1
|
Webb A, Reynolds TR, Wright TIC, Caiazzo R, Lloyd DC, Thomas JE, Wood TA. Identification of Faba bean genetic loci associated with quantitative resistance to the fungus Botrytis fabae, causal agent of chocolate spot. FRONTIERS IN PLANT SCIENCE 2024; 15:1383396. [PMID: 38708394 PMCID: PMC11067873 DOI: 10.3389/fpls.2024.1383396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/21/2024] [Indexed: 05/07/2024]
Abstract
Introduction Chocolate spot, caused by the ascomycete fungus Botrytis fabae, is a devastating foliar disease and a major constraint on the quality and yield of faba beans (Vicia faba). The use of fungicides is the primary strategy for controlling the disease. However, high levels of partial genetic resistance have been identified and can be exploited to mitigate the disease. Methods The partially resistant V. faba cultivar Maris Bead and susceptible Egyptian accession ig70726 were crossed, and a genetic mapping population of 184 individuals was genotyped in the F2 generation and screened for resistance to B. fabae infection in the F3, F5, and F6 generations in a series of field experiments. A high-density linkage map of V. faba containing 3897 DArT markers spanning 1713.7 cM was constructed. Results Multiple candidate quantitative trait loci (QTLs) in 11 separate regions of the V. faba genome were identified; some on chromosomes 2, 3, and 6 overlapped with loci previously linked to resistance to Ascochyta leaf and pod blight caused by the necrotrophic fungus Ascochyta fabae. A transcriptomics experiment was conducted at 18 h post-inoculation in seedlings of both parents of the mapping population, identifying several differentially expressed transcripts potentially involved in early stage defence against B. fabae, including cell-wall associated protein kinases, NLR genes, and genes involved in metabolism and response to reactive oxygen species. Discussion This study identified several novel candidate QTLs in the V. faba genome that contribute to partial resistance to chocolate spot, but differences between growing seasons highlighted the importance of multi-year phenotyping experiments when searching for candidate QTLs for partial resistance.
Collapse
Affiliation(s)
- Anne Webb
- Plant Pathology, NIAB, Cambridge, United Kingdom
| | - Tom R. Reynolds
- Department of Biology, University of Oxford, Oxford, United Kingdom
| | | | - Rosa Caiazzo
- Technical Support, Illumina, Cambridge, United Kingdom
| | - David C. Lloyd
- Germinal Holdings, Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | | | | |
Collapse
|
2
|
Jacott CN, Schoonbeek HJ, Sidhu GS, Steuernagel B, Kirby R, Zheng X, von Tiedermann A, Macioszek VK, Kononowicz AK, Fell H, Fitt BDL, Mitrousia GK, Stotz HU, Ridout CJ, Wells R. Pathogen lifestyle determines host genetic signature of quantitative disease resistance loci in oilseed rape (Brassica napus). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:65. [PMID: 38430276 PMCID: PMC10908622 DOI: 10.1007/s00122-024-04569-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 01/30/2024] [Indexed: 03/03/2024]
Abstract
KEY MESSAGE Using associative transcriptomics, our study identifies genes conferring resistance to four diverse fungal pathogens in crops, emphasizing key genetic determinants of multi-pathogen resistance. Crops are affected by several pathogens, but these are rarely studied in parallel to identify common and unique genetic factors controlling diseases. Broad-spectrum quantitative disease resistance (QDR) is desirable for crop breeding as it confers resistance to several pathogen species. Here, we use associative transcriptomics (AT) to identify candidate gene loci associated with Brassica napus constitutive QDR to four contrasting fungal pathogens: Alternaria brassicicola, Botrytis cinerea, Pyrenopeziza brassicae, and Verticillium longisporum. We did not identify any shared loci associated with broad-spectrum QDR to fungal pathogens with contrasting lifestyles. Instead, we observed QDR dependent on the lifestyle of the pathogen-hemibiotrophic and necrotrophic pathogens had distinct QDR responses and associated loci, including some loci associated with early immunity. Furthermore, we identify a genomic deletion associated with resistance to V. longisporum and potentially broad-spectrum QDR. This is the first time AT has been used for several pathosystems simultaneously to identify host genetic loci involved in broad-spectrum QDR. We highlight constitutive expressed candidate loci for broad-spectrum QDR with no antagonistic effects on susceptibility to the other pathogens studies as candidates for crop breeding. In conclusion, this study represents an advancement in our understanding of broad-spectrum QDR in B. napus and is a significant resource for the scientific community.
Collapse
Affiliation(s)
- Catherine N Jacott
- Crop Genetics Department, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Henk-Jan Schoonbeek
- Crop Genetics Department, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Gurpinder Singh Sidhu
- Computational and Systems Biology Department, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Burkhard Steuernagel
- Computational and Systems Biology Department, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Rachel Kirby
- Crop Genetics Department, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Xiaorong Zheng
- Department of Crop Sciences, Georg August University, 37077, Göttingen, Germany
| | | | - Violetta K Macioszek
- Department of Biology and Plant Ecology, Faculty of Biology, University of Bialystok, 15-245, Białystok, Poland
| | - Andrzej K Kononowicz
- Department of Plant Ecophysiology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237, Lodz, Poland
| | - Heather Fell
- Centre for Agriculture, Food and Environmental Management Research, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, Hertfordshire, AL10 9AB, UK
| | - Bruce D L Fitt
- Centre for Agriculture, Food and Environmental Management Research, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, Hertfordshire, AL10 9AB, UK
| | - Georgia K Mitrousia
- Centre for Agriculture, Food and Environmental Management Research, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, Hertfordshire, AL10 9AB, UK
- Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Henrik U Stotz
- Centre for Agriculture, Food and Environmental Management Research, School of Life and Medical Sciences, University of Hertfordshire, Hatfield, Hertfordshire, AL10 9AB, UK
| | - Christopher J Ridout
- Crop Genetics Department, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Rachel Wells
- Crop Genetics Department, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK.
| |
Collapse
|
3
|
de Jager N, Shukla V, Koprivova A, Lyčka M, Bilalli L, You Y, Zeier J, Kopriva S, Ristova D. Traits linked to natural variation of sulfur content in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1036-1050. [PMID: 37831920 PMCID: PMC10837017 DOI: 10.1093/jxb/erad401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/12/2023] [Indexed: 10/15/2023]
Abstract
Sulfur (S) is an essential mineral nutrient for plant growth and development; it is important for primary and specialized plant metabolites that are crucial for biotic and abiotic interactions. Foliar S content varies up to 6-fold under a controlled environment, suggesting an adaptive value under certain natural environmental conditions. However, a major quantitative regulator of S content in Arabidopsis thaliana has not been identified yet, pointing to the existence of either additional genetic factors controlling sulfate/S content or of many minor quantitative regulators. Here, we use overlapping information of two separate ionomics studies to select groups of accessions with low, mid, and high foliar S content. We quantify series of metabolites, including anions (sulfate, phosphate, and nitrate), thiols (cysteine and glutathione), and seven glucosinolates, gene expression of 20 genes, sulfate uptake, and three biotic traits. Our results suggest that S content is tightly connected with sulfate uptake, the concentration of sulfate and phosphate anions, and glucosinolate and glutathione synthesis. Additionally, our results indicate that the growth of pathogenic bacteria is enhanced in the A. thaliana accessions containing higher S in their leaves, suggesting a complex regulation between S homeostasis, primary and secondary metabolism, and biotic pressures.
Collapse
Affiliation(s)
- Nicholas de Jager
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, D-50674 Cologne, Germany
| | - Varsa Shukla
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, D-50674 Cologne, Germany
| | - Anna Koprivova
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, D-50674 Cologne, Germany
| | - Martin Lyčka
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, 625 00 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Lorina Bilalli
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, D-50674 Cologne, Germany
| | - Yanrong You
- Institute for Molecular Ecophysiology of Plants, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| | - Jürgen Zeier
- Institute for Molecular Ecophysiology of Plants, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| | - Stanislav Kopriva
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, D-50674 Cologne, Germany
| | - Daniela Ristova
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, D-50674 Cologne, Germany
| |
Collapse
|
4
|
Ochoa JC, Mukhopadhyay S, Bieluszewski T, Jędryczka M, Malinowski R, Truman W. Natural variation in Arabidopsis responses to Plasmodiophora brassicae reveals an essential role for Resistance to Plasmodiophora brasssicae 1 (RPB1). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1421-1440. [PMID: 37646674 DOI: 10.1111/tpj.16438] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/09/2023] [Accepted: 08/16/2023] [Indexed: 09/01/2023]
Abstract
Despite the identification of clubroot resistance genes in various Brassica crops our understanding of the genetic basis of immunity to Plasmodiophora brassicae infection in the model plant Arabidopsis thaliana remains limited. To address this issue, we performed a screen of 142 natural accessions and identified 11 clubroot-resistant Arabidopsis lines. Genome-wide association analysis identified several genetic loci significantly linked with resistance. Three genes from two of these loci were targeted for deletion by CRISPR/Cas9 mutation in resistant accessions Est-1 and Uod-1. Deletion of Resistance to Plasmodiophora brassicae 1 (RPB1) rendered both lines susceptible to the P. brassicae pathotype P1+. Further analysis of rpb1 knock-out Est-1 and Uod-1 lines showed that the RPB1 protein is required for activation of downstream defence responses, such as the expression of phytoalexin biosynthesis gene CYP71A13. RPB1 has recently been shown to encode a cation channel localised in the endoplasmic reticulum. The clubroot susceptible Arabidopsis accession Col-0 lacks a functional RPB1 gene; when Col-0 is transformed with RPB1 expression driven by its native promoter it is capable of activating RPB1 transcription in response to infection, but this is not sufficient to confer resistance. Transient expression of RPB1 in Nicotiana tabacum induced programmed cell death in leaves. We conclude that RPB1 is a critical component of the defence response to P. brassicae infection in Arabidopsis, acting downstream of pathogen recognition but required for the elaboration of effective resistance.
Collapse
Affiliation(s)
- Juan Camilo Ochoa
- Institute of Plant Genetics, Polish Academy of Sciences, ul. Strzeszyńska 34, 60-479, Poznań, Poland
| | - Soham Mukhopadhyay
- Institute of Plant Genetics, Polish Academy of Sciences, ul. Strzeszyńska 34, 60-479, Poznań, Poland
| | - Tomasz Bieluszewski
- Laboratory of Genome Biology, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, ul. Uniwersytetu Poznańskiego 6, 61-614, Poznań, Poland
| | - Małgorzata Jędryczka
- Institute of Plant Genetics, Polish Academy of Sciences, ul. Strzeszyńska 34, 60-479, Poznań, Poland
| | - Robert Malinowski
- Institute of Plant Genetics, Polish Academy of Sciences, ul. Strzeszyńska 34, 60-479, Poznań, Poland
| | - William Truman
- Institute of Plant Genetics, Polish Academy of Sciences, ul. Strzeszyńska 34, 60-479, Poznań, Poland
| |
Collapse
|
5
|
Million CR, Wijeratne S, Karhoff S, Cassone BJ, McHale LK, Dorrance AE. Molecular mechanisms underpinning quantitative resistance to Phytophthora sojae in Glycine max using a systems genomics approach. FRONTIERS IN PLANT SCIENCE 2023; 14:1277585. [PMID: 38023885 PMCID: PMC10662313 DOI: 10.3389/fpls.2023.1277585] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023]
Abstract
Expression of quantitative disease resistance in many host-pathogen systems is controlled by genes at multiple loci, each contributing a small effect to the overall response. We used a systems genomics approach to study the molecular underpinnings of quantitative disease resistance in the soybean-Phytophthora sojae pathosystem, incorporating expression quantitative trait loci (eQTL) mapping and gene co-expression network analysis to identify the genes putatively regulating transcriptional changes in response to inoculation. These findings were compared to previously mapped phenotypic (phQTL) to identify the molecular mechanisms contributing to the expression of this resistance. A subset of 93 recombinant inbred lines (RILs) from a Conrad × Sloan population were inoculated with P. sojae isolate 1.S.1.1 using the tray-test method; RNA was extracted, sequenced, and the normalized read counts were genetically mapped from tissue collected at the inoculation site 24 h after inoculation from both mock and inoculated samples. In total, more than 100,000 eQTLs were mapped. There was a switch from predominantly cis-eQTLs in the mock treatment to an almost entirely nonoverlapping set of predominantly trans-eQTLs in the inoculated treatment, where greater than 100-fold more eQTLs were mapped relative to mock, indicating vast transcriptional reprogramming due to P. sojae infection occurred. The eQTLs were organized into 36 hotspots, with the four largest hotspots from the inoculated treatment corresponding to more than 70% of the eQTLs, each enriched for genes within plant-pathogen interaction pathways. Genetic regulation of trans-eQTLs in response to the pathogen was predicted to occur through transcription factors and signaling molecules involved in plant-pathogen interactions, plant hormone signal transduction, and MAPK pathways. Network analysis identified three co-expression modules that were correlated with susceptibility to P. sojae and associated with three eQTL hotspots. Among the eQTLs co-localized with phQTLs, two cis-eQTLs with putative functions in the regulation of root architecture or jasmonic acid, as well as the putative master regulators of an eQTL hotspot nearby a phQTL, represent candidates potentially underpinning the molecular control of these phQTLs for resistance.
Collapse
Affiliation(s)
- Cassidy R. Million
- Department of Plant Pathology, The Ohio State University, Wooster, OH, United States
- Center for Soybean Research and Center for Applied Plant Sciences, The Ohio State University, Columbus, OH, United States
| | - Saranga Wijeratne
- Molecular and Cellular Imaging Center, The Ohio State University, Wooster, OH, United States
| | - Stephanie Karhoff
- Center for Soybean Research and Center for Applied Plant Sciences, The Ohio State University, Columbus, OH, United States
- Translational Plant Sciences Graduate Program, The Ohio State University, Columbus, OH, United States
| | - Bryan J. Cassone
- Center for Soybean Research and Center for Applied Plant Sciences, The Ohio State University, Columbus, OH, United States
- Department of Biology, Brandon University, Brandon, Manitoba, MB, Canada
| | - Leah K. McHale
- Center for Soybean Research and Center for Applied Plant Sciences, The Ohio State University, Columbus, OH, United States
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH, United States
| | - Anne E. Dorrance
- Department of Plant Pathology, The Ohio State University, Wooster, OH, United States
- Center for Soybean Research and Center for Applied Plant Sciences, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
6
|
Rennberger G, Branham SE, Wechter WP. Genome-Wide Association Study of Resistance to Pseudomonas syringae in the USDA Collection of Citrullus amarus. PLANT DISEASE 2023; 107:3464-3474. [PMID: 37129351 DOI: 10.1094/pdis-04-23-0795-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Pseudomonas leaf spot (PLS), caused by Pseudomonas syringae pv. syringae, is an emerging disease of watermelon in the United States with the potential to severely reduce yield under humid conditions. The genetic basis of resistance to this disease is not known and no resistant germplasm is available. Because Citrullus amarus is an important reservoir of resistance genes for the cultivated watermelon, C. lanatus, we screened the United States Department of Agriculture plant introduction collection of C. amarus for resistance to PLS. Accessions (n = 117) were phenotyped for their level of resistance to PLS in two separate tests. Accession means of percent leaf area affected ranged from 1.5 to 99.4%. The broad-sense heritability for the trait was 0.51. Whole-genome resequencing generated 2,126,759 single-nucleotide polymorphisms (SNPs) which were used to perform a genome-wide association study (GWAS) aimed at discovering molecular markers for resistance. Three different models-BLINK, FarmCPU, and MLM-were included in the GWAS analyses. BLINK and FarmCPU, which are multilocus models, found eight SNPs, located on chromosomes Ca01, Ca05, Ca06, Ca08, and Ca10, that were significantly associated with resistance to PLS. Two of these SNPs were found by both BLINK and FarmCPU. The MLM model did not detect any significant associations. BLINK and FarmCPU estimated an explained phenotypic variance of 43.6 and 28.5%, respectively, for SNP S6_19327000 and 25.0 and 26.0%, respectively, for SNP S1_33362258, the two most significant SNPs found. In total, 43 candidate genes with known involvement in disease resistance were discovered within the genomic intervals of seven of the eight peak SNPs. Eleven of the candidate genes that were found have been reported to be involved in resistance to P. syringae in other plant species. Two significant SNPs were within resistance genes previously documented to play important roles of plant resistance specific to P. syringae in other pathosystems. The SNPs identified in this study will be instrumental in finding causal genes involved in PLS resistance in watermelon and developing resistant germplasm through breeding.
Collapse
Affiliation(s)
- Gabriel Rennberger
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), U.S. Vegetable Laboratory, Charleston, SC 29414
| | - Sandra E Branham
- Clemson University, Department of Plant and Environmental Sciences, Coastal Research and Education Center, Charleston, SC 29414
| | - William P Wechter
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), U.S. Vegetable Laboratory, Charleston, SC 29414
| |
Collapse
|
7
|
Hoffmann G, Shukla A, López-González S, Hafrén A. Cauliflower mosaic virus disease spectrum uncovers novel susceptibility factor NCED9 in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4751-4764. [PMID: 37249342 PMCID: PMC10433934 DOI: 10.1093/jxb/erad204] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 05/26/2023] [Indexed: 05/31/2023]
Abstract
Viruses are intimately linked with their hosts and especially dependent on gene-for-gene interactions to establish successful infections. On the host side, defence mechanisms such as tolerance and resistance can occur within the same species, leading to differing virus accumulation in relation to symptomology and plant fitness. The identification of novel resistance genes against viruses and susceptibility factors is an important part of understanding viral patho-genesis and securing food production. The model plant Arabidopsis thaliana displays a wide symptom spectrum in response to RNA virus infections, and unbiased genome-wide association studies have proven a powerful tool to identify novel disease-genes. In this study we infected natural accessions of A. thaliana with the pararetrovirus cauliflower mosaic virus (CaMV) to study the phenotypic variations between accessions and their correlation with virus accumulation. Through genome-wide association mapping of viral accumulation differences, we identified several susceptibility factors for CaMV, the strongest of which was the abscisic acid synthesis gene NCED9. Further experiments confirmed the importance of abscisic acid homeostasis and its disruption for CaMV disease.
Collapse
Affiliation(s)
- Gesa Hoffmann
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
- Linnean Center for Plant Biology, 75007 Uppsala, Sweden
| | - Aayushi Shukla
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
- Linnean Center for Plant Biology, 75007 Uppsala, Sweden
| | - Silvia López-González
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
- Linnean Center for Plant Biology, 75007 Uppsala, Sweden
| | - Anders Hafrén
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden
- Linnean Center for Plant Biology, 75007 Uppsala, Sweden
| |
Collapse
|
8
|
Krishnan P, Caseys C, Soltis N, Zhang W, Burow M, Kliebenstein DJ. Polygenic pathogen networks influence transcriptional plasticity in the Arabidopsis-Botrytis pathosystem. Genetics 2023; 224:iyad099. [PMID: 37216906 PMCID: PMC10789313 DOI: 10.1093/genetics/iyad099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 03/30/2023] [Accepted: 05/16/2023] [Indexed: 05/24/2023] Open
Abstract
Bidirectional flow of information shapes the outcome of the host-pathogen interactions and depends on the genetics of each organism. Recent work has begun to use co-transcriptomic studies to shed light on this bidirectional flow, but it is unclear how plastic the co-transcriptome is in response to genetic variation in both the host and pathogen. To study co-transcriptome plasticity, we conducted transcriptomics using natural genetic variation in the pathogen, Botrytis cinerea, and large-effect genetic variation abolishing defense signaling pathways within the host, Arabidopsis thaliana. We show that genetic variation in the pathogen has a greater influence on the co-transcriptome than mutations that abolish defense signaling pathways in the host. Genome-wide association mapping using the pathogens' genetic variation and both organisms' transcriptomes allowed an assessment of how the pathogen modulates plasticity in response to the host. This showed that the differences in both organism's responses were linked to trans-expression quantitative trait loci (eQTL) hotspots within the pathogen's genome. These hotspots control gene sets in either the host or pathogen and show differential allele sensitivity to the host's genetic variation rather than qualitative host specificity. Interestingly, nearly all the trans-eQTL hotspots were unique to the host or pathogen transcriptomes. In this system of differential plasticity, the pathogen mediates the shift in the co-transcriptome more than the host.
Collapse
Affiliation(s)
- Parvathy Krishnan
- DynaMo Center of Excellence, University of Copenhagen, Copenhagen DL-1165Denmark
| | - Celine Caseys
- Department of Plant Sciences, University of California Davis, Davis, CA 95616USA
| | - Nik Soltis
- Department of Plant Sciences, University of California Davis, Davis, CA 95616USA
| | - Wei Zhang
- Department of Botany & Plant Sciences, Institute for Integrative Genome Biology, University of California Riverside, Riverside, CA 92521, USA
| | - Meike Burow
- DynaMo Center of Excellence, University of Copenhagen, Copenhagen DL-1165Denmark
| | - Daniel J Kliebenstein
- DynaMo Center of Excellence, University of Copenhagen, Copenhagen DL-1165Denmark
- Department of Plant Sciences, University of California Davis, Davis, CA 95616USA
| |
Collapse
|
9
|
Demirjian C, Vailleau F, Berthomé R, Roux F. Genome-wide association studies in plant pathosystems: success or failure? TRENDS IN PLANT SCIENCE 2023; 28:471-485. [PMID: 36522258 DOI: 10.1016/j.tplants.2022.11.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 10/28/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
Harnessing natural genetic variation is an established alternative to artificial genetic variation for investigating the molecular dialog between partners in plant pathosystems. Herein, we review the successes of genome-wide association studies (GWAS) in both plants and pathogens. While GWAS in plants confirmed that the genetic architecture of disease resistance is polygenic, dynamic during the infection kinetics, and dependent on the environment, GWAS shortened the time of identification of quantitative trait loci (QTLs) and revealed both complex epistatic networks and a genetic architecture dependent upon the geographical scale. A similar picture emerges from the few GWAS in pathogens. In addition, the ever-increasing number of functionally validated QTLs has revealed new molecular plant defense mechanisms and pathogenicity determinants. Finally, we propose recommendations to better decode the disease triangle.
Collapse
Affiliation(s)
- Choghag Demirjian
- LIPME, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, France
| | - Fabienne Vailleau
- LIPME, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, France
| | - Richard Berthomé
- LIPME, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, France
| | - Fabrice Roux
- LIPME, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, France.
| |
Collapse
|
10
|
Emmanuel CJ, Schoonbeek H, Shaw MW. Microscope studies of symptomless growth of Botrytis cinerea in Lactuca sativa and Arabidopsis thaliana. PLANT PATHOLOGY 2023; 72:564-581. [PMID: 38516180 PMCID: PMC10952648 DOI: 10.1111/ppa.13683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/06/2022] [Accepted: 11/04/2022] [Indexed: 03/23/2024]
Abstract
The grey mould pathogen Botrytis cinerea forms systemic associations in some hosts, spreading into plant organs produced a considerable time after initial infection. These infections may have no macroscopic symptoms during much of the hosts' lifetime and are at least partially within the host tissue. The aim of the studies reported here was to locate and visualize these infections at a cellular level in Lactuca sativa (lettuce) and Arabidopsis thaliana. Symptomless but infected plants were produced by dry spore inoculation of plants growing in conditions previously shown to result in fungal spread from the initial inoculation site to newly developing plant organs. Tissue taken from inoculated plants was examined using confocal laser scanning microscopy. Two B. cinerea isolates were used: B05.10 and its GFP-labelled derivative Bcgfp1-3. Spore germination on leaf surfaces was followed by development of subcuticular inclusions and plant cell damage in single infected epidermal cells and sometimes a few nearby cells. Sparsely branched long hyphae arose and spread from the inclusions, mostly on the outer surface of the epidermal layer but occasionally below the cuticle or epidermal cells, where further inclusions formed. This was consistent with the pattern in time of recovery of B. cinerea from surface-sterilized leaf tissue. In the late symptomless phase, mycelium arising from internal fungal inclusions formed mycelial networks on the surface of leaves. Symptomless exterior mycelium grew on the roots in A. thaliana.
Collapse
Affiliation(s)
| | | | - Michael W. Shaw
- School of Agriculture, Policy and DevelopmentUniversity of ReadingReadingUK
| |
Collapse
|
11
|
Méline V, Caldwell DL, Kim BS, Khangura RS, Baireddy S, Yang C, Sparks EE, Dilkes B, Delp EJ, Iyer-Pascuzzi AS. Image-based assessment of plant disease progression identifies new genetic loci for resistance to Ralstonia solanacearum in tomato. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:887-903. [PMID: 36628472 DOI: 10.1111/tpj.16101] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 11/12/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
A major challenge in global crop production is mitigating yield loss due to plant diseases. One of the best strategies to control these losses is through breeding for disease resistance. One barrier to the identification of resistance genes is the quantification of disease severity, which is typically based on the determination of a subjective score by a human observer. We hypothesized that image-based, non-destructive measurements of plant morphology over an extended period after pathogen infection would capture subtle quantitative differences between genotypes, and thus enable identification of new disease resistance loci. To test this, we inoculated a genetically diverse biparental mapping population of tomato (Solanum lycopersicum) with Ralstonia solanacearum, a soilborne pathogen that causes bacterial wilt disease. We acquired over 40 000 time-series images of disease progression in this population, and developed an image analysis pipeline providing a suite of 10 traits to quantify bacterial wilt disease based on plant shape and size. Quantitative trait locus (QTL) analyses using image-based phenotyping for single and multi-traits identified QTLs that were both unique and shared compared with those identified by human assessment of wilting, and could detect QTLs earlier than human assessment. Expanding the phenotypic space of disease with image-based, non-destructive phenotyping both allowed earlier detection and identified new genetic components of resistance.
Collapse
Affiliation(s)
- Valérian Méline
- Department of Botany and Plant Pathology and Center for Plant Biology, Purdue University, 915 W. State Street, West Lafayette, Indiana, USA
| | - Denise L Caldwell
- Department of Botany and Plant Pathology and Center for Plant Biology, Purdue University, 915 W. State Street, West Lafayette, Indiana, USA
| | - Bong-Suk Kim
- Department of Botany and Plant Pathology and Center for Plant Biology, Purdue University, 915 W. State Street, West Lafayette, Indiana, USA
| | - Rajdeep S Khangura
- Department of Biochemistry and Center for Plant Biology, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Sriram Baireddy
- Video and Image Processing Laboratory (VIPER), School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Changye Yang
- Video and Image Processing Laboratory (VIPER), School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Erin E Sparks
- Department of Plant and Soil Sciences and the Delaware Biotechnology Institute, University of Delaware, Newark, Delaware, USA
| | - Brian Dilkes
- Department of Biochemistry and Center for Plant Biology, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Edward J Delp
- Video and Image Processing Laboratory (VIPER), School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Anjali S Iyer-Pascuzzi
- Department of Botany and Plant Pathology and Center for Plant Biology, Purdue University, 915 W. State Street, West Lafayette, Indiana, USA
| |
Collapse
|
12
|
Vogel G, Giles G, Robbins KR, Gore MA, Smart CD. Quantitative Genetic Analysis of Interactions in the Pepper- Phytophthora capsici Pathosystem. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:1018-1033. [PMID: 35914305 DOI: 10.1094/mpmi-12-21-0307-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The development of pepper cultivars with durable resistance to the oomycete Phytophthora capsici has been challenging due to differential interactions between the species that allow certain pathogen isolates to cause disease on otherwise resistant host genotypes. Currently, little is known about the pathogen genes involved in these interactions. To investigate the genetic basis of P. capsici virulence on individual pepper genotypes, we inoculated sixteen pepper accessions, representing commercial varieties, sources of resistance, and host differentials, with 117 isolates of P. capsici, for a total of 1,864 host-pathogen combinations. Analysis of disease outcomes revealed a significant effect of inter-species genotype-by-genotype interactions, although these interactions were quantitative rather than qualitative in scale. Isolates were classified into five pathogen subpopulations, as determined by their genotypes at over 60,000 single-nucleotide polymorphisms (SNPs). While absolute virulence levels on certain pepper accessions significantly differed between subpopulations, a multivariate phenotype reflecting relative virulence levels on certain pepper genotypes compared with others showed the strongest association with pathogen subpopulation. A genome-wide association study (GWAS) identified four pathogen loci significantly associated with virulence, two of which colocalized with putative RXLR effector genes and another with a polygalacturonase gene cluster. All four loci appeared to represent broad-spectrum virulence genes, as significant SNPs demonstrated consistent effects regardless of the host genotype tested. Host genotype-specific virulence variants in P. capsici may be difficult to map via GWAS with all but excessively large sample sizes, perhaps controlled by genes of small effect or by multiple allelic variants that have arisen independently. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Gregory Vogel
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, U.S.A
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Geneva, NY 14456, U.S.A
| | - Garrett Giles
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Geneva, NY 14456, U.S.A
| | - Kelly R Robbins
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, U.S.A
| | - Michael A Gore
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, U.S.A
| | - Christine D Smart
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Geneva, NY 14456, U.S.A
| |
Collapse
|
13
|
A Genome-Wide Association study in Arabidopsis thaliana to decipher the adaptive genetics of quantitative disease resistance in a native heterogeneous environment. PLoS One 2022; 17:e0274561. [PMID: 36190949 PMCID: PMC9529085 DOI: 10.1371/journal.pone.0274561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 08/31/2022] [Indexed: 11/05/2022] Open
Abstract
Pathogens are often the main selective agents acting in plant communities, thereby influencing the distribution of polymorphism at loci affecting resistance within and among natural plant populations. In addition, the outcome of plant-pathogen interactions can be drastically affected by abiotic and biotic factors at different spatial and temporal grains. The characterization of the adaptive genetic architecture of disease resistance in native heterogeneous environments is however still missing. In this study, we conducted an in situ Genome-Wide Association study in the spatially heterogeneous native habitat of a highly genetically polymorphic local mapping population of Arabidopsis thaliana, to unravel the adaptive genetic architecture of quantitative disease resistance. Disease resistance largely differed among three native soils and was affected by the presence of the grass Poa annua. The observation of strong crossing reactions norms among the 195 A. thaliana genotypes for disease resistance among micro-habitats, combined with a negative fecundity-disease resistance relationship in each micro-habitat, suggest that alternative local genotypes of A. thaliana are favored under contrasting environmental conditions at the scale of few meters. A complex genetic architecture was detected for disease resistance and fecundity. However, only few QTLs were common between these two traits. Heterogeneous selection in this local population should therefore promote the maintenance of polymorphism at only few candidate resistance genes.
Collapse
|
14
|
Bassetti N, Caarls L, Bukovinszkine'Kiss G, El-Soda M, van Veen J, Bouwmeester K, Zwaan BJ, Schranz ME, Bonnema G, Fatouros NE. Genetic analysis reveals three novel QTLs underpinning a butterfly egg-induced hypersensitive response-like cell death in Brassica rapa. BMC PLANT BIOLOGY 2022; 22:140. [PMID: 35331150 PMCID: PMC8944062 DOI: 10.1186/s12870-022-03522-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Cabbage white butterflies (Pieris spp.) can be severe pests of Brassica crops such as Chinese cabbage, Pak choi (Brassica rapa) or cabbages (B. oleracea). Eggs of Pieris spp. can induce a hypersensitive response-like (HR-like) cell death which reduces egg survival in the wild black mustard (B. nigra). Unravelling the genetic basis of this egg-killing trait in Brassica crops could improve crop resistance to herbivory, reducing major crop losses and pesticides use. Here we investigated the genetic architecture of a HR-like cell death induced by P. brassicae eggs in B. rapa. RESULTS A germplasm screening of 56 B. rapa accessions, representing the genetic and geographical diversity of a B. rapa core collection, showed phenotypic variation for cell death. An image-based phenotyping protocol was developed to accurately measure size of HR-like cell death and was then used to identify two accessions that consistently showed weak (R-o-18) or strong cell death response (L58). Screening of 160 RILs derived from these two accessions resulted in three novel QTLs for Pieris brassicae-induced cell death on chromosomes A02 (Pbc1), A03 (Pbc2), and A06 (Pbc3). The three QTLs Pbc1-3 contain cell surface receptors, intracellular receptors and other genes involved in plant immunity processes, such as ROS accumulation and cell death formation. Synteny analysis with A. thaliana suggested that Pbc1 and Pbc2 are novel QTLs associated with this trait, while Pbc3 also contains an ortholog of LecRK-I.1, a gene of A. thaliana previously associated with cell death induced by a P. brassicae egg extract. CONCLUSIONS This study provides the first genomic regions associated with the Pieris egg-induced HR-like cell death in a Brassica crop species. It is a step closer towards unravelling the genetic basis of an egg-killing crop resistance trait, paving the way for breeders to further fine-map and validate candidate genes.
Collapse
Affiliation(s)
- Niccolò Bassetti
- Biosystematics Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Lotte Caarls
- Biosystematics Group, Wageningen University & Research, Wageningen, The Netherlands
- Laboratory of Plant Breeding, Wageningen University & Research, Wageningen, The Netherlands
| | - Gabriella Bukovinszkine'Kiss
- Biosystematics Group, Wageningen University & Research, Wageningen, The Netherlands
- Laboratory of Genetics, Wageningen University & Research, Wageningen, The Netherlands
| | - Mohamed El-Soda
- Department of Genetics, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Jeroen van Veen
- Biosystematics Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Klaas Bouwmeester
- Biosystematics Group, Wageningen University & Research, Wageningen, The Netherlands
- Laboratory of Entomology, Wageningen University & Research, Wageningen, The Netherlands
| | - Bas J Zwaan
- Laboratory of Genetics, Wageningen University & Research, Wageningen, The Netherlands
| | - M Eric Schranz
- Biosystematics Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Guusje Bonnema
- Laboratory of Plant Breeding, Wageningen University & Research, Wageningen, The Netherlands
| | - Nina E Fatouros
- Biosystematics Group, Wageningen University & Research, Wageningen, The Netherlands.
| |
Collapse
|
15
|
Petrasch S, Mesquida-Pesci SD, Pincot DDA, Feldmann MJ, López CM, Famula R, Hardigan MA, Cole GS, Knapp SJ, Blanco-Ulate B. Genomic prediction of strawberry resistance to postharvest fruit decay caused by the fungal pathogen Botrytis cinerea. G3 (BETHESDA, MD.) 2022; 12:6427547. [PMID: 34791166 PMCID: PMC8728004 DOI: 10.1093/g3journal/jkab378] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 10/08/2021] [Indexed: 12/18/2022]
Abstract
Gray mold, a disease of strawberry (Fragaria × ananassa) caused by the ubiquitous necrotroph Botrytis cinerea, renders fruit unmarketable and causes economic losses in the postharvest supply chain. To explore the feasibility of selecting for increased resistance to gray mold, we undertook genetic and genomic prediction studies in strawberry populations segregating for fruit quality and shelf life traits hypothesized to pleiotropically affect susceptibility. As predicted, resistance to gray mold was heritable but quantitative and genetically complex. While every individual was susceptible, the speed of symptom progression and severity differed. Narrow-sense heritability ranged from 0.38 to 0.71 for lesion diameter (LD) and 0.39 to 0.44 for speed of emergence of external mycelium (EM). Even though significant additive genetic variation was observed for LD and EM, the phenotypic ranges were comparatively narrow and genome-wide analyses did not identify any large-effect loci. Genomic selection (GS) accuracy ranged from 0.28 to 0.59 for LD and 0.37 to 0.47 for EM. Additive genetic correlations between fruit quality and gray mold resistance traits were consistent with prevailing hypotheses: LD decreased as titratable acidity increased, whereas EM increased as soluble solid content decreased and firmness increased. We concluded that phenotypic and GS could be effective for reducing LD and increasing EM, especially in long shelf life populations, but that a significant fraction of the genetic variation for resistance to gray mold was caused by the pleiotropic effects of fruit quality traits that differ among market and shelf life classes.
Collapse
Affiliation(s)
- Stefan Petrasch
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| | | | - Dominique D A Pincot
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Mitchell J Feldmann
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Cindy M López
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Randi Famula
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Michael A Hardigan
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Glenn S Cole
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Steven J Knapp
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Barbara Blanco-Ulate
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
16
|
Caseys C, Shi G, Soltis N, Gwinner R, Corwin J, Atwell S, Kliebenstein DJ. Quantitative interactions: the disease outcome of Botrytis cinerea across the plant kingdom. G3 (BETHESDA, MD.) 2021; 11:jkab175. [PMID: 34003931 PMCID: PMC8496218 DOI: 10.1093/g3journal/jkab175] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/28/2021] [Indexed: 11/12/2022]
Abstract
Botrytis cinerea is a fungal pathogen that causes necrotic disease on more than a thousand known hosts widely spread across the plant kingdom. How B. cinerea interacts with such extensive host diversity remains largely unknown. To address this question, we generated an infectivity matrix of 98 strains of B. cinerea on 90 genotypes representing eight host plants. This experimental infectivity matrix revealed that the disease outcome is largely explained by variations in either the host resistance or pathogen virulence. However, the specific interactions between host and pathogen account for 16% of the disease outcome. Furthermore, the disease outcomes cluster among genotypes of a species but are independent of the relatedness between hosts. When analyzing the host specificity and virulence of B. cinerea, generalist strains are predominant. In this fungal necrotroph, specialization may happen by a loss in virulence on most hosts rather than an increase of virulence on a specific host. To uncover the genetic architecture of Botrytis host specificity and virulence, a genome-wide association study (GWAS) was performed and revealed up to 1492 genes of interest. The genetic architecture of these traits is widespread across the B. cinerea genome. The complexity of the disease outcome might be explained by hundreds of functionally diverse genes putatively involved in adjusting the infection to diverse hosts.
Collapse
Affiliation(s)
- Celine Caseys
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Gongjun Shi
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102, USA
| | - Nicole Soltis
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
- Plant Biology Graduate Group, University of California, Davis, Davis, CA 95616 USA
| | - Raoni Gwinner
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
- Embrapa Amazonia Ocidental, Manaus 69010-970, Brazil
| | - Jason Corwin
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
- Department of Ecology and Evolution Biology, University of Colorado, Boulder, CO 80309-0334, USA
| | - Susanna Atwell
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Daniel J Kliebenstein
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
- DynaMo Center of Excellence, University of Copenhagen, Frederiksberg C DK-1871, Denmark
| |
Collapse
|
17
|
Adhikari P, Mideros SX, Jamann TM. Differential Regulation of Maize and Sorghum Orthologs in Response to the Fungal Pathogen Exserohilum turcicum. FRONTIERS IN PLANT SCIENCE 2021; 12:675208. [PMID: 34113371 PMCID: PMC8185347 DOI: 10.3389/fpls.2021.675208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/26/2021] [Indexed: 06/01/2023]
Abstract
Pathogens that infect more than one host offer an opportunity to study how resistance mechanisms have evolved across different species. Exserohilum turcicum infects both maize and sorghum and the isolates are host-specific, offering a unique system to examine both compatible and incompatible interactions. We conducted transcriptional analysis of maize and sorghum in response to maize-specific and sorghum-specific E. turcicum isolates and identified functionally related co-expressed modules. Maize had a more robust transcriptional response than sorghum. E. turcicum responsive genes were enriched in core orthologs in both crops, but only up to 16% of core orthologs showed conserved expression patterns. Most changes in gene expression for the core orthologs, including hub genes, were lineage specific, suggesting a role for regulatory divergent evolution. We identified several defense-related shared differentially expressed (DE) orthologs with conserved expression patterns between the two crops, suggesting a role for parallel evolution of those genes in both crops. Many of the differentially expressed genes (DEGs) during the incompatible interaction were related to quantitative disease resistance (QDR). This work offers insights into how different hosts with relatively recent divergence interact with a common pathogen. Our results are important for developing resistance to this critical pathogen and understanding the evolution of host-pathogen interactions.
Collapse
|
18
|
Alonso-Díaz A, Satbhai SB, de Pedro-Jové R, Berry HM, Göschl C, Argueso CT, Novak O, Busch W, Valls M, Coll NS. A genome-wide association study reveals cytokinin as a major component in the root defense responses against Ralstonia solanacearum. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2727-2740. [PMID: 33475698 PMCID: PMC8006551 DOI: 10.1093/jxb/eraa610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/19/2021] [Indexed: 05/30/2023]
Abstract
Bacterial wilt caused by the soil-borne pathogen Ralstonia solancearum is economically devastating, with no effective methods to fight the disease. This pathogen invades plants through their roots and colonizes their xylem, clogging the vasculature and causing rapid wilting. Key to preventing colonization are the early defense responses triggered in the host's root upon infection, which remain mostly unknown. Here, we have taken advantage of a high-throughput in vitro infection system to screen natural variability associated with the root growth inhibition phenotype caused by R. solanacearum in Arabidopsis during the first hours of infection. To analyze the genetic determinants of this trait, we have performed a genome-wide association study, identifying allelic variation at several loci related to cytokinin metabolism, including genes responsible for biosynthesis and degradation of cytokinin. Further, our data clearly demonstrate that cytokinin signaling is induced early during the infection process and cytokinin contributes to immunity against R. solanacearum. This study highlights a new role for cytokinin in root immunity, paving the way for future research that will help in understanding the mechanisms underpinning root defenses.
Collapse
Affiliation(s)
- Alejandro Alonso-Díaz
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, Barcelona, Spain
| | - Santosh B Satbhai
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr Bohr-Gasse 3, Vienna 1030, Austria
- Salk Institute For Biological Studies, Plant Molecular and Cellular Biology Laboratory, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Roger de Pedro-Jové
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, Barcelona, Spain
| | - Hannah M Berry
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO 80523, USA
- Cell and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Christian Göschl
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr Bohr-Gasse 3, Vienna 1030, Austria
| | - Cristiana T Argueso
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO 80523, USA
| | - Ondrej Novak
- Laboratory of Growth Regulators, Olomouc, The Czech Republic
| | - Wolfgang Busch
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr Bohr-Gasse 3, Vienna 1030, Austria
- Salk Institute For Biological Studies, Plant Molecular and Cellular Biology Laboratory, 10010 N Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Marc Valls
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, Barcelona, Spain
- Genetics Department, University of Barcelona, Barcelona, Spain
| | - Núria S Coll
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, Barcelona, Spain
| |
Collapse
|
19
|
Liu JJ, Sniezko RA, Sissons R, Krakowski J, Alger G, Schoettle AW, Williams H, Zamany A, Zitomer RA, Kegley A. Association Mapping and Development of Marker-Assisted Selection Tools for the Resistance to White Pine Blister Rust in the Alberta Limber Pine Populations. FRONTIERS IN PLANT SCIENCE 2020; 11:557672. [PMID: 33042181 PMCID: PMC7522202 DOI: 10.3389/fpls.2020.557672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
Since its introduction to North America in the early 1900s, white pine blister rust (WPBR) caused by the fungal pathogen Cronartium ribicola has resulted in substantial economic losses and ecological damage to native North American five-needle pine species. The high susceptibility and mortality of these species, including limber pine (Pinus flexilis), creates an urgent need for the development and deployment of resistant germplasm to support recovery of impacted populations. Extensive screening for genetic resistance to WPBR has been underway for decades in some species but has only started recently in limber pine using seed families collected from wild parental trees in the USA and Canada. This study was conducted to characterize Alberta limber pine seed families for WPBR resistance and to develop reliable molecular tools for marker-assisted selection (MAS). Open-pollinated seed families were evaluated for host reaction following controlled infection using C. ribicola basidiospores. Phenotypic segregation for presence/absence of stem symptoms was observed in four seed families. The segregation ratios of these families were consistent with expression of major gene resistance (MGR) controlled by a dominant R locus. Based on linkage disequilibrium (LD)-based association mapping used to detect single nucleotide polymorphism (SNP) markers associated with MGR against C. ribicola, MGR in these seed families appears to be controlled by Cr4 or other R genes in very close proximity to Cr4. These associated SNPs were located in genes involved in multiple molecular mechanisms potentially underlying limber pine MGR to C. ribicola, including NBS-LRR genes for recognition of C. ribicola effectors, signaling components, and a large set of defense-responsive genes with potential functions in plant effector-triggered immunity (ETI). Interactions of associated loci were identified for MGR selection in trees with complex genetic backgrounds. SNPs with tight Cr4-linkage were further converted to TaqMan assays to confirm their effectiveness as MAS tools. This work demonstrates the successful translation and deployment of molecular genetic knowledge into specific MAS tools that can be easily applied in a selection or breeding program to efficiently screen MGR against WPBR in Alberta limber pine populations.
Collapse
Affiliation(s)
- Jun-Jun Liu
- Canadian Forest Service, Natural Resources Canada, Victoria, BC, Canada
| | - Richard A. Sniezko
- USDA Forest Service, Dorena Genetic Resource Center, Cottage Grove, OR, United States
| | - Robert Sissons
- Parks Canada, Waterton Lakes National Park, Waterton Park, AB, Canada
| | | | - Genoa Alger
- Parks Canada, Waterton Lakes National Park, Waterton Park, AB, Canada
| | - Anna W. Schoettle
- USDA Forest Service, Rocky Mountain Research Station, Fort Collins, CO, United States
| | - Holly Williams
- Canadian Forest Service, Natural Resources Canada, Victoria, BC, Canada
| | - Arezoo Zamany
- Canadian Forest Service, Natural Resources Canada, Victoria, BC, Canada
| | - Rachel A. Zitomer
- USDA Forest Service, Dorena Genetic Resource Center, Cottage Grove, OR, United States
| | - Angelia Kegley
- USDA Forest Service, Dorena Genetic Resource Center, Cottage Grove, OR, United States
| |
Collapse
|
20
|
Differential Alternative Splicing Genes and Isoform Regulation Networks of Rapeseed ( Brassica napus L.) Infected with Sclerotinia sclerotiorum. Genes (Basel) 2020; 11:genes11070784. [PMID: 32668742 PMCID: PMC7397149 DOI: 10.3390/genes11070784] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 11/17/2022] Open
Abstract
Alternative splicing (AS) is a post-transcriptional level of gene expression regulation that increases transcriptome and proteome diversity. How the AS landscape of rapeseed (Brassica napus L.) changes in response to the fungal pathogen Sclerotinia sclerotiorum is unknown. Here, we analyzed 18 RNA-seq libraries of mock-inoculated and S. sclerotiorum-inoculated susceptible and tolerant B. napus plants. We found that infection increased AS, with intron retention being the main AS event. To determine the key genes functioning in the AS response, we performed a differential AS (DAS) analysis. We identified 79 DAS genes, including those encoding splicing factors, defense response proteins, crucial transcription factors and enzymes. We generated coexpression networks based on the splicing isoforms, rather than the genes, to explore the genes’ diverse functions. Using this weighted gene coexpression network analysis alongside a gene ontology enrichment analysis, we identified 11 modules putatively involved in the pathogen defense response. Within these regulatory modules, six DAS genes (ascorbate peroxidase 1, ser/arg-rich protein 34a, unknown function 1138, nitrilase 2, v-atpase f, and amino acid transporter 1) were considered to encode key isoforms involved in the defense response. This study provides insight into the post-transcriptional response of B. napus to S. sclerotiorum infection.
Collapse
|
21
|
Barbacci A, Navaud O, Mbengue M, Barascud M, Godiard L, Khafif M, Lacaze A, Raffaele S. Rapid identification of an Arabidopsis NLR gene as a candidate conferring susceptibility to Sclerotinia sclerotiorum using time-resolved automated phenotyping. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:903-917. [PMID: 32170798 PMCID: PMC7497225 DOI: 10.1111/tpj.14747] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 01/25/2020] [Accepted: 02/28/2020] [Indexed: 05/11/2023]
Abstract
The broad host range necrotrophic fungus Sclerotinia sclerotiorum is a devastating pathogen of many oil and vegetable crops. Plant genes conferring complete resistance against S. sclerotiorum have not been reported. Instead, plant populations challenged by S. sclerotiorum exhibit a continuum of partial resistance designated as quantitative disease resistance (QDR). Because of their complex interplay and their small phenotypic effect, the functional characterization of QDR genes remains limited. How broad host range necrotrophic fungi manipulate plant programmed cell death is for instance largely unknown. Here, we designed a time-resolved automated disease phenotyping pipeline enabling high-throughput disease lesion measurement with high resolution, low footprint at low cost. We could accurately recover contrasted disease responses in several pathosystems using this system. We used our phenotyping pipeline to assess the kinetics of disease symptoms caused by seven S. sclerotiorum isolates on six A. thaliana natural accessions with unprecedented resolution. Large effect polymorphisms common to the most resistant A. thaliana accessions identified highly divergent alleles of the nucleotide-binding site leucine-rich repeat gene LAZ5 in the resistant accessions Rubezhnoe and Lip-0. We show that impaired LAZ5 expression in laz5.1 mutant lines and in A. thaliana Rub natural accession correlate with enhanced QDR to S. sclerotiorum. These findings illustrate the value of time-resolved image-based phenotyping for unravelling the genetic bases of complex traits such as QDR. Our results suggest that S. sclerotiorum manipulates plant sphingolipid pathways guarded by LAZ5 to trigger programmed cell death and cause disease.
Collapse
Affiliation(s)
- Adelin Barbacci
- Laboratoire des Interactions Plantes Micro-organismes (LIPM)Université de ToulouseINRAECNRS24 chemin de Borde Rouge - Auzeville CS 52627 F31326Castanet TolosanCedexFrance
| | - Olivier Navaud
- Laboratoire des Interactions Plantes Micro-organismes (LIPM)Université de ToulouseINRAECNRS24 chemin de Borde Rouge - Auzeville CS 52627 F31326Castanet TolosanCedexFrance
| | - Malick Mbengue
- Laboratoire des Interactions Plantes Micro-organismes (LIPM)Université de ToulouseINRAECNRS24 chemin de Borde Rouge - Auzeville CS 52627 F31326Castanet TolosanCedexFrance
| | - Marielle Barascud
- Laboratoire des Interactions Plantes Micro-organismes (LIPM)Université de ToulouseINRAECNRS24 chemin de Borde Rouge - Auzeville CS 52627 F31326Castanet TolosanCedexFrance
| | - Laurence Godiard
- Laboratoire des Interactions Plantes Micro-organismes (LIPM)Université de ToulouseINRAECNRS24 chemin de Borde Rouge - Auzeville CS 52627 F31326Castanet TolosanCedexFrance
| | - Mehdi Khafif
- Laboratoire des Interactions Plantes Micro-organismes (LIPM)Université de ToulouseINRAECNRS24 chemin de Borde Rouge - Auzeville CS 52627 F31326Castanet TolosanCedexFrance
| | - Aline Lacaze
- Laboratoire des Interactions Plantes Micro-organismes (LIPM)Université de ToulouseINRAECNRS24 chemin de Borde Rouge - Auzeville CS 52627 F31326Castanet TolosanCedexFrance
| | - Sylvain Raffaele
- Laboratoire des Interactions Plantes Micro-organismes (LIPM)Université de ToulouseINRAECNRS24 chemin de Borde Rouge - Auzeville CS 52627 F31326Castanet TolosanCedexFrance
| |
Collapse
|
22
|
Sucher J, Mbengue M, Dresen A, Barascud M, Didelon M, Barbacci A, Raffaele S. Phylotranscriptomics of the Pentapetalae Reveals Frequent Regulatory Variation in Plant Local Responses to the Fungal Pathogen Sclerotinia sclerotiorum. THE PLANT CELL 2020; 32:1820-1844. [PMID: 32265317 PMCID: PMC7268813 DOI: 10.1105/tpc.19.00806] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 03/16/2020] [Accepted: 03/30/2020] [Indexed: 05/13/2023]
Abstract
Quantitative disease resistance (QDR) is a conserved form of plant immunity that limits infections caused by a broad range of pathogens. QDR has a complex genetic determinism. The extent to which molecular components of the QDR response vary across plant species remains elusive. The fungal pathogen Sclerotinia sclerotiorum, causal agent of white mold diseases on hundreds of plant species, triggers QDR in host populations. To document the diversity of local responses to S. sclerotiorum at the molecular level, we analyzed the complete transcriptomes of six species spanning the Pentapetalae (Phaseolus vulgaris, Ricinus communis, Arabidopsis [Arabidopsis thaliana], Helianthus annuus, Solanum lycopersicum, and Beta vulgaris) inoculated with the same strain of S. sclerotiorum About one-third of plant transcriptomes responded locally to S. sclerotiorum, including a high proportion of broadly conserved genes showing frequent regulatory divergence at the interspecific level. Evolutionary inferences suggested a trend toward the acquisition of gene induction relatively recently in several lineages. Focusing on a group of ABCG transporters, we propose that exaptation by regulatory divergence contributed to the evolution of QDR. This evolutionary scenario has implications for understanding the QDR spectrum and durability. Our work provides resources for functional studies of gene regulation and QDR molecular mechanisms across the Pentapetalae.
Collapse
Affiliation(s)
- Justine Sucher
- Laboratoire des Interactions Plantes-Microorganismes (LIPM), Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environement (INRAE) - Centre National de la Recherche Scientifique (CNRS), F31326 Castanet Tolosan, France
| | - Malick Mbengue
- Laboratoire des Interactions Plantes-Microorganismes (LIPM), Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environement (INRAE) - Centre National de la Recherche Scientifique (CNRS), F31326 Castanet Tolosan, France
| | - Axel Dresen
- Laboratoire des Interactions Plantes-Microorganismes (LIPM), Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environement (INRAE) - Centre National de la Recherche Scientifique (CNRS), F31326 Castanet Tolosan, France
| | - Marielle Barascud
- Laboratoire des Interactions Plantes-Microorganismes (LIPM), Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environement (INRAE) - Centre National de la Recherche Scientifique (CNRS), F31326 Castanet Tolosan, France
| | - Marie Didelon
- Laboratoire des Interactions Plantes-Microorganismes (LIPM), Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environement (INRAE) - Centre National de la Recherche Scientifique (CNRS), F31326 Castanet Tolosan, France
| | - Adelin Barbacci
- Laboratoire des Interactions Plantes-Microorganismes (LIPM), Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environement (INRAE) - Centre National de la Recherche Scientifique (CNRS), F31326 Castanet Tolosan, France
| | - Sylvain Raffaele
- Laboratoire des Interactions Plantes-Microorganismes (LIPM), Institut National de Recherche pour l'Agriculture, l'alimentation et l'Environement (INRAE) - Centre National de la Recherche Scientifique (CNRS), F31326 Castanet Tolosan, France
| |
Collapse
|
23
|
Didelon M, Khafif M, Godiard L, Barbacci A, Raffaele S. Patterns of Sequence and Expression Diversification Associate Members of the PADRE Gene Family With Response to Fungal Pathogens. Front Genet 2020; 11:491. [PMID: 32547597 PMCID: PMC7272662 DOI: 10.3389/fgene.2020.00491] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/20/2020] [Indexed: 12/31/2022] Open
Abstract
Pathogen infection triggers extensive reprogramming of the plant transcriptome, including numerous genes the function of which is unknown. Due to their wide taxonomic distribution, genes encoding proteins with Domains of Unknown Function (DUFs) activated upon pathogen challenge likely play important roles in disease. In Arabidopsis thaliana, we identified thirteen genes harboring a DUF4228 domain in the top 10% most induced genes after infection by the fungal pathogen Sclerotinia sclerotiorum. Based on functional information collected through homology and contextual searches, we propose to refer to this domain as the pathogen and abiotic stress response, cadmium tolerance, disordered region-containing (PADRE) domain. Genome-wide and phylogenetic analyses indicated that PADRE is specific to plants and diversified into 10 subfamilies early in the evolution of Angiosperms. PADRE typically occurs in small single-domain proteins with a bipartite architecture. PADRE N-terminus harbors conserved sequence motifs, while its C-terminus includes an intrinsically disordered region with multiple phosphorylation sites. A pangenomic survey of PADRE genes expression upon S. sclerotiorum inoculation in Arabidopsis, castor bean, and tomato indicated consistent expression across species within phylogenetic groups. Multi-stress expression profiling and co-expression network analyses associated AtPADRE genes with the induction of anthocyanin biosynthesis and responses to chitin and to hypoxia. Our analyses reveal patterns of sequence and expression diversification consistent with the evolution of a role in disease resistance for an uncharacterized family of plant genes. These findings highlight PADRE genes as prime candidates for the functional dissection of mechanisms underlying plant disease resistance to fungi.
Collapse
Affiliation(s)
| | | | | | | | - Sylvain Raffaele
- Université de Toulouse, Laboratoire des Interactions Plantes Micro-organismes (LIPM), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) – Centre National de la Recherche Scientifique (CNRS), Castanet-Tolosan, France
| |
Collapse
|
24
|
Soltis NE, Caseys C, Zhang W, Corwin JA, Atwell S, Kliebenstein DJ. Pathogen Genetic Control of Transcriptome Variation in the Arabidopsis thaliana - Botrytis cinerea Pathosystem. Genetics 2020; 215:253-266. [PMID: 32165442 PMCID: PMC7198280 DOI: 10.1534/genetics.120.303070] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 03/11/2020] [Indexed: 01/12/2023] Open
Abstract
In plant-pathogen relations, disease symptoms arise from the interaction of the host and pathogen genomes. Host-pathogen functional gene interactions are well described, whereas little is known about how the pathogen genetic variation modulates both organisms' transcriptomes. To model and generate hypotheses on a generalist pathogen control of gene expression regulation, we used the Arabidopsis thaliana-Botrytis cinerea pathosystem and the genetic diversity of a collection of 96 B. cinerea isolates. We performed expression-based genome-wide association (eGWA) for each of 23,947 measurable transcripts in Arabidopsis (host), and 9267 measurable transcripts in B. cinerea (pathogen). Unlike other eGWA studies, we detected a relative absence of locally acting expression quantitative trait loci (cis-eQTL), partly caused by structural variants and allelic heterogeneity hindering their identification. This study identified several distantly acting trans-eQTL linked to eQTL hotspots dispersed across Botrytis genome that altered only Botrytis transcripts, only Arabidopsis transcripts, or transcripts from both species. Gene membership in the trans-eQTL hotspots suggests links between gene expression regulation and both known and novel virulence mechanisms in this pathosystem. Genes annotated to these hotspots provide potential targets for blocking manipulation of the host response by this ubiquitous generalist necrotrophic pathogen.
Collapse
Affiliation(s)
- Nicole E Soltis
- Department of Plant Sciences, University of California, Davis, California 95616
- Plant Biology Graduate Group, University of California, Davis, California 95616
| | - Celine Caseys
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Wei Zhang
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas 66506
| | - Jason A Corwin
- Department of Ecology and Evolution Biology, University of Colorado, Boulder, Colorado 80309-0334
| | - Susanna Atwell
- Plant Biology Graduate Group, University of California, Davis, California 95616
| | - Daniel J Kliebenstein
- Department of Plant Sciences, University of California, Davis, California 95616
- Plant Biology Graduate Group, University of California, Davis, California 95616
- DynaMo Center of Excellence, University of Copenhagen, DK-1871, Frederiksberg C, Denmark
| |
Collapse
|
25
|
Kliebenstein DJ. Using networks to identify and interpret natural variation. CURRENT OPINION IN PLANT BIOLOGY 2020; 54:122-126. [PMID: 32413801 DOI: 10.1016/j.pbi.2020.04.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 04/20/2020] [Indexed: 06/11/2023]
Abstract
Studies on natural variation and network biology inherently work to summarize vast amounts of information and data. The combination of these two areas of study while creating datasets of immense complexity is critical to their mutual progress. Networks are necessary as a way to work to reduce the dimensionality inherent in natural variation with 100 s to 1000 s of genotypes. Correspondingly natural variation is essential for testing how networks may or may not be shared across individuals or species. Advances in this area of cross-fertilization including using networks directly as phenotypes and the use of networks to help in prioritizing candidate gene validation efforts. Interesting new observations on frequent presence-absence variation in gene content and adaptation is beginning to highlight the potential for natural variation in network presence-absence. This review attempts to delve into these new insights.
Collapse
Affiliation(s)
- Daniel J Kliebenstein
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA; DynaMo Center of Excellence, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark.
| |
Collapse
|
26
|
Chiniquy D, Underwood W, Corwin J, Ryan A, Szemenyei H, Lim CC, Stonebloom SH, Birdseye DS, Vogel J, Kliebenstein D, Scheller HV, Somerville S. PMR5, an acetylation protein at the intersection of pectin biosynthesis and defense against fungal pathogens. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:1022-1035. [PMID: 31411777 DOI: 10.1111/tpj.14497] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 07/12/2019] [Accepted: 07/17/2019] [Indexed: 05/11/2023]
Abstract
Powdery mildew (Golovinomyces cichoracearum), one of the most prolific obligate biotrophic fungal pathogens worldwide, infects its host by penetrating the plant cell wall without activating the plant's innate immune system. The Arabidopsis mutant powdery mildew resistant 5 (pmr5) carries a mutation in a putative pectin acetyltransferase gene that confers enhanced resistance to powdery mildew. Here, we show that heterologously expressed PMR5 protein transfers acetyl groups from [14 C]-acetyl-CoA to oligogalacturonides. Through site-directed mutagenesis, we show that three amino acids within a highly conserved esterase domain in putative PMR5 orthologs are necessary for PMR5 function. A suppressor screen of mutagenized pmr5 seed selecting for increased powdery mildew susceptibility identified two previously characterized genes affecting the acetylation of plant cell wall polysaccharides, RWA2 and TBR. The rwa2 and tbr mutants also suppress powdery mildew disease resistance in pmr6, a mutant defective in a putative pectate lyase gene. Cell wall analysis of pmr5 and pmr6, and their rwa2 and tbr suppressor mutants, demonstrates minor shifts in cellulose and pectin composition. In direct contrast to their increased powdery mildew resistance, both pmr5 and pmr6 plants are highly susceptibile to multiple strains of the generalist necrotroph Botrytis cinerea, and have decreased camalexin production upon infection with B. cinerea. These results illustrate that cell wall composition is intimately connected to fungal disease resistance and outline a potential route for engineering powdery mildew resistance into susceptible crop species.
Collapse
Affiliation(s)
- Dawn Chiniquy
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
- Energy Biosciences Institute, Berkeley, CA, 94720, USA
| | - William Underwood
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
- Energy Biosciences Institute, Berkeley, CA, 94720, USA
| | - Jason Corwin
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Andrew Ryan
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
- Energy Biosciences Institute, Berkeley, CA, 94720, USA
| | - Heidi Szemenyei
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
- Energy Biosciences Institute, Berkeley, CA, 94720, USA
| | - Candice C Lim
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
- Energy Biosciences Institute, Berkeley, CA, 94720, USA
| | | | | | - John Vogel
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
- Joint Genome Institute, Walnut Creek, CA, 94598, USA
| | - Daniel Kliebenstein
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Henrik V Scheller
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
- Joint BioEnergy Institute, Emeryville, CA, 94608, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Shauna Somerville
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
- Energy Biosciences Institute, Berkeley, CA, 94720, USA
| |
Collapse
|
27
|
Rao X, Dixon RA. Co-expression networks for plant biology: why and how. Acta Biochim Biophys Sin (Shanghai) 2019; 51:981-988. [PMID: 31436787 DOI: 10.1093/abbs/gmz080] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/20/2019] [Accepted: 07/01/2019] [Indexed: 12/29/2022] Open
Abstract
Co-expression network analysis is one of the most powerful approaches for interpretation of large transcriptomic datasets. It enables characterization of modules of co-expressed genes that may share biological functional linkages. Such networks provide an initial way to explore functional associations from gene expression profiling and can be applied to various aspects of plant biology. This review presents the applications of co-expression network analysis in plant biology and addresses optimized strategies from the recent literature for performing co-expression analysis on plant biological systems. Additionally, we describe the combined interpretation of co-expression analysis with other genomic data to enhance the generation of biologically relevant information.
Collapse
Affiliation(s)
- Xiaolan Rao
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | - Richard A Dixon
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| |
Collapse
|
28
|
Abstract
The circadian oscillator is a complex network of interconnected feedback loops that regulates a wide range of physiological processes. Indeed, variation in clock genes has been implicated in an array of plant environmental adaptations, including growth regulation, photoperiodic control of flowering, and responses to abiotic and biotic stress. Although the clock is buffered against the environment, maintaining roughly 24-h rhythms across a wide range of conditions, it can also be reset by environmental cues such as acute changes in light or temperature. These competing demands may help explain the complexity of the links between the circadian clock network and environmental response pathways. Here, we discuss our current understanding of the clock and its interactions with light and temperature-signaling pathways. We also describe different clock gene alleles that have been implicated in the domestication of important staple crops.
Collapse
Affiliation(s)
- Nicky Creux
- Department of Plant Biology, University of California, Davis, California 95616, USA
| | - Stacey Harmer
- Department of Plant Biology, University of California, Davis, California 95616, USA
| |
Collapse
|
29
|
Marshall-Colón A, Kliebenstein DJ. Plant Networks as Traits and Hypotheses: Moving Beyond Description. TRENDS IN PLANT SCIENCE 2019; 24:840-852. [PMID: 31300195 DOI: 10.1016/j.tplants.2019.06.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/31/2019] [Accepted: 06/04/2019] [Indexed: 05/04/2023]
Abstract
Biology relies on the central thesis that the genes in an organism encode molecular mechanisms that combine with stimuli and raw materials from the environment to create a final phenotypic expression representative of the genomic programming. While conceptually simple, the genotype-to-phenotype linkage in a eukaryotic organism relies on the interactions of thousands of genes and an environment with a potentially unknowable level of complexity. Modern biology has moved to the use of networks in systems biology to try to simplify this complexity to decode how an organism's genome works. Previously, biological networks were basic ways to organize, simplify, and analyze data. However, recent advances are allowing networks to move beyond description and become phenotypes or hypotheses in their own right. This review discusses these efforts, like mapping responses across biological scales, including relationships among cellular entities, and the direct use of networks as traits or hypotheses.
Collapse
Affiliation(s)
- Amy Marshall-Colón
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Daniel J Kliebenstein
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA; DynaMo Center of Excellence, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark.
| |
Collapse
|
30
|
Derbyshire M, Mbengue M, Barascud M, Navaud O, Raffaele S. Small RNAs from the plant pathogenic fungus Sclerotinia sclerotiorum highlight host candidate genes associated with quantitative disease resistance. MOLECULAR PLANT PATHOLOGY 2019; 20:1279-1297. [PMID: 31361080 PMCID: PMC6715603 DOI: 10.1111/mpp.12841] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Fungal plant pathogens secrete effector proteins and metabolites to cause disease. Additionally, some species transfer small RNAs (sRNAs) into plant cells to silence host mRNAs through complementary base pairing and suppress plant immunity. The fungus Sclerotinia sclerotiorum infects over 600 plant species, but little is known about the molecular processes that govern interactions with its many hosts. In particular, evidence for the production of sRNAs by S. sclerotiorum during infection is lacking. We sequenced sRNAs produced by S. sclerotiorum in vitro and during infection of two host species, Arabidopsis thaliana and Phaseolus vulgaris. We found that S. sclerotiorum produces at least 374 distinct highly abundant sRNAs during infection, mostly originating from repeat-rich plastic genomic regions. We predicted the targets of these sRNAs in A. thaliana and found that these genes were significantly more down-regulated during infection than the rest of the genome. Predicted targets of S. sclerotiorum sRNAs in A. thaliana were enriched for functional domains associated with plant immunity and were more strongly associated with quantitative disease resistance in a genome-wide association study (GWAS) than the rest of the genome. Mutants in A. thaliana predicted sRNA target genes SERK2 and SNAK2 were more susceptible to S. sclerotiorum than wild-type, suggesting that S. sclerotiorum sRNAs may contribute to the silencing of immune components in plants. The prediction of fungal sRNA targets in plant genomes can be combined with other global approaches, such as GWAS, to assist in the identification of plant genes involved in quantitative disease resistance.
Collapse
Affiliation(s)
- Mark Derbyshire
- Centre for Crop and Disease ManagementCurtin UniversityPerthWestern AustraliaAustralia
| | - Malick Mbengue
- Laboratoire des Interactions Plantes Micro‐organismesINRA, CNRS, Université de ToulouseCastanet TolosanFrance
| | - Marielle Barascud
- Laboratoire des Interactions Plantes Micro‐organismesINRA, CNRS, Université de ToulouseCastanet TolosanFrance
| | - Olivier Navaud
- Laboratoire des Interactions Plantes Micro‐organismesINRA, CNRS, Université de ToulouseCastanet TolosanFrance
| | - Sylvain Raffaele
- Laboratoire des Interactions Plantes Micro‐organismesINRA, CNRS, Université de ToulouseCastanet TolosanFrance
| |
Collapse
|
31
|
Root-specific camalexin biosynthesis controls the plant growth-promoting effects of multiple bacterial strains. Proc Natl Acad Sci U S A 2019; 116:15735-15744. [PMID: 31311863 PMCID: PMC6681745 DOI: 10.1073/pnas.1818604116] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Plants in their natural ecosystems interact with numerous microorganisms, but how they influence their microbiota is still elusive. We observed that sulfatase activity in soil, which can be used as a measure of rhizosphere microbial activity, is differently affected by Arabidopsis accessions. Following a genome-wide association analysis of the variation in sulfatase activity we identified a candidate gene encoding an uncharacterized cytochrome P450, CYP71A27 Loss of this gene resulted in 2 different and independent microbiota-specific phenotypes: A lower sulfatase activity in the rhizosphere and a loss of plant growth-promoting effect by Pseudomonas sp. CH267. On the other hand, tolerance to leaf pathogens was not affected, which agreed with prevalent expression of CYP71A27 in the root vasculature. The phenotypes of cyp71A27 mutant were similar to those of cyp71A12 and cyp71A13, known mutants in synthesis of camalexin, a sulfur-containing indolic defense compound. Indeed, the cyp71A27 mutant accumulated less camalexin in the roots upon elicitation with silver nitrate or flagellin. Importantly, addition of camalexin complemented both the sulfatase activity and the loss of plant growth promotion by Pseudomonas sp. CH267. Two alleles of CYP71A27 were identified among Arabidopsis accessions, differing by a substitution of Glu373 by Gln, which correlated with the ability to induce camalexin synthesis and to gain fresh weight in response to Pseudomonas sp. CH267. Thus, CYP71A27 is an additional component in the camalexin synthesis pathway, contributing specifically to the control of plant microbe interactions in the root.
Collapse
|
32
|
Zhang W, Corwin JA, Copeland DH, Feusier J, Eshbaugh R, Cook DE, Atwell S, Kliebenstein DJ. Plant-necrotroph co-transcriptome networks illuminate a metabolic battlefield. eLife 2019; 8:e44279. [PMID: 31081752 PMCID: PMC6557632 DOI: 10.7554/elife.44279] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 05/08/2019] [Indexed: 12/27/2022] Open
Abstract
A central goal of studying host-pathogen interaction is to understand how host and pathogen manipulate each other to promote their own fitness in a pathosystem. Co-transcriptomic approaches can simultaneously analyze dual transcriptomes during infection and provide a systematic map of the cross-kingdom communication between two species. Here we used the Arabidopsis-B. cinerea pathosystem to test how plant host and fungal pathogen interact at the transcriptomic level. We assessed the impact of genetic diversity in pathogen and host by utilization of a collection of 96 isolates infection on Arabidopsis wild-type and two mutants with jasmonate or salicylic acid compromised immunities. We identified ten B. cinereagene co-expression networks (GCNs) that encode known or novel virulence mechanisms. Construction of a dual interaction network by combining four host- and ten pathogen-GCNs revealed potential connections between the fungal and plant GCNs. These co-transcriptome data shed lights on the potential mechanisms underlying host-pathogen interaction.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Plant PathologyKansas State UniversityManhattanUnited States
- Department of Plant SciencesUniversity of California, DavisDavisUnited States
| | - Jason A Corwin
- Department of Ecology and Evolution BiologyUniversity of ColoradoBoulderUnited States
| | | | - Julie Feusier
- Department of Plant SciencesUniversity of California, DavisDavisUnited States
| | - Robert Eshbaugh
- Department of Plant SciencesUniversity of California, DavisDavisUnited States
| | - David E Cook
- Department of Plant PathologyKansas State UniversityManhattanUnited States
| | - Suzi Atwell
- Department of Plant SciencesUniversity of California, DavisDavisUnited States
| | - Daniel J Kliebenstein
- Department of Plant SciencesUniversity of California, DavisDavisUnited States
- DynaMo Center of ExcellenceUniversity of CopenhagenFrederiksbergDenmark
| |
Collapse
|
33
|
Badet T, Léger O, Barascud M, Voisin D, Sadon P, Vincent R, Le Ru A, Balagué C, Roby D, Raffaele S. Expression polymorphism at the ARPC4 locus links the actin cytoskeleton with quantitative disease resistance to Sclerotinia sclerotiorum in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2019; 222:480-496. [PMID: 30393937 DOI: 10.1111/nph.15580] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 10/25/2018] [Indexed: 06/08/2023]
Abstract
Quantitative disease resistance (QDR) is a form of plant immunity widespread in nature, and the only one active against broad host range fungal pathogens. The genetic determinants of QDR are complex and largely unknown, and are thought to rely partly on genes controlling plant morphology and development. We used genome-wide association mapping in Arabidopsis thaliana to identify ARPC4 as associated with QDR against the necrotrophic fungal pathogen Sclerotinia sclerotiorum. Mutants impaired in ARPC4 showed enhanced susceptibility to S. sclerotiorum, defects in the structure of the actin filaments and in their responsiveness to S. sclerotiorum. Disruption of ARPC4 also alters callose deposition and the expression of defense-related genes upon S. sclerotiorum infection. Analysis of ARPC4 diversity in A. thaliana identified one haplotype (ARPC4R ) showing a c. 1 kbp insertion in ARPC4 regulatory region and associated with higher level of QDR. Accessions from the ARPC4R haplotype showed enhanced ARPC4 expression upon S. sclerotiorum challenge, indicating that polymorphisms in ARPC4 regulatory region are associated with enhanced QDR. This work identifies a novel actor of plant QDR against a fungal pathogen and provides a prime example of genetic mechanisms leading to the recruitment of cell morphology processes in plant immunity.
Collapse
Affiliation(s)
- Thomas Badet
- LIPM, Université de Toulouse, INRA, CNRS, 31326, Castanet-Tolosan, France
| | - Ophélie Léger
- LIPM, Université de Toulouse, INRA, CNRS, 31326, Castanet-Tolosan, France
| | - Marielle Barascud
- LIPM, Université de Toulouse, INRA, CNRS, 31326, Castanet-Tolosan, France
| | - Derry Voisin
- LIPM, Université de Toulouse, INRA, CNRS, 31326, Castanet-Tolosan, France
| | - Pierre Sadon
- LIPM, Université de Toulouse, INRA, CNRS, 31326, Castanet-Tolosan, France
| | - Remy Vincent
- LIPM, Université de Toulouse, INRA, CNRS, 31326, Castanet-Tolosan, France
| | - Aurélie Le Ru
- Plateforme Imagerie, Pôle de Biotechnologie Végétale, Fédération de Recherche 3450, 31326, Castanet-Tolosan, France
| | - Claudine Balagué
- LIPM, Université de Toulouse, INRA, CNRS, 31326, Castanet-Tolosan, France
| | - Dominique Roby
- LIPM, Université de Toulouse, INRA, CNRS, 31326, Castanet-Tolosan, France
| | - Sylvain Raffaele
- LIPM, Université de Toulouse, INRA, CNRS, 31326, Castanet-Tolosan, France
| |
Collapse
|
34
|
Soltis NE, Atwell S, Shi G, Fordyce R, Gwinner R, Gao D, Shafi A, Kliebenstein DJ. Interactions of Tomato and Botrytis cinerea Genetic Diversity: Parsing the Contributions of Host Differentiation, Domestication, and Pathogen Variation. THE PLANT CELL 2019; 31:502-519. [PMID: 30647076 PMCID: PMC6447006 DOI: 10.1105/tpc.18.00857] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/18/2018] [Accepted: 01/08/2019] [Indexed: 05/26/2023]
Abstract
Although the impacts of crop domestication on specialist pathogens are well known, less is known about the interaction of crop variation and generalist pathogens. To study how genetic variation within a crop affects plant resistance to generalist pathogens, we infected a collection of wild and domesticated tomato accessions with a genetically diverse population of the generalist pathogen Botrytis cinerea We quantified variation in lesion size of 97 B. cinerea genotypes (isolates) on six domesticated tomato genotypes (Solanum lycopersicum) and six wild tomato genotypes (Solanum pimpinellifolium). Lesion size was significantly affected by large effects of the host and pathogen's genotype, with a much smaller contribution of domestication. This pathogen collection also enables genome-wide association mapping of B. cinerea Genome-wide association mapping of the pathogen showed that virulence is highly polygenic and involves a diversity of mechanisms. Breeding against this pathogen would likely require the use of diverse isolates to capture all possible mechanisms. Critically, we identified a subset of B. cinerea genes where allelic variation was linked to altered virulence against wild versus domesticated tomato, as well as loci that could handle both groups. This generalist pathogen already has a large collection of allelic variation that must be considered when designing a breeding program.
Collapse
Affiliation(s)
- Nicole E Soltis
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, California, 95616
| | - Susanna Atwell
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, California, 95616
| | - Gongjun Shi
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, California, 95616
- Department of Plant Pathology, North Dakota State University, Fargo, North Dakota, 58102
| | - Rachel Fordyce
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, California, 95616
| | - Raoni Gwinner
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, California, 95616
- Department of Agriculture, Universidade Federal de Lavras, Lavras MG, 37200-000, Brazil
| | - Dihan Gao
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, California, 95616
| | - Aysha Shafi
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, California, 95616
| | - Daniel J Kliebenstein
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, California, 95616
- DynaMo Center of Excellence, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| |
Collapse
|
35
|
Schaefer RJ, Michno JM, Jeffers J, Hoekenga O, Dilkes B, Baxter I, Myers CL. Integrating Coexpression Networks with GWAS to Prioritize Causal Genes in Maize. THE PLANT CELL 2018; 30:2922-2942. [PMID: 30413654 PMCID: PMC6354270 DOI: 10.1105/tpc.18.00299] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 10/08/2018] [Accepted: 10/31/2018] [Indexed: 05/02/2023]
Abstract
Genome-wide association studies (GWAS) have identified loci linked to hundreds of traits in many different species. Yet, because linkage equilibrium implicates a broad region surrounding each identified locus, the causal genes often remain unknown. This problem is especially pronounced in nonhuman, nonmodel species, where functional annotations are sparse and there is frequently little information available for prioritizing candidate genes. We developed a computational approach, Camoco, that integrates loci identified by GWAS with functional information derived from gene coexpression networks. Using Camoco, we prioritized candidate genes from a large-scale GWAS examining the accumulation of 17 different elements in maize (Zea mays) seeds. Strikingly, we observed a strong dependence in the performance of our approach based on the type of coexpression network used: expression variation across genetically diverse individuals in a relevant tissue context (in our case, roots that are the primary elemental uptake and delivery system) outperformed other alternative networks. Two candidate genes identified by our approach were validated using mutants. Our study demonstrates that coexpression networks provide a powerful basis for prioritizing candidate causal genes from GWAS loci but suggests that the success of such strategies can highly depend on the gene expression data context. Both the software and the lessons on integrating GWAS data with coexpression networks generalize to species beyond maize.
Collapse
Affiliation(s)
- Robert J Schaefer
- Biomedical Informatics and Computational Biology Graduate Program, University of Minnesota, Minneapolis, Minnesota 55455
| | - Jean-Michel Michno
- Biomedical Informatics and Computational Biology Graduate Program, University of Minnesota, Minneapolis, Minnesota 55455
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, Minnesota 55108
| | - Joseph Jeffers
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, Minnesota 55455
| | - Owen Hoekenga
- Cayuga Genetics Consulting Group LLC, Ithaca, New York 14850
| | - Brian Dilkes
- Department of Biochemistry, Purdue University, West Lafayette, Indiana 47907
| | - Ivan Baxter
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132
- U.S. Department of Agriculture-Agricultural Research Service Plant Genetics Research Unit, St. Louis, Missouri 63132
| | - Chad L Myers
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
36
|
Fordyce RF, Soltis NE, Caseys C, Gwinner R, Corwin JA, Atwell S, Copeland D, Feusier J, Subedy A, Eshbaugh R, Kliebenstein DJ. Digital Imaging Combined with Genome-Wide Association Mapping Links Loci to Plant-Pathogen Interaction Traits. PLANT PHYSIOLOGY 2018; 178:1406-1422. [PMID: 30266748 PMCID: PMC6236616 DOI: 10.1104/pp.18.00851] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 09/18/2018] [Indexed: 05/04/2023]
Abstract
Plant resistance to generalist pathogens with broad host ranges, such as Botrytis cinerea (Botrytis), is typically quantitative and highly polygenic. Recent studies have begun to elucidate the molecular genetic basis of plant-pathogen interactions using commonly measured traits, including lesion size and/or pathogen biomass. However, with the advent of digital imaging and high-throughput phenomics, there are a large number of additional traits available to study quantitative resistance. In this study, we used high-throughput digital imaging analysis to investigate previously poorly characterized visual traits of plant-pathogen interactions related to disease resistance using the Arabidopsis (Arabidopsis thaliana)/Botrytis pathosystem. From a large collection of visual lesion trait measurements, we focused on color, shape, and size to test how these aspects of the Arabidopsis/Botrytis interaction are genetically related. Through genome-wide association mapping in Arabidopsis, we show that lesion color and shape are genetically separable traits associated with plant disease resistance. Moreover, by employing defined mutants in 23 candidate genes identified from the genome-wide association mapping, we demonstrate links between loci and each of the different plant-pathogen interaction traits. These results expand our understanding of the functional mechanisms driving plant disease resistance.
Collapse
Affiliation(s)
- Rachel F Fordyce
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Nicole E Soltis
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Celine Caseys
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Raoni Gwinner
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Jason A Corwin
- Department of Plant Sciences, University of California, Davis, California 95616
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado 80309-0334
| | - Susana Atwell
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Daniel Copeland
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Julie Feusier
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Anushriya Subedy
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Robert Eshbaugh
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Daniel J Kliebenstein
- Department of Plant Sciences, University of California, Davis, California 95616
- DynaMo Center of Excellence, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| |
Collapse
|
37
|
Zhu W, Zaidem M, Van de Weyer AL, Gutaker RM, Chae E, Kim ST, Bemm F, Li L, Todesco M, Schwab R, Unger F, Beha MJ, Demar M, Weigel D. Modulation of ACD6 dependent hyperimmunity by natural alleles of an Arabidopsis thaliana NLR resistance gene. PLoS Genet 2018; 14:e1007628. [PMID: 30235212 PMCID: PMC6168153 DOI: 10.1371/journal.pgen.1007628] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 10/02/2018] [Accepted: 08/14/2018] [Indexed: 01/09/2023] Open
Abstract
Plants defend themselves against pathogens by activating an array of immune responses. Unfortunately, immunity programs may also cause unintended collateral damage to the plant itself. The quantitative disease resistance gene ACCELERATED CELL DEATH 6 (ACD6) serves to balance growth and pathogen resistance in natural populations of Arabidopsis thaliana. An autoimmune allele, ACD6-Est, which strongly reduces growth under specific laboratory conditions, is found in over 10% of wild strains. There is, however, extensive variation in the strength of the autoimmune phenotype expressed by strains with an ACD6-Est allele, indicative of genetic modifiers. Quantitative genetic analysis suggests that ACD6 activity can be modulated in diverse ways, with different strains often carrying different large-effect modifiers. One modifier is SUPPRESSOR OF NPR1-1, CONSTITUTIVE 1 (SNC1), located in a highly polymorphic cluster of nucleotide-binding domain and leucine-rich repeat (NLR) immune receptor genes, which are prototypes for qualitative disease resistance genes. Allelic variation at SNC1 correlates with ACD6-Est activity in multiple accessions, and a common structural variant affecting the NL linker sequence can explain differences in SNC1 activity. Taken together, we find that an NLR gene can mask the activity of an ACD6 autoimmune allele in natural A. thaliana populations, thereby linking different arms of the plant immune system. Plants defend themselves against pathogens by activating immune responses. Unfortunately, these can cause unintended collateral damage to the plant itself. Nevertheless, some wild plants have genetic variants that confer a low threshold for the activation of immunity. While these enable a plant to respond particularly quickly to pathogen attack, such variants might be potentially dangerous. We are investigating one such variant of the immune gene ACCELERATED CELL DEATH 6 (ACD6) in the plant Arabidopsis thaliana. We discovered that there are variants at other genetic loci that can mask the effects of an overly active ACD6 gene. One of these genes, SUPPRESSOR OF NPR1-1, CONSTITUTIVE 1 (SNC1), codes for a known immune receptor. The SNC1 variant that attenuates ACD6 activity is rather common in A. thaliana populations, suggesting that new combinations of the hyperactive ACD6 variant and this antagonistic SNC1 variant will often arise by natural crosses. Similarly, because the two genes are unlinked, outcrossing will often lead to the hyperactive ACD6 variants being unmasked again. We propose that allelic diversity at SNC1 contributes to the maintenance of the hyperactive ACD6 variant in natural A. thaliana populations.
Collapse
Affiliation(s)
- Wangsheng Zhu
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Maricris Zaidem
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Anna-Lena Van de Weyer
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Rafal M. Gutaker
- Research Group for Ancient Genomics and Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Eunyoung Chae
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Sang-Tae Kim
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Felix Bemm
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Lei Li
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Marco Todesco
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Rebecca Schwab
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Frederik Unger
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Marcel Janis Beha
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Monika Demar
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Detlef Weigel
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
- * E-mail:
| |
Collapse
|
38
|
Veloso J, van Kan JAL. Many Shades of Grey in Botrytis-Host Plant Interactions. TRENDS IN PLANT SCIENCE 2018; 23:613-622. [PMID: 29724660 DOI: 10.1016/j.tplants.2018.03.016] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/25/2018] [Accepted: 03/31/2018] [Indexed: 05/24/2023]
Abstract
The grey mould Botrytis cinerea causes disease in more than 1000 plant species, including important crops. The interaction between Botrytis and its (potential) hosts is determined by quantitative susceptibility and virulence traits in both interacting partners, resulting in a greyscale of disease outcomes. Fungal infection was long thought to rely mainly on its capacity to kill the host plant and degrade plant tissue. Recent research has revealed that Botrytis exploits two crucial biological processes in host plants for its own success. We highlight recent findings that illustrate that the interactions between Botrytis and its host plants are subtle and we discuss the molecular and cellular mechanisms controlling the many shades of grey during these interactions.
Collapse
Affiliation(s)
- Javier Veloso
- Wageningen University, Laboratory of Phytopathology, Wageningen, The Netherlands; Department of Plant Biology, Faculty of Sciences, University of A Coruña, A Coruña, Spain
| | - Jan A L van Kan
- Wageningen University, Laboratory of Phytopathology, Wageningen, The Netherlands.
| |
Collapse
|
39
|
Rajarammohan S, Pradhan AK, Pental D, Kaur J. Genome-wide association mapping in Arabidopsis identifies novel genes underlying quantitative disease resistance to Alternaria brassicae. MOLECULAR PLANT PATHOLOGY 2018; 19:1719-1732. [PMID: 29271603 PMCID: PMC6638106 DOI: 10.1111/mpp.12654] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 12/18/2017] [Accepted: 12/20/2017] [Indexed: 05/19/2023]
Abstract
Quantitative disease resistance (QDR) is the predominant form of resistance against necrotrophic pathogens. The genes and mechanisms underlying QDR are not well known. In the current study, the Arabidopsis-Alternaria brassicae pathosystem was used to uncover the genetic architecture underlying resistance to A. brassicae in a set of geographically diverse Arabidopsis accessions. Arabidopsis accessions revealed a rich variation in the host responses to the pathogen, varying from complete resistance to high susceptibility. Genome-wide association (GWA) mapping revealed multiple regions to be associated with disease resistance. A subset of genes prioritized on the basis of gene annotations and evidence of transcriptional regulation in other biotic stresses was analysed using a reverse genetics approach employing T-DNA insertion mutants. The mutants of three genes, namely At1g06990 (GDSL-motif lipase), At3g25180 (CYP82G1) and At5g37500 (GORK), displayed an enhanced susceptibility relative to the wild-type. These genes are involved in the development of morphological phenotypes (stomatal aperture) and secondary metabolite synthesis, thus defining some of the diverse facets of quantitative resistance against A. brassicae.
Collapse
Affiliation(s)
| | - Akshay Kumar Pradhan
- Department of GeneticsUniversity of Delhi South CampusNew Delhi110021India
- Centre for Genetic Manipulation of Crop PlantsUniversity of Delhi South CampusNew Delhi110021India
| | - Deepak Pental
- Centre for Genetic Manipulation of Crop PlantsUniversity of Delhi South CampusNew Delhi110021India
| | - Jagreet Kaur
- Department of GeneticsUniversity of Delhi South CampusNew Delhi110021India
| |
Collapse
|
40
|
Two-way mixed-effects methods for joint association analysis using both host and pathogen genomes. Proc Natl Acad Sci U S A 2018; 115:E5440-E5449. [PMID: 29848634 DOI: 10.1073/pnas.1710980115] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Infectious diseases are often affected by specific pairings of hosts and pathogens and therefore by both of their genomes. The integration of a pair of genomes into genome-wide association mapping can provide an exquisitely detailed view of the genetic landscape of complex traits. We present a statistical method, ATOMM (Analysis with a Two-Organism Mixed Model), that maps a trait of interest to a pair of genomes simultaneously; this method makes use of whole-genome sequence data for both host and pathogen organisms. ATOMM uses a two-way mixed-effect model to test for genetic associations and cross-species genetic interactions while accounting for sample structure including interactions between the genetic backgrounds of the two organisms. We demonstrate the applicability of ATOMM to a joint association study of quantitative disease resistance (QDR) in the Arabidopsis thaliana-Xanthomonas arboricola pathosystem. Our method uncovers a clear host-strain specificity in QDR and provides a powerful approach to identify genetic variants on both genomes that contribute to phenotypic variation.
Collapse
|
41
|
Vásquez AX, Soto Sedano JC, López Carrascal CE. Unraveling the molecules hidden in the gray shadows of quantitative disease resistance to pathogens. ACTA BIOLÓGICA COLOMBIANA 2018. [DOI: 10.15446/abc.v23n1.66487] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Una de las preguntas más desafiantes del fitomejoramiento y de la fitopatología molecular es ¿cuáles son las bases genéticas y moleculares de la resistencia cuantitativa a enfermedades?. El escaso conocimiento de cómo este tipo de resistencia funciona ha obstaculizado que los fitomejoradores la aprovecharlo plenamente. Para superar estos obstáculos se han desarrollado nuevas metodologías para el estudio de rasgos cuantitativos. Los enfoques como el mapeo genético, la identificación de loci de rasgos cuantitativos (QTL) y el mapeo por asociaciones, incluyendo el enfoque de genes candidatos y los estudios de asociación amplia del genoma, se han llevado a cabo históricamente para describir rasgos cuantitativos y por lo tanto para estudiar QDR. Además, se han proporcionado grandes avances en la obtención de datos fenotípicos cuantitativos para mejorar estos análisis. Recientemente, algunos genes asociados a QDR han sido clonados, lo que conduce a nuevas hipótesis sobre las bases moleculares de este tipo de resistencia. En esta revisión presentamos los avances más recientes sobre QDR y la correspondiente aplicación, que han permitido postular nuevas ideas que pueden ayudar a construir nuevos modelos. Algunas de las hipótesis presentadas aquí como posibles explicaciones para QDR están relacionadas con el nivel de expresión y el splicing alternativo de algunos genes relacionados con la defensa, la acción de "alelos débiles" de genes R, la presencia de variantes alélicas en los genes implicados en la respuesta de defensa y un papel central de quinasas o pseudoqinasas. Con la información recapitulada en esta revisión es posible concluir que la distinción conceptual entre resistencia cualitativa y cuantitativa puede ser cuestionada ya que ambos comparten importantes componentes.
Collapse
|
42
|
Zhang W, Corwin JA, Copeland D, Feusier J, Eshbaugh R, Chen F, Atwell S, Kliebenstein DJ. Plastic Transcriptomes Stabilize Immunity to Pathogen Diversity: The Jasmonic Acid and Salicylic Acid Networks within the Arabidopsis/ Botrytis Pathosystem. THE PLANT CELL 2017; 29:2727-2752. [PMID: 29042403 PMCID: PMC5728128 DOI: 10.1105/tpc.17.00348] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 09/22/2017] [Accepted: 10/13/2017] [Indexed: 05/20/2023]
Abstract
To respond to pathogen attack, selection and associated evolution has led to the creation of plant immune system that are a highly effective and inducible defense system. Central to this system are the plant defense hormones jasmonic acid (JA) and salicylic acid (SA) and crosstalk between the two, which may play an important role in defense responses to specific pathogens or even genotypes. Here, we used the Arabidopsis thaliana-Botrytis cinerea pathosystem to test how the host's defense system functions against genetic variation in a pathogen. We measured defense-related phenotypes and transcriptomic responses in Arabidopsis wild-type Col-0 and JA- and SA-signaling mutants, coi1-1 and npr1-1, individually challenged with 96 diverse B. cinerea isolates. Those data showed genetic variation in the pathogen influences on all components within the plant defense system at the transcriptional level. We identified four gene coexpression networks and two vectors of defense variation triggered by genetic variation in B. cinerea This showed that the JA and SA signaling pathways functioned to constrain/canalize the range of virulence in the pathogen population, but the underlying transcriptomic response was highly plastic. These data showed that plants utilize major defense hormone pathways to buffer disease resistance, but not the metabolic or transcriptional responses to genetic variation within a pathogen.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Plant Sciences, University of California, Davis, California 95616
- National and Local Joint Engineering Laboratory for Energy Plant Bio-oil Production and Application, Key Laboratory of Bio-resource and Eco-environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, P.R. China
| | - Jason A Corwin
- Department of Ecology and Evolution Biology, University of Colorado, Boulder, Colorado 80309-0334
| | - Daniel Copeland
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Julie Feusier
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Robert Eshbaugh
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Fang Chen
- National and Local Joint Engineering Laboratory for Energy Plant Bio-oil Production and Application, Key Laboratory of Bio-resource and Eco-environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, P.R. China
| | - Susana Atwell
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Daniel J Kliebenstein
- Department of Plant Sciences, University of California, Davis, California 95616
- DynaMo Center of Excellence, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| |
Collapse
|
43
|
Liu S, Ziegler J, Zeier J, Birkenbihl RP, Somssich IE. Botrytis cinerea B05.10 promotes disease development in Arabidopsis by suppressing WRKY33-mediated host immunity. PLANT, CELL & ENVIRONMENT 2017; 40:2189-2206. [PMID: 28708934 DOI: 10.1111/pce.13022] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 06/21/2017] [Accepted: 06/25/2017] [Indexed: 05/19/2023]
Abstract
The large WRKY transcription factor family is mainly involved in regulating plant immune responses. Arabidopsis WRKY33 is a key transcriptional regulator of hormonal and metabolic processes towards Botrytis cinerea strain 2100 infection and is essential for resistance. In contrast to B. cinerea strain 2100, the strain B05.10 is virulent on wild-type (WT) Col-0 Arabidopsis plants highlighting the genetic diversity within this pathogen species. We analysed how early WRKY33-dependent responses are affected upon infection with strain B05.10 and found that most of these responses were strongly dampened during this interaction. Ectopic expression of WRKY33 resulted in complete resistance towards this strain indicating that virulence of B05.10, at least partly, depends on suppressing WRKY33 expression/protein accumulation. As a consequence, the expression levels of direct WRKY33 target genes, including those involved in the biosynthesis of camalexin, were also reduced upon infection. Concomitantly, elevated levels of the phytohormone abscisic acid (ABA) were observed. Molecular and genetic studies revealed that ABA negatively influences defence to B05.10 and effects jasmonic acid/ethylene (JA/ET) and salicylic acid (SA) levels. Susceptibility/resistance was determined by the antagonistic effect of ABA on JA, and this crosstalk required suppressing WRKY33 functions at early infection stages. This indicates that B. cinerea B05.10 promotes disease by suppressing WRKY33-mediated host defences.
Collapse
Affiliation(s)
- Shouan Liu
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829, Cologne, Germany
- College of Plant Sciences, Jilin University, 130062, Changchun, China
| | - Jörg Ziegler
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle (Saale), Germany
| | - Jürgen Zeier
- Institute for Molecular Ecophysiolgy of Plants, Department of Biology, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225, Düsseldorf, Germany
| | - Rainer P Birkenbihl
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829, Cologne, Germany
| | - Imre E Somssich
- Department of Plant Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829, Cologne, Germany
| |
Collapse
|
44
|
Soto Sedano JC, Mora Moreno RE, Mathew B, Léon J, Gómez Cano FA, Ballvora A, López Carrascal CE. Major Novel QTL for Resistance to Cassava Bacterial Blight Identified through a Multi-Environmental Analysis. FRONTIERS IN PLANT SCIENCE 2017; 8:1169. [PMID: 28725234 PMCID: PMC5496946 DOI: 10.3389/fpls.2017.01169] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 06/19/2017] [Indexed: 05/31/2023]
Abstract
Cassava, Manihot esculenta Crantz, has been positioned as one of the most promising crops world-wide representing the staple security for more than one billion people mainly in poor countries. Cassava production is constantly threatened by several diseases, including cassava bacterial blight (CBB) caused by Xanthomonas axonopodis pv. manihotis (Xam), it is the most destructive disease causing heavy yield losses. Here, we report the detection and localization on the genetic map of cassava QTL (Quantitative Trait Loci) conferring resistance to CBB. An F1 mapping population of 117 full sibs was tested for resistance to two Xam strains (Xam318 and Xam681) at two locations in Colombia: La Vega, Cundinamarca and Arauca. The evaluation was conducted in rainy and dry seasons and additional tests were carried out under controlled greenhouse conditions. The phenotypic evaluation of the response to Xam revealed continuous variation. Based on composite interval mapping analysis, 5 strain-specific QTL for resistance to Xam explaining between 15.8 and 22.1% of phenotypic variance, were detected and localized on a high resolution SNP-based genetic map of cassava. Four of them show stability among the two evaluated seasons. Genotype by environment analysis detected three QTL by environment interactions and the broad sense heritability for Xam318 and Xam681 were 20 and 53%, respectively. DNA sequence analysis of the QTL intervals revealed 29 candidate defense-related genes (CDRGs), and two of them contain domains related to plant immunity proteins, such as NB-ARC-LRR and WRKY.
Collapse
Affiliation(s)
- Johana C. Soto Sedano
- Manihot Biotec Laboratory, Biology Department, Universidad Nacional de ColombiaBogotá, Colombia
| | - Rubén E. Mora Moreno
- Manihot Biotec Laboratory, Biology Department, Universidad Nacional de ColombiaBogotá, Colombia
| | - Boby Mathew
- Institute of Crop Science and Resource Conservation-Plant Breeding, University of BonnBonn, Germany
| | - Jens Léon
- Institute of Crop Science and Resource Conservation-Plant Breeding, University of BonnBonn, Germany
| | - Fabio A. Gómez Cano
- Manihot Biotec Laboratory, Biology Department, Universidad Nacional de ColombiaBogotá, Colombia
- Institute of Crop Science and Resource Conservation-Plant Breeding, University of BonnBonn, Germany
| | - Agim Ballvora
- Institute of Crop Science and Resource Conservation-Plant Breeding, University of BonnBonn, Germany
| | | |
Collapse
|
45
|
Corwin JA, Kliebenstein DJ. Quantitative Resistance: More Than Just Perception of a Pathogen. THE PLANT CELL 2017; 29:655-665. [PMID: 28302676 PMCID: PMC5435431 DOI: 10.1105/tpc.16.00915] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 02/26/2017] [Accepted: 03/16/2017] [Indexed: 05/20/2023]
Abstract
Molecular plant pathology has focused on studying large-effect qualitative resistance loci that predominantly function in detecting pathogens and/or transmitting signals resulting from pathogen detection. By contrast, less is known about quantitative resistance loci, particularly the molecular mechanisms controlling variation in quantitative resistance. Recent studies have provided insight into these mechanisms, showing that genetic variation at hundreds of causal genes may underpin quantitative resistance. Loci controlling quantitative resistance contain some of the same causal genes that mediate qualitative resistance, but the predominant mechanisms of quantitative resistance extend beyond pathogen recognition. Indeed, most causal genes for quantitative resistance encode specific defense-related outputs such as strengthening of the cell wall or defense compound biosynthesis. Extending previous work on qualitative resistance to focus on the mechanisms of quantitative resistance, such as the link between perception of microbe-associated molecular patterns and growth, has shown that the mechanisms underlying these defense outputs are also highly polygenic. Studies that include genetic variation in the pathogen have begun to highlight a potential need to rethink how the field considers broad-spectrum resistance and how it is affected by genetic variation within pathogen species and between pathogen species. These studies are broadening our understanding of quantitative resistance and highlighting the potentially vast scale of the genetic basis of quantitative resistance.
Collapse
Affiliation(s)
- Jason A Corwin
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Daniel J Kliebenstein
- Department of Plant Sciences, University of California, Davis, California 95616
- DynaMo Center of Excellence, University of Copenhagen, DK-1871 Frederiksberg C, Denmark
| |
Collapse
|
46
|
Soto Sedano C, Mora Moreno RE, Calle F, López Carrascal CE. QTL identification for cassava bacterial blight resistance under natural infection conditions. ACTA BIOLÓGICA COLOMBIANA 2017. [DOI: 10.15446/abc.v22n1.57951] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
La yuca, Manihot esculenta Crantz, representa la principal fuente de alimento para cerca de 1000 millones de personas. La producción de yuca se ve afectada por diversas enfermedades, una de las más serias es la bacteriosis vascular (CBB) causada por Xanthomonas axonopodis pv. manihotis (Xam). En este estudio se realizó un análisis de loci de rasgos cuantitativos (QTL) para la resistencia a CBB en condiciones naturales de infección, usando una población de mapeo constituida por 99 genotipos de hermanos completos segregantes y un mapa genético altamente denso basado en SNPs. La evaluación fenotípica se llevó a cabo en Puerto López (Meta), Colombia, durante la época de lluvias durante el segundo semestre de 2015. En la población de mapeo fueron detectados individuos con una segregación transgresiva tanto resistentes como susceptibles. A través de un análisis no paramétrico de intervalo simple, se detectaron dos QTL que explican el 10,9 y el 12,6 % de la varianza fenotípica de la resistencia en campo a CBB. Mediante análisis bioinformáticos se identificaron cuatro genes candidatos presentes en los intervalos de los QTL. Este trabajo representa un esfuerzo por dilucidar los mecanismos moleculares implicados en la resistencia de yuca a CBB.
Collapse
|
47
|
Bartoli C, Roux F. Genome-Wide Association Studies In Plant Pathosystems: Toward an Ecological Genomics Approach. FRONTIERS IN PLANT SCIENCE 2017; 8:763. [PMID: 28588588 PMCID: PMC5441063 DOI: 10.3389/fpls.2017.00763] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 04/24/2017] [Indexed: 05/18/2023]
Abstract
The emergence and re-emergence of plant pathogenic microorganisms are processes that imply perturbations in both host and pathogen ecological niches. Global change is largely assumed to drive the emergence of new etiological agents by altering the equilibrium of the ecological habitats which in turn places hosts more in contact with pathogen reservoirs. In this context, the number of epidemics is expected to increase dramatically in the next coming decades both in wild and crop plants. Under these considerations, the identification of the genetic variants underlying natural variation of resistance is a pre-requisite to estimate the adaptive potential of wild plant populations and to develop new breeding resistant cultivars. On the other hand, the prediction of pathogen's genetic determinants underlying disease emergence can help to identify plant resistance alleles. In the genomic era, whole genome sequencing combined with the development of statistical methods led to the emergence of Genome Wide Association (GWA) mapping, a powerful tool for detecting genomic regions associated with natural variation of disease resistance in both wild and cultivated plants. However, GWA mapping has been less employed for the detection of genetic variants associated with pathogenicity in microbes. Here, we reviewed GWA studies performed either in plants or in pathogenic microorganisms (bacteria, fungi and oomycetes). In addition, we highlighted the benefits and caveats of the emerging joint GWA mapping approach that allows for the simultaneous identification of genes interacting between genomes of both partners. Finally, based on co-evolutionary processes in wild populations, we highlighted a phenotyping-free joint GWA mapping approach as a promising tool for describing the molecular landscape underlying plant - microbe interactions.
Collapse
|
48
|
Andolfo G, Iovieno P, Frusciante L, Ercolano MR. Genome-Editing Technologies for Enhancing Plant Disease Resistance. FRONTIERS IN PLANT SCIENCE 2016; 7:1813. [PMID: 27990151 PMCID: PMC5130979 DOI: 10.3389/fpls.2016.01813] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/16/2016] [Indexed: 05/23/2023]
Abstract
One of the greatest challenges for agricultural science in the 21st century is to improve yield stability through the progressive development of superior cultivars. The increasing numbers of infectious plant diseases that are caused by plant-pathogens make it ever more necessary to develop new strategies for plant disease resistance breeding. Targeted genome engineering allows the introduction of precise modifications directly into a commercial variety, offering a viable alternative to traditional breeding methods. Genome editing is a powerful tool for modifying crucial players in the plant immunity system. In this work, we propose and discuss genome-editing strategies and targets for improving resistance to phytopathogens. First of all, we present the opportunities to rewrite the effector-target sequence for avoiding effector-target molecular interaction and also to modify effector-target promoters for increasing the expression of target genes involved in the resistance process. In addition, we describe potential approaches for obtaining synthetic R-genes through genome-editing technologies (GETs). Finally, we illustrate a genome editing flowchart to modify the pathogen recognition sites and engineer an R-gene that mounts resistance to some phylogenetically divergent pathogens. GETs potentially mark the beginning of a new era, in which synthetic biology affords a basis for obtaining a reinforced plant defense system. Nowadays it is conceivable that by modulating the function of the major plant immunity players, we will be able to improve crop performance for a sustainable agriculture.
Collapse
Affiliation(s)
| | | | | | - Maria R. Ercolano
- Department of Agricultural Sciences, University of Naples ‘Federico II’Portici, Italy
| |
Collapse
|
49
|
Chang HX, Lipka AE, Domier LL, Hartman GL. Characterization of Disease Resistance Loci in the USDA Soybean Germplasm Collection Using Genome-Wide Association Studies. PHYTOPATHOLOGY 2016; 106:1139-1151. [PMID: 27135674 DOI: 10.1094/phyto-01-16-0042-fi] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Genetic resistance is a key strategy for disease management in soybean. Over the last 50 years, soybean germplasm has been phenotyped for resistance to many pathogens, resulting in the development of disease-resistant elite breeding lines and commercial cultivars. While biparental linkage mapping has been used to identify disease resistance loci, genome-wide association studies (GWAS) using high-density and high-quality markers such as single nucleotide polymorphisms (SNPs) has become a powerful tool to associate molecular markers and phenotypes. The objective of our study was to provide a comprehensive understanding of disease resistance in the United States Department of Agriculture Agricultural Research Service Soybean Germplasm Collection by using phenotypic data in the public Germplasm Resources Information Network and public SNP data (SoySNP50K). We identified SNPs significantly associated with disease ratings from one bacterial disease, five fungal diseases, two diseases caused by nematodes, and three viral diseases. We show that leucine-rich repeat (LRR) receptor-like kinases and nucleotide-binding site-LRR candidate resistance genes were enriched within the linkage disequilibrium regions of the significant SNPs. We review and present a global view of soybean resistance loci against multiple diseases and discuss the power and the challenges of using GWAS to discover disease resistance in soybean.
Collapse
Affiliation(s)
- Hao-Xun Chang
- All authors: Department of Crop Sciences, University of Illinois, Urbana, IL 61801; and third and fourth authors: USDA-Agricultural Research Services, Urbana
| | - Alexander E Lipka
- All authors: Department of Crop Sciences, University of Illinois, Urbana, IL 61801; and third and fourth authors: USDA-Agricultural Research Services, Urbana
| | - Leslie L Domier
- All authors: Department of Crop Sciences, University of Illinois, Urbana, IL 61801; and third and fourth authors: USDA-Agricultural Research Services, Urbana
| | - Glen L Hartman
- All authors: Department of Crop Sciences, University of Illinois, Urbana, IL 61801; and third and fourth authors: USDA-Agricultural Research Services, Urbana
| |
Collapse
|
50
|
Stam R, Scheikl D, Tellier A. Pooled Enrichment Sequencing Identifies Diversity and Evolutionary Pressures at NLR Resistance Genes within a Wild Tomato Population. Genome Biol Evol 2016; 8:1501-15. [PMID: 27189991 PMCID: PMC4898808 DOI: 10.1093/gbe/evw094] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2016] [Indexed: 12/13/2022] Open
Abstract
Nod-like receptors (NLRs) are nucleotide-binding domain and leucine-rich repeats containing proteins that are important in plant resistance signaling. Many of the known pathogen resistance (R) genes in plants are NLRs and they can recognize pathogen molecules directly or indirectly. As such, divergence and copy number variants at these genes are found to be high between species. Within populations, positive and balancing selection are to be expected if plants coevolve with their pathogens. In order to understand the complexity of R-gene coevolution in wild nonmodel species, it is necessary to identify the full range of NLRs and infer their evolutionary history. Here we investigate and reveal polymorphism occurring at 220 NLR genes within one population of the partially selfing wild tomato species Solanum pennellii. We use a combination of enrichment sequencing and pooling ten individuals, to specifically sequence NLR genes in a resource and cost-effective manner. We focus on the effects which different mapping and single nucleotide polymorphism calling software and settings have on calling polymorphisms in customized pooled samples. Our results are accurately verified using Sanger sequencing of polymorphic gene fragments. Our results indicate that some NLRs, namely 13 out of 220, have maintained polymorphism within our S. pennellii population. These genes show a wide range of πN/πS ratios and differing site frequency spectra. We compare our observed rate of heterozygosity with expectations for this selfing and bottlenecked population. We conclude that our method enables us to pinpoint NLR genes which have experienced natural selection in their habitat.
Collapse
Affiliation(s)
- Remco Stam
- Section of Population Genetics, Technische Universität München, Freising, Germany
| | - Daniela Scheikl
- Section of Population Genetics, Technische Universität München, Freising, Germany
| | - Aurélien Tellier
- Section of Population Genetics, Technische Universität München, Freising, Germany
| |
Collapse
|