1
|
Hidalgo-Vico S, Prieto D, Alonso-Monge R, Román E, Maufrais C, d'Enfert C, Pla J. Candida albicans strains adapted to the mouse gut are resistant to bile salts via a Flo8-dependent mechanism. Fungal Genet Biol 2024; 175:103939. [PMID: 39486612 DOI: 10.1016/j.fgb.2024.103939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/15/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
Candidaalbicans normally colonizes the human gastrointestinal tract as a commensal. Studying fungal factors involved in colonizing the mammalian gastrointestinal tract requires mouse models with altered microbiota. We have obtained strains of C.albicans through microevolution in the mouse gut for a prolonged period (one year) that display a substantial increase in fitness in this niche. These strains show resistance to bile salts, an increase in their adhesion to the intestinal mucosa, and are unable to filament in response to serum. Genetic analysis revealed some alterations, mainly a triploidy of chr7, a whole chr6 homozygosis, and an SNP in the FLO8 gene (located in the chr6), resulting in a truncated protein version. A wild type FLO8 gene complemented filamentation and bile salt sensitivity but showed an intermediate fitness phenotype in colonization. Alterations in bile salt sensitivity were also evident in bmt mutants, defective in β-mannosylation, and transcriptional targets of Flo8, suggesting a link between the fungal cell wall and mammalian gut colonization via the Flo8 transcriptional regulator.
Collapse
Affiliation(s)
- Susana Hidalgo-Vico
- Departamento de Microbiología y Parasitología-IRYCIS, Facultad de Farmacia, Universidad Complutense de Madrid, Avda. Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Daniel Prieto
- Departamento de Microbiología y Parasitología-IRYCIS, Facultad de Farmacia, Universidad Complutense de Madrid, Avda. Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Rebeca Alonso-Monge
- Departamento de Microbiología y Parasitología-IRYCIS, Facultad de Farmacia, Universidad Complutense de Madrid, Avda. Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Elvira Román
- Departamento de Microbiología y Parasitología-IRYCIS, Facultad de Farmacia, Universidad Complutense de Madrid, Avda. Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Corinne Maufrais
- Institut Pasteur, Université Paris Cité, INRAE USC2019, Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, 75015 Paris, France; Institut Pasteur, Université Paris Cité, Hub de Bioinformatique et Biostatistique, Centre de Ressources et Recherche en Informatique (C2RI), 75015 Paris, France
| | - Christophe d'Enfert
- Institut Pasteur, Université Paris Cité, INRAE USC2019, Unité Biologie et Pathogénicité Fongiques, Département de Mycologie, 75015 Paris, France
| | - Jesús Pla
- Departamento de Microbiología y Parasitología-IRYCIS, Facultad de Farmacia, Universidad Complutense de Madrid, Avda. Ramón y Cajal s/n, 28040 Madrid, Spain.
| |
Collapse
|
2
|
Fleres G, Cheng S, Badrane H, Dupont CL, Espinoza JL, Abbey D, Driscoll E, Newbrough A, Hao B, Mansour A, Nguyen MH, Clancy CJ. Blood cultures contain populations of genetically diverse Candida albicans strains that may differ in echinocandin tolerance and virulence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.16.618724. [PMID: 39605648 PMCID: PMC11601265 DOI: 10.1101/2024.10.16.618724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
It is unknown whether within-patient Candida albicans diversity is common during bloodstream infections (BSIs). We determined whole genome sequences of 10 C. albicans strains from blood cultures (BCs) in each of 4 patients. BCs in 3 patients contained mixed populations of strains that differed by large-scale genetic variants, including chromosome (Chr) 5 or 7 aneuploidy (n=2) and Chr1 loss of heterozygosity (n=1). Chr7 trisomy (Tri7) strains from patient MN were attenuated for hyphal and biofilm formation in vitro compared to euploid strains, due at least in part to NRG1 over-expression. Nevertheless, representative Tri7 strain M1 underwent filamentation during disseminated candidiasis (DC) in mice. M1 was more fit than euploid strain M2 during DC and mouse gastrointestinal colonization, and in blood ex vivo. M1 and M2 exhibited identical echinocandin minimum inhibitory concentrations, but M2 was more tolerant to micafungin in vitro. Furthermore, M2 was more competitive with M1 in mouse kidneys following micafungin treatment than it was in absence of micafungin. Tri7 strains represented 74% of patient MN's baseline BC population, but after 1d and 3d of echinocandin treatment, euploid strains were 93% and 98% of the BC population, respectively. Findings suggest that echinocandin tolerant, euploid strains were a subpopulation to more virulent Tri7 strains at baseline and then were selected upon echinocandin exposure. In conclusion, BCs in at least some patients are comprised of diverse C. albicans populations not recognized by the clinical lab, rather than single strains. Clinical relevance of C. albicans diversity and antifungal tolerance merits further investigation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Binghua Hao
- University of Pittsburgh, Pittsburgh, PA, USA
| | - Akila Mansour
- University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - M. Hong Nguyen
- University of Pittsburgh, Pittsburgh, PA, USA
- University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Cornelius J. Clancy
- University of Pittsburgh, Pittsburgh, PA, USA
- VA Pittsburgh Healthcare System, Pittsburgh, PA, USA
| |
Collapse
|
3
|
Zhou X, Hilk A, Solis NV, Scott N, Beach A, Soisangwan N, Billings CL, Burrack LS, Filler SG, Selmecki A. Single-cell detection of copy number changes reveals dynamic mechanisms of adaptation to antifungals in Candida albicans. Nat Microbiol 2024; 9:2923-2938. [PMID: 39227665 PMCID: PMC11524788 DOI: 10.1038/s41564-024-01795-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 07/24/2024] [Indexed: 09/05/2024]
Abstract
Genomic copy number changes are associated with antifungal drug resistance and virulence across diverse fungal pathogens, but the rate and dynamics of these genomic changes in the presence of antifungal drugs are unknown. Here we optimized a dual-fluorescent reporter system in the diploid pathogen Candida albicans to quantify haplotype-specific copy number variation (CNV) and loss of heterozygosity (LOH) at the single-cell level with flow cytometry. We followed the frequency and dynamics of CNV and LOH at two distinct genomic locations in the presence and absence of antifungal drugs in vitro and in a murine model of candidiasis. Copy number changes were rapid and dynamic during adaptation to fluconazole and frequently involved competing subpopulations with distinct genotypes. This study provides quantitative evidence for the rapid speed at which diverse genotypes arise and undergo dynamic population-level fluctuations during adaptation to antifungal drugs in vitro and in vivo.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Audrey Hilk
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Norma V Solis
- Division of Infectious Diseases, Lundquist Institute for Biomedical Innovation at Harbor UCLA Medical Center, Torrance, CA, USA
| | - Nancy Scott
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Annette Beach
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Natthapon Soisangwan
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Clara L Billings
- Gustavus Adolphus College, Department of Biology, Saint Peter, MN, USA
| | - Laura S Burrack
- Gustavus Adolphus College, Department of Biology, Saint Peter, MN, USA
| | - Scott G Filler
- Division of Infectious Diseases, Lundquist Institute for Biomedical Innovation at Harbor UCLA Medical Center, Torrance, CA, USA
- David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Anna Selmecki
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
4
|
Murante D, Hogan DA. Drivers of diversification in fungal pathogen populations. PLoS Pathog 2024; 20:e1012430. [PMID: 39264909 PMCID: PMC11392411 DOI: 10.1371/journal.ppat.1012430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024] Open
Abstract
To manage and treat chronic fungal diseases effectively, we require an improved understanding of their complexity. There is an increasing appreciation that chronic infection populations are often heterogeneous due to diversification and drift, even within a single microbial species. Genetically diverse populations can contribute to persistence and resistance to treatment by maintaining cells with different phenotypes capable of thriving in these dynamic environments. In chronic infections, fungal pathogens undergo prolonged challenges that can drive trait selection to convergent adapted states through restricted access to critical nutrients, assault by immune effectors, competition with other species, and antifungal drugs. This review first highlights the various genetic and epigenetic mechanisms that promote diversity in pathogenic fungal populations and provide an additional barrier to assessing the actual heterogeneity of fungal infections. We then review existing studies of evolution and genetic heterogeneity in fungal populations from lung infections associated with the genetic disease cystic fibrosis. We conclude with a discussion of open research questions that, once answered, may aid in diagnosing and treating chronic fungal infections.
Collapse
Affiliation(s)
- Daniel Murante
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Deborah Ann Hogan
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| |
Collapse
|
5
|
Anderson MZ, Dietz SM. Evolution and strain diversity advance exploration of Candida albicans biology. mSphere 2024; 9:e0064123. [PMID: 39012122 PMCID: PMC11351040 DOI: 10.1128/msphere.00641-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024] Open
Abstract
Fungi were some of the earliest organismal systems used to explore mutational processes and its phenotypic consequences on members of a species. Yeasts that cause significant human disease were quickly incorporated into these investigations to define the genetic and phenotypic drivers of virulence. Among Candida species, Candida albicans has emerged as a model for studying genomic processes of evolution because of its clinical relevance, relatively small genome, and ability to tolerate complex chromosomal changes. Here, we describe major recent findings that used evolution of strains from defined genetic backgrounds to delineate mutational and adaptative processes and include how nascent exploration into naturally occurring variation is contributing to these conceptual frameworks. Ultimately, efforts to discern adaptive mechanisms used by C. albicans will continue to divulge new biology and can better inform treatment regimens for the increasing prevalence of fungal disease.
Collapse
Affiliation(s)
- Matthew Z. Anderson
- Department of Medical Genetics, Laboratory of Genetics, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Center for Genomic Science Innovation, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Siobhan M. Dietz
- Cellular and Molecular Pathology Graduate Program, University of Wisconsin—Madison, Madison, Wisconsin, USA
| |
Collapse
|
6
|
Katsipoulaki M, Stappers MHT, Malavia-Jones D, Brunke S, Hube B, Gow NAR. Candida albicans and Candida glabrata: global priority pathogens. Microbiol Mol Biol Rev 2024; 88:e0002123. [PMID: 38832801 PMCID: PMC11332356 DOI: 10.1128/mmbr.00021-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
SUMMARYA significant increase in the incidence of Candida-mediated infections has been observed in the last decade, mainly due to rising numbers of susceptible individuals. Recently, the World Health Organization published its first fungal pathogen priority list, with Candida species listed in medium, high, and critical priority categories. This review is a synthesis of information and recent advances in our understanding of two of these species-Candida albicans and Candida glabrata. Of these, C. albicans is the most common cause of candidemia around the world and is categorized as a critical priority pathogen. C. glabrata is considered a high-priority pathogen and has become an increasingly important cause of candidemia in recent years. It is now the second most common causative agent of candidemia in many geographical regions. Despite their differences and phylogenetic divergence, they are successful as pathogens and commensals of humans. Both species can cause a broad variety of infections, ranging from superficial to potentially lethal systemic infections. While they share similarities in certain infection strategies, including tissue adhesion and invasion, they differ significantly in key aspects of their biology, interaction with immune cells, host damage strategies, and metabolic adaptations. Here we provide insights on key aspects of their biology, epidemiology, commensal and pathogenic lifestyles, interactions with the immune system, and antifungal resistance.
Collapse
Affiliation(s)
- Myrto Katsipoulaki
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Mark H. T. Stappers
- MRC Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Dhara Malavia-Jones
- MRC Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Hans Knoell Institute, Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| | - Neil A. R. Gow
- MRC Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
7
|
Vande Zande P, Zhou X, Selmecki A. The Dynamic Fungal Genome: Polyploidy, Aneuploidy and Copy Number Variation in Response to Stress. Annu Rev Microbiol 2023; 77:341-361. [PMID: 37307856 PMCID: PMC10599402 DOI: 10.1146/annurev-micro-041320-112443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Fungal species have dynamic genomes and often exhibit genomic plasticity in response to stress. This genome plasticity often comes with phenotypic consequences that affect fitness and resistance to stress. Fungal pathogens exhibit genome plasticity in both clinical and agricultural settings and often during adaptation to antifungal drugs, posing significant challenges to human health. Therefore, it is important to understand the rates, mechanisms, and impact of large genomic changes. This review addresses the prevalence of polyploidy, aneuploidy, and copy number variation across diverse fungal species, with special attention to prominent fungal pathogens and model species. We also explore the relationship between environmental stress and rates of genomic changes and highlight the mechanisms underlying genotypic and phenotypic changes. A comprehensive understanding of these dynamic fungal genomes is needed to identify novel solutions for the increase in antifungal drug resistance.
Collapse
Affiliation(s)
- Pétra Vande Zande
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA;
| | - Xin Zhou
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA;
| | - Anna Selmecki
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA;
| |
Collapse
|
8
|
Anderson FM, Visser ND, Amses KR, Hodgins-Davis A, Weber AM, Metzner KM, McFadden MJ, Mills RE, O’Meara MJ, James TY, O’Meara TR. Candida albicans selection for human commensalism results in substantial within-host diversity without decreasing fitness for invasive disease. PLoS Biol 2023; 21:e3001822. [PMID: 37205709 PMCID: PMC10234564 DOI: 10.1371/journal.pbio.3001822] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 06/01/2023] [Accepted: 04/12/2023] [Indexed: 05/21/2023] Open
Abstract
Candida albicans is a frequent colonizer of human mucosal surfaces as well as an opportunistic pathogen. C. albicans is remarkably versatile in its ability to colonize diverse host sites with differences in oxygen and nutrient availability, pH, immune responses, and resident microbes, among other cues. It is unclear how the genetic background of a commensal colonizing population can influence the shift to pathogenicity. Therefore, we examined 910 commensal isolates from 35 healthy donors to identify host niche-specific adaptations. We demonstrate that healthy people are reservoirs for genotypically and phenotypically diverse C. albicans strains. Using limited diversity exploitation, we identified a single nucleotide change in the uncharacterized ZMS1 transcription factor that was sufficient to drive hyper invasion into agar. We found that SC5314 was significantly different from the majority of both commensal and bloodstream isolates in its ability to induce host cell death. However, our commensal strains retained the capacity to cause disease in the Galleria model of systemic infection, including outcompeting the SC5314 reference strain during systemic competition assays. This study provides a global view of commensal strain variation and within-host strain diversity of C. albicans and suggests that selection for commensalism in humans does not result in a fitness cost for invasive disease.
Collapse
Affiliation(s)
- Faith M. Anderson
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Noelle D. Visser
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Kevin R. Amses
- Department of Ecology and Evolution, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Andrea Hodgins-Davis
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Alexandra M. Weber
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Katura M. Metzner
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Michael J. McFadden
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Ryan E. Mills
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Matthew J. O’Meara
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Timothy Y. James
- Department of Ecology and Evolution, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Teresa R. O’Meara
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| |
Collapse
|
9
|
Kakade P, Sircaik S, Maufrais C, Ene IV, Bennett RJ. Aneuploidy and gene dosage regulate filamentation and host colonization by Candida albicans. Proc Natl Acad Sci U S A 2023; 120:e2218163120. [PMID: 36893271 PMCID: PMC10089209 DOI: 10.1073/pnas.2218163120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 02/02/2023] [Indexed: 03/11/2023] Open
Abstract
Aneuploidy is a frequent occurrence in fungal species where it can alter gene expression and promote adaptation to a variety of environmental cues. Multiple forms of aneuploidy have been observed in the opportunistic fungal pathogen Candida albicans, which is a common component of the human gut mycobiome but can escape this niche and cause life-threatening systemic disease. Using a barcode sequencing (Bar-seq) approach, we evaluated a set of diploid C. albicans strains and found that a strain carrying a third copy of chromosome (Chr) 7 was associated with increased fitness during both gastrointestinal (GI) colonization and systemic infection. Our analysis revealed that the presence of a Chr 7 trisomy resulted in decreased filamentation, both in vitro and during GI colonization, relative to isogenic euploid controls. A target gene approach demonstrated that NRG1, encoding a negative regulator of filamentation located on Chr 7, contributes to increased fitness of the aneuploid strain due to inhibition of filamentation in a gene dosage-dependent fashion. Together, these experiments establish how aneuploidy enables the reversible adaptation of C. albicans to its host via gene dosage-dependent regulation of morphology.
Collapse
Affiliation(s)
- Pallavi Kakade
- Molecular Microbiology and Immunology Department, Brown University, Providence, RI02912
| | - Shabnam Sircaik
- Molecular Microbiology and Immunology Department, Brown University, Providence, RI02912
| | - Corinne Maufrais
- Institut Pasteur Bioinformatic Hub, Université Paris Cité, Paris75015, France
- Institut Pasteur, Université Paris Cité, Fungal Heterogeneity Lab, Paris75015, France
| | - Iuliana V. Ene
- Institut Pasteur, Université Paris Cité, Fungal Heterogeneity Lab, Paris75015, France
| | - Richard J. Bennett
- Molecular Microbiology and Immunology Department, Brown University, Providence, RI02912
| |
Collapse
|
10
|
Gervais NC, La Bella AA, Wensing LF, Sharma J, Acquaviva V, Best M, Cadena López RO, Fogal M, Uthayakumar D, Chavez A, Santiago-Tirado F, Flores-Mireles AL, Shapiro RS. Development and applications of a CRISPR activation system for facile genetic overexpression in Candida albicans. G3 (BETHESDA, MD.) 2023; 13:jkac301. [PMID: 36450451 PMCID: PMC9911074 DOI: 10.1093/g3journal/jkac301] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/02/2021] [Accepted: 11/04/2022] [Indexed: 12/02/2022]
Abstract
For the fungal pathogen Candida albicans, genetic overexpression readily occurs via a diversity of genomic alterations, such as aneuploidy and gain-of-function mutations, with important consequences for host adaptation, virulence, and evolution of antifungal drug resistance. Given the important role of overexpression on C. albicans biology, it is critical to develop and harness tools that enable the analysis of genes expressed at high levels in the fungal cell. Here, we describe the development, optimization, and application of a novel, single-plasmid-based CRISPR activation (CRISPRa) platform for targeted genetic overexpression in C. albicans, which employs a guide RNA to target an activator complex to the promoter region of a gene of interest, thus driving transcriptional expression of that gene. Using this system, we demonstrate the ability of CRISPRa to drive high levels of gene expression in C. albicans, and we assess optimal guide RNA targeting for robust and constitutive overexpression. We further demonstrate the specificity of the system via RNA sequencing. We highlight the application of CRISPR activation to overexpress genes involved in pathogenesis and drug susceptibility, and contribute toward the identification of novel phenotypes. Consequently, this tool will facilitate a broad range of applications for the study of C. albicans genetic overexpression.
Collapse
Affiliation(s)
- Nicholas C Gervais
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1H 5N4, Canada
| | - Alyssa A La Bella
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Lauren F Wensing
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1H 5N4, Canada
| | - Jehoshua Sharma
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1H 5N4, Canada
| | - Victoria Acquaviva
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1H 5N4, Canada
| | - Madison Best
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1H 5N4, Canada
| | | | - Meea Fogal
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1H 5N4, Canada
| | - Deeva Uthayakumar
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1H 5N4, Canada
- Present address: Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Alejandro Chavez
- Department of Pathology and Cell Biology, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | | | - Ana L Flores-Mireles
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Rebecca S Shapiro
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1H 5N4, Canada
| |
Collapse
|
11
|
Jacobsen ID. The Role of Host and Fungal Factors in the Commensal-to-Pathogen Transition of Candida albicans. CURRENT CLINICAL MICROBIOLOGY REPORTS 2023; 10:55-65. [PMID: 37151578 PMCID: PMC10154278 DOI: 10.1007/s40588-023-00190-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2023] [Indexed: 05/09/2023]
Abstract
Abstract Purpose of Review The fungus Candida albicans has evolved to live in close association with warm-blooded hosts and is found frequently on mucosal surfaces of healthy humans. As an opportunistic pathogen, C. albicans can also cause mucosal and disseminated infections (candidiasis). This review describes the features that differentiate the fungus in the commensal versus pathogenic state and the main factors underlying C. albicans commensal-to-pathogen transition. Recent Findings Adhesion, invasion, and tissue damage are critical steps in the infection process. Especially invasion and damage require transcriptional and morphological changes that differentiate C. albicans in the pathogenic from the commensal state. While the commensal-to-pathogen transition has some conserved causes and features in the oral cavity, the female urogenital tract, and the gut, site-specific differences have been identified in recent years. Summary This review highlights how specific factors in the different mucosal niches affect development of candidiasis. Recent evidence suggests that colonization of the gut is not only a risk factor for systemic candidiasis but might also provide beneficial effects to the host.
Collapse
Affiliation(s)
- Ilse D. Jacobsen
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology, Jena, Germany
- Institute of Microbiology, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
12
|
Rizzo M, Soisangwan N, Vega-Estevez S, Price RJ, Uyl C, Iracane E, Shaw M, Soetaert J, Selmecki A, Buscaino A. Stress combined with loss of the Candida albicans SUMO protease Ulp2 triggers selection of aneuploidy via a two-step process. PLoS Genet 2022; 18:e1010576. [PMID: 36574460 PMCID: PMC9829183 DOI: 10.1371/journal.pgen.1010576] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/09/2023] [Accepted: 12/16/2022] [Indexed: 12/29/2022] Open
Abstract
A delicate balance between genome stability and instability ensures genome integrity while generating genetic diversity, a critical step for evolution. Indeed, while excessive genome instability is harmful, moderated genome instability can drive adaptation to novel environments by maximising genetic variation. Candida albicans, a human fungal pathogen that colonises different parts of the human body, adapts rapidly and frequently to different hostile host microenvironments. In this organism, the ability to generate large-scale genomic variation is a key adaptative mechanism triggering dangerous infections even in the presence of antifungal drugs. Understanding how fitter novel karyotypes are selected is key to determining how C. albicans and other microbial pathogens establish infections. Here, we identified the SUMO protease Ulp2 as a regulator of C. albicans genome integrity through genetic screening. Deletion of ULP2 leads to increased genome instability, enhanced genome variation and reduced fitness in the absence of additional stress. The combined stress caused by the lack of ULP2 and antifungal drug treatment leads to the selection of adaptive segmental aneuploidies that partially rescue the fitness defects of ulp2Δ/Δ cells. Short and long-read genomic sequencing demonstrates that these novel genotypes are selected via a two-step process leading to the formation of novel chromosomal fragments with breakpoints at microhomology regions and DNA repeats.
Collapse
Affiliation(s)
- Marzia Rizzo
- University of Kent, School of Biosciences, Kent Fungal Group, Canterbury Kent, United Kingdom
| | - Natthapon Soisangwan
- University of Minnesota, Department of Microbiology and Immunology, Minneapolis, Minnesota, United States of America
| | - Samuel Vega-Estevez
- University of Kent, School of Biosciences, Kent Fungal Group, Canterbury Kent, United Kingdom
| | | | - Chloe Uyl
- University of Kent, School of Biosciences, Kent Fungal Group, Canterbury Kent, United Kingdom
| | - Elise Iracane
- University of Kent, School of Biosciences, Kent Fungal Group, Canterbury Kent, United Kingdom
| | - Matt Shaw
- University of Kent, School of Biosciences, Kent Fungal Group, Canterbury Kent, United Kingdom
| | - Jan Soetaert
- Blizard Advanced Light Microscopy (BALM), Queen Mary University of London, United Kingdom
| | - Anna Selmecki
- University of Minnesota, Department of Microbiology and Immunology, Minneapolis, Minnesota, United States of America
| | - Alessia Buscaino
- University of Kent, School of Biosciences, Kent Fungal Group, Canterbury Kent, United Kingdom
- * E-mail:
| |
Collapse
|
13
|
Rokas A. Evolution of the human pathogenic lifestyle in fungi. Nat Microbiol 2022; 7:607-619. [PMID: 35508719 PMCID: PMC9097544 DOI: 10.1038/s41564-022-01112-0] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 03/25/2022] [Indexed: 02/07/2023]
Abstract
Fungal pathogens cause more than a billion human infections every year, resulting in more than 1.6 million deaths annually. Understanding the natural history and evolutionary ecology of fungi is helping us understand how disease-relevant traits have repeatedly evolved. Different types and mechanisms of genetic variation have contributed to the evolution of fungal pathogenicity and specific genetic differences distinguish pathogens from non-pathogens. Insights into the traits, genetic elements, and genetic and ecological mechanisms that contribute to the evolution of fungal pathogenicity are crucial for developing strategies to both predict emergence of fungal pathogens and develop drugs to combat them.
Collapse
Affiliation(s)
- Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.
- Vanderbilt Evolutionary Studies Initiative, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
14
|
Swidergall M, LeibundGut-Landmann S. Immunosurveillance of Candida albicans commensalism by the adaptive immune system. Mucosal Immunol 2022; 15:829-836. [PMID: 35778599 PMCID: PMC9385492 DOI: 10.1038/s41385-022-00536-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/27/2022] [Accepted: 05/31/2022] [Indexed: 02/04/2023]
Abstract
The fungal microbiota (mycobiota) is an integral part of the microbial community colonizing the body surfaces and is involved in many key aspects of human physiology, while an imbalance of the fungal communities, termed fungal dysbiosis, has been described in pathologies ranging from infections to inflammatory bowel disease. Commensal organisms, such as the fungus Candida albicans, induce antigen-specific immune responses that maintain immune homeostasis. Adaptive immune mechanisms are vital in this process, while deficiencies in adaptive immunity are linked to fungal infections. We start to understand the mechanisms by which a shift in mycobiota composition, in particular in C. albicans abundance, is linked to immunopathological conditions. This review discusses the mechanisms that ensure continuous immunosurveillance of C. albicans during mucosal colonization, how these protective adaptive immune responses can also promote immunopathology, and highlight therapeutic advances against C. albicans-associated disease.
Collapse
Affiliation(s)
- Marc Swidergall
- Division of Infectious Diseases, Harbor-UCLA Medical Center, Torrance, CA, USA
- The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
- David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Salomé LeibundGut-Landmann
- Section of Immunology, Vetsuisse Faculty, University of Zürich, Zürich, Switzerland.
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland.
| |
Collapse
|
15
|
Mba IE, Nweze EI, Eze EA, Anyaegbunam ZKG. Genome plasticity in Candida albicans: A cutting-edge strategy for evolution, adaptation, and survival. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 99:105256. [PMID: 35231665 DOI: 10.1016/j.meegid.2022.105256] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/12/2021] [Accepted: 02/22/2022] [Indexed: 12/15/2022]
Abstract
Candida albicans is the most implicated fungal species that grows as a commensal or opportunistic pathogen in the human host. It is associated with many life-threatening infections, especially in immunocompromised persons. The genome of Candida albicans is very flexible and can withstand a wide assortment of variations in a continuously changing environment. Thus, genome plasticity is central to its adaptation and has long been of considerable interest. C. albicans has a diploid heterozygous genome that is highly dynamic and can display variation from small to large scale chromosomal rearrangement and aneuploidy, which have implications in drug resistance, virulence, and pathogenicity. This review presents an up-to-date overview of recent genomic studies involving C. albicans. It discusses the accumulating evidence that shows how mitotic recombination events, ploidy dynamics, aneuploidy, and loss of heterozygosity (LOH) influence evolution, adaptation, and survival in C. albicans. Understanding the factors that affect the genome is crucial for a proper understanding of species and rapid development and adjustment of therapeutic strategies to mitigate their spread.
Collapse
Affiliation(s)
| | | | | | - Zikora Kizito Glory Anyaegbunam
- Institution for Drug-Herbal Medicine-Excipient-Research and Development, Faculty of Pharmaceutical Sciences, Nsukka, Nigeria
| |
Collapse
|
16
|
Li XV, Leonardi I, Putzel GG, Semon A, Fiers WD, Kusakabe T, Lin WY, Gao IH, Doron I, Gutierrez-Guerrero A, DeCelie MB, Carriche GM, Mesko M, Yang C, Naglik JR, Hube B, Scherl EJ, Iliev ID. Immune regulation by fungal strain diversity in inflammatory bowel disease. Nature 2022; 603:672-678. [PMID: 35296857 PMCID: PMC9166917 DOI: 10.1038/s41586-022-04502-w] [Citation(s) in RCA: 145] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 02/02/2022] [Indexed: 12/21/2022]
Abstract
The fungal microbiota (mycobiota) is an integral part of the complex multikingdom microbial community colonizing the mammalian gastrointestinal tract and has an important role in immune regulation1-6. Although aberrant changes in the mycobiota have been linked to several diseases, including inflammatory bowel disease3-9, it is currently unknown whether fungal species captured by deep sequencing represent living organisms and whether specific fungi have functional consequences for disease development in affected individuals. Here we developed a translational platform for the functional analysis of the mycobiome at the fungal-strain- and patient-specific level. Combining high-resolution mycobiota sequencing, fungal culturomics and genomics, a CRISPR-Cas9-based fungal strain editing system, in vitro functional immunoreactivity assays and in vivo models, this platform enables the examination of host-fungal crosstalk in the human gut. We discovered a rich genetic diversity of opportunistic Candida albicans strains that dominate the colonic mucosa of patients with inflammatory bowel disease. Among these human-gut-derived isolates, strains with high immune-cell-damaging capacity (HD strains) reflect the disease features of individual patients with ulcerative colitis and aggravated intestinal inflammation in vivo through IL-1β-dependent mechanisms. Niche-specific inflammatory immunity and interleukin-17A-producing T helper cell (TH17 cell) antifungal responses by HD strains in the gut were dependent on the C. albicans-secreted peptide toxin candidalysin during the transition from a benign commensal to a pathobiont state. These findings reveal the strain-specific nature of host-fungal interactions in the human gut and highlight new diagnostic and therapeutic targets for diseases of inflammatory origin.
Collapse
Affiliation(s)
- Xin V Li
- Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Irina Leonardi
- Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Gregory G Putzel
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Alexa Semon
- Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - William D Fiers
- Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Takato Kusakabe
- Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Woan-Yu Lin
- Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Iris H Gao
- Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Itai Doron
- Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Alejandra Gutierrez-Guerrero
- Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Meghan B DeCelie
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Guilhermina M Carriche
- Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Marissa Mesko
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Chen Yang
- Department of Pathology, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Julian R Naglik
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, UK
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute, Jena, Germany
- Institute of Microbiology, FriedrichSchiller University, Jena, Germany
| | - Ellen J Scherl
- Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA
- The Jill Roberts Center for Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY, USA
| | - Iliyan D Iliev
- Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY, USA.
- Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY, USA.
| |
Collapse
|
17
|
Mishra A, Forche A, Anderson MZ. Parasexuality of Candida Species. Front Cell Infect Microbiol 2021; 11:796929. [PMID: 34966696 PMCID: PMC8711763 DOI: 10.3389/fcimb.2021.796929] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/19/2021] [Indexed: 12/03/2022] Open
Abstract
While most fungi have the ability to reproduce sexually, multiple independent lineages have lost meiosis and developed parasexual cycles in its place. Emergence of parasexual cycles is particularly prominent in medically relevant fungi from the CUG paraphyletic group of Candida species. Since the discovery of parasex in C. albicans roughly two decades ago, it has served as the model for Candida species. Importantly, parasex in C. albicans retains hallmarks of meiosis including genetic recombination and chromosome segregation, making it a potential driver of genetic diversity. Furthermore, key meiotic genes play similar roles in C. albicans parasex and highlights parallels between these processes. Yet, the evolutionary role of parasex in Candida adaptation and the extent of resulting genotypic and phenotypic diversity remain as key knowledge gaps in this facultative reproductive program. Here, we present our current understanding of parasex, the mechanisms governing its regulation, and its relevance to Candida biology.
Collapse
Affiliation(s)
- Abhishek Mishra
- Department of Microbiology, The Ohio State University, Columbus, OH, United States
| | - Anja Forche
- Department of Biology, Bowdoin College, Brunswick, ME, United States
| | - Matthew Z Anderson
- Department of Microbiology, The Ohio State University, Columbus, OH, United States.,Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
18
|
McDonough LD, Mishra AA, Tosini N, Kakade P, Penumutchu S, Liang SH, Maufrais C, Zhai B, Taur Y, Belenky P, Bennett RJ, Hohl TM, Koh AY, Ene IV. Candida albicans Isolates 529L and CHN1 Exhibit Stable Colonization of the Murine Gastrointestinal Tract. mBio 2021; 12:e0287821. [PMID: 34724818 PMCID: PMC8561340 DOI: 10.1128/mbio.02878-21] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/06/2021] [Indexed: 02/06/2023] Open
Abstract
Candida albicans is a pathobiont that colonizes multiple niches in the body including the gastrointestinal (GI) tract but is also responsible for both mucosal and systemic infections. Despite its prevalence as a human commensal, the murine GI tract is generally refractory to colonization with the C. albicans reference isolate SC5314. Here, we identify two C. albicans isolates, 529L and CHN1, that stably colonize the murine GI tract in three different animal facilities under conditions where SC5314 is lost from this niche. Analysis of the bacterial microbiota did not show notable differences among mice colonized with the three C. albicans strains. We compared the genotypes and phenotypes of these three strains and identified thousands of single nucleotide polymorphisms (SNPs) and multiple phenotypic differences, including their ability to grow and filament in response to nutritional cues. Despite striking filamentation differences under laboratory conditions, however, analysis of cell morphology in the GI tract revealed that the three isolates exhibited similar filamentation properties in this in vivo niche. Notably, we found that SC5314 is more sensitive to the antimicrobial peptide CRAMP, and the use of CRAMP-deficient mice modestly increased the ability of SC5314 to colonize the GI tract relative to CHN1 and 529L. These studies provide new insights into how strain-specific differences impact C. albicans traits in the host and advance CHN1 and 529L as relevant strains to study C. albicans pathobiology in its natural host niche. IMPORTANCE Understanding how fungi colonize the GI tract is increasingly recognized as highly relevant to human health. The animal models used to study Candida albicans commensalism commonly rely on altering the host microbiome (via antibiotic treatment or defined diets) to establish successful GI colonization by the C. albicans reference isolate SC5314. Here, we characterize two C. albicans isolates that can colonize the murine GI tract without antibiotic treatment and can therefore be used as tools for studying fungal commensalism. Importantly, experiments were replicated in three different animal facilities and utilized three different mouse strains. Differential colonization between fungal isolates was not associated with alterations in the bacterial microbiome but rather with distinct responses to CRAMP, a host antimicrobial peptide. This work emphasizes the importance of C. albicans intraspecies variation as well as host antimicrobial defense mechanisms in defining the outcome of commensal interactions.
Collapse
Affiliation(s)
- Liam D. McDonough
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
| | - Animesh A. Mishra
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Nicholas Tosini
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Pallavi Kakade
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Swathi Penumutchu
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Shen-Huan Liang
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | | | - Bing Zhai
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Ying Taur
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Peter Belenky
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Richard J. Bennett
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
| | - Tobias M. Hohl
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Andrew Y. Koh
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Harold C. Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Iuliana V. Ene
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, USA
- Department of Mycology, Institut Pasteur, Paris, France
| |
Collapse
|
19
|
Host defense mechanisms induce genome instability leading to rapid evolution in an opportunistic fungal pathogen. Infect Immun 2021; 90:e0032821. [PMID: 34898249 DOI: 10.1128/iai.00328-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The ability to generate genetic variation facilitates rapid adaptation in stressful environments. The opportunistic fungal pathogen Candida albicans frequently undergoes large-scale genomic changes, including aneuploidy and loss-of heterozygosity (LOH), following exposure to host environments. However, the specific host factors inducing C. albicans genome instability remain largely unknown. Here, we leveraged the genetic tractability of nematode hosts to investigate whether innate immune components, including antimicrobial peptides (AMPs) and reactive oxygen species (ROS), induced host-associated C. albicans genome instability. C. albicans associated with immunocompetent hosts carried multiple large-scale genomic changes including LOH, whole chromosome, and segmental aneuploidies. In contrast, C. albicans associated with immunocompromised hosts deficient in AMPs or ROS production had reduced LOH frequencies and fewer, if any, additional genomic changes. To evaluate if extensive host-induced genomic changes had long-term consequences for C. albicans adaptation, we experimentally evolved C. albicans in either immunocompetent or immunocompromised hosts and selected for increased virulence. C. albicans evolved in immunocompetent hosts rapidly increased virulence, but not in immunocompromised hosts. Taken together, this work suggests that host-produced ROS and AMPs induces genotypic plasticity in C. albicans which facilitates rapid evolution.
Collapse
|
20
|
Yang F, Lu H, Wu H, Fang T, Berman J, Jiang YY. Aneuploidy Underlies Tolerance and Cross-Tolerance to Drugs in Candida parapsilosis. Microbiol Spectr 2021; 9:e0050821. [PMID: 34612700 PMCID: PMC8510177 DOI: 10.1128/spectrum.00508-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 08/31/2021] [Indexed: 11/20/2022] Open
Abstract
Candida species are the most common human fungal pathogens worldwide. Although C. albicans remains the predominant cause of candidiasis, infections caused by non-albicans Candida species, including C. parapsilosis, are increasing. In C. albicans, genome plasticity has been shown to be a prevalent strategy of adaptation to stresses. However, the role of aneuploidy in C. parapsilosis is largely unknown. In this study, we found that six different aneuploid karyotypes conferred adaptation to the endoplasmic reticulum stress inducer tunicamycin (TUN) in C. parapsilosis. Interestingly, a specific aneuploidy including trisomy of chromosome 6 (Chr6x3) also enabled cross-tolerance to aureobasidin A (AbA), a sphingolipid biosynthesis inhibitor. Consistent with this, selection on AbA identified adaptors with three different aneuploid karyotypes, including Chr6x3, which also enabled cross-tolerance to both AbA and TUN. Therefore, as in other Candida species, recurrent aneuploid karyotypes enable the adaptation of C. parapsilosis to specific stresses, and specific aneuploidies enable cross-adaptation to different stresses. IMPORTANCE Candida parapsilosis is an emerging human fungal pathogen, especially prevalent in neonates. Aneuploidy, having uneven numbers of chromosomes, is a well-known mechanism for adapting to stress in Candida albicans, the most common human fungal pathogen. In this study, we exposed C. parapsilosis to two very different drugs and selected for rare cells that grew in one of the drugs. We found that the majority of isolates that grew in the drugs had acquired an extra copy of one of several aneuploid chromosomes and that specific aneuploid chromosomes appeared in several independent cell clones. Importantly, an extra copy of chromosome 6 was detected following selection in either one of the drugs, and this extra chromosome conferred the ability to grow in both drugs, a property called cross-adaptation, or cross-tolerance. Thus, this study highlights the genome plasticity of C. parapsilosis and the ability of an extra copy of a single chromosome to promote cell growth in the presence of more than one drug.
Collapse
Affiliation(s)
- Feng Yang
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Shmunis School of Biomedical and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Hui Lu
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hao Wu
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ting Fang
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Judith Berman
- Shmunis School of Biomedical and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yuan-ying Jiang
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
21
|
Yang F, Gritsenko V, Slor Futterman Y, Gao L, Zhen C, Lu H, Jiang YY, Berman J. Tunicamycin Potentiates Antifungal Drug Tolerance via Aneuploidy in Candida albicans. mBio 2021; 12:e0227221. [PMID: 34465026 PMCID: PMC8406271 DOI: 10.1128/mbio.02272-21] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 08/02/2021] [Indexed: 12/16/2022] Open
Abstract
How cells exposed to one stress are later able to better survive other types of stress is not well understood. In eukaryotic organisms, physiological and pathological stresses can disturb endoplasmic reticulum (ER) function, resulting in "ER stress." Here, we found that exposure to tunicamycin, an inducer of ER stress, resulted in the acquisition of a specific aneuploidy, chromosome 2 trisomy (Chr2x3), in Candida albicans. Importantly, the resulting aneuploidy also conferred cross-tolerance to caspofungin, a first-line echinocandin antifungal, as well as to hydroxyurea, a common chemotherapeutic agent. Exposure to a range of tunicamycin concentrations induced similar ER stress responses. Extra copies of one Chr2 gene, MKK2, affected both tunicamycin and caspofungin tolerance, while at least 3 genes on chromosome 2 (ALG7, RTA2, and RTA3) affected only tunicamycin and not caspofungin responses. Other Chr2 genes (RNR1 and RNR21) affected hydroxyurea tolerance but neither tunicamycin nor caspofungin tolerance. Deletion of components of the protein kinase C (PKC) or calcineurin pathways affected tolerance to both tunicamycin and caspofungin, supporting the idea that the ER stress response and echinocandin tolerance are regulated by overlapping stress response pathways. Thus, antifungal drug tolerance can arise rapidly via ER stress-induced aneuploidy. IMPORTANCE Candida albicans is a prevalent human fungal commensal and also a pathogen that causes life-threatening systemic infections. Treatment failures are frequent because few therapeutic antifungal drug classes are available and because drug resistance and tolerance limit drug efficacy. We found that C. albicans rapidly overcomes the cellular stress induced by the drug tunicamycin by duplicating chromosome 2. Also, chromosome 2 duplication confers tolerance not only to tunicamycin but also to the following two unrelated drugs: caspofungin, an antifungal drug, and hydroxyurea, a chemotherapeutic. Cross tolerance to the three drugs involves different sets of genes, although some genetic pathways affect the tolerance to two of these three drugs. This work highlights a serious concern, namely, that changes in whole chromosome copy number can occur in response to one type of stress, and yet, they may facilitate the emergence of tolerance to multiple drugs, including the few antifungal drug classes available to treat Candida infections.
Collapse
Affiliation(s)
- Feng Yang
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
- Shmunis School of Biomedical and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Vladimir Gritsenko
- Shmunis School of Biomedical and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yaniv Slor Futterman
- Shmunis School of Biomedical and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Lu Gao
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Cheng Zhen
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hui Lu
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yuan-ying Jiang
- Department of Pharmacy, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Judith Berman
- Shmunis School of Biomedical and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
22
|
The Interplay Between Neutral and Adaptive Processes Shapes Genetic Variation During Candida Species Evolution. CURRENT CLINICAL MICROBIOLOGY REPORTS 2021. [DOI: 10.1007/s40588-021-00171-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
23
|
Gorkovskiy A, Verstrepen KJ. The Role of Structural Variation in Adaptation and Evolution of Yeast and Other Fungi. Genes (Basel) 2021; 12:699. [PMID: 34066718 PMCID: PMC8150848 DOI: 10.3390/genes12050699] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 01/12/2023] Open
Abstract
Mutations in DNA can be limited to one or a few nucleotides, or encompass larger deletions, insertions, duplications, inversions and translocations that span long stretches of DNA or even full chromosomes. These so-called structural variations (SVs) can alter the gene copy number, modify open reading frames, change regulatory sequences or chromatin structure and thus result in major phenotypic changes. As some of the best-known examples of SV are linked to severe genetic disorders, this type of mutation has traditionally been regarded as negative and of little importance for adaptive evolution. However, the advent of genomic technologies uncovered the ubiquity of SVs even in healthy organisms. Moreover, experimental evolution studies suggest that SV is an important driver of evolution and adaptation to new environments. Here, we provide an overview of the causes and consequences of SV and their role in adaptation, with specific emphasis on fungi since these have proven to be excellent models to study SV.
Collapse
Affiliation(s)
- Anton Gorkovskiy
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Gaston Geenslaan 1, 3001 Leuven, Belgium;
- Laboratory for Systems Biology, VIB—KU Leuven Center for Microbiology, Bio-Incubator, Gaston Geenslaan 1, 3001 Leuven, Belgium
| | - Kevin J. Verstrepen
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Gaston Geenslaan 1, 3001 Leuven, Belgium;
- Laboratory for Systems Biology, VIB—KU Leuven Center for Microbiology, Bio-Incubator, Gaston Geenslaan 1, 3001 Leuven, Belgium
| |
Collapse
|
24
|
Yang F, Todd RT, Selmecki A, Jiang YY, Cao YB, Berman J. The fitness costs and benefits of trisomy of each Candida albicans chromosome. Genetics 2021; 218:6218773. [PMID: 33837402 DOI: 10.1093/genetics/iyab056] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/01/2021] [Indexed: 01/05/2023] Open
Abstract
Candida albicans is a prevalent human fungal pathogen. Rapid genomic change, due to aneuploidy, is a common mechanism that facilitates survival from multiple types of stresses including the few classes of available antifungal drugs. The stress survival of aneuploids occurs despite the fitness costs attributed to most aneuploids growing under idealized lab conditions. Systematic study of the aneuploid state in C. albicans has been hindered by the lack of a comprehensive collection of aneuploid strains. Here, we describe a collection of diploid C. albicans aneuploid strains, each carrying one extra copy of each chromosome, all from the same genetic background. We tested the fitness of this collection under several physiological conditions including shifts in pH, low glucose, oxidative stress, temperature, high osmolarity, membrane stress, and cell wall stress. We found that most aneuploids, under most conditions, were less fit than their euploid parent, yet there were specific conditions under which specific aneuploid isolates provided a fitness benefit relative to the euploid parent strain. Importantly, this fitness benefit was attributable to the change in the copy number of specific chromosomes. Thus, C. albicans can tolerate aneuploidy of each chromosome and some aneuploids confer improved growth under conditions that the yeast encounters in its host niches.
Collapse
Affiliation(s)
- Feng Yang
- Department of Pharmacology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.,Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200086, China.,Shmunis School of Biomedical and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Robert T Todd
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Anna Selmecki
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Yuan-Ying Jiang
- Department of Pharmacology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yong-Bing Cao
- Institute of Vascular Disease, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200086, China
| | - Judith Berman
- Shmunis School of Biomedical and Cancer Research, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
25
|
Millet N, Solis NV, Swidergall M. Mucosal IgA Prevents Commensal Candida albicans Dysbiosis in the Oral Cavity. Front Immunol 2020; 11:555363. [PMID: 33193324 PMCID: PMC7642201 DOI: 10.3389/fimmu.2020.555363] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 09/03/2020] [Indexed: 12/15/2022] Open
Abstract
The fungus Candida albicans colonizes the oral mucosal surface of 30–70% of healthy individuals. Due to local or systemic immunosuppression, this commensal fungus is able to proliferate resulting in oral disease, called oropharyngeal candidiasis (OPC). However, in healthy individuals C. albicans causes no harm. Unlike humans mice do not host C. albicans in their mycobiome. Thus, oral fungal challenge generates an acute immune response in a naive host. Therefore, we utilized C. albicans clinical isolates which are able to persist in the oral cavity without causing disease to analyze adaptive responses to oral fungal commensalism. We performed RNA sequencing to determine the transcriptional host response landscape during C. albicans colonization. Pathway analysis revealed an upregulation of adaptive host responses due to C. albicans oral persistence, including the upregulation of the immune network for IgA production. Fungal colonization increased cross-specific IgA levels in the saliva and the tongue, and IgA+ cells migrated to foci of fungal colonization. Binding of IgA prevented fungal epithelial adhesion and invasion resulting in a dampened proinflammatory epithelial response. Besides CD19+ CD138− B cells, plasmablasts, and plasma cells were enriched in the tongue of mice colonized with C. albicans suggesting a potential role of B lymphocytes during oral fungal colonization. B cell deficiency increased the oral fungal load without causing severe OPC. Thus, in the oral cavity B lymphocytes contribute to control commensal C. albicans carriage by secreting IgA at foci of colonization thereby preventing fungal dysbiosis.
Collapse
Affiliation(s)
- Nicolas Millet
- Division of Infectious Diseases, Harbor-UCLA Medical Center, Torrance, CA, United States.,Institute for Infection and Immunity, The Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA, United States
| | - Norma V Solis
- Division of Infectious Diseases, Harbor-UCLA Medical Center, Torrance, CA, United States.,Institute for Infection and Immunity, The Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA, United States
| | - Marc Swidergall
- Division of Infectious Diseases, Harbor-UCLA Medical Center, Torrance, CA, United States.,Institute for Infection and Immunity, The Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA, United States.,David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| |
Collapse
|
26
|
Marton T, Maufrais C, d'Enfert C, Legrand M. Use of CRISPR-Cas9 To Target Homologous Recombination Limits Transformation-Induced Genomic Changes in Candida albicans. mSphere 2020; 5:e00620-20. [PMID: 32878930 PMCID: PMC7471004 DOI: 10.1128/msphere.00620-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/09/2020] [Indexed: 12/30/2022] Open
Abstract
Most of our knowledge relating to molecular mechanisms of human fungal pathogenesis in Candida albicans relies on reverse genetics approaches, requiring strain engineering. DNA-mediated transformation of C. albicans has been described as highly mutagenic, potentially accentuated by the organism's genome plasticity, including the acquisition of genomic rearrangements, notably upon exposure to stress. The advent of CRISPR-Cas9 has vastly accelerated the process of genetically modifying strains, especially in diploid (such as C. albicans) and polyploid organisms. The effects of unleashing this nuclease within the genome of C. albicans are unknown, although several studies in other organisms report Cas9-associated toxicity and off-target DNA breaks. Upon the construction of a C. albicans strain collection, we took the opportunity to compare strains which were constructed using CRISPR-Cas9-free and CRISPR-Cas9-dependent transformation strategies, by quantifying and describing transformation-induced loss-of-heterozygosity and hyperploidy events. Our analysis of 57 strains highlights the mutagenic effects of transformation in C. albicans, regardless of the transformation protocol, but also underscores interesting differences in terms of genomic changes between strains obtained using different transformation protocols. Indeed, although strains constructed using the CRISPR-Cas9-free transformation method display numerous concomitant genomic changes randomly distributed throughout their genomes, the use of CRISPR-Cas9 leads to a reduced overall number of genome changes, particularly hyperploidies. Overall, in addition to facilitating strain construction by reducing the number of transformation steps, the CRISPR-Cas9-dependent transformation strategy in C. albicans appears to limit transformation-associated genome changes.IMPORTANCE Genome editing is essential to nearly all research studies aimed at gaining insight into the molecular mechanisms underlying various biological processes, including those in the opportunistic pathogen Candida albicans The adaptation of the CRISPR-Cas9 system greatly facilitates genome engineering in many organisms. However, our understanding of the effects of CRISPR-Cas9 technology on the biology of C. albicans is limited. In this study, we sought to compare the extents of transformation-induced genomic changes within strains engineered using CRISPR-Cas9-free and CRISPR-Cas9-dependent transformation methods. CRISPR-Cas9-dependent transformation allows one to simultaneously target both homologs and, importantly, appears less mutagenic in C. albicans, since strains engineered using CRISPR-Cas9 display an overall decrease in concomitant genomic changes.
Collapse
Affiliation(s)
- Timea Marton
- Institut Pasteur, INRA, Unité Biologie et Pathogénicité Fongiques, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Corinne Maufrais
- Institut Pasteur, INRA, Unité Biologie et Pathogénicité Fongiques, Paris, France
- Hub de Bioinformatique et Biostatistique, Département de Biologie Computationnelle, USR 3756 IP CNRS, Institut Pasteur, Paris, France
| | - Christophe d'Enfert
- Institut Pasteur, INRA, Unité Biologie et Pathogénicité Fongiques, Paris, France
| | - Melanie Legrand
- Institut Pasteur, INRA, Unité Biologie et Pathogénicité Fongiques, Paris, France
| |
Collapse
|
27
|
Todd RT, Selmecki A. Expandable and reversible copy number amplification drives rapid adaptation to antifungal drugs. eLife 2020; 9:e58349. [PMID: 32687060 PMCID: PMC7371428 DOI: 10.7554/elife.58349] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/09/2020] [Indexed: 12/13/2022] Open
Abstract
Previously, we identified long repeat sequences that are frequently associated with genome rearrangements, including copy number variation (CNV), in many diverse isolates of the human fungal pathogen Candida albicans (Todd et al., 2019). Here, we describe the rapid acquisition of novel, high copy number CNVs during adaptation to azole antifungal drugs. Single-cell karyotype analysis indicates that these CNVs appear to arise via a dicentric chromosome intermediate and breakage-fusion-bridge cycles that are repaired using multiple distinct long inverted repeat sequences. Subsequent removal of the antifungal drug can lead to a dramatic loss of the CNV and reversion to the progenitor genotype and drug susceptibility phenotype. These findings support a novel mechanism for the rapid acquisition of antifungal drug resistance and provide genomic evidence for the heterogeneity frequently observed in clinical settings.
Collapse
Affiliation(s)
- Robert T Todd
- Department of Microbiology and Immunology, University of Minnesota Medical SchoolMinneapolis, MinnesotaUnited States
| | - Anna Selmecki
- Department of Microbiology and Immunology, University of Minnesota Medical SchoolMinneapolis, MinnesotaUnited States
| |
Collapse
|
28
|
Host-Induced Genome Instability Rapidly Generates Phenotypic Variation across Candida albicans Strains and Ploidy States. mSphere 2020; 5:5/3/e00433-20. [PMID: 32493724 PMCID: PMC7273350 DOI: 10.1128/msphere.00433-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Candida albicans is an opportunistic fungal pathogen of humans. The ability to generate genetic variation is essential for adaptation and is a strategy that C. albicans and other fungal pathogens use to change their genome size. Stressful environments, including the host, induce C. albicans genome instability. Here, we investigated how C. albicans genetic background and ploidy state impact genome instability, both in vitro and in a host environment. We show that the host environment induces genome instability, but the magnitude depends on C. albicans genetic background. Furthermore, we show that tetraploid C. albicans is highly unstable in host environments and rapidly reduces in genome size. These reductions in genome size often resulted in reduced virulence. In contrast, diploid C. albicans displayed modest host-induced genome size changes, yet these frequently resulted in increased virulence. Such studies are essential for understanding how opportunistic pathogens respond and potentially adapt to the host environment. Candida albicans is an opportunistic fungal pathogen of humans that is typically diploid yet has a highly labile genome tolerant of large-scale perturbations including chromosomal aneuploidy and loss-of-heterozygosity events. The ability to rapidly generate genetic variation is crucial for C. albicans to adapt to changing or stressful environments, like those encountered in the host. Genetic variation occurs via stress-induced mutagenesis or can be generated through its parasexual cycle, in which tetraploids arise via diploid mating or stress-induced mitotic defects and undergo nonmeiotic ploidy reduction. However, it remains largely unknown how genetic background contributes to C. albicans genome instability in vitro or in the host environment. Here, we tested how genetic background, ploidy, and the host environment impacts C. albicans genome stability. We found that host association induced both loss-of-heterozygosity events and genome size changes, regardless of genetic background or ploidy. However, the magnitude and types of genome changes varied across C. albicans strain background and ploidy state. We then assessed if host-induced genomic changes resulted in fitness consequences on growth rate and nonlethal virulence phenotypes and found that many host-derived isolates significantly changed relative to their parental strain. Interestingly, diploid host-associated C. albicans predominantly decreased host reproductive fitness, whereas tetraploid host-associated C. albicans increased host reproductive fitness. Together, these results are important for understanding how host-induced genomic changes in C. albicans alter its relationship with the host. IMPORTANCECandida albicans is an opportunistic fungal pathogen of humans. The ability to generate genetic variation is essential for adaptation and is a strategy that C. albicans and other fungal pathogens use to change their genome size. Stressful environments, including the host, induce C. albicans genome instability. Here, we investigated how C. albicans genetic background and ploidy state impact genome instability, both in vitro and in a host environment. We show that the host environment induces genome instability, but the magnitude depends on C. albicans genetic background. Furthermore, we show that tetraploid C. albicans is highly unstable in host environments and rapidly reduces in genome size. These reductions in genome size often resulted in reduced virulence. In contrast, diploid C. albicans displayed modest host-induced genome size changes, yet these frequently resulted in increased virulence. Such studies are essential for understanding how opportunistic pathogens respond and potentially adapt to the host environment.
Collapse
|
29
|
Beekman CN, Ene IV. Short-term evolution strategies for host adaptation and drug escape in human fungal pathogens. PLoS Pathog 2020; 16:e1008519. [PMID: 32407384 PMCID: PMC7224449 DOI: 10.1371/journal.ppat.1008519] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Chapman N. Beekman
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, United States of America
| | - Iuliana V. Ene
- Department of Molecular Microbiology and Immunology, Brown University, Providence, Rhode Island, United States of America
- * E-mail:
| |
Collapse
|
30
|
Pellon A, Sadeghi Nasab SD, Moyes DL. New Insights in Candida albicans Innate Immunity at the Mucosa: Toxins, Epithelium, Metabolism, and Beyond. Front Cell Infect Microbiol 2020; 10:81. [PMID: 32195196 PMCID: PMC7062647 DOI: 10.3389/fcimb.2020.00081] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 02/18/2020] [Indexed: 12/16/2022] Open
Abstract
The mucosal surfaces of the human body are challenged by millions of microbes on a daily basis. Co-evolution with these microbes has led to the development of plastic mechanisms in both host and microorganisms that regulate the balance between preserving beneficial microbes and clearing pathogens. Candida albicans is a fungal pathobiont present in most healthy individuals that, under certain circumstances, can become pathogenic and cause everything from mild mucosal infections to life-threatening systemic diseases. As an essential part of the innate immunity in mucosae, epithelial cells elaborate complex immune responses that discriminate between commensal and pathogenic microbes, including C. albicans. Recently, several significant advances have been made identifying new pieces in the puzzle of host-microbe interactions. This review will summarize these advances in the context of our current knowledge of anti-Candida mucosal immunity, and their impact on epithelial immune responses to this fungal pathogen.
Collapse
Affiliation(s)
- Aize Pellon
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, United Kingdom
| | - Shervin Dokht Sadeghi Nasab
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, United Kingdom
| | - David L Moyes
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, United Kingdom
| |
Collapse
|
31
|
The Impact of Gene Dosage and Heterozygosity on The Diploid Pathobiont Candida albicans. J Fungi (Basel) 2019; 6:jof6010010. [PMID: 31892130 PMCID: PMC7151161 DOI: 10.3390/jof6010010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/14/2019] [Accepted: 12/18/2019] [Indexed: 12/29/2022] Open
Abstract
Candida albicans is a fungal species that can colonize multiple niches in the human host where it can grow either as a commensal or as an opportunistic pathogen. The genome of C. albicans has long been of considerable interest, given that it is highly plastic and can undergo a wide variety of alterations. These changes play a fundamental role in determining C. albicans traits and have been shown to enable adaptation both to the host and to antifungal drugs. C. albicans isolates contain a heterozygous diploid genome that displays variation from the level of single nucleotides to largescale rearrangements and aneuploidy. The heterozygous nature of the genome is now increasingly recognized as being central to C. albicans biology, as the relative fitness of isolates has been shown to correlate with higher levels of overall heterozygosity. Moreover, loss of heterozygosity (LOH) events can arise frequently, either at single polymorphisms or at a chromosomal level, and both can alter the behavior of C. albicans cells during infection or can modulate drug resistance. In this review, we examine genome plasticity in this pathobiont focusing on how gene dosage variation and loss of heterozygosity events can arise and how these modulate C. albicans behavior.
Collapse
|
32
|
Dunn MJ, Anderson MZ. To Repeat or Not to Repeat: Repetitive Sequences Regulate Genome Stability in Candida albicans. Genes (Basel) 2019; 10:genes10110866. [PMID: 31671659 PMCID: PMC6896093 DOI: 10.3390/genes10110866] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/15/2019] [Accepted: 10/23/2019] [Indexed: 12/18/2022] Open
Abstract
Genome instability often leads to cell death but can also give rise to innovative genotypic and phenotypic variation through mutation and structural rearrangements. Repetitive sequences and chromatin architecture in particular are critical modulators of recombination and mutability. In Candida albicans, four major classes of repeats exist in the genome: telomeres, subtelomeres, the major repeat sequence (MRS), and the ribosomal DNA (rDNA) locus. Characterization of these loci has revealed how their structure contributes to recombination and either promotes or restricts sequence evolution. The mechanisms of recombination that give rise to genome instability are known for some of these regions, whereas others are generally unexplored. More recent work has revealed additional repetitive elements, including expanded gene families and centromeric repeats that facilitate recombination and genetic innovation. Together, the repeats facilitate C. albicans evolution through construction of novel genotypes that underlie C. albicans adaptive potential and promote persistence across its human host.
Collapse
Affiliation(s)
- Matthew J. Dunn
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA;
| | - Matthew Z. Anderson
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA;
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA
- Correspondence: ; Tel.: +614-247-0058
| |
Collapse
|
33
|
Buscaino A. Chromatin-Mediated Regulation of Genome Plasticity in Human Fungal Pathogens. Genes (Basel) 2019; 10:E855. [PMID: 31661931 PMCID: PMC6896017 DOI: 10.3390/genes10110855] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/18/2019] [Accepted: 10/25/2019] [Indexed: 12/20/2022] Open
Abstract
Human fungal pathogens, such as Candida albicans, Aspergillus fumigatus and Cryptococcus neoformans, are a public health problem, causing millions of infections and killing almost half a million people annually. The ability of these pathogens to colonise almost every organ in the human body and cause life-threating infections relies on their capacity to adapt and thrive in diverse hostile host-niche environments. Stress-induced genome instability is a key adaptive strategy used by human fungal pathogens as it increases genetic diversity, thereby allowing selection of genotype(s) better adapted to a new environment. Heterochromatin represses gene expression and deleterious recombination and could play a key role in modulating genome stability in response to environmental changes. However, very little is known about heterochromatin structure and function in human fungal pathogens. In this review, I use our knowledge of heterochromatin structure and function in fungal model systems as a road map to review the role of heterochromatin in regulating genome plasticity in the most common human fungal pathogens: Candida albicans, Aspergillus fumigatus and Cryptococcus neoformans.
Collapse
Affiliation(s)
- Alessia Buscaino
- University of Kent, School of Biosciences, Kent Fungal Group, Canterbury Kent CT2 7NJ, UK.
| |
Collapse
|
34
|
Tsai HJ, Nelliat A. A Double-Edged Sword: Aneuploidy is a Prevalent Strategy in Fungal Adaptation. Genes (Basel) 2019; 10:E787. [PMID: 31658789 PMCID: PMC6826469 DOI: 10.3390/genes10100787] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 09/28/2019] [Accepted: 10/08/2019] [Indexed: 12/16/2022] Open
Abstract
Aneuploidy, a deviation from a balanced genome by either gain or loss of chromosomes, is generally associated with impaired fitness and developmental defects in eukaryotic organisms. While the general physiological impact of aneuploidy remains largely elusive, many phenotypes associated with aneuploidy link to a common theme of stress adaptation. Here, we review previously identified mechanisms and observations related to aneuploidy, focusing on the highly diverse eukaryotes, fungi. Fungi, which have conquered virtually all environments, including several hostile ecological niches, exhibit widespread aneuploidy and employ it as an adaptive strategy under severe stress. Gambling with the balance between genome plasticity and stability has its cost and in fact, most aneuploidies have fitness defects. How can this fitness defect be reconciled with the prevalence of aneuploidy in fungi? It is likely that the fitness cost of the extra chromosomes is outweighed by the advantage they confer under life-threatening stresses. In fact, once the selective pressures are withdrawn, aneuploidy is often lost and replaced by less drastic mutations that possibly incur a lower fitness cost. We discuss representative examples across hostile environments, including medically and industrially relevant cases, to highlight potential adaptive mechanisms in aneuploid yeast.
Collapse
Affiliation(s)
- Hung-Ji Tsai
- Institute of Microbiology and Infection, and School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA.
| | - Anjali Nelliat
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
35
|
Abstract
Matt Anderson works in the field of genetics and infectious disease, with a focus on the human fungal pathogen Candida albicans. In this mSphere of Influence article, he reflects on how two papers, “Gene Flow Contributes to Diversification of the Major Fungal Pathogen Candida albicans” (J. Ropars, C. Maufrais, D. Diogo, M. Marcet-Houben, A. Perin, et al., Nat Commun 9:2253, 2018, https://doi.org/10.1038/s41467-018-04787-4) and “Selection of Candida albicans Trisomy during Oropharyngeal Infection Results in a Commensal-Like Phenotype” (A. Forche, N. V. Solis, M. Swidergall, R. Thomas, A. Guyer, et al., PLoS Genet 15:e1008137, 2019, https://doi.org/10.1371/journal.pgen.1008137), made an impact on him by incorporating less commonly investigated mechanisms of genome evolution into the context of microbial adaptation. Matt Anderson works in the field of genetics and infectious disease, with a focus on the human fungal pathogen Candida albicans. In this mSphere of Influence article, he reflects on how two papers, “Gene Flow Contributes to Diversification of the Major Fungal Pathogen Candida albicans” (J. Ropars, C. Maufrais, D. Diogo, M. Marcet-Houben, A. Perin, et al., Nat Commun 9:2253, 2018, https://doi.org/10.1038/s41467-018-04787-4) and “Selection of Candida albicans Trisomy during Oropharyngeal Infection Results in a Commensal-Like Phenotype” (A. Forche, N. V. Solis, M. Swidergall, R. Thomas, A. Guyer, et al., PLoS Genet 15:e1008137, 2019, https://doi.org/10.1371/journal.pgen.1008137), made an impact on him by incorporating less commonly investigated mechanisms of genome evolution into the context of microbial adaptation.
Collapse
|