1
|
Chaigne C, Sapède D, Cousin X, Sanchou L, Blader P, Cau E. Contribution of the eye and of opn4xa function to circadian photoentrainment in the diurnal zebrafish. PLoS Genet 2024; 20:e1011172. [PMID: 38408087 PMCID: PMC10919856 DOI: 10.1371/journal.pgen.1011172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 03/07/2024] [Accepted: 02/05/2024] [Indexed: 02/28/2024] Open
Abstract
The eye is instrumental for controlling circadian rhythms in mice and human. Here, we address the conservation of this function in the zebrafish, a diurnal vertebrate. Using lakritz (lak) mutant larvae, which lack retinal ganglion cells (RGCs), we show that while a functional eye contributes to masking, it is largely dispensable for the establishment of circadian rhythms of locomotor activity. Furthermore, the eye is dispensable for the induction of a phase delay following a pulse of white light at CT 16 but contributes to the induction of a phase advance upon a pulse of white light at CT21. Melanopsin photopigments are important mediators of photoentrainment, as shown in nocturnal mammals. One of the zebrafish melanopsin genes, opn4xa, is expressed in RGCs but also in photosensitive projection neurons in the pineal gland. Pineal opn4xa+ projection neurons function in a LIGHT ON manner in contrast to other projection neurons which function in a LIGHT OFF mode. We generated an opn4xa mutant in which the pineal LIGHT ON response is impaired. This mutation has no effect on masking and circadian rhythms of locomotor activity, or for the induction of phase shifts, but slightly modifies period length when larvae are subjected to constant light. Finally, analysis of opn4xa;lak double mutant larvae did not reveal redundancy between the function of the eye and opn4xa in the pineal for the control of phase shifts after light pulses. Our results support the idea that the eye is not the sole mediator of light influences on circadian rhythms of locomotor activity and highlight differences in the circadian system and photoentrainment of behaviour between different animal models.
Collapse
Affiliation(s)
- Clair Chaigne
- Unité de Biologie Moléculaire, Cellulaire et du Développement (MCD, UMR5077) Centre de Biologie Intégrative (CBI, FR 3743), Université de Toulouse 3/UPS, CNRS, UPS, Toulouse, France
| | - Dora Sapède
- Unité de Biologie Moléculaire, Cellulaire et du Développement (MCD, UMR5077) Centre de Biologie Intégrative (CBI, FR 3743), Université de Toulouse 3/UPS, CNRS, UPS, Toulouse, France
- IRMB, Université de Montpellier, INSERM, Montpellier, France
| | - Xavier Cousin
- MARBEC, Université de Montpellier, CNRS, Ifremer, IRD, INRAE, Route de Maguelone, Palavas, France
| | - Laurent Sanchou
- Centre de Biologie Intégrative (CBI, FR 3743), Université de Toulouse 3/UPS, CNRS, UPS, Toulouse, France
| | - Patrick Blader
- Unité de Biologie Moléculaire, Cellulaire et du Développement (MCD, UMR5077) Centre de Biologie Intégrative (CBI, FR 3743), Université de Toulouse 3/UPS, CNRS, UPS, Toulouse, France
| | - Elise Cau
- Unité de Biologie Moléculaire, Cellulaire et du Développement (MCD, UMR5077) Centre de Biologie Intégrative (CBI, FR 3743), Université de Toulouse 3/UPS, CNRS, UPS, Toulouse, France
| |
Collapse
|
2
|
Godino-Gimeno A, Leal E, Chivite M, Tormos E, Rotllant J, Vallone D, Foulkes NS, Míguez JM, Cerdá-Reverter JM. Role of melanocortin system in the locomotor activity rhythms and melatonin secretion as revealed by agouti-signalling protein (asip1) overexpression in zebrafish. J Pineal Res 2024; 76:e12939. [PMID: 38241679 DOI: 10.1111/jpi.12939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/21/2024]
Abstract
Temporal signals such as light and temperature cycles profoundly modulate animal physiology and behaviour. Via endogenous timing mechanisms which are regulated by these signals, organisms can anticipate cyclic environmental changes and thereby enhance their fitness. The pineal gland in fish, through the secretion of melatonin, appears to play a critical role in the circadian system, most likely acting as an element of the circadian clock system. An important output of this circadian clock is the locomotor activity circadian rhythm which is adapted to the photoperiod and thus determines whether animals are diurnal or nocturnal. By using a genetically modified zebrafish strain known as Tg (Xla.Eef1a1:Cau.asip1)iim04, which expresses a higher level of the agouti signalling protein 1 (Asip1), an endogenous antagonist of the melanocortin system, we observed a complete disruption of locomotor activity patterns, which correlates with the ablation of the melatonin daily rhythm. Consistent with this, in vitro experiments also demonstrated that Asip1 inhibits melatonin secretion from the zebrafish pineal gland, most likely through the melanocortin receptors expressed in this gland. Asip1 overexpression also disrupted the expression of core clock genes, including per1a and clock1a, thus blunting circadian oscillation. Collectively, these results implicate the melanocortin system as playing an important role in modulating pineal physiology and, therefore, circadian organisation in zebrafish.
Collapse
Affiliation(s)
- Alejandra Godino-Gimeno
- Department of Fish Physiology and Biotechnology, Instituto de Acuicultura de Torre de la Sal, IATS-CSIC, Fish Neurobehaviour Lab, Castellon, Spain
| | - Esther Leal
- Department of Fish Physiology and Biotechnology, Instituto de Acuicultura de Torre de la Sal, IATS-CSIC, Fish Neurobehaviour Lab, Castellon, Spain
| | - Mauro Chivite
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - Elisabeth Tormos
- Department of Fish Physiology and Biotechnology, Instituto de Acuicultura de Torre de la Sal, IATS-CSIC, Fish Neurobehaviour Lab, Castellon, Spain
| | - Josep Rotllant
- Department of Biotechnology and Aquaculture, Instituto de Investigaciones Marinas, IIM-CSIC, Vigo, Spain
| | - Daniela Vallone
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Department of Physiological Information Processing, Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Nicholas S Foulkes
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Department of Physiological Information Processing, Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| | - Jesús M Míguez
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - Jose Miguel Cerdá-Reverter
- Department of Fish Physiology and Biotechnology, Instituto de Acuicultura de Torre de la Sal, IATS-CSIC, Fish Neurobehaviour Lab, Castellon, Spain
| |
Collapse
|
3
|
Chen AQ, Xue M, Qiu CZ, Zhang HY, Zhou R, Zhang L, Yin ZJ, Ren DL. Circadian clock1a coordinates neutrophil recruitment via nfe212a/duox-reactive oxygen species pathway in zebrafish. Cell Rep 2023; 42:113179. [PMID: 37756160 DOI: 10.1016/j.celrep.2023.113179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/26/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Neutrophil recruitment to inflammatory sites appears to be an evolutionarily conserved strategy to fight against exogenous insults. However, the rhythmic characteristics and underlying mechanisms of neutrophil migration on a 24-h timescale are largely unknown. Using the advantage of in vivo imaging of zebrafish, this study explored how the circadian gene clock1a dynamically regulates the rhythmic recruitment of neutrophils to inflammatory challenges. We generated a clock1a mutant and found that neutrophil migration is significantly increased in caudal fin injury and lipopolysaccharide (LPS) injection. Transcriptome sequencing, chromatin immunoprecipitation (ChIP), and dual-luciferase reporting experiments suggest that the clock1a gene regulates neutrophil migration by coordinating the rhythmic expression of nfe212a and duox genes to control the reactive oxygen species (ROS) level. This study ultimately provides a visual model to expand the understanding of the rhythmic mechanisms of neutrophil recruitment on a circadian timescale in a diurnal organism from the perspective of ROS.
Collapse
Affiliation(s)
- An-Qi Chen
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Min Xue
- School of Life Science, Anhui Medical University, Hefei 230032, China
| | - Cheng-Zeng Qiu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Hao-Yi Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Ren Zhou
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Ling Zhang
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Zong-Jun Yin
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China.
| | - Da-Long Ren
- College of Animal Science and Technology, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
4
|
Shukla D, Gural BM, Cauley ES, Battula N, Mowla S, Karas BF, Roberts LE, Cavallo L, Turkalj L, Moody SA, Swan LE, Manzini MC. Duplicated zebrafish (Danio rerio) inositol phosphatases inpp5ka and inpp5kb diverged in expression pattern and function. Dev Genes Evol 2023; 233:25-34. [PMID: 37184573 PMCID: PMC10239392 DOI: 10.1007/s00427-023-00703-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 04/27/2023] [Indexed: 05/16/2023]
Abstract
One hurdle in the development of zebrafish models of human disease is the presence of multiple zebrafish orthologs resulting from whole genome duplication in teleosts. Mutations in inositol polyphosphate 5-phosphatase K (INPP5K) lead to a syndrome characterized by variable presentation of intellectual disability, brain abnormalities, cataracts, muscle disease, and short stature. INPP5K is a phosphatase acting at position 5 of phosphoinositides to control their homeostasis and is involved in insulin signaling, cytoskeletal regulation, and protein trafficking. Previously, our group and others have replicated the human phenotypes in zebrafish knockdown models by targeting both INPP5K orthologs inpp5ka and inpp5kb. Here, we show that inpp5ka is the more closely related orthologue to human INPP5K. While both inpp5ka and inpp5kb mRNA expression levels follow a similar trend in the developing head, eyes, and tail, inpp5ka is much more abundantly expressed in these tissues than inpp5kb. In situ hybridization revealed a similar trend, also showing unique localization of inpp5kb in the pineal gland and retina indicating different transcriptional regulation. We also found that inpp5kb has lost its catalytic activity against its preferred substrate, PtdIns(4,5)P2. Since most human mutations are missense changes disrupting phosphatase activity, we propose that loss of inpp5ka alone can be targeted to recapitulate the human presentation. In addition, we show that the function of inpp5kb has diverged from inpp5ka and may play a novel role in the zebrafish.
Collapse
Affiliation(s)
- Dhyanam Shukla
- Department of Neuroscience and Cell Biology and Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, 89 French Street, CHINJ Rm 3274, New Brunswick, NJ, 08901, USA
| | - Brian M Gural
- Department of Neuroscience and Cell Biology and Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, 89 French Street, CHINJ Rm 3274, New Brunswick, NJ, 08901, USA
| | - Edmund S Cauley
- Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
| | - Namarata Battula
- Department of Neuroscience and Cell Biology and Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, 89 French Street, CHINJ Rm 3274, New Brunswick, NJ, 08901, USA
| | - Shorbon Mowla
- Department of Neuroscience and Cell Biology and Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, 89 French Street, CHINJ Rm 3274, New Brunswick, NJ, 08901, USA
| | - Brittany F Karas
- Department of Neuroscience and Cell Biology and Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, 89 French Street, CHINJ Rm 3274, New Brunswick, NJ, 08901, USA
| | - Llion E Roberts
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Luca Cavallo
- Department of Neuroscience and Cell Biology and Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, 89 French Street, CHINJ Rm 3274, New Brunswick, NJ, 08901, USA
| | - Luka Turkalj
- Department of Neuroscience and Cell Biology and Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, 89 French Street, CHINJ Rm 3274, New Brunswick, NJ, 08901, USA
| | - Sally A Moody
- Department of Anatomy and Cell Biology, School of Medicine and Health Sciences, The George Washington University, Washington, DC, USA
| | - Laura E Swan
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - M Chiara Manzini
- Department of Neuroscience and Cell Biology and Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, 89 French Street, CHINJ Rm 3274, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
5
|
Aranda-Martínez P, Fernández-Martínez J, Ramírez-Casas Y, Rodríguez-Santana C, Rusanova I, Escames G, Acuña-Castroviejo D. Chronodisruption and Loss of Melatonin Rhythm, Associated with Alterations in Daily Motor Activity and Mitochondrial Dynamics in Parkinsonian Zebrafish, Are Corrected by Melatonin Treatment. Antioxidants (Basel) 2023; 12:antiox12040954. [PMID: 37107331 PMCID: PMC10136267 DOI: 10.3390/antiox12040954] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/01/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Beyond sleep/wake, clock genes regulate the daily rhythms of melatonin production, motor activity, innate immunity, and mitochondrial dynamics, among others. All these rhythms are affected in Parkinson's disease (PD), suggesting that chronodisruption may be an early stage of the disease. The aim of this study was to evaluate the connection between clock genes and these rhythms in PD, and whether melatonin administration reestablished the normal clock function. Parkinsonism was induced with 600 μM MPTP (N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) in 24-120 h post fertilization (hpf) zebrafish embryos and melatonin was administered at a dose of 1 μM. Day-night melatonin rhythm disappeared in MPTP-treated embryos, which showed an advance in the activity phase in parallel with changes in the rhythm of clock genes. An alteration in the fission-to-fusion mitochondrial dynamics was also detected in parkinsonian embryos, increasing the former and leading to apoptosis. Melatonin administration to MPTP-treated embryos fully restored the circadian system, including the rhythms of clock genes, motor activity, melatonin rhythm, and mitochondrial dynamics, and decreasing apoptosis. Because clock-controlled rhythms such as sleep/wake alterations are early events in PD, the data here reported may point to chronodisruption as one initial pathophysiological event of the disease.
Collapse
Affiliation(s)
- Paula Aranda-Martínez
- Centro de Investigación Biomédica, Facultad de Medicina, Departamento de Fisiología, Instituto de Biotecnología, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain
| | - José Fernández-Martínez
- Centro de Investigación Biomédica, Facultad de Medicina, Departamento de Fisiología, Instituto de Biotecnología, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain
| | - Yolanda Ramírez-Casas
- Centro de Investigación Biomédica, Facultad de Medicina, Departamento de Fisiología, Instituto de Biotecnología, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain
| | - César Rodríguez-Santana
- Centro de Investigación Biomédica, Facultad de Medicina, Departamento de Fisiología, Instituto de Biotecnología, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain
| | - Iryna Rusanova
- Centro de Investigación Biomédica, Facultad de Medicina, Departamento de Fisiología, Instituto de Biotecnología, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Ibs.Granada, Hospital Universitario San Cecilio, 18016 Granada, Spain
| | - Germaine Escames
- Centro de Investigación Biomédica, Facultad de Medicina, Departamento de Fisiología, Instituto de Biotecnología, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Ibs.Granada, Hospital Universitario San Cecilio, 18016 Granada, Spain
| | - Darío Acuña-Castroviejo
- Centro de Investigación Biomédica, Facultad de Medicina, Departamento de Fisiología, Instituto de Biotecnología, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, 18016 Granada, Spain
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Ibs.Granada, Hospital Universitario San Cecilio, 18016 Granada, Spain
- UGC de Laboratorios Clínicos, Hospital Universitario San Cecilio, 18016 Granada, Spain
| |
Collapse
|
6
|
Shukla M, Vincent B. Melatonin as a Harmonizing Factor of Circadian Rhythms, Neuronal Cell Cycle and Neurogenesis: Additional Arguments for Its Therapeutic Use in Alzheimer's Disease. Curr Neuropharmacol 2023; 21:1273-1298. [PMID: 36918783 PMCID: PMC10286584 DOI: 10.2174/1570159x21666230314142505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/07/2022] [Accepted: 12/31/2022] [Indexed: 03/16/2023] Open
Abstract
The synthesis and release of melatonin in the brain harmonize various physiological functions. The apparent decline in melatonin levels with advanced aging is an aperture to the neurodegenerative processes. It has been indicated that down regulation of melatonin leads to alterations of circadian rhythm components, which further causes a desynchronization of several genes and results in an increased susceptibility to develop neurodegenerative diseases. Additionally, as circadian rhythms and memory are intertwined, such rhythmic disturbances influence memory formation and recall. Besides, cell cycle events exhibit a remarkable oscillatory system, which is downstream of the circadian phenomena. The linkage between the molecular machinery of the cell cycle and complex fundamental regulatory proteins emphasizes the conjectural regulatory role of cell cycle components in neurodegenerative disorders such as Alzheimer's disease. Among the mechanisms intervening long before the signs of the disease appear, the disturbances of the circadian cycle, as well as the alteration of the machinery of the cell cycle and impaired neurogenesis, must hold our interest. Therefore, in the present review, we propose to discuss the underlying mechanisms of action of melatonin in regulating the circadian rhythm, cell cycle components and adult neurogenesis in the context of AD pathogenesis with the view that it might further assist to identify new therapeutic targets.
Collapse
Affiliation(s)
- Mayuri Shukla
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand
- Present Address: Chulabhorn Graduate Institute, Chulabhorn Royal Academy, 10210, Bangkok, Thailand
| | - Bruno Vincent
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom 73170, Thailand
- Institute of Molecular and Cellular Pharmacology, Laboratory of Excellence DistALZ, Université Côte d'Azur, INSERM, CNRS, Sophia-Antipolis, 06560, Valbonne, France
| |
Collapse
|
7
|
Immunity, Infection, and the Zebrafish Clock. Infect Immun 2022; 90:e0058821. [PMID: 35972269 PMCID: PMC9476956 DOI: 10.1128/iai.00588-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Circadian clocks are universally used to coordinate biological processes with the Earth's 24-h solar day and are critical for the health and environmental success of an organism. Circadian rhythms in eukaryotes are driven by a cell-intrinsic transcription-translation feedback loop that controls daily oscillations in gene expression which regulate diverse physiological functions. Substantial evidence now exists demonstrating that immune activation and inflammatory responses during infection are under circadian control, however, the cellular mechanisms responsible for this are not well understood. The zebrafish (Danio rerio) is a powerful model organism to study vertebrate circadian biology and immune function. Zebrafish contain homologs of mammalian circadian clock genes which, to our current knowledge, function similarly to impart timekeeping ability. Consistent with studies in mammalian models, several studies in fish have now demonstrated a bidirectional relationship between the circadian clock and inflammation: the circadian clock regulates immune activity, and inflammation can alter circadian rhythms. This review summarizes our current understanding of the molecular mechanisms of the zebrafish clock and the bi-directional relationship between the circadian clock and inflammation in fish.
Collapse
|
8
|
The Zebrafish, an Outstanding Model for Biomedical Research in the Field of Melatonin and Human Diseases. Int J Mol Sci 2022; 23:ijms23137438. [PMID: 35806441 PMCID: PMC9267299 DOI: 10.3390/ijms23137438] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 02/06/2023] Open
Abstract
The zebrafish has become an excellent model for the study of human diseases because it offers many advantages over other vertebrate animal models. The pineal gland, as well as the biological clock and circadian rhythms, are highly conserved in zebrafish, and melatonin is produced in the pineal gland and in most organs and tissues of the body. Zebrafish have several copies of the clock genes and of aanat and asmt genes, the latter involved in melatonin synthesis. As in mammals, melatonin can act through its membrane receptors, as with zebrafish, and through mechanisms that are independent of receptors. Pineal melatonin regulates peripheral clocks and the circadian rhythms of the body, such as the sleep/wake rhythm, among others. Extrapineal melatonin functions include antioxidant activity, inducing the endogenous antioxidants enzymes, scavenging activity, removing free radicals, anti-inflammatory activity through the regulation of the NF-κB/NLRP3 inflammasome pathway, and a homeostatic role in mitochondria. In this review, we introduce the utility of zebrafish to analyze the mechanisms of action of melatonin. The data here presented showed that the zebrafish is a useful model to study human diseases and that melatonin exerts beneficial effects on many pathophysiological processes involved in these diseases.
Collapse
|
9
|
Levraud JP, Rawls JF, Clatworthy AE. Using zebrafish to understand reciprocal interactions between the nervous and immune systems and the microbial world. J Neuroinflammation 2022; 19:170. [PMID: 35765004 PMCID: PMC9238045 DOI: 10.1186/s12974-022-02506-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 06/01/2022] [Indexed: 11/10/2022] Open
Abstract
Animals rely heavily on their nervous and immune systems to perceive and survive within their environment. Despite the traditional view of the brain as an immunologically privileged organ, these two systems interact with major consequences. Furthermore, microorganisms within their environment are major sources of stimuli and can establish relationships with animal hosts that range from pathogenic to mutualistic. Research from a variety of human and experimental animal systems are revealing that reciprocal interactions between microbiota and the nervous and immune systems contribute significantly to normal development, homeostasis, and disease. The zebrafish has emerged as an outstanding model within which to interrogate these interactions due to facile genetic and microbial manipulation and optical transparency facilitating in vivo imaging. This review summarizes recent studies that have used the zebrafish for analysis of bidirectional control between the immune and nervous systems, the nervous system and the microbiota, and the microbiota and immune system in zebrafish during development that promotes homeostasis between these systems. We also describe how the zebrafish have contributed to our understanding of the interconnections between these systems during infection in fish and how perturbations may result in pathology.
Collapse
Affiliation(s)
- Jean-Pierre Levraud
- Université Paris-Saclay, CNRS, Institut Pasteur, Université Paris-Cité, Institut des Neurosciences Paris-Saclay, 91400, Saclay, France.
| | - John F. Rawls
- grid.26009.3d0000 0004 1936 7961Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, 213 Research Drive, Durham, NC 27710 USA
| | - Anne E. Clatworthy
- grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142 USA ,grid.32224.350000 0004 0386 9924Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114 USA
| |
Collapse
|
10
|
Dekens MPS, Fontinha BM, Gallach M, Pflügler S, Tessmar‐Raible K. Melanopsin elevates locomotor activity during the wake state of the diurnal zebrafish. EMBO Rep 2022; 23:e51528. [PMID: 35233929 PMCID: PMC9066073 DOI: 10.15252/embr.202051528] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 01/24/2022] [Accepted: 02/04/2022] [Indexed: 11/28/2022] Open
Abstract
Mammalian and fish pineals play a key role in adapting behaviour to the ambient light conditions through the release of melatonin. In mice, light inhibits nocturnal locomotor activity via the non‐visual photoreceptor Melanopsin. In contrast to the extensively studied function of Melanopsin in the indirect regulation of the rodent pineal, its role in the intrinsically photosensitive zebrafish pineal has not been elucidated. Therefore, it is not evident if the light signalling mechanism is conserved between distant vertebrates, and how Melanopsin could affect diurnal behaviour. A double knockout of melanopsins (opn4.1‐opn4xb) was generated in the diurnal zebrafish, which manifests attenuated locomotor activity during the wake state. Transcriptome sequencing gave insight into pathways downstream of Melanopsin, implying that sustained repression of the melatonin pathway is required to elevate locomotor activity during the diurnal wake state. Moreover, we show that light induces locomotor activity during the diurnal wake state in an intensity‐dependent manner. These observations suggest a common Melanopsin‐driven mechanism between zebrafish and mammals, while the diurnal and nocturnal chronotypes are inversely regulated downstream of melatonin.
Collapse
Affiliation(s)
- Marcus P S Dekens
- Max Perutz Laboratory Centre for Molecular Biology University of Vienna and Medical University of Vienna Vienna Austria
| | - Bruno M Fontinha
- Max Perutz Laboratory Centre for Molecular Biology University of Vienna and Medical University of Vienna Vienna Austria
| | - Miguel Gallach
- Max Perutz Laboratory Centre for Molecular Biology University of Vienna and Medical University of Vienna Vienna Austria
- Max Perutz Laboratory Centre for Integrative Bioinformatics University of Vienna and Medical University of Vienna Vienna Austria
| | - Sandra Pflügler
- Max Perutz Laboratory Centre for Molecular Biology University of Vienna and Medical University of Vienna Vienna Austria
| | - Kristin Tessmar‐Raible
- Max Perutz Laboratory Centre for Molecular Biology University of Vienna and Medical University of Vienna Vienna Austria
- Research Platform “Marine Rhythms of Life” University of Vienna Vienna Austria
| |
Collapse
|
11
|
Carstensen MB, Medvetzky A, Weinberger A, Driever W, Gothilf Y, Rath MF. Genetic ablation of the Bsx homeodomain transcription factor in zebrafish: Impact on mature pineal gland morphology and circadian behavior. J Pineal Res 2022; 72:e12795. [PMID: 35249239 PMCID: PMC9285933 DOI: 10.1111/jpi.12795] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 11/30/2022]
Abstract
The pineal gland is a neuroendocrine structure in the brain, which produces and secretes the hormone melatonin at nighttime and is considered a key element in the circadian clock system. Early morphogenesis of the gland is controlled by a number of transcription factors, some of which remain active in adult life. One of these is the brain-specific homeobox (Bsx), a highly conserved homeodomain transcription factor with a developmental role in the pineal gland of several species, including zebrafish, and regulatory roles in mature pinealocytes of the rat. To determine the role of Bsx in circadian biology, we here examined the effects of a bsx loss-of-function mutation on the pineal gland in adult zebrafish and on behavioral circadian rhythms in larvae. In pineal cell type-specific Gfp/Egfp reporter zebrafish lines, we did not detect fluorescence signals in the pineal area of homozygous (bsx-/- ) mutants. Interestingly, a nonpigmented area on the dorsal surface of the head above the gland, known as the pineal window, was pigmented in the homozygous mutants. Furthermore, a structure corresponding to the pineal gland was not detectable in the midline of the adult brain in histological sections analyzed by Nissl staining and S-antigen immunohistochemistry. Moreover, the levels of pineal transcripts were greatly reduced in bsx-/- mutants, as revealed by quantitative real-time polymerase chain reaction analysis. Notably, analysis of locomotor activity at the larval stage revealed altered circadian rhythmicity in the bsx mutants with periods and phases similar to wildtype, but severely reduced amplitudes in locomotor activity patterns. Thus, Bsx is essential for full development of the pineal gland, with its absence resulting in a phenotype of morphological pineal gland ablation and disrupted circadian behavior.
Collapse
Affiliation(s)
- Mikkel Bloss Carstensen
- Department of Neuroscience, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- School of Neurobiology, Biochemistry and Biophysics, Faculty of Life SciencesTel Aviv UniversityTel AvivIsrael
| | - Adar Medvetzky
- School of Neurobiology, Biochemistry and Biophysics, Faculty of Life SciencesTel Aviv UniversityTel AvivIsrael
| | - Alon Weinberger
- School of Neurobiology, Biochemistry and Biophysics, Faculty of Life SciencesTel Aviv UniversityTel AvivIsrael
| | - Wolfgang Driever
- Developmental Biology, Institute Biology, Faculty of BiologyAlbert Ludwig University of FreiburgFreiburgGermany
| | - Yoav Gothilf
- School of Neurobiology, Biochemistry and Biophysics, Faculty of Life SciencesTel Aviv UniversityTel AvivIsrael
- Sagol School of NeuroscienceTel Aviv UniversityTel AvivIsrael
| | - Martin Fredensborg Rath
- Department of Neuroscience, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
12
|
D’Agostino Y, Frigato E, Noviello TM, Toni M, Frabetti F, Cigliano L, Ceccarelli M, Sordino P, Cerulo L, Bertolucci C, D’Aniello S. Loss of circadian rhythmicity in bdnf knockout zebrafish larvae. iScience 2022; 25:104054. [PMID: 35345456 PMCID: PMC8957028 DOI: 10.1016/j.isci.2022.104054] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 01/14/2022] [Accepted: 03/08/2022] [Indexed: 12/13/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) plays a pivotal role in neuronal growth and differentiation, neuronal plasticity, learning, and memory. Using CRISPR/Cas9 technology, we generated a vital Bdnf null mutant line in zebrafish and carried out its molecular and behavioral characterization. Although no defects are evident on a morphological inspection, 66% of coding genes and 37% of microRNAs turned out to be differentially expressed in bdnf−/− compared with wild type sibling embryos. We deeply investigated the circadian clock pathway and confirmed changes in the rhythmic expression of clock (arntl1a, clock1a and clock2) and clock-controlled (aanat2) genes. The modulatory role of Bdnf on the zebrafish circadian clock was then validated by behavioral tests highlighting the absence of circadian activity rhythms in bdnf−/− larvae. The circadian behavior was partially rescued by pharmacological treatment. The bdnf−/− zebrafish line presented here is the first valuable and stable vertebrate model for the study of BDNF-related neurodevelopmental diseases Generation of a viable bdnf KO line in zebrafish Bdnf deficiency affects locomotor activity and thigmotaxis in larvae Differential RNA-seq analysis shows changes in expression of circadian clock genes Bdnf mutant fails in the generation of the behavioral circadian rhythmicity
Collapse
|
13
|
A Zebrafish Model for a Rare Genetic Disease Reveals a Conserved Role for FBXL3 in the Circadian Clock System. Int J Mol Sci 2022; 23:ijms23042373. [PMID: 35216494 PMCID: PMC8875760 DOI: 10.3390/ijms23042373] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 02/01/2023] Open
Abstract
The circadian clock, which drives a wide range of bodily rhythms in synchrony with the day–night cycle, is based on a molecular oscillator that ticks with a period of approximately 24 h. Timed proteasomal degradation of clock components is central to the fine-tuning of the oscillator’s period. FBXL3 is a protein that functions as a substrate-recognition factor in the E3 ubiquitin ligase complex, and was originally shown in mice to mediate degradation of CRY proteins and thus contribute to the mammalian circadian clock mechanism. By exome sequencing, we have identified a FBXL3 mutation in patients with syndromic developmental delay accompanied by morphological abnormalities and intellectual disability, albeit with a normal sleep pattern. We have investigated the function of FBXL3 in the zebrafish, an excellent model to study both vertebrate development and circadian clock function and, like humans, a diurnal species. Loss of fbxl3a function in zebrafish led to disruption of circadian rhythms of promoter activity and mRNA expression as well as locomotor activity and sleep–wake cycles. However, unlike humans, no morphological effects were evident. These findings point to an evolutionary conserved role for FBXL3 in the circadian clock system across vertebrates and to the acquisition of developmental roles in humans.
Collapse
|
14
|
Sua-Cespedes CD, David DD, Souto-Neto JA, Lima OG, Moraes MN, de Assis LVM, Castrucci AMDL. Low Temperature Effect on the Endocrine and Circadian Systems of Adult Danio rerio. Front Physiol 2021; 12:707067. [PMID: 34899364 PMCID: PMC8652057 DOI: 10.3389/fphys.2021.707067] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 10/19/2021] [Indexed: 11/23/2022] Open
Abstract
The control of the biological rhythms begins with the activation of photo- and thermosensitive cells located in various organs of the fish such as brain, eye, and skin, but a central clock is still to be identified in teleosts. Thermal changes are stressors which increase cortisol and affect the rhythm of other hormones such as melatonin and growth hormone (GH), in both endo- and ectothermic organisms. Our aim was to investigate how temperature (23°C for 6 days) lower than the optimal (28°C) modulates expression of several gene pathways including growth hormone (gh1) and its receptors (ghra, ghrb), insulin-like growth factor1 (igf1a, igf1b) and its receptors (igf1ra, igf1rb), cortisol and its receptor (gr), the limiting enzyme of melatonin synthesis (arylalkylamine N-acetyltransferase, aanat) and melatonin receptors (mtnr1aa, mtnr1bb), as well as their relationship with clock genes in Danio rerio in early light and early dark phases of the day. Lower temperature reduced the expression of the hormone gene gh1, and of the related receptors ghra, ghrb, igf1ra, and igf1rb. Cortisol levels were higher at the lower temperature, with a decrease of its receptor (gr) transcripts in the liver. Interestingly, we found higher levels of aanat transcripts in the brain at 23°C. Overall, lower temperature downregulated the transcription of hormone related genes and clock genes. The results suggest a strong correlation of temperature challenge with the clock molecular mechanism and the endocrine systems analyzed, especially the growth hormone and melatonin axes, in D. rerio tissues.
Collapse
Affiliation(s)
- Cristhian D Sua-Cespedes
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Daniela Dantas David
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - José A Souto-Neto
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Otoniel Gonçalves Lima
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Maria Nathália Moraes
- Laboratory of Neurobiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Leonardo V Monteiro de Assis
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil.,Center of Brain, Behavior and Metabolism, Institute of Neurobiology, Lübeck University, Lübeck, Germany
| | - Ana Maria de Lauro Castrucci
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil.,Department of Biology, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
15
|
Feng C, Liu W, Chen H, Dong W, Yang J. Effect of dark environment on intestinal flora and expression of genes related to liver metabolism in zebrafish (Danio rerio). Comp Biochem Physiol C Toxicol Pharmacol 2021; 249:109100. [PMID: 34174412 DOI: 10.1016/j.cbpc.2021.109100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 05/19/2021] [Accepted: 05/26/2021] [Indexed: 02/07/2023]
Abstract
To explore the effects of dark environment on intestinal flora and expression of genes related to liver metabolism in zebrafish, a total of 60 zebrafish were fed for 21 days (24 h dark treatments or 14/10 h light/dark cycle), and the influence of dark environment on gut microbes and liver gene expression was studied using sequencing analysis of intestinal flora and liver. The results showed that the body weight of fish was significantly increased in the dark group than that in the control group (P < 0.05). Compared with the control group, dark environment treatment changed the composition of dominant flora, increased the abundance of unconventional bacteria and reduced probiotics in the intestine of zebrafish. Of these, the ratio of Bacteroidetes to Firmicutes in the intestine was reduced. The genome expression of the liver showed significant changes, and liver metabolites were also affected. Meanwhile, dark environment decreased gene expression associated with changes in blood glucose, lipid metabolism and immunization. Dark environment also caused liver steatosis as observed by histological study. This study shows that dark environment treatment has an important impact on liver metabolism and intestinal microbes in zebrafish.
Collapse
Affiliation(s)
- Chi Feng
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia 028000, China
| | - Wuyun Liu
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia 028000, China; School of Animal Science, Mongolian State University of Agriculture, Bayangol, Ulaanbaatar, Mongolia
| | - Hao Chen
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia 028000, China
| | - Wu Dong
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia 028000, China
| | - Jingfeng Yang
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao, Inner Mongolia 028000, China.
| |
Collapse
|
16
|
The habenula clock influences response to a stressor. Neurobiol Stress 2021; 15:100403. [PMID: 34632007 PMCID: PMC8488752 DOI: 10.1016/j.ynstr.2021.100403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/17/2021] [Accepted: 09/19/2021] [Indexed: 12/12/2022] Open
Abstract
The response of an animal to a sensory stimulus depends on the nature of the stimulus and on expectations, which are mediated by spontaneous activity. Here, we ask how circadian variation in the expectation of danger, and thus the response to a potential threat, is controlled. We focus on the habenula, a mediator of threat response that functions by regulating neuromodulator release, and use zebrafish as the experimental system. Single cell transcriptomics indicates that multiple clock genes are expressed throughout the habenula, while quantitative in situ hybridization confirms that the clock oscillates. Two-photon calcium imaging indicates a circadian change in spontaneous activity of habenula neurons. To assess the role of this clock, a truncated clocka gene was specifically expressed in the habenula. This partially inhibited the clock, as shown by changes in per3 expression as well as altered day-night variation in dopamine, serotonin and acetylcholine levels. Behaviourally, anxiety-like responses evoked by an alarm pheromone were reduced. Circadian effects of the pheromone were disrupted, such that responses in the day resembled those at night. Behaviours that are regulated by the pineal clock and not triggered by stressors were unaffected. We suggest that the habenula clock regulates the expectation of danger, thus providing one mechanism for circadian change in the response to a stressor.
Collapse
|
17
|
Poe AR, Mace KD, Kayser MS. Getting into rhythm: developmental emergence of circadian clocks and behaviors. FEBS J 2021; 289:6576-6588. [PMID: 34375504 DOI: 10.1111/febs.16157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/30/2021] [Accepted: 08/09/2021] [Indexed: 11/28/2022]
Abstract
Circadian clocks keep time to coordinate diverse behaviors and physiological functions. While molecular circadian rhythms are evident during early development, most behavioral rhythms, such as sleep-wake, do not emerge until far later. Here, we examine the development of circadian clocks, outputs, and behaviors across phylogeny, with a particular focus on Drosophila. We explore potential mechanisms for how central clocks and circadian output loci establish communication, and discuss why from an evolutionary perspective sleep-wake and other behavioral rhythms emerge long after central clocks begin keeping time.
Collapse
Affiliation(s)
- Amy R Poe
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.,Chronobiology and Sleep Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Kyla D Mace
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.,Pharmacology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Matthew S Kayser
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.,Chronobiology and Sleep Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.,Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
18
|
Altenhofen S, Bonan CD. Zebrafish as a tool in the study of sleep and memory-related disorders. Curr Neuropharmacol 2021; 20:540-549. [PMID: 34254919 DOI: 10.2174/1570159x19666210712141041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 05/23/2021] [Accepted: 06/14/2021] [Indexed: 11/22/2022] Open
Abstract
Sleep is an evolutionarily conserved phenomenon, being an essential biological necessity for the learning process and memory consolidation. The brain displays two types of electrical activity during sleep: slow-wave activity or non-rapid eye movement (NREM) sleep and desynchronized brain wave activity or rapid eye movement (REM) sleep. There are many theories about "Why we need to sleep?" among them the synaptic homeostasis. This theory proposes that the role of sleep is the restoration of synaptic homeostasis, which is destabilized by synaptic strengthening triggered by learning during waking and by synaptogenesis during development. Sleep diminishes the plasticity load on neurons and other cells to normalize synaptic strength. In contrast, it re-establishes neuronal selectivity and the ability to learn, leading to the consolidation and integration of memories. The use of zebrafish as a tool to assess sleep and its disorders is growing, although sleep in this animal is not yet divided, for example, into REM and NREM states. However, zebrafish are known to have a regulated daytime circadian rhythm. Their sleep state is characterized by periods of inactivity accompanied by an increase in arousal threshold, preference for resting place, and the "rebound sleep effect" phenomenon, which causes an increased slow-wave activity after a forced waking period. In addition, drugs known to modulate sleep, such as melatonin, nootropics, and nicotine, have been tested in zebrafish. In this review, we discuss the use of zebrafish as a model to investigate sleep mechanisms and their regulation, demonstrating this species as a promising model for sleep research.
Collapse
Affiliation(s)
- Stefani Altenhofen
- Laboratório de Neuroquímica e Psicofarmacologia, Programa de Pós-Graduação em Biologia Celulare Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, porto Alegre, RS, Brazil
| | - Carla Denise Bonan
- Laboratório de Neuroquímica e Psicofarmacologia, Programa de Pós-Graduação em Biologia Celulare Molecular, Escola de Ciências da Saúde e da Vida, Pontifícia Universidade Católica do Rio Grande do Sul, porto Alegre, RS, Brazil
| |
Collapse
|
19
|
Aluru N, Krick KS, McDonald AM, Karchner SI. Developmental Exposure to PCB153 (2,2',4,4',5,5'-Hexachlorobiphenyl) Alters Circadian Rhythms and the Expression of Clock and Metabolic Genes. Toxicol Sci 2021; 173:41-52. [PMID: 31621872 DOI: 10.1093/toxsci/kfz217] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Polychlorinated biphenyls (PCBs) are highly persistent and ubiquitously distributed environmental pollutants. Based on their chemical structure, PCBs are classified into non-ortho-substituted and ortho-substituted congeners. Non-ortho-substituted PCBs are structurally similar to dioxin and their toxic effects and mode of action are well-established. In contrast, very little is known about the effects of ortho-substituted PCBs, particularly, during early development. The objective of this study is to investigate the effects of exposure to an environmentally prominent ortho-substituted PCB (2,2',4,4',5,5'-hexachlorobiphenyl; PCB153) on zebrafish embryos. We exposed zebrafish embryos to 3 different concentrations of PCB153 starting from 4 to 120 hours post-fertilization (hpf). We quantified gross morphological changes, behavioral phenotypes, gene expression changes, and circadian behavior in the larvae. There were no developmental defects during the exposure period, but starting at 7 dpf, we observed spinal deformity in the 10 μM PCB153 treated group. A total of 633, 2227, and 3378 differentially expressed genes were observed in 0.1 μM (0.036 μg/ml), 1 μM (0.36 μg/ml), and 10 μM (3.6 μg/ml) PCB153-treated embryos, respectively. Of these, 301 genes were common to all treatment groups. KEGG pathway analysis revealed enrichment of genes related to circadian rhythm, FoxO signaling, and insulin resistance pathways. Behavioral analysis revealed that PCB153 exposure significantly alters circadian behavior. Disruption of circadian rhythms has been associated with the development of metabolic and neurological diseases. Thus, understanding the mechanisms of action of environmental chemicals in disrupting metabolism and other physiological processes is essential.
Collapse
Affiliation(s)
- Neelakanteswar Aluru
- Biology Department, Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543
| | - Keegan S Krick
- Biology Department, Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543
| | - Adriane M McDonald
- Biology Department, Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543.,Biology Department, Spelman College, Atlanta, Georgia 30314
| | - Sibel I Karchner
- Biology Department, Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543
| |
Collapse
|
20
|
Moore NS, Mans RA, McCauley MK, Allgood CS, Barksdale KA. Critical Effects on Akt Signaling in Adult Zebrafish Brain Following Alterations in Light Exposure. Cells 2021; 10:cells10030637. [PMID: 33809219 PMCID: PMC8000057 DOI: 10.3390/cells10030637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 11/16/2022] Open
Abstract
Evidence from human and animal studies indicate that disrupted light cycles leads to alterations of the sleep state, poor cognition, and the risk of developing neuroinflammatory and generalized health disorders. Zebrafish exhibit a diurnal circadian rhythm and are an increasingly popular model in studies of neurophysiology and neuropathophysiology. Here, we investigate the effect of alterations in light cycle on the adult zebrafish brain: we measured the effect of altered, unpredictable light exposure in adult zebrafish telencephalon, homologous to mammalian hippocampus, and the optic tectum, a significant visual processing center with extensive telencephalon connections. The expression of heat shock protein-70 (HSP70), an important cell stress mediator, was significantly decreased in optic tectum of adult zebrafish brain following four days of altered light exposure. Further, pSer473-Akt (protein kinase B) was significantly reduced in telencephalon following light cycle alteration, and pSer9-GSK3β (glycogen synthase kinase-3β) was significantly reduced in both the telencephalon and optic tectum of light-altered fish. Animals exposed to five minutes of environmental enrichment showed significant increase in pSer473Akt, which was significantly attenuated by four days of altered light exposure. These data show for the first time that unpredictable light exposure alters HSP70 expression and dysregulates Akt-GSK3β signaling in the adult zebrafish brain.
Collapse
|
21
|
Nisembaum LG, Martin P, Lecomte F, Falcón J. Melatonin and osmoregulation in fish: A focus on Atlantic salmon Salmo salar smoltification. J Neuroendocrinol 2021; 33:e12955. [PMID: 33769643 DOI: 10.1111/jne.12955] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 10/21/2022]
Abstract
Part of the life cycle of several fish species includes important salinity changes, as is the case for the sea bass (Dicentrarchus labrax) or the Atlantic salmon (Salmo salar). Salmo salar juveniles migrate downstream from their spawning sites to reach seawater, where they grow and become sexually mature. The process of preparation enabling juveniles to migrate downstream and physiologically adapt to seawater is called smoltification. Daily and seasonal variations of photoperiod and temperature play a role in defining the timing of smoltification, which may take weeks to months, depending on the river length and latitude. Smoltification is characterised by a series of biochemical, physiological and behavioural changes within the neuroendocrine axis. This review discusses the current knowledge and gaps related to the neuroendocrine mechanisms that mediate the effects of light and temperature on smoltification. Studies performed in S. salar and other salmonids, as well as in other species undergoing important salinity changes, are reviewed, and a particular emphasis is given to the pineal hormone melatonin and its possible role in osmoregulation. The daily and annual variations of plasma melatonin levels reflect corresponding changes in external photoperiod and temperature, which suggests that the hormonal time-keeper melatonin might contribute to controlling smoltification. Here, we review studies on (i) the impact of pinealectomy and/or melatonin administration on smoltification; (ii) melatonin interactions with hormones involved in osmoregulation (e.g., prolactin, growth hormone and cortisol); (iii) the presence of melatonin receptors in tissues involved in osmoregulation; and (iv) the impacts of salinity changes on melatonin receptors and circulating melatonin levels. Altogether, these studies show evidence indicating that melatonin interacts with the neuroendocrine pathways controlling smoltification, although more information is needed to clearly decipher its mechanisms of action.
Collapse
Affiliation(s)
- Laura Gabriela Nisembaum
- Sorbonne Université, CNRS, Biologie Intégrative des Organismes Marins, (BIOM), Banyuls-sur-Mer, France
| | - Patrick Martin
- Conservatoire National du Saumon Sauvage, Chanteuges, France
| | - Frédéric Lecomte
- Ministère des Forêts, de la Faune et des Parcs, Direction de l'expertise sur la faune aquatique, Québec, Canada
| | - Jack Falcón
- Biologie des Organismes et Ecosystèmes Aquatiques (BOREA), MNHN, CNRS 7208, SU, IRD 207, UCN, UA, Muséum National d'Histoire Naturelle, Paris, France
| |
Collapse
|
22
|
Krylov VV, Izvekov EI, Pavlova VV, Pankova NA, Osipova EA. Circadian rhythms in zebrafish (Danio rerio) behaviour and the sources of their variability. Biol Rev Camb Philos Soc 2020; 96:785-797. [PMID: 33331134 DOI: 10.1111/brv.12678] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 12/12/2022]
Abstract
Over recent decades, changes in zebrafish (Danio rerio) behaviour have become popular quantitative indicators in biomedical studies. The circadian rhythms of behavioural processes in zebrafish are known to enable effective utilization of energy and resources, therefore attracting interest in zebrafish as a research model. This review covers a variety of circadian behaviours in this species, including diurnal rhythms of spawning, feeding, locomotor activity, shoaling, light/dark preference, and vertical position preference. Changes in circadian activity during zebrafish ontogeny are reviewed, including ageing-related alterations and chemically induced variations in rhythmicity patterns. Both exogenous and endogenous sources of inter-individual variability in zebrafish circadian behaviour are detailed. Additionally, we focus on different environmental factors with the potential to entrain circadian processes in zebrafish. This review describes two principal ways whereby diurnal behavioural rhythms can be entrained: (i) modulation of organismal physiological state, which can have masking or enhancing effects on behavioural endpoints related to endogenous circadian rhythms, and (ii) modulation of period and amplitude of the endogenous circadian rhythm due to competitive relationships between the primary and secondary zeitgebers. In addition, different peripheral oscillators in zebrafish can be entrained by diverse zeitgebers. This complicated orchestra of divergent influences may cause variability in zebrafish circadian behaviours, which should be given attention when planning behavioural studies.
Collapse
Affiliation(s)
- Viacheslav V Krylov
- I.D. Papanin Institute for Biology of Inland Waters Russian Academy of Sciences, Borok, Nekouz, Yaroslavl Oblast, 152742, Russia
| | - Evgeny I Izvekov
- I.D. Papanin Institute for Biology of Inland Waters Russian Academy of Sciences, Borok, Nekouz, Yaroslavl Oblast, 152742, Russia
| | - Vera V Pavlova
- I.D. Papanin Institute for Biology of Inland Waters Russian Academy of Sciences, Borok, Nekouz, Yaroslavl Oblast, 152742, Russia
| | - Natalia A Pankova
- I.D. Papanin Institute for Biology of Inland Waters Russian Academy of Sciences, Borok, Nekouz, Yaroslavl Oblast, 152742, Russia
| | - Elena A Osipova
- I.D. Papanin Institute for Biology of Inland Waters Russian Academy of Sciences, Borok, Nekouz, Yaroslavl Oblast, 152742, Russia
| |
Collapse
|
23
|
Abstract
A long-standing question, particularly in physiotherapy and sports medicine, is whether time of day affects muscle metabolism and hence growth, either intrinsically or in response to exercise or nutrition. Answers would help to identify the best time of day to exercise, build muscle, and prevent aging- or disease-related sarcopenia. Here, we address this question in live zebrafish myotome in vivo, without interference from other circadian oscillations such as locomotor activity and food intake. We show that active muscle anabolizes more in the day and grows faster, while catabolizing more at night and growing slower. Such day/night differences remain in inactive muscle but disappear after clock disruption. We conclude that muscles display circadian differences in growth independent of activity and feeding. Muscle tissue shows diurnal variations in function, physiology, and metabolism. Whether such variations are dependent on the circadian clock per se or are secondary to circadian differences in physical activity and feeding pattern is unclear. By measuring muscle growth over 12-h periods in live prefeeding larval zebrafish, we show that muscle grows more during day than night. Expression of dominant negative CLOCK (ΔCLK), which inhibits molecular clock function, ablates circadian differences and reduces muscle growth. Inhibition of muscle contraction reduces growth in both day and night, but does not ablate the day/night difference. The circadian clock and physical activity are both required to promote higher muscle protein synthesis during the day compared to night, whereas markers of protein degradation, murf messenger RNAs, are higher at night. Proteasomal inhibitors increase muscle growth at night, irrespective of physical activity, but have no effect during the day. Although physical activity enhances TORC1 activity, and the TORC1 inhibitor rapamycin inhibits clock-driven daytime growth, no effect on muscle growth at night was detected. Importantly, day/night differences in 1) muscle growth, 2) protein synthesis, and 3) murf expression all persist in entrained larvae under free-running constant conditions, indicating circadian drive. Removal of circadian input by exposure to either permanent darkness or light leads to suboptimal muscle growth. We conclude that diurnal variations in muscle growth and metabolism are a circadian property that is independent of, but augmented by, physical activity, at least during development.
Collapse
|
24
|
Thompson WA, Vijayan MM. Zygotic Venlafaxine Exposure Impacts Behavioral Programming by Disrupting Brain Serotonin in Zebrafish. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:14578-14588. [PMID: 33142061 DOI: 10.1021/acs.est.0c06032] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The antidepressant venlafaxine, a selective serotonin and norepinephrine reuptake inhibitor, is present in surface waters downstream of wastewater treatment plants. We previously showed that zygotic venlafaxine deposition alters larval behavior in zebrafish (Danio rerio), but the mechanisms were unknown. Here we tested the hypothesis that venlafaxine disrupts central serotonergic development, leading to impaired behavioral responses in zebrafish larvae. This was tested by microinjecting embryos with venlafaxine immediately after fertilization and performing spatial distribution of serotonin immunoreactivity, as well as characterizing target genes involved in serotonin turnover in the zebrafish brain. We provide evidence that venlafaxine exposure reduces serotonin immunoreactivity and tyrosine hydroxylase-positive cell populations in specific larval brain regions, and this corresponded with reduced larval activity observed in the drug-exposed group. Lowered serotonin was not due to either reduced synthesis or increased breakdown capacity. However, co-injection of serotonin alongside venlafaxine in embryos recovered brain serotonin immunoreactivity, tyrosine hydroxylase-positive cell populations, and rescued venlafaxine-mediated behavioral changes. Overall, our results demonstrate for the first time that early life exposure to venlafaxine perturbs brain development, which may be due to reduced serotonin, leading to altered larval behavior in zebrafish.
Collapse
Affiliation(s)
- William Andrew Thompson
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB, Canada, T2N 1N4
| | - Mathilakath M Vijayan
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, AB, Canada, T2N 1N4
| |
Collapse
|
25
|
Chang E, Fu C, Coon SL, Alon S, Bozinoski M, Breymaier M, Bustos DM, Clokie SJ, Gothilf Y, Esnault C, Michael Iuvone P, Mason CE, Ochocinska MJ, Tovin A, Wang C, Xu P, Zhu J, Dale R, Klein DC. Resource: A multi-species multi-timepoint transcriptome database and webpage for the pineal gland and retina. J Pineal Res 2020; 69:e12673. [PMID: 32533862 PMCID: PMC7513311 DOI: 10.1111/jpi.12673] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 01/12/2023]
Abstract
The website and database https://snengs.nichd.nih.gov provides RNA sequencing data from multi-species analysis of the pineal glands from zebrafish (Danio rerio), chicken (White Leghorn), rat (Rattus novegicus), mouse (Mus musculus), rhesus macaque (Macaca mulatta), and human (Homo sapiens); in most cases, retinal data are also included along with results of the analysis of a mixture of RNA from tissues. Studies cover day and night conditions; in addition, a time series over multiple hours, a developmental time series and pharmacological experiments on rats are included. The data have been uniformly re-processed using the latest methods and assemblies to allow for comparisons between experiments and to reduce processing differences. The website presents search functionality, graphical representations, Excel tables, and track hubs of all data for detailed visualization in the UCSC Genome Browser. As more data are collected from investigators and improved genomes become available in the future, the website will be updated. This database is in the public domain and elements can be reproduced by citing the URL and this report. This effort makes the results of 21st century transcriptome profiling widely available in a user-friendly format that is expected to broadly influence pineal research.
Collapse
Affiliation(s)
- Eric Chang
- Bioinformatics and Scientific Programming CoreEunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaMDUSA
| | - Cong Fu
- Section on NeuroendocrinologyProgram in Developmental Endocrinology and GeneticsEunice Shriver Kennedy National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaMDUSA
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of EducationThe First Hospital of Jilin UniversityChangchunChina
- Laboratory of Theoretical and Computational ChemistryInstitute of Theoretical ChemistryJilin UniversityChangchunChina
- National‐Local Joint Engineering Laboratory of Animal Models for Human DiseasesChangchunChina
| | - Steven L. Coon
- Section on NeuroendocrinologyProgram in Developmental Endocrinology and GeneticsEunice Shriver Kennedy National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaMDUSA
- Molecular Genomics CoreOffice of the Scientific DirectorEunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaMDUSA
| | - Shahar Alon
- Department of NeurobiologyThe George S. Wise Faculty of Life Sciences, and Sagol School of NeuroscienceTel‐Aviv UniversityTel AvivIsrael
- Present address:
The Alexander Kofkin Faculty of EngineeringBar‐Ilan UniversityRamat‐GanIsrael
| | - Marjan Bozinoski
- Department of Physiology and Biophysics and the Institute for Computational BiomedicineWeill Cornell Medical CollegeNew YorkNYUSA
| | - Matthew Breymaier
- Computer Support Services CoreEunice Shriver Kennedy National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaMDUSA
| | - Diego M. Bustos
- Section on NeuroendocrinologyProgram in Developmental Endocrinology and GeneticsEunice Shriver Kennedy National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaMDUSA
- Present address:
Instituto de Histología y Embriología de MendozaConsejo Nacional de Investigaciones Científicas y TécnicasMendozaArgentina
| | - Samuel J. Clokie
- Section on NeuroendocrinologyProgram in Developmental Endocrinology and GeneticsEunice Shriver Kennedy National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaMDUSA
- Present address:
West Midlands Regional Genetics LaboratoriesBirmingham, Women’s and Children’s NHS Foundation TrustBirminghamUK
| | - Yoav Gothilf
- Department of NeurobiologyThe George S. Wise Faculty of Life Sciences, and Sagol School of NeuroscienceTel‐Aviv UniversityTel AvivIsrael
| | - Caroline Esnault
- Bioinformatics and Scientific Programming CoreEunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaMDUSA
| | - P. Michael Iuvone
- Departments of Ophthalmology and Pharmacology & Chemical BiologyEmory University School of MedicineAtlantaGAUSA
| | - Christopher E. Mason
- Department of Physiology and Biophysics and the Institute for Computational BiomedicineWeill Cornell Medical CollegeNew YorkNYUSA
| | - Margaret J. Ochocinska
- Section on NeuroendocrinologyProgram in Developmental Endocrinology and GeneticsEunice Shriver Kennedy National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaMDUSA
- Present address:
National Heart, Lung and Blood InstituteNational Institutes of HealthBethesdaMDUSA
| | - Adi Tovin
- Department of NeurobiologyThe George S. Wise Faculty of Life Sciences, and Sagol School of NeuroscienceTel‐Aviv UniversityTel AvivIsrael
- Present address:
The Faculty of Life SciencesBar‐Ilan UniversityRamat‐GanIsrael
| | - Charles Wang
- Center for GenomicsSchool of MedicineLoma Linda UniversityLoma LindaCAUSA
| | - Pinxian Xu
- Department of Genetics and Genomic SciencesMount Sinai School of Medicine Icahn Medical InstituteNew YorkNYUSA
| | - Jinhang Zhu
- United States Food and Drug Administration’s National Center for Toxicological Research, Food and Drug AdministrationJeffersonARUSA
- Department of PhysiologySchool of Basic Medical SciencesAnhui Medical UniversityHefeiChina
| | - Ryan Dale
- Bioinformatics and Scientific Programming CoreEunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaMDUSA
| | - David C. Klein
- Section on NeuroendocrinologyProgram in Developmental Endocrinology and GeneticsEunice Shriver Kennedy National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaMDUSA
- Office of the Scientific DirectorEunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaMDUSA
| |
Collapse
|
26
|
Steindal IAF, Whitmore D. Zebrafish Circadian Clock Entrainment and the Importance of Broad Spectral Light Sensitivity. Front Physiol 2020; 11:1002. [PMID: 32922310 PMCID: PMC7456917 DOI: 10.3389/fphys.2020.01002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 07/23/2020] [Indexed: 11/25/2022] Open
Abstract
One of the key defining features of an endogenous circadian clock is that it can be entrained or set to local time. Though a number of cues can perform this role, light is the predominant environmental signal that acts to entrain circadian pacemakers in most species. For the past 20 years, a great deal of work has been performed on the light input pathway in mammals and the role of intrinsically photosensitive retinal ganglion cells (ipRGCs)/melanopsin in detecting and sending light information to the suprachiasmatic nucleus (SCN). In teleost fishes, reptiles and birds, the biology of light sensitivity is more complicated as cells and tissues can be directly light responsive. Non-visual light signalling was described many years ago in the context of seasonal, photoperiodic responses in birds and lizards. In the case of teleosts, in particular the zebrafish model system, not only do peripheral tissues have a circadian pacemaker, but possess clear, direct light sensitivity. A surprisingly wide number of opsin photopigments have been described within these tissues, which may underpin this fundamental ability to respond to light, though no specific functional link for any given opsin yet exists. In this study, we show that zebrafish cells show wide spectral sensitivities, as well as express a number of opsin photopigments – several of which are under direct clock control. Furthermore, we also show that light outside the visual range, both ultraviolet and infrared light, can induce clock genes in zebrafish cells. These same wavelengths can phase shift the clock, except infrared light, which generates no shift even though genes such as per2 and cry1a are induced.
Collapse
Affiliation(s)
- Inga A Frøland Steindal
- Centre for Cell and Molecular Dynamics, Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - David Whitmore
- Centre for Cell and Molecular Dynamics, Department of Cell and Developmental Biology, University College London, London, United Kingdom.,College of Public Health, Medical and Veterinary Sciences, Department of Molecular and Cell Biology, James Cook University, Townsville, QLD, Australia
| |
Collapse
|
27
|
Saha S, Singh KM, Gupta BBP. Circadian rhythm of expression of core clock genes in the photosensitive pineal organ of catfish, Clarias gariepinus under different photoperiodic regimes. BIOL RHYTHM RES 2020. [DOI: 10.1080/09291016.2020.1728922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Saurav Saha
- Environmental Endocrinology Laboratory, Department of Zoology, North-Eastern Hill University, Shillong, India
| | - Kshetrimayum Manisana Singh
- Environmental Endocrinology Laboratory, Department of Zoology, North-Eastern Hill University, Shillong, India
| | - Braj Bansh Prasad Gupta
- Environmental Endocrinology Laboratory, Department of Zoology, North-Eastern Hill University, Shillong, India
| |
Collapse
|
28
|
Sapède D, Chaigne C, Blader P, Cau E. Functional heterogeneity in the pineal projection neurons of zebrafish. Mol Cell Neurosci 2020; 103:103468. [PMID: 32027966 DOI: 10.1016/j.mcn.2020.103468] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/31/2020] [Accepted: 02/01/2020] [Indexed: 01/11/2023] Open
Abstract
The zebrafish pineal organ is a photoreceptive structure containing two main neuronal populations (photoreceptors and projections neurons). Here we describe a subpopulation of projection neurons that expresses the melanopsin gene, opn4xa. This new pineal cell type, that displays characteristics of both projection neurons and photoreceptors, share a similar dependency for BMP and Notch signalling pathways with classical non-photosensitive projection neurons (PN). Functionally, however, whereas classical, opn4xa-negative PNs display an achromatic LIGHT OFF response, the novel cell type we describe exhibit a LIGHT ON character that is elicited by green and blue light. Taken together, our data suggest a previously unanticipated heterogeneity in the projection neuron population in the zebrafish pineal organ raising the question of the importance of these differences in pineal function.
Collapse
Affiliation(s)
- Dora Sapède
- Centre de Biologie du Développement (CBD, UMR5547), Centre de Biologie Intégrative (CBI, FR 3743), Université de Toulouse, CNRS, UPS, France; IRMB, Université de Montpellier, INSERM, Montpellier, France
| | - Clair Chaigne
- Centre de Biologie du Développement (CBD, UMR5547), Centre de Biologie Intégrative (CBI, FR 3743), Université de Toulouse, CNRS, UPS, France
| | - Patrick Blader
- Centre de Biologie du Développement (CBD, UMR5547), Centre de Biologie Intégrative (CBI, FR 3743), Université de Toulouse, CNRS, UPS, France
| | - Elise Cau
- Centre de Biologie du Développement (CBD, UMR5547), Centre de Biologie Intégrative (CBI, FR 3743), Université de Toulouse, CNRS, UPS, France.
| |
Collapse
|
29
|
Poisson A, Nicolas A, Bousquet I, Raverot V, Gronfier C, Demily C. Smith-Magenis Syndrome: Molecular Basis of a Genetic-Driven Melatonin Circadian Secretion Disorder. Int J Mol Sci 2019; 20:E3533. [PMID: 31330985 PMCID: PMC6679101 DOI: 10.3390/ijms20143533] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/08/2019] [Accepted: 07/17/2019] [Indexed: 01/09/2023] Open
Abstract
Smith-Magenis syndrome (SMS), linked to Retinoic Acid Induced (RAI1) haploinsufficiency, is a unique model of the inversion of circadian melatonin secretion. In this regard, this model is a formidable approach to better understand circadian melatonin secretion cycle disorders and the role of the RAI1 gene in this cycle. Sleep-wake cycle disorders in SMS include sleep maintenance disorders with a phase advance and intense sleepiness around noon. These disorders have been linked to a general disturbance of sleep-wake rhythm and coexist with inverted secretion of melatonin. The exact mechanism underlying the inversion of circadian melatonin secretion in SMS has rarely been discussed. We suggest three hypotheses that could account for the inversion of circadian melatonin secretion and discuss them. First, inversion of the circadian melatonin secretion rhythm could be linked to alterations in light signal transduction. Second, this inversion could imply global misalignment of the circadian system. Third, the inversion is not linked to a global circadian clock shift but rather to a specific impairment in the melatonin secretion pathway between the suprachiasmatic nuclei (SCN) and pinealocytes. The development of diurnal SMS animal models that produce melatonin appears to be an indispensable step to further understand the molecular basis of the circadian melatonin secretion rhythm.
Collapse
Affiliation(s)
- Alice Poisson
- GénoPsy, Reference Center for Diagnosis and Management of Genetic Psychiatric Disorders, Centre Hospitalier le Vinatier and EDR-Psy Q19 Team (Centre National de la Recherche Scientifique & Lyon 1 Claude Bernard University), 69678 Bron, France.
| | - Alain Nicolas
- GénoPsy, Reference Center for Diagnosis and Management of Genetic Psychiatric Disorders, Centre Hospitalier le Vinatier and EDR-Psy Q19 Team (Centre National de la Recherche Scientifique & Lyon 1 Claude Bernard University), 69678 Bron, France
| | - Idriss Bousquet
- GénoPsy, Reference Center for Diagnosis and Management of Genetic Psychiatric Disorders, Centre Hospitalier le Vinatier and EDR-Psy Q19 Team (Centre National de la Recherche Scientifique & Lyon 1 Claude Bernard University), 69678 Bron, France
| | - Véronique Raverot
- Laboratoire d'hormonologie-CBPE, CHU de Lyon, 59, boulevard Pinel, 69677 Bron, France
| | - Claude Gronfier
- Lyon Neuroscience Research Center, Integrative Physiology of the Brain Arousal Systems, Waking Team, Inserm UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, 69675 Lyon, France
| | - Caroline Demily
- GénoPsy, Reference Center for Diagnosis and Management of Genetic Psychiatric Disorders, Centre Hospitalier le Vinatier and EDR-Psy Q19 Team (Centre National de la Recherche Scientifique & Lyon 1 Claude Bernard University), 69678 Bron, France
| |
Collapse
|
30
|
Shainer I, Michel M, Marquart GD, Bhandiwad AA, Zmora N, Ben-Moshe Livne Z, Zohar Y, Hazak A, Mazon Y, Förster D, Hollander-Cohen L, Cone RD, Burgess HA, Gothilf Y. Agouti-Related Protein 2 Is a New Player in the Teleost Stress Response System. Curr Biol 2019; 29:2009-2019.e7. [PMID: 31178320 PMCID: PMC8287899 DOI: 10.1016/j.cub.2019.05.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/28/2019] [Accepted: 05/08/2019] [Indexed: 12/14/2022]
Abstract
Agouti-related protein (AgRP) is a hypothalamic regulator of food consumption in mammals. However, AgRP has also been detected in circulation, but a possible endocrine role has not been examined. Zebrafish possess two agrp genes: hypothalamically expressed agrp1, considered functionally equivalent to the single mammalian agrp, and agrp2, which is expressed in pre-optic neurons and uncharacterized pineal gland cells and whose function is not well understood. By ablation of AgRP1-expressing neurons and knockout of the agrp1 gene, we show that AgRP1 stimulates food consumption in the zebrafish larvae. Single-cell sequencing of pineal agrp2-expressing cells revealed molecular resemblance to retinal-pigment epithelium cells, and anatomic analysis shows that these cells secrete peptides, possibly into the cerebrospinal fluid. Additionally, based on AgRP2 peptide localization and gene knockout analysis, we demonstrate that pre-optic AgRP2 is a neuroendocrine regulator of the stress axis that reduces cortisol secretion. We therefore suggest that the ancestral role of AgRP was functionally partitioned in zebrafish by the two AgRPs, with AgRP1 centrally regulating food consumption and AgRP2 acting as a neuroendocrine factor regulating the stress axis.
Collapse
Affiliation(s)
- Inbal Shainer
- School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, 6997801 Tel Aviv, Israel.
| | - Maximilian Michel
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA; Institute of Zoology, University of Cologne, 50674 Cologne, Germany
| | - Gregory D Marquart
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA; Neuroscience and Cognitive Science Program, University of Maryland, College Park, MD 20742, USA
| | - Ashwin A Bhandiwad
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Nilli Zmora
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, MD 21202, USA
| | - Zohar Ben-Moshe Livne
- School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, 6997801 Tel Aviv, Israel
| | - Yonathan Zohar
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, MD 21202, USA
| | - Adi Hazak
- School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, 6997801 Tel Aviv, Israel
| | - Yael Mazon
- School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, 6997801 Tel Aviv, Israel
| | - Dominique Förster
- Department Genes - Circuits - Behavior, Max Planck Institute of Neurobiology, 82152 Martinsried, Germany
| | - Lian Hollander-Cohen
- Department of Animal Sciences, The Robert H. Smith Faculty of Agriculture, Food, and Environment, Hebrew University of Jerusalem, 76100 Rehovot, Israel
| | - Roger D Cone
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Harold A Burgess
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Yoav Gothilf
- School of Neurobiology, Biochemistry and Biophysics, The George S. Wise Faculty of Life Sciences, Tel-Aviv University, 6997801 Tel Aviv, Israel; Sagol School of Neuroscience, Tel-Aviv University, 6997801 Tel Aviv, Israel.
| |
Collapse
|
31
|
Genario R, Giacomini AC, Demin KA, dos Santos BE, Marchiori NI, Volgin AD, Bashirzade A, Amstislavskaya TG, de Abreu MS, Kalueff AV. The evolutionarily conserved role of melatonin in CNS disorders and behavioral regulation: Translational lessons from zebrafish. Neurosci Biobehav Rev 2019; 99:117-127. [DOI: 10.1016/j.neubiorev.2018.12.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/12/2018] [Accepted: 12/20/2018] [Indexed: 12/14/2022]
|
32
|
Circadian Clocks in Fish-What Have We Learned so far? BIOLOGY 2019; 8:biology8010017. [PMID: 30893815 PMCID: PMC6466151 DOI: 10.3390/biology8010017] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/07/2019] [Accepted: 03/09/2019] [Indexed: 12/24/2022]
Abstract
Zebrafish represent the one alternative vertebrate, genetic model system to mice that can be easily manipulated in a laboratory setting. With the teleost Medaka (Oryzias latipes), which now has a significant following, and over 30,000 other fish species worldwide, there is great potential to study the biology of environmental adaptation using teleosts. Zebrafish are primarily used for research on developmental biology, for obvious reasons. However, fish in general have also contributed to our understanding of circadian clock biology in the broadest sense. In this review, we will discuss selected areas where this contribution seems most unique. This will include a discussion of the issue of central versus peripheral clocks, in which zebrafish played an early role; the global nature of light sensitivity; and the critical role played by light in regulating cell biology. In addition, we also discuss the importance of the clock in controlling the timing of fundamental aspects of cell biology, such as the temporal control of the cell cycle. Many of these findings are applicable to the majority of vertebrate species. However, some reflect the unique manner in which “fish” can solve biological problems, in an evolutionary context. Genome duplication events simply mean that many fish species have more gene copies to “throw at a problem”, and evolution seems to have taken advantage of this “gene abundance”. How this relates to their poor cousins, the mammals, remains to be seen.
Collapse
|
33
|
Tudorache C, Slabbekoorn H, Robbers Y, Hin E, Meijer JH, Spaink HP, Schaaf MJM. Biological clock function is linked to proactive and reactive personality types. BMC Biol 2018; 16:148. [PMID: 30577878 PMCID: PMC6303931 DOI: 10.1186/s12915-018-0618-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 12/04/2018] [Indexed: 12/16/2022] Open
Abstract
Background Many physiological processes in our body are controlled by the biological clock and show circadian rhythmicity. It is generally accepted that a robust rhythm is a prerequisite for optimal functioning and that a lack of rhythmicity can contribute to the pathogenesis of various diseases. Here, we tested in a heterogeneous laboratory zebrafish population whether and how variation in the rhythmicity of the biological clock is associated with the coping styles of individual animals, as assessed in a behavioural assay to reliably measure this along a continuum between proactive and reactive extremes. Results Using RNA sequencing on brain samples, we demonstrated a prominent difference in the expression level of genes involved in the biological clock between proactive and reactive individuals. Subsequently, we tested whether this correlation between gene expression and coping style was due to a consistent change in the level of clock gene expression or to a phase shift or to altered amplitude of the circadian rhythm of gene expression. Our data show a remarkable individual variation in amplitude of the clock gene expression rhythms, which was also reflected in the fluctuating concentrations of melatonin and cortisol, and locomotor activity. This variation in rhythmicity showed a strong correlation with the coping style of the individual, ranging from robust rhythms with large amplitudes in proactive fish to a complete absence of rhythmicity in reactive fish. The rhythmicity of the proactive fish decreased when challenged with constant light conditions whereas the rhythmicity of reactive individuals was not altered. Conclusion These results shed new light on the role of the biological clock by demonstrating that large variation in circadian rhythmicity of individuals may occur within populations. The observed correlation between coping style and circadian rhythmicity suggests that the level of rhythmicity forms an integral part of proactive or reactive coping styles. Electronic supplementary material The online version of this article (10.1186/s12915-018-0618-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Hans Slabbekoorn
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Yuri Robbers
- Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Eline Hin
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Johanna H Meijer
- Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Herman P Spaink
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | | |
Collapse
|
34
|
Kumar V, Sharma A. Common features of circadian timekeeping in diverse organisms. CURRENT OPINION IN PHYSIOLOGY 2018. [DOI: 10.1016/j.cophys.2018.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
35
|
Sloin HE, Ruggiero G, Rubinstein A, Smadja Storz S, Foulkes NS, Gothilf Y. Interactions between the circadian clock and TGF-β signaling pathway in zebrafish. PLoS One 2018; 13:e0199777. [PMID: 29940038 PMCID: PMC6016920 DOI: 10.1371/journal.pone.0199777] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 06/13/2018] [Indexed: 12/22/2022] Open
Abstract
Background TGF-β signaling is a cellular pathway that functions in most cells and has been shown to play a role in multiple processes, such as the immune response, cell differentiation and proliferation. Recent evidence suggests a possible interaction between TGF-β signaling and the molecular circadian oscillator. The current study aims to characterize this interaction in the zebrafish at the molecular and behavioral levels, taking advantage of the early development of a functional circadian clock and the availability of light-entrainable clock-containing cell lines. Results Smad3a, a TGF-β signaling-related gene, exhibited a circadian expression pattern throughout the brain of zebrafish larvae. Both pharmacological inhibition and indirect activation of TGF-β signaling in zebrafish Pac-2 cells caused a concentration dependent disruption of rhythmic promoter activity of the core clock gene Per1b. Inhibition of TGF-β signaling in intact zebrafish larvae caused a phase delay in the rhythmic expression of Per1b mRNA. TGF-β inhibition also reversibly disrupted, phase delayed and increased the period of circadian rhythms of locomotor activity in zebrafish larvae. Conclusions The current research provides evidence for an interaction between the TGF-β signaling pathway and the circadian clock system at the molecular and behavioral levels, and points to the importance of TGF-β signaling for normal circadian clock function. Future examination of this interaction should contribute to a better understanding of its underlying mechanisms and its influence on a variety of cellular processes including the cell cycle, with possible implications for cancer development and progression.
Collapse
Affiliation(s)
- Hadas E. Sloin
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Gennaro Ruggiero
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Eggenstein, Germany
| | - Amir Rubinstein
- Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, Israel
| | - Sima Smadja Storz
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Nicholas S. Foulkes
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, Eggenstein, Germany
| | - Yoav Gothilf
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- * E-mail:
| |
Collapse
|
36
|
Kim OH, Cho HJ, Han E, Hong TI, Ariyasiri K, Choi JH, Hwang KS, Jeong YM, Yang SY, Yu K, Park DS, Oh HW, Davis EE, Schwartz CE, Lee JS, Kim HG, Kim CH. Zebrafish knockout of Down syndrome gene, DYRK1A, shows social impairments relevant to autism. Mol Autism 2017; 8:50. [PMID: 29021890 PMCID: PMC5622473 DOI: 10.1186/s13229-017-0168-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 09/18/2017] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND DYRK1A maps to the Down syndrome critical region at 21q22. Mutations in this kinase-encoding gene have been reported to cause microcephaly associated with either intellectual disability or autism in humans. Intellectual disability accompanied by microcephaly was recapitulated in a murine model by overexpressing Dyrk1a which mimicked Down syndrome phenotypes. However, given embryonic lethality in homozygous knockout (KO) mice, no murine model studies could present sufficient evidence to link Dyrk1a dysfunction with autism. To understand the molecular mechanisms underlying microcephaly and autism spectrum disorders (ASD), we established an in vivo dyrk1aa KO model using zebrafish. METHODS We identified a patient with a mutation in the DYRK1A gene using microarray analysis. Circumventing the barrier of murine model studies, we generated a dyrk1aa KO zebrafish using transcription activator-like effector nuclease (TALEN)-mediated genome editing. For social behavioral tests, we have established a social interaction test, shoaling assay, and group behavior assay. For molecular analysis, we examined the neuronal activity in specific brain regions of dyrk1aa KO zebrafish through in situ hybridization with various probes including c-fos and crh which are the molecular markers for stress response. RESULTS Microarray detected an intragenic microdeletion of DYRK1A in an individual with microcephaly and autism. From behavioral tests of social interaction and group behavior, dyrk1aa KO zebrafish exhibited social impairments that reproduce human phenotypes of autism in a vertebrate animal model. Social impairment in dyrk1aa KO zebrafish was further confirmed by molecular analysis of c-fos and crh expression. Transcriptional expression of c-fos and crh was lower than that of wild type fish in specific hypothalamic regions, suggesting that KO fish brains are less activated by social context. CONCLUSIONS In this study, we established a zebrafish model to validate a candidate gene for autism in a vertebrate animal. These results illustrate the functional deficiency of DYRK1A as an underlying disease mechanism for autism. We also propose simple social behavioral assays as a tool for the broader study of autism candidate genes.
Collapse
Affiliation(s)
- Oc-Hee Kim
- Department of Biology, Chungnam National University, Daejeon, 34134 Republic of Korea
- Korean Research Institute of Biosciences and Biotechnology, Daejeon, 34141 Republic of Korea
| | - Hyun-Ju Cho
- Korean Research Institute of Biosciences and Biotechnology, Daejeon, 34141 Republic of Korea
- Department of Functional Genomics, Korea University of Science and Technology, Daejeon, 34113 South Korea
| | - Enna Han
- Department of Biology, Chungnam National University, Daejeon, 34134 Republic of Korea
| | - Ted Inpyo Hong
- Department of Biology, Chungnam National University, Daejeon, 34134 Republic of Korea
| | - Krishan Ariyasiri
- Department of Biology, Chungnam National University, Daejeon, 34134 Republic of Korea
| | - Jung-Hwa Choi
- Department of Biology, Chungnam National University, Daejeon, 34134 Republic of Korea
| | - Kyu-Seok Hwang
- Department of Biology, Chungnam National University, Daejeon, 34134 Republic of Korea
| | - Yun-Mi Jeong
- Department of Biology, Chungnam National University, Daejeon, 34134 Republic of Korea
| | - Se-Yeol Yang
- Korean Research Institute of Biosciences and Biotechnology, Daejeon, 34141 Republic of Korea
- Department of Functional Genomics, Korea University of Science and Technology, Daejeon, 34113 South Korea
| | - Kweon Yu
- Korean Research Institute of Biosciences and Biotechnology, Daejeon, 34141 Republic of Korea
- Department of Functional Genomics, Korea University of Science and Technology, Daejeon, 34113 South Korea
| | - Doo-Sang Park
- Korean Research Institute of Biosciences and Biotechnology, Daejeon, 34141 Republic of Korea
| | - Hyun-Woo Oh
- Korean Research Institute of Biosciences and Biotechnology, Daejeon, 34141 Republic of Korea
| | - Erica E. Davis
- Center for Human Disease Modeling, Duke University Medical Center, Durham, NC 27701 USA
| | | | - Jeong-Soo Lee
- Korean Research Institute of Biosciences and Biotechnology, Daejeon, 34141 Republic of Korea
- Department of Functional Genomics, Korea University of Science and Technology, Daejeon, 34113 South Korea
- Dementia DTC R&D Convergence Program, Korea Institute of Science and Technology, Seoul, 02792 South Korea
| | - Hyung-Goo Kim
- Department of OB/GYN, Department of Neuroscience and Regenerative Medicine, Augusta University, Augusta, GA 30912 USA
| | - Cheol-Hee Kim
- Department of Biology, Chungnam National University, Daejeon, 34134 Republic of Korea
| |
Collapse
|
37
|
Abstract
Changes in illumination can rapidly influence behavior that is normally controlled by the circadian clock. This effect is termed masking. In mice, masking requires melanopsin-expressing retinal ganglion cells that detect blue light and project to the thalamus. It is not known whether masking is wavelength-dependent in other vertebrates, nor is it known whether the thalamus is also involved or how it influences masking. Here, we address these questions in zebrafish. We find that diel vertical migration, a circadian behavior in larval zebrafish, is effectively triggered by blue, but not by red light. Two-photon calcium imaging reveals that a thalamic nucleus and a downstream structure, the habenula, have a sustained response to blue but not to red light. Lesioning the habenula reduces light-evoked climbing. These data suggest that the thalamo-habenula pathway is involved in the ability of blue light to influence a circadian behavior.
Collapse
Affiliation(s)
- Qian Lin
- NUS Graduate School for Integrative Sciences and Engineering, 28 Medical Drive, National University of Singapore, Singapore, 117456, Singapore.,The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Suresh Jesuthasan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 636921, Singapore. .,Neural Circuitry and Behavior Laboratory, Institute of Molecular and Cell Biology, Singapore, 138673, Singapore. .,Neuroscience and Behavioral Disorders Program, Duke-NUS Graduate Medical School, 8 College Road, Singapore, 169857, Singapore. .,Department of Physiology, National University of Singapore, Singapore, 117597, Singapore.
| |
Collapse
|
38
|
Matsui H. Dopamine system, cerebellum, and nucleus ruber in fish and mammals. Dev Growth Differ 2017; 59:219-227. [PMID: 28547762 DOI: 10.1111/dgd.12357] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 04/09/2017] [Accepted: 04/09/2017] [Indexed: 12/26/2022]
Abstract
Small teleost fish including zebrafish and medaka have been used as animal models for research because of their small body size, vast amounts of eggs produced, their rapid development, low husbandry costs, and transparency during embryogenesis. Although the body size and appearance seem different, fish and mammals including human still possess anatomical and functional similarities in their brains. This review summarizes the similarities of brain structures and functions between teleost fish and mammalian brains, focusing on the dopamine system, functional regionalization of the cerebellum, and presence of the nucleus ruber.
Collapse
Affiliation(s)
- Hideaki Matsui
- Department of Neuroscience of Disease, Center for Transdisciplinary Research, Niigata University, 757, Ichibancho, Asahimachidori, Chuo-ku, Niigata-shi, Niigata, 951-8585, Japan.,Brain Research Institute, Niigata University, 757, Ichibancho, Asahimachidori, Chuo-ku, Niigata-shi, Niigata, 951-8585, Japan
| |
Collapse
|
39
|
Levitas-Djerbi T, Appelbaum L. Modeling sleep and neuropsychiatric disorders in zebrafish. Curr Opin Neurobiol 2017; 44:89-93. [PMID: 28414966 DOI: 10.1016/j.conb.2017.02.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 02/28/2017] [Indexed: 01/03/2023]
Abstract
What are the molecular and cellular mechanisms that link neurological disorders and sleep disturbances? The transparent zebrafish model could bridge this gap in knowledge due to its unique genetic and imaging toolbox, and amenability to high-throughput screening. Sleep is well-characterized in zebrafish and key regulators of the sleep/wake cycle are conserved, including melatonin and hypocretin/orexin (Hcrt), whereas novel sleep regulating proteins are continually being identified, such as Kcnh4a, Neuromedin U, and QRFP. Sleep deficiencies have been observed in various zebrafish models for genetic neuropsychiatric disorders, ranging from psychomotor retardation and autism to anxiety disorders. Understanding the link between neuropsychiatric disorders and sleep phenotypes in zebrafish may ultimately provide a platform for identifying therapeutic targets for clinical trials in humans.
Collapse
Affiliation(s)
- Talia Levitas-Djerbi
- The Faculty of Life Sciences and the Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Lior Appelbaum
- The Faculty of Life Sciences and the Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| |
Collapse
|
40
|
Barlow IL, Rihel J. Zebrafish sleep: from geneZZZ to neuronZZZ. Curr Opin Neurobiol 2017; 44:65-71. [PMID: 28391130 DOI: 10.1016/j.conb.2017.02.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 02/09/2017] [Accepted: 02/13/2017] [Indexed: 12/24/2022]
Abstract
All animals have a fundamental and unavoidable requirement for rest, yet we still do not fully understand the processes that initiate, maintain, and regulate sleep. The larval zebrafish is an optically translucent, genetically tractable model organism that exhibits sleep states regulated by conserved sleep circuits, thereby offering a unique system for investigating the genetic and neural control of sleep. Recent studies using high throughput monitoring of larval sleep/wake behaviour have unearthed novel modulators involved in regulating arousal and have provided new mechanistic insights into the role of established sleep/wake modulators. In addition, the application of computational tools to large behavioural datasets has allowed for the identification of neuroactive compounds that alleviate sleep symptoms associated with genetic neurological disorders.
Collapse
Affiliation(s)
- Ida L Barlow
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Jason Rihel
- Department of Cell and Developmental Biology, University College London, London, United Kingdom.
| |
Collapse
|
41
|
Dekens MPS, Foulkes NS, Tessmar-Raible K. Instrument design and protocol for the study of light controlled processes in aquatic organisms, and its application to examine the effect of infrared light on zebrafish. PLoS One 2017; 12:e0172038. [PMID: 28212399 PMCID: PMC5315407 DOI: 10.1371/journal.pone.0172038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 01/30/2017] [Indexed: 12/12/2022] Open
Abstract
The acquisition of reliable data strongly depends on experimental design. When studying the effects of light on processes such as behaviour and physiology it is crucial to maintain all environmental conditions constant apart from the one under study. Furthermore, the precise values of the environmental factors applied during the experiment should be known. Although seemingly obvious, these conditions are often not met when the effects of light are being studied. Here, we document and discuss the wavelengths and light intensities of natural and artificial light sources. We present standardised experimental protocols together with building plans of a custom made instrument designed to accurately control light and temperature for experiments using fresh water or marine species. Infrared light is commonly used for recording behaviour and in electrophysiological experiments although the properties of fish photoreceptors potentially allow detection into the far red. As an example of our experimental procedure we have applied our protocol and instrument to specifically test the impact of infrared light (840 nm) on the zebrafish circadian clock, which controls many aspects of behaviour, physiology and metabolism. We demonstrate that infrared light does not influence the zebrafish circadian clock. Our results help to provide a solid framework for the future study of light dependent processes in aquatic organisms.
Collapse
Affiliation(s)
- Marcus P. S. Dekens
- Max Perutz Laboratories, Vienna Biocenter, University of Vienna, Vienna, Austria
| | - Nicholas S. Foulkes
- Karlsruhe Institute of Technology, Eggenstein, Germany
- Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
| | - Kristin Tessmar-Raible
- Max Perutz Laboratories, Vienna Biocenter, University of Vienna, Vienna, Austria
- Research Platform “Rhythms of Life”, University of Vienna, Vienna, Austria
| |
Collapse
|