental Biology, University of California at Santa Barbara, Santa Barbara, California.
| | - Kevin D Lominac
- Department of Psychological and Brain Sciences, University of California at Santa Barbara, Santa Barbara, California
| | - Rianne R Campbell
- Department of Psychological and Brain Sciences, University of California at Santa Barbara, Santa Barbara, California
| | - Matan Cohen
- Department of Psychological and Brain Sciences, University of California at Santa Barbara, Santa Barbara, California
| | - Elissa K Fultz
- Department of Psychological and Brain Sciences, University of California at Santa Barbara, Santa Barbara, California
| | - Chelsea N Brown
- Department of Psychological and Brain Sciences, University of California at Santa Barbara, Santa Barbara, California
| | - Bailey W Miller
- Department of Psychological and Brain Sciences, University of California at Santa Barbara, Santa Barbara, California
| | - Sema G Quadir
- Department of Psychological and Brain Sciences, University of California at Santa Barbara, Santa Barbara, California
| | - Douglas Martin
- Department of Psychological and Brain Sciences, University of California at Santa Barbara, Santa Barbara, California
| | - Andrew B Thompson
- Department of Psychological and Brain Sciences, University of California at Santa Barbara, Santa Barbara, California
| | - Georg von Jonquieres
- Translational Neuroscience Facility, School of Medical Sciences, University of New South Wales, New South Wales, Australia
| | - Matthias Klugmann
- Translational Neuroscience Facility, School of Medical Sciences, University of New South Wales, New South Wales, Australia
| | - Tamara J Phillips
- Behavioral Neuroscience and Methamphetamine Abuse Research Center, Oregon Health & Science University; VA Portland Health Care System, Portland, Oregon
| | - Tod E Kippin
- Department of Psychological and Brain Sciences, University of California at Santa Barbara, Santa Barbara, California; Molecular, Cellular and Developmental Biology, University of California at Santa Barbara, Santa Barbara, California; Neuroscience Research Institute, and Institute for Collaborative Biotechnology, University of California at Santa Barbara, Santa Barbara, California
| |
Collapse
|
38
|
Kirkpatrick SL, Goldberg LR, Yazdani N, Babbs RK, Wu J, Reed ER, Jenkins DF, Bolgioni A, Landaverde KI, Luttik KP, Mitchell KS, Kumar V, Johnson WE, Mulligan MK, Cottone P, Bryant CD. Cytoplasmic FMR1-Interacting Protein 2 Is a Major Genetic Factor Underlying Binge Eating. Biol Psychiatry 2017; 81:757-769. [PMID: 27914629 PMCID: PMC5386810 DOI: 10.1016/j.biopsych.2016.10.021] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 09/14/2016] [Accepted: 10/04/2016] [Indexed: 01/11/2023]
Abstract
BACKGROUND Eating disorders are lethal and heritable; however, the underlying genetic factors are unknown. Binge eating is a highly heritable trait associated with eating disorders that is comorbid with mood and substance use disorders. Therefore, understanding its genetic basis will inform therapeutic development that could improve several comorbid neuropsychiatric conditions. METHODS We assessed binge eating in closely related C57BL/6 mouse substrains and in an F2 cross to identify quantitative trait loci associated with binge eating. We used gene targeting to validate candidate genetic factors. Finally, we used transcriptome analysis of the striatum via messenger RNA sequencing to identify the premorbid transcriptome and the binge-induced transcriptome to inform molecular mechanisms mediating binge eating susceptibility and establishment. RESULTS C57BL/6NJ but not C57BL/6J mice showed rapid and robust escalation in palatable food consumption. We mapped a single genome-wide significant quantitative trait locus on chromosome 11 (logarithm of the odds = 7.4) to a missense mutation in cytoplasmic FMR1-interacting protein 2 (Cyfip2). We validated Cyfip2 as a major genetic factor underlying binge eating in heterozygous knockout mice on a C57BL/6N background that showed reduced binge eating toward a wild-type C57BL/6J-like level. Transcriptome analysis of premorbid genetic risk identified the enrichment terms morphine addiction and retrograde endocannabinoid signaling, whereas binge eating resulted in the downregulation of a gene set enriched for decreased myelination, oligodendrocyte differentiation, and expression. CONCLUSIONS We identified Cyfip2 as a major significant genetic factor underlying binge eating and provide a behavioral paradigm for future genome-wide association studies in populations with increased genetic complexity.
Collapse
Affiliation(s)
- Stacey L. Kirkpatrick
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Department of Psychiatry, Boston University School of Medicine, Boston, MA USA
| | - Lisa R. Goldberg
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Department of Psychiatry, Boston University School of Medicine, Boston, MA USA,Graduate Program in Biomolecular Pharmacology, Boston University School of Medicine, Boston, MA USA
| | - Neema Yazdani
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Department of Psychiatry, Boston University School of Medicine, Boston, MA USA,Graduate Program in Biomolecular Pharmacology, Boston University School of Medicine, Boston, MA USA,Transformative Training Program in Addiction Science, Boston University
| | - R. Keith Babbs
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Department of Psychiatry, Boston University School of Medicine, Boston, MA USA
| | - Jiayi Wu
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Department of Psychiatry, Boston University School of Medicine, Boston, MA USA,Transformative Training Program in Addiction Science, Boston University,Ph.D. Program in Biomedical Sciences, Graduate Program in Genetics and Genomics, Boston University School of Medicine
| | - Eric R. Reed
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Department of Psychiatry, Boston University School of Medicine, Boston, MA USA,Ph.D. Program in Bioinformatics, Boston University, Boston, MA USA
| | - David F. Jenkins
- Ph.D. Program in Bioinformatics, Boston University, Boston, MA USA,Computational Biomedicine, Boston University School of Medicine, Boston, MA USA
| | - Amanda Bolgioni
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Department of Psychiatry, Boston University School of Medicine, Boston, MA USA,Graduate Program in Biomolecular Pharmacology, Boston University School of Medicine, Boston, MA USA
| | - Kelsey I. Landaverde
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Department of Psychiatry, Boston University School of Medicine, Boston, MA USA
| | - Kimberly P. Luttik
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Department of Psychiatry, Boston University School of Medicine, Boston, MA USA
| | - Karen S. Mitchell
- Department of Psychiatry, Boston University School of Medicine, Boston, MA USA
| | | | - W. Evan Johnson
- Computational Biomedicine, Boston University School of Medicine, Boston, MA USA
| | - Megan K. Mulligan
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN USA
| | - Pietro Cottone
- Laboratory of Addictive Disorders, Department of Pharmacology and Experimental Therapeutics and Department of Psychiatry, Boston University School of Medicine, Boston, MA USA
| | - Camron D. Bryant
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Department of Psychiatry, Boston University School of Medicine, Boston, MA USA,*Corresponding Author Camron D. Bryant, Ph.D., Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Department of Psychiatry, 72 E. Concord St., L-606C, Boston, MA 02118 USA, P: (617) 638-4489 F: (617) 638-4329
| |
Collapse
|
39
|
Ishikawa A. Identification of a Putative Quantitative Trait Gene for Resistance to Obesity in Mice Using Transcriptome Analysis and Causal Inference Tests. PLoS One 2017; 12:e0170652. [PMID: 28114323 PMCID: PMC5256930 DOI: 10.1371/journal.pone.0170652] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 01/09/2017] [Indexed: 11/19/2022] Open
Abstract
It is still challenging to identify causal genes governing obesity. Pbwg1.5, a quantitative trait locus (QTL) for resistance to obesity, was previously discovered from wild Mus musculus castaneus mice and was fine-mapped to a 2.1-Mb genomic region of mouse chromosome 2, where no known gene with an effect on white adipose tissue (WAT) has been reported. The aim of this study was to identify a strong candidate gene for Pbwg1.5 by an integration approach of transcriptome analysis (RNA-sequencing followed by real-time PCR analysis) and the causal inference test (CIT), a statistical method to infer causal relationships between diplotypes, gene expression and trait values. Body weight, body composition and biochemical traits were measured in F2 mice obtained from an intercross between the C57BL/6JJcl strain and a congenic strain carrying Pbwg1.5 on the C57BL/6JJcl background. The F2 mice showed significant diplotype differences in 12 traits including body weight, WAT weight and serum cholesterol/triglyceride levels. The transcriptome analysis revealed that Ly75, Pla2r1, Fap and Gca genes were differentially expressed in the liver and that Fap, Ifih1 and Grb14 were differentially expressed in WAT. However, CITs indicated statistical evidence that only the liver Ly75 gene mediated between genotype and WAT. Ly75 expression was negatively associated with WAT weight. The results suggested that Ly75 is a putative quantitative trait gene for the obesity-resistant Pbwg1.5 QTL discovered from the wild M. m. castaneus mouse. The finding provides a novel insight into a better understanding of the genetic basis for prevention of obesity.
Collapse
Affiliation(s)
- Akira Ishikawa
- Laboratory of Animal Genetics, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
- * E-mail:
| |
Collapse
|
40
|
Bryant CD, Yazdani N. RNA-binding proteins, neural development and the addictions. GENES BRAIN AND BEHAVIOR 2016; 15:169-86. [PMID: 26643147 DOI: 10.1111/gbb.12273] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 10/30/2015] [Accepted: 11/09/2015] [Indexed: 12/25/2022]
Abstract
Transcriptional and post-transcriptional regulation of gene expression defines the neurobiological mechanisms that bridge genetic and environmental risk factors with neurobehavioral dysfunction underlying the addictions. More than 1000 genes in the eukaryotic genome code for multifunctional RNA-binding proteins (RBPs) that can regulate all levels of RNA biogenesis. More than 50% of these RBPs are expressed in the brain where they regulate alternative splicing, transport, localization, stability and translation of RNAs during development and adulthood. Dysfunction of RBPs can exert global effects on their targetomes that underlie neurodegenerative disorders such as Alzheimer's and Parkinson's diseases as well as neurodevelopmental disorders, including autism and schizophrenia. Here, we consider the evidence that RBPs influence key molecular targets, neurodevelopment, synaptic plasticity and neurobehavioral dysfunction underlying the addictions. Increasingly well-powered genome-wide association studies in humans and mammalian model organisms combined with ever more precise transcriptomic and proteomic approaches will continue to uncover novel and possibly selective roles for RBPs in the addictions. Key challenges include identifying the biological functions of the dynamic RBP targetomes from specific cell types throughout subcellular space (e.g. the nuclear spliceome vs. the synaptic translatome) and time and manipulating RBP programs through post-transcriptional modifications to prevent or reverse aberrant neurodevelopment and plasticity underlying the addictions.
Collapse
Affiliation(s)
- C D Bryant
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - N Yazdani
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Psychiatry, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|