1
|
Gao Y, Huang W, Xu Z, Xu R, Gasevic D, Liu Y, Yue X, Zhou G, Zhang Y, Song J, Liu H, Guo Y, Li S. Wildfire-related PM 2.5 and cause-specific cancer mortality. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117023. [PMID: 39278001 DOI: 10.1016/j.ecoenv.2024.117023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/29/2024] [Accepted: 09/06/2024] [Indexed: 09/17/2024]
Abstract
Wildfires have devastating effects on society and public health. However, little evidence from population-based cohort has been performed to analyze the relationship of wildfire-related PM2.5, an important component of wildfire smoke, with cancer-specific mortality. We aimed to explore this relationship and identify vulnerable populations in UK with lower levels of wildfire-related PM2.5 exposure. The study consisted of 492394 participants (age: 38-73 years) recruited by UK Biobank during 2004-2010. The cumulative wildfire-related PM2.5 within 10 kilometers of residence over three years was used as exposure, which was assessed by chemical transport and machine learning models. A time-varying Cox regression was utilized to explore the relationship of exposure with diverse cancer-specific mortality outcomes. Subgroup analyses of a range of potential modifiers were performed. Each 10 μg/m3 increment of 3-year cumulative exposure was related to a 0.4 % greater risk of total cancer (95 %CI: 1.001-1.007), a 1.1 % greater risk of lung cancer (95 %CI: 1.004-1.018), and a 2.7 % greater risk of lip, oral cavity and pharynx (LOP) cancer (95 %CI: 1.005-1.049). Higher vulnerability in the wildfire-related PM2.5-lung cancer relationship was found among participants being retired than those with other employment status. Even lower levels of exposure to PM2.5 from wildfires were related to elevated mortality risks for cancer from total, lung, LOP, highlighting the importance of wildfire prevention and control. Further investigations are warranted to enrich and extend existing knowledge in this field.
Collapse
Affiliation(s)
- Yuan Gao
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Wenzhong Huang
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Zhihu Xu
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Rongbin Xu
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Danijela Gasevic
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia; Centre for Global Health, Usher Institute, The University of Edinburgh, Edinburgh, UK
| | - Yanming Liu
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Xu Yue
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, China
| | - Guowei Zhou
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yan Zhang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jiangning Song
- Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Hong Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yuming Guo
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Shanshan Li
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia.
| |
Collapse
|
2
|
Yu P, Gao CX, Smith CL, Loi S, Kinsman N, Ikin JF, Guo Y, Sim MR, Abramson MJ, Lane TJ. Cancer incidence after an open cut coal mine fire. Cancer Epidemiol 2024; 92:102651. [PMID: 39213735 DOI: 10.1016/j.canep.2024.102651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
Using population-level cancer diagnosis data, we compared cancer incidence in locations affected by smoke from a six week-long open cut coal mine fire in regional Victoria, Australia, up to seven years following the event. There was no detectable effect on cancer incidence overall. While several subgroups exhibited changes, these were more likely due to statistical chance rather than real effects. These findings may be limited by low statistical power and short duration of follow up. To confirm the influence of open cut coal mine fires on cancer incidence, further research and an extended follow-up duration are necessary.
Collapse
Affiliation(s)
- Pei Yu
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia.
| | - Caroline X Gao
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia; Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia; Orygen, Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Catherine L Smith
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia; Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia; Orygen, Centre for Youth Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Sherene Loi
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Natasha Kinsman
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Jillian F Ikin
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Yuming Guo
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Malcolm R Sim
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Michael J Abramson
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Tyler J Lane
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
3
|
Yu Y, Tang Z, Huang Y, Zhang J, Wang Y, Zhang Y, Wang Q. Assessing long-term effects of gaseous air pollution exposure on mortality in the United States using a variant of difference-in-differences analysis. Sci Rep 2024; 14:16220. [PMID: 39003417 PMCID: PMC11246484 DOI: 10.1038/s41598-024-66951-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 07/05/2024] [Indexed: 07/15/2024] Open
Abstract
Long-term mortality effects of particulate air pollution have been investigated in a causal analytic frame, while causal evidence for associations with gaseous air pollutants remains extensively lacking, especially for carbon monoxide (CO) and sulfur dioxide (SO2). In this study, we estimated the causal relationship of long-term exposure to nitrogen dioxide (NO2), CO, SO2, and ozone (O3) with mortality. Utilizing the data from National Morbidity, Mortality, and Air Pollution Study, we applied a variant of difference-in-differences (DID) method with conditional Poisson regression and generalized weighted quantile sum regression (gWQS) to investigate the independent and joint effects. Independent exposures to NO2, CO, and SO2 were causally associated with increased risks of total, nonaccidental, and cardiovascular mortality, while no evident associations with O3 were identified in the entire population. In gWQS analyses, an interquartile range-equivalent increase in mixture exposure was associated with a relative risk of 1.067 (95% confidence interval: 1.010-1.126) for total mortality, 1.067 (1.009-1.128) for nonaccidental mortality, and 1.125 (1.060-1.193) for cardiovascular mortality, where NO2 was identified as the most significant contributor to the overall effect. This nationwide DID analysis provided causal evidence for independent and combined effects of NO2, CO, SO2, and O3 on increased mortality risks among the US general population.
Collapse
Affiliation(s)
- Yong Yu
- Center of Health Administration and Development Studies, School of Public Health, Hubei University of Medicine, Shiyan, 442000, China
| | - Ziqing Tang
- Institute of Social Development and Health Management, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Yuqian Huang
- Institute of Social Development and Health Management, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Jingjing Zhang
- Institute of Social Development and Health Management, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Yixiang Wang
- Institute of Social Development and Health Management, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Yunquan Zhang
- Center of Health Administration and Development Studies, School of Public Health, Hubei University of Medicine, Shiyan, 442000, China.
- Institute of Social Development and Health Management, Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan, 430065, China.
| | - Qun Wang
- Center of Health Administration and Development Studies, School of Public Health, Hubei University of Medicine, Shiyan, 442000, China.
| |
Collapse
|
4
|
Li J, Deng Z, Soerensen SJC, Kachuri L, Cardenas A, Graff RE, Leppert JT, Langston ME, Chung BI. Ambient air pollution and urological cancer risk: A systematic review and meta-analysis of epidemiological evidence. Nat Commun 2024; 15:5116. [PMID: 38879581 PMCID: PMC11180144 DOI: 10.1038/s41467-024-48857-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 05/13/2024] [Indexed: 06/19/2024] Open
Abstract
Exposure to ambient air pollution has significant adverse health effects; however, whether air pollution is associated with urological cancer is largely unknown. We conduct a systematic review and meta-analysis with epidemiological studies, showing that a 5 μg/m3 increase in PM2.5 exposure is associated with a 6%, 7%, and 9%, increased risk of overall urological, bladder, and kidney cancer, respectively; and a 10 μg/m3 increase in NO2 is linked to a 3%, 4%, and 4% higher risk of overall urological, bladder, and prostate cancer, respectively. Were these associations to reflect causal relationships, lowering PM2.5 levels to 5.8 μg/m3 could reduce the age-standardized rate of urological cancer by 1.5 ~ 27/100,000 across the 15 countries with the highest PM2.5 level from the top 30 countries with the highest urological cancer burden. Implementing global health policies that can improve air quality could potentially reduce the risk of urologic cancer and alleviate its burden.
Collapse
Affiliation(s)
- Jinhui Li
- Department of Urology, Stanford University Medical Center, Stanford, CA, USA.
| | - Zhengyi Deng
- Department of Urology, Stanford University Medical Center, Stanford, CA, USA
| | - Simon John Christoph Soerensen
- Department of Urology, Stanford University Medical Center, Stanford, CA, USA
- Department of Epidemiology & Population Health, Stanford University School of Medicine, Stanford, CA, USA
| | - Linda Kachuri
- Department of Epidemiology & Population Health, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Andres Cardenas
- Department of Epidemiology & Population Health, Stanford University School of Medicine, Stanford, CA, USA
| | - Rebecca E Graff
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | - John T Leppert
- Department of Urology, Stanford University Medical Center, Stanford, CA, USA
- Division of Nephrology, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Division of Urology, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Marvin E Langston
- Department of Epidemiology & Population Health, Stanford University School of Medicine, Stanford, CA, USA
| | - Benjamin I Chung
- Department of Urology, Stanford University Medical Center, Stanford, CA, USA
| |
Collapse
|
5
|
Zhao L, Niu P, Wang W, Han X, Luan X, Huang H, Zhang Y, Zhao D, Gao J, Chen Y. Application of Survival Quilts for prognosis prediction of gastrectomy patients based on the Surveillance, Epidemiology, and End Results database and China National Cancer Center Gastric Cancer database. JOURNAL OF THE NATIONAL CANCER CENTER 2024; 4:142-152. [PMID: 39282580 PMCID: PMC11390701 DOI: 10.1016/j.jncc.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/11/2024] [Accepted: 01/21/2024] [Indexed: 09/19/2024] Open
Abstract
Objective Accurate prognosis prediction is critical for individualized-therapy making of gastric cancer patients. We aimed to develop and test 6-month, 1-, 2-, 3-, 5-, and 10-year overall survival (OS) and cancer-specific survival (CSS) prediction models for gastric cancer patients following gastrectomy. Methods We derived and tested Survival Quilts, a machine learning-based model, to develop 6-month, 1-, 2-, 3-, 5-, and 10-year OS and CSS prediction models. Gastrectomy patients in the development set (n = 20,583) and the internal validation set (n = 5,106) were recruited from the Surveillance, Epidemiology, and End Results (SEER) database, while those in the external validation set (n = 6,352) were recruited from the China National Cancer Center Gastric Cancer (NCCGC) database. Furthermore, we selected gastrectomy patients without neoadjuvant therapy as a subgroup to train and test the prognostic models in order to keep the accuracy of tumor-node-metastasis (TNM) stage. Prognostic performances of these OS and CSS models were assessed using the Concordance Index (C-index) and area under the curve (AUC) values. Results The machine learning model had a consistently high accuracy in predicting 6-month, 1-, 2-, 3-, 5-, and 10-year OS in the SEER development set (C-index = 0.861, 0.832, 0.789, 0.766, 0.740, and 0.709; AUC = 0.784, 0.828, 0.840, 0.849, 0.869, and 0.902, respectively), SEER validation set (C-index = 0.782, 0.739, 0.712, 0.698, 0.681, and 0.660; AUC = 0.751, 0.772, 0.767, 0.762, 0.766, and 0.787, respectively), and NCCGC set (C-index = 0.691, 0.756, 0.751, 0.737, 0.722, and 0.701; AUC = 0.769, 0.788, 0.790, 0.790, 0.787, and 0.788, respectively). The model was able to predict 6-month, 1-, 2-, 3-, 5-, and 10-year CSS in the SEER development set (C-index = 0.879, 0.858, 0.820, 0.802, 0.784, and 0.774; AUC = 0.756, 0.827, 0.852, 0.863, 0.874, and 0.884, respectively) and SEER validation set (C-index = 0.790, 0.763, 0.741, 0.729, 0.718, and 0.708; AUC = 0.706, 0.758, 0.767, 0.766, 0.766, and 0.764, respectively). In multivariate analysis, the high-risk group with risk score output by 5-year OS model was proved to be a strong survival predictor both in the SEER development set (hazard ratio [HR] = 14.59, 95% confidence interval [CI]: 1.872-2.774, P < 0.001), SEER validation set (HR = 2.28, 95% CI: 13.089-16.293, P < 0.001), and NCCGC set (HR = 1.98, 95% CI: 1.617-2.437, P < 0.001). We further explored the prognostic value of risk score resulted 5-year CSS model of gastrectomy patients, and found that high-risk group remained as an independent CSS factor in the SEER development set (HR = 12.81, 95% CI: 11.568-14.194, P < 0.001) and SEER validation set (HR = 1.61, 95% CI: 1.338-1.935, P < 0.001). Conclusion Survival Quilts could allow accurate prediction of 6-month, 1-, 2-, 3-, 5-, and 10-year OS and CSS in gastric cancer patients following gastrectomy.
Collapse
Affiliation(s)
- Lulu Zhao
- Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Penghui Niu
- Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wanqing Wang
- Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xue Han
- Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoyi Luan
- Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huang Huang
- Department of Cancer Prevention and Control, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yawei Zhang
- Department of Cancer Prevention and Control, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dongbing Zhao
- Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jidong Gao
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Yingtai Chen
- Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
6
|
Nagel G, Chen J, Jaensch A, Skodda L, Rodopoulou S, Strak M, de Hoogh K, Andersen ZJ, Bellander T, Brandt J, Fecht D, Forastiere F, Gulliver J, Hertel O, Hoffmann B, Hvidtfeldt UA, Katsouyanni K, Ketzel M, Leander K, Magnusson PKE, Pershagen G, Rizzuto D, Samoli E, Severi G, Stafoggia M, Tjønneland A, Vermeulen RCH, Wolf K, Zitt E, Brunekreef B, Hoek G, Raaschou-Nielsen O, Weinmayr G. Long-term exposure to air pollution and incidence of gastric and the upper aerodigestive tract cancers in a pooled European cohort: The ELAPSE project. Int J Cancer 2024; 154:1900-1910. [PMID: 38339851 DOI: 10.1002/ijc.34864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 02/12/2024]
Abstract
Air pollution has been shown to significantly impact human health including cancer. Gastric and upper aerodigestive tract (UADT) cancers are common and increased risk has been associated with smoking and occupational exposures. However, the association with air pollution remains unclear. We pooled European subcohorts (N = 287,576 participants for gastric and N = 297,406 for UADT analyses) and investigated the association between residential exposure to fine particles (PM2.5), nitrogen dioxide (NO2), black carbon (BC) and ozone in the warm season (O3w) with gastric and UADT cancer. We applied Cox proportional hazards models adjusting for potential confounders at the individual and area-level. During 5,305,133 and 5,434,843 person-years, 872 gastric and 1139 UADT incident cancer cases were observed, respectively. For gastric cancer, we found no association with PM2.5, NO2 and BC while for UADT the hazard ratios (95% confidence interval) were 1.15 (95% CI: 1.00-1.33) per 5 μg/m3 increase in PM2.5, 1.19 (1.08-1.30) per 10 μg/m3 increase in NO2, 1.14 (1.04-1.26) per 0.5 × 10-5 m-1 increase in BC and 0.81 (0.72-0.92) per 10 μg/m3 increase in O3w. We found no association between long-term ambient air pollution exposure and incidence of gastric cancer, while for long-term exposure to PM2.5, NO2 and BC increased incidence of UADT cancer was observed.
Collapse
Affiliation(s)
- Gabriele Nagel
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany
| | - Jie Chen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Andrea Jaensch
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany
| | - Lea Skodda
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany
| | - Sophia Rodopoulou
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Maciej Strak
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
- National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Kees de Hoogh
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Zorana J Andersen
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Tom Bellander
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jørgen Brandt
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
- iClimate - Interdisciplinary Centre for Climate Change, Aarhus University, Roskilde, Denmark
| | - Daniela Fecht
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Francesco Forastiere
- Department of Epidemiology, Lazio Region Health Service/ASL Roma 1, Rome, Italy
- Environmental Research Group, School of Public Health, Faculty of Medicine, Imperial College, London, UK
| | - John Gulliver
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- Centre for Environmental Health and Sustainability & School of Geography, Geology and the Environment, University of Leicester, Leicester, UK
| | - Ole Hertel
- Faculty of Technical Sciences, Aarhus University, Roskilde, Denmark
| | - Barbara Hoffmann
- Institute for Occupational, Social and Environmental Medicine, Centre for Health and Society, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | | | - Klea Katsouyanni
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Matthias Ketzel
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
- Global Centre for Clean Air Research (GCARE), University of Surrey, Guildford, UK
| | - Karin Leander
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Patrik K E Magnusson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Göran Pershagen
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Debora Rizzuto
- Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden
- Stockholm Gerontology Research Center, Stockholm, Sweden
| | - Evangelia Samoli
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Massimo Stafoggia
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Epidemiology, Lazio Region Health Service/ASL Roma 1, Rome, Italy
| | - Anne Tjønneland
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
- The Danish Cancer Institute, Copenhagen, Denmark
| | - Roel C H Vermeulen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Kathrin Wolf
- Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Emanuel Zitt
- Agency for Preventive and Social Medicine (aks), Bregenz, Austria
- Department of Internal Medicine 3, LKH Feldkirch, Feldkirch, Austria
| | - Bert Brunekreef
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Gerard Hoek
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Ole Raaschou-Nielsen
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
- The Danish Cancer Institute, Copenhagen, Denmark
| | - Gudrun Weinmayr
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany
| |
Collapse
|
7
|
Loeb S, Hua Q, Bauer SR, Kenfield SA, Morgans AK, Chan JM, Van Blarigan EL, Shreves AH, Mucci LA. Plant-based diet associated with better quality of life in prostate cancer survivors. Cancer 2024; 130:1618-1628. [PMID: 38348508 PMCID: PMC11009061 DOI: 10.1002/cncr.35172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/06/2023] [Accepted: 11/27/2023] [Indexed: 02/25/2024]
Abstract
BACKGROUND Plant-based diets have many health benefits, including a lower risk of fatal prostate cancer, and greater environmental sustainability. However, less is known regarding the impact of plant-based diets on quality of life among individuals diagnosed with prostate cancer. The authors' objective was to examine the relationship between plant-based diet indices postdiagnosis with quality of life. METHODS This prospective cohort study included 3505 participants in the Health Professionals Follow-Up Study (1986-2016) with nonmetastatic prostate cancer. Food-frequency questionnaires were used to calculate overall and healthful plant-based diet indices. Quality-of-life scores were calculated using the Expanded Prostate Cancer Index Composite. Generalized estimating equations were used to examine associations over time between plant-based diet indices and quality-of-life domains (sexual functioning, urinary irritation/obstruction, urinary incontinence, bowel functioning, hormonal/vitality), adjusted for demographics, oncologic history, body mass index, caloric intake, health-related behaviors, and comorbidities. RESULTS The median age at prostate cancer diagnosis was 68 years; 48% of patients underwent radical prostatectomy, and 35% received radiation as primary therapy. The median time from diagnosis/treatment to first the quality-of-life questionnaire was 7.0 years. A higher plant-based diet index was associated with better scores for sexual function, urinary irritation/obstruction, urinary incontinence, and hormonal/vitality. Consuming more healthful plant-based foods was also associated with better sexual and bowel function, as well as urinary incontinence and hormonal/vitality scores in the age-adjusted analysis, but not in the multivariable analysis. CONCLUSIONS This prospective study provides supportive evidence that greater consumption of healthful plant-based foods is associated with modestly higher scores in quality-of-life domains among patients with prostate cancer.
Collapse
Affiliation(s)
- Stacy Loeb
- Department of Urology and Population Health, New York University and Manhattan Veterans Affairs, New York, New York, USA
| | - Qi Hua
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Scott R Bauer
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California, USA
- Department of Urology, University of California, San Francisco, San Francisco, California, USA
- Division of General Internal Medicine, Department of Medicine, University of California, San Francisco and San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
| | - Stacey A Kenfield
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California, USA
- Department of Urology, University of California, San Francisco, San Francisco, California, USA
| | - Alicia K Morgans
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - June M Chan
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California, USA
- Department of Urology, University of California, San Francisco, San Francisco, California, USA
| | - Erin L Van Blarigan
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California, USA
- Department of Urology, University of California, San Francisco, San Francisco, California, USA
| | - Alaina H Shreves
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Lorelei A Mucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- American Cancer Society, Atlanta, Georgia, USA
| |
Collapse
|
8
|
Johnston FH, Williamson G, Borchers-Arriagada N, Henderson SB, Bowman DMJS. Climate Change, Landscape Fires, and Human Health: A Global Perspective. Annu Rev Public Health 2024; 45:295-314. [PMID: 38166500 DOI: 10.1146/annurev-publhealth-060222-034131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Landscape fires are an integral component of the Earth system and a feature of prehistoric, subsistence, and industrial economies. Specific spatiotemporal patterns of landscape fire occur in different locations around the world, shaped by the interactions between environmental and human drivers of fire activity. Seven distinct types of landscape fire emerge from these interactions: remote area fires, wildfire disasters, savanna fires, Indigenous burning, prescribed burning, agricultural burning, and deforestation fires. All can have substantial impacts on human health and well-being directly and indirectly through (a) exposure to heat flux (e.g., injuries and destructive impacts), (b) emissions (e.g., smoke-related health impacts), and (c) altered ecosystem functioning (e.g., biodiversity, amenity, water quality, and climate impacts). Minimizing the adverse effects of landscape fires on population health requires understanding how human and environmental influences on fire impacts can be modified through interventions targeted at individual, community, and regional levels.
Collapse
Affiliation(s)
- Fay H Johnston
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia;
- National Health and Medical Research Council (NHMRC) Centre for Safe Air, Hobart, Tasmania, Australia
| | - Grant Williamson
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
- National Health and Medical Research Council (NHMRC) Centre for Safe Air, Hobart, Tasmania, Australia
| | | | - Sarah B Henderson
- Environmental Health Services, British Columbia Centre for Disease Control, Vancouver, British Columbia, Canada
| | - David M J S Bowman
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
9
|
Gao Y, Huang W, Yu P, Xu R, Gasevic D, Yue X, Coêlho MDSZS, Saldiva PHN, Guo Y, Li S. Wildfire-related PM 2.5 and cardiovascular mortality: A difference-in-differences analysis in Brazil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123810. [PMID: 38493867 DOI: 10.1016/j.envpol.2024.123810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 03/19/2024]
Abstract
Brazil has experienced unprecedented wildfires recently. We aimed to investigate the association of wildfire-related fine particulate matter (PM2.5) with cause-specific cardiovascular mortality, and to estimate the attributable mortality burden. Exposure to wildfire-related PM2.5 was defined as exposure to annual mean wildfire-related PM2.5 concentrations in the 1-year prior to death. The variant difference-in-differences method was employed to explore the wildfire-related PM2.5-cardiovascular mortality association. We found that, in Brazil, compared with the population in the first quartile (Q1: ≤1.82 μg/m3) of wildfire-related PM2.5 exposure, those in the fourth quartile (Q4: 4.22-17.12 μg/m3) of wildfire-related PM2.5 exposure had a 2.2% (RR: 1.022, 95% CI: 1.013-1.032) higher risk for total cardiovascular mortality, 3.1% (RR: 1.031, 95% CI: 1.014-1.048) for ischaemic heart disease mortality, and 2.0% (RR: 1.020, 95% CI: 1.002-1.038) for stroke mortality. From 2010 to 2018, an estimation of 35,847 (95% CI: 22,424-49,177) cardiovascular deaths, representing 17.77 (95% CI: 11.12-24.38) per 100,000 population, were attributable to wildfire-related PM2.5 exposure. Targeted health promotion strategies should be developed for local governments to protect the public from the risk of wildfire-related cardiovascular premature deaths.
Collapse
Affiliation(s)
- Yuan Gao
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia
| | - Wenzhong Huang
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia
| | - Pei Yu
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia
| | - Rongbin Xu
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia
| | - Danijela Gasevic
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia; Centre for Global Health, Usher Institute, The University of Edinburgh, Edinburgh, UK
| | - Xu Yue
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, China
| | | | | | - Yuming Guo
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia
| | - Shanshan Li
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia.
| |
Collapse
|
10
|
Cheng SYH, Hsu YC, Cheng SP. An ecological analysis of associations between ambient air pollution and cancer incidence rates in Taiwan. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:29162-29173. [PMID: 38565820 DOI: 10.1007/s11356-024-33145-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 03/26/2024] [Indexed: 04/04/2024]
Abstract
Air pollution is deemed a human carcinogen and can be linked to certain types of cancer other than lung cancer. The present study aimed to investigate the pollutant-cancer associations in a population-level cohort. We obtained the annual age-standardized incidence rates of 28 different cancer types between 2015 to 2019 from the Taiwan Cancer Registry. Outdoor concentrations of particulate matter with a diameter of 10 μm or less (PM10), sulfur dioxide (SO2), nitrogen dioxide (NO2), ground-level ozone (O3), and carbon monoxide (CO) between 2001 to 2010 were retrieved from the Taiwan Air Quality Monitoring Network. Weighted quantile sum (WQS) regression models were used to determine the combined effects of five air pollutants on the relationship to cancer incidence rates after controlling for sex ratio, age, average disposable income per household, overweight/obesity prevalence, current smoking rate, and drinking rate. Trend analyses showed that NO2 and CO concentrations tended to decrease, while SO2 concentrations increased in some counties. WQS regression analyses revealed significantly positive correlations between air pollutants and liver cancer, lung and tracheal cancer, colorectal cancer, thyroid cancer, kidney cancer, and small intestine cancer. Altogether, the results from this ecological study unravel that exposure to ambient air pollution is associated with the incidence of several non-lung cancer types.
Collapse
Affiliation(s)
| | - Yi-Chiung Hsu
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan City, Taiwan
- Center for Astronautical Physics and Engineering, National Central University, Taoyuan City, Taiwan
| | - Shih-Ping Cheng
- Department of Surgery, MacKay Memorial Hospital and MacKay Medical College, Taipei, Taiwan.
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City, Taiwan.
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
11
|
Li J, Jiang H, Zhu Y, Ma Z, Li B, Dong J, Xiao C, Hu A. Fine particulate matter (PM 2.5) induces the stem cell-like properties of hepatocellular carcinoma by activating ROS/Nrf2/Keap1-mediated autophagy. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 272:116052. [PMID: 38325274 DOI: 10.1016/j.ecoenv.2024.116052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/18/2024] [Accepted: 01/27/2024] [Indexed: 02/09/2024]
Abstract
Exposure to fine particulate matter (PM2.5) has been linked to an increased incidence and mortality of hepatocellular carcinoma (HCC). However, the impact of PM2.5 exposure on HCC progression and the underlying mechanisms remain largely unknown. This study aimed to investigate the effects of PM2.5 exposure on the stem cell-like properties of HCC cells. Our findings indicate that PM2.5 exposure significantly enhances the stemness of HCC cells (p < 0.01). Subsequently, male nude mice were divided into two groups (n = 8/group for tumor-bearing assay, n = 5/group for metastasis assay) for control and PM2.5 exposure. In vivo assays revealed that exposure to PM2.5 promoted the growth, metastasis, and epithelial-mesenchymal transition (EMT) of HCC cells (p < 0.01). Further exploration demonstrated that PM2.5 enhances the stemness of HCC cells by inducing cellular reactive oxygen species (ROS) generation (p < 0.05). Mechanistic investigation indicated that elevated intracellular ROS inhibited kelch-like ECH-associated protein 1 (Keap1) levels, promoting the upregulation and nucleus translocation of NFE2-like bZIP transcription factor 2 (Nrf2). This, in turn, induced autophagy activation, thereby promoting the stemness of HCC cells (p < 0.01). Our present study demonstrates the adverse effects of PM2.5 exposure on HCC development and highlights the mechanism of ROS/Nrf2/Keap1-mediated autophagy. For the first time, we reveal the impact of PM2.5 exposure on the poor prognosis-associated cellular phenotype of HCC and its underlying mechanism, which is expected to provide new theoretical basis for the improvement of public health.
Collapse
Affiliation(s)
- Jiujiu Li
- Hefei Center for Disease Control and Prevention, Hefei 230032, China
| | - Haoqi Jiang
- School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Yu Zhu
- Hefei Center for Disease Control and Prevention, Hefei 230032, China
| | - Zijian Ma
- Hefei Center for Disease Control and Prevention, Hefei 230032, China
| | - Bin Li
- School of Public Health, Anhui Medical University, Hefei 230032, China
| | - Jun Dong
- Hefei Center for Disease Control and Prevention, Hefei 230032, China
| | - Changchun Xiao
- Hefei Center for Disease Control and Prevention, Hefei 230032, China.
| | - Anla Hu
- School of Public Health, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
12
|
Li Y, He Z, Wei J, Xu R, Liu T, Zhong Z, Liu L, Liang S, Zheng Y, Chen G, Lv Z, Huang S, Chen X, Sun H, Liu Y. Long-term exposure to ambient fine particulate matter constituents and mortality from total and site-specific gastrointestinal cancer. ENVIRONMENTAL RESEARCH 2024; 244:117927. [PMID: 38103778 DOI: 10.1016/j.envres.2023.117927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/22/2023] [Accepted: 12/10/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND Ambient fine particulate matter (PM2.5) exposure has been associated with an increased risk of gastrointestinal cancer mortality, but the attributable constituents remain unclear. OBJECTIVES To investigate the association of long-term exposure to PM2.5 constituents with total and site-specific gastrointestinal cancer mortality using a difference-in-differences approach in Jiangsu province, China during 2015-2020. METHODS We split Jiangsu into 53 spatial units and computed their yearly death number of total gastrointestinal, esophagus, stomach, colorectum, liver, and pancreas cancer. Utilizing a high-quality grid dataset on PM2.5 constituents, we estimated 10-year population-weighted exposure to black carbon (BC), organic carbon (OC), sulfate, nitrate, ammonium, and chloride in each spatial unit. The effect of constituents on gastrointestinal cancer mortality was assessed by controlling time trends, spatial differences, gross domestic product (GDP), and seasonal temperatures. RESULTS Overall, 524,019 gastrointestinal cancer deaths were ascertained in 84.77 million population. Each interquartile range increment of BC (0.46 μg/m3), OC (4.56 μg/m3), and nitrate (1.41 μg/m3) was significantly associated with a 27%, 26%, and 34% increased risk of total gastrointestinal cancer mortality, respectively, and these associations remained significant in PM2.5-adjusted models and constituent-residual models. We also identified robust associations of BC, OC, and nitrate exposures with site-specific gastrointestinal cancer mortality. The mortality risk generally displayed increased trends across the total exposure range and rose steeper at higher levels. We did not identify robust associations for sulfate, ammonium, or chlorine exposure. Higher mortality risk ascribed to constituent exposures was identified in total gastrointestinal and liver cancer among women, stomach cancer among men, and total gastrointestinal and stomach cancer among low-GDP regions. CONCLUSIONS This study offers consistent evidence that long-term exposure to PM2.5-bound BC, OC, and nitrate is associated with total and site-specific gastrointestinal cancer mortality, indicating that these constituents need to be controlled to mitigate the adverse effect of PM2.5 on gastrointestinal cancer mortality.
Collapse
Affiliation(s)
- Yingxin Li
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhimin He
- Department of Environmental Health, Nantong Center for Disease Control and Prevention, Nantong, Jiangsu, China
| | - Jing Wei
- Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA
| | - Ruijun Xu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Tingting Liu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zihua Zhong
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Likun Liu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Sihan Liang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yi Zheng
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Gongbo Chen
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Ziquan Lv
- Central Laboratory of Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Suli Huang
- Department of Environment and Health, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Xi Chen
- National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hong Sun
- Institute of Environment and Health, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu, China.
| | - Yuewei Liu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
13
|
Casey JA, Kioumourtzoglou MA, Padula A, González DJX, Elser H, Aguilera R, Northrop AJ, Tartof SY, Mayeda ER, Braun D, Dominici F, Eisen EA, Morello-Frosch R, Benmarhnia T. Measuring long-term exposure to wildfire PM 2.5 in California: Time-varying inequities in environmental burden. Proc Natl Acad Sci U S A 2024; 121:e2306729121. [PMID: 38349877 PMCID: PMC10895344 DOI: 10.1073/pnas.2306729121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 01/13/2024] [Indexed: 02/15/2024] Open
Abstract
Wildfires have become more frequent and intense due to climate change and outdoor wildfire fine particulate matter (PM2.5) concentrations differ from relatively smoothly varying total PM2.5. Thus, we introduced a conceptual model for computing long-term wildfire PM2.5 and assessed disproportionate exposures among marginalized communities. We used monitoring data and statistical techniques to characterize annual wildfire PM2.5 exposure based on intermittent and extreme daily wildfire PM2.5 concentrations in California census tracts (2006 to 2020). Metrics included: 1) weeks with wildfire PM2.5 < 5 μg/m3; 2) days with non-zero wildfire PM2.5; 3) mean wildfire PM2.5 during peak exposure week; 4) smoke waves (≥2 consecutive days with <15 μg/m3 wildfire PM2.5); and 5) mean annual wildfire PM2.5 concentration. We classified tracts by their racial/ethnic composition and CalEnviroScreen (CES) score, an environmental and social vulnerability composite measure. We examined associations of CES and racial/ethnic composition with the wildfire PM2.5 metrics using mixed-effects models. Averaged 2006 to 2020, we detected little difference in exposure by CES score or racial/ethnic composition, except for non-Hispanic American Indian and Alaska Native populations, where a 1-SD increase was associated with higher exposure for 4/5 metrics. CES or racial/ethnic × year interaction term models revealed exposure disparities in some years. Compared to their California-wide representation, the exposed populations of non-Hispanic American Indian and Alaska Native (1.68×, 95% CI: 1.01 to 2.81), white (1.13×, 95% CI: 0.99 to 1.32), and multiracial (1.06×, 95% CI: 0.97 to 1.23) people were over-represented from 2006 to 2020. In conclusion, during our study period in California, we detected disproportionate long-term wildfire PM2.5 exposure for several racial/ethnic groups.
Collapse
Affiliation(s)
- Joan A. Casey
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY10032
- Department of Environmental and Occupational Health, University of Washington School of Public Health, Seattle, WA98195
| | | | - Amy Padula
- Department of Obstetrics, Gynecology and Reproductive Sciences, Program on Reproductive Health and the Environment, University of California San Francisco, San Francisco, CA94143
| | - David J. X. González
- Department of Environmental Policy, Science, and Management, University of California, Berkeley, CA94720
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA94704
| | - Holly Elser
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, PA19104
| | - Rosana Aguilera
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA92037
| | | | - Sara Y. Tartof
- Department of Research and Evaluation, Kaiser Permanente Southern California, Pasadena, CA91101
| | - Elizabeth Rose Mayeda
- Department of Epidemiology, University of California Los Angeles Fielding School of Public Health, Los Angeles, CA90095
| | - Danielle Braun
- Department of Biostatistics, Harvard TH Chan School of Public Health, Boston, MA02115
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA02215
| | - Francesca Dominici
- Department of Biostatistics, Harvard TH Chan School of Public Health, Boston, MA02115
| | - Ellen A. Eisen
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA94704
| | - Rachel Morello-Frosch
- Department of Environmental Policy, Science, and Management, University of California, Berkeley, CA94720
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA94704
| | - Tarik Benmarhnia
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA92037
| |
Collapse
|
14
|
Weinmayr G, Chen J, Jaensch A, Skodda L, Rodopoulou S, Strak M, de Hoogh K, Andersen ZJ, Bellander T, Brandt J, Fecht D, Forastiere F, Gulliver J, Hertel O, Hoffmann B, Hvidtfeldt UA, Katsouyanni K, Ketzel M, Leander K, Magnusson PKE, Pershagen G, Rizzuto D, Samoli E, Severi G, Stafoggia M, Tjønneland A, Vermeulen R, Wolf K, Zitt E, Brunekreef B, Thurston G, Hoek G, Raaschou-Nielsen O, Nagel G. Long-term exposure to several constituents and sources of PM 2.5 is associated with incidence of upper aerodigestive tract cancers but not gastric cancer: Results from the large pooled European cohort of the ELAPSE project. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168789. [PMID: 37996018 DOI: 10.1016/j.scitotenv.2023.168789] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 11/25/2023]
Abstract
It is unclear whether cancers of the upper aerodigestive tract (UADT) and gastric cancer are related to air pollution, due to few studies with inconsistent results. The effects of particulate matter (PM) may vary across locations due to different source contributions and related PM compositions, and it is not clear which PM constituents/sources are most relevant from a consideration of overall mass concentration alone. We therefore investigated the association of UADT and gastric cancers with PM2.5 elemental constituents and sources components indicative of different sources within a large multicentre population based epidemiological study. Cohorts with at least 10 cases per cohort led to ten and eight cohorts from five countries contributing to UADT- and gastric cancer analysis, respectively. Outcome ascertainment was based on cancer registry data or data of comparable quality. We assigned home address exposure to eight elemental constituents (Cu, Fe, K, Ni, S, Si, V and Zn) estimated from Europe-wide exposure models, and five source components identified by absolute principal component analysis (APCA). Cox regression models were run with age as time scale, stratified for sex and cohort and adjusted for relevant individual and neighbourhood level confounders. We observed 1139 UADT and 872 gastric cancer cases during a mean follow-up of 18.3 and 18.5 years, respectively. UADT cancer incidence was associated with all constituents except K in single element analyses. After adjustment for NO2, only Ni and V remained associated with UADT. Residual oil combustion and traffic source components were associated with UADT cancer persisting in the multiple source model. No associations were found for any of the elements or source components and gastric cancer incidence. Our results indicate an association of several PM constituents indicative of different sources with UADT but not gastric cancer incidence with the most robust evidence for traffic and residual oil combustion.
Collapse
Affiliation(s)
- Gudrun Weinmayr
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany.
| | - Jie Chen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Andrea Jaensch
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany
| | - Lea Skodda
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany
| | - Sophia Rodopoulou
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Maciej Strak
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands; National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Kees de Hoogh
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Zorana J Andersen
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Tom Bellander
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jørgen Brandt
- Department of Environmental Science, Aarhus University, Roskilde, Denmark; iClimate - interdisciplinary Centre for Climate Change, Aarhus University, Roskilde, Denmark
| | - Daniela Fecht
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Francesco Forastiere
- Department of Epidemiology, Lazio Region Health Service/ASL Roma 1, Rome, Italy; Environmental Research Group, School of Public Health, Faculty of Medicine, Imperial College, London, UK
| | - John Gulliver
- MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK; Centre for Environmental Health and Sustainability & School of Geography, Geology and the Environment, University of Leicester, Leicester, UK
| | - Ole Hertel
- Faculty of Technical Sciences, Aarhus University, Roskilde, Denmark
| | - Barbara Hoffmann
- Institute for Occupational, Social and Environmental Medicine, Centre for Health and Society, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | | | - Klea Katsouyanni
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece; MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Matthias Ketzel
- Department of Environmental Science, Aarhus University, Roskilde, Denmark; Global Centre for Clean Air Research (GCARE), University of Surrey, Guildford GU2 7XH, UK
| | - Karin Leander
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Patrik K E Magnusson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Göran Pershagen
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Debora Rizzuto
- Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden; Stockholm Gerontology Research Center, Stockholm, Sweden
| | - Evangelia Samoli
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Gianluca Severi
- University Paris-Saclay, UVSQ, Inserm, Gustave Roussy, "Exposome and Heredity" team, CESP UMR1018, 94805, Villejuif, France
| | - Massimo Stafoggia
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden; Department of Epidemiology, Lazio Region Health Service/ASL Roma 1, Rome, Italy
| | - Anne Tjønneland
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark; The Danish Cancer Institute, Copenhagen, Denmark
| | - Roel Vermeulen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Kathrin Wolf
- Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Emanuel Zitt
- Agency for Preventive and Social Medicine (aks), Bregenz, Austria; Department of Internal Medicine 3, LKH Feldkirch, Feldkirch, Austria
| | - Bert Brunekreef
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - George Thurston
- Division of Environmental Medicine, Depts of Medicine and Population Health, New York University Grossman School of Medicine, New York, USA
| | - Gerard Hoek
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Ole Raaschou-Nielsen
- Department of Environmental Science, Aarhus University, Roskilde, Denmark; The Danish Cancer Institute, Copenhagen, Denmark
| | - Gabriele Nagel
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany
| |
Collapse
|
15
|
Abstract
We review current knowledge on the trends and drivers of global wildfire activity, advances in the measurement of wildfire smoke exposure, and evidence on the health effects of this exposure. We describe methodological issues in estimating the causal effects of wildfire smoke exposures on health and quantify their importance, emphasizing the role of nonlinear and lagged effects. We conduct a systematic review and meta-analysis of the health effects of wildfire smoke exposure, finding positive impacts on all-cause mortality and respiratory hospitalizations but less consistent evidence on cardiovascular morbidity. We conclude by highlighting priority areas for future research, including leveraging recently developed spatially and temporally resolved wildfire-specific ambient air pollution data to improve estimates of the health effects of wildfire smoke exposure.
Collapse
Affiliation(s)
- Carlos F Gould
- Doerr School of Sustainability, Stanford University, Stanford, California, USA; ,
| | - Sam Heft-Neal
- Center on Food Security and the Environment, Stanford University, Stanford, California, USA;
| | - Mary Johnson
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA; ,
| | - Juan Aguilera
- Center for Community Health Impact, The University of Texas Health Science Center at Houston School of Public Health, El Paso, Texas, USA;
| | - Marshall Burke
- Doerr School of Sustainability, Stanford University, Stanford, California, USA; ,
- Center on Food Security and the Environment, Stanford University, Stanford, California, USA;
- National Bureau of Economic Research, Boston, Massachusetts, USA
| | - Kari Nadeau
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA; ,
| |
Collapse
|
16
|
Wei J, Wang J, Li Z, Kondragunta S, Anenberg S, Wang Y, Zhang H, Diner D, Hand J, Lyapustin A, Kahn R, Colarco P, da Silva A, Ichoku C. Long-term mortality burden trends attributed to black carbon and PM 2·5 from wildfire emissions across the continental USA from 2000 to 2020: a deep learning modelling study. Lancet Planet Health 2023; 7:e963-e975. [PMID: 38056967 DOI: 10.1016/s2542-5196(23)00235-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 10/04/2023] [Accepted: 10/12/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND Long-term improvements in air quality and public health in the continental USA were disrupted over the past decade by increased fire emissions that potentially offset the decrease in anthropogenic emissions. This study aims to estimate trends in black carbon and PM2·5 concentrations and their attributable mortality burden across the USA. METHODS In this study, we derived daily concentrations of PM2·5 and its highly toxic black carbon component at a 1-km resolution in the USA from 2000 to 2020 via deep learning that integrated big data from satellites, models, and surface observations. We estimated the annual PM2·5-attributable and black carbon-attributable mortality burden at each 1-km2 grid using concentration-response functions collected from a national cohort study and a meta-analysis study, respectively. We investigated the spatiotemporal linear-regressed trends in PM2·5 and black carbon pollution and their associated premature deaths from 2000 to 2020, and the impact of wildfires on air quality and public health. FINDINGS Our results showed that PM2·5 and black carbon estimates are reliable, with sample-based cross-validated coefficients of determination of 0·82 and 0·80, respectively, for daily estimates (0·97 and 0·95 for monthly estimates). Both PM2·5 and black carbon in the USA showed significantly decreasing trends overall during 2000 to 2020 (22% decrease for PM2·5 and 11% decrease for black carbon), leading to a reduction of around 4200 premature deaths per year (95% CI 2960-5050). However, since 2010, the decreasing trends of fine particles and premature deaths have reversed to increase in the western USA (55% increase in PM2·5, 86% increase in black carbon, and increase of 670 premature deaths [460-810]), while remaining mostly unchanged in the eastern USA. The western USA showed large interannual fluctuations that were attributable to the increasing incidence of wildfires. Furthermore, the black carbon-to-PM2·5 mass ratio increased annually by 2·4% across the USA, mainly due to increasing wildfire emissions in the western USA and more rapid reductions of other components in the eastern USA, suggesting a potential increase in the relative toxicity of PM2·5. 100% of populated areas in the USA have experienced at least one day of PM2·5 pollution exceeding the daily air quality guideline level of 15 μg/m3 during 2000-2020, with 99% experiencing at least 7 days and 85% experiencing at least 30 days. The recent widespread wildfires have greatly increased the daily exposure risks in the western USA, and have also impacted the midwestern USA due to the long-range transport of smoke. INTERPRETATION Wildfires have become increasingly intensive and frequent in the western USA, resulting in a significant increase in smoke-related emissions in populated areas. This increase is likely to have contributed to a decline in air quality and an increase in attributable mortality. Reducing fire risk via effective policies besides mitigation of climate warming, such as wildfire prevention and management, forest restoration, and new revenue generation, could substantially improve air quality and public health in the coming decades. FUNDING National Aeronautics and Space Administration (NASA) Applied Science programme, NASA MODIS maintenance programme, NASA MAIA satellite mission programme, NASA GMAO core fund, National Oceanic and Atmospheric Administration (NOAA) GEO-XO project, NOAA Atmospheric Chemistry, Carbon Cycle, and Climate (AC4) programme, and NOAA Educational Partnership Program with Minority Serving Institutions.
Collapse
Affiliation(s)
- Jing Wei
- Department of Chemical and Biochemical Engineering, Iowa Technology Institute, Center for Global and Regional Environmental Research, University of Iowa, Iowa City, IA, USA; Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA.
| | - Jun Wang
- Department of Chemical and Biochemical Engineering, Iowa Technology Institute, Center for Global and Regional Environmental Research, University of Iowa, Iowa City, IA, USA.
| | - Zhanqing Li
- Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA.
| | - Shobha Kondragunta
- Center for Satellite Applications and Research, NOAA National Environmental Satellite, Data, and Information Service, College Park, MD, USA
| | - Susan Anenberg
- Department of Environmental and Occupational Health, George Washington University, Washington, DC, USA
| | - Yi Wang
- Department of Chemical and Biochemical Engineering, Iowa Technology Institute, Center for Global and Regional Environmental Research, University of Iowa, Iowa City, IA, USA
| | - Huanxin Zhang
- Department of Chemical and Biochemical Engineering, Iowa Technology Institute, Center for Global and Regional Environmental Research, University of Iowa, Iowa City, IA, USA
| | - David Diner
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Jenny Hand
- Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, CO, USA
| | - Alexei Lyapustin
- Climate and Radiation Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA
| | - Ralph Kahn
- Climate and Radiation Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA
| | - Peter Colarco
- Atmospheric Chemistry and Dynamics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA
| | - Arlindo da Silva
- Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, Greenbelt, MD, USA
| | - Charles Ichoku
- Department of Geography and Environmental Systems, University of Maryland Baltimore County, Baltimore, MD, USA
| |
Collapse
|
17
|
Li Y, Fan Z, Lu W, Xu R, Liu T, Liu L, Chen G, Lv Z, Huang S, Zhou Y, Liu Y, Sun H. Long-term exposure to ambient fine particulate matter-bound polycyclic aromatic hydrocarbons and cancer mortality: A difference-in-differences approach. CHEMOSPHERE 2023; 340:139800. [PMID: 37572709 DOI: 10.1016/j.chemosphere.2023.139800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/19/2023] [Accepted: 08/10/2023] [Indexed: 08/14/2023]
Abstract
The association of ambient fine particulate matter (PM2.5) exposure with cancer mortality was controversial, which may ascribe to the difference in PM2.5 constituents. Polycyclic aromatic hydrocarbons (PAHs) are carcinogenic constituents in PM2.5, which are suspected to account for PM2.5-induced cancer mortality but are yet to be investigated. We aimed to assess the association between long-term exposure to PM2.5-bound PAHs and cancer mortality and estimate the attributable mortality. A difference-in-differences approach was used to investigate the causal effect of long-term exposure to PM2.5-bound PAHs on cancer mortality. We divided Jiangsu province, China into 53 spatial units and summarized the annual number of cancer deaths in each spatial unit during 2016-2020. Annual population-weighted exposure to PM2.5-bound PAHs of each spatial unit was assessed by an inverse distance weighting method. The association between PM2.5-bound PAHs exposures and cancer mortality was evaluated by controlling spatial differences, temporal trends, PM2.5 mass exposures, temperatures, and socioeconomic status. Records of 793,269 cancer deaths were identified among 84.7 million population. Each ln-unit increase of exposure to total benzo[a]pyrene equivalents (∑BaPeq), total carcinogenic PAHs (∑PAH7c), and total PAHs (∑PAHs) was significantly associated with a 3.21%, 3.48%, and 2.64% increased risk of cancer mortality, respectively; the risk increased monotonically at low-level exposures but attenuated or flattened afterward (all p for nonlinearity <0.05). Similar exposure-response associations were identified for specific PAHs except that the associations for both fluoranthene and benzo[a]anthracene were linear. We estimated that exposure to ∑BaPeq, ∑PAH7c, and ∑PAHs contributed to 5.73%, 8.73%, and 7.33% of cancer deaths, respectively. In conclusion, long-term exposure to PM2.5-bound PAHs was associated with an increased risk of cancer mortality and contributed to substantial cancer deaths. Our findings highlight the importance to prevent deaths from cancer by reducing PM2.5-bound PAHs exposures and the necessity to take into consideration specific constituents in particulate pollution management in future.
Collapse
Affiliation(s)
- Yingxin Li
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhaoyu Fan
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wenfeng Lu
- Department of Preventive Medicine, School of Public Health, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ruijun Xu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Tingting Liu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Likun Liu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Gongbo Chen
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Ziquan Lv
- Central Laboratory of Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Suli Huang
- Department of Environment and Health, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, China
| | - Yun Zhou
- Department of Preventive Medicine, School of Public Health, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yuewei Liu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Hong Sun
- Department of Environment and Health, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu, China.
| |
Collapse
|
18
|
Zhang D, Xi Y, Boffa DJ, Liu Y, Nogueira LM. Association of Wildfire Exposure While Recovering From Lung Cancer Surgery With Overall Survival. JAMA Oncol 2023; 9:1214-1220. [PMID: 37498574 PMCID: PMC10375383 DOI: 10.1001/jamaoncol.2023.2144] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/26/2023] [Indexed: 07/28/2023]
Abstract
Importance With a changing climate, wildfire activity in the US has increased dramatically, presenting multifaceted and compounding health hazards. Individuals discharged from the hospital following surgical resection of non-small cell lung cancer (NSCLC) are potentially at higher risk from wildfires' health hazards. Objective To assess the association between wildfire exposure and postoperative long-term overall survival among patients with lung cancer in the US. Design, Setting, and Participants In this cohort study, individuals who underwent curative-intent NSCLC resection between January 1, 2004, and December 31, 2019, were selected from the National Cancer Database. Daily wildfire information was aggregated at the zip code level from the National Aeronautics and Space Administration Fire Information for Resource Management System. The data analysis was performed between July 19, 2022, and April 14, 2023. Exposure An active wildfire detected at the zip code of residence between 0 and 3, 4 and 6, or 7 and 12 months after NSCLC surgery. Main Outcome Overall survival was defined as the interval between age at hospital discharge and age at death, last contact, or study end, whichever came first. Cox proportional hazards were used for estimating hazard ratios (HRs) adjusted for sex, region, metropolitan category, health insurance type, comorbidities, tumor size, lymph node involvement, era, and facility type. Results A total of 466 912 individuals included in the study (249 303 female and [53.4] and 217 609 male [46.6%]; mean [SD] age at diagnosis, 67.3 [9.9] years), with 48 582 (10.4%) first exposed to a wildfire between 0 and 3 months, 48 328 (10.6%) between 4 and 6 months, and 71 735 (15.3%) between 7 and 12 months following NSCLC surgery. Individuals exposed to a wildfire within 3 months (adjusted HR [AHR], 1.43; 95% CI, 1.41-1.45), between 4 and 6 months (AHR, 1.39; 95% CI, 1.37-1.41), and between 7 and 12 months (AHR, 1.17; 95% CI, 1.15-1.19) after discharge from the hospital following stage I to III NSCLC resection had worse overall survival than unexposed individuals. Conclusions In this cohort study, wildfire exposure was associated with worse overall survival following NSCLC surgical resection, suggesting that patients with lung cancer are at greater risk from the health hazards of wildfires and need to be prioritized in climate adaptation efforts.
Collapse
Affiliation(s)
- Danlu Zhang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Yuzhi Xi
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | | | - Yang Liu
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Leticia M. Nogueira
- Surveillance and Health Equity Science, American Cancer Society, Kennesaw, Georgia
| |
Collapse
|
19
|
Gao Y, Huang W, Xu R, Gasevic D, Liu Y, Yu W, Yu P, Yue X, Zhou G, Zhang Y, Liu H, Song J, Guo Y, Li S. Association between long-term exposure to wildfire-related PM 2.5 and mortality: A longitudinal analysis of the UK Biobank. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131779. [PMID: 37307727 DOI: 10.1016/j.jhazmat.2023.131779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/26/2023] [Accepted: 06/03/2023] [Indexed: 06/14/2023]
Abstract
Little is known about the associations between long-term exposure to wildfire-related fine particulate matter (PM2.5) and mortality. We aimed to explore theses associations using the data from the UK Biobank cohort. Long-term wildfire-related PM2.5 exposure was defined as the 3-year cumulative concentrations of wildfire-related PM2.5 within a 10-km buffer surrounding the residential address for each individual. Hazard ratios (HRs) with 95% confidence intervals (CIs) were estimated using the time-varying Cox regression model. We included 492,394 participants aged between 38 and 73 years. We found that after adjusting for potential covariates, a 10 μg/m3 increase of wildfire-related PM2.5 exposure was associated with a 0.4% higher risk of all-cause mortality (HR = 1.004 [95% CI: 1.001, 1.006]) and nonaccidental mortality (HR = 1.004 [95% CI: 1.002, 1.006]), and a 0.5% higher risk of neoplasm mortality (HR = 1.005 [95% CI: 1.002, 1.008]). However, no significant associations were observed between wildfire-related PM2.5 exposure and mortality from cardiovascular, respiratory, and mental diseases. Additionally, no significant modification effects of a series of modifiers were observed. Targeted health protection strategies should be adopted in response to wildfire-related PM2.5 exposure, in order to reduce the risk of premature mortality.
Collapse
Affiliation(s)
- Yuan Gao
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Wenzhong Huang
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Rongbin Xu
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Danijela Gasevic
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia; Centre for Global Health, Usher Institute, The University of Edinburgh, Edinburgh, UK
| | - Yanming Liu
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Wenhua Yu
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Pei Yu
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Xu Yue
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, China
| | - Guowei Zhou
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yan Zhang
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Hong Liu
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jiangning Song
- Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Yuming Guo
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia
| | - Shanshan Li
- School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia.
| |
Collapse
|
20
|
Fan Z, Li Y, Wei J, Chen G, Wang R, Xu R, Liu T, Lv Z, Huang S, Sun H, Liu Y. Long-term exposure to fine particulate matter and site-specific cancer mortality: A difference-in-differences analysis in Jiangsu province, China. ENVIRONMENTAL RESEARCH 2023; 222:115405. [PMID: 36736553 DOI: 10.1016/j.envres.2023.115405] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Accumulating studies have reported that chronic exposure to ambient fine particulate matter (PM2.5) can lead to adverse effects on lung cancer mortality; however, such chronic effects are less clear for mortality from other site-specific cancers. OBJECTIVE To explore the causal effect of long-term PM2.5 exposure on mortality from all-site and a variety of site-specific cancers in Jiangsu province, China during 2015-2020 using a difference-in-differences analysis. METHODS For each of 53 county-based spatial units in Jiangsu province, we calculated annual death counts for all-site cancer and 23 site-specific cancers. Using a validated high-resolution PM2.5 grid dataset, long-term PM2.5 exposure of a spatial unit within a given year was evaluated as the average of population-weighted annual concentrations during recent 10 years. Conditional Poisson regression models were employed to evaluate exposure-response associations adjusting for spatial and temporal variables, seasonal temperatures, relative humidity, and gross domestic product (GDP). RESULTS During the study period, we identified 947,337 adult cancer deaths in Jiangsu province. Each 1 μg/m3 increment in PM2.5 exposure was significantly associated with a 2.7% increase in the risk of all-site cancer mortality. PM2.5-mortality associations were also observed in cancer of lip, oral cavity and pharynx, stomach, colorectum, pancreas, lung, bone and joints, ovary, prostate, and lymphoma (all adjusted P < 0.05), with the relative risks ranging from 1.028 (95% confidence interval [CI]: 1.011, 1.046) for stomach cancer to 1.201 (95% CI: 1.120, 1.308) for bone and joints cancers. Exposure-response curves showed that these associations were close to linearity, though most of them had increasing slopes at high exposure levels. Overall, women and subjects in low GDP regions were more vulnerable to PM2.5 exposures. CONCLUSIONS Long-term exposure to ambient PM2.5 contributes to a higher risk of mortality from multiple site-specific cancers.
Collapse
Affiliation(s)
- Zhaoyu Fan
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Yingxin Li
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Jing Wei
- Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, 20740, USA
| | - Gongbo Chen
- Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC, 3004, Australia
| | - Rui Wang
- Luohu District Chronic Disease Hospital, Shenzhen, Guangdong, 518020, China
| | - Ruijun Xu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Tingting Liu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Ziquan Lv
- Central Laboratory of Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, 518055, China
| | - Suli Huang
- Department of Environment and Health, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong, 518055, China
| | - Hong Sun
- Department of Environment and Health, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, Jiangsu, 210009, China.
| | - Yuewei Liu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China.
| |
Collapse
|