1
|
Guven B, Onay-Besikci A. Past and present of beta arrestins: A new perspective on insulin secretion and effect. Eur J Pharmacol 2023; 956:175952. [PMID: 37541367 DOI: 10.1016/j.ejphar.2023.175952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/24/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
BACKGROUND Beta arrestins had been known as intracellular adaptors that uncouple and inactivate the G protein-coupled receptors that they interact with. Their roles as signal initiators for some receptors have recently been recognized. SCOPE OF REVIEW In this review, we focused on their role in mediating metabolic modulation primarily in relation to insulin signaling. Commenced by the upstream receptor, they seem to act like intracellular hubs that divert the metabolic profile of the cell. The amount of metabolic substrates in circulation and their usage/deposition by tissues are controlled by the contribution of all systems in the organism. This control is enabled by the release of hormones such as insulin, glucagon and glucagon-like peptide-1. Intriguingly, some ligands -either agonists or antagonists-of different classes of receptors have preferential properties mediated by β arrestins. This is not surprizing considering that substrate supply and usage should parallel physiological function such as hormone release or muscle contraction. MAJOR CONCLUSIONS Available data indicate that β arrestins conduct the regulatory role in insulin secretion and action. They may be good candidates to target when the upstream signal demands the function that may compromise the cell. An example is carvedilol that is protective by preventing the stimulatory effects of excessive catecholamines, stimulates mitochondrial function and has preferential clinical outcomes in metabolic disorders.
Collapse
Affiliation(s)
- Berna Guven
- Faculty of Pharmacy, Department of Pharmacology, Ankara University, Ankara, Turkey
| | - Arzu Onay-Besikci
- Faculty of Pharmacy, Department of Pharmacology, Ankara University, Ankara, Turkey.
| |
Collapse
|
2
|
Wess J, Oteng AB, Rivera-Gonzalez O, Gurevich EV, Gurevich VV. β-Arrestins: Structure, Function, Physiology, and Pharmacological Perspectives. Pharmacol Rev 2023; 75:854-884. [PMID: 37028945 PMCID: PMC10441628 DOI: 10.1124/pharmrev.121.000302] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 03/23/2023] [Accepted: 04/03/2023] [Indexed: 04/09/2023] Open
Abstract
The two β-arrestins, β-arrestin-1 and -2 (systematic names: arrestin-2 and -3, respectively), are multifunctional intracellular proteins that regulate the activity of a very large number of cellular signaling pathways and physiologic functions. The two proteins were discovered for their ability to disrupt signaling via G protein-coupled receptors (GPCRs) via binding to the activated receptors. However, it is now well recognized that both β-arrestins can also act as direct modulators of numerous cellular processes via either GPCR-dependent or -independent mechanisms. Recent structural, biophysical, and biochemical studies have provided novel insights into how β-arrestins bind to activated GPCRs and downstream effector proteins. Studies with β-arrestin mutant mice have identified numerous physiologic and pathophysiological processes regulated by β-arrestin-1 and/or -2. Following a short summary of recent structural studies, this review primarily focuses on β-arrestin-regulated physiologic functions, with particular focus on the central nervous system and the roles of β-arrestins in carcinogenesis and key metabolic processes including the maintenance of glucose and energy homeostasis. This review also highlights potential therapeutic implications of these studies and discusses strategies that could prove useful for targeting specific β-arrestin-regulated signaling pathways for therapeutic purposes. SIGNIFICANCE STATEMENT: The two β-arrestins, structurally closely related intracellular proteins that are evolutionarily highly conserved, have emerged as multifunctional proteins able to regulate a vast array of cellular and physiological functions. The outcome of studies with β-arrestin mutant mice and cultured cells, complemented by novel insights into β-arrestin structure and function, should pave the way for the development of novel classes of therapeutically useful drugs capable of regulating specific β-arrestin functions.
Collapse
Affiliation(s)
- Jürgen Wess
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (J.W., A.-B.O., O.R.-G.); and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee (E.V.G., V.V.G.)
| | - Antwi-Boasiako Oteng
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (J.W., A.-B.O., O.R.-G.); and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee (E.V.G., V.V.G.)
| | - Osvaldo Rivera-Gonzalez
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (J.W., A.-B.O., O.R.-G.); and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee (E.V.G., V.V.G.)
| | - Eugenia V Gurevich
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (J.W., A.-B.O., O.R.-G.); and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee (E.V.G., V.V.G.)
| | - Vsevolod V Gurevich
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland (J.W., A.-B.O., O.R.-G.); and Department of Pharmacology, Vanderbilt University, Nashville, Tennessee (E.V.G., V.V.G.)
| |
Collapse
|
3
|
Dalle S, Schouten M, Meeus G, Slagmolen L, Koppo K. Molecular networks underlying cannabinoid signaling in skeletal muscle plasticity. J Cell Physiol 2022; 237:3517-3540. [PMID: 35862111 DOI: 10.1002/jcp.30837] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/01/2022] [Accepted: 07/08/2022] [Indexed: 11/07/2022]
Abstract
The cannabinoid system is ubiquitously present and is classically considered to engage in neural and immunity processes. Yet, the role of the cannabinoid system in the whole body and tissue metabolism via central and peripheral mechanisms is increasingly recognized. The present review provides insights in (i) how cannabinoid signaling is regulated via receptor-independent and -dependent mechanisms and (ii) how these signaling cascades (might) affect skeletal muscle plasticity and physiology. Receptor-independent mechanisms include endocannabinoid metabolism to eicosanoids and the regulation of ion channels. Alternatively, endocannabinoids can act as ligands for different classic (cannabinoid receptor 1 [CB1 ], CB2 ) and/or alternative (e.g., TRPV1, GPR55) cannabinoid receptors with a unique affinity, specificity, and intracellular signaling cascade (often tissue-specific). Antagonism of CB1 might hold clues to improve oxidative (mitochondrial) metabolism, insulin sensitivity, satellite cell growth, and muscle anabolism, whereas CB2 agonism might be a promising way to stimulate muscle metabolism and muscle cell growth. Besides, CB2 ameliorates muscle regeneration via macrophage polarization toward an anti-inflammatory phenotype, induction of MyoD and myogenin expression and antifibrotic mechanisms. Also TRPV1 and GPR55 contribute to the regulation of muscle growth and metabolism. Future studies should reveal how the cannabinoid system can be targeted to improve muscle quantity and/or quality in conditions such as ageing, disease, disuse, and metabolic dysregulation, taking into account challenges that are inherent to modulation of the cannabinoid system, such as central and peripheral side effects.
Collapse
Affiliation(s)
- Sebastiaan Dalle
- Department of Movement Sciences, Exercise Physiology Research Group, KU Leuven, Leuven, Belgium
| | - Moniek Schouten
- Department of Movement Sciences, Exercise Physiology Research Group, KU Leuven, Leuven, Belgium
| | - Gitte Meeus
- Department of Movement Sciences, Exercise Physiology Research Group, KU Leuven, Leuven, Belgium
| | - Lotte Slagmolen
- Department of Movement Sciences, Exercise Physiology Research Group, KU Leuven, Leuven, Belgium
| | - Katrien Koppo
- Department of Movement Sciences, Exercise Physiology Research Group, KU Leuven, Leuven, Belgium
| |
Collapse
|
4
|
Cheng H, Guo P, Su T, Jiang C, Zhu Z, Wei W, Zhang L, Wang Q. G protein-coupled receptor kinase type 2 and β-arrestin2: Key players in immune cell functions and inflammation. Cell Signal 2022; 95:110337. [PMID: 35461901 DOI: 10.1016/j.cellsig.2022.110337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/15/2022] [Accepted: 04/15/2022] [Indexed: 02/07/2023]
|
5
|
Meister J, Bone DBJ, Knudsen JR, Barella LF, Velenosi TJ, Akhmedov D, Lee RJ, Cohen AH, Gavrilova O, Cui Y, Karsenty G, Chen M, Weinstein LS, Kleinert M, Berdeaux R, Jensen TE, Richter EA, Wess J. Clenbuterol exerts antidiabetic activity through metabolic reprogramming of skeletal muscle cells. Nat Commun 2022; 13:22. [PMID: 35013148 PMCID: PMC8748640 DOI: 10.1038/s41467-021-27540-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 11/24/2021] [Indexed: 12/14/2022] Open
Abstract
Activation of the sympathetic nervous system causes pronounced metabolic changes that are mediated by multiple adrenergic receptor subtypes. Systemic treatment with β2-adrenergic receptor agonists results in multiple beneficial metabolic effects, including improved glucose homeostasis. To elucidate the underlying cellular and molecular mechanisms, we chronically treated wild-type mice and several newly developed mutant mouse strains with clenbuterol, a selective β2-adrenergic receptor agonist. Clenbuterol administration caused pronounced improvements in glucose homeostasis and prevented the metabolic deficits in mouse models of β-cell dysfunction and insulin resistance. Studies with skeletal muscle-specific mutant mice demonstrated that these metabolic improvements required activation of skeletal muscle β2-adrenergic receptors and the stimulatory G protein, Gs. Unbiased transcriptomic and metabolomic analyses showed that chronic β2-adrenergic receptor stimulation caused metabolic reprogramming of skeletal muscle characterized by enhanced glucose utilization. These findings strongly suggest that agents targeting skeletal muscle metabolism by modulating β2-adrenergic receptor-dependent signaling pathways may prove beneficial as antidiabetic drugs.
Collapse
Affiliation(s)
- Jaroslawna Meister
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 20892, USA.
| | - Derek B J Bone
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 20892, USA
| | - Jonas R Knudsen
- Departments of Nutrition, Exercise and Sports, University of Copenhagen, København, Denmark
| | - Luiz F Barella
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 20892, USA
| | - Thomas J Velenosi
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Dmitry Akhmedov
- Departments of Integrative Biology and Pharmacology, Houston Medical School, Houston, TX, 77030, USA
| | - Regina J Lee
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 20892, USA
| | - Amanda H Cohen
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 20892, USA
| | - Oksana Gavrilova
- Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 20892, USA
| | - Yinghong Cui
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 20892, USA
| | - Gerard Karsenty
- Departments of Genetics and Development, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Min Chen
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 20892, USA
| | - Lee S Weinstein
- Metabolic Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 20892, USA
| | - Maximilian Kleinert
- Departments of Nutrition, Exercise and Sports, University of Copenhagen, København, Denmark
- Muscle Physiology and Metabolism Group, German Institute of Human Nutrition, Potsdam-Rehbrücke, Nuthetal, Germany
| | - Rebecca Berdeaux
- Departments of Integrative Biology and Pharmacology, Houston Medical School, Houston, TX, 77030, USA
| | - Thomas E Jensen
- Departments of Nutrition, Exercise and Sports, University of Copenhagen, København, Denmark
| | - Erik A Richter
- Departments of Nutrition, Exercise and Sports, University of Copenhagen, København, Denmark
| | - Jürgen Wess
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, 20892, USA.
| |
Collapse
|
6
|
Small L, Ehrlich A, Iversen J, Ashcroft SP, Trošt K, Moritz T, Hartmann B, Holst JJ, Treebak JT, Zierath JR, Barrès R. Comparative analysis of oral and intraperitoneal glucose tolerance tests in mice. Mol Metab 2022; 57:101440. [PMID: 35026435 PMCID: PMC8810558 DOI: 10.1016/j.molmet.2022.101440] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 01/06/2022] [Accepted: 01/08/2022] [Indexed: 01/18/2023] Open
Abstract
Objective The glucose tolerance test (GTT) is widely used in preclinical research to investigate glucose metabolism, but there is no standardised way to administer glucose. The aim of this study was to directly compare the effect of the route of glucose administration on glucose and insulin kinetics during a GTT in mice. Methods A GTT was performed in lean male and female mice and obese male mice and glucose was administered via the oral or intraperitoneal (I.P.) route. Samples were collected frequently during the GTT to provide a full time-course of the insulin and glucose excursions. In another cohort of lean male mice, plasma concentrations of insulin, c-peptide, and incretin hormones were measured at early time points after glucose administration. A stable-isotope labelled GTT (SiGTT) was then performed to delineate the contribution of exogenous and endogenous glucose to glycemia during the GTT, comparing both methods of glucose administration. Finally, we present a method to easily measure insulin from small volumes of blood during a GTT by directly assaying whole-blood insulin using ELISA and show a good concordance between whole-blood and plasma insulin measurements. Results We report that I.P. glucose administration results in an elevated blood glucose excursion and a largely absent elevation in blood insulin and plasma incretin hormones when compared to oral administration. Utilising stable-isotope labelled glucose, we demonstrate that the difference in glucose excursion between the two routes of administration is mainly due to the lack of suppression of glucose production in I.P. injected mice. Additionally, rates of exogenous glucose appearance into circulation were different between lean and obese mice after I.P., but not after oral glucose administration. Conclusion Reflecting on these data, we suggest that careful consideration be given to the route of glucose administration when planning a GTT procedure in mice and that in most circumstances the oral route of glucose administration should be preferred over the I.P. route to avoid possible artifacts originating from a non-physiological route. Intraperitoneal glucose administration does not promote insulin secretion. Exogenous glucose appearance is delayed in obese mice after intraperitoneal administration. Hepatic glucose production is suppressed after administering oral not intraperitoneal glucose. Measuring insulin from whole blood is comparable to that from plasma.
Collapse
Affiliation(s)
- Lewin Small
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen
| | - Amy Ehrlich
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen
| | - Jo Iversen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen
| | - Stephen P Ashcroft
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen
| | - Kajetan Trošt
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen
| | - Thomas Moritz
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen; Swedish Metabolomics Centre, Department of Plant Physiology and Forest Genetics, Swedish University of Agricultural Sciences
| | - Bolette Hartmann
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen; Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen
| | - Jens J Holst
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen; Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen
| | - Jonas T Treebak
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen
| | - Juleen R Zierath
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen; Department of Physiology and Pharmacology and Section for Integrative Physiology, Department of Molecular Medicine and Surgery and Karolinska Institutet
| | - Romain Barrès
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen; Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d'Azur and CNRS.
| |
Collapse
|
7
|
Pydi SP, Barella LF, Zhu L, Meister J, Rossi M, Wess J. β-Arrestins as Important Regulators of Glucose and Energy Homeostasis. Annu Rev Physiol 2021; 84:17-40. [PMID: 34705480 DOI: 10.1146/annurev-physiol-060721-092948] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
β-Arrestin-1 and -2 (also known as arrestin-2 and -3, respectively) are ubiquitously expressed cytoplasmic proteins that dampen signaling through G protein-coupled receptors. However, β-arrestins can also act as signaling molecules in their own right. To investigate the potential metabolic roles of the two β-arrestins in modulating glucose and energy homeostasis, recent studies analyzed mutant mice that lacked or overexpressed β-arrestin-1 and/or -2 in distinct, metabolically important cell types. Metabolic analysis of these mutant mice clearly demonstrated that both β-arrestins play key roles in regulating the function of most of these cell types, resulting in striking changes in whole-body glucose and/or energy homeostasis. These studies also revealed that β-arrestin-1 and -2, though structurally closely related, clearly differ in their metabolic roles under physiological and pathophysiological conditions. These new findings should guide the development of novel drugs for the treatment of various metabolic disorders, including type 2 diabetes and obesity. Expected final online publication date for the Annual Review of Physiology, Volume 84 is February 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Sai P Pydi
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, US Department of Health and Human Services, Bethesda, Maryland, USA; .,Current affiliation: Department of Biological Sciences and Bioengineering, The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology, Kanpur, India
| | - Luiz F Barella
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, US Department of Health and Human Services, Bethesda, Maryland, USA;
| | - Lu Zhu
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, US Department of Health and Human Services, Bethesda, Maryland, USA;
| | - Jaroslawna Meister
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, US Department of Health and Human Services, Bethesda, Maryland, USA;
| | - Mario Rossi
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, US Department of Health and Human Services, Bethesda, Maryland, USA;
| | - Jürgen Wess
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, US Department of Health and Human Services, Bethesda, Maryland, USA;
| |
Collapse
|
8
|
Liu Z, Iyer MR, Godlewski G, Jourdan T, Liu J, Coffey NJ, Zawatsky CN, Puhl HL, Wess J, Meister J, Liow JS, Innis RB, Hassan SA, Lee YS, Kunos G, Cinar R. Functional Selectivity of a Biased Cannabinoid-1 Receptor (CB 1R) Antagonist. ACS Pharmacol Transl Sci 2021; 4:1175-1187. [PMID: 34151207 PMCID: PMC8204328 DOI: 10.1021/acsptsci.1c00048] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Indexed: 12/31/2022]
Abstract
Seven-transmembrane receptors signal via G-protein- and β-arrestin-dependent pathways. We describe a peripheral CB1R antagonist (MRI-1891) highly biased toward inhibiting CB1R-induced β-arrestin-2 (βArr2) recruitment over G-protein activation. In obese wild-type and βArr2-knockout (KO) mice, MRI-1891 treatment reduces food intake and body weight without eliciting anxiety even at a high dose causing partial brain CB1R occupancy. By contrast, the unbiased global CB1R antagonist rimonabant elicits anxiety in both strains, indicating no βArr2 involvement. Interestingly, obesity-induced muscle insulin resistance is improved by MRI-1891 in wild-type but not in βArr2-KO mice. In C2C12 myoblasts, CB1R activation suppresses insulin-induced akt-2 phosphorylation, preventable by MRI-1891, βArr2 knockdown or overexpression of CB1R-interacting protein. MRI-1891, but not rimonabant, interacts with nonpolar residues on the N-terminal loop, including F108, and on transmembrane helix-1, including S123, a combination that facilitates βArr2 bias. Thus, CB1R promotes muscle insulin resistance via βArr2 signaling, selectively mitigated by a biased CB1R antagonist at reduced risk of central nervous system (CNS) side effects.
Collapse
Affiliation(s)
- Ziyi Liu
- Laboratory of Physiologic Studies and Section on Cellular Biophotonics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland 20892-9304, United States
| | - Malliga R Iyer
- Laboratory of Physiologic Studies and Section on Cellular Biophotonics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland 20892-9304, United States
| | - Grzegorz Godlewski
- Laboratory of Physiologic Studies and Section on Cellular Biophotonics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland 20892-9304, United States
| | - Tony Jourdan
- Laboratory of Physiologic Studies and Section on Cellular Biophotonics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland 20892-9304, United States
| | - Jie Liu
- Laboratory of Physiologic Studies and Section on Cellular Biophotonics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland 20892-9304, United States
| | - Nathan J Coffey
- Laboratory of Physiologic Studies and Section on Cellular Biophotonics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland 20892-9304, United States
| | - Charles N Zawatsky
- Laboratory of Physiologic Studies and Section on Cellular Biophotonics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland 20892-9304, United States
| | - Henry L Puhl
- Laboratory of Physiologic Studies and Section on Cellular Biophotonics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland 20892-9304, United States
| | - Jürgen Wess
- Laboratory of Bioorganic Chemistry, National Institute on Diabetes, Digestive and Kidney Diseases, Bethesda, Maryland 20892-0001, United States
| | - Jaroslawna Meister
- Laboratory of Bioorganic Chemistry, National Institute on Diabetes, Digestive and Kidney Diseases, Bethesda, Maryland 20892-0001, United States
| | - Jeih-San Liow
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, Maryland 20892-9663, United States
| | - Robert B Innis
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, Maryland 20892-9663, United States
| | - Sergio A Hassan
- Bioinformatics and Computational Biosciences Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Yong Sok Lee
- Bioinformatics and Computational Biosciences Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - George Kunos
- Laboratory of Physiologic Studies and Section on Cellular Biophotonics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland 20892-9304, United States
| | - Resat Cinar
- Laboratory of Physiologic Studies and Section on Cellular Biophotonics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland 20892-9304, United States
| |
Collapse
|
9
|
Loss of APJ mediated β-arrestin signalling improves high-fat diet induced metabolic dysfunction but does not alter cardiac function in mice. Biochem J 2021; 477:3313-3327. [PMID: 32779693 DOI: 10.1042/bcj20200343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/28/2020] [Accepted: 08/11/2020] [Indexed: 01/21/2023]
Abstract
Apelin receptor (APJ) is a G protein-coupled receptor that contributes to many physiological processes and is emerging as a therapeutic target to treat a variety of diseases. For most disease indications the role of G protein vs β-arrestin signalling in mitigating disease pathophysiology remains poorly understood. This hinders the development of G protein biased APJ agonists, which have been proposed to have several advantages over balanced APJ signalling agonists. To elucidate the contribution of APJ β-arrestin signalling, we generated a transgenic mouse harbouring a point mutation (APJ I107A) that maintains full G protein activity but fails to recruit β-arrestin following receptor activation. APJ I107A mutant mice did not alter cardiac function at rest, following exercise challenge or in response to pressure overload induced cardiac hypertrophy. Additionally, APJ I107A mice have comparable body weights, plasma glucose and lipid levels relative to WT mice when fed a chow diet. However, APJ I107A mice showed significantly lower body weight, blood insulin levels, improved glucose tolerance and greater insulin sensitivity when fed a high-fat diet. Furthermore, loss of APJ β-arrestin signalling also affected fat composition and the expression of lipid metabolism related genes in adipose tissue from high-fat fed mice. Taken together, our results suggest that G protein biased APJ activation may be more effective for certain disease indications given that loss of APJ mediated β-arrestin signalling appears to mitigate several aspects of diet induced metabolic dysfunction.
Collapse
|
10
|
Pydi SP, Barella LF, Meister J, Wess J. Key Metabolic Functions of β-Arrestins: Studies with Novel Mouse Models. Trends Endocrinol Metab 2021; 32:118-129. [PMID: 33358450 PMCID: PMC7855863 DOI: 10.1016/j.tem.2020.11.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/17/2020] [Accepted: 11/20/2020] [Indexed: 12/14/2022]
Abstract
β-Arrestin-1 and -2 are intracellular proteins that are able to inhibit signaling via G protein-coupled receptors (GPCRs). However, both proteins can also modulate cellular functions in a G protein-independent fashion. During the past few years, studies with mutant mice selectivity lacking β-arrestin-1 and/or -2 in metabolically important cell types have led to novel insights into the mechanisms through which β-arrestins regulate key metabolic processes in vivo, including whole-body glucose and energy homeostasis. The novel information gained from these studies should inform the development of novel drugs, including β-arrestin- or G protein-biased GPCR ligands, that could prove useful for the therapy of several important pathophysiological conditions, including type 2 diabetes and obesity.
Collapse
Affiliation(s)
- Sai P Pydi
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Luiz F Barella
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Jaroslawna Meister
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Jürgen Wess
- Molecular Signaling Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA.
| |
Collapse
|
11
|
Oliveira de Souza C, Sun X, Oh D. Metabolic Functions of G Protein-Coupled Receptors and β-Arrestin-Mediated Signaling Pathways in the Pathophysiology of Type 2 Diabetes and Obesity. Front Endocrinol (Lausanne) 2021; 12:715877. [PMID: 34497585 PMCID: PMC8419444 DOI: 10.3389/fendo.2021.715877] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 07/29/2021] [Indexed: 12/17/2022] Open
Abstract
Seven transmembrane receptors (7TMRs), often termed G protein-coupled receptors (GPCRs), are the most common target of therapeutic drugs used today. Many studies suggest that distinct members of the GPCR superfamily represent potential targets for the treatment of various metabolic disorders including obesity and type 2 diabetes (T2D). GPCRs typically activate different classes of heterotrimeric G proteins, which can be subgrouped into four major functional types: Gαs, Gαi, Gαq/11, and G12/13, in response to agonist binding. Accumulating evidence suggests that GPCRs can also initiate β-arrestin-dependent, G protein-independent signaling. Thus, the physiological outcome of activating a certain GPCR in a particular tissue may also be modulated by β-arrestin-dependent, but G protein-independent signaling pathways. In this review, we will focus on the role of G protein- and β-arrestin-dependent signaling pathways in the development of obesity and T2D-related metabolic disorders.
Collapse
|
12
|
Dong C, Li Y, Niu Q, Fang H, Bai J, Yan Y, Gu C, Xiao N. SUMOylation involves in β-arrestin-2-dependent metabolic regulation in breast cancer cell. Biochem Biophys Res Commun 2020; 529:950-956. [PMID: 32819604 DOI: 10.1016/j.bbrc.2020.06.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 06/07/2020] [Indexed: 10/23/2022]
Abstract
β-arrestin-2, a multifunctional adaptor protein, was originally identified as a negative regulator of G protein-mediated signaling. We previously revealed that SUMOylation as a novel mechanism modulates β-arrestin-2-mediated IL-1R/TRAF6 signaling. However, the potential role of β-arrestin-2 SUMOylation in tumor cells was incompletely explored. In this study, we showed that SUMOylation deficiency of β-arrestin-2 resulted in slower migration of breast cancer cells, but little effect on the cell proliferation. Importantly, our data indicated that SUMOylation involves in β-arrestin-2-dependent metabolic regulation, suggesting a potent regulatory pattern for β-arrestin-2-mediated biological functions of tumor cells.
Collapse
Affiliation(s)
- Changsheng Dong
- Cancer Institute of Traditional Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Ying Li
- Department of Emergency, Qingdao Municipal Hospital, Shandong, 266011, China
| | - Qun Niu
- Cancer Institute of Traditional Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Houshun Fang
- Key Laboratory of Pediatric Hematology and Oncology Ministry of Health and Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Jie Bai
- Cancer Institute of Traditional Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Yinjie Yan
- Department of Orthopaedics, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Chuan Gu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Ning Xiao
- Cancer Institute of Traditional Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China.
| |
Collapse
|