1
|
Carney A, Williamson P, Taylor RM. The Demography, Longevity and Mortality of Bullmastiffs Attending Veterinary Practices in Australia. Animals (Basel) 2024; 14:3419. [PMID: 39682384 DOI: 10.3390/ani14233419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/14/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
The Bullmastiff is a giant breed of dog, and there is evidence the breed is predisposed to cancer and musculoskeletal disorders, though the disease investigation of the breed is limited. This study reports on the demography, longevity and mortality of Bullmastiffs attending veterinary practices in Australia over a ten-year period. VetCompass Australia collects patient data from veterinary practices across Australia for epidemiological analysis. All patient records of Bullmastiffs available in the VetCompass Australia database during this decade period were reviewed, with demographic information on the breed inclusive of coat colour, sex, neuter status, weight and location collated. Standardised veterinary diagnostic (VeNom) codes for the most appropriate cause of death were assigned to deceased dogs. The population comprised 2771 Bullmastiffs with an overall median age of 2.8 years. Within the group, 1259 were female (45.4%), 1491 were male (53.8%), and 21 dogs (0.8%) had no recorded sex or neuter status. Dogs grew rapidly in their first year, with an average gain of approximately 1 kg every 10 days. A slower growth rate continued in their second year, and growth plateaued as adulthood was reached, with the mean body weight of adult male dogs (46.6 kg) being heavier than that of females (40.5 kg). The age at death for the group was 8.5 years. The most common causes of death in the breed were mass lesions (28.2%), old age (9.9%), musculoskeletal-related disease (9.9%) and neurological (5.3%) and behavioural disorders (4.8%). Neutering was protective against mortality from urogenital causes (OR: 0.14; CI: 0.02-0.52; p = 0.003) and had a positive effect on longevity. This study provides demographic and health information on a population of Bullmastiffs attending veterinary practices in Australia, which will benefit evidence-based veterinary decisions for this breed. Additionally, the results may assist owners and breeders in making informed decisions on health risks and breeding programmes in the population.
Collapse
Affiliation(s)
- Abigail Carney
- Sydney School of Veterinary Science, University of Sydney, Camperdown, NSW 2006, Australia
| | - Peter Williamson
- Sydney School of Veterinary Science, University of Sydney, Camperdown, NSW 2006, Australia
| | - Rosanne M Taylor
- Sydney School of Veterinary Science, University of Sydney, Camperdown, NSW 2006, Australia
| |
Collapse
|
2
|
ANGGORO D, PURBA MS, JIANG F, NISHIDA N, ITOH H, ITAMOTO K, NEMOTO Y, NAKAICHI M, SUNAHARA H, TANI K. Elucidation of the radius and ulna fracture mechanisms in toy poodle dogs using finite element analysis. J Vet Med Sci 2024; 86:575-583. [PMID: 38556325 PMCID: PMC11144531 DOI: 10.1292/jvms.23-0520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/18/2024] [Indexed: 04/02/2024] Open
Abstract
Fractures occurring in the distal radius and ulna of toy breed dogs pose distinctive challenges for veterinary practitioners, requiring specialized treatment approaches primarily based on anatomical features. Finite Element Analysis (FEA) was applied to conduct numerical experiments to determine stress distribution across the bone. This methodology offers an alternative substitute for directly investigating these phenomena in living dog experiments, which could present ethical obstacles. A three-dimensional bone model of the metacarpal, carpal, radius, ulna, and humerus was reconstructed from Computed Tomography (CT) images of the toy poodle and dachshund forelimb. The model was designed to simulate the jumping and landing conditions from a vertical distance of 40 cm to the ground within a limited timeframe. The investigation revealed considerable variations in stress distribution patterns between the radius and ulna of toy poodles and dachshunds, indicating notably elevated stress levels in toy poodles compared to dachshunds. In static and dynamic stress analysis, toy poodles exhibit peak stress levels at the distal radius and ulna. The Von Mises stresses for toy poodles reach 90.07 MPa (static) and 1,090.75 MPa (dynamic) at the radius and 1,677.97 MPa (static) and 1,047.98 MPa (dynamic) at the ulna. Conversely, dachshunds demonstrate lower stress levels for 5.39 MPa (static) and 231.79 MPa (dynamic) at the radius and 390.56 MPa (static) and 513.28 MPa (dynamic) at the ulna. The findings offer valuable insights for modified treatment approaches in managing fractures in toy breed dogs, optimizing care and outcomes.
Collapse
Affiliation(s)
- Dito ANGGORO
- Laboratory of Veterinary Surgery, Joint Graduate School of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
- Department of Surgery and Radiology, Faculty of Veterinary Medicine, Gadjah Mada University, Yogyakarta, Indonesia
| | - Melpa Susanti PURBA
- Laboratory of Veterinary Surgery, Joint Graduate School of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Fei JIANG
- Department of Mechanical Engineering, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Norihiro NISHIDA
- Department of Orthopedic Surgery, Graduate School of Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Harumichi ITOH
- Laboratory of Small Animal Clinical Science, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Kazuhito ITAMOTO
- Laboratory of Small Animal Clinical Science, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Yuki NEMOTO
- Laboratory of Veterinary Radiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Munekazu NAKAICHI
- Laboratory of Veterinary Radiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Hiroshi SUNAHARA
- Laboratory of Veterinary Surgery, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Kenji TANI
- Laboratory of Veterinary Surgery, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
3
|
Kieler IN, Persson SM, Hagman R, Marinescu VD, Hedhammar Å, Strandberg E, Lindblad-Toh K, Arendt ML. Genome wide association study in Swedish Labrador retrievers identifies genetic loci associated with hip dysplasia and body weight. Sci Rep 2024; 14:6090. [PMID: 38480780 PMCID: PMC10937653 DOI: 10.1038/s41598-024-56060-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/01/2024] [Indexed: 03/17/2024] Open
Abstract
Genome wide association studies (GWAS) have been utilized to identify genetic risk loci associated with both simple and complex inherited disorders. Here, we performed a GWAS in Labrador retrievers to identify genetic loci associated with hip dysplasia and body weight. Hip dysplasia scores were available for 209 genotyped dogs. We identified a significantly associated locus for hip dysplasia on chromosome 24, with three equally associated SNPs (p = 4.3 × 10-7) in complete linkage disequilibrium located within NDRG3, a gene which in humans has been shown to be differentially expressed in osteoarthritic joint cartilage. Body weight, available for 85 female dogs, was used as phenotype for a second analysis. We identified two significantly associated loci on chromosome 10 (p = 4.5 × 10-7) and chromosome 31 (p = 2.5 × 10-6). The most associated SNPs within these loci were located within the introns of the PRKCE and CADM2 genes, respectively. PRKCE has been shown to play a role in regulation of adipogenesis whilst CADM2 has been associated with body weight in multiple human GWAS. In summary, we identified credible candidate loci explaining part of the genetic inheritance for hip dysplasia and body weight in Labrador retrievers with strong candidate genes in each locus previously implicated in the phenotypes investigated.
Collapse
Affiliation(s)
- Ida Nordang Kieler
- Department of Veterinary Clinical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sofia Malm Persson
- Department for Breeding and Health, Swedish Kennel Club, Stockholm, Sweden
| | - Ragnvi Hagman
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Voichita D Marinescu
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- SciLifeLab, Uppsala, Sweden
| | - Åke Hedhammar
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Erling Strandberg
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Kerstin Lindblad-Toh
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- SciLifeLab, Uppsala, Sweden
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Maja Louise Arendt
- Department of Veterinary Clinical Sciences, University of Copenhagen, Copenhagen, Denmark.
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
- SciLifeLab, Uppsala, Sweden.
| |
Collapse
|
4
|
Antkowiak M, Szydlowski M. Uncovering structural variants associated with body weight and obesity risk in labrador retrievers: a genome-wide study. Front Genet 2023; 14:1235821. [PMID: 37799139 PMCID: PMC10548226 DOI: 10.3389/fgene.2023.1235821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/11/2023] [Indexed: 10/07/2023] Open
Abstract
Although obesity in the domestic dog (Canis lupus familiaris) is known to decrease well-being and shorten lifespan, the genetic risk variants associated with canine obesity remain largely unknown. In our study, which focused on the obesity-prone Labrador Retriever breed, we conducted a genome-wide analysis to identify structural variants linked to body weight and obesity. Obesity status was based on a 5-point body condition score (BCS) and the obese dog group included all dogs with a BCS of 5, along with dogs with the highest body weight within the BCS 4 group. Data from whole-gene sequencing of fifty dogs, including 28 obese dogs, were bioinformatically analyzed to identify potential structural variants that varied in frequency between obese and healthy dogs. The seven most promising variants were further analyzed by droplet digital PCR in a group of 110 dogs, including 63 obese. Our statistical evidence suggests that common structural mutations in or near six genes, specifically ALPL, KCTD8, SGSM1, SLC12A6, RYR3, and VPS26C, may contribute to the variability observed in body weight and body condition scores among Labrador Retriever dogs. These findings emphasize the need for additional research to validate the associations and explore the specific functions of these genes in relation to canine obesity.
Collapse
Affiliation(s)
| | - Maciej Szydlowski
- Department of Genetics and Animal Breeding, Poznań University of Life Sciences, Poznań, Poland
| |
Collapse
|
5
|
Haghani A, Li CZ, Robeck TR, Zhang J, Lu AT, Ablaeva J, Acosta-Rodríguez VA, Adams DM, Alagaili AN, Almunia J, Aloysius A, Amor NM, Ardehali R, Arneson A, Baker CS, Banks G, Belov K, Bennett NC, Black P, Blumstein DT, Bors EK, Breeze CE, Brooke RT, Brown JL, Carter G, Caulton A, Cavin JM, Chakrabarti L, Chatzistamou I, Chavez AS, Chen H, Cheng K, Chiavellini P, Choi OW, Clarke S, Cook JA, Cooper LN, Cossette ML, Day J, DeYoung J, Dirocco S, Dold C, Dunnum JL, Ehmke EE, Emmons CK, Emmrich S, Erbay E, Erlacher-Reid C, Faulkes CG, Fei Z, Ferguson SH, Finno CJ, Flower JE, Gaillard JM, Garde E, Gerber L, Gladyshev VN, Goya RG, Grant MJ, Green CB, Hanson MB, Hart DW, Haulena M, Herrick K, Hogan AN, Hogg CJ, Hore TA, Huang T, Belmonte JCI, Jasinska AJ, Jones G, Jourdain E, Kashpur O, Katcher H, Katsumata E, Kaza V, Kiaris H, Kobor MS, Kordowitzki P, Koski WR, Krützen M, Kwon SB, Larison B, Lee SG, Lehmann M, Lemaître JF, Levine AJ, Li X, Li C, Lim AR, Lin DTS, Lindemann DM, Liphardt SW, Little TJ, Macoretta N, Maddox D, Matkin CO, Mattison JA, McClure M, Mergl J, Meudt JJ, Montano GA, Mozhui K, Munshi-South J, Murphy WJ, Naderi A, Nagy M, Narayan P, Nathanielsz PW, Nguyen NB, Niehrs C, Nyamsuren B, O’Brien JK, Ginn PO, Odom DT, Ophir AG, Osborn S, Ostrander EA, Parsons KM, Paul KC, Pedersen AB, Pellegrini M, Peters KJ, Petersen JL, Pietersen DW, Pinho GM, Plassais J, Poganik JR, Prado NA, Reddy P, Rey B, Ritz BR, Robbins J, Rodriguez M, Russell J, Rydkina E, Sailer LL, Salmon AB, Sanghavi A, Schachtschneider KM, Schmitt D, Schmitt T, Schomacher L, Schook LB, Sears KE, Seifert AW, Shafer AB, Shindyapina AV, Simmons M, Singh K, Sinha I, Slone J, Snell RG, Soltanmohammadi E, Spangler ML, Spriggs M, Staggs L, Stedman N, Steinman KJ, Stewart DT, Sugrue VJ, Szladovits B, Takahashi JS, Takasugi M, Teeling EC, Thompson MJ, Van Bonn B, Vernes SC, Villar D, Vinters HV, Vu H, Wallingford MC, Wang N, Wilkinson GS, Williams RW, Yan Q, Yao M, Young BG, Zhang B, Zhang Z, Zhao Y, Zhao P, Zhou W, Zoller JA, Ernst J, Seluanov A, Gorbunova V, Yang XW, Raj K, Horvath S. DNA methylation networks underlying mammalian traits. Science 2023; 381:eabq5693. [PMID: 37561875 PMCID: PMC11180965 DOI: 10.1126/science.abq5693] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/21/2023] [Indexed: 08/12/2023]
Abstract
Using DNA methylation profiles (n = 15,456) from 348 mammalian species, we constructed phyloepigenetic trees that bear marked similarities to traditional phylogenetic ones. Using unsupervised clustering across all samples, we identified 55 distinct cytosine modules, of which 30 are related to traits such as maximum life span, adult weight, age, sex, and human mortality risk. Maximum life span is associated with methylation levels in HOXL subclass homeobox genes and developmental processes and is potentially regulated by pluripotency transcription factors. The methylation state of some modules responds to perturbations such as caloric restriction, ablation of growth hormone receptors, consumption of high-fat diets, and expression of Yamanaka factors. This study reveals an intertwined evolution of the genome and epigenome that mediates the biological characteristics and traits of different mammalian species.
Collapse
Affiliation(s)
- Amin Haghani
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Altos Labs, San Diego, CA, USA
| | - Caesar Z. Li
- Department of Biostatistics, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA, USA
- Janssen Research & Development, Spring House, PA, USA
| | - Todd R. Robeck
- Zoological Operations, SeaWorld Parks and Entertainment, Orlando, FL, USA
| | - Joshua Zhang
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Ake T. Lu
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Altos Labs, San Diego, CA, USA
| | - Julia Ablaeva
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Victoria A. Acosta-Rodríguez
- Department of Neuroscience, Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Danielle M. Adams
- Department of Biology, University of Maryland, College Park, MD, USA
| | - Abdulaziz N. Alagaili
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Javier Almunia
- Loro Parque Fundacion, Avenida Loro Parque, Puerto de la Cruz, Tenerife, Spain
| | - Ajoy Aloysius
- Department of Biology, University of Kentucky, Lexington, KY, USA
| | - Nabil M.S. Amor
- Laboratory of Biodiversity, Parasitology, and Ecology, University of Tunis El Manar, Tunis, Tunisia
| | - Reza Ardehali
- Division of Cardiology, Department of Internal Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Adriana Arneson
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA, USA
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - C. Scott Baker
- Marine Mammal Institute, Oregon State University, Newport, OR, USA
| | - Gareth Banks
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell Science and Innovation Campus, Oxfordshire, UK
| | - Katherine Belov
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Nigel C. Bennett
- Department of Zoology and Entomology, University of Pretoria, Hatfield, South Africa
| | | | - Daniel T. Blumstein
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA, USA
- The Rocky Mountain Biological Laboratory, Crested Butte, CO, USA
| | - Eleanor K. Bors
- Marine Mammal Institute, Oregon State University, Newport, OR, USA
| | | | | | - Janine L. Brown
- Center for Species Survival, Smithsonian National Zoo and Conservation Biology, Front Royal, VA, USA
| | - Gerald Carter
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH, USA
| | - Alex Caulton
- AgResearch, Invermay Agricultural Centre, Mosgiel, Otago, New Zealand
- Department of Biochemistry, University of Otago, Dunedin, Otago, New Zealand
| | - Julie M. Cavin
- Gulf World Marine Park - Dolphin Company, Panama City Beach, FL, USA
| | - Lisa Chakrabarti
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, UK
| | - Ioulia Chatzistamou
- Department of Pathology, Microbiology & Immunology, School of Medicine, University of South Carolina, Columbia, SC, USA
| | - Andreas S. Chavez
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH, USA
- Translational Data Analytics Institute, The Ohio State University, Columbus, OH, USA
| | - Hao Chen
- Department of Pharmacology, Addiction Science and Toxicology, The University of Tennessee Health Science Center, Memphis, TN, USA
| | - Kaiyang Cheng
- Medical Informatics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Priscila Chiavellini
- Biochemistry Research Institute of La Plata, Histology and Pathology, School of Medicine, University of La Plata, La Plata, Argentina
| | - Oi-Wa Choi
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Shannon Clarke
- AgResearch, Invermay Agricultural Centre, Mosgiel, Otago, New Zealand
| | - Joseph A. Cook
- University of New Mexico, Department of Biology and Museum of Southwestern Biology, Albuquerque, NM, USA
| | - Lisa N. Cooper
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, USA
| | - Marie-Laurence Cossette
- Department of Environmental & Life Sciences, Trent University, Peterborough, Ontario, Canada
| | - Joanna Day
- Taronga Institute of Science and Learning, Taronga Conservation Society Australia, Mosman, New South Wales, Australia
| | - Joseph DeYoung
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | | | - Christopher Dold
- Zoological Operations, SeaWorld Parks and Entertainment, Orlando, FL, USA
| | - Jonathan L. Dunnum
- University of New Mexico, Department of Biology and Museum of Southwestern Biology, Albuquerque, NM, USA
| | | | - Candice K. Emmons
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| | - Stephan Emmrich
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Ebru Erbay
- Altos Labs, Bay Area Institute of Science, Redwood City, CA, USA
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | | | - Chris G. Faulkes
- School of Biological and Chemical Sciences, Queen Mary University of London, London, UK
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
| | - Zhe Fei
- Department of Biostatistics, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA, USA
- Department of Statistics, University of California, Riverside, CA, USA
| | - Steven H. Ferguson
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Fisheries and Oceans Canada, Winnipeg, Manitoba, Canada
| | - Carrie J. Finno
- Department of Population Health and Reproduction, University of California, Davis School of Veterinary Medicine, Davis, CA, USA
| | | | - Jean-Michel Gaillard
- University of Lyon, CNRS, Laboratoire de Biometrie et Biologie Evolutive, Villeurbanne, France
| | - Eva Garde
- Greenland Institute of Natural Resources, Nuuk, Greenland
| | - Livia Gerber
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales, Australia
- Australian National Wildlife Collection, CSIRO, Canberra, Australia
| | - Vadim N. Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Rodolfo G. Goya
- Biochemistry Research Institute of La Plata, Histology and Pathology, School of Medicine, University of La Plata, La Plata, Argentina
| | - Matthew J Grant
- Applied Translational Genetics Group, School of Biological Sciences, Centre for Brain Research, The University of Auckland, Auckland, New Zealand
| | - Carla B. Green
- Department of Neuroscience, Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - M. Bradley Hanson
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| | - Daniel W. Hart
- Department of Zoology and Entomology, University of Pretoria, Hatfield, South Africa
| | | | | | - Andrew N. Hogan
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Carolyn J. Hogg
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Timothy A. Hore
- Department of Anatomy, University of Otago, Dunedin, New Zealand
| | - Taosheng Huang
- Division of Human Genetics, Department of Pediatrics, University at Buffalo, Buffalo, NY, USA
| | | | - Anna J. Jasinska
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Molecular Genetics, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Gareth Jones
- School of Biological Sciences, University of Bristol, Bristol, UK
| | | | - Olga Kashpur
- Mother Infant Research Institute, Tufts Medical Center, Boston, MA, USA
| | | | | | - Vimala Kaza
- Peromyscus Genetic Stock Center, University of South Carolina, Columbia, SC, USA
| | - Hippokratis Kiaris
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Michael S. Kobor
- Edwin S. H. Leong Healthy Aging Program, Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Pawel Kordowitzki
- Institute of Veterinary Medicine, Nicolaus Copernicus University, Torun, Poland
| | | | - Michael Krützen
- Evolutionary Genetics Group, Department of Anthropology, University of Zurich, Zurich, Switzerland
| | - Soo Bin Kwon
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA, USA
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Brenda Larison
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA, USA
- Center for Tropical Research, Institute of the Environment and Sustainability, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sang-Goo Lee
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Marianne Lehmann
- Biochemistry Research Institute of La Plata, Histology and Pathology, School of Medicine, University of La Plata, La Plata, Argentina
| | - Jean-François Lemaître
- University of Lyon, CNRS, Laboratoire de Biometrie et Biologie Evolutive, Villeurbanne, France
| | - Andrew J. Levine
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Xinmin Li
- Technology Center for Genomics and Bioinformatics, Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Cun Li
- Texas Pregnancy and Life-course Health Center, Southwest National Primate Research Center, San Antonio, TX, USA
- Department of Animal Science, College of Agriculture and Natural Resources, Laramie, WY, USA
| | - Andrea R. Lim
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - David T. S. Lin
- Centre for Molecular Medicine and Therapeutics, BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | - Thomas J. Little
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | | | | | | | - Julie A. Mattison
- Translational Gerontology Branch, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | | | - June Mergl
- Marineland of Canada, Niagara Falls, Ontario, Canada
| | - Jennifer J. Meudt
- Biomedical and Genomic Research Group, Department of Animal and Dairy Sciences, University of Wisconsin Madison, Madison, WI, USA
| | - Gisele A. Montano
- Zoological Operations, SeaWorld Parks and Entertainment, Orlando, FL, USA
| | - Khyobeni Mozhui
- Department of Preventive Medicine, University of Tennessee Health Science Center, College of Medicine, Memphis, TN, USA
| | - Jason Munshi-South
- Louis Calder Center - Biological Field Station, Department of Biological Sciences, Fordham University, Armonk, NY, USA
| | - William J. Murphy
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, TX, USA
| | - Asieh Naderi
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | - Martina Nagy
- Museum fur Naturkunde, Leibniz-Institute for Evolution and Biodiversity Science, Berlin, Germany
| | - Pritika Narayan
- Applied Translational Genetics Group, School of Biological Sciences, Centre for Brain Research, The University of Auckland, Auckland, New Zealand
| | - Peter W. Nathanielsz
- Texas Pregnancy and Life-course Health Center, Southwest National Primate Research Center, San Antonio, TX, USA
- Department of Animal Science, College of Agriculture and Natural Resources, Laramie, WY, USA
| | - Ngoc B. Nguyen
- Division of Cardiology, Department of Internal Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Christof Niehrs
- Institute of Molecular Biology (IMB), Mainz, Germany
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | | | - Justine K. O’Brien
- Taronga Institute of Science and Learning, Taronga Conservation Society Australia, Mosman, New South Wales, Australia
| | | | - Duncan T Odom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Deutsches Krebsforschungszentrum, Division of Regulatory Genomics and Cancer Evolution, Heidelberg, Germany
| | | | | | - Elaine A. Ostrander
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kim M. Parsons
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA, USA
| | - Kimberly C. Paul
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Amy B. Pedersen
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Matteo Pellegrini
- Department Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Katharina J. Peters
- Evolutionary Genetics Group, Department of Anthropology, University of Zurich, Zurich, Switzerland
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| | | | - Darren W. Pietersen
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Hatfield, South Africa
| | - Gabriela M. Pinho
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Jocelyn Plassais
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jesse R. Poganik
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Natalia A. Prado
- Department of Biology, College of Arts and Science, Adelphi University, Garden City, NY, USA
- Center for Species Survival, Smithsonian Conservation Biology Institute, Front Royal, VA, USA
| | - Pradeep Reddy
- Altos Labs, San Diego, CA, USA
- Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Benjamin Rey
- University of Lyon, CNRS, Laboratoire de Biometrie et Biologie Evolutive, Villeurbanne, France
| | - Beate R. Ritz
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA, USA
- Department of Environmental Health Sciences, UCLA Fielding School of Public Health, Los Angeles, CA, USA
| | | | | | | | - Elena Rydkina
- Department of Biology, University of Rochester, Rochester, NY, USA
| | | | - Adam B. Salmon
- The Sam and Ann Barshop Institute for Longevity and Aging Studies and Department of Molecular Medicine, UT Health San Antonio, and the Geriatric Research Education and Clinical Center, South Texas Veterans Healthcare System, San Antonio, TX, USA
| | | | - Kyle M. Schachtschneider
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, USA
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Dennis Schmitt
- College of Agriculture, Missouri State University, Springfield, MO, USA
| | | | | | - Lawrence B. Schook
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, USA
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Karen E. Sears
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA, USA
| | | | - Aaron B.A. Shafer
- Department of Forensic Science, Environmental & Life Sciences, Trent University, Peterborough, Ontario, Canada
| | - Anastasia V. Shindyapina
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Kavita Singh
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM’S NMIMS University, Mumbai, India
| | - Ishani Sinha
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA, USA
| | - Jesse Slone
- Division of Human Genetics, Department of Pediatrics, University at Buffalo, Buffalo, NY, USA
| | - Russel G. Snell
- Applied Translational Genetics Group, School of Biological Sciences, Centre for Brain Research, The University of Auckland, Auckland, New Zealand
| | - Elham Soltanmohammadi
- Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, SC, USA
| | | | | | | | | | - Karen J. Steinman
- Species Preservation Laboratory, SeaWorld San Diego, San Diego, CA, USA
| | - Donald T Stewart
- Biology Department, Acadia University, Wolfville, Nova Scotia, Canada
| | | | - Balazs Szladovits
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, UK
| | - Joseph S. Takahashi
- Department of Neuroscience, Peter O’Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Howard Hughes Medical Institute, Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Masaki Takasugi
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Emma C. Teeling
- School of Biology and Environmental Science, University College Dublin, Belfield, Dublin, Ireland
| | - Michael J. Thompson
- Department Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Bill Van Bonn
- Animal Care and Science Division, John G. Shedd Aquarium, Chicago, IL, USA
| | - Sonja C. Vernes
- School of Biology, The University of St. Andrews, Fife, UK
- Neurogenetics of Vocal Communication Group, Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands
| | - Diego Villar
- Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Harry V. Vinters
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Ha Vu
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA, USA
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | | | - Nan Wang
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | | | - Robert W. Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, College of Medicine, Memphis, TN, USA
| | - Qi Yan
- Altos Labs, San Diego, CA, USA
- Department of Biostatistics, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA, USA
| | - Mingjia Yao
- Department of Biostatistics, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA, USA
| | | | - Bohan Zhang
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Zhihui Zhang
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Yang Zhao
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Peng Zhao
- Division of Cardiology, Department of Internal Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA
| | - Wanding Zhou
- Center for Computational and Genomic Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joseph A. Zoller
- Department of Biostatistics, Fielding School of Public Health, University of California Los Angeles, Los Angeles, CA, USA
| | - Jason Ernst
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA, USA
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Andrei Seluanov
- Departments of Biology and Medicine, University of Rochester, Rochester, NY, USA
| | - Vera Gorbunova
- Departments of Biology and Medicine, University of Rochester, Rochester, NY, USA
| | - X. William Yang
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | | | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
- Altos Labs, San Diego, CA, USA
- Altos Labs, Cambridge, UK
| |
Collapse
|
6
|
Chen FL, Ullal TV, Graves JL, Ratcliff ER, Naka A, McKenzie B, Carttar TA, Super KM, Austriaco J, Weber SY, Vaughn J, LaCroix-Fralish ML. Evaluating instruments for assessing healthspan: a multi-center cross-sectional study on health-related quality of life (HRQL) and frailty in the companion dog. GeroScience 2023; 45:2089-2108. [PMID: 36781597 PMCID: PMC10651603 DOI: 10.1007/s11357-023-00744-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 01/26/2023] [Indexed: 02/15/2023] Open
Abstract
Developing valid tools that assess key determinants of canine healthspan such as frailty and health-related quality of life (HRQL) is essential to characterizing and understanding aging in dogs. Additionally, because the companion dog is an excellent translational model for humans, such tools can be applied to evaluate gerotherapeutics and investigate mechanisms underlying longevity in both dogs and humans. In this multi-center, cross-sectional study, we investigated the use of a clinical questionnaire (Canine Frailty Index; CFI; Banzato et al., 2019) to assess frailty and an owner assessment tool (VetMetrica HRQL) to evaluate HRQL in 451 adult companion dogs. Results demonstrated validity of the tools by confirming expectations that frailty score increases and HRQL scores deteriorate with age. CFI scores were significantly higher (higher frailty) and HRQL scores significantly lower (worse HRQL) in old dogs (≥ 7 years of age) compared to young dogs (≥ 2 and < 6 years of age). Body size (small < 11.3 kg (25 lbs) or large > 22.7 kg (50 lbs)) was not associated with CFI or total HRQL score. However, older, larger dogs showed faster age-related decline in HRQL scores specific to owner-reported activity and comfort. Findings suggest that the clinician-assessed CFI and owner-reported VetMetrica HRQL are useful tools to evaluate two determinants of healthspan in dogs: the accumulation of frailty and the progressive decline in quality of life. Establishing tools that operationalize the assessment of canine healthspan is critical for the advancement of geroscience and the development of gerotherapeutics that benefit both human and veterinary medicine. Graphical summary of the design, results, and conclusions of the study.
Collapse
Affiliation(s)
- Frances L Chen
- Cellular Longevity Inc., San Francisco, CA, USA.
- Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA, USA.
- Vertebrate Genomics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Tarini V Ullal
- Cellular Longevity Inc., San Francisco, CA, USA
- School of Veterinary Medicine, University of California, Davis, CA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Liu X, Liu H, Wang Y, Li M, Ji L, Wang K, Wei C, Li W, Chen C, Yu L, Zhu X, Hong X. Chromosome-Level Analysis of the Pelochelys cantorii Genome Provides Insights to Its Immunity, Growth and Longevity. BIOLOGY 2023; 12:939. [PMID: 37508370 PMCID: PMC10376104 DOI: 10.3390/biology12070939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/19/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023]
Abstract
The Asian giant soft-shelled turtle, Pelochelys cantorii (Trionychidae), is one of the largest aquatic turtles in China and was designated as a First-Grade Protected Animal in China in 1989. Previous investigation based on a combination of Illumina short-read, PacBio long-read and Hi-C scaffolding technologies acquired a high-quality chromosome-level genome of Pc. cantorii. In this study, comparative genomic analysis between Pc. cantorii and 16 other vertebrate genomes indicated that turtles separated from the ancestor of archosaurians approximately 256.6 (95% highest posterior density interval, 263.6-251.9) million years ago (Mya) (Upper Permian to Triassic) and that Pc. cantorii separated from the ancestor of Pd. sinensis and R. swinhoei approximately 59.3 (95% highest posterior density interval, 64.3-54.3) Mya. Moreover, several candidate genes, such as VWA5A, ABCG2, A2M and IGSF1, associated with tumor suppression, growth and age were expanded, implicating their potential roles in the exceptional longevity of turtles. This new chromosome-level assembly has important scientific value in the study of conservation of Pc. cantorii and also enriches the evolutionary investigation of turtle species.
Collapse
Affiliation(s)
- Xiaoli Liu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Haiyang Liu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Yakun Wang
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Mingzhi Li
- Guangzhou Bio & Data Technology Co., Ltd., Guangzhou 510555, China
| | - Liqin Ji
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Kaikuo Wang
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
- College of Life Science and Fisheries, Shanghai Ocean University, Shanghai 201306, China
| | - Chengqing Wei
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Wei Li
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Chen Chen
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Lingyun Yu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Xinping Zhu
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
- College of Life Science and Fisheries, Shanghai Ocean University, Shanghai 201306, China
| | - Xiaoyou Hong
- Key Laboratory of Tropical and Subtropical Fishery Resources Application and Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| |
Collapse
|
8
|
Li Z, Wang Z, Chen Z, Voegeli H, Lichtman JH, Smith P, Liu J, DeWan AT, Hoh J. Systematically identifying genetic signatures including novel SNP-clusters, nonsense variants, frame-shift INDELs, and long STR expansions that potentially link to unknown phenotypes existing in dog breeds. BMC Genomics 2023; 24:302. [PMID: 37277710 DOI: 10.1186/s12864-023-09390-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 05/19/2023] [Indexed: 06/07/2023] Open
Abstract
BACKGROUND In light of previous studies that profiled breed-specific traits or used genome-wide association studies to refine loci associated with characteristic morphological features in dogs, the field has gained tremendous genetic insights for known dog traits observed among breeds. Here we aim to address the question from a reserve perspective: whether there are breed-specific genotypes that may underlie currently unknown phenotypes. This study provides a complete set of breed-specific genetic signatures (BSGS). Several novel BSGS with significant protein-altering effects were highlighted and validated. RESULTS Using the next generation whole-genome sequencing technology coupled with unsupervised machine learning for pattern recognitions, we constructed and analyzed a high-resolution sequence map for 76 breeds of 412 dogs. Genomic structures including novel single nucleotide polymorphisms (SNPs), SNP clusters, insertions, deletions (INDELs) and short tandem repeats (STRs) were uncovered mutually exclusively among breeds. We also partially validated some novel nonsense variants by Sanger sequencing with additional dogs. Four novel nonsense BSGS were found in the Bernese Mountain Dog, Samoyed, Bull Terrier, and Basset Hound, respectively. Four INDELs resulting in either frame-shift or codon disruptions were found in the Norwich Terrier, Airedale Terrier, Chow Chow and Bernese Mountain Dog, respectively. A total of 15 genomic regions containing three types of BSGS (SNP-clusters, INDELs and STRs) were identified in the Akita, Alaskan Malamute, Chow Chow, Field Spaniel, Keeshond, Shetland Sheepdog and Sussex Spaniel, in which Keeshond and Sussex Spaniel each carried one amino-acid changing BSGS in such regions. CONCLUSION Given the strong relationship between human and dog breed-specific traits, this study might be of considerable interest to researchers and all. Novel genetic signatures that can differentiate dog breeds were uncovered. Several functional genetic signatures might indicate potentially breed-specific unknown phenotypic traits or disease predispositions. These results open the door for further investigations. Importantly, the computational tools we developed can be applied to any dog breeds as well as other species. This study will stimulate new thinking, as the results of breed-specific genetic signatures may offer an overarching relevance of the animal models to human health and disease.
Collapse
Affiliation(s)
- Zicheng Li
- Department of Chronic Disease Epidemiology, School of Public Health, Yale University, New Haven, CT, 06510, USA.
| | - Zuoheng Wang
- Department of Biostatistics, School of Public Health, Yale University, New Haven, CT, 06510, USA
| | - Zhiyuan Chen
- Department of Chronic Disease Epidemiology, School of Public Health, Yale University, New Haven, CT, 06510, USA
| | - Heidi Voegeli
- Department of Chronic Disease Epidemiology, School of Public Health, Yale University, New Haven, CT, 06510, USA
| | - Judith H Lichtman
- Department of Chronic Disease Epidemiology, School of Public Health, Yale University, New Haven, CT, 06510, USA
| | - Peter Smith
- Department of Comparative Medicine, School of Medicine, Yale University, New Haven, CT, 06510, USA
| | - Ju Liu
- Medical Research Center, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, 16766 Jingshi Road, Jinan, Shandong, 250014, China
| | - Andrew T DeWan
- Department of Chronic Disease Epidemiology, School of Public Health, Yale University, New Haven, CT, 06510, USA
- Center for Perinatal Pediatric and Environmental Epidemiology, Yale University, New Haven, CT, 06510, USA
| | - Josephine Hoh
- Department of Chronic Disease Epidemiology, School of Public Health, Yale University, New Haven, CT, 06510, USA.
- Department of Ophthalmology and Visual Science, School of Medicine, Yale University, New Haven, CT, 06510, USA.
- Department of Applied Mathematics, Yale University, New Haven, CT, 06510, USA.
| |
Collapse
|
9
|
Ballard JWO, Field MA, Edwards RJ, Wilson LAB, Koungoulos LG, Rosen BD, Chernoff B, Dudchenko O, Omer A, Keilwagen J, Skvortsova K, Bogdanovic O, Chan E, Zammit R, Hayes V, Aiden EL. The Australasian dingo archetype: de novo chromosome-length genome assembly, DNA methylome, and cranial morphology. Gigascience 2023; 12:giad018. [PMID: 36994871 PMCID: PMC10353722 DOI: 10.1093/gigascience/giad018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/13/2023] [Accepted: 02/28/2023] [Indexed: 03/29/2023] Open
Abstract
BACKGROUND One difficulty in testing the hypothesis that the Australasian dingo is a functional intermediate between wild wolves and domesticated breed dogs is that there is no reference specimen. Here we link a high-quality de novo long-read chromosomal assembly with epigenetic footprints and morphology to describe the Alpine dingo female named Cooinda. It was critical to establish an Alpine dingo reference because this ecotype occurs throughout coastal eastern Australia where the first drawings and descriptions were completed. FINDINGS We generated a high-quality chromosome-level reference genome assembly (Canfam_ADS) using a combination of Pacific Bioscience, Oxford Nanopore, 10X Genomics, Bionano, and Hi-C technologies. Compared to the previously published Desert dingo assembly, there are large structural rearrangements on chromosomes 11, 16, 25, and 26. Phylogenetic analyses of chromosomal data from Cooinda the Alpine dingo and 9 previously published de novo canine assemblies show dingoes are monophyletic and basal to domestic dogs. Network analyses show that the mitochondrial DNA genome clusters within the southeastern lineage, as expected for an Alpine dingo. Comparison of regulatory regions identified 2 differentially methylated regions within glucagon receptor GCGR and histone deacetylase HDAC4 genes that are unmethylated in the Alpine dingo genome but hypermethylated in the Desert dingo. Morphologic data, comprising geometric morphometric assessment of cranial morphology, place dingo Cooinda within population-level variation for Alpine dingoes. Magnetic resonance imaging of brain tissue shows she had a larger cranial capacity than a similar-sized domestic dog. CONCLUSIONS These combined data support the hypothesis that the dingo Cooinda fits the spectrum of genetic and morphologic characteristics typical of the Alpine ecotype. We propose that she be considered the archetype specimen for future research investigating the evolutionary history, morphology, physiology, and ecology of dingoes. The female has been taxidermically prepared and is now at the Australian Museum, Sydney.
Collapse
Affiliation(s)
- J William O Ballard
- School of Biosciences, University of Melbourne, Royal Parade, Parkville, Victoria 3052, Australia
- Department of Environment and Genetics, SABE, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Matt A Field
- Centre for Tropical Bioinformatics and Molecular Biology, College of Public Health, Medical and Veterinary Science, James Cook University, Cairns, Queensland 4870, Australia
- Immunogenomics Lab, Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia
| | - Richard J Edwards
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Laura A B Wilson
- School of Archaeology and Anthropology, The Australian National University, Acton, ACT 2600, Australia
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Loukas G Koungoulos
- Department of Archaeology, School of Philosophical and Historical Inquiry, the University of Sydney, Sydney, NSW 2006, Australia
| | - Benjamin D Rosen
- Animal Genomics and Improvement Laboratory, Agricultural Research Service USDA, Beltsville, MD 20705, USA
| | - Barry Chernoff
- College of the Environment, Departments of Biology, and Earth & Environmental Sciences, Wesleyan University, Middletown, CT 06459, USA
| | - Olga Dudchenko
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Theoretical and Biological Physics, Rice University, Houston, TX 77005, USA
| | - Arina Omer
- Center for Theoretical and Biological Physics, Rice University, Houston, TX 77005, USA
| | - Jens Keilwagen
- Institute for Biosafety in Plant Biotechnology, Julius Kühn-Institut, Quedlinburg 06484, Germany
| | - Ksenia Skvortsova
- Developmental Epigenomics Lab, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Ozren Bogdanovic
- Developmental Epigenomics Lab, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Eva Chan
- Developmental Epigenomics Lab, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- Statewide Genomics, New South Wales Health Pathology, Newcastle, NSW 2300, Australia
| | - Robert Zammit
- Vineyard Veterinary Hospital,Vineyard, NSW 2765, Australia
| | - Vanessa Hayes
- Developmental Epigenomics Lab, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- Charles Perkins Centre, Faculty of Medical Sciences, University of Sydney, Camperdown, NSW 2006, Australia
| | - Erez Lieberman Aiden
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Theoretical and Biological Physics, Rice University, Houston, TX 77005, USA
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
10
|
Ballard JWO, Field MA, Edwards RJ, Wilson LAB, Koungoulos LG, Rosen BD, Chernoff B, Dudchenko O, Omer A, Keilwagen J, Skvortsova K, Bogdanovic O, Chan E, Zammit R, Hayes V, Aiden EL. The Australasian dingo archetype: De novo chromosome-length genome assembly, DNA methylome, and cranial morphology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.26.525801. [PMID: 36747621 PMCID: PMC9900879 DOI: 10.1101/2023.01.26.525801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Background One difficulty in testing the hypothesis that the Australasian dingo is a functional intermediate between wild wolves and domesticated breed dogs is that there is no reference specimen. Here we link a high-quality de novo long read chromosomal assembly with epigenetic footprints and morphology to describe the Alpine dingo female named Cooinda. It was critical to establish an Alpine dingo reference because this ecotype occurs throughout coastal eastern Australia where the first drawings and descriptions were completed. Findings We generated a high-quality chromosome-level reference genome assembly (Canfam_ADS) using a combination of Pacific Bioscience, Oxford Nanopore, 10X Genomics, Bionano, and Hi-C technologies. Compared to the previously published Desert dingo assembly, there are large structural rearrangements on Chromosomes 11, 16, 25 and 26. Phylogenetic analyses of chromosomal data from Cooinda the Alpine dingo and nine previously published de novo canine assemblies show dingoes are monophyletic and basal to domestic dogs. Network analyses show that the mtDNA genome clusters within the southeastern lineage, as expected for an Alpine dingo. Comparison of regulatory regions identified two differentially methylated regions within glucagon receptor GCGR and histone deacetylase HDAC4 genes that are unmethylated in the Alpine dingo genome but hypermethylated in the Desert dingo. Morphological data, comprising geometric morphometric assessment of cranial morphology place dingo Cooinda within population-level variation for Alpine dingoes. Magnetic resonance imaging of brain tissue show she had a larger cranial capacity than a similar-sized domestic dog. Conclusions These combined data support the hypothesis that the dingo Cooinda fits the spectrum of genetic and morphological characteristics typical of the Alpine ecotype. We propose that she be considered the archetype specimen for future research investigating the evolutionary history, morphology, physiology, and ecology of dingoes. The female has been taxidermically prepared and is now at the Australian Museum, Sydney.
Collapse
Affiliation(s)
- J William O Ballard
- School of Biosciences, University of Melbourne, Royal Parade, Parkville, Victoria 3052, Australia
- Department of Environment and Genetics, SABE, La Trobe University, Melbourne Victoria 3086, Australia
| | - Matt A Field
- Centre for Tropical Bioinformatics and Molecular Biology, College of Public Health, Medical and Veterinary Science, James Cook University, Cairns, Queensland 4870, Australia
- Immunogenomics Lab, Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Richard J Edwards
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney NSW 2052, Australia
| | - Laura A B Wilson
- School of Archaeology and Anthropology, The Australian National University, Acton, ACT 2600, Australia
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Loukas G Koungoulos
- Department of Archaeology, School of Philosophical and Historical Inquiry, the University of Sydney, Sydney, Australia 2006
| | - Benjamin D Rosen
- Animal Genomics and Improvement Laboratory, Agricultural Research Service USDA, Beltsville, MD 20705
| | - Barry Chernoff
- College of the Environment, Departments of Biology, and Earth & Environmental Sciences, Wesleyan University, Middletown, CT 06459, USA
| | - Olga Dudchenko
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030 USA
- Center for Theoretical and Biological Physics, Rice University, Houston, TX 77005, USA
| | - Arina Omer
- Center for Theoretical and Biological Physics, Rice University, Houston, TX 77005, USA
| | - Jens Keilwagen
- Julius Kühn-Institut, Erwin-Baur-Str. 27 06484 Quedlinburg, Germany
| | | | - Ozren Bogdanovic
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
| | - Eva Chan
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- Statewide Genomics, New South Wales Health Pathology, 45 Watt St, Newcastle NSW 2300, Australia
| | - Robert Zammit
- Vineyard Veterinary Hospital, 703 Windsor Rd, Vineyard, NSW 2765, Australia
| | - Vanessa Hayes
- Garvan Institute of Medical Research, Darlinghurst, NSW, Australia
- Charles Perkins Centre, Faculty of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
| | - Erez Lieberman Aiden
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030 USA
- Center for Theoretical and Biological Physics, Rice University, Houston, TX 77005, USA
- UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech, Pudong 201210, China
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
11
|
Dutrow EV, Serpell JA, Ostrander EA. Domestic dog lineages reveal genetic drivers of behavioral diversification. Cell 2022; 185:4737-4755.e18. [PMID: 36493753 PMCID: PMC10478034 DOI: 10.1016/j.cell.2022.11.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 09/06/2022] [Accepted: 10/31/2022] [Indexed: 12/13/2022]
Abstract
Selective breeding of domestic dogs has generated diverse breeds often optimized for performing specialized tasks. Despite the heritability of breed-typical behavioral traits, identification of causal loci has proven challenging due to the complexity of canine population structure. We overcome longstanding difficulties in identifying genetic drivers of canine behavior by developing a framework for understanding relationships between breeds and the behaviors that define them, utilizing genetic data for over 4,000 domestic, semi-feral, and wild canids and behavioral survey data for over 46,000 dogs. We identify ten major canine genetic lineages and their behavioral correlates and show that breed diversification is predominantly driven by non-coding regulatory variation. We determine that lineage-associated genes converge in neurodevelopmental co-expression networks, identifying a sheepdog-associated enrichment for interrelated axon guidance functions. This work presents a scaffold for canine diversification that positions the domestic dog as an unparalleled system for revealing the genetic origins of behavioral diversity.
Collapse
Affiliation(s)
- Emily V Dutrow
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - James A Serpell
- Department of Clinical Sciences and Advanced Medicine, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Elaine A Ostrander
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
12
|
Binversie EE, Momen M, Rosa GJM, Davis BW, Muir P. Across-breed genetic investigation of canine hip dysplasia, elbow dysplasia, and anterior cruciate ligament rupture using whole-genome sequencing. Front Genet 2022; 13:913354. [PMID: 36531249 PMCID: PMC9755188 DOI: 10.3389/fgene.2022.913354] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 11/07/2022] [Indexed: 12/03/2022] Open
Abstract
Here, we report the use of genome-wide association study (GWAS) for the analysis of canine whole-genome sequencing (WGS) repository data using breed phenotypes. Single-nucleotide polymorphisms (SNPs) were called from WGS data from 648 dogs that included 119 breeds from the Dog10K Genomes Project. Next, we assigned breed phenotypes for hip dysplasia (Orthopedic Foundation for Animals (OFA) HD, n = 230 dogs from 27 breeds; hospital HD, n = 279 dogs from 38 breeds), elbow dysplasia (ED, n = 230 dogs from 27 breeds), and anterior cruciate ligament rupture (ACL rupture, n = 279 dogs from 38 breeds), the three most important canine spontaneous complex orthopedic diseases. Substantial morbidity is common with these diseases. Previous within- and between-breed GWAS for HD, ED, and ACL rupture using array SNPs have identified disease-associated loci. Individual disease phenotypes are lacking in repository data. There is a critical knowledge gap regarding the optimal approach to undertake categorical GWAS without individual phenotypes. We considered four GWAS approaches: a classical linear mixed model, a haplotype-based model, a binary case-control model, and a weighted least squares model using SNP average allelic frequency. We found that categorical GWAS was able to validate HD candidate loci. Additionally, we discovered novel candidate loci and genes for all three diseases, including FBX025, IL1A, IL1B, COL27A1, SPRED2 (HD), UGDH, FAF1 (ED), TGIF2 (ED & ACL rupture), and IL22, IL26, CSMD1, LDHA, and TNS1 (ACL rupture). Therefore, categorical GWAS of ancestral dog populations may contribute to the understanding of any disease for which breed epidemiological risk data are available, including diseases for which GWAS has not been performed and candidate loci remain elusive.
Collapse
Affiliation(s)
- Emily E. Binversie
- Comparative Orthopaedic and Genetics Research Laboratory, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Mehdi Momen
- Comparative Orthopaedic and Genetics Research Laboratory, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Guilherme J. M. Rosa
- Department of Animal and Dairy Sciences, College of Agricultural and Life Sciences, University of Wisconsin-Madison, Madison, WI, United States
| | - Brian W. Davis
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Peter Muir
- Comparative Orthopaedic and Genetics Research Laboratory, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States,*Correspondence: Peter Muir,
| |
Collapse
|
13
|
Horvath S, Lu AT, Haghani A, Zoller JA, Li CZ, Lim AR, Brooke RT, Raj K, Serres-Armero A, Dreger DL, Hogan AN, Plassais J, Ostrander EA. DNA methylation clocks for dogs and humans. Proc Natl Acad Sci U S A 2022; 119:e2120887119. [PMID: 35580182 PMCID: PMC9173771 DOI: 10.1073/pnas.2120887119] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 04/05/2022] [Indexed: 12/24/2022] Open
Abstract
DNA methylation profiles have been used to develop biomarkers of aging known as epigenetic clocks, which predict chronological age with remarkable accuracy and show promise for inferring health status as an indicator of biological age. Epigenetic clocks were first built to monitor human aging, but their underlying principles appear to be evolutionarily conserved, as they have now been successfully developed for many mammalian species. Here, we describe reliable and highly accurate epigenetic clocks shown to apply to 93 domestic dog breeds. The methylation profiles were generated using the mammalian methylation array, which utilizes DNA sequences that are conserved across all mammalian species. Canine epigenetic clocks were constructed to estimate age and also average time to death. We also present two highly accurate human–dog dual species epigenetic clocks (R = 0.97), which may facilitate the ready translation from canine to human use (or vice versa) of antiaging treatments being developed for longevity and preventive medicine. Finally, epigenome-wide association studies here reveal individual methylation sites that may underlie the inverse relationship between breed weight and lifespan. Overall, we describe robust biomarkers to measure aging and, potentially, health status in canines.
Collapse
Affiliation(s)
- Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, CA 90095
| | - Ake T. Lu
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Amin Haghani
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Joseph A. Zoller
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, CA 90095
| | - Caesar Z. Li
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, CA 90095
| | - Andrea R. Lim
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | | | - Ken Raj
- Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Didcot OX11 0RQ, United Kingdom
| | | | - Dayna L. Dreger
- National Human Genome Research Institute, NIH, Bethesda, MD 20892
| | - Andrew N. Hogan
- National Human Genome Research Institute, NIH, Bethesda, MD 20892
| | - Jocelyn Plassais
- National Human Genome Research Institute, NIH, Bethesda, MD 20892
| | | |
Collapse
|
14
|
Morrill K, Hekman J, Li X, McClure J, Logan B, Goodman L, Gao M, Dong Y, Alonso M, Carmichael E, Snyder-Mackler N, Alonso J, Noh HJ, Johnson J, Koltookian M, Lieu C, Megquier K, Swofford R, Turner-Maier J, White ME, Weng Z, Colubri A, Genereux DP, Lord KA, Karlsson EK. Ancestry-inclusive dog genomics challenges popular breed stereotypes. Science 2022; 376:eabk0639. [PMID: 35482869 DOI: 10.1126/science.abk0639] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Behavioral genetics in dogs has focused on modern breeds, which are isolated subgroups with distinctive physical and, purportedly, behavioral characteristics. We interrogated breed stereotypes by surveying owners of 18,385 purebred and mixed-breed dogs and genotyping 2155 dogs. Most behavioral traits are heritable [heritability (h2) > 25%], and admixture patterns in mixed-breed dogs reveal breed propensities. Breed explains just 9% of behavioral variation in individuals. Genome-wide association analyses identify 11 loci that are significantly associated with behavior, and characteristic breed behaviors exhibit genetic complexity. Behavioral loci are not unusually differentiated in breeds, but breed propensities align, albeit weakly, with ancestral function. We propose that behaviors perceived as characteristic of modern breeds derive from thousands of years of polygenic adaptation that predates breed formation, with modern breeds distinguished primarily by aesthetic traits.
Collapse
Affiliation(s)
- Kathleen Morrill
- Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.,Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jessica Hekman
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Xue Li
- Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.,Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jesse McClure
- Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Brittney Logan
- Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Linda Goodman
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Fauna Bio Inc., Emeryville, CA 94608, USA
| | - Mingshi Gao
- Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.,Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Yinan Dong
- Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Marjie Alonso
- The International Association of Animal Behavior Consultants, Cranberry Township, PA 16066, USA.,IAABC Foundation, Cranberry Township, PA 16066, USA
| | - Elena Carmichael
- Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Rice University, Houston, TX 77005, USA
| | - Noah Snyder-Mackler
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ 85251, USA.,School for Human Evolution and Social Change, Arizona State University, Tempe, AZ 85251, USA.,School of Life Sciences, Arizona State University, Tempe, AZ 85251, USA
| | - Jacob Alonso
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Hyun Ji Noh
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jeremy Johnson
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Charlie Lieu
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Darwin's Ark Foundation, Seattle, WA 98026, USA
| | - Kate Megquier
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ross Swofford
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Michelle E White
- Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Zhiping Weng
- Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Andrés Colubri
- Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Kathryn A Lord
- Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Elinor K Karlsson
- Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.,Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA.,Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.,Darwin's Ark Foundation, Seattle, WA 98026, USA.,Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| |
Collapse
|
15
|
Natural and human-driven selection of a single non-coding body size variant in ancient and modern canids. Curr Biol 2022; 32:889-897.e9. [PMID: 35090588 PMCID: PMC8891063 DOI: 10.1016/j.cub.2021.12.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/07/2021] [Accepted: 12/15/2021] [Indexed: 12/30/2022]
Abstract
Domestic dogs (Canis lupus familiaris) are the most variable-sized mammalian species on Earth, displaying a 40-fold size difference between breeds.1 Although dogs of variable size are found in the archeological record,2-4 the most dramatic shifts in body size are the result of selection over the last two centuries, as dog breeders selected and propagated phenotypic extremes within closed breeding populations.5 Analyses of over 200 domestic breeds have identified approximately 20 body size genes regulating insulin processing, fatty acid metabolism, TGFβ signaling, and skeletal formation.6-10 Of these, insulin-like growth factor 1 (IGF1) predominates, controlling approximately 15% of body size variation between breeds.8 The identification of a functional mutation associated with IGF1 has thus far proven elusive.6,10,11 Here, to identify and elucidate the role of an ancestral IGF1 allele in the propagation of modern canids, we analyzed 1,431 genome sequences from 13 species, including both ancient and modern canids, thus allowing us to define the evolutionary history of both ancestral and derived alleles at this locus. We identified a single variant in an antisense long non-coding RNA (IGF1-AS) that interacts with the IGF1 gene, creating a duplex. While the derived mutation predominates in both modern gray wolves and large domestic breeds, the ancestral allele, which predisposes to small size, was common in small-sized breeds and smaller wild canids. Our analyses demonstrate that this major regulator of canid body size nearly vanished in Pleistocene wolves, before its recent resurgence resulting from human-imposed selection for small-sized breed dogs.
Collapse
|
16
|
Raymond PW, Velie BD, Wade CM. Forensic DNA phenotyping: Canis familiaris breed classification and skeletal phenotype prediction using functionally significant skeletal SNPs and indels. Anim Genet 2021; 53:247-263. [PMID: 34963196 DOI: 10.1111/age.13165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/30/2021] [Accepted: 12/12/2021] [Indexed: 11/29/2022]
Abstract
This review highlights a novel application of breed identification and prediction of skeletal traits in forensic investigations using canine DNA evidence. Currently, genotyping methods used for canine breed classification involve the application of highly polymorphic short tandem repeats in addition to larger commercially available SNP arrays. Both applications face technical challenges. An additional approach to breed identification could be through genotyping SNPs and indels that characterise the array of skeletal differences displayed across domestic dog populations. Research has shown that a small number of genetic variants of large effect drive differences in skeletal phenotypes among domestic dog breeds. This feature makes functionally significant canine skeletal variants a cost-effective target for forensic investigators to classify individuals according to their breed. Further analysis of these skeletal variants would enable the prediction of external appearance. To date, functionally significant genes with genetic variants associated with differences in size, bulk, skull shape, ear shape, limb length, digit type, and tail morphology have been uncovered. Recommendations of a cost-effective genotyping method that can be readily designed and applied by forensic investigators have been given. Further advances to improve the field of canine skeletal forensic DNA phenotyping include the refinement of phenotyping methods, further biological validation of the skeletal genetic variants and establishing a publicly available database for storage of allele frequencies of the skeletal genetic variants in the wider domestic dog population.
Collapse
Affiliation(s)
- Patrick W Raymond
- School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Brandon D Velie
- School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Claire M Wade
- School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| |
Collapse
|
17
|
The effect of inbreeding, body size and morphology on health in dog breeds. Canine Med Genet 2021; 8:12. [PMID: 34852838 PMCID: PMC8638537 DOI: 10.1186/s40575-021-00111-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 11/02/2021] [Indexed: 11/10/2022] Open
Abstract
Background Dog breeds are known for their distinctive body shape, size, coat color, head type and behaviors, features that are relatively similar across members of a breed. Unfortunately, dog breeds are also characterized by distinct predispositions to disease. We explored the relationships between inbreeding, morphology and health using genotype based inbreeding estimates, body weight and insurance data for morbidity. Results The average inbreeding based on genotype across 227 breeds was Fadj = 0.249 (95% CI 0.235–0.263). There were significant differences in morbidity between breeds with low and high inbreeding (H = 16.49, P = 0.0004). There was also a significant difference in morbidity between brachycephalic breeds and non-brachycephalic breeds (P = 0.0048) and between functionally distinct groups of breeds (H = 14.95 P < 0.0001). Morbidity was modeled using robust regression analysis and both body weight (P < 0.0001) and inbreeding (P = 0.013) were significant (r2 = 0.77). Smaller less inbred breeds were healthier than larger more inbred breeds. Conclusions In this study, body size and inbreeding along with deleterious morphologies contributed to increases in necessary health care in dogs. Supplementary Information The online version contains supplementary material available at 10.1186/s40575-021-00111-4.
Collapse
|
18
|
Insight into the Candidate Genes and Enriched Pathways Associated with Height, Length, Length to Height Ratio and Body-Weight of Korean Indigenous Breed, Jindo Dog Using Gene Set Enrichment-Based GWAS Analysis. Animals (Basel) 2021; 11:ani11113136. [PMID: 34827868 PMCID: PMC8614278 DOI: 10.3390/ani11113136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/21/2021] [Accepted: 10/28/2021] [Indexed: 12/14/2022] Open
Abstract
As a companion and hunting dog, height, length, length to height ratio (LHR) and body-weight are the vital economic traits for Jindo dog. Human selection and targeted breeding have produced an extraordinary diversity in these traits. Therefore, the identification of causative markers, genes and pathways that help us to understand the genetic basis of this variability is essential for their selection purposes. Here, we performed a genome-wide association study (GWAS) combined with enrichment analysis on 757 dogs using 118,879 SNPs. The genomic heritability (h2) was 0.33 for height and 0.28 for weight trait in Jindo. At p-value < 5 × 10-5, ten, six, thirteen and eleven SNPs on different chromosomes were significantly associated with height, length, LHR and body-weight traits, respectively. Based on our results, HHIP, LCORL and NCAPG for height, IGFI and FGFR3 for length, DLK1 and EFEMP1 for LHR and PTPN2, IGFI and RASAL2 for weight can be the potential candidate genes because of the significant SNPs located in their intronic or upstream regions. The gene-set enrichment analysis highlighted here nine and seven overlapping significant (p < 0.05) gene ontology (GO) terms and pathways among traits. Interestingly, the highlighted pathways were related to hormone synthesis, secretion and signalling were generally involved in the metabolism, growth and development process. Our data provide an insight into the significant genes and pathways if verified further, which will have a significant effect on the breeding of the Jindo dog's population.
Collapse
|
19
|
Lyu G, Feng C, Zhu S, Ren S, Dang W, Irwin DM, Wang Z, Zhang S. Whole Genome Sequencing Reveals Signatures for Artificial Selection for Different Sizes in Japanese Primitive Dog Breeds. Front Genet 2021; 12:671686. [PMID: 34335687 PMCID: PMC8317602 DOI: 10.3389/fgene.2021.671686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 06/24/2021] [Indexed: 11/13/2022] Open
Abstract
Body size is an important trait in companion animals. Recently, a primitive Japanese dog breed, the Shiba Inu, has experienced artificial selection for smaller body size, resulting in the "Mame Shiba Inu" breed. To identify loci and genes that might explain the difference in the body size of these Shiba Inu dogs, we applied whole genome sequencing of pooled samples (pool-seq) on both Shiba Inu and Mame Shiba Inu. We identified a total of 13,618,261 unique SNPs in the genomes of these two breeds of dog. Using selective sweep approaches, including F ST, H p and XP-CLR with sliding windows, we identified a total of 12 genomic windows that show signatures of selection that overlap with nine genes (PRDM16, ZNF382, ZNF461, ERGIC2, ENSCAFG00000033351, CCDC61, ALDH3A2, ENSCAFG00000011141, and ENSCAFG00000018533). These results provide candidate genes and specific sites that might be associated with body size in dogs. Some of these genes are associated with body size in other mammals, but 8 of the 9 genes are novel candidate genes that need further study.
Collapse
Affiliation(s)
- Guangqi Lyu
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Chunyu Feng
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Shiyu Zhu
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Shuang Ren
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Wanyi Dang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - David M Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Zhe Wang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Shuyi Zhang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
20
|
Upadhyay M, Derks MFL, Andersson G, Medugorac I, Groenen MAM, Crooijmans RPMA. Introgression contributes to distribution of structural variations in cattle. Genomics 2021; 113:3092-3102. [PMID: 34242710 DOI: 10.1016/j.ygeno.2021.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 06/24/2021] [Accepted: 07/03/2021] [Indexed: 11/19/2022]
Abstract
Structural variations (SVs) are an important source of phenotypic diversity in cattle. Here, 72 whole genome sequences representing taurine and zebu cattle were used to identify SVs. Applying multiple approaches, 16,738 SVs were identified. A comparison against the Database of Genomic Variants archives revealed that 1575 SVs were novel in our data. A novel duplication covering the entire GALNT15 gene, was observed only in N'Dama. A duplication, which was previously reported only in zebu and associated with navel length, was also observed in N'Dama. Investigation of a novel deletion located upstream of CAST13 gene and identified only in Italian cattle and zebu, revealed its introgressed origin in the former. Overall, our data highlights how the SVs distribution in cattle is also shaped by forces such as demographical differences and gene flow. The cattle SVs of this study and its meta-data can be visualized on an interactive genome browser at https://tinyurl.com/svCowArs.
Collapse
Affiliation(s)
- Maulik Upadhyay
- Animal Breeding and Genomics, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands; Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden; Population Genomics Group, Department of Veterinary Sciences, Ludwig-Maximilians-University Munich, 80539 Munich, Germany.
| | - Martijn F L Derks
- Animal Breeding and Genomics, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands.
| | - Göran Andersson
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden.
| | - Ivica Medugorac
- Population Genomics Group, Department of Veterinary Sciences, Ludwig-Maximilians-University Munich, 80539 Munich, Germany.
| | - Martien A M Groenen
- Animal Breeding and Genomics, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands.
| | - Richard P M A Crooijmans
- Animal Breeding and Genomics, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB, Wageningen, The Netherlands.
| |
Collapse
|
21
|
Sahlén P, Yanhu L, Xu J, Kubinyi E, Wang GD, Savolainen P. Variants That Differentiate Wolf and Dog Populations Are Enriched in Regulatory Elements. Genome Biol Evol 2021; 13:6261009. [PMID: 33929504 PMCID: PMC8086526 DOI: 10.1093/gbe/evab076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2021] [Indexed: 12/21/2022] Open
Abstract
Research on the genetics of domestication most often focuses on the protein-coding exons. However, exons cover only a minor part (1–2%) of the canine genome, whereas functional mutations may be located also in regions beyond the exome, in regulatory regions. Therefore, a large proportion of phenotypical differences between dogs and wolves may remain genetically unexplained. In this study, we identified variants that have high allelic frequency differences (i.e., highly differentiated variants) between wolves and dogs across the canine genome and investigated the potential functionality. We found that the enrichment of highly differentiated variants was substantially higher in promoters than in exons and that such variants were enriched also in enhancers. Several enriched pathways were identified including oxytocin signaling, carbohydrate digestion and absorption, cancer risk, and facial and body features, many of which reflect phenotypes of potential importance during domestication, including phenotypes of the domestication syndrome. The results highlight the importance of regulatory mutations during dog domestication and motivate the functional annotation of the noncoding part of the canine genome.
Collapse
Affiliation(s)
- Pelin Sahlén
- KTH Royal Institute of Technology, School of Chemistry, Biotechnology and Health, Science for Life Laboratory, Stockholm, Sweden
| | - Liu Yanhu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Jinrui Xu
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, USA
| | - Eniko Kubinyi
- Department of Ethology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Guo-Dong Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China
| | - Peter Savolainen
- KTH Royal Institute of Technology, School of Chemistry, Biotechnology and Health, Science for Life Laboratory, Stockholm, Sweden
| |
Collapse
|
22
|
Yang X, Sun J, Zhao G, Li W, Tan X, Zheng M, Feng F, Liu D, Wen J, Liu R. Identification of Major Loci and Candidate Genes for Meat Production-Related Traits in Broilers. Front Genet 2021; 12:645107. [PMID: 33859671 PMCID: PMC8042277 DOI: 10.3389/fgene.2021.645107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/02/2021] [Indexed: 12/30/2022] Open
Abstract
Background Carcass traits are crucial characteristics of broilers. However, the underlying genetic mechanisms are not well understood. In the current study, significant loci and major-effect candidate genes affecting nine carcass traits related to meat production were analyzed in 873 purebred broilers using an imputation-based genome-wide association study. Results The heritability estimates of nine carcass traits, including carcass weight, thigh muscle weight, and thigh muscle percentage, were moderate to high and ranged from 0.21 to 0.39. Twelve genome-wide significant SNPs and 118 suggestively significant SNPs of 546,656 autosomal variants were associated with carcass traits. All SNPs for six weight traits (body weight at 42 days of age, carcass weight, eviscerated weight, whole thigh weight, thigh weight, and thigh muscle weight) were clustered around the 24.08 Kb region (GGA24: 5.73–5.75 Mb) and contained only one candidate gene (DRD2). The most significant SNP, rs15226023, accounted for 4.85–7.71% of the estimated genetic variance of the six weight traits. The remaining SNPs for carcass composition traits (whole thigh percentage and thigh percentage) were clustered around the 42.52 Kb region (GGA3: 53.03–53.08 Mb) and contained only one candidate gene (ADGRG6). The most significant SNP in this region, rs13571431, accounted for 11.89–13.56% of the estimated genetic variance of two carcass composition traits. Some degree of genetic differentiation in ADGRG6 between large and small breeds was observed. Conclusion We identified one 24.08 Kb region for weight traits and one 42.52 Kb region for thigh-related carcass traits. DRD2 was the major-effect candidate gene for weight traits, and ADGRG6 was the major-effect candidate gene for carcass composition traits. Our results supply essential information for causative mutation identification of carcass traits in broilers.
Collapse
Affiliation(s)
- Xinting Yang
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiahong Sun
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guiping Zhao
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wei Li
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaodong Tan
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Maiqing Zheng
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Furong Feng
- Foshan Gaoming Xinguang Agricultural and Animal Industrials Corporation, Foshan, China
| | - Dawei Liu
- Foshan Gaoming Xinguang Agricultural and Animal Industrials Corporation, Foshan, China
| | - Jie Wen
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ranran Liu
- State Key Laboratory of Animal Nutrition, Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
23
|
Xu J, Fu Y, Hu Y, Yin L, Tang Z, Yin D, Zhu M, Yu M, Li X, Zhou Y, Zhao S, Liu X. Whole genome variants across 57 pig breeds enable comprehensive identification of genetic signatures that underlie breed features. J Anim Sci Biotechnol 2020; 11:115. [PMID: 33292532 PMCID: PMC7713148 DOI: 10.1186/s40104-020-00520-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 10/19/2020] [Indexed: 01/15/2023] Open
Abstract
Background A large number of pig breeds are distributed around the world, their features and characteristics vary among breeds, and they are valuable resources. Understanding the underlying genetic mechanisms that explain across-breed variation can help breeders develop improved pig breeds. Results In this study, we performed GWAS using a standard mixed linear model with three types of genome variants (SNP, InDel, and CNV) that were identified from public, whole-genome, sequencing data sets. We used 469 pigs of 57 breeds, and we identified and analyzed approximately 19 million SNPs, 1.8 million InDels, and 18,016 CNVs. We defined six biological phenotypes by the characteristics of breed features to identify the associated genome variants and candidate genes, which included coat color, ear shape, gradient zone, body weight, body length, and body height. A total of 37 candidate genes was identified, which included 27 that were reported previously (e.g., PLAG1 for body weight), but the other 10 were newly detected candidate genes (e.g., ADAMTS9 for coat color). Conclusion Our study indicated that using GWAS across a modest number of breeds with high density genome variants provided efficient mapping of complex traits. Supplementary Information Supplementary information accompanies this paper at 10.1186/s40104-020-00520-8.
Collapse
Affiliation(s)
- Jingya Xu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education & Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China
| | - Yuhua Fu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education & Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China
| | - Yan Hu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education & Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China
| | - Lilin Yin
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education & Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China
| | - Zhenshuang Tang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education & Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China
| | - Dong Yin
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education & Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China
| | - Mengjin Zhu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education & Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China
| | - Mei Yu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education & Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China
| | - Xinyun Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education & Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China
| | - Yang Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education & Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China.
| | - Shuhong Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education & Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China.
| | - Xiaolei Liu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Ministry of Education & Key Laboratory of Swine Genetics and Breeding, Ministry of Agriculture & College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, PR China.
| |
Collapse
|
24
|
Wallis N, Raffan E. The Genetic Basis of Obesity and Related Metabolic Diseases in Humans and Companion Animals. Genes (Basel) 2020; 11:E1378. [PMID: 33233816 PMCID: PMC7699880 DOI: 10.3390/genes11111378] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 12/18/2022] Open
Abstract
Obesity is one of the most prevalent health conditions in humans and companion animals globally. It is associated with premature mortality, metabolic dysfunction, and multiple health conditions across species. Obesity is, therefore, of importance in the fields of medicine and veterinary medicine. The regulation of adiposity is a homeostatic process vulnerable to disruption by a multitude of genetic and environmental factors. It is well established that the heritability of obesity is high in humans and laboratory animals, with ample evidence that the same is true in companion animals. In this review, we provide an overview of how genes link to obesity in humans, drawing on a wealth of information from laboratory animal models, and summarise the mechanisms by which obesity causes related disease. Throughout, we focus on how large-scale human studies and niche investigations of rare mutations in severely affected patients have improved our understanding of obesity biology and can inform our ability to interpret results of animal studies. For dogs, cats, and horses, we compare the similarities in obesity pathophysiology to humans and review the genetic studies that have been previously reported in those species. Finally, we discuss how veterinary genetics may learn from humans about studying precise, nuanced phenotypes and implementing large-scale studies, but also how veterinary studies may be able to look past clinical findings to mechanistic ones and demonstrate translational benefits to human research.
Collapse
Affiliation(s)
- Natalie Wallis
- Anatomy Building, Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Eleanor Raffan
- Anatomy Building, Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| |
Collapse
|
25
|
Identification of Candidate Genes and Pathways Associated with Obesity-Related Traits in Canines via Gene-Set Enrichment and Pathway-Based GWAS Analysis. Animals (Basel) 2020; 10:ani10112071. [PMID: 33182249 PMCID: PMC7695335 DOI: 10.3390/ani10112071] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 11/06/2020] [Accepted: 11/06/2020] [Indexed: 02/06/2023] Open
Abstract
The present study aimed to identify causative loci and genes enriched in pathways associated with canine obesity using a genome-wide association study (GWAS). The GWAS was first performed to identify candidate single-nucleotide polymorphisms (SNPs) associated with obesity and obesity-related traits including body weight and blood sugar in 18 different breeds of 153 dogs. A total of 10 and 2 SNPs were found to be significantly (p < 3.74 × 10-7) associated with body weight and blood sugar, respectively. None of the SNPs were identified to be significantly associated with obesity trait. We subsequently followed up the GWAS analysis with gene-set enrichment and pathway analyses. A gene-set with 1057, 1409, and 1243 SNPs annotated to 449, 933 and 820 genes for obesity, body weight, and blood sugar, respectively was created by sub-setting the GWAS result at a threshold of p < 0.01 for the gene-set enrichment analysis. In total, 84 GO and 21 KEGG pathways for obesity, 114 GO and 44 KEGG pathways for blood sugar, 120 GO and 24 KEGG pathways for body weight were found to be enriched. Among the pathways and GO terms, we highlighted five enriched pathways (Wnt signaling pathway, adherens junction, pathways in cancer, axon guidance, and insulin secretion) and seven GO terms (fat cell differentiation, calcium ion binding, cytoplasm, nucleus, phospholipid transport, central nervous system development, and cell surface) that were found to be shared among all the traits. Our data provide insights into the genes and pathways associated with obesity and obesity-related traits.
Collapse
|
26
|
O'Brien MJ, Beijerink NJ, Sansom M, Thornton SW, Chew T, Wade CM. A large deletion on CFA28 omitting ACSL5 gene is associated with intestinal lipid malabsorption in the Australian Kelpie dog breed. Sci Rep 2020; 10:18223. [PMID: 33106515 PMCID: PMC7589484 DOI: 10.1038/s41598-020-75243-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 10/06/2020] [Indexed: 12/31/2022] Open
Abstract
Inborn errors of metabolism are genetic conditions that can disrupt intermediary metabolic pathways and cause defective absorption and metabolism of dietary nutrients. In an Australian Kelpie breeding population, 17 puppies presented with intestinal lipid malabsorption. Juvenile dogs exhibited stunted postnatal growth, steatorrhea, abdominal distension and a wiry coat. Using genome-wide association analysis, an associated locus on CFA28 (Praw = 2.87E-06) was discovered and validated in a closely related population (Praw = 1.75E-45). A 103.3 kb deletion NC_006610.3CFA28:g.23380074_23483377del, containing genes Acyl-CoA Synthetase Long Chain Family Member 5 (ACSL5) and Zinc Finger DHHC-Type Containing 6 (ZDHHC6), was characterised using whole transcriptomic data. Whole transcriptomic sequencing revealed no expression of ACSL5 and disrupted splicing of ZDHHC6 in jejunal tissue of affected Kelpies. The ACSL5 gene plays a key role in long chain fatty acid absorption, a phenotype similar to that of our affected Kelpies has been observed in a knockout mouse model. A PCR-based diagnostic test was developed and confirmed fully penetrant autosomal recessive mode of inheritance. We conclude the structural variant causing a deletion of the ACSL5 gene is the most likely cause for intestinal lipid malabsorption in the Australian Kelpie.
Collapse
Affiliation(s)
- Mitchell J O'Brien
- School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Camperdown, NSW, 2006, Australia.
| | - Niek J Beijerink
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Camperdown, NSW, 2006, Australia.,Veterinaire Specialisten Vught, Reutsedijk 8a, 5264 PC, Vught, The Netherlands
| | - Mandy Sansom
- Callicoma Kelpies, Grafton, NSW, 2460, Australia
| | - Sarah W Thornton
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Camperdown, NSW, 2006, Australia.,Unaffiliated, Los Altos, USA
| | - Tracy Chew
- Sydney Informatic Hub, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Claire M Wade
- School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Camperdown, NSW, 2006, Australia.
| |
Collapse
|
27
|
Abstract
The domestic dog, as a highly successful domestication model, is well known as a favored human companion. Exploring its domestication history should provide great insight into our understanding of the prehistoric development of human culture and productivity. Furthermore, investigation on the mechanisms underpinning the morphological and behavioral traits associated with canid domestication syndrome is of significance not only for scientific study but also for human medical research. Current development of a multidisciplinary canine genome database, which includes enormous omics data, has substantially improved our understanding of the genetic makeup of dogs. Here, we reviewed recent advances associated with the original history and genetic basis underlying environmental adaptations and phenotypic diversities in domestic dogs, which should provide perspectives on improving the communicative relationship between dogs and humans.
Collapse
Affiliation(s)
- Zhe Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, China
| | - Saber Khederzadeh
- State Key Laboratory of Genetic Resources and Evolution, Germplasm Bank of Wild Species, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China
| | - Yan Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, China. E-mail:
| |
Collapse
|
28
|
Huskey ALW, Goebel K, Lloveras-Fuentes C, McNeely I, Merner ND. Whole genome sequencing for the investigation of canine mammary tumor inheritance - an initial assessment of high-risk breast cancer genes reveal BRCA2 and STK11 variants potentially associated with risk in purebred dogs. Canine Med Genet 2020. [PMCID: PMC7491476 DOI: 10.1186/s40575-020-00084-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Background Although, in general, cancer is considered a multifactorial disease, clustering of particular cancers in pedigrees suggests a genetic predisposition and could explain why some dog breeds appear to have an increased risk of certain cancers. To our knowledge, there have been no published reports of whole genome sequencing to investigate inherited canine mammary tumor (CMT) risk, and with little known about CMT genetic susceptibility, we carried out whole genome sequencing on 14 purebred dogs diagnosed with mammary tumors from four breed-specific pedigrees. Following sequencing, each dog’s data was processed through a bioinformatics pipeline. This initial report highlights variants in orthologs of human breast cancer susceptibility genes. Results The overall whole genome and exome coverage averages were 26.0X and 25.6X, respectively, with 96.1% of the genome and 96.7% of the exome covered at least 10X. Of the average 7.9 million variants per dog, initial analyses involved surveying variants in orthologs of human breast cancer susceptibility genes, BRCA1, BRCA2, CDH1, PTEN, STK11, and TP53, and identified 19 unique coding variants that were validated through PCR and Sanger sequencing. Statistical analyses identified variants in BRCA2 and STK11 that appear to be associated with CMT, and breed-specific analyses revealed the breeds at the highest risk. Several additional BRCA2 variants showed trends toward significance, but have conflicting interpretations of pathogenicity, and correspond to variants of unknown significance in humans, which require further investigation. Variants in other genes were noted but did not appear to be associated with disease. Conclusions Whole genome sequencing proves to be an effective method to elucidate risk of CMT. Risk variants in orthologs of human breast cancer susceptibility genes have been identified. Ultimately, these whole genome sequencing efforts have provided a plethora of data that can also be assessed for novel discovery and have the potential to lead to breakthroughs in canine and human research through comparative analyses.
Collapse
|
29
|
Bannasch DL, Baes CF, Leeb T. Genetic Variants Affecting Skeletal Morphology in Domestic Dogs. Trends Genet 2020; 36:598-609. [PMID: 32487495 DOI: 10.1016/j.tig.2020.05.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 12/25/2022]
Abstract
Purebred dog breeds provide a powerful resource for the discovery of genetic variants affecting skeletal morphology. Domesticated and subsequently purebred dogs have undergone strong artificial selection for a broad range of skeletal variation, which include both the size and shapes of their bones. While the phenotypic variation between breeds is high, within-breed morphological variation is typically low. Approaches for defining genetic variants associated with canine morphology include quantitative within-breed analyses, as well as across-breed analyses, using breed standards as proxies for individual measurements. The ability to identify variants across the genomes of individual dogs can now be paired with precise measures of morphological variation to define the genetic interactions and the phenotypic effect of variants on skeletal morphology.
Collapse
Affiliation(s)
- Danika L Bannasch
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California Davis, Davis, CA 95616, USA.
| | - Christine F Baes
- Department of Animal Biosciences, University of Guelph, Guelph, ON N1G 2W1, Canada; Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland
| | - Tosso Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland
| |
Collapse
|
30
|
Ha TK, Mardy AH, Beleford D, Spanier A, Wayman BV, Penon-Portmann M, Wiita AP, Shieh JT. X-linked duplication copy number variation in a familial overgrowth condition. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2019; 181:644-649. [PMID: 31762227 DOI: 10.1002/ajmg.c.31756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 10/25/2019] [Accepted: 10/29/2019] [Indexed: 01/16/2023]
Abstract
We describe an overgrowth condition associated with X-linked copy number variation. Three brothers displayed an overgrowth pattern at birth that continued postnatally. Clinical findings included macrocephaly, distinctive facial features, developmental delay and variable clubfoot. Normal fetal growth was noted until the third trimester by Hadlock standards, revealing a late gestational overgrowth pattern. Microarray analysis in the family showed a maternally inherited 680 kb copy number duplication at Xq26.1-q26.2 in all three brothers. Molecular sequencing for known overgrowth conditions including GPC3, Sotos 1 (NSD1), Malan (NFIX), Perlman (DIS3L2), Weaver (EZH2), Opitz-Kaveggia (MED12) loci were negative. BWS IC1 and IC2 methylation and CDKN1C testing was also negative. Normal IGF1 levels excluded X-linked acrogiantism. The duplicated region Xq26.1-q26.2 contained IGSF1 and at least part of the lncRNA FIRRE. IGSF1, a highly expressed pituitary immunoglobulin superfamily gene, was recently implicated in a genome-wide association study of canine size. IGSF1 variants were associated with large canine breeds compared to smaller breeds. Our findings support the hypothesis that an X-linked variant encompassing the IGSF1 region may be associated with body size. Although IGSF1 loss has been noted in human hypothyroidism, this is the first reported phenotype in a family with copy number duplication in the region. Our findings suggest that prenatal evaluation, cross-species evaluation, Mendelian, and GWAS studies may describe a distinctive familial condition and its corresponding phenotypic features.
Collapse
Affiliation(s)
- Thoa K Ha
- Division of Medical Genetics, Department of Pediatrics, University of California San Francisco, San Francisco, California
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco, San Francisco, California
| | - Anne H Mardy
- Division of Medical Genetics, Department of Pediatrics, University of California San Francisco, San Francisco, California
- Alameda Health System, Eastmont Wellness Center, Oakland, California
| | - Daniah Beleford
- Division of Medical Genetics, Department of Pediatrics, University of California San Francisco, San Francisco, California
| | - Andrew Spanier
- Alameda Health System, Eastmont Wellness Center, Oakland, California
| | - Brette V Wayman
- UCSF Health Center for Clinical Genetics and Genomics, University of California San Francisco, San Francisco, California
| | - Monica Penon-Portmann
- Division of Medical Genetics, Department of Pediatrics, University of California San Francisco, San Francisco, California
| | - Arun P Wiita
- Department of Laboratory Medicine, University of California San Francisco, San Francisco, California
| | - Joseph T Shieh
- Division of Medical Genetics, Department of Pediatrics, University of California San Francisco, San Francisco, California
- Institute for Human Genetics, University of California San Francisco, San Francisco, California
| |
Collapse
|
31
|
Sándor S, Kubinyi E. Genetic Pathways of Aging and Their Relevance in the Dog as a Natural Model of Human Aging. Front Genet 2019; 10:948. [PMID: 31681409 PMCID: PMC6813227 DOI: 10.3389/fgene.2019.00948] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 09/05/2019] [Indexed: 12/15/2022] Open
Abstract
Aging research has experienced a burst of scientific efforts in the last decades as the growing ratio of elderly people has begun to pose an increased burden on the healthcare and pension systems of developed countries. Although many breakthroughs have been reported in understanding the cellular mechanisms of aging, the intrinsic and extrinsic factors that contribute to senescence on higher biological levels are still barely understood. The dog, Canis familiaris, has already served as a valuable model of human physiology and disease. The possible role the dog could play in aging research is still an open question, although utilization of dogs may hold great promises as they naturally develop age-related cognitive decline, with behavioral and histological characteristics very similar to those of humans. In this regard, family dogs may possess unmatched potentials as models for investigations on the complex interactions between environmental, behavioral, and genetic factors that determine the course of aging. In this review, we summarize the known genetic pathways in aging and their relevance in dogs, putting emphasis on the yet barely described nature of certain aging pathways in canines. Reasons for highlighting the dog as a future aging and gerontology model are also discussed, ranging from its unique evolutionary path shared with humans, its social skills, and the fact that family dogs live together with their owners, and are being exposed to the same environmental effects.
Collapse
Affiliation(s)
- Sára Sándor
- Department of Ethology, Eötvös Loránd University, Budapest, Hungary
| | | |
Collapse
|
32
|
Genetic mapping of distal femoral, stifle, and tibial radiographic morphology in dogs with cranial cruciate ligament disease. PLoS One 2019; 14:e0223094. [PMID: 31622367 PMCID: PMC6797204 DOI: 10.1371/journal.pone.0223094] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 09/14/2019] [Indexed: 11/19/2022] Open
Abstract
Cranial cruciate ligament disease (CCLD) is a complex trait. Ten measurements were made on orthogonal distal pelvic limb radiographs of 161 pure and mixed breed dogs with, and 55 without, cranial cruciate partial or complete ligament rupture. Dogs with CCLD had significantly smaller infrapatellar fat pad width, higher average tibial plateau angle, and were heavier than control dogs. The first PC weightings captured the overall size of the dog’s stifle and PC2 weightings reflected an increasing tibial plateau angle coupled with a smaller fat pad width. Of these dogs, 175 were genotyped, and 144,509 polymorphisms were used in a genome-wide association study with both a mixed linear and a multi-locus model. For both models, significant (pgenome <3.46×10−7 for the mixed and< 6.9x10-8 for the multilocus model) associations were found for PC1, tibial diaphyseal length and width, fat pad base length, and femoral and tibial condyle width at LCORL, a known body size-regulating locus. Other body size loci with significant associations were growth hormone 1 (GH1), which was associated with the length of the fat pad base and the width of the tibial diaphysis, and a region on CFAX near IRS4 and ACSL4 in the multilocus model. The tibial plateau angle was associated significantly with a locus on CFA10 in the linear mixed model with nearest candidate genes BET1 and MYH9 and on CFA08 near candidate genes WDHD1 and GCH1. MYH9 has a major role in osteoclastogenesis. Our study indicated that tibial plateau slope is associated with CCLD and a compressed infrapatellar fat pad, a surrogate for stifle osteoarthritis. Because of the association between tibial plateau slope and CCLD, and pending independent validation, these candidate genes for tibial plateau slope may be tested in breeds susceptible to CCLD before they develop disease or are bred.
Collapse
|
33
|
Imputation of canine genotype array data using 365 whole-genome sequences improves power of genome-wide association studies. PLoS Genet 2019; 15:e1008003. [PMID: 31525180 PMCID: PMC6762211 DOI: 10.1371/journal.pgen.1008003] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 09/26/2019] [Accepted: 08/19/2019] [Indexed: 12/11/2022] Open
Abstract
Genomic resources for the domestic dog have improved with the widespread adoption of a 173k SNP array platform and updated reference genome. SNP arrays of this density are sufficient for detecting genetic associations within breeds but are underpowered for finding associations across multiple breeds or in mixed-breed dogs, where linkage disequilibrium rapidly decays between markers, even though such studies would hold particular promise for mapping complex diseases and traits. Here we introduce an imputation reference panel, consisting of 365 diverse, whole-genome sequenced dogs and wolves, which increases the number of markers that can be queried in genome-wide association studies approximately 130-fold. Using previously genotyped dogs, we show the utility of this reference panel in identifying potentially novel associations, including a locus on CFA20 significantly associated with cranial cruciate ligament disease, and fine-mapping for canine body size and blood phenotypes, even when causal loci are not in strong linkage disequilibrium with any single array marker. This reference panel resource will improve future genome-wide association studies for canine complex diseases and other phenotypes. Complex traits are controlled by more than one gene and as such are difficult to map. For complex trait mapping in the domestic dog, researchers use the current array of 173,000 variants, with only minimal success. Here, we use a method called imputation to increase the number of variants–from 173,000 to 24 million–that can be queried in canine association studies. We use sequence data from the whole genomes of 365 dogs and wolves to accurately predict variants, in a separate cohort of dogs, that are not present on the array. Using dog body size, blood phenotypes, and a common orthopedic disease that involves rupture of the cranial cruciate ligament, we show that the increase in variants results in an increase in mapping power, through the identification of new associations and the narrowing of regions of interest. This imputation panel is particularly important because of its usefulness in improving complex trait mapping in the dog, which has significant implications for discovery of variants in humans with similar diseases.
Collapse
|
34
|
Network analysis of canine brain morphometry links tumour risk to oestrogen deficiency and accelerated brain ageing. Sci Rep 2019; 9:12506. [PMID: 31467332 PMCID: PMC6715702 DOI: 10.1038/s41598-019-48446-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 08/02/2019] [Indexed: 12/24/2022] Open
Abstract
Structural ‘brain age’ is a valuable but complex biomarker for several brain disorders. The dog is an unrivalled comparator for neurological disease modeling, however canine brain morphometric diversity creates computational and statistical challenges. Using a data-driven approach, we explored complex interactions between patient metadata, brain morphometry, and neurological disease. Twenty-four morphometric parameters measured from 286 canine brain magnetic resonance imaging scans were combined with clinical parameters to generate 9,438 data points. Network analysis was used to cluster patients according to their brain morphometry profiles. An ‘aged-brain’ profile, defined by a small brain width and volume combined with ventriculomegaly, was revealed in the Boxer breed. Key features of this profile were paralleled in neutered female dogs which, relative to un-neutered females, had an 11-fold greater risk of developing brain tumours. Boxer dog and geriatric dog groups were both enriched for brain tumour diagnoses, despite a lack of geriatric Boxers within the cohort. Our findings suggest that advanced brain ageing enhances brain tumour risk in dogs and may be influenced by oestrogen deficiency—a risk factor for dementia and brain tumours in humans. Morphometric features of brain ageing in dogs, like humans, might better predict neurological disease risk than patient chronological age.
Collapse
|
35
|
Ostrander EA, Wang GD, Larson G, vonHoldt BM, Davis BW, Jagannathan V, Hitte C, Wayne RK, Zhang YP. Dog10K: an international sequencing effort to advance studies of canine domestication, phenotypes and health. Natl Sci Rev 2019; 6:810-824. [PMID: 31598383 PMCID: PMC6776107 DOI: 10.1093/nsr/nwz049] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/14/2019] [Accepted: 04/09/2019] [Indexed: 12/18/2022] Open
Abstract
Dogs are the most phenotypically diverse mammalian species, and they possess more known heritable disorders than any other non-human mammal. Efforts to catalog and characterize genetic variation across well-chosen populations of canines are necessary to advance our understanding of their evolutionary history and genetic architecture. To date, no organized effort has been undertaken to sequence the world's canid populations. The Dog10K Consortium (http://www.dog10kgenomes.org) is an international collaboration of researchers from across the globe who will generate 20× whole genomes from 10 000 canids in 5 years. This effort will capture the genetic diversity that underlies the phenotypic and geographical variability of modern canids worldwide. Breeds, village dogs, niche populations and extended pedigrees are currently being sequenced, and de novo assemblies of multiple canids are being constructed. This unprecedented dataset will address the genetic underpinnings of domestication, breed formation, aging, behavior and morphological variation. More generally, this effort will advance our understanding of human and canine health.
Collapse
Affiliation(s)
- Elaine A Ostrander
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Guo-Dong Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| | - Greger Larson
- Palaeogenomics and Bio-Archaeology Research Network, School of Archaeology, University of Oxford, Oxford OX1 3TG, UK
| | - Bridgett M vonHoldt
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544-1014, USA
| | - Brian W Davis
- College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77840, USA
| | - Vidhya Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern CH-3001, Switzerland
| | | | - Robert K Wayne
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| |
Collapse
|
36
|
Tijjani A, Utsunomiya YT, Ezekwe AG, Nashiru O, Hanotte O. Genome Sequence Analysis Reveals Selection Signatures in Endangered Trypanotolerant West African Muturu Cattle. Front Genet 2019; 10:442. [PMID: 31231417 PMCID: PMC6558954 DOI: 10.3389/fgene.2019.00442] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 04/29/2019] [Indexed: 01/01/2023] Open
Abstract
Like most West African Bos taurus, the shorthorn Muturu is under threat of replacement or crossbreeding with zebu. Their populations are now reduced to a few hundred breeding individuals and they are considered endangered. So far, the genetic variation and genetic basis of the trypanotolerant Muturu environmental adaptation have not been assessed. Here, we present genome-wide candidate positive selection signatures in Muturu following within-population iHS and between population Rsb signatures of selection analysis. We compared the results in Muturu with the ones obtained in N’Dama, a West African longhorn trypanotolerant taurine, and in two European taurine (Holstein and Jersey). The results reveal candidate signatures of selection regions in Muturu including genes linked to the innate (e.g., TRIM10, TRIM15, TRIM40, and TRIM26) and the adaptive (e.g., JSP.1, BOLA-DQA2, BOLA-DQA5, BOLA-DRB3, and BLA-DQB) immune responses. The most significant regions are identified on BTA 23 at the bovine major histocompatibility complex (MHC) (iHS analysis) and on BTA 12 at genes including a heat tolerance gene (INTS6) (Rsb analysis). Other candidate selected regions include genes related to growth traits/stature (e.g., GHR and GHRHR), coat color (e.g., MITF and KIT), feed efficiency (e.g., ZRANB3 and MAP3K5) and reproduction (e.g., RFX2, SRY, LAP3, and GPX5). Genes under common signatures of selection regions with N’Dama, including for adaptive immunity and heat tolerance, suggest shared mechanisms of adaptation to environmental challenges for these two West African taurine cattle. Interestingly, out of the 242,910 SNPs identified within the candidate selected regions in Muturu, 917 are missense SNPs (0.4%), with an unequal distribution across 273 genes. Fifteen genes including RBBP8, NID1, TEX15, LAMA3, TRIM40, and OR12D3 comprise 220 missense variants, each between 11 and 32. Our results, while providing insights into the candidate genes under selection in Muturu, are paving the way to the identification of genes and their polymorphisms linked to the unique tropical adaptive traits of the West Africa taurine, including trypanotolerance.
Collapse
Affiliation(s)
- Abdulfatai Tijjani
- Cells, Organisms and Molecular Genetics, School of Life Sciences, University Park Campus, University of Nottingham, Nottingham, United Kingdom.,Center for Genomics Research and Innovation, National Biotechnology Development Agency, Abuja, Nigeria.,International Livestock Research Institute, Addis Ababa, Ethiopia
| | - Yuri Tani Utsunomiya
- Department of Support, Production and Animal Health, School of Veterinary Medicine, São Paulo State University, São Paulo, Brazil
| | - Arinze G Ezekwe
- Department of Animal Science, Faculty of Agriculture, University of Nigeria, Nsukka, Nigeria
| | - Oyekanmi Nashiru
- Center for Genomics Research and Innovation, National Biotechnology Development Agency, Abuja, Nigeria
| | - Olivier Hanotte
- Cells, Organisms and Molecular Genetics, School of Life Sciences, University Park Campus, University of Nottingham, Nottingham, United Kingdom.,International Livestock Research Institute, Addis Ababa, Ethiopia
| |
Collapse
|
37
|
Plassais J, Kim J, Davis BW, Karyadi DM, Hogan AN, Harris AC, Decker B, Parker HG, Ostrander EA. Whole genome sequencing of canids reveals genomic regions under selection and variants influencing morphology. Nat Commun 2019; 10:1489. [PMID: 30940804 PMCID: PMC6445083 DOI: 10.1038/s41467-019-09373-w] [Citation(s) in RCA: 203] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 03/06/2019] [Indexed: 01/14/2023] Open
Abstract
Domestic dog breeds are characterized by an unrivaled diversity of morphologic traits and breed-associated behaviors resulting from human selective pressures. To identify the genetic underpinnings of such traits, we analyze 722 canine whole genome sequences (WGS), documenting over 91 million single nucleotide and small indels, creating a large catalog of genomic variation for a companion animal species. We undertake both selective sweep analyses and genome wide association studies (GWAS) inclusive of over 144 modern breeds, 54 wild canids and a hundred village dogs. Our results identify variants of strong impact associated with 16 phenotypes, including body weight variation which, when combined with existing data, explain greater than 90% of body size variation in dogs. We thus demonstrate that GWAS and selection scans performed with WGS are powerful complementary methods for expanding the utility of companion animal systems for the study of mammalian growth and biology.
Collapse
Affiliation(s)
- Jocelyn Plassais
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Jaemin Kim
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Brian W Davis
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Texas A&M University, College Station, TX, 77840, USA
| | - Danielle M Karyadi
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Laboratory of Genetic Susceptibility, National Cancer Institute, National Institutes of Health, Rockville, MD, 20850, USA
| | - Andrew N Hogan
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Alex C Harris
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Brennan Decker
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Heidi G Parker
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Elaine A Ostrander
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
38
|
Heinen CA, de Vries EM, Alders M, Bikker H, Zwaveling-Soonawala N, van den Akker ELT, Bakker B, Hoorweg-Nijman G, Roelfsema F, Hennekam RC, Boelen A, van Trotsenburg ASP, Fliers E. Mutations in IRS4 are associated with central hypothyroidism. J Med Genet 2018; 55:693-700. [PMID: 30061370 PMCID: PMC6161650 DOI: 10.1136/jmedgenet-2017-105113] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 05/27/2018] [Accepted: 06/12/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND Four genetic causes of isolated congenital central hypothyroidism (CeH) have been identified, but many cases remain unexplained. We hypothesised the existence of other genetic causes of CeH with a Mendelian inheritance pattern. METHODS We performed exome sequencing in two families with unexplained isolated CeH and subsequently Sanger sequenced unrelated idiopathic CeH cases. We performed clinical and biochemical characterisation of the probands and carriers identified by family screening. We investigated IRS4 mRNA expression in human hypothalamus and pituitary tissue, and measured serum thyroid hormones and Trh and Tshb mRNA expression in hypothalamus and pituitary tissue of Irs4 knockout mice. RESULTS We found mutations in the insulin receptor substrate 4 (IRS4) gene in two pairs of brothers with CeH (one nonsense, one frameshift). Sequencing of IRS4 in 12 unrelated CeH cases negative for variants in known genes yielded three frameshift mutations (two novel) in three patients and one male sibling. All male carriers (n=8) had CeH with plasma free thyroxine concentrations below the reference interval. MRI of the hypothalamus and pituitary showed no structural abnormalities (n=12). 24-hour thyroid-stimulating hormone (TSH) secretion profiles in two adult male patients showed decreased basal, pulsatile and total TSH secretion. IRS4 mRNA was expressed in human hypothalamic nuclei, including the paraventricular nucleus, and in the pituitary gland. Female knockout mice showed decreased pituitary Tshb mRNA levels but had unchanged serum thyroid hormone concentrations. CONCLUSIONS Mutations in IRS4 are associated with isolated CeH in male carriers. As IRS4 is involved in leptin signalling, the phenotype may be related to disrupted leptin signalling.
Collapse
Affiliation(s)
- Charlotte A Heinen
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Department of Paediatric Endocrinology, Emma Children's Hospital, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Emmely M de Vries
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Mariëlle Alders
- Department of Clinical Genetics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Hennie Bikker
- Department of Clinical Genetics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Nitash Zwaveling-Soonawala
- Department of Paediatric Endocrinology, Emma Children's Hospital, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Boudewijn Bakker
- Department of Paediatrics, Reinier de Graaf Hospital, Delft, The Netherlands
| | - Gera Hoorweg-Nijman
- Department of Paediatrics, St. Antonius Hospital, Nieuwegein, The Netherlands
| | - Ferdinand Roelfsema
- Department of Endocrinology and Metabolism, Leiden University Medical Center, Leiden, The Netherlands
| | - Raoul C Hennekam
- Department of Paediatrics, Emma Children's Hospital, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Anita Boelen
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - A S Paul van Trotsenburg
- Department of Paediatric Endocrinology, Emma Children's Hospital, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Eric Fliers
- Department of Endocrinology and Metabolism, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
39
|
Verbrugge SAJ, Schönfelder M, Becker L, Yaghoob Nezhad F, Hrabě de Angelis M, Wackerhage H. Genes Whose Gain or Loss-Of-Function Increases Skeletal Muscle Mass in Mice: A Systematic Literature Review. Front Physiol 2018; 9:553. [PMID: 29910734 PMCID: PMC5992403 DOI: 10.3389/fphys.2018.00553] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 04/30/2018] [Indexed: 12/20/2022] Open
Abstract
Skeletal muscle mass differs greatly in mice and humans and this is partially inherited. To identify muscle hypertrophy candidate genes we conducted a systematic review to identify genes whose experimental loss or gain-of-function results in significant skeletal muscle hypertrophy in mice. We found 47 genes that meet our search criteria and cause muscle hypertrophy after gene manipulation. They are from high to small effect size: Ski, Fst, Acvr2b, Akt1, Mstn, Klf10, Rheb, Igf1, Pappa, Ppard, Ikbkb, Fstl3, Atgr1a, Ucn3, Mcu, Junb, Ncor1, Gprasp1, Grb10, Mmp9, Dgkz, Ppargc1a (specifically the Ppargc1a4 isoform), Smad4, Ltbp4, Bmpr1a, Crtc2, Xiap, Dgat1, Thra, Adrb2, Asb15, Cast, Eif2b5, Bdkrb2, Tpt1, Nr3c1, Nr4a1, Gnas, Pld1, Crym, Camkk1, Yap1, Inhba, Tp53inp2, Inhbb, Nol3, Esr1. Knock out, knock down, overexpression or a higher activity of these genes causes overall muscle hypertrophy as measured by an increased muscle weight or cross sectional area. The mean effect sizes range from 5 to 345% depending on the manipulated gene as well as the muscle size variable and muscle investigated. Bioinformatical analyses reveal that Asb15, Klf10, Tpt1 are most highly expressed hypertrophy genes in human skeletal muscle when compared to other tissues. Many of the muscle hypertrophy-regulating genes are involved in transcription and ubiquitination. Especially genes belonging to three signaling pathways are able to induce hypertrophy: (a) Igf1-Akt-mTOR pathway, (b) myostatin-Smad signaling, and (c) the angiotensin-bradykinin signaling pathway. The expression of several muscle hypertrophy-inducing genes and the phosphorylation of their protein products changes after human resistance and high intensity exercise, in maximally stimulated mouse muscle or in overloaded mouse plantaris.
Collapse
Affiliation(s)
- Sander A. J. Verbrugge
- Exercise Biology Group, Faculty of Sport and Health Sciences, Technical University of Munich, Munich, Germany
| | - Martin Schönfelder
- Exercise Biology Group, Faculty of Sport and Health Sciences, Technical University of Munich, Munich, Germany
| | - Lore Becker
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Fakhreddin Yaghoob Nezhad
- Exercise Biology Group, Faculty of Sport and Health Sciences, Technical University of Munich, Munich, Germany
| | - Martin Hrabě de Angelis
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Experimental Genetics, School of Life Science Weihenstephan, Technische Universität München, Freising, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Henning Wackerhage
- Exercise Biology Group, Faculty of Sport and Health Sciences, Technical University of Munich, Munich, Germany
| |
Collapse
|
40
|
Ostrander EA, Wayne RK, Freedman AH, Davis BW. Demographic history, selection and functional diversity of the canine genome. Nat Rev Genet 2017; 18:705-720. [DOI: 10.1038/nrg.2017.67] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|