1
|
Gramberg S, Puckelwaldt O, Schmitt T, Lu Z, Haeberlein S. Spatial transcriptomics of a parasitic flatworm provides a molecular map of drug targets and drug resistance genes. Nat Commun 2024; 15:8918. [PMID: 39414795 PMCID: PMC11484910 DOI: 10.1038/s41467-024-53215-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 10/04/2024] [Indexed: 10/18/2024] Open
Abstract
The spatial organization of gene expression dictates tissue functions in multicellular parasites. Here, we present the spatial transcriptome of a parasitic flatworm, the common liver fluke Fasciola hepatica. We identify gene expression profiles and marker genes for eight distinct tissues and validate the latter by in situ hybridization. To demonstrate the power of our spatial atlas, we focus on genes with substantial medical importance, including vaccine candidates (Ly6 proteins) and drug resistance genes (glutathione S-transferases, ABC transporters). Several of these genes exhibit unique expression patterns, indicating tissue-specific biological functions. Notably, the prioritization of tegumental protein kinases identifies a PKCβ, for which small-molecule targeting causes parasite death. Our comprehensive gene expression map provides unprecedented molecular insights into the organ systems of this complex parasitic organism, serving as a valuable tool for both basic and applied research.
Collapse
Affiliation(s)
- Svenja Gramberg
- Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany
| | - Oliver Puckelwaldt
- Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany
| | - Tobias Schmitt
- Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany
| | - Zhigang Lu
- Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| | - Simone Haeberlein
- Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany.
| |
Collapse
|
2
|
Zhong H, Hou L, Qin F, Ren Y, Dong B, Zhu D, Li H, Lu K, Fu Z, Liu J, Gu S, Jin Y. Molecular and functional characterization of Schistosoma japonicum annexin A13. Vet Res 2023; 54:116. [PMID: 38049816 PMCID: PMC10696758 DOI: 10.1186/s13567-023-01244-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/23/2023] [Indexed: 12/06/2023] Open
Abstract
Schistosomiasis is a neglected tropical disease that affects humans and animals in tropical and subtropical regions worldwide. Schistosome eggs are responsible for the pathogenesis and transmission of schistosomiasis, thus reducing egg production is vital for prevention and control of schistosomiasis. However, the mechanisms underlying schistosome reproduction remain unclear. Annexin proteins (ANXs) are involved in the physiological and pathological functions of schistosomes, but the specific regulatory mechanisms and roles of ANX A13 in the development of Schistosoma japonicum and host-parasite interactions remain poorly understood. Therefore, in this study, the expression profiles of SjANX A13 at different life cycle stages of S. japonicum were assessed using quantitative PCR. In addition, the expression profiles of the homolog in S. mansoni were analyzed in reference to public datasets. The results of RNA interference showed that knockdown of SjANX A13 significantly affected the development and egg production of female worms in vivo. The results of an immune protection assay showed that recombinant SjANX A13 increased production of immunoglobulin G-specific antibodies. Finally, co-culture of S. japonicum exosomes with LX-2 cells using a transwell system demonstrated that SjANX A13 is involved in host-parasite interactions via exosomes. Collectively, these results will help to clarify the roles of SjANX A13 in the development of S. japonicum and host-parasite interactions as a potential vaccine candidate.
Collapse
Affiliation(s)
- Haoran Zhong
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Ling Hou
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Shanxi, China
| | - Fanglin Qin
- College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Yuqi Ren
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Bowen Dong
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Danlin Zhu
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Hao Li
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Ke Lu
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Zhiqiang Fu
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Jinming Liu
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
- Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Shaopeng Gu
- College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Shanxi, China
| | - Yamei Jin
- National Reference Laboratory for Animal Schistosomiasis, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.
- Key Laboratory of Animal Parasitology of Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.
| |
Collapse
|
3
|
Zhu P, Wu K, Zhang C, Batool SS, Li A, Yu Z, Huang J. Advances in new target molecules against schistosomiasis: A comprehensive discussion of physiological structure and nutrient intake. PLoS Pathog 2023; 19:e1011498. [PMID: 37498810 PMCID: PMC10374103 DOI: 10.1371/journal.ppat.1011498] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023] Open
Abstract
Schistosomiasis, a severe parasitic disease, is primarily caused by Schistosoma mansoni, Schistosoma japonicum, or Schistosoma haematobium. Currently, praziquantel is the only recommended drug for human schistosome infection. However, the lack of efficacy of praziquantel against juvenile worms and concerns about the emergence of drug resistance are driving forces behind the research for an alternative medication. Schistosomes are obligatory parasites that survive on nutrients obtained from their host. The ability of nutrient uptake depends on their physiological structure. In short, the formation and maintenance of the structure and nutrient supply are mutually reinforcing and interdependent. In this review, we focus on the structural features of the tegument, esophagus, and intestine of schistosomes and their roles in nutrient acquisition. Moreover, we introduce the significance and modes of glucose, lipids, proteins, and amino acids intake in schistosomes. We linked the schistosome structure and nutrient supply, introduced the currently emerging targets, and analyzed the current bottlenecks in the research and development of drugs and vaccines, in the hope of providing new strategies for the prevention and control of schistosomiasis.
Collapse
Affiliation(s)
- Peng Zhu
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, China
- XiangYa School of Medicine, Central South University, Changsha, Hunan, China
| | - Kaijuan Wu
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, China
| | - Chaobin Zhang
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, China
- XiangYa School of Medicine, Central South University, Changsha, Hunan, China
| | - Syeda Sundas Batool
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Anqiao Li
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, China
- XiangYa School of Medicine, Central South University, Changsha, Hunan, China
| | - Zheng Yu
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| | - Jing Huang
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, China
- China-Africa Research Center of Infectious Diseases, Central South University, Changsha, China
| |
Collapse
|
4
|
Phuphisut O, Poodeepiyasawat A, Yoonuan T, Watthanakulpanich D, Chotsiri P, Reamtong O, Mousley A, Gobert GN, Adisakwattana P. Transcriptome profiling of male and female Ascaris lumbricoides reproductive tissues. Parasit Vectors 2022; 15:477. [PMID: 36539906 PMCID: PMC9768952 DOI: 10.1186/s13071-022-05602-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Ascaris lumbricoides causes human ascariasis, the most prevalent helminth disease, infecting approximately 1 billion individuals globally. In 2019 the global disease burden was estimated to be 754,000 DALYs and resulted in 2090 deaths. In the absence of a vaccination strategy, treatment of ascariasis has relied on anthelminthic chemotherapy, but drug resistance is a concern. The propensity for reinfection is also a major challenge to disease control; female worms lay up to 200,000 eggs daily, which contaminate surrounding environments and remain viable for years, resulting in high transmission rates. Understanding the molecular mechanisms of reproductive processes, including control of egg production, spermatogenesis, oogenesis and embryogenesis, will drive the development of new drugs and/or vaccine targets for future ascariasis control. METHODS Transcriptome profiles of discrete reproductive and somatic tissue samples were generated from adult male and female worms using Illumina HiSeq with 2 × 150 bp paired-end sequencing. Male tissues included: testis germinal zone, testis part of vas deferens, seminal vesicle and somatic tissue. Female tissues included: ovary germinal zone, ovary part of the oviduct, uterus and somatic tissue. Differentially expressed genes (DEGs) were identified from the fragments per kilobases per million reads (FPKM) profiles. Hierarchical analysis was performed to identify tissue-specific genes. Furthermore, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were employed to identify significant terms and pathways for the DEGs. RESULTS DEGs involved in protein phosphorylation and adhesion molecules were indicated to play a crucial role in spermatogenesis and fertilization, respectively. Those genes associated with the G-protein-coupled receptor (GPCR) signaling pathway and small GTPase-mediated signal transduction pathway play an essential role in cytoskeleton organization during oogenesis. Additionally, DEGs associated with the SMA genes and TGF-β signaling pathway are crucial in adult female embryogenesis. Some genes associated with particular biological processes and pathways that were identified in this study have been linked to defects in germline development, embryogenesis and reproductive behavior. In the enriched KEGG pathway analysis, Hippo signaling, oxytocin signaling and tight junction pathways were identified to play a role in Ascaris male and female reproductive systems. CONCLUSIONS This study has provided comprehensive transcriptome profiles of discrete A. lumbricoides reproductive tissue samples, revealing the molecular basis of these functionally important tissues. The data generated from this study will provide fundamental knowledge on the reproductive biology of Ascaris and will inform future target identification for anti-ascariasis drugs and/or vaccines.
Collapse
Affiliation(s)
- Orawan Phuphisut
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Akkarin Poodeepiyasawat
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Tippayarat Yoonuan
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Dorn Watthanakulpanich
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Palang Chotsiri
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, 10400, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Angela Mousley
- School of Biological Sciences, Queen's University Belfast, Belfast, BT9 5DL, UK
| | - Geoffrey N Gobert
- School of Biological Sciences, Queen's University Belfast, Belfast, BT9 5DL, UK
| | - Poom Adisakwattana
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
5
|
Alwan SN, LoVerde PT. The effect of fs800 on female egg production in Schistosoma mansoni. Mol Biochem Parasitol 2021; 245:111412. [PMID: 34492240 PMCID: PMC10838108 DOI: 10.1016/j.molbiopara.2021.111412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 08/31/2021] [Accepted: 09/01/2021] [Indexed: 11/27/2022]
Abstract
During schistosomiasis, the paired Schistosoma mansoni female produces about 300 eggs each day. These eggs are responsible for the clinical picture and the transmission of the disease. During female development and egg production, fs800 is expressed only in female vitelline cells. Blast search of fs800 did not show similarities with any published sequences by NCBI. We hypothesize that the product of this gene plays a role in S. mansoni egg production. By using RNA interference to knockdown fs800 and quantitative PCR to measure the gene expression in the female schistosomes, we were able to demonstrate that fs800 product is crucial for viable egg production, it has no effect on worm health or male-female pairing. Our data suggest fs800 inhibition as a potential target to prevent transmission and pathology of schistosomiasis.
Collapse
Affiliation(s)
- Sevan N Alwan
- Departments of Biochemistry and Structural Biology, UT Health at San Antonio, San Antonio, TX 78229, USA.
| | - Philip T LoVerde
- Departments of Biochemistry and Structural Biology, UT Health at San Antonio, San Antonio, TX 78229, USA; Pathology and Laboratory Medicine, UT Health at San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
6
|
Wu W, LoVerde PT. Identification and evolution of nuclear receptors in Platyhelminths. PLoS One 2021; 16:e0250750. [PMID: 34388160 PMCID: PMC8363021 DOI: 10.1371/journal.pone.0250750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/18/2021] [Indexed: 11/24/2022] Open
Abstract
Since the first complete set of Platyhelminth nuclear receptors (NRs) from Schistosoma mansoni were identified a decade ago, more flatworm genome data is available to identify their NR complement and to analyze the evolutionary relationship of Platyhelminth NRs. NRs are important transcriptional modulators that regulate development, differentiation and reproduction of animals. In this study, NRs are identified in genome databases of thirty-three species including in all Platyhelminth classes (Rhabditophora, Monogenea, Cestoda and Trematoda). Phylogenetic analysis shows that NRs in Platyhelminths follow two different evolutionary lineages: 1) NRs in a free-living freshwater flatworm (Schmidtea mediterranea) and all parasitic flatworms share the same evolutionary lineage with extensive gene loss. 2) NRs in a free-living intertidal zone flatworm (Macrostomum lignano) follow a different evolutionary lineage with a feature of multiple gene duplication and gene divergence. The DNA binding domain (DBD) is the most conserved region in NRs which contains two C4-type zinc finger motifs. A novel zinc finger motif is identified in parasitic flatworm NRs: the second zinc finger of parasitic Platyhelminth HR96b possesses a CHC2 motif which is not found in NRs of all other animals studied to date. In this study, novel NRs (members of NR subfamily 3 and 6) are identified in flatworms, this result demonstrates that members of all six classical NR subfamilies are present in the Platyhelminth phylum. NR gene duplication, loss and divergence in Platyhelminths are analyzed along with the evolutionary relationship of Platyhelminth NRs.
Collapse
Affiliation(s)
- Wenjie Wu
- Departments of Biochemistry and Structural Biology and Pathology and Laboratory Medicine, University of Texas Health Sciences Center, San Antonio, Texas, United States of America
| | - Philip T. LoVerde
- Departments of Biochemistry and Structural Biology and Pathology and Laboratory Medicine, University of Texas Health Sciences Center, San Antonio, Texas, United States of America
- * E-mail:
| |
Collapse
|
7
|
McManus DP. The Search for a Schistosomiasis Vaccine: Australia's Contribution. Vaccines (Basel) 2021; 9:vaccines9080872. [PMID: 34451997 PMCID: PMC8402410 DOI: 10.3390/vaccines9080872] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/05/2021] [Accepted: 08/05/2021] [Indexed: 01/10/2023] Open
Abstract
Schistosomiasis, a neglected tropical disease caused by parasitic flatworms of the genus Schistosoma, results in considerable human morbidity in sub-Saharan Africa, in particular, but also parts of the Middle East, South America, and Southeast Asia. The anti-schistosome drug praziquantel is efficacious and safe against the adult parasites of all Schistosoma species infecting humans; however, it does not prevent reinfection and the development of drug resistance is a constant concern. The need to develop an effective vaccine is of great importance if the health of many in the developing world is to be improved. Indeed, vaccination, in combination with other public health measures, can provide an invaluable tool to achieve lasting control, leading to schistosomiasis elimination. Australia has played a leading role in schistosomiasis vaccine research over many years and this review presents an overview of some of the significant contributions made by Australian scientists in this important area.
Collapse
Affiliation(s)
- Donald P McManus
- Molecular Parasitology Laboratory, Infectious Diseases Division, QIMR Berghofer Medical Research Institute, Brisbane 4006, Australia
| |
Collapse
|
8
|
Bennett APS, Robinson MW. Trematode Proteomics: Recent Advances and Future Directions. Pathogens 2021; 10:348. [PMID: 33809501 PMCID: PMC7998542 DOI: 10.3390/pathogens10030348] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/09/2021] [Accepted: 03/14/2021] [Indexed: 12/14/2022] Open
Abstract
Trematodes cause disease in millions of people worldwide, but the absence of commercial vaccines has led to an over-reliance on a handful of monotherapies to control infections. Since drug-resistant fluke populations are emerging, a deeper understanding of parasite biology and host interactions is required to identify new drug targets and immunogenic vaccine candidates. Mass spectrometry-based proteomics represents a key tool to that end. Recent studies have capitalised on the wider availability of annotated helminth genomes to achieve greater coverage of trematode proteomes and discover new aspects of the host-parasite relationship. This review focusses on these latest advances. These include how the protein components of fluke extracellular vesicles have given insight into their biogenesis and cellular interactions. In addition, how the integration of transcriptome/proteome datasets has revealed that the expression and secretion of selected families of liver fluke virulence factors and immunomodulators are regulated in accordance with parasite development and migration within the mammalian host. Furthermore, we discuss the use of immunoproteomics as a tool to identify vaccine candidates associated with protective antibody responses. Finally, we highlight how established and emerging technologies, such as laser microdissection and single-cell proteomics, could be exploited to resolve the protein profiles of discrete trematode tissues or cell types which, in combination with functional tools, could pinpoint optimal targets for fluke control.
Collapse
Affiliation(s)
| | - Mark W. Robinson
- School of Biological Sciences, Queen’s University Belfast, 19 Chlorine Gardens, Belfast BT9 5DL, Northern Ireland, UK;
| |
Collapse
|
9
|
Diaz Soria CL, Lee J, Chong T, Coghlan A, Tracey A, Young MD, Andrews T, Hall C, Ng BL, Rawlinson K, Doyle SR, Leonard S, Lu Z, Bennett HM, Rinaldi G, Newmark PA, Berriman M. Single-cell atlas of the first intra-mammalian developmental stage of the human parasite Schistosoma mansoni. Nat Commun 2020; 11:6411. [PMID: 33339816 PMCID: PMC7749135 DOI: 10.1038/s41467-020-20092-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 11/13/2020] [Indexed: 12/21/2022] Open
Abstract
Over 250 million people suffer from schistosomiasis, a tropical disease caused by parasitic flatworms known as schistosomes. Humans become infected by free-swimming, water-borne larvae, which penetrate the skin. The earliest intra-mammalian stage, called the schistosomulum, undergoes a series of developmental transitions. These changes are critical for the parasite to adapt to its new environment as it navigates through host tissues to reach its niche, where it will grow to reproductive maturity. Unravelling the mechanisms that drive intra-mammalian development requires knowledge of the spatial organisation and transcriptional dynamics of different cell types that comprise the schistomulum body. To fill these important knowledge gaps, we perform single-cell RNA sequencing on two-day old schistosomula of Schistosoma mansoni. We identify likely gene expression profiles for muscle, nervous system, tegument, oesophageal gland, parenchymal/primordial gut cells, and stem cells. In addition, we validate cell markers for all these clusters by in situ hybridisation in schistosomula and adult parasites. Taken together, this study provides a comprehensive cell-type atlas for the early intra-mammalian stage of this devastating metazoan parasite.
Collapse
Affiliation(s)
| | - Jayhun Lee
- Regenerative Biology, Morgridge Institute for Research, Madison, WI, USA
- Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, WI, USA
| | - Tracy Chong
- Regenerative Biology, Morgridge Institute for Research, Madison, WI, USA
- Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, WI, USA
| | - Avril Coghlan
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Alan Tracey
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Matthew D Young
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Tallulah Andrews
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Christopher Hall
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Bee Ling Ng
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Kate Rawlinson
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Stephen R Doyle
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Steven Leonard
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Zhigang Lu
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Hayley M Bennett
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Gabriel Rinaldi
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK.
| | - Phillip A Newmark
- Regenerative Biology, Morgridge Institute for Research, Madison, WI, USA.
- Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA.
| | - Matthew Berriman
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK.
| |
Collapse
|
10
|
Use of kinase inhibitors against schistosomes to improve and broaden praziquantel efficacy. Parasitology 2020; 147:1488-1498. [PMID: 32741402 DOI: 10.1017/s0031182020001250] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Praziquantel (PZQ) is the drug of choice for schistosomiasis. The potential drug resistance necessitates the search for adjunct or alternative therapies to PZQ. Previous functional genomics has shown that RNAi inhibition of Ca2+/calmodulin-dependent protein kinase II (CaMKII) gene in Schistosoma adult worms significantly improved the effectiveness of PZQ. Here we tested the in vitro efficacy of 15 selective and non-selective CaMK inhibitors against Schistosoma mansoni and showed that PZQ efficacy was improved against refractory juvenile parasites when combined with these CaMK inhibitors. By measuring CaMK activity and the mobility of adult S. mansoni, we identified two non-selective CaMK inhibitors, Staurosporine (STSP) and 1Naphthyl PP1 (1NAPP1), as promising candidates for further study. The impact of STSP and 1NAPP1 was investigated in mice infected with S. mansoni in the presence or absence of a sub-lethal dose of PZQ against 2- and 7-day-old schistosomula and adults. Treatment with STSP/PZQ induced a significant (47-68%) liver egg burden reduction compared with mice treated with PZQ alone. The findings indicate that the combination of STSP and PZQ dosages significantly improved anti-schistosomal activity compared to PZQ alone, demonstrating the potential of selective and non-selective CaMK/kinase inhibitors as a combination therapy with PZQ in treating schistosomiasis.
Collapse
|
11
|
Roudnický P, Potěšil D, Zdráhal Z, Gelnar M, Kašný M. Laser capture microdissection in combination with mass spectrometry: Approach to characterization of tissue-specific proteomes of Eudiplozoon nipponicum (Monogenea, Polyopisthocotylea). PLoS One 2020; 15:e0231681. [PMID: 32555742 PMCID: PMC7299319 DOI: 10.1371/journal.pone.0231681] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/25/2020] [Indexed: 12/14/2022] Open
Abstract
Eudiplozoon nipponicum (Goto, 1891) is a hematophagous monogenean ectoparasite which inhabits the gills of the common carp (Cyprinus carpio). Heavy infestation can lead to anemia and in conjunction with secondary bacterial infections cause poor health and eventual death of the host. This study is based on an innovative approach to protein localization which has never been used in parasitology before. Using laser capture microdissection, we dissected particular areas of the parasite body without contaminating the samples by surrounding tissue and in combination with analysis by mass spectrometry obtained tissue-specific proteomes of tegument, intestine, and parenchyma of our model organism, E. nipponicum. We successfully verified the presence of certain functional proteins (e.g. cathepsin L) in tissues where their presence was expected (intestine) and confirmed that there were no traces of these proteins in other tissues (tegument and parenchyma). Additionally, we identified a total of 2,059 proteins, including 72 peptidases and 33 peptidase inhibitors. As expected, the greatest variety was found in the intestine and the lowest variety in the parenchyma. Our results are significant on two levels. Firstly, we demonstrated that one can localize all proteins in one analysis and without using laboratory animals (antibodies for immunolocalization of single proteins). Secondly, this study offers the first complex proteomic data on not only the E. nipponicum but within the whole class of Monogenea, which was from this point of view until recently neglected.
Collapse
Affiliation(s)
- Pavel Roudnický
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
- * E-mail:
| | - David Potěšil
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Zbyněk Zdráhal
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Milan Gelnar
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Martin Kašný
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
12
|
Limpanont Y, Phuphisut O, Reamtong O, Adisakwattana P. Recent advances in Schistosoma mekongi ecology, transcriptomics and proteomics of relevance to snail control. Acta Trop 2020; 202:105244. [PMID: 31669533 DOI: 10.1016/j.actatropica.2019.105244] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 10/21/2019] [Accepted: 10/24/2019] [Indexed: 12/15/2022]
Abstract
Mekong schistosomiasis caused by Schistosoma mekongi is a public health problem that occurs along the border between southern Laos and northern Cambodia. Given its restricted distribution and low prevalence, eventual eradication via an effective control program can be expected to be successful. To achieve this goal detailed knowledge of its basic biology, molecular biology, biochemistry, and pathology is urgently required. In this regard, recent studies on transcriptome analysis of adult male and female S. mekongi worms, and proteome analysis of developmental stages have been reported and are discussed here. The biology, habitat, and distribution of the snail intermediate host Neotricula aperta, which are factors in disease transmission, are discussed in this review. These have initiated renewed interest in S. mekongi research and contributed promising data that will be utilized in the generation of effective control and prevention strategies.
Collapse
|
13
|
Phuphisut O, Ajawatanawong P, Limpanont Y, Reamtong O, Nuamtanong S, Ampawong S, Chaimon S, Dekumyoy P, Watthanakulpanich D, Swierczewski BE, Adisakwattana P. Transcriptomic analysis of male and female Schistosoma mekongi adult worms. Parasit Vectors 2018; 11:504. [PMID: 30201055 PMCID: PMC6131826 DOI: 10.1186/s13071-018-3086-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 08/29/2018] [Indexed: 12/23/2022] Open
Abstract
Background Schistosoma mekongi is one of five major causative agents of human schistosomiasis and is endemic to communities along the Mekong River in southern Lao People’s Democratic Republic (Laos) and northern Cambodia. Sporadic cases of schistosomiasis have been reported in travelers and immigrants who have visited endemic areas. Schistosoma mekongi biology and molecular biology is poorly understood, and few S. mekongi gene and transcript sequences are available in public databases. Results Transcriptome sequencing (RNA-Seq) of male and female S. mekongi adult worms (a total of three biological replicates for each sex) were analyzed and the results demonstrated that approximately 304.9 and 363.3 million high-quality clean reads with quality Q30 (> 90%) were obtained from male and female adult worms, respectively. A total of 119,604 contigs were assembled with an average length of 1273 nt and an N50 of 2017 nt. From the contigs, 20,798 annotated protein sequences and 48,256 annotated transcript sequences were obtained using BLASTP and BLASTX searches against the UniProt Trematoda database. A total of 4658 and 3509 transcripts were predominantly expressed in male and female worms, respectively. Male-biased transcripts were mostly involved in structural organization while female-biased transcripts were typically involved in cell differentiation and egg production. Interestingly, pathway enrichment analysis suggested that genes involved in the phosphatidylinositol signaling pathway may play important roles in the cellular processes and reproductive systems of S. mekongi worms. Conclusions We present comparative transcriptomic analyses of male and female S. mekongi adult worms, which provide a global view of the S. mekongi transcriptome as well as insights into differentially-expressed genes associated with each sex. This work provides valuable information and sequence resources for future studies of gene function and for ongoing whole genome sequencing efforts in S. mekongi. Electronic supplementary material The online version of this article (10.1186/s13071-018-3086-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Orawan Phuphisut
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Pravech Ajawatanawong
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Yanin Limpanont
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Supaporn Nuamtanong
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Sumate Ampawong
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Salisa Chaimon
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Paron Dekumyoy
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Dorn Watthanakulpanich
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Brett E Swierczewski
- Department of Enteric Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Poom Adisakwattana
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
14
|
Khampoosa P, Jones MK, Lovas EM, Piratae S, Kulsuntiwong J, Prasopdee S, Srisawangwong T, Laha T, Sripanidkulchai B, Thitapakorn V, Tesana S. Egg-Hatching Mechanism of Human Liver Fluke,Opisthorchis viverrini: A Role For Leucine Aminopeptidases From the Snail Host,Bithynia siamensis goniomphalos. J Parasitol 2018; 104:388-397. [DOI: 10.1645/16-125] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- P. Khampoosa
- Department of Public Health, Faculty of Physical Education, Srinakharinwirot University, Nakhon Nayok Province 26120, Thailand
- Food-Borne Parasite Research Group, Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - M. K. Jones
- School of Veterinary Sciences, The University of Queensland, Gatton Campus, Gatton Queensland 4343, Australia, and Queensland Institute of Medical Research, Herston, Queensland, 4006, Australia
| | - E. M. Lovas
- School of Veterinary Sciences, The University of Queensland, Gatton Campus, Gatton Queensland 4343, Australia, and Queensland Institute of Medical Research, Herston, Queensland, 4006, Australia
| | - S. Piratae
- Department of Veterinary of Public Health, Faculty of Veterinary Sciences, Mahasarakham University, Mahasarakham Province 44000, Thailand
| | - J. Kulsuntiwong
- Department of Biology, Udon Thani Rajabhat University, Udon Thani Province 41000, Thailand
| | - S. Prasopdee
- Chulabhorn International College of Medicine, Thammasat University, Rangsit Campus, Pathum Thani 12120, Thailand
| | - T. Srisawangwong
- Food-Borne Parasite Research Group, Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - T. Laha
- Food-Borne Parasite Research Group, Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - B. Sripanidkulchai
- Department of Pharmacy, Faculty of Pharmacy, Khon Kaen University, Khon Kean 40002, Thailand
| | - V. Thitapakorn
- Chulabhorn International College of Medicine, Thammasat University, Rangsit Campus, Pathum Thani 12120, Thailand
| | - S. Tesana
- Food-Borne Parasite Research Group, Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
15
|
Young ND, Gasser RB. Opisthorchis viverrini Draft Genome - Biomedical Implications and Future Avenues. ADVANCES IN PARASITOLOGY 2018; 101:125-148. [PMID: 29907252 DOI: 10.1016/bs.apar.2018.05.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Opisthorchiasis is a neglected tropical disease of major proportion, caused by the carcinogenic, Asian liver fluke, Opisthorchis viverrini. This hepatobiliary disease is known to be associated with malignant cancer (cholangiocarcinoma, CCA) and affects millions of people in Southeast Asia. No vaccine is available, and only one drug (praziquantel) is routinely employed against the parasite. Despite technological advances, little is known about the molecular biology of the fluke itself and the disease complex that it causes in humans. The advent of high-throughput nucleic acid sequencing and bioinformatic technologies is enabling researchers to gain global insights into the molecular pathways and processes in parasites. The principal aims of this chapter are to (1) review molecular research of O. viverrini and opisthorchiasis; (2) provide an account of recent advances in the sequencing and characterization of the genome and transcriptomes of O. viverrini; (3) describe the complex life of this worm in the biliary system of the definitive (human) host and how the fluke interacts with this host and causes disease at the molecular level; (4) discuss the implications of systems biological research and (5) consider how progress in genomics and informatics might enable explorations of O. viverrini and related worms and the discovery of new interventions against opisthorchiasis and CCA.
Collapse
Affiliation(s)
- Neil D Young
- The University of Melbourne, Parkville, VIC, Australia
| | | |
Collapse
|
16
|
Candido RRF, Morassutti AL, Graeff-Teixeira C, St Pierre TG, Jones MK. Exploring Structural and Physical Properties of Schistosome Eggs: Potential Pathways for Novel Diagnostics? ADVANCES IN PARASITOLOGY 2018; 100:209-237. [PMID: 29753339 DOI: 10.1016/bs.apar.2018.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In this era of increasing demand for sensitive techniques to diagnose schistosomiasis, there is a need for an increased focus on the properties of the parasite eggs. The eggs are not only directly linked to the morbidity of chronic infection but are also potential key targets for accurate diagnostics. Eggs were the primary target of diagnostic tools in the past and we argue they could be the target of highly sensitive tools in the future if we focus on characteristics of their structure and shell surface that could be exploited for enhanced detection. In this review, we discuss the current state of knowledge of the physical structures of schistosome eggs and eggshells with a view to identifying pathways to a comprehensive understanding of their role in the host-parasite relationship and pathogenesis of infection, and pathways to new strategies for development of diagnostics.
Collapse
Affiliation(s)
- Renata R F Candido
- School of Physics, The University of Western Australia, Crawley, WA, Australia.
| | - Alessandra L Morassutti
- School of Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carlos Graeff-Teixeira
- School of Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Timothy G St Pierre
- School of Physics, The University of Western Australia, Crawley, WA, Australia
| | - Malcolm K Jones
- School of Veterinary Sciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
17
|
Cai P, Liu S, Piao X, Hou N, You H, McManus DP, Chen Q. A next-generation microarray further reveals stage-enriched gene expression pattern in the blood fluke Schistosoma japonicum. Parasit Vectors 2017; 10:19. [PMID: 28069074 PMCID: PMC5223471 DOI: 10.1186/s13071-016-1947-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 12/21/2016] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Schistosomiasis is caused by infection with blood flukes of the genus Schistosoma, and ranks, in terms of disability-adjusted life years (DALYs), as the third most important neglected tropical disease. Schistosomes have several discrete life stages involving dramatic morphological changes during their development, which require subtle gene expression modulations to complete the complex life-cycle. RESULTS In the current study, we employed a second generation schistosome DNA chip printed with the most comprehensive probe array for studying the Schistosoma japonicum transcriptome, to explore stage-associated gene expression in different developmental phases of S. japonicum. A total of 328, 95, 268 and 532 mRNA transcripts were enriched in cercariae, hepatic schistosomula, adult worms and eggs, respectively. In general, genes associated with transcriptional regulation, cell signalling and motor activity were readily expressed in cercariae; the expression of genes involved in neuronal activities, apoptosis and renewal was modestly upregulated in hepatic schistosomula; transcripts involved in egg production, nutrition metabolism and glycosylation were enriched in adult worms; while genes involved in cell division, microtubule-associated mobility, and host-parasite interplay were relatively highly expressed in eggs. CONCLUSIONS The study further highlights the expressional features of stage-associated genes in schistosomes with high accuracy. The results provide a better perspective of the biological characteristics among different developmental stages, which may open new avenues for identification of novel vaccine candidates and the development of novel control interventions against schistosomiasis.
Collapse
Affiliation(s)
- Pengfei Cai
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China. .,Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Queensland, Australia.
| | - Shuai Liu
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Xianyu Piao
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Nan Hou
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Hong You
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Queensland, Australia
| | - Donald P McManus
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Queensland, Australia.
| | - Qijun Chen
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China. .,Key Laboratory of Zoonosis, Shenyang Agriculture University, Shenyang, People's Republic of China.
| |
Collapse
|
18
|
de la Torre-Escudero E, Pérez-Sánchez R, Manzano-Román R, Oleaga A. Schistosoma bovis-host interplay: Proteomics for knowing and acting. Mol Biochem Parasitol 2016; 215:30-39. [PMID: 27485556 DOI: 10.1016/j.molbiopara.2016.07.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 07/25/2016] [Accepted: 07/26/2016] [Indexed: 01/25/2023]
Abstract
Schistosoma bovis is a parasite of ruminants that causes significant economic losses to farmers throughout Africa, Southwestern Asia and the Mediterranean. Additionally, recent studies have reported its zoonotic potential through the formation of S. bovis×Schistosoma haematobium hybrids. As observed in the Schistosoma species infecting humans, it is assumed that S. bovis has also evolved host regulatory molecules that ensure its long-term survival in the bloodstream of its host. Since these molecules could be potential targets for the development of new drugs and anti-schistosome vaccines, their identification and functional characterization were undertaken. With this aim in mind, the molecular interface between S. bovis and its vertebrate host was subjected to a series of proteomic studies, which started with the analysis of the proteomes of the S. bovis moieties exposed to the host, namely, the excretory/secretory products and the tegument surface. Thus, a wealth of novel molecular information of S. bovis was obtained, which in turn allowed the identification of several parasite proteins with fibrinolytic and anticoagulant activities that could be used by S. bovis to regulate the host defensive systems. Following on, the host interface was investigated by studying the proteome of the host vascular endothelium surface at two points along the infection: in the lung vessels during the schistosomula migration and in the portal vein after the parasites have reached adulthood and sexual maturity. These studies have provided original data regarding the proteomes of the endothelial cell surface of pulmonary vasculature and portal vein in S. bovis-infected animals, and have shown significant changes in these proteomes associated with infection. This review compiles current information and the analyses of all the proteomic data from S. bovis and the S. bovis-host interface, including the molecular and functional characterization of S. bovis proteins that were found to participate in the regulation of the host coagulation and fibrinolysis systems.
Collapse
Affiliation(s)
- Eduardo de la Torre-Escudero
- Parasitology Laboratory, Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA, CSIC), Cordel de Merinas, 40-52, 37008 Salamanca, Spain
| | - Ricardo Pérez-Sánchez
- Parasitology Laboratory, Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA, CSIC), Cordel de Merinas, 40-52, 37008 Salamanca, Spain
| | - Raúl Manzano-Román
- Parasitology Laboratory, Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA, CSIC), Cordel de Merinas, 40-52, 37008 Salamanca, Spain
| | - Ana Oleaga
- Parasitology Laboratory, Instituto de Recursos Naturales y Agrobiología de Salamanca (IRNASA, CSIC), Cordel de Merinas, 40-52, 37008 Salamanca, Spain.
| |
Collapse
|
19
|
The omic approach to parasitic trematode research—a review of techniques and developments within the past 5 years. Parasitol Res 2016; 115:2523-43. [DOI: 10.1007/s00436-016-5079-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 04/19/2016] [Indexed: 12/26/2022]
|
20
|
Cai P, Liu S, Piao X, Hou N, Gobert GN, McManus DP, Chen Q. Comprehensive Transcriptome Analysis of Sex-Biased Expressed Genes Reveals Discrete Biological and Physiological Features of Male and Female Schistosoma japonicum. PLoS Negl Trop Dis 2016; 10:e0004684. [PMID: 27128440 PMCID: PMC4851400 DOI: 10.1371/journal.pntd.0004684] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 04/12/2016] [Indexed: 12/23/2022] Open
Abstract
Schistosomiasis is a chronic and debilitating disease caused by blood flukes (digenetic trematodes) of the genus Schistosoma. Schistosomes are sexually dimorphic and exhibit dramatic morphological changes during a complex lifecycle which requires subtle gene regulatory mechanisms to fulfil these complex biological processes. In the current study, a 41,982 features custom DNA microarray, which represents the most comprehensive probe coverage for any schistosome transcriptome study, was designed based on public domain and local databases to explore differential gene expression in S. japonicum. We found that approximately 1/10 of the total annotated genes in the S. japonicum genome are differentially expressed between adult males and females. In general, genes associated with the cytoskeleton, and motor and neuronal activities were readily expressed in male adult worms, whereas genes involved in amino acid metabolism, nucleotide biosynthesis, gluconeogenesis, glycosylation, cell cycle processes, DNA synthesis and genome fidelity and stability were enriched in females. Further, miRNAs target sites within these gene sets were predicted, which provides a scenario whereby the miRNAs potentially regulate these sex-biased expressed genes. The study significantly expands the expressional and regulatory characteristics of gender-biased expressed genes in schistosomes with high accuracy. The data provide a better appreciation of the biological and physiological features of male and female schistosome parasites, which may lead to novel vaccine targets and the development of new therapeutic interventions.
Collapse
Affiliation(s)
- Pengfei Cai
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P.R. China
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Queensland, Australia
| | - Shuai Liu
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P.R. China
| | - Xianyu Piao
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P.R. China
| | - Nan Hou
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P.R. China
| | - Geoffrey N. Gobert
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Queensland, Australia
| | - Donald P. McManus
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Queensland, Australia
| | - Qijun Chen
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P.R. China
- Key Laboratory of Zoonosis, Shenyang Agriculture University, Shenyang, P.R. China
| |
Collapse
|
21
|
Wilson RA, Li XH, MacDonald S, Neves LX, Vitoriano-Souza J, Leite LCC, Farias LP, James S, Ashton PD, DeMarco R, Castro Borges W. The Schistosome Esophagus Is a 'Hotspot' for Microexon and Lysosomal Hydrolase Gene Expression: Implications for Blood Processing. PLoS Negl Trop Dis 2015; 9:e0004272. [PMID: 26642053 PMCID: PMC4671649 DOI: 10.1371/journal.pntd.0004272] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 11/10/2015] [Indexed: 11/19/2022] Open
Abstract
Background The schistosome esophagus is divided into anterior and posterior compartments, each surrounded by a dense cluster of gland cell bodies, the source of distinct secretory vesicles discharged into the lumen to initiate the processing of ingested blood. Erythrocytes are lysed in the lumen, leucocytes are tethered and killed and platelets are eliminated. We know little about the proteins secreted from the two glands that mediate these biological processes. Methodology/Principal Findings We have used subtractive RNA-Seq to characterise the complement of genes that are differentially expressed in a head preparation, compared to matched tissues from worm tails. The expression site of representative highlighted genes was then validated using whole munt in situ hybridisation (WISH). Mapping of transcript reads to the S. mansoni genome assembly using Cufflinks identified ~90 genes that were differentially expressed >fourfold in the head preparation; ~50 novel transcripts were also identified by de novo assembly using Trinity. The largest subset (27) of secreted proteins was encoded by microexon genes (MEGs), the most intense focus identified to date. Expression of three (MEGs 12, 16, 17) was confirmed in the anterior gland and five (MEGs 8.1, 9, 11, 15 and 22) in the posterior gland. The other major subset comprised nine lysosomal hydrolases (aspartyl proteases, phospholipases and palmitoyl thioesterase), again localised to the glands. Conclusions A proportion of the MEG-encoded secretory proteins can be classified by their primary structure. We have suggested testable hypotheses about how they might function, in conjunction with the lysosomal hydrolases, to mediate the biological processes that occur in the esophagus lumen. Antibodies bind to the esophageal secretions in both permissive and self-curing hosts, suggesting that the proteins represent a novel panel of untested vaccine candidates. A second major task is to identify which of them can serve as immune targets. Schistosomes feed on blood and we have previously shown that its processing begins in the esophagus, which does not act simply as a conduit. It comprises anterior and posterior compartments, each surrounded by glands that secrete proteins into the lumen. Erythrocytes are ruptured as they pass through the compartments and leucocytes are tethered and killed but blood fails to clot. We wanted to identify the proteins secreted from these glands by sequencing the transcriptomes of head and tail preparations to pinpoint those messenger RNAs predominantly or exclusively present only in the heads. We found approximately 50 such proteins, the largest group of 27 being encoded by microexon genes. A second group comprised hydrolytic enzymes that operate at an acid pH. We showed by hybridisation experiments that expression of these genes is indeed localised to either the anterior or the posterior gland. We have suggested that this complex mixture of secreted proteins act together to perform the biological processes that occur in the lumen or, in the case of O-glycosylated membrane proteins, form a protective lining coat. We now want to discover which of them can serve as immune targets in infected animal hosts.
Collapse
Affiliation(s)
- R. Alan Wilson
- Centre for Immunology and Infection, Department of Biology, University of York, Heslington, York, United Kingdom
- * E-mail:
| | - Xiao Hong Li
- Centre for Immunology and Infection, Department of Biology, University of York, Heslington, York, United Kingdom
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, People’s Republic of China
| | - Sandy MacDonald
- Genomics and Bioinformatics Laboratory, Department of Biology, University of York, Heslington, York, United Kingdom
| | - Leandro Xavier Neves
- Genomics and Bioinformatics Laboratory, Department of Biology, University of York, Heslington, York, United Kingdom
| | | | | | - Leonardo P. Farias
- Centro de Biotecnologia, Instituto Butantan, São Paulo, Brazil
- Centro de Pesquisa Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Rua Waldemar Falcão, Salvador, Bahia, Brasil
| | - Sally James
- Genomics and Bioinformatics Laboratory, Department of Biology, University of York, Heslington, York, United Kingdom
| | - Peter D. Ashton
- Genomics and Bioinformatics Laboratory, Department of Biology, University of York, Heslington, York, United Kingdom
| | - Ricardo DeMarco
- Instituto de Física de São Carlos, Universidade de São Paulo, Sao Carlos, Brasil
| | - William Castro Borges
- Genomics and Bioinformatics Laboratory, Department of Biology, University of York, Heslington, York, United Kingdom
| |
Collapse
|
22
|
Driguez P, McManus DP, Gobert GN. Clinical implications of recent findings in schistosome proteomics. Expert Rev Proteomics 2015; 13:19-33. [PMID: 26558506 DOI: 10.1586/14789450.2016.1116390] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Schistosomiasis is a neglected tropical disease of clinical significance that, despite years of research, still requires an effective vaccine and improved diagnostics for surveillance, control and potential elimination. Furthermore, the causes of host pathology during schistosomiasis are still not completely understood. The recent sequencing of the genomes of the three key schistosome species has enabled the discovery of many new possible vaccine and drug targets, as well as diagnostic biomarkers, using high-throughput and sensitive proteomics methods. This review focuses on the literature of the last 5 years that has reported on the use of proteomics to both better understand the biology of the schistosome parasites and the disease they cause in definitive mammalian hosts.
Collapse
Affiliation(s)
- Patrick Driguez
- a QIMR Berghofer Medical Research Institute, Infectious Disease Division , Brisbane , Queensland , Australia
| | - Donald P McManus
- a QIMR Berghofer Medical Research Institute, Infectious Disease Division , Brisbane , Queensland , Australia
| | - Geoffrey N Gobert
- a QIMR Berghofer Medical Research Institute, Infectious Disease Division , Brisbane , Queensland , Australia
| |
Collapse
|
23
|
Nawaratna SSK, Gobert GN, Willis C, Mulvenna J, Hofmann A, McManus DP, Jones MK. Lysosome-associated membrane glycoprotein (LAMP)--preliminary study on a hidden antigen target for vaccination against schistosomiasis. Sci Rep 2015; 5:15069. [PMID: 26472258 PMCID: PMC4607944 DOI: 10.1038/srep15069] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 08/13/2015] [Indexed: 12/12/2022] Open
Abstract
Our previously reported gene atlasing of schistosome tissues revealed transcripts that were highly enriched in the digestive tract of Schistosoma mansoni. From these, we selected two candidates, Sm-LAMP and Sm-NPC2 for testing as vaccine targets. The two molecules were selected on the basis of relatively high expression in the gastrodermis, their potentially important biological function, divergence from homologous molecules of the host and possible apical membrane expression in the gastrodermis. Bacterially expressed recombinant peptides corresponding to regions excluding trans-membrane domains of the selected vaccine targets were used in blinded vaccine trials in CBA mice using alum-CpG as adjuvant. Vaccine trials using the recombinant insoluble Sm-LAMP protein showed 16-25% significant reduction in total worm burden. Faecal egg count reduction was 52% and 60% in two trials, respectively, with similar results for the solubly expressed protein. Liver egg burden was reduced significantly (20% and 38%) with an insoluble recombinant Sm-LAMP in two trials, but not with the soluble recombinant form. Parasite fecundity was not affected by either Sm-LAMP protein preparations in the trials. It is concluded that Sm-LAMP may provide limited protection towards S. mansoni infections but could be used in combination with other vaccine candidates, to provide more comprehensive protection.
Collapse
Affiliation(s)
- Sujeevi S. K. Nawaratna
- School of Veterinary Sciences, The University of Queensland, Gatton Campus, Gatton Qld, 4343, Australia
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Qld, 4006, Australia
| | - Geoffrey N. Gobert
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Qld, 4006, Australia
| | - Charlene Willis
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Qld, 4006, Australia
| | - Jason Mulvenna
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Qld, 4006, Australia
| | - Andreas Hofmann
- Structural Chemistry Program, Eskitis Institute, Griffith University, Brisbane, Qld 4111, Australia
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Donald P. McManus
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Qld, 4006, Australia
| | - Malcolm K. Jones
- School of Veterinary Sciences, The University of Queensland, Gatton Campus, Gatton Qld, 4343, Australia
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Qld, 4006, Australia
| |
Collapse
|
24
|
Leow CY, Willis C, Hofmann A, Jones MK. Structure-function analysis of apical membrane-associated molecules of the tegument of schistosome parasites of humans: prospects for identification of novel targets for parasite control. Br J Pharmacol 2015; 172:1653-63. [PMID: 25176442 PMCID: PMC4376446 DOI: 10.1111/bph.12898] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 06/12/2014] [Accepted: 08/26/2014] [Indexed: 02/02/2023] Open
Abstract
Neglected tropical diseases are a group of some 17 diseases that afflict poor and predominantly rural people in developing nations. One significant disease that contributes to substantial morbidity in endemic areas is schistosomiasis, caused by infection with one of five species of blood fluke belonging to the trematode genus Schistosoma. Although there is one drug available for treatment of affected individuals in clinics, or for mass administration in endemic regions, there is a need for new therapies. A prominent target organ of schistosomes, either for drug or vaccine development, is the peculiar epithelial syncytium that forms the body wall (tegument) of this parasite. This dynamic layer is maintained and organized by concerted activity of a range of proteins, among which are the abundant tegumentary annexins. In this review, we will outline advances in structure-function analyses of these annexins, as a means to understanding tegument cell biology in host-parasite interaction and their potential exploitation as targets for anti-schistosomiasis therapies.
Collapse
Affiliation(s)
- Chiuan Yee Leow
- School of Veterinary Science, The University of QueenslandGatton, Queensland, Australia
- Infectious Diseases, QIMR Berghofer Medical Research InstituteHerston, Queensland, Australia
- Institute for Research in Molecular Medicine, Universiti Sains MalaysiaPenang, Malaysia
| | - Charlene Willis
- Infectious Diseases, QIMR Berghofer Medical Research InstituteHerston, Queensland, Australia
- Structural Chemistry Program, Eskitis Institute, Griffith UniversityBrisbane, Queensland, Australia
| | - Andreas Hofmann
- Structural Chemistry Program, Eskitis Institute, Griffith UniversityBrisbane, Queensland, Australia
- Faculty of Veterinary Science, The University of MelbourneParkville, Victoria, Australia
| | - Malcolm K Jones
- School of Veterinary Science, The University of QueenslandGatton, Queensland, Australia
| |
Collapse
|
25
|
Liu Y, Yang S, Xiao J, Yu L, Chen L, Zou J, Wang K, Tan S, Yu Z, Zeng Q. M13 phage peptide ZL4 exerts its targeted binding effect on schistosoma japonicum via alkaline phosphatase. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:1247-1258. [PMID: 25973009 PMCID: PMC4396255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 01/28/2015] [Indexed: 06/04/2023]
Abstract
The present study was to determine the targeting effect of M13 phage peptide ZL4 (MppZL4) on Schistosoma japonicum (S.j). Mice infected with S.j were injected with MppZL4. Real-time PCR was used to detect the distribution and metabolism of MppZL4 in the livers and lungs of mice. In vivo refusion test was performed to detect the targeting of MppZL4. Western blotting was employed to determine the expression of MppZL4. Live imaging was used to detect the distribution of oligopeptide MppZL4. Immunohistochemistry was employed to determine MppZL4 location on adult S.j body surface. Gomori method was employed to detect the influence of oligopeptide MppZL4 on alkaline phosphatase activity. The distribution and metabolism of MppZL4 and M13KE are not significantly different from each other at each time point. The abundance of MppZL4 is changed as S.j migrates in mice. The targeted binding effect of MppZL4 varies at different stages. ZL4 oligopeptide targets S.j in mice. The specific binding sites of MppZL4 on S.j body are mainly located in syncytial cells. The binding sites of MppZL4 on S.j body surface might be ALP or ALP-related proteins. MppZL4 had targeted binding effect on S.j with its binding site being associated with proteins related to S.j alkaline phosphatase. S.j tegument had a specifically binding site with exogenous peptides, offering new means to explore the interactions between hosts and parasites. Additionally, MppZL4 can possibly be used as targeting molecules in worm-resistant drugs or as tracing molecules in imaging diagnosis technologies.
Collapse
Affiliation(s)
- Yan Liu
- Department of Parasitology, School of Medicine, University of South ChinaHengyang, P.R. China
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug StudyHengyang, P.R. China
| | - Shenghui Yang
- Department of Preventive Medicine and Pathogenic Biology, School of Medicine, Hunan University of Chinese MedicineChangsha, P.R. China
| | - Jianhua Xiao
- Department of Parasitology, School of Medicine, University of South ChinaHengyang, P.R. China
| | - Liang Yu
- Department of Parasitology, School of Medicine, University of South ChinaHengyang, P.R. China
| | - Li Chen
- Department of Medicine, Perelman School of Medicine, University of PennsylvaniaPhiladelphia, USA
| | - Ju Zou
- Department of Parasitology, School of Medicine, University of South ChinaHengyang, P.R. China
| | - Kegeng Wang
- Department of Parasitology, School of Medicine, University of South ChinaHengyang, P.R. China
| | - Sijie Tan
- Department of Histology and Embryology, School of Medicine, University of South ChinaHengyang, P.R. China
| | - Zhengyang Yu
- Surgical Oncology, First Affiliated Hospital, University of South ChinaHengyang, P.R. China
| | - Qingren Zeng
- Centre of Cell and Molecular Biology Experiment, Xiangya School of Medicine, Central South UniversityChangsha, P.R. China
| |
Collapse
|
26
|
Nawaratna SSK, Gobert GN, Willis C, Chuah C, McManus DP, Jones MK. Transcriptional profiling of the oesophageal gland region of male worms of Schistosoma mansoni. Mol Biochem Parasitol 2014; 196:82-9. [PMID: 25149559 DOI: 10.1016/j.molbiopara.2014.08.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 08/04/2014] [Accepted: 08/04/2014] [Indexed: 11/24/2022]
Abstract
The intestinal tract of schistosomes opens at the mouth and leads into the foregut or oesophageal region that is lined with syncytium continuous with the apical cytoplasm of the tegument. The oesophagus is surrounded by a specialised gland, the oesophageal gland. This gland releases materials into the lumen of the oesophagus and the region is thought to initiate the lysis of erythrocytes and neutralisation of immune effectors of the host. The oesophageal region is present in the early invasive schistosomulum, a stage potentially targetable by anti-schistosome vaccines. We used a 44k oligonucleotide microarray to identify highly up-regulated genes in microdissected frozen sections of the oesophageal gland of male worms of S. mansoni. We show that 122 genes were up-regulated 2-fold or higher in the oesophageal gland compared with a whole male worm tissue control. The enriched genes included several associated with lipid metabolism and transmembrane transport as well as some micro-exon genes. Since the oesophageal gland is important in the initiation of digestion and the fact that it develops early after invasion of the mammalian host, further study of selected highly up-regulated functionally important genes in this tissue may reveal new anti-schistosome intervention targets for schistosomiasis control.
Collapse
Affiliation(s)
- Sujeevi S K Nawaratna
- School of Veterinary Sciences, The University of Queensland, Gatton Campus, Gatton, Qld 4343, Australia; QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Qld 4006, Australia.
| | - Geoffrey N Gobert
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Qld 4006, Australia
| | - Charlene Willis
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Qld 4006, Australia
| | - Candy Chuah
- School of Veterinary Sciences, The University of Queensland, Gatton Campus, Gatton, Qld 4343, Australia; QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Qld 4006, Australia; School of Medical Sciences, Universiti Sains Malaysia, 16150 Kelantan, Malaysia
| | - Donald P McManus
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Qld 4006, Australia
| | - Malcolm K Jones
- School of Veterinary Sciences, The University of Queensland, Gatton Campus, Gatton, Qld 4343, Australia; QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, Qld 4006, Australia
| |
Collapse
|
27
|
Abstract
Schistosomes are parasitic flatworms that infect >200 million people worldwide, causing the chronic, debilitating disease schistosomiasis. Unusual among parasitic helminths, the long-lived adult worms, continuously bathed in blood, take up nutrients directly across the body surface and also by ingestion of blood into the gut. Recent proteomic analyses of the body surface revealed the presence of hydrolytic enzymes, solute, and ion transporters, thus emphasising its metabolic credentials. Furthermore, definition of the molecular mechanisms for the uptake of selected metabolites (glucose, certain amino acids, and water) establishes it as a vital site of nutrient acquisition. Nevertheless, the amount of blood ingested into the gut per day is considerable: for males ∼100 nl; for the more actively feeding females ∼900 nl, >4 times body volume. Ingested erythrocytes are lysed as they pass through the specialized esophagus, while leucocytes become tethered and disabled there. Proteomics and transcriptomics have revealed, in addition to gut proteases, an amino acid transporter in gut tissue and other hydrolases, ion, and lipid transporters in the lumen, implicating the gut as the site for acquisition of essential lipids and inorganic ions. The surface is the principal entry route for glucose, whereas the gut dominates amino acid acquisition, especially in females. Heme, a potentially toxic hemoglobin degradation product, accumulates in the gut and, since schistosomes lack an anus, must be expelled by the poorly understood process of regurgitation. Here we place the new observations on the proteome of body surface and gut, and the entry of different nutrient classes into schistosomes, into the context of older studies on worm composition and metabolism. We suggest that the balance between surface and gut in nutrition is determined by the constraints of solute diffusion imposed by differences in male and female worm morphology. Our conclusions have major implications for worm survival under immunological or pharmacological pressure.
Collapse
Affiliation(s)
- Patrick J. Skelly
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, United States of America
| | - Akram A. Da'dara
- Molecular Helminthology Laboratory, Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, United States of America
| | - Xiao-Hong Li
- Centre for Immunology and Infection, Department of Biology, University of York, York, United Kingdom
- Key Laboratory of Parasitology and Vector Biology, Ministry of Health, National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, People‘s Republic of China
| | - William Castro-Borges
- Laboratório de Enzimologia e Proteômica, Instituto de Ciências Exatas e Biológicas, Departamento de Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brasil
| | - R. Alan Wilson
- Centre for Immunology and Infection, Department of Biology, University of York, York, United Kingdom
| |
Collapse
|
28
|
Gobert GN, You H, McManus DP. Gaining biological perspectives from schistosome genomes. Mol Biochem Parasitol 2014; 196:21-8. [PMID: 25076011 DOI: 10.1016/j.molbiopara.2014.07.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 07/14/2014] [Accepted: 07/17/2014] [Indexed: 02/06/2023]
Abstract
Characterization of the genomic basis underlying schistosome biology is an important strategy for the development of future treatments and interventions. Genomic sequence is now available for the three major clinically relevant schistosome species, Schistosoma mansoni, S. japonicum and S. haematobium, and this information represents an invaluable resource for the future control of human schistosomiasis. The identification of a biologically important, but distinct from the host, schistosome gene product is the ultimate goal for many research groups. While the initial elucidation of the genome of an organism is critical for most biological research, continued improvement or curation of the genome construction should be an ongoing priority. In this review we will discuss prominent recent findings utilizing a systems approach to schistosome biology, as well as the increased use of interference RNA (RNAi). Both of these research strategies are aiming to place parasite genes into a more meaningful biological perspective.
Collapse
Affiliation(s)
- Geoffrey N Gobert
- Molecular Parasitology Laboratory, Infectious Diseases Division, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.
| | - Hong You
- Molecular Parasitology Laboratory, Infectious Diseases Division, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Donald P McManus
- Molecular Parasitology Laboratory, Infectious Diseases Division, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| |
Collapse
|
29
|
Morel M, Vanderstraete M, Hahnel S, Grevelding CG, Dissous C. Receptor tyrosine kinases and schistosome reproduction: new targets for chemotherapy. Front Genet 2014; 5:238. [PMID: 25101117 PMCID: PMC4102852 DOI: 10.3389/fgene.2014.00238] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 07/03/2014] [Indexed: 12/31/2022] Open
Abstract
Schistosome parasites still represent a serious public health concern and a major economic problem in developing countries. Pathology of schistosomiasis is mainly due to massive egg production by these parasites and to inflammatory responses raised against the eggs which are trapped in host tissues. Tyrosine kinases (TKs) are key molecules that control cell differentiation and proliferation and they already represent important targets in cancer therapy. During recent years, it has been shown that receptor tyrosine kinases (RTK) signaling was active in reproductive organs and that it could regulate sexual maturation of schistosomes and egg production. This opens interesting perspectives for the control of transmission and pathogenesis of schistosomiasis based on new therapies targeting schistosome RTKs. This review relates the numerous data showing the major roles of kinase signaling in schistosome reproduction. It describes the conserved and particular features of schistosome RTKs, their implication in gametogenesis and reproduction processes and summarizes recent works indicating that RTKs and their signaling partners are interesting chemotherapeutical targets in new programs of control.
Collapse
Affiliation(s)
- Marion Morel
- Center for Infection and Immunity of Lille, INSERM U1019, CNRS-UMR 8204, Institut Pasteur de Lille, University Lille Nord de France Lille Cedex, France
| | - Mathieu Vanderstraete
- Center for Infection and Immunity of Lille, INSERM U1019, CNRS-UMR 8204, Institut Pasteur de Lille, University Lille Nord de France Lille Cedex, France
| | - Steffen Hahnel
- Biomedical Centre for Research Seltersberg, Institute of Parasitology, Justus-Liebig-University Giessen Giessen, Germany
| | - Christoph G Grevelding
- Biomedical Centre for Research Seltersberg, Institute of Parasitology, Justus-Liebig-University Giessen Giessen, Germany
| | - Colette Dissous
- Center for Infection and Immunity of Lille, INSERM U1019, CNRS-UMR 8204, Institut Pasteur de Lille, University Lille Nord de France Lille Cedex, France
| |
Collapse
|
30
|
Wang S, Hu W. Development of "-omics" research in Schistosoma spp. and -omics-based new diagnostic tools for schistosomiasis. Front Microbiol 2014; 5:313. [PMID: 25018752 PMCID: PMC4072072 DOI: 10.3389/fmicb.2014.00313] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Indexed: 12/02/2022] Open
Abstract
Schistosomiasis, caused by dioecious flatworms in the genus Schistosoma, is torturing people from many developing countries nowadays and frequently leads to severe morbidity and mortality of the patients. Praziquantel based chemotherapy and morbidity control for this disease adopted currently necessitate viable and efficient diagnostic technologies. Fortunately, those “-omics” researches, which rely on high-throughput experimental technologies to produce massive amounts of informative data, have substantially contributed to the exploitation and innovation of diagnostic tools of schistosomiasis. In its first section, this review provides a concise conclusion on the progresses pertaining to schistosomal “-omics” researches to date, followed by a comprehensive section on the diagnostic methods of schistosomiasis, especially those innovative ones based on the detection of antibodies, antigens, nucleic acids, and metabolites with a focus on those achievements inspired by “-omics” researches. Finally, suggestions about the design of future diagnostic tools of schistosomiasis are proposed, in order to better harness those data produced by “-omics” studies.
Collapse
Affiliation(s)
- Shuqi Wang
- Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University Shanghai, China
| | - Wei Hu
- Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University Shanghai, China ; Key Laboratory of Parasite and Vector Biology of Ministry of Health, National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention Shanghai, China
| |
Collapse
|
31
|
Vanderstraete M, Gouignard N, Cailliau K, Morel M, Hahnel S, Leutner S, Beckmann S, Grevelding CG, Dissous C. Venus kinase receptors control reproduction in the platyhelminth parasite Schistosoma mansoni. PLoS Pathog 2014; 10:e1004138. [PMID: 24875530 PMCID: PMC4038586 DOI: 10.1371/journal.ppat.1004138] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 04/08/2014] [Indexed: 11/25/2022] Open
Abstract
The Venus Kinase Receptor (VKR) is a single transmembrane molecule composed of an intracellular tyrosine kinase domain close to that of insulin receptor and an extracellular Venus Flytrap (VFT) structure similar to the ligand binding domain of many class C G Protein Coupled Receptors. This receptor tyrosine kinase (RTK) was first discovered in the platyhelminth parasite Schistosoma mansoni, then in a large variety of invertebrates. A single vkr gene is found in most genomes, except in S. mansoni in which two genes Smvkr1 and Smvkr2 exist. VKRs form a unique family of RTKs present only in invertebrates and their biological functions are still to be discovered. In this work, we show that SmVKRs are expressed in the reproductive organs of S. mansoni, particularly in the ovaries of female worms. By transcriptional analyses evidence was obtained that both SmVKRs fulfill different roles during oocyte maturation. Suppression of Smvkr expression by RNA interference induced spectacular morphological changes in female worms with a strong disorganization of the ovary, which was dominated by the presence of primary oocytes, and a defect of egg formation. Following expression in Xenopus oocytes, SmVKR1 and SmVKR2 receptors were shown to be activated by distinct ligands which are L-Arginine and calcium ions, respectively. Signalling analysis in Xenopus oocytes revealed the capacity of SmVKRs to activate the PI3K/Akt/p70S6K and Erk MAPK pathways involved in cellular growth and proliferation. Additionally, SmVKR1 induced phosphorylation of JNK (c-Jun N-terminal kinase). Activation of JNK by SmVKR1 was supported by the results of yeast two-hybrid experiments identifying several components of the JNK pathway as specific interacting partners of SmVKR1. In conclusion, these results demonstrate the functions of SmVKR in gametogenesis, and particularly in oogenesis and egg formation. By eliciting signalling pathways potentially involved in oocyte proliferation, growth and migration, these receptors control parasite reproduction and can therefore be considered as potential targets for anti-schistosome therapies. Schistosomiasis is a chronic, debilitating disease affecting more than 200 million people in the world caused by parasitic flatworms of the genus Schistosoma. Pathology is mainly due to massive egg production by parasites and formation of granulomas around the eggs trapped in liver and different organs. Therefore, targeting the molecular processes responsible for gonad development or egg production in schistosomes appears as a valuable strategy to reduce pathogenesis and dissemination of schistosomiasis. In the present study, we investigated the importance of Venus Kinase Receptors (VKRs) which are unusual receptor tyrosine kinases (RTKs) with an extracellular Venus Flytrap (VFT) ligand-binding domain in the control of reproduction of schistosomes. SmVKRs are expressed in female ovaries of Schistosoma mansoni and the knock-down of their expression provoked dramatic alterations of the oocyte content in ovaries and reduction of egg formation. SmVKRs were also shown to activate different signalling pathways potentially involved in oocyte proliferation, growth and migration. Therefore our results demonstrate that VKRs are essential actors of oogenesis and egg formation in S. mansoni. Moreover, their presence in a large variety of invertebrate species including other helminth parasites and insect parasite vectors can open new perspectives in the control of various vector-borne infectious diseases.
Collapse
Affiliation(s)
- Mathieu Vanderstraete
- Center for Infection and Immunity of Lille, Inserm U1019, CNRS-UMR 8204, University Lille Nord de France, Institut Pasteur de Lille, Lille, France
| | - Nadège Gouignard
- Center for Infection and Immunity of Lille, Inserm U1019, CNRS-UMR 8204, University Lille Nord de France, Institut Pasteur de Lille, Lille, France
| | - Katia Cailliau
- EA 4479, IFR 147, Universite Lille 1 Sciences et Technologies, Villeneuve d'Ascq, France
| | - Marion Morel
- Center for Infection and Immunity of Lille, Inserm U1019, CNRS-UMR 8204, University Lille Nord de France, Institut Pasteur de Lille, Lille, France
| | - Steffen Hahnel
- Institute for Parasitology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Silke Leutner
- Institute for Parasitology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Svenja Beckmann
- Institute for Parasitology, Justus-Liebig-University Giessen, Giessen, Germany
| | | | - Colette Dissous
- Center for Infection and Immunity of Lille, Inserm U1019, CNRS-UMR 8204, University Lille Nord de France, Institut Pasteur de Lille, Lille, France
- * E-mail:
| |
Collapse
|
32
|
Haçarız O, Sayers G. Fasciola hepatica - where is 28S ribosomal RNA? Exp Parasitol 2013; 135:426-9. [PMID: 23954260 DOI: 10.1016/j.exppara.2013.07.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 07/31/2013] [Indexed: 11/26/2022]
Abstract
Advanced molecular biology techniques are currently used to develop new effective strategies against fasciolosis. Assessment of the quality of extracted total RNA is an important step prior to commencing many molecular biology methods such as transcriptomics. However, RNA quality assessment is complicated for some organisms, including Fasciola hepatica, by the absence of a 28S rRNA peak/band, when assessed with modern protocols. In this study, electrophoretic profiles of F. hepatica ribosomal RNAs were evaluated using microfluidics capillary based and conventional non-denaturing gel electrophoresis methods. An important modification to recommended protocols, the exclusion of heat-denaturation step, in the microfluidics capillary based electrophoresis is critical to visualise the expected 28S rRNA and obtain an RNA integrity number (RIN). The intensity of the 28S rRNA band is reduced by the effect of non-denaturing gel electrophoresis.
Collapse
Affiliation(s)
- Orçun Haçarız
- TÜBİTAK Marmara Research Center, Genetic Engineering and Biotechnology Institute, P.O. Box 21, 41470 Gebze, Kocaeli, Turkey.
| | | |
Collapse
|
33
|
Hahnel S, Lu Z, Wilson RA, Grevelding CG, Quack T. Whole-organ isolation approach as a basis for tissue-specific analyses in Schistosoma mansoni. PLoS Negl Trop Dis 2013; 7:e2336. [PMID: 23936567 PMCID: PMC3723596 DOI: 10.1371/journal.pntd.0002336] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 06/14/2013] [Indexed: 12/11/2022] Open
Abstract
Background Schistosomiasis is one of the most important parasitic diseases worldwide, second only to malaria. Schistosomes exhibit an exceptional reproductive biology since the sexual maturation of the female, which includes the differentiation of the reproductive organs, is controlled by pairing. Pathogenicity originates from eggs, which cause severe inflammation in their hosts. Elucidation of processes contributing to female maturation is not only of interest to basic science but also considering novel concepts combating schistosomiasis. Methodology/Principal Findings To get direct access to the reproductive organs, we established a novel protocol using a combined detergent/protease-treatment removing the tegument and the musculature of adult Schistosoma mansoni. All steps were monitored by scanning electron microscopy (SEM) and bright-field microscopy (BF). We focused on the gonads of adult schistosomes and demonstrated that isolated and purified testes and ovaries can be used for morphological and structural studies as well as sources for RNA and protein of sufficient amounts for subsequent analyses such as RT-PCR and immunoblotting. To this end, first exemplary evidence was obtained for tissue-specific transcription within the gonads (axonemal dynein intermediate chain gene SmAxDynIC; aquaporin gene SmAQP) as well as for post-transcriptional regulation (SmAQP). Conclusions/Significance The presented method provides a new way of getting access to tissue-specific material of S. mansoni. With regard to many still unanswered questions of schistosome biology, such as elucidating the molecular processes involved in schistosome reproduction, this protocol provides opportunities for, e.g., sub-transcriptomics and sub-proteomics at the organ level. This will promote the characterisation of gene-expression profiles, or more specifically to complete knowledge of signalling pathways contributing to differentiation processes, so discovering involved molecules that may represent potential targets for novel intervention strategies. Furthermore, gonads and other tissues are a basis for cell isolation, opening new perspectives for establishing cell lines, one of the tools desperately needed in the post-genomic era. As a neglected disease, schistosomiasis is still an enormous problem in the tropics and subtropics. Since the 1980s, Praziquantel (PZQ) has been the drug of choice but can be anticipated to lose efficacy in the future due to emerging resistance. Alternative drugs or efficient vaccines are still lacking, strengthening the need for the discovery of novel strategies and targets for combating schistosomiasis. One avenue is to understand the unique reproductive biology of this trematode in more detail. Sexual maturation of the adult female depends on a constant pairing with the male. This is a crucial prerequisite for the differentiation of the female reproductive organs such as the vitellarium and ovary, and consequently for the production of mature eggs. These are needed for life-cycle maintenance, but they also cause pathogenesis. With respect to adult males, the production of mature sperm is essential for fertilisation and life-cycle progression. In our study we present a convenient and inexpensive method to isolate reproductive tissues from adult schistosomes in high amounts and purity, representing a source for gonad-specific RNA and protein, which will serve for future sub-transcriptome and -proteome studies helping to characterise genes, or to unravel differentiation programs in schistosome gonads. Beyond that, isolated organs may be useful for approaches to establish cell cultures, desperately needed in the post-genomic era.
Collapse
Affiliation(s)
- Steffen Hahnel
- Institute of Parasitology, Justus-Liebig-University Giessen, Giessen, Germany
| | | | | | | | | |
Collapse
|
34
|
Buro C, Oliveira KC, Lu Z, Leutner S, Beckmann S, Dissous C, Cailliau K, Verjovski-Almeida S, Grevelding CG. Transcriptome analyses of inhibitor-treated schistosome females provide evidence for cooperating Src-kinase and TGFβ receptor pathways controlling mitosis and eggshell formation. PLoS Pathog 2013; 9:e1003448. [PMID: 23785292 PMCID: PMC3681755 DOI: 10.1371/journal.ppat.1003448] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 05/07/2013] [Indexed: 11/18/2022] Open
Abstract
Schistosome parasites cause schistosomiasis, one of the most prevalent parasitemias worldwide affecting humans and animals. Constant pairing of schistosomes is essential for female sexual maturation and egg production, which causes pathogenesis. Female maturation involves signaling pathways controlling mitosis and differentiation within the gonads. In vitro studies had shown before that a Src-specific inhibitor, Herbimycin A (Herb A), and a TGFβ receptor (TβR) inhibitor (TRIKI) have physiological effects such as suppressed mitoses and egg production in paired females. As one Herb A target, the gonad-specifically expressed Src kinase SmTK3 was identified. Here, we comparatively analyzed the transcriptome profiles of Herb A- and TRIKI-treated females identifying transcriptional targets of Src-kinase and TβRI pathways. After demonstrating that TRIKI inhibits the schistosome TGFβreceptor SmTβRI by kinase assays in Xenopus oocytes, couples were treated with Herb A, TRIKI, or both inhibitors simultaneously in vitro. RNA was isolated from females for microarray hybridizations and transcription analyses. The obtained data were evaluated by Gene Ontology (GO) and Ingenuity Pathway Analysis (IPA), but also by manual classification and intersection analyses. Finally, extensive qPCR experiments were done to verify differential transcription of candidate genes under inhibitor influence but also to functionally reinforce specific physiological effects. A number of genes found to be differentially regulated are associated with mitosis and differentiation. Among these were calcium-associated genes and eggshell-forming genes. In situ hybridization confirmed transcription of genes coding for the calcium sensor hippocalcin, the calcium transporter ORAI-1, and the calcium-binding protein calmodulin-4 in the reproductive system pointing to a role of calcium in parasite reproduction. Functional qPCR results confirmed an inhibitor-influenced, varying dependence of the transcriptional activities of Smp14, Smp48, fs800, a predicted eggshell precursor protein and SmTYR1. The results show that eggshell-formation is regulated by at least two pathways cooperatively operating in a balanced manner to control egg production. As one of the most prevalent parasitic infections worldwide, schistosomiasis is caused by blood-flukes of the genus Schistosoma. Pathology coincides with egg production, which is started upon pairing of the dioeciously living adults. A constant pairing contact is required to induce mitoses and differentiation processes in the female leading to the development of the gonads. Although long known, the molecular processes controlling gonad development or egg-production in schistosomes or other platyhelminths are largely unknown. Using an established in vitro-culture system and specific, chemical inhibitors we have obtained first evidence in previous studies for the participation of signal transduction processes playing essential roles in controlling mitoses, differentiation and egg production. In the present study we applied combinatory inhibitor treatments combined with subsequent microarray and qPCR analyses and demonstrate for the first time that cooperating Src-Kinase- und TGFβ-signaling pathways control mitoses and egg formation processes. Besides direct evidence for managing transcription of eggshell-forming genes, new target molecules of these pathways were identified. Among these are calcium-associated genes providing a first hint towards a role of this ion for reproduction. Our finding shed first light on the signaling mechanisms controlling egg formation, which is important for life-cycling and pathology.
Collapse
Affiliation(s)
- Christin Buro
- Institute of Parasitology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Katia C. Oliveira
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brasil
| | - Zhigang Lu
- Institute of Parasitology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Silke Leutner
- Institute of Parasitology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Svenja Beckmann
- Institute of Parasitology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Colette Dissous
- CIIL - Center of Infection and Immunity of Lille, Université Lille Nord de France, Inserm U1019, CNRS-UMR 8204, Institut Pasteur de Lille, Lille, France
| | - Katia Cailliau
- Laboratoire de Régulation des Signaux de Division, Université Lille 1 Sciences et Technology, EA 4479, IFR 147, Villeneuve d'Ascq, France
| | | | | |
Collapse
|
35
|
Mbah AN, Mahmud O, Awofolu OR, Isokpehi RD. Inferences on the biochemical and environmental regulation of universal stress proteins from Schistosomiasis parasites. Adv Appl Bioinform Chem 2013; 6:15-27. [PMID: 23696708 PMCID: PMC3656623 DOI: 10.2147/aabc.s37191] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Human schistosomiasis is a freshwater snail-transmitted disease caused by parasitic flatworms of the Schistosoma genus. Schistosoma haematobium, Schistosoma mansoni, and Schistosoma japonicum are the three major species infecting humans. These parasites undergo a complex developmental life cycle, in which they encounter a plethora of environmental signals. The presence of genes encoding the universal stress protein (USP) domain in the genomes of Schistosoma spp. suggests these flatworms are equipped to respond to unfavorable conditions. Though data on gene expression is available for USP genes, their biochemical and environmental regulation are incompletely understood. The identification of additional regulatory molecules for Schistosoma. USPs, which may be present in the human, snail, or water environments, could also be useful for schistosomiasis interventions. METHODS We developed a protocol that includes a visual analytics stage to facilitate integration, visualization, and decision making, from the results of sequence analyses and data collection on a set of 13 USPs from S. mansoni and S. japonicum. RESULTS Multiple sequence alignment identified conserved sites that could be key residues regulating the function of USPs of the Schistosoma spp. Based on the consistency and completeness of sequence annotation, we prioritized for further research the gene for a 184-amino-acid-long USP that is present in the genomes of the three human-infecting Schistosoma spp. Calcium, zinc, and magnesium ions were predicted to interact with the protein product of the gene. CONCLUSION Given that the initial effects of praziquantel on schistosomes include the influx of calcium ions, additional investigations are required to (1) functionally characterize the interactions of calcium ions with the amino acid residues of Schistosoma USPs; and (2) determine the transcriptional response of Schistosoma. USP genes to praziquantel. The data sets produced, and the visual analytics views that were developed, can be easily reused to develop new hypotheses.
Collapse
Affiliation(s)
- Andreas N Mbah
- Center for Bioinformatics and Computational Biology, Department of Biology, Jackson State University, Jackson, MS, USA ; Department of Environmental Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Pretoria, South Africa
| | | | | | | |
Collapse
|
36
|
Transcriptional responses of in vivo praziquantel exposure in schistosomes identifies a functional role for calcium signalling pathway member CamKII. PLoS Pathog 2013; 9:e1003254. [PMID: 23555262 PMCID: PMC3610926 DOI: 10.1371/journal.ppat.1003254] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 02/04/2013] [Indexed: 01/24/2023] Open
Abstract
Treatment for clinical schistosomiasis has relied centrally on the broad spectrum anthelmintic praziquantel; however, there is limited information on its mode of action or the molecular response of the parasite. This paper presents a transcriptional and functional approach to defining the molecular responses of schistosomes to praziquantel. Differential gene expression in Schistosoma japonicum was investigated by transcriptome-wide microarray analysis of adult worms perfused from infected mice after 0.5 to 24 hours after oral administration of sub-lethal doses of praziquantel. Genes up-regulated initially in male parasites were associated with "Tegument/Muscle Repair" and "Lipid/Ion Regulation" functions and were followed by "Drug Resistance" and "Ion Regulation" associated genes. Prominent responses induced in female worms included up-regulation of "Ca(2+) Regulation" and "Drug Resistance" genes and later by transcripts of "Detoxification" and "Pathogen Defense" mechanisms. A subset of highly over-expressed genes, with putative drug resistance/detoxification roles or Ca(2+)-dependant/modulatory functions, were validated by qPCR. The leading candidate among these was CamKII, a putative calcium/calmodulin-dependent protein kinase type II delta chain. RNA interference was employed to knockdown CamKII in S. japonicum to determine the role of CamKII in the response to praziquantel. After partial-knockdown, schistosomes were analysed using IC50 concentrations (50% worm motility) and quantitative monitoring of parasite movement. When CamKII transcription was reduced by 50-69% in S. japonicum, the subsequent effect of an IC50 dosage of praziquantel was exacerbated, reducing motility from 47% to 27% in female worms and from 61% to 23% in males. These observations indicated that CamKII mitigates the effects of praziquantel, probably through stabilising Ca(2+) fluxes within parasite muscles and tegument. Together, these studies comprehensively charted transcriptional changes upon exposure to praziquantel and, notably, identified CamKII as potentially central to the, as yet undefined, mode of action of praziquantel.
Collapse
|
37
|
New frontiers in schistosoma genomics and transcriptomics. J Parasitol Res 2012; 2012:849132. [PMID: 23227308 PMCID: PMC3512318 DOI: 10.1155/2012/849132] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 10/16/2012] [Indexed: 12/11/2022] Open
Abstract
Schistosomes are digenean blood flukes of aves and mammals comprising 23 species. Some species are causative agents of human schistosomiasis, the second major neglected disease affecting over 230 million people worldwide. Modern technologies including the sequencing and characterization of nucleic acids and proteins have allowed large-scale analyses of parasites and hosts, opening new frontiers in biological research with potential biomedical and biotechnological applications. Nuclear genomes of the three most socioeconomically important species (S. haematobium, S. japonicum, and S. mansoni) have been sequenced and are under intense investigation. Mitochondrial genomes of six Schistosoma species have also been completely sequenced and analysed from an evolutionary perspective. Furthermore, DNA barcoding of mitochondrial sequences is used for biodiversity assessment of schistosomes. Despite the efforts in the characterization of Schistosoma genomes and transcriptomes, many questions regarding the biology and evolution of this important taxon remain unanswered. This paper aims to discuss some advances in the schistosome research with emphasis on genomics and transcriptomics. It also aims to discuss the main challenges of the current research and to point out some future directions in schistosome studies.
Collapse
|
38
|
Gobert GN, You H, Jones MK, McInnes R, McManus DP. Differences in genomic architecture between two distinct geographical strains of the blood fluke Schistosoma japonicum reveal potential phenotype basis. Mol Cell Probes 2012; 27:19-27. [PMID: 22940009 DOI: 10.1016/j.mcp.2012.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 08/10/2012] [Accepted: 08/11/2012] [Indexed: 10/28/2022]
Abstract
The Chinese (SjC) and Philippine (SjP) strains of the blood fluke Schistosoma japonicum have been shown to present clearly different phenotypes in fecundity, pathology, drug sensitivity and immunology. We used microarray based comparative genomic hybridisation (aCGH) to investigate structural differences in the genomes of the two strains and identified seven distinct regions of the S. japonicum genome that present differential aCGH representing either deletion or duplication regions in SjP. Within these regions, genes predicted to be associated with the recognised phenotypic differences were identified and that may provide new insights into the biology and evolution of the two strains, with implications for the epidemiology and control of schistosomiasis japonica in China and the Philippines.
Collapse
Affiliation(s)
- Geoffrey N Gobert
- Queensland Institute of Medical Research-QIMR, 300 Herston Road, Herston, Qld 4006, Australia.
| | | | | | | | | |
Collapse
|
39
|
Mourão MM, Grunau C, LoVerde PT, Jones MK, Oliveira G. Recent advances in Schistosoma genomics. Parasite Immunol 2012; 34:151-62. [PMID: 22145587 DOI: 10.1111/j.1365-3024.2011.01349.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Schistosome research has entered the genomic era with the publications reporting the Schistosoma mansoni and Schistosoma japonicum genomes. Schistosome genomics is motivated by the need for new control tools. However, much can also be learned about the biology of Schistosoma, which is a tractable experimental model. In this article, we review the recent achievements in the field of schistosome research and discuss future perspectives on genomics and how it can be integrated in a usable format, on the genetic mapping and how it has improved the genome assembly and provided new research approaches, on how epigenetics provides interesting insights into the biology of the species and on new functional genomics tools that will contribute to the understanding of the function of genes, many of which are parasite- or taxon specific.
Collapse
Affiliation(s)
- M M Mourão
- Genomics and Computational Biology Group, Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais, Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz - FIOCRUZ, Belo Horizonte, MG, Brazil
| | | | | | | | | |
Collapse
|
40
|
Cantacessi C, Hofmann A, Young ND, Broder U, Hall RS, Loukas A, Gasser RB. Insights into SCP/TAPS proteins of liver flukes based on large-scale bioinformatic analyses of sequence datasets. PLoS One 2012; 7:e31164. [PMID: 22384000 PMCID: PMC3284463 DOI: 10.1371/journal.pone.0031164] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 01/03/2012] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND SCP/TAPS proteins of parasitic helminths have been proposed to play key roles in fundamental biological processes linked to the invasion of and establishment in their mammalian host animals, such as the transition from free-living to parasitic stages and the modulation of host immune responses. Despite the evidence that SCP/TAPS proteins of parasitic nematodes are involved in host-parasite interactions, there is a paucity of information on this protein family for parasitic trematodes of socio-economic importance. METHODOLOGY/PRINCIPAL FINDINGS We conducted the first large-scale study of SCP/TAPS proteins of a range of parasitic trematodes of both human and veterinary importance (including the liver flukes Clonorchis sinensis, Opisthorchis viverrini, Fasciola hepatica and F. gigantica as well as the blood flukes Schistosoma mansoni, S. japonicum and S. haematobium). We mined all current transcriptomic and/or genomic sequence datasets from public databases, predicted secondary structures of full-length protein sequences, undertook systematic phylogenetic analyses and investigated the differential transcription of SCP/TAPS genes in O. viverrini and F. hepatica, with an emphasis on those that are up-regulated in the developmental stages infecting the mammalian host. CONCLUSIONS This work, which sheds new light on SCP/TAPS proteins, guides future structural and functional explorations of key SCP/TAPS molecules associated with diseases caused by flatworms. Future fundamental investigations of these molecules in parasites and the integration of structural and functional data could lead to new approaches for the control of parasitic diseases.
Collapse
Affiliation(s)
- Cinzia Cantacessi
- Department of Veterinary Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Andreas Hofmann
- Eskitis Institute for Cell and Molecular Therapies, Griffith University, Brisbane, Queensland, Australia
| | - Neil D. Young
- Department of Veterinary Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Ursula Broder
- Eskitis Institute for Cell and Molecular Therapies, Griffith University, Brisbane, Queensland, Australia
| | - Ross S. Hall
- Department of Veterinary Science, The University of Melbourne, Parkville, Victoria, Australia
| | - Alex Loukas
- Queensland Tropical Health Alliance, James Cook University, Smithfield, Queensland, Australia
| | - Robin B. Gasser
- Department of Veterinary Science, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
41
|
Liu S, Cai P, Hou N, Piao X, Wang H, Hung T, Chen Q. Genome-wide identification and characterization of a panel of house-keeping genes in Schistosoma japonicum. Mol Biochem Parasitol 2012; 182:75-82. [PMID: 22245333 DOI: 10.1016/j.molbiopara.2011.12.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 12/29/2011] [Accepted: 12/30/2011] [Indexed: 10/14/2022]
Abstract
Quantitative real-time polymerase chain reaction (qPCR), as one of the most sensitive and precise gene expression analysis methods, is frequently used to validate data obtained in high-through-put assays. qPCR requires reference genes with stable transcription for accurate normalization. However, no systematic studies on such genes have been performed in the genus Schistosoma japonicum. In this study, eight novel candidate genes selected from a microarray analysis and four commonly used reference genes were systematically validated in a series of qPCR experiments. Based on the results of geNorm, Normfinder, BestKeeper, and the comparative delta-cycle threshold (ΔCT) integrated analysis, the genes PSMD4, NDUFV2, and TPC2L were found to be most stably expressed in all S. japonicum developmental stages; meanwhile, ACTB and TUBA were found as the least stably expressed genes. This study provided, at the first time, data for genes that can be explored as reliable references in transcriptomic analysis of S. japonicum.
Collapse
Affiliation(s)
- Shuai Liu
- Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
42
|
Milligan JN, Jolly ER. Identification and characterization of a Mef2 transcriptional activator in schistosome parasites. PLoS Negl Trop Dis 2012; 6:e1443. [PMID: 22235355 PMCID: PMC3250504 DOI: 10.1371/journal.pntd.0001443] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 11/08/2011] [Indexed: 11/17/2022] Open
Abstract
Myocyte enhancer factor 2 protein (Mef2) is an evolutionarily conserved activator of transcription that is critical to induce and control complex processes in myogenesis and neurogenesis in vertebrates and insects, and osteogenesis in vertebrates. In Drosophila, Mef2 null mutants are unable to produce differentiated muscle cells, and in vertebrates, Mef2 mutants are embryonic lethal. Schistosome worms are responsible for over 200 million cases of schistosomiasis globally, but little is known about early development of schistosome parasites after infecting a vertebrate host. Understanding basic schistosome development could be crucial to delineating potential drug targets. Here, we identify and characterize Mef2 from the schistosome worm Schistosoma mansoni (SmMef2). We initially identified SmMef2 as a homolog to the yeast Mef2 homolog, Resistance to Lethality of MKK1P386 overexpression (Rlm1), and we show that SmMef2 is homologous to conserved Mef2 family proteins. Using a genetics approach, we demonstrate that SmMef2 is a transactivator that can induce transcription of four separate heterologous reporter genes by yeast one-hybrid analysis. We also show that Mef2 is expressed during several stages of schistosome development by quantitative PCR and that it can bind to conserved Mef2 DNA consensus binding sequences. Schistosome parasites infect more than 200 million people worldwide and cause human schistosomiasis. Free-swimming schistosome larvae are highly mobile and invade and penetrate the host's skin to perpetuate their lifecycle in their human host, growing from 90–215 micrometers in length as a schistosomulum to a 7–20 millimeter long adult worm. Few molecular pathways have been identified in schistosome worms that are important for parasite early development. The myocyte enhancer factor protein 2 is a major regulator of muscle and nerve development in mammals and insects and is highly conserved from bread yeast to vertebrates. Here we identify and characterize the Mef2 activator from parasitic schistosome worms, the first described in any parasitic worm, and delineation of its function may be important to further understanding the basic biology of schistosome early development. Additionally, since schistosomes developed early evolutionarily, an investigation of schistosome Mef2 regulatory mechanisms could lead to a greater understanding of the development of early muscle and neurogenic development in animals.
Collapse
Affiliation(s)
- John N Milligan
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, USA
| | | |
Collapse
|
43
|
Swain MT, Larkin DM, Caffrey CR, Davies SJ, Loukas A, Skelly PJ, Hoffmann KF. Schistosoma comparative genomics: integrating genome structure, parasite biology and anthelmintic discovery. Trends Parasitol 2011; 27:555-64. [PMID: 22024648 PMCID: PMC3223292 DOI: 10.1016/j.pt.2011.09.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Revised: 09/09/2011] [Accepted: 09/20/2011] [Indexed: 12/11/2022]
Abstract
Schistosoma genomes provide a comprehensive resource for identifying the molecular processes that shape parasite evolution and for discovering novel chemotherapeutic or immunoprophylactic targets. Here, we demonstrate how intragenus and intergenus comparative genomics can be used to drive these investigations forward, illustrate the advantages and limitations of these approaches and review how post-genomic technologies offer complementary strategies for genome characterisation. Although sequencing and functional characterisation of other schistosome/platyhelminth genomes continues to expedite anthelmintic discovery, we contend that future priorities should equally focus on improving assembly quality, and chromosomal assignment, of existing schistosome/platyhelminth genomes.
Collapse
Affiliation(s)
- Martin T Swain
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | | | | | | | | | | | | |
Collapse
|
44
|
Jiang Y, Xu X, Qing X, Pan W. Identification and characterization of six novel tetraspanins from Schistosoma japonicum. Parasit Vectors 2011; 4:190. [PMID: 21958506 PMCID: PMC3203850 DOI: 10.1186/1756-3305-4-190] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 09/29/2011] [Indexed: 11/18/2022] Open
Abstract
Background Tetraspanins (TSPs), also known as members of the trans-membrane 4 super-family (TM4SF), comprise an assemblage of surface antigens reported in eukaryotic organisms. In the work presented here, six novel TSP proteins from the human blood fluke Schistosoma japonicum (S. japonicum) were produced and analyzed through a combination of bioinformatics and experimental approaches. Results Six novel TSP proteins of Schistosoma japonicum (designated as Sj-TSP-#1~6) contained four trans-membrane regions and one large extracellular loop (LEL) with a conserved CCG motif. Size of the proteins varied from 227 to 291 amino acid residues. All the six proteins were produced in E.coli and immune sera to each protein were prepared. Analysis of transcription profiles of the proteins by RT-PCR showed that Sj-TSP-#4 was transcribed only in the egg stage while transcription of the Sj-TSP-#2 was detected in female worms but not in males. The similar results were obtained by Western blot. Immunolocalization of the TSP proteins by immunofluorescence assay showed that the Sj-TSP-#2, Sj-TSP-#5 and Sj-TSP-#6 were located in the tegument of worms. Conclusions This study provided six novel TSP members of S. japonicum including their sequences and recombinant proteins. Availability of the novel proteins and information on their expression profile and location provided a basis for further investigation of the TSP proteins for their biological functions and as vaccine candidates.
Collapse
Affiliation(s)
- Yanyan Jiang
- Institute for Infectious Diseases & Vaccine Development, Tongji University School of Medicine, 1239 Siping Road, Shanghai 200092, PR China
| | | | | | | |
Collapse
|
45
|
Hall SL, Braschi S, Truscott M, Mathieson W, Cesari IM, Wilson RA. Insights into blood feeding by schistosomes from a proteomic analysis of worm vomitus. Mol Biochem Parasitol 2011; 179:18-29. [DOI: 10.1016/j.molbiopara.2011.05.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 05/05/2011] [Accepted: 05/06/2011] [Indexed: 11/27/2022]
|
46
|
Parker-Manuel SJ, Ivens AC, Dillon GP, Wilson RA. Gene expression patterns in larval Schistosoma mansoni associated with infection of the mammalian host. PLoS Negl Trop Dis 2011; 5:e1274. [PMID: 21912711 PMCID: PMC3166049 DOI: 10.1371/journal.pntd.0001274] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Accepted: 06/28/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The infective schistosome cercaria develops within the intramolluscan daughter sporocyst from an undifferentiated germ ball, during which synthesis of proteins essential for infection occurs. When the aquatic cercaria locates the mammalian host it rapidly penetrates into the epidermis using glandular secretions. It then undergoes metamorphosis into the schistosomulum, including replacement of its tegument surface membranes, a process taking several days before it exits the skin. Patterns of gene expression underlying this transition have been characterised. METHODS AND PRINCIPAL FINDINGS All gene models from the S. mansoni genome (www.GeneDB.org) were incorporated into a high-density oligonucleotide array. Double-stranded cDNA from germ balls, cercariae, and day 3 schistosomula was hybridised to the array without amplification. Statistical analysis was performed using Bioconductor to reveal differentially transcribed loci. Genes were categorised on the basis of biological process, tissue association or molecular function to aid understanding of the complex processes occurring. Genes necessary for DNA replication were enriched only in the germ ball, while those involved in translation were up-regulated in the germ ball and/or day 3 schistosomulum. Different sets of developmental genes were up-regulated at each stage. A large number of genes encoding elastases and invadolysins, and some venom allergen-like proteins were up-regulated in the germ ball, those encoding cysteine and aspartic proteases in the cercaria and schistosomulum. Micro exon genes encoding variant secreted proteins were highly up-regulated in the schistosomulum along with tegument and gut-associated genes, coincident with remodelling of the parasite body. Genes encoding membrane proteins were prominently up-regulated in the cercaria and/or day 3 schistosomulum. CONCLUSIONS/SIGNIFICANCE Our study highlights an expanded number of transcripts encoding proteins potentially involved in skin invasion. It illuminates the process of metamorphosis into the schistosomulum and highlights the very early activation of gut-associated genes whilst revealing little change in the parasite's energy metabolism or stress responses.
Collapse
|
47
|
Peng J, Gobert GN, Hong Y, Jiang W, Han H, McManus DP, Wang X, Liu J, Fu Z, Shi Y, Lin J. Apoptosis governs the elimination of Schistosoma japonicum from the non-permissive host Microtus fortis. PLoS One 2011; 6:e21109. [PMID: 21731652 PMCID: PMC3120819 DOI: 10.1371/journal.pone.0021109] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 05/18/2011] [Indexed: 02/02/2023] Open
Abstract
The reed vole, Microtus fortis, is the only known mammalian host in which schistosomes of Schistosoma japonicum are unable to mature and cause significant pathogenesis. However, little is known about how Schistosoma japonicum maturation (and, therefore, the development of schistosomiasis) is prevented in M. fortis. In the present study, the ultrastructure of 10 days post infection schistosomula from BALB/c mice and M. fortis were first compared using scanning electron microscopy and transmission electron microscopy. Electron microscopic investigations showed growth retardation and ultrastructural differences in the tegument and sub-tegumental tissues as well as in the parenchymal cells of schistosomula from M. fortis compared with those in BALB/c mice. Then, microarray analysis revealed significant differential expression between the schistosomula from the two rodents, with 3,293 down-regulated (by ≥ 2-fold) and 71 up-regulated (≥ 2 fold) genes in schistosomula from the former. The up-regulated genes included a proliferation-related gene encoding granulin (Grn) and tropomyosin. Genes that were down-regulated in schistosomula from M. fortis included apoptosis-inhibited genes encoding a baculoviral IAP repeat-containing protein (SjIAP) and cytokine-induced apoptosis inhibitor (SjCIAP), genes encoding molecules involved in insulin metabolism, long-chain fatty acid metabolism, signal transduction, the transforming growth factor (TGF) pathway, the Wnt pathway and in development. TUNEL (terminal deoxynucleotidyl transferase dUTP nick end labeling) and PI/Annexin V-FITC assays, caspase 3/7 activity analysis, and flow cytometry revealed that the percentages of early apoptotic and late apoptotic and/or necrotic cells, as well as the level of caspase activity, in schistosomula from M. fortis were all significantly higher than in those from BALB/c mice.
Collapse
Affiliation(s)
- Jinbiao Peng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Loukas A, Gaze S, Mulvenna JP, Gasser RB, Brindley PJ, Doolan DL, Bethony JM, Jones MK, Gobert GN, Driguez P, McManus DP, Hotez PJ. Vaccinomics for the major blood feeding helminths of humans. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2011; 15:567-77. [PMID: 21679087 DOI: 10.1089/omi.2010.0150] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Approximately one billion people are infected with hookworms and/or blood flukes (schistosomes) in developing countries. These two parasites are responsible for more disability adjusted life years lost than most other neglected tropical diseases (NTDs), and together, are second only to malaria. Although anthelmintic drugs are effective and widely available, they do not protect against reinfection, resistant parasites are likely to emerge, and mass drug administration programs are unsustainable. Therefore, there is a pressing need for the development of vaccines against these parasites. In recent years, there have been major advances in our understanding of hookworms and schistosomes at the molecular level through the use of "omics" technologies. The secretomes of these parasites have been characterized using transcriptomics, genomics, proteomics, and newly developed gene manipulation and silencing techniques, and the proteins of interest are now the target of novel antigen discovery approaches, notably immunomics. This research has resulted in the discovery, development, and early stage clinical trials of subunit vaccines against hookworms and schistosomes.
Collapse
Affiliation(s)
- Alex Loukas
- Queensland Tropical Health Alliance, James Cook University, Cairns, Queensland, Australia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Perry CR, Burke ML, Stenzel DJ, McManus DP, Ramm GA, Gobert GN. Differential expression of chemokine and matrix re-modelling genes is associated with contrasting schistosome-induced hepatopathology in murine models. PLoS Negl Trop Dis 2011; 5:e1178. [PMID: 21666794 PMCID: PMC3110159 DOI: 10.1371/journal.pntd.0001178] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 03/31/2011] [Indexed: 12/03/2022] Open
Abstract
The pathological outcomes of schistosomiasis are largely dependent on the molecular and cellular mechanisms of the host immune response. In this study, we investigated the contribution of variations in host gene expression to the contrasting hepatic pathology observed between two inbred mouse strains following Schistosoma japonicum infection. Whole genome microarray analysis was employed in conjunction with histological and immunohistochemical analysis to define and compare the hepatic gene expression profiles and cellular composition associated with the hepatopathology observed in S. japonicum-infected BALB/c and CBA mice. We show that the transcriptional profiles differ significantly between the two mouse strains with high statistical confidence. We identified specific genes correlating with the more severe pathology associated with CBA mice, as well as genes which may confer the milder degree of pathology associated with BALB/c mice. In BALB/c mice, neutrophil genes exhibited striking increases in expression, which coincided with the significantly greater accumulation of neutrophils at granulomatous regions seen in histological sections of hepatic tissue. In contrast, up-regulated expression of the eosinophil chemokine CCL24 in CBA mice paralleled the cellular influx of eosinophils to the hepatic granulomas. Additionally, there was greater down-regulation of genes involved in metabolic processes in CBA mice, reflecting the more pronounced hepatic damage in these mice. Profibrotic genes showed similar levels of expression in both mouse strains, as did genes associated with Th1 and Th2 responses. However, imbalances in expression of matrix metalloproteinases (e.g. MMP12, MMP13) and tissue inhibitors of metalloproteinases (TIMP1) may contribute to the contrasting pathology observed in the two strains. Overall, these results provide a more complete picture of the molecular and cellular mechanisms which govern the pathological outcome of hepatic schistosomiasis. This improved understanding of the immunopathogenesis in the murine model schistosomiasis provides the basis for a better appreciation of the complexities associated with chronic human schistosomiasis. Schistosomiasis is a significant cause of morbidity and mortality in the tropical world although its true burden has been historically underestimated. Millions of people currently endure severe pathology as a result of schistosome infections, although some individuals appear to be less susceptible to infection despite constant parasite exposure. A similar range of disease susceptibility is evident in different strains of inbred mice infected with schistosomes, thereby mirroring the clinical situation. Granuloma formation in the liver of both humans and mice is a characteristic manifestation of chronic schistosomiasis, and is largely controlled by gene signalling pathways. Certain genes expressed in particular cohorts of mice and humans may be associated with the development of severe pathology, or may confer a protective phenotype. This murine study highlights some key molecular aspects of chronic schistosomiasis which may be responsible for the development of both mild and severe pathology, and provides a bench mark for studying the mechanisms of schistosome-induced disease in humans.
Collapse
Affiliation(s)
- Carly R. Perry
- Molecular Parasitology Laboratory, Queensland Institute of Medical Research, Herston, Brisbane, Australia
- Faculty of Science and Technology, Queensland University of Technology, Gardens Point Campus, Brisbane, Queensland, Australia
| | - Melissa L. Burke
- Molecular Parasitology Laboratory, Queensland Institute of Medical Research, Herston, Brisbane, Australia
| | - Deborah J. Stenzel
- Faculty of Science and Technology, Queensland University of Technology, Gardens Point Campus, Brisbane, Queensland, Australia
| | - Donald P. McManus
- Molecular Parasitology Laboratory, Queensland Institute of Medical Research, Herston, Brisbane, Australia
| | - Grant A. Ramm
- Hepatic Fibrosis Group, Queensland Institute of Medical Research, Herston, Brisbane, Australia
| | - Geoffrey N. Gobert
- Molecular Parasitology Laboratory, Queensland Institute of Medical Research, Herston, Brisbane, Australia
- * E-mail:
| |
Collapse
|
50
|
Hong YS, Kang S, Han M, Gobert GN, Jones MK. High quality RNA isolation from Aedes aegypti midguts using laser microdissection microscopy. Parasit Vectors 2011; 4:83. [PMID: 21595925 PMCID: PMC3121693 DOI: 10.1186/1756-3305-4-83] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 05/19/2011] [Indexed: 11/24/2022] Open
Abstract
Background Laser microdissection microscopy (LMM) has potential as a research tool because it allows precise excision of target tissues or cells from a complex biological specimen, and facilitates tissue-specific sample preparation. However, this method has not been used in mosquito vectors to date. To this end, we have developed an LMM method to isolate midgut RNA using Aedes aegypti. Results Total RNA was isolated from Ae. aegypti midguts that were either fresh-frozen or fixed with histological fixatives. Generally, fresh-frozen tissue sections are a common source of quality LMM-derived RNA; however, our aim was to develop an LMM protocol that could inactivate pathogenic viruses by fixation, while simultaneously preserving RNA from arbovirus-infected mosquitoes. Three groups (10 - 15 mosquitoes per group) of female Ae. aegypti at 24 or 48-hours post-blood meal were intrathoracically injected with one of seven common fixatives (Bouin's, Carnoy's, Formoy's, Cal-Rite, 4% formalin, 10% neutral buffered formalin, or zinc formalin) to evaluate their effect on RNA quality. Total RNA was isolated from the fixed abdomens using a Trizol® method. The results indicated that RNA from Carnoy's and Bouin's fixative samples was comparable to that of fresh frozen midguts (control) in duplicate experiments. When Carnoy's and Bouin's were used to fix the midguts for the LMM procedure, however, Carnoy's-fixed RNA clearly showed much less degradation than Bouin's-fixed RNA. In addition, a sample of 5 randomly chosen transcripts were amplified more efficiently using the Carnoy's treated LMM RNA than Bouin's-fixed RNA in quantitative real-time PCR (qRT-PCR) assays, suggesting there were more intact target mRNAs in the Carnoy's fixed RNA. The yields of total RNA ranged from 0.3 to 19.0 ng per ~3.0 × 106 μm2 in the LMM procedure. Conclusions Carnoy's fixative was found to be highly compatible with LMM, producing high quality RNA from Ae. aegypti midguts while inactivating viral pathogens. Our findings suggest that LMM in conjunction with Carnoy's fixation can be applied to studies in Ae. aegypti infected with arboviruses without compromising biosafety and RNA quality. This LMM method should be applicable to other mosquito vector studies.
Collapse
Affiliation(s)
- Young S Hong
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana 70112, USA.
| | | | | | | | | |
Collapse
|