1
|
Liu Z, Luo Y, Kirimunda S, Verboom M, Onabajo OO, Gouveia MH, Ogwang MD, Kerchan P, Reynolds SJ, Tenge CN, Were PA, Kuremu RT, Wekesa WN, Masalu N, Kawira E, Kinyera T, Otim I, Legason ID, Nabalende H, Dhudha H, Ayers LW, Bhatia K, Goedert JJ, Cole N, Luo W, Liu J, Manning M, Hicks B, Prokunina-Olsson L, Chagaluka G, Johnston WT, Mutalima N, Borgstein E, Liomba GN, Kamiza S, Mkandawire N, Mitambo C, Molyneux EM, Newton R, Hsing AW, Mensah JE, Adjei AA, Hutchinson A, Carrington M, Yeager M, Blasczyk R, Chanock SJ, Raychaudhuri S, Mbulaiteye SM. Human leukocyte antigen-DQA1*04:01 and rs2040406 variants are associated with elevated risk of childhood Burkitt lymphoma. Commun Biol 2024; 7:41. [PMID: 38182727 PMCID: PMC10770398 DOI: 10.1038/s42003-023-05701-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 12/12/2023] [Indexed: 01/07/2024] Open
Abstract
Burkitt lymphoma (BL) is responsible for many childhood cancers in sub-Saharan Africa, where it is linked to recurrent or chronic infection by Epstein-Barr virus or Plasmodium falciparum. However, whether human leukocyte antigen (HLA) polymorphisms, which regulate immune response, are associated with BL has not been well investigated, which limits our understanding of BL etiology. Here we investigate this association among 4,645 children aged 0-15 years, 800 with BL, enrolled in Uganda, Tanzania, Kenya, and Malawi. HLA alleles are imputed with accuracy >90% for HLA class I and 85-89% for class II alleles. BL risk is elevated with HLA-DQA1*04:01 (adjusted odds ratio [OR] = 1.61, 95% confidence interval [CI] = 1.32-1.97, P = 3.71 × 10-6), with rs2040406(G) in HLA-DQA1 region (OR = 1.43, 95% CI = 1.26-1.63, P = 4.62 × 10-8), and with amino acid Gln at position 53 versus other variants in HLA-DQA1 (OR = 1.36, P = 2.06 × 10-6). The associations with HLA-DQA1*04:01 (OR = 1.29, P = 0.03) and rs2040406(G) (OR = 1.68, P = 0.019) persist in mutually adjusted models. The higher risk rs2040406(G) variant for BL is associated with decreased HLA-DQB1 expression in eQTLs in EBV transformed lymphocytes. Our results support the role of HLA variation in the etiology of BL and suggest that a promising area of research might be understanding the link between HLA variation and EBV control.
Collapse
Affiliation(s)
- Zhiwei Liu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Yang Luo
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, UK
- Center for Data Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Rheumatology, Immunology, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Samuel Kirimunda
- College of Health Sciences, Makerere University, Kampala, Uganda
| | - Murielle Verboom
- Institute of Transfusion Medicine and Transplant Engineering, Hanover, Germany
| | - Olusegun O Onabajo
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Mateus H Gouveia
- Center for Research on Genomics & Global Health, NHGRI, National Institutes of Health, Bethesda, MD, USA
| | - Martin D Ogwang
- St. Mary's Hospital, Lacor, Gulu, Uganda
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
| | - Patrick Kerchan
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
- Kuluva Hospital, Arua, Uganda
| | - Steven J Reynolds
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Constance N Tenge
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
- Moi University College of Health Sciences, Eldoret, Kenya
| | - Pamela A Were
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
- Academic Model Providing Access To Healthcare (AMPATH), Eldoret, Kenya
| | - Robert T Kuremu
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
- Moi University College of Health Sciences, Eldoret, Kenya
| | - Walter N Wekesa
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
- Moi University College of Health Sciences, Eldoret, Kenya
| | | | - Esther Kawira
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
- Shirati Health, Education, and Development Foundation, Shirati, Tanzania
| | - Tobias Kinyera
- St. Mary's Hospital, Lacor, Gulu, Uganda
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
| | - Isaac Otim
- St. Mary's Hospital, Lacor, Gulu, Uganda
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
| | - Ismail D Legason
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
- Kuluva Hospital, Arua, Uganda
| | - Hadijah Nabalende
- St. Mary's Hospital, Lacor, Gulu, Uganda
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
| | - Herry Dhudha
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
- Shirati Health, Education, and Development Foundation, Shirati, Tanzania
| | - Leona W Ayers
- Department of Pathology, The Ohio State University, Columbus, OH, USA
| | - Kishor Bhatia
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - James J Goedert
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Nathan Cole
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Wen Luo
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Jia Liu
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Michelle Manning
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Belynda Hicks
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | | | - George Chagaluka
- Departments of Pediatrics and Surgery, Kamuzu University of Health Sciences (formerly College of Medicine), University of Malawi, Blantyre, Malawi
| | - W Thomas Johnston
- Epidemiology and Cancer Statistics Group, Department of Health Sciences, University of York, York, UK
| | - Nora Mutalima
- Epidemiology and Cancer Statistics Group, Department of Health Sciences, University of York, York, UK
- Cancer Epidemiology Unit, University of Oxford, Oxford, UK
| | - Eric Borgstein
- Departments of Pediatrics and Surgery, Kamuzu University of Health Sciences (formerly College of Medicine), University of Malawi, Blantyre, Malawi
| | - George N Liomba
- Departments of Pediatrics and Surgery, Kamuzu University of Health Sciences (formerly College of Medicine), University of Malawi, Blantyre, Malawi
| | - Steve Kamiza
- Departments of Pediatrics and Surgery, Kamuzu University of Health Sciences (formerly College of Medicine), University of Malawi, Blantyre, Malawi
| | - Nyengo Mkandawire
- Departments of Pediatrics and Surgery, Kamuzu University of Health Sciences (formerly College of Medicine), University of Malawi, Blantyre, Malawi
| | - Collins Mitambo
- National Health Sciences Research Committee, Research Department, Ministry of Health, Lilongwe, Malawi
| | - Elizabeth M Molyneux
- Departments of Pediatrics and Surgery, Kamuzu University of Health Sciences (formerly College of Medicine), University of Malawi, Blantyre, Malawi
| | - Robert Newton
- Epidemiology and Cancer Statistics Group, Department of Health Sciences, University of York, York, UK
| | - Ann W Hsing
- Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | | | | | - Amy Hutchinson
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Mary Carrington
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, USA and Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Meredith Yeager
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Rainer Blasczyk
- Institute of Transfusion Medicine and Transplant Engineering, Hanover, Germany
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Soumya Raychaudhuri
- Center for Data Sciences, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Rheumatology, Immunology, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sam M Mbulaiteye
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA.
| |
Collapse
|
2
|
Hong HG, Gouveia MH, Ogwang MD, Kerchan P, Reynolds SJ, Tenge CN, Were PA, Kuremu RT, Wekesa WN, Masalu N, Kawira E, Kinyera T, Wang X, Zhou J, Leal TP, Otim I, Legason ID, Nabalende H, Dhudha H, Mumia M, Baker FS, Okusolubo T, Ayers LW, Bhatia K, Goedert JJ, Woo J, Manning M, Cole N, Luo W, Hicks B, Chagaluka G, Johnston WT, Mutalima N, Borgstein E, Liomba GN, Kamiza S, Mkandawire N, Mitambo C, Molyneux EM, Newton R, Hutchinson A, Yeager M, Adeyemo AA, Thein SL, Rotimi CN, Chanock SJ, Prokunina-Olsson L, Mbulaiteye SM. Sickle cell allele HBB-rs334(T) is associated with decreased risk of childhood Burkitt lymphoma in East Africa. Am J Hematol 2024; 99:113-123. [PMID: 38009642 PMCID: PMC10872868 DOI: 10.1002/ajh.27149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/30/2023] [Accepted: 10/23/2023] [Indexed: 11/29/2023]
Abstract
Burkitt lymphoma (BL) is an aggressive B-cell lymphoma that significantly contributes to childhood cancer burden in sub-Saharan Africa. Plasmodium falciparum, which causes malaria, is geographically associated with BL, but the evidence remains insufficient for causal inference. Inference could be strengthened by demonstrating that mendelian genes known to protect against malaria-such as the sickle cell trait variant, HBB-rs334(T)-also protect against BL. We investigated this hypothesis among 800 BL cases and 3845 controls in four East African countries using genome-scan data to detect polymorphisms in 22 genes known to affect malaria risk. We fit generalized linear mixed models to estimate odds ratios (OR) and 95% confidence intervals (95% CI), controlling for age, sex, country, and ancestry. The ORs of the loci with BL and P. falciparum infection among controls were correlated (Spearman's ρ = 0.37, p = .039). HBB-rs334(T) was associated with lower P. falciparum infection risk among controls (OR = 0.752, 95% CI 0.628-0.9; p = .00189) and BL risk (OR = 0.687, 95% CI 0.533-0.885; p = .0037). ABO-rs8176703(T) was associated with decreased risk of BL (OR = 0.591, 95% CI 0.379-0.992; p = .00271), but not of P. falciparum infection. Our results increase support for the etiological correlation between P. falciparum and BL risk.
Collapse
Affiliation(s)
- Hyokyoung G. Hong
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, USA
| | - Mateus H. Gouveia
- Center for Research on Genomics & Global Health, NHGRI, National Institutes of Health, Bethesda, MD, USA
| | - Martin D. Ogwang
- EMBLEM Study, St. Mary’s Hospital, Lacor, Gulu, Uganda
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
| | - Patrick Kerchan
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
- EMBLEM Study, Kuluva Hospital, Arua, Uganda
| | - Steven J. Reynolds
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - Pamela A. Were
- EMBLEM Study, Academic Model Providing Access To Healthcare (AMPATH), Eldoret, Kenya
| | - Robert T. Kuremu
- EMBLEM Study, Moi University College of Health Sciences, Eldoret, Kenya
| | - Walter N. Wekesa
- EMBLEM Study, Moi University College of Health Sciences, Eldoret, Kenya
| | | | - Esther Kawira
- EMBLEM Study, Shirati Health, Education, and Development Foundation, Shirati, Tanzania
| | - Tobias Kinyera
- EMBLEM Study, St. Mary’s Hospital, Lacor, Gulu, Uganda
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
| | - Xunde Wang
- Sickle Cell Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USAs
| | - Jiefu Zhou
- Department of Statistics and Probability, Michigan State University, MI, USA
| | - Thiago Peixoto Leal
- Lerner Research Institute, Genomic Medicine, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Isaac Otim
- EMBLEM Study, St. Mary’s Hospital, Lacor, Gulu, Uganda
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
| | - Ismail D. Legason
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
- EMBLEM Study, Kuluva Hospital, Arua, Uganda
| | - Hadijah Nabalende
- EMBLEM Study, St. Mary’s Hospital, Lacor, Gulu, Uganda
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
| | - Herry Dhudha
- EMBLEM Study, Bugando Medical Center, Mwanza, Tanzania
| | - Mediatrix Mumia
- EMBLEM Study, Academic Model Providing Access To Healthcare (AMPATH), Eldoret, Kenya
| | - Francine S. Baker
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, USA
| | - Temiloluwa Okusolubo
- Sickle Cell Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USAs
| | - Leona W. Ayers
- Department of Pathology, The Ohio State University, Columbus, OH, USA
| | - Kishor Bhatia
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, USA
| | - James J Goedert
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, USA
| | - Joshua Woo
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, USA
| | - Michelle Manning
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Nathan Cole
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Wen Luo
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Belynda Hicks
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - George Chagaluka
- Departments of Pediatrics and Surgery, College of Medicine, University of Malawi, Blantyre, Malawi
| | - W Thomas Johnston
- Epidemiology and Cancer Statistics Group, Department of Health Sciences, University of York, York, UK
| | - Nora Mutalima
- Epidemiology and Cancer Statistics Group, Department of Health Sciences, University of York, York, UK
- Cancer Epidemiology Unit, University of Oxford, Oxford, UK
| | - Eric Borgstein
- Departments of Pediatrics and Surgery, College of Medicine, University of Malawi, Blantyre, Malawi
| | - George N. Liomba
- Departments of Pediatrics and Surgery, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Steve Kamiza
- Departments of Pediatrics and Surgery, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Nyengo Mkandawire
- Departments of Pediatrics and Surgery, College of Medicine, University of Malawi, Blantyre, Malawi
| | | | - Elizabeth M. Molyneux
- Departments of Pediatrics and Surgery, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Robert Newton
- Epidemiology and Cancer Statistics Group, Department of Health Sciences, University of York, York, UK
| | - Amy Hutchinson
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Meredith Yeager
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Adebowale A. Adeyemo
- Center for Research on Genomics & Global Health, NHGRI, National Institutes of Health, Bethesda, MD, USA
| | - Swee Lay Thein
- Sickle Cell Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USAs
| | - Charles N. Rotimi
- Center for Research on Genomics & Global Health, NHGRI, National Institutes of Health, Bethesda, MD, USA
| | - Stephen J. Chanock
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, USA
| | - Ludmila Prokunina-Olsson
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, USA
| | - Sam M. Mbulaiteye
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, USA
| |
Collapse
|
3
|
Zhou W, Fischer A, Ogwang MD, Luo W, Kerchan P, Reynolds SJ, Tenge CN, Were PA, Kuremu RT, Wekesa WN, Masalu N, Kawira E, Kinyera T, Otim I, Legason ID, Nabalende H, Ayers LW, Bhatia K, Goedert JJ, Gouveia MH, Cole N, Hicks B, Jones K, Hummel M, Schlesner M, Chagaluka G, Mutalima N, Borgstein E, Liomba GN, Kamiza S, Mkandawire N, Mitambo C, Molyneux EM, Newton R, Glaser S, Kretzmer H, Manning M, Hutchinson A, Hsing AW, Tettey Y, Adjei AA, Chanock SJ, Siebert R, Yeager M, Prokunina-Olsson L, Machiela MJ, Mbulaiteye SM. Mosaic chromosomal alterations in peripheral blood leukocytes of children in sub-Saharan Africa. Nat Commun 2023; 14:8081. [PMID: 38057307 PMCID: PMC10700489 DOI: 10.1038/s41467-023-43881-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 11/22/2023] [Indexed: 12/08/2023] Open
Abstract
In high-income countries, mosaic chromosomal alterations in peripheral blood leukocytes are associated with an elevated risk of adverse health outcomes, including hematologic malignancies. We investigate mosaic chromosomal alterations in sub-Saharan Africa among 931 children with Burkitt lymphoma, an aggressive lymphoma commonly characterized by immunoglobulin-MYC chromosomal rearrangements, 3822 Burkitt lymphoma-free children, and 674 cancer-free men from Ghana. We find autosomal and X chromosome mosaic chromosomal alterations in 3.4% and 1.7% of Burkitt lymphoma-free children, and 8.4% and 3.7% of children with Burkitt lymphoma (P-values = 5.7×10-11 and 3.74×10-2, respectively). Autosomal mosaic chromosomal alterations are detected in 14.0% of Ghanaian men and increase with age. Mosaic chromosomal alterations in Burkitt lymphoma cases include gains on chromosomes 1q and 8, the latter spanning MYC, while mosaic chromosomal alterations in Burkitt lymphoma-free children include copy-neutral loss of heterozygosity on chromosomes 10, 14, and 16. Our results highlight mosaic chromosomal alterations in sub-Saharan African populations as a promising area of research.
Collapse
Affiliation(s)
- Weiyin Zhou
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Anja Fischer
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | | | - Wen Luo
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | | | - Steven J Reynolds
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Constance N Tenge
- EMBLEM Study, Moi University College of Health Sciences, Eldoret, Kenya
| | - Pamela A Were
- EMBLEM Study, Academic Model Providing Access To Healthcare (AMPATH), Eldoret, Kenya
| | - Robert T Kuremu
- EMBLEM Study, Moi University College of Health Sciences, Eldoret, Kenya
| | - Walter N Wekesa
- EMBLEM Study, Moi University College of Health Sciences, Eldoret, Kenya
| | | | - Esther Kawira
- EMBLEM Study, Shirati Health, Education, and Development Foundation, Shirati, Tanzania
| | - Tobias Kinyera
- EMBLEM Study, St. Mary's Hospital, Lacor, Gulu, Uganda
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
| | - Isaac Otim
- EMBLEM Study, St. Mary's Hospital, Lacor, Gulu, Uganda
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
| | - Ismail D Legason
- EMBLEM Study, Kuluva Hospital, Arua, Uganda
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
| | - Hadijah Nabalende
- EMBLEM Study, St. Mary's Hospital, Lacor, Gulu, Uganda
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
| | - Leona W Ayers
- Department of Pathology, The Ohio State University, Columbus, OH, USA
| | - Kishor Bhatia
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, USA
| | - James J Goedert
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, USA
| | - Mateus H Gouveia
- Center for Research on Genomics & Global Health, NHGRI, National Institutes of Health, Bethesda, MD, USA
| | - Nathan Cole
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Belynda Hicks
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Kristine Jones
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Michael Hummel
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Berlin, Germany
- Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Pathology, D-10117, Berlin, Germany
| | - Mathias Schlesner
- Biomedical Informatics, Data Mining and Data Analytics, University of Augsburg, Augsburg, Germany
| | - George Chagaluka
- Departments of Pediatrics and Surgery, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Nora Mutalima
- Epidemiology and Cancer Statistics Group, Department of Health Sciences, University of York, York, UK
- Cancer Epidemiology Unit, University of Oxford, Oxford, UK
| | - Eric Borgstein
- Departments of Pediatrics and Surgery, College of Medicine, University of Malawi, Blantyre, Malawi
| | - George N Liomba
- Departments of Pediatrics and Surgery, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Steve Kamiza
- Departments of Pediatrics and Surgery, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Nyengo Mkandawire
- Departments of Pediatrics and Surgery, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Collins Mitambo
- Research Department, Ministry of Health, P.O. Box 30377, Lilongwe 3, Malawi
| | - Elizabeth M Molyneux
- Departments of Pediatrics and Surgery, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Robert Newton
- Epidemiology and Cancer Statistics Group, Department of Health Sciences, University of York, York, UK
| | - Selina Glaser
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Helene Kretzmer
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Michelle Manning
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Amy Hutchinson
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Ann W Hsing
- Stanford Cancer Institute, Stanford University, Stanford, Palo Alto, CA, USA
| | - Yao Tettey
- Department of Pathology, University of Ghana Medical School, College of Health Sciences, P.O. Box KB 52, Korle-Bu, Accra, Ghana
| | - Andrew A Adjei
- Department of Pathology, University of Ghana Medical School, College of Health Sciences, P.O. Box KB 52, Korle-Bu, Accra, Ghana
| | - Stephen J Chanock
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Meredith Yeager
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, USA
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Ludmila Prokunina-Olsson
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, USA
| | - Mitchell J Machiela
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, USA
| | - Sam M Mbulaiteye
- Division of Cancer Epidemiology & Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, USA.
| |
Collapse
|
4
|
Gouveia MH, Bentley AR, Leal TP, Tarazona-Santos E, Bustamante CD, Adeyemo AA, Rotimi CN, Shriner D. Unappreciated subcontinental admixture in Europeans and European Americans and implications for genetic epidemiology studies. Nat Commun 2023; 14:6802. [PMID: 37935687 PMCID: PMC10630423 DOI: 10.1038/s41467-023-42491-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 10/12/2023] [Indexed: 11/09/2023] Open
Abstract
European-ancestry populations are recognized as stratified but not as admixed, implying that residual confounding by locus-specific ancestry can affect studies of association, polygenic adaptation, and polygenic risk scores. We integrate individual-level genome-wide data from ~19,000 European-ancestry individuals across 79 European populations and five European American cohorts. We generate a new reference panel that captures ancestral diversity missed by both the 1000 Genomes and Human Genome Diversity Projects. Both Europeans and European Americans are admixed at the subcontinental level, with admixture dates differing among subgroups of European Americans. After adjustment for both genome-wide and locus-specific ancestry, associations between a highly differentiated variant in LCT (rs4988235) and height or LDL-cholesterol were confirmed to be false positives whereas the association between LCT and body mass index was genuine. We provide formal evidence of subcontinental admixture in individuals with European ancestry, which, if not properly accounted for, can produce spurious results in genetic epidemiology studies.
Collapse
Affiliation(s)
- Mateus H Gouveia
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Amy R Bentley
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Thiago P Leal
- Department of Genomic Medicine, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44197, USA
| | - Eduardo Tarazona-Santos
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 31270-910, Brazil
| | - Carlos D Bustamante
- Center for Computational, Evolutionary and Human Genomics (CEHG), Stanford University, Stanford, CA, 94305, USA
| | - Adebowale A Adeyemo
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Charles N Rotimi
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Daniel Shriner
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
5
|
Bird N, Ormond L, Awah P, Caldwell EF, Connell B, Elamin M, Fadlelmola FM, Matthew Fomine FL, López S, MacEachern S, Moñino Y, Morris S, Näsänen-Gilmore P, Nketsia V NK, Veeramah K, Weale ME, Zeitlyn D, Thomas MG, Bradman N, Hellenthal G. Dense sampling of ethnic groups within African countries reveals fine-scale genetic structure and extensive historical admixture. SCIENCE ADVANCES 2023; 9:eabq2616. [PMID: 36989356 PMCID: PMC10058250 DOI: 10.1126/sciadv.abq2616] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 02/27/2023] [Indexed: 06/19/2023]
Abstract
Previous studies have highlighted how African genomes have been shaped by a complex series of historical events. Despite this, genome-wide data have only been obtained from a small proportion of present-day ethnolinguistic groups. By analyzing new autosomal genetic variation data of 1333 individuals from over 150 ethnic groups from Cameroon, Republic of the Congo, Ghana, Nigeria, and Sudan, we demonstrate a previously underappreciated fine-scale level of genetic structure within these countries, for example, correlating with historical polities in western Cameroon. By comparing genetic variation patterns among populations, we infer that many northern Cameroonian and Sudanese groups share genetic links with multiple geographically disparate populations, likely resulting from long-distance migrations. In Ghana and Nigeria, we infer signatures of intermixing dated to over 2000 years ago, corresponding to reports of environmental transformations possibly related to climate change. We also infer recent intermixing signals in multiple African populations, including Congolese, that likely relate to the expansions of Bantu language-speaking peoples.
Collapse
Affiliation(s)
- Nancy Bird
- Department of Genetics, Evolution and Environment, University College London Genetics Institute (UGI), University College London, London, UK
| | - Louise Ormond
- Department of Genetics, Evolution and Environment, University College London Genetics Institute (UGI), University College London, London, UK
| | - Paschal Awah
- Faculty of Arts, Letters and Social Sciences, University of Yaoundé I, Yaoundé, Cameroon
| | | | - Bruce Connell
- Linguistics and Language Studies Program, York University, Toronto, Ontario, Canada
| | | | - Faisal M. Fadlelmola
- Kush Centre for Genomics and Biomedical Informatics, Biotechnology Perspectives Organisation, Khartoum, Sudan
| | | | | | - Scott MacEachern
- Division of Social Science, Duke Kunshan University, Kunshan, China
| | | | - Sam Morris
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Pieta Näsänen-Gilmore
- Tampere Centre for Child, Adolescent and Maternal Health Research: Global Health Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department for Health Promotion, Finnish Institute for Health and Welfare, Helsinki, Finland
| | | | - Krishna Veeramah
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, USA
| | | | - David Zeitlyn
- School of Anthropology and Museum Ethnography, University of Oxford, Oxford, UK
| | - Mark G. Thomas
- Department of Genetics, Evolution and Environment, University College London Genetics Institute (UGI), University College London, London, UK
| | | | - Garrett Hellenthal
- Department of Genetics, Evolution and Environment, University College London Genetics Institute (UGI), University College London, London, UK
| |
Collapse
|
6
|
Joof F, Hartmann E, Jarvis A, Colley A, Cross JH, Avril M, Prentice AM, Cerami C. Genetic variations in human ATP2B4 gene alter Plasmodium falciparum in vitro growth in RBCs from Gambian adults. Malar J 2023; 22:5. [PMID: 36604655 PMCID: PMC9817369 DOI: 10.1186/s12936-022-04359-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 11/03/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Polymorphisms in ATP2B4 coding for PMCA4b, the primary regulator of erythrocyte calcium concentration, have been shown by GWAS and cross-sectional studies to protect against severe malaria but the mechanism remains unknown. METHODS Using a recall-by-genotype design, we investigated the impact of a common haplotype variant in ATP2B4 using in vitro assays that model erythrocyte stage malaria pathogenesis. Ninety-six donors representing homozygote (carriers of the minor allele, C/C), heterozygote (T/C) and wildtype (T/T) carriers of the tagging SNP rs1541252 were selected from a cohort of over 12,000 participants in the Keneba Biobank. RESULTS Red blood cells (RBCs) from homozygotes showed reduced PMCA4b protein expression (mean fluorescence intensities (MFI = 2428 ± 124, 3544 ± 159 and 4261 ± 283], for homozygotes, heterozygotes and wildtypes respectively, p < 0.0001) and slower rates of calcium expulsion (calcium t½ ± SD = 4.7 ± 0.5, 1.8 ± 0.3 and 1.9 ± 0.4 min, p < 0.0001). Growth of a Plasmodium falciparum laboratory strain (FCR3) and two Gambian field isolates was decreased in RBCs from homozygotes compared to heterozygotes and wildtypes (p < 0.01). Genotype group did not affect parasite adhesion in vitro or var-gene expression in malaria-infected RBCs. Parasite growth was inhibited by a known inhibitor of PMCA4b, aurintricarboxylic acid (IC50 = 122uM CI: 110-134) confirming its sensitivity to calcium channel blockade. CONCLUSION The data support the hypothesis that this ATP2B4 genotype, common in The Gambia and other malaria-endemic areas, protects against severe malaria through the suppression of parasitaemia during an infection. Reduction in parasite density plays a pivotal role in disease outcome by minimizing all aspects of malaria pathogenesis. Follow up studies are needed to further elucidate the mechanism of protection and to determine if this ATP2B4 genotype carries a fitness cost or increases susceptibility to other human disease.
Collapse
Affiliation(s)
- Fatou Joof
- Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | | | | | - Alhassan Colley
- Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - James H Cross
- Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | | | - Andrew M Prentice
- Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Carla Cerami
- Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, Banjul, The Gambia.
| |
Collapse
|
7
|
Bezerra OCDL, Alvarado-Arnez LE, Mabunda N, Salomé G, de Sousa A, Kehdy FDSG, Sales-Marques C, Manta FSDN, Andrade RM, Ferreira LP, Leal-Calvo T, Cardoso CC, Nunes K, Gouveia MH, Mbulaiteve SM, Yeboah ED, Hsing A, Latini ACP, Leturiondo AL, Rodrigues FDC, Noronha AB, Ferreira CDO, Talhari C, Rêgo JL, Castellucci LCDC, Tarazona-Santos E, de Carvalho EF, Meyer D, Pinheiro RO, Jani IV, Pacheco AG, Moraes MO. Putative pathogen-selected polymorphisms in the PKLR gene are associated with mycobacterial susceptibility in Brazilian and African populations. PLoS Negl Trop Dis 2021; 15:e0009434. [PMID: 34449765 PMCID: PMC8396769 DOI: 10.1371/journal.pntd.0009434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 05/03/2021] [Indexed: 01/19/2023] Open
Abstract
Pyruvate kinase (PK), encoded by the PKLR gene, is a key player in glycolysis controlling the integrity of erythrocytes. Due to Plasmodium selection, mutations for PK deficiency, which leads to hemolytic anemia, are associated with resistance to malaria in sub-Saharan Africa and with susceptibility to intracellular pathogens in experimental models. In this case-control study, we enrolled 4,555 individuals and investigated whether PKLR single nucleotide polymorphisms (SNPs) putatively selected for malaria resistance are associated with susceptibility to leprosy across Brazil (Manaus-North; Salvador-Northeast; Rondonópolis-Midwest and Rio de Janeiro-Southeast) and with tuberculosis in Mozambique. Haplotype T/G/G (rs1052176/rs4971072/rs11264359) was associated with leprosy susceptibility in Rio de Janeiro (OR = 2.46, p = 0.00001) and Salvador (OR = 1.57, p = 0.04), and with tuberculosis in Mozambique (OR = 1.52, p = 0.07). This haplotype downregulates PKLR expression in nerve and skin, accordingly to GTEx, and might subtly modulate ferritin and haptoglobin levels in serum. Furthermore, we observed genetic signatures of positive selection in the HCN3 gene (xpEHH>2 -recent selection) in Europe but not in Africa, involving 6 SNPs which are PKLR/HCN3 eQTLs. However, this evidence was not corroborated by the other tests (FST, Tajima's D and iHS). Altogether, we provide evidence that a common PKLR locus in Africans contribute to mycobacterial susceptibility in African descent populations and also highlight, for first, PKLR as a susceptibility gene for leprosy and TB.
Collapse
Affiliation(s)
| | - Lucia Elena Alvarado-Arnez
- Laboratory of Leprosy, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
- National Research Coordination, Franz Tamayo University (UNIFRAZ), Cochabamba, Bolivia
| | - Nédio Mabunda
- Laboratory of Molecular Virology, Instituto Nacional de Saúde, Maputo, Mozambique
| | - Graça Salomé
- Medical Faculty, Eduardo Mondlane University, Maputo, Mozambique
| | - Amina de Sousa
- Laboratory of Molecular Virology, Instituto Nacional de Saúde, Maputo, Mozambique
| | | | - Carolinne Sales-Marques
- Laboratory of Leprosy, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
- Laboratory of Cellular Biology and Genetics, Federal University of Alagoas, Arapiraca, Brazil
| | | | | | | | - Thyago Leal-Calvo
- Laboratory of Leprosy, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
| | - Cynthia Chester Cardoso
- Laboratory of Leprosy, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
- Laboratory of Molecular Virology, Department of Genetics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Kelly Nunes
- Laboratory of Evolutionary Genetics and Biology, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | - Mateus H. Gouveia
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sam M. Mbulaiteve
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | | | - Ann Hsing
- Stanford Cancer Institute, Stanford University, Stanford, California, United States of America
| | | | | | | | | | | | - Carolina Talhari
- Laboratory of Molecular Biology, Alfredo da Matta Foundation, Manaus, Brazil
| | - Jamile Leão Rêgo
- Immunology Service, Professor Edgard Santos University Hospital, Federal University of Bahia, Salvador, Brazil
| | | | - Eduardo Tarazona-Santos
- Departament of Biology, Institute of Biological Sciences, Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | | | - Diogo Meyer
- Laboratory of Evolutionary Genetics and Biology, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | | | - Ilesh V. Jani
- Laboratory of Molecular Virology, Instituto Nacional de Saúde, Maputo, Mozambique
| | | | | |
Collapse
|
8
|
Mózner O, Zámbó B, Sarkadi B. Modulation of the Human Erythroid Plasma Membrane Calcium Pump (PMCA4b) Expression by Polymorphic Genetic Variants. MEMBRANES 2021; 11:membranes11080586. [PMID: 34436349 PMCID: PMC8401972 DOI: 10.3390/membranes11080586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 01/10/2023]
Abstract
In the human ATP2B4 gene, coding for the plasma membrane calcium pump PMCA4b, a minor haplotype results in the decreased expression of this membrane protein in erythroid cells. The presence of this haplotype and the consequently reduced PMCA4b expression have been suggested to affect red blood cell hydration and malaria susceptibility. By using dual-luciferase reporter assays, we have localized the erythroid-specific regulatory region within the haplotype of the ATP2B4 gene, containing predicted GATA1 binding sites that are affected by SNPs in the minor haplotype. Our results show that, in human erythroid cells, the regulation of ATP2B4 gene expression is significantly affected by GATA1 expression, and we document the role of specific SNPs involved in predicted GATA1 binding. Our findings provide a mechanistic explanation at the molecular level for the reduced erythroid-specific PMCA4b expression in carriers of ATP2B4 gene polymorphic variants.
Collapse
Affiliation(s)
- Orsolya Mózner
- Research Centre for Natural Sciences, Institute of Enzymology, ELKH, 1117 Budapest, Hungary; (O.M.); (B.Z.)
- Doctoral School of Molecular Medicine, Semmelweis University, 1094 Budapest, Hungary
| | - Boglárka Zámbó
- Research Centre for Natural Sciences, Institute of Enzymology, ELKH, 1117 Budapest, Hungary; (O.M.); (B.Z.)
| | - Balázs Sarkadi
- Research Centre for Natural Sciences, Institute of Enzymology, ELKH, 1117 Budapest, Hungary; (O.M.); (B.Z.)
- Department of Biophysics and Radiation Biology, Semmelweis University, 1094 Budapest, Hungary
- Correspondence:
| |
Collapse
|
9
|
Tennessen JA, Duraisingh MT. Three Signatures of Adaptive Polymorphism Exemplified by Malaria-Associated Genes. Mol Biol Evol 2021; 38:1356-1371. [PMID: 33185667 PMCID: PMC8042748 DOI: 10.1093/molbev/msaa294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Malaria has been one of the strongest selective pressures on our species. Many of the best-characterized cases of adaptive evolution in humans are in genes tied to malaria resistance. However, the complex evolutionary patterns at these genes are poorly captured by standard scans for nonneutral evolution. Here, we present three new statistical tests for selection based on population genetic patterns that are observed more than once among key malaria resistance loci. We assess these tests using forward-time evolutionary simulations and apply them to global whole-genome sequencing data from humans, and thus we show that they are effective at distinguishing selection from neutrality. Each test captures a distinct evolutionary pattern, here called Divergent Haplotypes, Repeated Shifts, and Arrested Sweeps, associated with a particular period of human prehistory. We clarify the selective signatures at known malaria-relevant genes and identify additional genes showing similar adaptive evolutionary patterns. Among our top outliers, we see a particular enrichment for genes involved in erythropoiesis and for genes previously associated with malaria resistance, consistent with a major role for malaria in shaping these patterns of genetic diversity. Polymorphisms at these genes are likely to impact resistance to malaria infection and contribute to ongoing host-parasite coevolutionary dynamics.
Collapse
|
10
|
Gouveia MH, Otim I, Ogwang MD, Wang M, Zhu B, Cole N, Luo W, Hicks B, Jones K, Oehl-Huber K, Ayers LW, Pittaluga S, Legason ID, Nabalende H, Kerchan P, Kinyera T, Kawira E, Brubaker G, Levin AG, Guertler L, Kim J, Stewart DR, Adde M, Magrath I, Bergen AW, Reynolds SJ, Yeager M, Bhatia K, Adeyemo AA, Prokunina-Olsson L, Dean M, Shriner D, Rotimi CN, Chanock S, Siebert R, Mbulaiteye SM. Endemic Burkitt Lymphoma in second-degree relatives in Northern Uganda: in-depth genome-wide analysis suggests clues about genetic susceptibility. Leukemia 2021; 35:1209-1213. [PMID: 33051549 PMCID: PMC8024190 DOI: 10.1038/s41375-020-01052-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/11/2020] [Accepted: 09/29/2020] [Indexed: 11/09/2022]
Affiliation(s)
- Mateus H Gouveia
- Center for Research on Genomics & Global Health, NHGRI, National Institutes of Health, Bethesda, MD, USA
| | - Isaac Otim
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
| | | | - Mingyi Wang
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Bin Zhu
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Nathan Cole
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Wen Luo
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Belynda Hicks
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Kristine Jones
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Kathrin Oehl-Huber
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Leona W Ayers
- Department of Pathology, The Ohio State University, Columbus, OH, USA
| | - Stefania Pittaluga
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | - Tobias Kinyera
- EMBLEM Study, African Field Epidemiology Network, Kampala, Uganda
| | - Esther Kawira
- EMBLEM Study, Shirati Health, Education, and Development Foundation, Shirati, Tanzania
| | - Glen Brubaker
- Inter-Church Medical Assistance Mission, Baltimore, MD, USA
| | - Arthur G Levin
- EMBLEM Study, Shirati Health, Education, and Development Foundation, Shirati, Tanzania
| | - Lutz Guertler
- Max von Pettenkofer Institute, LMU University of München, München, Germany
| | - Jung Kim
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, USA
| | - Douglas R Stewart
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, USA
| | - Melissa Adde
- International Network for Cancer Treatment, Brussels, Belgium
| | - Ian Magrath
- International Network for Cancer Treatment, Brussels, Belgium
| | - Andrew W Bergen
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, USA
| | - Steven J Reynolds
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, USA
| | - Meredith Yeager
- Cancer Genomics Research Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Kishor Bhatia
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, USA
| | - Adebowale A Adeyemo
- Center for Research on Genomics & Global Health, NHGRI, National Institutes of Health, Bethesda, MD, USA
| | - Ludmila Prokunina-Olsson
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, USA
| | - Michael Dean
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, USA
| | - Daniel Shriner
- Center for Research on Genomics & Global Health, NHGRI, National Institutes of Health, Bethesda, MD, USA
| | - Charles N Rotimi
- Center for Research on Genomics & Global Health, NHGRI, National Institutes of Health, Bethesda, MD, USA
| | - Stephen Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, USA
| | - Reiner Siebert
- Institute of Human Genetics, Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Sam M Mbulaiteye
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, USA.
| |
Collapse
|
11
|
Rotimi SO, Rotimi OA, Salhia B. A Review of Cancer Genetics and Genomics Studies in Africa. Front Oncol 2021; 10:606400. [PMID: 33659210 PMCID: PMC7917259 DOI: 10.3389/fonc.2020.606400] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/14/2020] [Indexed: 12/24/2022] Open
Abstract
Cancer is the second leading cause of death globally and is projected to overtake infectious disease as the leading cause of mortality in Africa within the next two decades. Cancer is a group of genomic diseases that presents with intra- and inter-population unique phenotypes, with Black populations having the burden of morbidity and mortality for most types. At large, the prevention and treatment of cancers have been propelled by the understanding of the genetic make-up of the disease of mostly non-African populations. By the same token, there is a wide knowledge gap in understanding the underlying genetic causes of, and genomic alterations associated with, cancer among black Africans. Accordingly, we performed a review of the literature to survey existing studies on cancer genetics/genomics and curated findings pertaining to publications across multiple cancer types conducted on African populations. We used PubMed MeSH terms to retrieve the relevant publications from 1990 to December 2019. The metadata of these publications were extracted using R text mining packages: RISmed and Pubmed.mineR. The data showed that only 0.329% of cancer publications globally were on Africa, and only 0.016% were on cancer genetics/genomics from Africa. Although the most prevalent cancers in Africa are cancers of the breast, cervix, uterus, and prostate, publications representing breast, colorectal, liver, and blood cancers were the most frequent in our review. The most frequently reported cancer genes were BRCA1, BRCA2, and TP53. Next, the genes reported in the reviewed publications’ abstracts were extracted and annotated into three gene ontology classes. Genes in the cellular component class were mostly associated with cell part and organelle part, while those in biological process and molecular function classes were mainly associated with cell process, biological regulation, and binding, and catalytic activity, respectively. Overall, this review highlights the paucity of research on cancer genomics on African populations, identified gaps, and discussed the need for concerted efforts to encourage more research on cancer genomics in Africa.
Collapse
Affiliation(s)
- Solomon O Rotimi
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.,Department of Biochemistry, Covenant University, Ota, Nigeria
| | - Oluwakemi A Rotimi
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.,Department of Biochemistry, Covenant University, Ota, Nigeria
| | - Bodour Salhia
- Department of Translational Genomics, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.,Norris Comprehensive Cancer Centre, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
12
|
Davies K, Barth M, Armenian S, Audino AN, Barnette P, Cuglievan B, Ding H, Ford JB, Galardy PJ, Gardner R, Hanna R, Hayashi R, Kovach AE, Machnitz AJ, Maloney KW, Marks L, Page K, Reilly AF, Weinstein JL, Xavier AC, McMillian NR, Freedman-Cass DA. Pediatric Aggressive Mature B-Cell Lymphomas, Version 2.2020, NCCN Clinical Practice Guidelines in Oncology. J Natl Compr Canc Netw 2020; 18:1105-1123. [PMID: 32755986 DOI: 10.6004/jnccn.2020.0036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Pediatric aggressive mature B-cell lymphomas are the most common types of non-Hodgkin lymphoma in children, and they include Burkitt lymphoma (BL) and diffuse large B-cell lymphoma (DLBCL). These diseases are highly aggressive but curable, the treatment is complex, and patients may have many complicated supportive care issues. The NCCN Guidelines for Pediatric Aggressive Mature B-Cell Lymphomas provide guidance regarding pathology and diagnosis, staging, initial treatment, disease reassessment, surveillance, therapy for relapsed/refractory disease, and supportive care for clinicians who treat sporadic pediatric BL and DLBCL.
Collapse
Affiliation(s)
- Kimberly Davies
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center
| | | | | | - Anthony N Audino
- The Ohio State University Comprehensive Cancer Center - James Cancer Hospital and Solove Research Institute
| | | | | | - Hilda Ding
- UCSD Rady Children's Hospital/UC San Diego Moores Cancer Center
| | | | | | - Rebecca Gardner
- Fred Hutchinson Cancer Research Center/Seattle Cancer Care Alliance
| | - Rabi Hanna
- Case Comprehensive Cancer Center/University Hospitals Seidman Cancer Center and Cleveland Clinic Taussig Cancer Institute
| | - Robert Hayashi
- Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine
| | | | | | - Kelly W Maloney
- Children's Hospital of Colorado/University of Colorado Cancer Center
| | | | | | - Anne F Reilly
- Abramson Cancer Center at the University of Pennsylvania
| | | | - Ana C Xavier
- Children's of Alabama/O'Neal Comprehensive Cancer Center at UAB; and
| | | | | |
Collapse
|
13
|
Jallow MW, Cerami C, Clark TG, Prentice AM, Campino S. Differences in the frequency of genetic variants associated with iron imbalance among global populations. PLoS One 2020; 15:e0235141. [PMID: 32609760 PMCID: PMC7329092 DOI: 10.1371/journal.pone.0235141] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 06/09/2020] [Indexed: 02/08/2023] Open
Abstract
Iron deficiency anaemia is a major health problem affecting approximately 1.2 billion people worldwide. Young children, women of reproductive age and pregnant women living in sub-Saharan Africa are the most vulnerable. It is estimated that iron deficiency accounts for half of anaemia cases. Apart from nutritional deficiency, infection, inflammation and genetic factors are the major drivers of anaemia. However, the role of genetic risk factors has not been thoroughly investigated. This is particularly relevant in African populations, as they carry high genetic diversity and have a high prevalence of anaemia. Multiple genetic variations in iron regulatory genes have been linked to impaired iron status. Here we conducted a literature review to identify genetic variants associated with iron imbalance among global populations. We compare their allele frequencies and risk scores and we investigated population-specific selection among populations of varying geographic origin using data from the Keneba Biobank representing individuals in rural Gambia and the 1000 Genomes Project. We identified a significant lack of data on the genetic determinants of iron status in sub-Saharan Africa. Most of the studies on genetic determinants of iron status have been conducted in Europeans. Also, we identified population differences in allele frequencies in candidate putative genetic risk factors. Given the disproportionately high genetic diversity in African populations coupled with their high prevalence of iron deficiency, there is need to investigate the genetic influences of low iron status in Sub-Saharan Africa. The resulting insights may inform the future implementation of iron intervention strategies.
Collapse
Affiliation(s)
- Momodou W. Jallow
- Nutrition Theme, MRC Unit The Gambia at London School of Hygiene & Tropical Medicine, Banjul, The Gambia
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
- * E-mail: (SC); (MWJ)
| | - Carla Cerami
- Nutrition Theme, MRC Unit The Gambia at London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| | - Taane G. Clark
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Faculty of Epidemiology and Population Health, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Andrew M. Prentice
- Nutrition Theme, MRC Unit The Gambia at London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| | - Susana Campino
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
- * E-mail: (SC); (MWJ)
| |
Collapse
|
14
|
Gouveia MH, Borda V, Leal TP, Moreira RG, Bergen AW, Kehdy FSG, Alvim I, Aquino MM, Araujo GS, Araujo NM, Furlan V, Liboredo R, Machado M, Magalhaes WCS, Michelin LA, Rodrigues MR, Rodrigues-Soares F, Sant Anna HP, Santolalla ML, Scliar MO, Soares-Souza G, Zamudio R, Zolini C, Bortolini MC, Dean M, Gilman RH, Guio H, Rocha J, Pereira AC, Barreto ML, Horta BL, Lima-Costa MF, Mbulaiteye SM, Chanock SJ, Tishkoff SA, Yeager M, Tarazona-Santos E. Origins, Admixture Dynamics, and Homogenization of the African Gene Pool in the Americas. Mol Biol Evol 2020; 37:1647-1656. [PMID: 32128591 PMCID: PMC7253211 DOI: 10.1093/molbev/msaa033] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The Transatlantic Slave Trade transported more than 9 million Africans to the Americas between the early 16th and the mid-19th centuries. We performed a genome-wide analysis using 6,267 individuals from 25 populations to infer how different African groups contributed to North-, South-American, and Caribbean populations, in the context of geographic and geopolitical factors, and compared genetic data with demographic history records of the Transatlantic Slave Trade. We observed that West-Central Africa and Western Africa-associated ancestry clusters are more prevalent in northern latitudes of the Americas, whereas the South/East Africa-associated ancestry cluster is more prevalent in southern latitudes of the Americas. This pattern results from geographic and geopolitical factors leading to population differentiation. However, there is a substantial decrease in the between-population differentiation of the African gene pool within the Americas, when compared with the regions of origin from Africa, underscoring the importance of historical factors favoring admixture between individuals with different African origins in the New World. This between-population homogenization in the Americas is consistent with the excess of West-Central Africa ancestry (the most prevalent in the Americas) in the United States and Southeast-Brazil, with respect to historical-demography expectations. We also inferred that in most of the Americas, intercontinental admixture intensification occurred between 1750 and 1850, which correlates strongly with the peak of arrivals from Africa. This study contributes with a population genetics perspective to the ongoing social, cultural, and political debate regarding ancestry, admixture, and the mestizaje process in the Americas.
Collapse
Affiliation(s)
- Mateus H Gouveia
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Instituto de Pesquisa Rene Rachou, Fundação Oswaldo Cruz, Belo Horizonte, MG, Brazil
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, Bethesda, MD
| | - Victor Borda
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Thiago P Leal
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Departamento de Estatística, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Rennan G Moreira
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Laboratório de Genômica, Centro de Laboratórios Multiusuário (CELAM), ICB, UFMG, Belo Horizonte, MG, Brazil
| | - Andrew W Bergen
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD
| | - Fernanda S G Kehdy
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Laboratório de Hanseníase, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Isabela Alvim
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Marla M Aquino
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Gilderlanio S Araujo
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Laboratório de Genética Humana e Médica, Instituto de Ciências Biológicas, Universidade Federal do Pará – Campus Guamá, Belém, PA, Brazil
| | - Nathalia M Araujo
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Vinicius Furlan
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Instituto de Ciências Exatas e Tecnológicas, Universidade Federal de Viçosa, Campus UFV-Florestal, Florestal, MG, Brazil
| | - Raquel Liboredo
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Moara Machado
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD
| | - Wagner C S Magalhaes
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Núcleo de Ensino e Pesquisas do Instituto Mário Penna – NEP-IMP, Bairro Luxemburgo, Belo Horizonte, MG, Brazil
| | - Lucas A Michelin
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Maíra R Rodrigues
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, SP, Brazil
| | - Fernanda Rodrigues-Soares
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Departamento de Patologia, Genética e Evolução, Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, MG, Brazil
| | - Hanaisa P Sant Anna
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Melbourne Integrative Genomics, The University of Melbourne, Melbourne, VIC, Australia
| | - Meddly L Santolalla
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Marília O Scliar
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Human Genome and Stem Cell Research Center, Biosciences Institute, University of São Paulo, São Paulo, SP, Brazil
| | - Giordano Soares-Souza
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Roxana Zamudio
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Camila Zolini
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Beagle, Belo Horizonte, MG, Brazil
- Mosaico Translational Genomics Initiative, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Maria Catira Bortolini
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Michael Dean
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Robert H Gilman
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD
- Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | - Jorge Rocha
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
- CIBIO/InBIO: Research Center in Biodiversity and Genetic Resources, Vairão, Portugal
| | | | - Mauricio L Barreto
- Instituto de Saúde Coletiva, Universidade Federal da Bahia, Salvador, BA, Brazil
- Center of Data and Knowledge Integration for Health (CIDACS), Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Brazil
| | - Bernardo L Horta
- Programa de Pós-Graduação em Epidemiologia, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Maria F Lima-Costa
- Instituto de Pesquisa Rene Rachou, Fundação Oswaldo Cruz, Belo Horizonte, MG, Brazil
| | - Sam M Mbulaiteye
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute (NCI), National Institutes of Health (NIH), Bethesda, MD
| | - Sarah A Tishkoff
- Department of Genetics and Department of Biology, University of Pennsylvania, Philadelphia, PA
| | - Meredith Yeager
- Cancer Genomics Research Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Eduardo Tarazona-Santos
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Mosaico Translational Genomics Initiative, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Universidad Peruana Cayetano Heredia, Lima, Peru
- Instituto de Estudos Avançados Transdisciplinares, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
15
|
Peprah S, Ogwang MD, Kerchan P, Reynolds SJ, Tenge CN, Were PA, Kuremu RT, Wekesa WN, Masalu N, Kawira E, Kinyera T, Otim I, Legason ID, Nabalende H, Dhudha H, Mumia M, Ayers LW, Biggar RJ, Bhatia K, Goedert JJ, Mbulaiteye SM. Mean platelet counts are relatively decreased with malaria but relatively increased with endemic Burkitt Lymphoma in Uganda, Tanzania, and Kenya. Br J Haematol 2020; 190:772-782. [PMID: 32395868 DOI: 10.1111/bjh.16700] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/01/2020] [Accepted: 04/07/2020] [Indexed: 12/28/2022]
Abstract
Platelet counts are decreased in Plasmodium falciparum malaria, which is aetiologically linked with endemic Burkitt lymphoma (eBL). However, the pattern of platelet counts in eBL cases is unknown. We studied platelet counts in 582 eBL cases and 2 248 controls enrolled in a case-control study in Uganda, Tanzania and Kenya (2010-2016). Mean platelet counts in controls or eBL cases with or without malaria-infection in controls versus eBLcases were compared using Student's t-test. Odds ratios (ORs) and two-sided 95% confidence intervals (95% CIs) were estimated using multiple logistic regression, controlling for age, sex, haemoglobin and white blood cell counts. Platelets were decreased with malaria infection in the controls [263 vs. 339 × 109 platelets/l, P < 0·0001; adjusted OR (aOR) = 3·42, 95% CI: 2·79-4·18] and eBL cases (314 vs. 367 × 109 platelets/l, P-value = 0·002; aOR = 2·36, 95% CI: 1·49-3·73). Unexpectedly, platelets were elevated in eBL cases versus controls in overall analyses (mean: 353 vs. 307 × 109 platelets/l, P < 0·0001; aOR = 1·41; 95% CI: 1·12-1·77), and when restricted to malaria-positive (mean 314 vs. 263 × 109 platelets/l, P < 0·0001; OR = 2·26; 95% CI: 1·56-3·27) or malaria-negative (mean 367 vs. 339 × 109 platelets/l, P < 0·001; OR = 1·46; 95% CI: 1·17-1·83) subjects. Platelets were decreased with malaria infection in controls and eBL cases but elevated with eBL.
Collapse
Affiliation(s)
- Sally Peprah
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Martin D Ogwang
- EpideMiology of Burkitt Lymphoma in East African Children and Minors Study, St. Mary's Hospital, Lacor, Gulu & African Field Epidemiology Network, Kampala, Uganda
| | - Patrick Kerchan
- EpideMiology of Burkitt Lymphoma in East African Children and Minors Study, Kuluva Hospital, Arua & African Field Epidemiology Network, Kuluva, Kampala, Uganda
| | - Steven J Reynolds
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Constance N Tenge
- EpideMiology of Burkitt Lymphoma in East African Children and Minors Study, Moi University College of Health Sciences, Eldoret, Kenya
| | - Pamela A Were
- EpideMiology of Burkitt Lymphoma in East African Children and Minors Study, Academic Model Providing Access To Healthcare, Eldoret, Kenya
| | - Robert T Kuremu
- EpideMiology of Burkitt Lymphoma in East African Children and Minors Study, Moi University College of Health Sciences, Eldoret, Kenya
| | - Walter N Wekesa
- EpideMiology of Burkitt Lymphoma in East African Children and Minors Study, Moi University College of Health Sciences, Eldoret, Kenya
| | - Nestory Masalu
- EpideMiology of Burkitt Lymphoma in East African Children and Minors Study, Bugando Medical Center, Mwanza, Tanzania
| | - Esther Kawira
- EpideMiology of Burkitt Lymphoma in East African Children and Minors Study, Shirati Health, Education, and Development Foundation, and Shirati Hospital, Shirati, Tanzania
| | - Tobias Kinyera
- EpideMiology of Burkitt Lymphoma in East African Children and Minors Study, St. Mary's Hospital, Lacor, Gulu & African Field Epidemiology Network, Kampala, Uganda
| | - Isaac Otim
- EpideMiology of Burkitt Lymphoma in East African Children and Minors Study, St. Mary's Hospital, Lacor, Gulu & African Field Epidemiology Network, Kampala, Uganda
| | - Ismail D Legason
- EpideMiology of Burkitt Lymphoma in East African Children and Minors Study, Kuluva Hospital, Arua & African Field Epidemiology Network, Kuluva, Kampala, Uganda
| | - Hadijah Nabalende
- EpideMiology of Burkitt Lymphoma in East African Children and Minors Study, St. Mary's Hospital, Lacor, Gulu & African Field Epidemiology Network, Kampala, Uganda
| | - Herry Dhudha
- EpideMiology of Burkitt Lymphoma in East African Children and Minors Study, Shirati Health, Education, and Development Foundation, and Shirati Hospital, Shirati, Tanzania
| | - Mediatrix Mumia
- EpideMiology of Burkitt Lymphoma in East African Children and Minors Study, Academic Model Providing Access To Healthcare, Eldoret, Kenya
| | - Leona W Ayers
- Department of Pathology, The Ohio State University, Columbus, OH, USA
| | - Robert J Biggar
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kishor Bhatia
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - James J Goedert
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sam M Mbulaiteye
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
16
|
Kirimunda S, Verboom M, Otim I, Ssennono M, Legason ID, Nabalende H, Ogwang MD, Kerchan P, Kinyera T, Mwebaza I, Joloba M, Ayers LW, Reynolds SJ, Bhatia K, Onabajo OO, Hallensleben M, Biggar RJ, Prokunina-Olsson L, Goedert JJ, Blasczyk R, Mbulaiteye SM. Variation in the Human Leukocyte Antigen system and risk for endemic Burkitt lymphoma in northern Uganda. Br J Haematol 2020; 189:489-499. [PMID: 32072624 PMCID: PMC7192769 DOI: 10.1111/bjh.16398] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 11/04/2019] [Indexed: 12/17/2022]
Abstract
Endemic Burkitt lymphoma (eBL) is an aggressive childhood B-cell lymphoma associated with Plasmodium falciparum (Pf) malaria and Epstein-Barr virus (EBV) infections. Variation in the Human Leukocyte Antigen (HLA) system is suspected to play a role, but assessments using less accurate serology-based HLA typing techniques in small studies yielded conflicting results. We studied 200 eBL cases and 400 controls aged 0-15 years enrolled in northern Uganda and typed by accurate high-resolution HLA sequencing methods. HLA results were analyzed at one- or two-field resolution. Odds ratios and 95% confidence intervals (aOR, 95% CI) for eBL risk associated with common HLA alleles versus alleles that were rare (<1%) or differed by <2% between the cases and controls as the reference category, were estimated using multiple logistic regression adjusting for age, sex, microgeography, region, malaria positivity and treatment history, and genetic variants associated with eBL. Compared to the controls, eBL cases had a lower frequency of HLA-A*02 (aOR = 0·59, 95% CI 0·38-0·91), HLA-B*41 (aOR = 0·36, 95% CI 0·13-1·00), and HLA-B*58 alleles (aOR = 0·59, 95% CI 0·36-0·97). eBL cases had a lower frequency of HLA-DPB1 homozygosity (aOR = 0·57, 95% CI 0·40-0·82) but a higher frequency of HLA-DQA1 homozygosity (aOR = 2·19, 95% CI 1·42-3·37). Our results suggest that variation in HLA may be associated with eBL risk.
Collapse
Affiliation(s)
- Samuel Kirimunda
- College of Health Sciences, Makerere University, Kampala, Uganda
| | | | - Isaac Otim
- EMBLEM Study, St. Mary’s Hospital, Lacor, Gulu & African Field Epidemiology Network, Kampala, Uganda
| | - Mark Ssennono
- EMBLEM Study, St. Mary’s Hospital, Lacor, Gulu & African Field Epidemiology Network, Kampala, Uganda
- EMBLEM Study, Kuluva Hospital, Kuluva, Arua & African Field Epidemiology Network, Kampala, Uganda
| | - Ismail D. Legason
- EMBLEM Study, Kuluva Hospital, Kuluva, Arua & African Field Epidemiology Network, Kampala, Uganda
| | - Hadijah Nabalende
- EMBLEM Study, St. Mary’s Hospital, Lacor, Gulu & African Field Epidemiology Network, Kampala, Uganda
| | - Martin D. Ogwang
- EMBLEM Study, St. Mary’s Hospital, Lacor, Gulu & African Field Epidemiology Network, Kampala, Uganda
| | - Patrick Kerchan
- EMBLEM Study, Kuluva Hospital, Kuluva, Arua & African Field Epidemiology Network, Kampala, Uganda
| | - Tobias Kinyera
- EMBLEM Study, St. Mary’s Hospital, Lacor, Gulu & African Field Epidemiology Network, Kampala, Uganda
| | - Ivan Mwebaza
- College of Health Sciences, Makerere University, Kampala, Uganda
| | - Moses Joloba
- College of Health Sciences, Makerere University, Kampala, Uganda
| | - Leona W. Ayers
- Department of Pathology, The Ohio State University, Columbus, Ohio, USA
| | - Steven J. Reynolds
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Kishor Bhatia
- Infections and Immunoepidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Olusegun O. Onabajo
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Robert J. Biggar
- Infections and Immunoepidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Ludmila Prokunina-Olsson
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - James J. Goedert
- Infections and Immunoepidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Sam M. Mbulaiteye
- Infections and Immunoepidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
17
|
Mas-Sandoval A, Arauna LR, Gouveia MH, Barreto ML, Horta BL, Lima-Costa MF, Pereira AC, Salzano FM, Hünemeier T, Tarazona-Santos E, Bortolini MC, Comas D. Reconstructed Lost Native American Populations from Eastern Brazil Are Shaped by Differential Jê/Tupi Ancestry. Genome Biol Evol 2020; 11:2593-2604. [PMID: 31328768 PMCID: PMC6756188 DOI: 10.1093/gbe/evz161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2019] [Indexed: 01/19/2023] Open
Abstract
After the colonization of the Americas by Europeans and the consequent Trans-Atlantic Slave Trade, most Native American populations in eastern Brazil disappeared or went through an admixture process that configured a population composed of three main genetic components: the European, the sub-Saharan African, and the Native American. The study of the Native American genetic history is challenged by the lack of availability of genome-wide samples from Native American populations, the technical difficulties to develop ancient DNA studies, and the low proportions of the Native American component in the admixed Brazilian populations (on average 7%). We analyzed genome-wide data of 5,825 individuals from three locations of eastern Brazil: Salvador (North-East), Bambui (South-East), and Pelotas (South) and we reconstructed populations that emulate the Native American groups that were living in the 16th century around the sampling locations. This genetic reconstruction was performed after local ancestry analysis of the admixed Brazilian populations, through the rearrangement of the Native American haplotypes into reconstructed individuals with full Native American ancestry (51 reconstructed individuals in Salvador, 45 in Bambui, and 197 in Pelotas). We compared the reconstructed populations with nonadmixed Native American populations from other regions of Brazil through haplotype-based methods. Our results reveal a population structure shaped by the dichotomy of Tupi-/Jê-speaking ancestry related groups. We also show evidence of a decrease of the diversity of nonadmixed Native American groups after the European contact, in contrast with the reconstructed populations, suggesting a reservoir of the Native American genetic diversity within the admixed Brazilian population.
Collapse
Affiliation(s)
- Alex Mas-Sandoval
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.,Departament de Ciències Experimentals i de la Salut, Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain
| | - Lara R Arauna
- Departament de Ciències Experimentals i de la Salut, Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain
| | - Mateus H Gouveia
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Center for Research on Genomics and Global Health, National Institutes of Health, Bethesda, Maryland
| | - Mauricio L Barreto
- Instituto de Saúde Coletiva, Universidade Federal da Bahia, Salvador, Bahia, Brazil.,Center for Data and Knowledge Integration for Health, Institute Gonçalo Muniz, Fundação Oswaldo Cruz, Salvador, Bahia, Brazil
| | - Bernardo L Horta
- Programa de Pós-Graduação em Epidemiologia, Universidade Federal de Pelotas, Rio Grande do Sul, Brazil
| | | | | | - Francisco M Salzano
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Tábita Hünemeier
- Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, Brazil
| | - Eduardo Tarazona-Santos
- Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Maria Cátira Bortolini
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - David Comas
- Departament de Ciències Experimentals i de la Salut, Institute of Evolutionary Biology (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain
| |
Collapse
|
18
|
Gouveia MH, Cesar CC, Santolalla ML, Anna HPS, Scliar MO, Leal TP, Araújo NM, Soares-Souza GB, Magalhães WCS, Mata IF, Ferri CP, Castro-Costa E, Mbulaiteye SM, Tishkoff SA, Shriner D, Rotimi CN, Tarazona-Santos E, Lima-Costa MF. Genetics of cognitive trajectory in Brazilians: 15 years of follow-up from the Bambuí-Epigen Cohort Study of Aging. Sci Rep 2019; 9:18085. [PMID: 31792241 PMCID: PMC6889148 DOI: 10.1038/s41598-019-53988-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 11/07/2019] [Indexed: 01/11/2023] Open
Abstract
Age-related cognitive decline (ACD) is the gradual process of decreasing of cognitive function over age. Most genetic risk factors for ACD have been identified in European populations and there are no reports in admixed Latin American individuals. We performed admixture mapping, genome-wide association analysis (GWAS), and fine-mapping to examine genetic factors associated with 15-year cognitive trajectory in 1,407 Brazilian older adults, comprising 14,956 Mini-Mental State Examination measures. Participants were enrolled as part of the Bambuí-Epigen Cohort Study of Aging. Our admixture mapping analysis identified a genomic region (3p24.2) in which increased Native American ancestry was significantly associated with faster ACD. Fine-mapping of this region identified a single nucleotide polymorphism (SNP) rs142380904 (β = -0.044, SE = 0.01, p = 7.5 × 10-5) associated with ACD. In addition, our GWAS identified 24 associated SNPs, most in genes previously reported to influence cognitive function. The top six associated SNPs accounted for 18.5% of the ACD variance in our data. Furthermore, our longitudinal study replicated previous GWAS hits for cognitive decline and Alzheimer's disease. Our 15-year longitudinal study identified both ancestry-specific and cosmopolitan genetic variants associated with ACD in Brazilians, highlighting the need for more trans-ancestry genomic studies, especially in underrepresented ethnic groups.
Collapse
Affiliation(s)
- Mateus H Gouveia
- Fundação Oswaldo Cruz, Instituto de Pesquisas René Rachou, Belo Horizonte, Brazil.
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil.
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America.
| | - Cibele C Cesar
- Universidade Federal de Minas Gerais, Faculdade de Ciências Econômicas, Belo Horizonte, Brazil
| | - Meddly L Santolalla
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Hanaisa P Sant Anna
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
- Melbourne Integrative Genomics, The University of Melbourne, Melbourne, VIC, 3052, Australia
| | - Marilia O Scliar
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Thiago P Leal
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Nathalia M Araújo
- Fundação Oswaldo Cruz, Instituto de Pesquisas René Rachou, Belo Horizonte, Brazil
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Giordano B Soares-Souza
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | - Wagner C S Magalhães
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
- Núcleo de Ensino e Pesquisa - NEP, Instituto Mário Penna, Rua Gentios, Terceiro Andar, Belo Horizonte, Minas Gerais, 3052, Brazil
| | - Ignacio F Mata
- Lerner Research Institute, Genomic Medicine, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Cleusa P Ferri
- Universidade Federal de São Paulo, Department of Psychiatry, São Paulo, Brazil
| | - Erico Castro-Costa
- Fundação Oswaldo Cruz, Instituto de Pesquisas René Rachou, Belo Horizonte, Brazil
| | - Sam M Mbulaiteye
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Sarah A Tishkoff
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Daniel Shriner
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Charles N Rotimi
- Center for Research on Genomics and Global Health, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Eduardo Tarazona-Santos
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, 31270-901, Brazil
| | | |
Collapse
|