1
|
Gömer A, Lang A, Janshoff S, Steinmann J, Steinmann E. Epidemiology and global spread of emerging tick-borne Alongshan virus. Emerg Microbes Infect 2024; 13:2404271. [PMID: 39259276 PMCID: PMC11423535 DOI: 10.1080/22221751.2024.2404271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 09/12/2024]
Abstract
The emergence and spread of novel viral pathogens is a major threat to human health, particularly in the context of climate and human-induced change in land use. Alongshan virus (ALSV) is a tick-borne virus associated with human disease, which was first identified in northeast China. More recently, several studies reported the emergence of ALSV in mammalian and arthropod hosts in multiple different countries outside of Asia, and the first viral genome sequencing data has become available. ALSV is a member of the Jingmenvirus group closely related to the Flaviviridae family. Unusually, the positive-sense, single-stranded RNA genome of ALSV is segmented and consists of four distinct segments, two of which show homology with the NS3 and NS5 protein encoding regions of non-segmented flaviviruses. Transmission of arthropod-borne pathogens will likely increase in the future due to environmental change mediated by a variety of environmental and ecological factors and increasing human encroachment into wild animal habitats. In this review, we present current knowledge of global ALSV distribution and emergence patterns, highlight genetic diversity, evolution and susceptible species. Finally, we discuss the role of this emerging tick-borne virus in the context of urbanization and global health.
Collapse
Affiliation(s)
- André Gömer
- Department for Molecular und Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Arthur Lang
- Institute of Clinical Hygiene, Medical Microbiology and Infectiology, General Hospital Nuremberg, Paracelsus Medical University, Nuremberg, Germany
| | - Saskia Janshoff
- Department for Molecular und Medical Virology, Ruhr University Bochum, Bochum, Germany
- Institut für Laboratoriums- und Transfusionsmedizin, Herz- und Diabeteszentrum Nordrhein-Westfalen, Universitätsklinik der Ruhr-Universität Bochum, Bad Oeynhausen, Germany
| | - Joerg Steinmann
- Institute of Clinical Hygiene, Medical Microbiology and Infectiology, General Hospital Nuremberg, Paracelsus Medical University, Nuremberg, Germany
- Institute of Medical Microbiology, University Hospital of Essen, Essen, Germany
| | - Eike Steinmann
- Department for Molecular und Medical Virology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
2
|
Scavo NA, Juarez JG, Chaves LF, Fernández-Santos NA, Carbajal E, Perkin J, Londono-Renteria B, Hamer GL. Little disease but lots of bites: social, urbanistic, and entomological risk factors of human exposure to Aedes aegypti in South Texas, U.S. PLoS Negl Trop Dis 2024; 18:e0011953. [PMID: 39432539 DOI: 10.1371/journal.pntd.0011953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 09/29/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND Aedes aegypti presence, human-vector contact rates, and Aedes-borne virus transmission are highly variable through time and space. The Lower Rio Grande Valley (LRGV), Texas, is one of the few regions in the U.S. where local transmission of Aedes-borne viruses occurs, presenting an opportunity to evaluate social, urbanistic, entomological, and mobility-based factors that modulate human exposure to Ae. aegypti. METHODOLOGY & PRINCIPAL FINDINGS Mosquitoes were collected using BG-Sentinel 2 traps during November 2021 as part of an intervention trial, with knowledge, attitudes, and practices (KAP) and housing quality surveys to gather environmental and demographic data. Human blood samples were taken from individuals and a Bitemark Assay (ELISA) was conducted to quantify human antibodies to the Ae. aegypti Nterm-34kDa salivary peptide as a measure of human exposure to bites. In total, 64 houses were surveyed with 142 blood samples collected. More than 80% of participants had knowledge of mosquito-borne diseases and believed mosquitoes to be a health risk in their community. Our best fit generalized linear mixed effects model found four fixed effects contributed significantly to explaining the variation in exposure to Ae. aegypti bites: higher annual household income, younger age, larger lot area, and higher female Ae. aegypti abundance per trap night averaged over 5 weeks prior to human blood sampling. CONCLUSIONS Most surveyed residents recognized mosquitoes and the threat they pose to individual and public health. Urbanistic (i.e., lot size), social (i.e., income within a low-income community and age), and entomological (i.e., adult female Ae. aegypti abundance) factors modulate the risk of human exposure to Ae. aegypti bites. The use of serological biomarker assays, such as the Bitemark Assay, are valuable tools for surveillance and risk assessment of mosquito-borne disease, especially in areas like the LRGV where the transmission of target pathogens is low or intermittent.
Collapse
Affiliation(s)
- Nicole A Scavo
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America
- Ecology & Evolutionary Biology, Texas A&M University, College Station, Texas, United States of America
| | - Jose G Juarez
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America
| | - Luis Fernando Chaves
- Department of Environmental and Occupational Health, School of Public Health and Department of Geography, Indiana University, Bloomington Indiana, United States of America
| | - Nadia A Fernández-Santos
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America
- Instituto Politecnico Nacional, Centro de Biotecnologia Genomica, Reynosa, Mexico
| | - Ester Carbajal
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America
| | - Joshuah Perkin
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, Texas, United States of America
| | - Berlin Londono-Renteria
- Department of Tropical Medicine and Infectious Disease, Tulane University, New Orleans, Louisiana, United States of America
| | - Gabriel L Hamer
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
3
|
Ghimire S, Pangeni S. A mixed method evaluation of knowledge, attitude and practice on dengue fever among Lalitpur Metropolitan City residents: a cross-sectional investigation. BMC Infect Dis 2024; 24:1124. [PMID: 39379849 PMCID: PMC11463095 DOI: 10.1186/s12879-024-10025-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 10/01/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Dengue poses a significant global public health challenge, including in Nepal. Understanding community's knowledge, attitudes, and behaviors concerning dengue fever is imperative to developing effective prevention and control strategies. This study aimed to assess the knowledge, attitude, and practices related to dengue fever among residents of Lalitpur Metropolitan City. METHODS A descriptive cross-sectional household study was conducted using a mixed-method approach, which included quantitatively studying 636 individuals and conducting 20 qualitative interviews. The data was collected between April 2023 and June 2023. The multistage cluster sampling method was applied for household selection during the quantitative study and a purposive judgmental sampling method was used to identify participants for the qualitative interviews. Face-to-face interviews were conducted using a structured questionnaire for the quantitative study and an interview guide for the qualitative study. Quantitative data were analysed using logistic regression in STATA version 13, and thematic analysis was applied to the qualitative data. The findings were validated through triangulation of results from both the qualitative and quantitative study. RESULTS Regarding knowledge, 64.94% (n = 413/636) reported being informed about dengue fever. In terms of attitude, a substantial majority, 91.51% (n = 582/636), expressed a positive attitudes toward dengue fever, indicating a favorable perception and knowledge of its significance. Concerning practice, 49.84% (n = 317/636) of respondents reported actively engaging in dengue fever prevention measures. The variables gender, previous history of dengue fever and residency were the determinants of dengue fever knowledge. Additionally, gender, residency, and attitude were predictors of preventive practices concerning dengue fever. CONCLUSION Our study revealed that while the community demonstrated good knowledge of dengue fever and positive attitudes toward prevention, their preventive practices were inconsistent, indicating a gap between knowledge and action. A positive attitude was linked to better adherence to preventive measures. To address this gap, it is crucial to promote a positive attitude toward dengue prevention through initiatives like education efforts and social mobilization programs. Implementing Social and Behavior Change Communication (SBCC) programs focused on dengue prevention and control measures can help bridge this knowledge-action gap.
Collapse
Affiliation(s)
- Sushmita Ghimire
- Department of Public Health, Asian College for Advance Studies, Lalitpur, Nepal.
- Center for Health and Disease Studies Nepal, Kathmandu, Nepal.
| | - Shraddha Pangeni
- , Medical Officer, Freelancer at the time of study, Kathmandu, Nepal
| |
Collapse
|
4
|
Mojica J, Arévalo V, Juarez JG, Galarza X, Gonzalez K, Carrazco A, Suazo H, Harris E, Coloma J, Ponce P, Balmaseda A, Cevallos V. A numbers game: mosquito-based arbovirus surveillance in two distinct geographic regions of Latin America. JOURNAL OF MEDICAL ENTOMOLOGY 2024:tjae121. [PMID: 39308414 DOI: 10.1093/jme/tjae121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/19/2024] [Accepted: 09/03/2024] [Indexed: 09/25/2024]
Abstract
Aedes mosquitoes, as vectors of medically important arthropod-borne viruses (arboviruses), constitute a major public health threat that requires entomological and epidemiological surveillance to guide vector control programs to prevent and reduce disease transmission. In this study, we present the collaborative effort of 1 year of Aedes ageypti (Linnaeus, 1762) mosquito-based arbovirus surveillance in 2 geographically distinct regions of Latin America (Nicaragua and Ecuador). Adult female mosquitoes were collected using backpack aspirators in over 2,800 randomly selected households (Nicaragua, Ecuador) and 100 key sites (Nicaragua) from 8 distinct communities (Nicaragua: 2, Ecuador: 6). A total of 1,358 mosquito female pools were processed for RNA extraction and viral RNA detection using real-time reverse transcription-polymerase chain reaction. Ten positive dengue virus (DENV) pools were detected (3 in Nicaragua and 7 in Ecuador), all of which were found during the rainy season and matched the serotypes found in humans (Nicaragua: DENV-1 and DENV-4; Ecuador: DENV-2). Infection rates ranged from 1.13 to 23.13, with the Nicaraguan communities having the lowest infection rates. Our results demonstrate the feasibility of detecting DENV-infected Aedes mosquitoes in low-resource settings and underscore the need for targeted mosquito arbovirus sampling and testing, providing valuable insights for future surveillance programs in the Latin American region.
Collapse
Affiliation(s)
- Jacqueline Mojica
- Department of Entomology, Sustainable Sciences Institute, Managua, Nicaragua
| | - Valentina Arévalo
- Centro de Investigación en Enfermedades Infecciosas y Vectoriales, Instituto Nacional de Investigación en Salud Pública, Quito, Ecuador
| | - Jose G Juarez
- Department of Entomology, Sustainable Sciences Institute, Managua, Nicaragua
| | - Ximena Galarza
- Centro de Investigación en Enfermedades Infecciosas y Vectoriales, Instituto Nacional de Investigación en Salud Pública, Quito, Ecuador
| | - Karla Gonzalez
- Department of Entomology, Sustainable Sciences Institute, Managua, Nicaragua
| | - Andrés Carrazco
- Centro de Investigación en Enfermedades Infecciosas y Vectoriales, Instituto Nacional de Investigación en Salud Pública, Quito, Ecuador
| | - Harold Suazo
- Department of Entomology, Sustainable Sciences Institute, Managua, Nicaragua
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Josefina Coloma
- Department of Entomology, Sustainable Sciences Institute, Managua, Nicaragua
| | - Patricio Ponce
- Centro de Investigación en Enfermedades Infecciosas y Vectoriales, Instituto Nacional de Investigación en Salud Pública, Quito, Ecuador
| | - Angel Balmaseda
- Department of Entomology, Sustainable Sciences Institute, Managua, Nicaragua
| | - Varsovia Cevallos
- Centro de Investigación en Enfermedades Infecciosas y Vectoriales, Instituto Nacional de Investigación en Salud Pública, Quito, Ecuador
| |
Collapse
|
5
|
Bisia M, Balatsos G, Beleri S, Tegos N, Zavitsanou E, LaDeau SL, Sotiroudas V, Patsoula E, Michaelakis A. Mitigating the Threat of Invasive Mosquito Species Expansion: A Comprehensive Entomological Surveillance Study on Kastellorizo, a Remote Greek Island. INSECTS 2024; 15:724. [PMID: 39336692 PMCID: PMC11432031 DOI: 10.3390/insects15090724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/10/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024]
Abstract
The expansion of the tiger mosquito, a vector that can transmit diseases such as dengue, chikungunya, and Zika virus, poses a growing threat to global health. This study focuses on the entomological surveillance of Kastellorizo, a remote Greek island affected by its expansion. This research employs a multifaceted approach, combining KAP survey (knowledge, attitude, practices), mosquito collection using adult traps and human landing catches, and morphological and molecular identification methods. Results from questionnaires reveal community awareness and preparedness gaps, emphasizing the need for targeted education. Mosquito collections confirm the presence of the Aedes albopictus, Aedes cretinus, and Culex pipiens mosquitoes, highlighting the importance of surveillance. This study underscores the significance of community engagement in entomological efforts and proposes a citizen science initiative for sustained monitoring. Overall, this research provides essential insights for developing effective mosquito control programs in remote island settings, thereby emphasizing the importance of adopting a One Health approach to mitigate the spread of vector-borne diseases.
Collapse
Affiliation(s)
- Marina Bisia
- Laboratory of Insects and Parasites of Medical Importance, Scientific Directorate of Entomology and Agricultural Zoology, Benaki Phytopathological Institute, 145 61 Kifissia, Greece; (M.B.); (G.B.); (E.Z.)
| | - Georgios Balatsos
- Laboratory of Insects and Parasites of Medical Importance, Scientific Directorate of Entomology and Agricultural Zoology, Benaki Phytopathological Institute, 145 61 Kifissia, Greece; (M.B.); (G.B.); (E.Z.)
| | - Stavroula Beleri
- Laboratory for the Surveillance of Infectious Diseases, Department of Public Health Policy, School of Public Health, University of West Attica, 115 21 Athens, Greece; (S.B.); (N.T.); (E.P.)
| | - Nikolaos Tegos
- Laboratory for the Surveillance of Infectious Diseases, Department of Public Health Policy, School of Public Health, University of West Attica, 115 21 Athens, Greece; (S.B.); (N.T.); (E.P.)
| | - Evangelia Zavitsanou
- Laboratory of Insects and Parasites of Medical Importance, Scientific Directorate of Entomology and Agricultural Zoology, Benaki Phytopathological Institute, 145 61 Kifissia, Greece; (M.B.); (G.B.); (E.Z.)
| | | | - Vasilis Sotiroudas
- AgroSpeCom, 7th klm National Road Thessaloniki-Katerini, Kalochori, 570 09 Thessaloniki, Greece;
| | - Eleni Patsoula
- Laboratory for the Surveillance of Infectious Diseases, Department of Public Health Policy, School of Public Health, University of West Attica, 115 21 Athens, Greece; (S.B.); (N.T.); (E.P.)
| | - Antonios Michaelakis
- Laboratory of Insects and Parasites of Medical Importance, Scientific Directorate of Entomology and Agricultural Zoology, Benaki Phytopathological Institute, 145 61 Kifissia, Greece; (M.B.); (G.B.); (E.Z.)
| |
Collapse
|
6
|
Blanford JI. Managing vector-borne diseases in a geoAI-enabled society. Malaria as an example. Acta Trop 2024; 260:107406. [PMID: 39299478 DOI: 10.1016/j.actatropica.2024.107406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/13/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
More than 17 % of all infectious diseases are caused by vector-borne diseases resulting in more than 1 billion cases and over 1 million deaths each year. Of these malaria continues to be a global burden in over eighty countries. As societies become more digitalised, the availability of geospatially enabled health and disease information will become more abundant. With this, the ability to assess health and disease risks in real-time will become a reality. The purpose of this study was to examine how geographic information, geospatial technologies and spatial data science are being used to reduce the burden of vector-borne diseases such as malaria and explore the opportunities that lie ahead with GeoAI and other geospatial technology advancements. Malaria is a dynamic and complex system and as such a range of data and approaches are needed to tackle different parts of the malaria cycle at different local and global scales. Geospatial technologies provide an integrated framework vital for monitoring, analysing and managing vector-borne diseases. GeoAI and technological advancements are useful for enhancing real-time assessments, accelerating the decision making process and spatial targeting of interventions. Training is needed to enhance the use of geospatial information for the management of vector-borne diseases.
Collapse
Affiliation(s)
- Justine I Blanford
- Faculty of Geo-Information Science and Earth Observation, University of Twente, Enschede, Netherlands.
| |
Collapse
|
7
|
Kalmouni J, Will JB, Townsend J, Paaijmans KP. Temperature and time of host-seeking activity impact the efficacy of chemical control interventions targeting the West Nile virus vector, Culex tarsalis. PLoS Negl Trop Dis 2024; 18:e0012460. [PMID: 39213461 PMCID: PMC11392387 DOI: 10.1371/journal.pntd.0012460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 09/12/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
West Nile virus (WNV) is the leading mosquito-borne disease causing-pathogen in the United States. Concerningly, there are no prophylactics or drug treatments for WNV and public health programs rely heavily on vector control efforts to lessen disease incidence. Insecticides can be effective in reducing vector numbers if implemented strategically, but can diminish in efficacy and promote insecticide resistance otherwise. Vector control programs which employ mass-fogging applications of insecticides, often conduct these methods during the late-night hours, when diel temperatures are coldest, and without a-priori knowledge on daily mosquito activity patterns. This study's aims were to 1) quantify the effect of temperature on the toxicity of two conventional insecticides used in fogging applications (malathion and deltamethrin) to Culex tarsalis, an important WNV vector, and 2) quantify the time of host-seeking of Cx. tarsalis and other local mosquito species in Maricopa County, Arizona. The temperature-toxicity relationship of insecticides was assessed using the WHO tube bioassay, and adult Cx. tarsalis, collected as larvae, were exposed to three different insecticide doses at three temperature regimes (15, 25, and 35°C; 80% RH). Time of host-seeking was assessed using collection bottle rotators with encephalitis vector survey traps baited with dry ice, first at 3h intervals during a full day, followed by 1h intervals during the night-time. Malathion became less toxic at cooler temperatures at all doses, while deltamethrin was less toxic at cooler temperatures at the low dose. Regarding time of host-seeking, Cx. tarsalis, Aedes vexans, and Culex quinquefasciatus were the most abundant vectors captured. During the 3-hour interval surveillance over a full day, Cx. tarsalis were most-active during post-midnight biting (00:00-06:00), accounting for 69.0% of all Cx. tarsalis, while pre-midnight biting (18:00-24:00) accounted for 30.0% of Cx. tarsalis. During the 1-hour interval surveillance overnight, Cx. tarsalis were most-active during pre-midnight hours (18:00-24:00), accounting for 50.2% of Cx. tarsalis captures, while post-midnight biting (00:00-06:00) accounted for 49.8% of Cx. tarsalis. Our results suggest that programs employing large-scale applications of insecticidal fogging should consider temperature-toxicity relationships coupled with time of host-seeking data to maximize the efficacy of vector control interventions in reducing mosquito-borne disease burden.
Collapse
Affiliation(s)
- Joshua Kalmouni
- The Center for Evolution & Medicine, School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - James B Will
- Vector Control Division, Maricopa County Environmental Services Department, Phoenix, Arizona, United States of America
| | - John Townsend
- Vector Control Division, Maricopa County Environmental Services Department, Phoenix, Arizona, United States of America
| | - Krijn P Paaijmans
- The Center for Evolution & Medicine, School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
- Simon A. Levin Mathematical, Computational and Modeling Sciences Center, Arizona State University, Tempe, Arizona, United States of America
- WITS Research Institute for Malaria (WRIM), Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
8
|
da Rocha MM, Codeço CT, da Silva CMFP. Spatiotemporal Evolution of the Yellow Fever Epidemic in Southeast Brazil from 2016 to 2019. Vector Borne Zoonotic Dis 2024. [PMID: 38813663 DOI: 10.1089/vbz.2024.0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024] Open
Abstract
Background: Yellow fever (YF) is a zoonotic disease transmitted by mosquitoes among humans and nonhuman primates. Although urban YF is eradicated, the sylvatic YF has reemerged in some areas of Brazil in the twenty-first century. From 2016 to 2019, a sylvatic YF epidemic occurred in Southeast Brazil, where it had been eradicated in the 1940s. Methods: This study's objective was to describe the epidemic in the states of the Southeast region, based on descriptive, cluster, and mobility analyses. Results: Both the descriptive and cluster analyses showed that the YF cases spread from the state of Minas Gerais southward, causing peaks in cases during the summer months. None of the state capitals was included in the clusters, but the connectivity between the municipalities in Greater Metropolitan São Paulo highlighted potential paths of spread. Despite differences in sociodemographic profiles between the Southeast and North of Brazil (the latter region considered endemic), the epidemiological profile was similar, except for patients' occupation, which was not related to rural work in the Southeast. Conclusion: The results contributed to our understanding of the paths by which YF spread across Southeast Brazil and the epidemiological profile in an area that had gone decades without autochthonous cases.
Collapse
|
9
|
Ortega-López LD, Betancourth MP, León R, Kohl A, Ferguson HM. Behaviour and distribution of Aedes aegypti mosquitoes and their relation to dengue incidence in two transmission hotspots in coastal Ecuador. PLoS Negl Trop Dis 2024; 18:e0010932. [PMID: 38683840 PMCID: PMC11081501 DOI: 10.1371/journal.pntd.0010932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 05/09/2024] [Accepted: 02/08/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Dengue (DENV) transmission is endemic throughout coastal Ecuador, showing heterogeneous incidence patterns in association with fine-scale variation in Aedes aegypti vector populations and other factors. Here, we investigated the impact of micro-climate and neighbourhood-level variation in urbanization on Aedes abundance, resting behaviour and associations with dengue incidence in two endemic areas. METHODOLOGY/PRINCIPAL FINDINGS Aedes aegypti were collected in Quinindé and Portoviejo, two urban cantons with hyperendemic dengue transmission in coastal Ecuador. Aedes vectors were sampled in and around houses within urban and peri-urban neighbourhoods at four time periods. We tested for variation in vector abundance and resting behaviour in relation to neighbourhood urbanization level and microclimatic factors. Aedes abundance increased towards the end of the rainy season, was significantly higher in Portoviejo than in Quinindé, and in urban than in peri-urban neighbourhoods. Aedes vectors were more likely to rest inside houses in Portoviejo but had similar abundance in indoor and outdoor resting collections in Quinindé. Over the study period, DENV incidence was lower in Quinindé than in Portoviejo. Relationships between weekly Ae. aegypti abundance and DENV incidence were highly variable between trapping methods; with positive associations being detected only between BG-sentinel and outdoor Prokopack collections. CONCLUSIONS/SIGNIFICANCE Aedes aegypti abundance was significantly higher in urban than peri-urban neighbourhoods, and their resting behaviour varied between study sites. This fine-scale spatial heterogeneity in Ae. aegypti abundance and behaviour could generate site-specific variation in human exposure and the effectiveness of indoor-based interventions. The trap-dependent nature of associations between Aedes abundance and local DENV incidence indicates further work is needed to identify robust entomological indicators of infection risk.
Collapse
Affiliation(s)
- Leonardo D. Ortega-López
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Mauro Pazmiño Betancourth
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Renato León
- Laboratorio de Entomología Médica & Medicina Tropical LEMMT, Colegio de Ciencias Biológicas y Ambientales COCIBA, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Alain Kohl
- MRC-University of Glasgow Centre for Virus Research, Glasgow, United Kingdom
| | - Heather M. Ferguson
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
10
|
Mojica J, Arévalo V, Juarez JG, Galarza X, Gonzalez K, Carrazco A, Suazo H, Harris E, Coloma J, Ponce P, Balmaseda A, Cevallos V. A numbers game: Mosquito-based arbovirus surveillance in two distinct geographic regions of Latin America. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.15.585246. [PMID: 38562865 PMCID: PMC10983856 DOI: 10.1101/2024.03.15.585246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Aedes mosquitoes, as vectors of medically important arthropod-borne viruses (arboviruses), constitute a major public health threat that requires entomological and epidemiological surveillance to guide vector control programs to prevent and reduce disease transmission. In this study, we present the collaborative effort of one year of mosquito-based arbovirus surveillance in two geographically distinct regions of Latin America (Nicaragua and Ecuador). Adult female mosquitoes were collected using backpack aspirators in over 2,800 randomly selected households (Nicaragua, Ecuador) and 100 key sites (Nicaragua) from eight distinct communities (Nicaragua: 2, Ecuador: 6). A total of 1,358 mosquito female pools were processed for RNA extraction and viral RNA detection using real-time RT-PCR. Ten positive dengue virus (DENV) pools were detected (3 in Nicaragua and 7 in Ecuador), all of which were found during the rainy season and matched the serotypes found in humans (Nicaragua: DENV-1 and DENV-4; Ecuador: DENV-2). Infection rates ranged from 1.13 to 23.13, with the Nicaraguan communities having the lowest infection rates. Our results demonstrate the feasibility of detecting DENV-infected Aedes mosquitoes in low-resource settings and underscore the need for targeted mosquito arbovirus sampling and testing, providing valuable insights for future surveillance programs in the Latin American region.
Collapse
Affiliation(s)
| | - Valentina Arévalo
- Centro de Investigación en Enfermedades Infecciosas y Vectoriales, Instituto Nacional de Investigación en Salud Pública, Quito, Ecuador
| | | | - Ximena Galarza
- Centro de Investigación en Enfermedades Infecciosas y Vectoriales, Instituto Nacional de Investigación en Salud Pública, Quito, Ecuador
| | | | - Andrés Carrazco
- Centro de Investigación en Enfermedades Infecciosas y Vectoriales, Instituto Nacional de Investigación en Salud Pública, Quito, Ecuador
| | - Harold Suazo
- Sustainable Sciences Institute, Managua, Nicaragua
| | - Eva Harris
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | | | - Patricio Ponce
- Centro de Investigación en Enfermedades Infecciosas y Vectoriales, Instituto Nacional de Investigación en Salud Pública, Quito, Ecuador
| | | | - Varsovia Cevallos
- Centro de Investigación en Enfermedades Infecciosas y Vectoriales, Instituto Nacional de Investigación en Salud Pública, Quito, Ecuador
| |
Collapse
|
11
|
Pepey A, Souris M, Kim S, Obadia T, Chy S, Ea M, Ouk S, Remoue F, Sovannaroth S, Mueller I, Witkowski B, Vantaux A. Comparing malaria risk exposure in rural Cambodia population using GPS tracking and questionnaires. Malar J 2024; 23:75. [PMID: 38475843 DOI: 10.1186/s12936-024-04890-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND The Great Mekong Subregion has attained a major decline in malaria cases and fatalities over the last years, but residual transmission hotspots remain, supposedly fueled by forest workers and migrant populations. This study aimed to: (i) characterize the fine-scale mobility of forest-goers and understand links between their daily movement patterns and malaria transmission, using parasites detection via real time polymerase chain reaction (RT PCR) and the individual exposure to Anopheles bites by quantification of anti-Anopheles saliva antibodies via enzyme-linked immunosorbent assay; (ii) assess the concordance of questionnaires and Global Positioning System (GPS) data loggers for measuring mobility. METHODS Two 28 day follow-ups during dry and rainy seasons, including a GPS tracking, questionnaires and health examinations, were performed on male forest goers representing the population at highest risk of infection. Their time spent in different land use categories and demographic data were analyzed in order to understand the risk factors driving malaria in the study area. RESULTS Malaria risk varied with village forest cover and at a resolution of only a few kilometers: participants from villages outside the forest had the highest malaria prevalence compared to participants from forest fringe's villages. The time spent in a specific environment did not modulate the risk of malaria, in particular the time spent in forest was not associated with a higher probability to detect malaria among forest-goers. The levels of antibody response to Anopheles salivary peptide among participants were significantly higher during the rainy season, in accordance with Anopheles mosquito density variation, but was not affected by sociodemographic and mobility factors. The agreement between GPS and self-reported data was only 61.9% in reporting each kind of visited environment. CONCLUSIONS In a context of residual malaria transmission which was mainly depicted by P. vivax asymptomatic infections, the implementation of questionnaires, GPS data-loggers and quantification of anti-saliva Anopheles antibodies on the high-risk group were not powerful enough to detect malaria risk factors associated with different mobility behaviours or time spent in various environments. The joint implementation of GPS trackers and questionnaires allowed to highlight the limitations of both methodologies and the benefits of using them together. New detection and follow-up strategies are still called for.
Collapse
Affiliation(s)
- Anaïs Pepey
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, 5 Blvd Monivong, Phnom Penh 120 210, Phnom Penh, BP983, Cambodia.
| | - Marc Souris
- UMR Unité des Virus Emergents, UVE: Aix-Marseille Univ-IRD 190-Inserm 1207-IHU 5 Méditerranée Infection, 13005, Marseille, France
| | - Saorin Kim
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, 5 Blvd Monivong, Phnom Penh 120 210, Phnom Penh, BP983, Cambodia
| | - Thomas Obadia
- Institut Pasteur, G5 Infectious Disease Epidemiology and Analytics, Université Paris Cité, 75015, Paris, France
- Institut Pasteur, Bioinformatics and Biostatistics Hub, Université Paris Cité, 75015, Paris, France
| | - Sophy Chy
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, 5 Blvd Monivong, Phnom Penh 120 210, Phnom Penh, BP983, Cambodia
| | - Malen Ea
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, 5 Blvd Monivong, Phnom Penh 120 210, Phnom Penh, BP983, Cambodia
| | - Sivkeng Ouk
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, 5 Blvd Monivong, Phnom Penh 120 210, Phnom Penh, BP983, Cambodia
| | - Franck Remoue
- UMR MIVEGEC, IRD, CNRS, University of Montpellier, Montpellier, France
| | - Siv Sovannaroth
- National Centre for Parasitology Entomology and Malaria Control (CNM), Phnom Penh 120 801, Phnom Penh, Cambodia
| | - Ivo Mueller
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Benoit Witkowski
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, 5 Blvd Monivong, Phnom Penh 120 210, Phnom Penh, BP983, Cambodia
- Genetic and Biology of Plasmodium Unit, Institut Pasteur de Madagascar, Antananarivo, Madagascar
| | - Amélie Vantaux
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, 5 Blvd Monivong, Phnom Penh 120 210, Phnom Penh, BP983, Cambodia
- Genetic and Biology of Plasmodium Unit, Institut Pasteur de Madagascar, Antananarivo, Madagascar
| |
Collapse
|
12
|
Peña-García VH, Desiree LaBeaud A, Ndenga BA, Mutuku FM, Bisanzio DA, Mordecai EA, Andrews JR. Non-household environments make a major contribution to dengue transmission: Implications for vector control. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.08.24301016. [PMID: 38260355 PMCID: PMC10802645 DOI: 10.1101/2024.01.08.24301016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Aedes-borne pathogens have been increasing in incidence in recent decades despite vector control activities implemented in endemic settings. Vector control for Aedes-transmitted arboviruses typically focuses on households because vectors breed in household containers and bite indoors. Yet, our recent work shows a high abundance of Aedes spp. vectors in public spaces. To investigate the impact of non-household environments on dengue transmission and control, we used field data on the number of water containers and abundance of Aedes mosquitoes in Household (HH) and Non-Household (NH) environments in two Kenyan cities, Kisumu and Ukunda, from 2019-2022. Incorporating information on human activity space, we developed an agent-based model to simulate city-wide conditions considering HH and five types of NH environments in which people move and interact with other humans and vectors during peak biting times. We additionally evaluated the outcome of vector control activities implemented in different environments in preventive (before an epidemic) and reactive (after an epidemic commences) scenarios. We estimated that over half of infections take place in NH environments, where the main spaces for transmission are workplaces, markets, and recreational locations. Accordingly, results highlight the important role of vector control activities at NH locations to reduce dengue. A greater reduction of cases is expected as control activities are implemented earlier, at higher levels of coverage, with greater effectiveness when targeting only NH as opposed to when targeting only HH. Further, local ecological factors such as the differential abundance of water containers within cities are also influential factors to consider for control. This work provides insight into the importance of vector control in both household and non-household environments in endemic settings. It highlights a specific approach to inform evidence-based decision making to target limited vector control resources for optimal control.
Collapse
Affiliation(s)
- Victor Hugo Peña-García
- Department of Biology, Stanford University, Stanford, CA, USA
- School of Medicine, Stanford University, Stanford, CA, USA
| | | | | | - Francis M Mutuku
- Department of Environmental and Health Sciences, Technical University of Mombasa, Mombasa, Kenya
| | | | - Erin A Mordecai
- Department of Biology, Stanford University, Stanford, CA, USA
| | | |
Collapse
|
13
|
Harris S, Scioscia G, Raya Rey A. The influence of tourist visitation on the heterophyl to lymphocyte ratios and trophic values of Magellanic penguins ( Spheniscus magellanicus) at Martillo Island, Argentina. CONSERVATION PHYSIOLOGY 2023; 11:coad063. [PMID: 38053739 PMCID: PMC10694407 DOI: 10.1093/conphys/coad063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 07/18/2023] [Accepted: 08/14/2023] [Indexed: 12/07/2023]
Abstract
Wildlife tourism is increasing worldwide and monitoring the impact of tourism on wild populations is of the utmost importance for species conservation. The Magellanic penguin Spheniscus magellanicus colony at Martillo Island, Argentina, was studied in the 2016-2020 breeding seasons. In all seasons, adults and chicks belonged to: (i) an area close to or within the tourist trail or (ii) an area far from the tourist trail and out of sight of the tourists. Blood samples were taken for carbon and nitrogen stable isotope composition, in order to estimate trophic niches, and for smears that were made in situ and were then stained in the laboratory where leucocyte counts and differentiation were made under optical microscope. Heterophil to lymphocyte ratios were used as proxies of stress. Repeated sampling showed individual stress levels reduced while wintering. In 2017, stress levels and trophic values were lower than 2018 for the same individuals. Trophic levels did not differ between tourism and no tourism areas within each season, and differed between 2017 and the remaining seasons, indicating a possible diet shift that year. Stress levels were higher for the tourism area than the no tourism area for adults and chicks in all years except for 2020, when stress levels in the tourism area were lower and similar to the no tourism area that year and previous years. Vessel transit within the Beagle Channel and tourist visitation to the penguin colony was greatly reduced in 2020 due to the Covid-19 pandemic. A combination of internal characteristics and external factors may be affecting the stress physiology of individuals. Therefore, future research should include sampling of multiple aspects of penguin physiology, behaviour and environmental context in order to evaluate each effect on Magellanic penguin stress and, ultimately, inform the conservation of this iconic species in time.
Collapse
Affiliation(s)
- Sabrina Harris
- Laboratorio de Ecología y Conservación de Vida silvestre, Centro Austral de Investigaciones Científicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Houssay 200 (9410) Ushuaia, Tierra del Fuego, Argentina
- Wildlife Conservation Society representación Argentina, Amenábar 1595 piso 2 oficina 19 (1426) CABA, Buenos Aires, Argentina
| | - Gabriela Scioscia
- Laboratorio de Ecología y Conservación de Vida silvestre, Centro Austral de Investigaciones Científicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Houssay 200 (9410) Ushuaia, Tierra del Fuego, Argentina
| | - Andrea Raya Rey
- Laboratorio de Ecología y Conservación de Vida silvestre, Centro Austral de Investigaciones Científicas, Consejo Nacional de Investigaciones Científicas y Técnicas, Houssay 200 (9410) Ushuaia, Tierra del Fuego, Argentina
- Wildlife Conservation Society representación Argentina, Amenábar 1595 piso 2 oficina 19 (1426) CABA, Buenos Aires, Argentina
- Instituto de Ciencias Polares, Ambiente y Recursos Naturales (ICPA), Universidad de Tierra del Fuego (UNTDF), Walanika 250 (9410) Ushuaia, Tierra del Fuego, Argentina
| |
Collapse
|
14
|
Gunderson AK, Recalde-Coronel C, Zaitchick BF, Yori PP, Rengifo Pinedo S, Paredes Olortegui M, Kosek M, Vinetz JM, Pan WK. A prospective cohort study linking migration, climate, and malaria risk in the Peruvian Amazon. Epidemiol Infect 2023; 151:e202. [PMID: 38031496 PMCID: PMC10753477 DOI: 10.1017/s0950268823001838] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 12/01/2023] Open
Abstract
Migration is an important risk factor for malaria transmission for malaria transmission, creating networks that connect Plasmodium between communities. This study aims to understand the timing of why people in the Peruvian Amazon migrated and how characteristics of these migrants are associated with malaria risk. A cohort of 2,202 participants was followed for three years (July 2006 - October 2009), with thrice-weekly active surveillance to record infection and recent travel, which included travel destination(s) and duration away. Migration occurred more frequently in the dry season, but the 7-day rolling mean (7DRM) streamflow was positively correlated with migration events (OR 1.25 (95% CI: 1.138, 1.368)). High-frequency and low-frequency migrant populations reported 9.7 (IRR 7.59 (95% CI:.381, 13.160)) and 4.1 (IRR 2.89 (95% CI: 1.636, 5.099)) times more P. vivax cases than those considered non-migrants and 30.7 (IRR 32.42 (95% CI: 7.977, 131.765)) and 7.4 (IRR 7.44 (95% CI: 1.783, 31.066)) times more P. falciparum cases, respectively. High-frequency migrants employed in manual labour within their community were at 2.45 (95% CI: 1.113, 5.416) times higher risk than non-employed low-frequency migrants. This study confirms the importance of migration for malaria risk as well as factors increasing risk among the migratory community, including, sex, occupation, and educational status.
Collapse
Affiliation(s)
- Annika K. Gunderson
- Department of Epidemiology, Gilling School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Duke Global Health Institute, Duke University, Durham, NC, USA
| | - Cristina Recalde-Coronel
- Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, MD, USA
- Facultad de Ingeniería Marítima y Ciencias del Mar, Escuela Superior Politécnica del Litoral, Guayaquil, Ecuador
| | - Benjamin F. Zaitchick
- Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Pablo Peñataro Yori
- Asociación Benéfica Prisma, Iquitos, Peru
- Division of Infectious Diseases, University of Virginia, Charlottesville, Virginia, USA
| | | | | | - Margaret Kosek
- Asociación Benéfica Prisma, Iquitos, Peru
- Division of Infectious Diseases, University of Virginia, Charlottesville, Virginia, USA
| | - Joseph M. Vinetz
- Section of Infectious Diseases, Department of Internal Medicine, School of Medicine, Yale University, New Haven, USA
- International Centers of Excellence for Malaria Research – Amazonia, Laboratorio de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, Peru
- VA Connecticut Healthcare System, West Haven, CT, USA
- Institute of Tropical Medicine Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - William K. Pan
- Duke Global Health Institute, Duke University, Durham, NC, USA
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| |
Collapse
|
15
|
Sa-Ngamuang C, Lawpoolsri S, Su Yin M, Barkowsky T, Cui L, Prachumsri J, Haddawy P. Assessment of malaria risk in Southeast Asia: a systematic review. Malar J 2023; 22:339. [PMID: 37940923 PMCID: PMC10631000 DOI: 10.1186/s12936-023-04772-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 10/26/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND Several countries in Southeast Asia are nearing malaria elimination, yet eradication remains elusive. This is largely due to the challenge of focusing elimination efforts, an area where risk prediction can play an essential supporting role. Despite its importance, there is no standard numerical method to quantify the risk of malaria infection. Thus, there is a need for a consolidated view of existing definitions of risk and factors considered in assessing risk to analyse the merits of risk prediction models. This systematic review examines studies of the risk of malaria in Southeast Asia with regard to their suitability in addressing the challenges of malaria elimination in low transmission areas. METHODS A search of four electronic databases over 2010-2020 retrieved 1297 articles, of which 25 met the inclusion and exclusion criteria. In each study, examined factors included the definition of the risk and indicators of malaria transmission used, the environmental and climatic factors associated with the risk, the statistical models used, the spatial and temporal granularity, and how the relationship between environment, climate, and risk is quantified. RESULTS This review found variation in the definition of risk used, as well as the environmental and climatic factors in the reviewed articles. GLM was widely adopted as the analysis technique relating environmental and climatic factors to malaria risk. Most of the studies were carried out in either a cross-sectional design or case-control studies, and most utilized the odds ratio to report the relationship between exposure to risk and malaria prevalence. CONCLUSIONS Adopting a standardized definition of malaria risk would help in comparing and sharing results, as would a clear description of the definition and method of collection of the environmental and climatic variables used. Further issues that need to be more fully addressed include detection of asymptomatic cases and considerations of human mobility. Many of the findings of this study are applicable to other low-transmission settings and could serve as a guideline for further studies of malaria in other regions.
Collapse
Affiliation(s)
- Chaitawat Sa-Ngamuang
- Faculty of Information and Communication Technology, Mahidol University, Nakhon Pathom, Thailand
| | - Saranath Lawpoolsri
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Myat Su Yin
- Faculty of Information and Communication Technology, Mahidol University, Nakhon Pathom, Thailand
| | - Thomas Barkowsky
- Bremen Spatial Cognition Center (BSCC), University of Bremen, Bremen, Germany
| | - Liwang Cui
- Division of Infectious Diseases and International Medicine, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, USA
| | - Jetsumon Prachumsri
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Peter Haddawy
- Faculty of Information and Communication Technology, Mahidol University, Nakhon Pathom, Thailand.
- Bremen Spatial Cognition Center (BSCC), University of Bremen, Bremen, Germany.
| |
Collapse
|
16
|
Getachew H, Demissew A, Abossie A, Habtamu K, Wang X, Zhong D, Zhou G, Lee MC, Hemming-Schroeder E, Bradley L, Degefa T, Hawaria D, Tsegaye A, W Kazura J, Koepfli C, Yan G, Yewhalaw D. Asymptomatic and submicroscopic malaria infections in sugar cane and rice development areas of Ethiopia. Malar J 2023; 22:341. [PMID: 37940948 PMCID: PMC10634149 DOI: 10.1186/s12936-023-04762-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 10/22/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND Water resource development projects, such as dams and irrigation schemes, have a positive impact on food security and poverty reduction. However, such projects could increase prevalence of vector borne disease, such as malaria. This study investigate the impact of different agroecosystems and prevalence of malaria infection in Southwest Ethiopia. METHODS Two cross-sectional surveys were conducted in the dry and wet seasons in irrigated and non-irrigated clusters of Arjo sugarcane and Gambella rice development areas of Ethiopia in 2019. A total of 4464 and 2176 study participants from 1449 households in Arjo and 546 households in Gambella enrolled in the study and blood samples were collected, respectively. All blood samples were microscopically examined and a subset of microscopy negative blood samples (n = 2244) were analysed by qPCR. Mixed effect logistic regression and generalized estimating equation were used to determine microscopic and submicroscopic malaria infection and the associated risk factors, respectively. RESULTS Prevalence by microscopy was 2.0% (88/4464) in Arjo and 6.1% (133/2176) in Gambella. In Gambella, prevalence was significantly higher in irrigated clusters (10.4% vs 3.6%) than in non-irrigated clusters (p < 0.001), but no difference was found in Arjo (2.0% vs 2.0%; p = 0.993). On the other hand, of the 1713 and 531 samples analysed by qPCR from Arjo and Gambella the presence of submicroscopic infection was 1.2% and 12.8%, respectively. Plasmodium falciparum, Plasmodium vivax, and Plasmodium ovale were identified by qPCR in both sites. Irrigation was a risk factor for submicroscopic infection in both Arjo and Gambella. Irrigation, being a migrant worker, outdoor job, < 6 months length of stay in the area were risk factors for microscopic infection in Gambella. Moreover, school-age children and length of stay in the area for 1-3 years were significant predictors for submicroscopic malaria in Gambella. However, no ITN utilization was a predictor for both submicroscopic and microscopic infection in Arjo. Season was also a risk factor for microscopic infection in Arjo. CONCLUSION The study highlighted the potential importance of different irrigation practices impacting on submicroscopic malaria transmission. Moreover, microscopic and submicroscopic infections coupled with population movement may contribute to residual malaria transmission and could hinder malaria control and elimination programmes in the country. Therefore, strengthening malaria surveillance and control by using highly sensitive diagnostic tools to detect low-density parasites, screening migrant workers upon arrival and departure, ensuring adequate coverage and proper utilization of vector control tools, and health education for at-risk groups residing or working in such development corridors is needed.
Collapse
Affiliation(s)
- Hallelujah Getachew
- Department of Medical Laboratory Technology, Arbaminch College of Health Sciences, Arbaminch, Ethiopia.
- Department of Medical Laboratory Sciences, Institute of Health, Jimma University, Jimma, Ethiopia.
- Tropical and Infectious Diseases Research Center (TIDRC), Jimma University, Jimma, Ethiopia.
| | - Assalif Demissew
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Ambo University, Ambo, Ethiopia
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Ashenafi Abossie
- Department of Medical Laboratory Sciences, College of Medicine and Health Science, Arbaminch University, Arbaminch, Ethiopia
- Department of Medical Laboratory Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
- Tropical and Infectious Diseases Research Center (TIDRC), Jimma University, Jimma, Ethiopia
| | - Kassahun Habtamu
- Menelik II Medical & Health Science College, Addis Ababa, Ethiopia
- Department of Microbial, Cellular & Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Xiaoming Wang
- Program in Public Health, University of California at Irvine, Irvine, CA92697, USA
| | - Daibin Zhong
- Program in Public Health, University of California at Irvine, Irvine, CA92697, USA
| | - Guofa Zhou
- Program in Public Health, University of California at Irvine, Irvine, CA92697, USA
| | - Ming-Chieh Lee
- Program in Public Health, University of California at Irvine, Irvine, CA92697, USA
| | - Elizabeth Hemming-Schroeder
- Center for Vector Born Infectious Diseases (CVID), Department of Microbiology Immunology and Pathology, Colorado State University, Fort Collins, USA
| | - Lauren Bradley
- Program in Public Health, University of California at Irvine, Irvine, CA92697, USA
| | - Teshome Degefa
- Department of Medical Laboratory Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
| | - Dawit Hawaria
- School of Environmental Health, Hawassa University, Hawassa, Ethiopia
| | - Arega Tsegaye
- Department of Medical Laboratory Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
- Department of Biology, College of Natural Science, Jimma University, Jimma, Ethiopia
- Tropical and Infectious Diseases Research Center (TIDRC), Jimma University, Jimma, Ethiopia
| | - James W Kazura
- Biomedical Research Case Western Reserve University, Cleveland, OH, USA
- Center for Global Health & Disease School of Medicine Case, Western Reserve University, Cleveland, OH, USA
| | - Cristian Koepfli
- Department of Biological Sciences 319 Galvin Life Sciences, Eck Institute for Global Health, University of Notre Dame, Notre Dame, USA
| | - Guiyun Yan
- Program in Public Health, University of California at Irvine, Irvine, CA92697, USA
| | - Delenasaw Yewhalaw
- Department of Medical Laboratory Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
- Tropical and Infectious Diseases Research Center (TIDRC), Jimma University, Jimma, Ethiopia
| |
Collapse
|
17
|
Ospina-Aguirre C, Soriano-Paños D, Olivar-Tost G, Galindo-González CC, Gómez-Gardeñes J, Osorio G. Effects of human mobility on the spread of Dengue in the region of Caldas, Colombia. PLoS Negl Trop Dis 2023; 17:e0011087. [PMID: 38011274 PMCID: PMC10703399 DOI: 10.1371/journal.pntd.0011087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 12/07/2023] [Accepted: 09/21/2023] [Indexed: 11/29/2023] Open
Abstract
According to the World Health Organization (WHO), dengue is the most common acute arthropod-borne viral infection in the world. The spread of dengue and other infectious diseases is closely related to human activity and mobility. In this paper we analyze the effect of introducing mobility restrictions as a public health policy on the total number of dengue cases within a population. To perform the analysis, we use a complex metapopulation in which we implement a compartmental propagation model coupled with the mobility of individuals between the patches. This model is used to investigate the spread of dengue in the municipalities of Caldas (CO). Two scenarios corresponding to different types of mobility restrictions are applied. In the first scenario, the effect of restricting mobility is analyzed in three different ways: a) limiting the access to the endemic node but allowing the movement of its inhabitants, b) restricting the diaspora of the inhabitants of the endemic node but allowing the access of outsiders, and c) a total isolation of the inhabitants of the endemic node. In this scenario, the best simulation results are obtained when specific endemic nodes are isolated during a dengue outbreak, obtaining a reduction of up to 2.5% of dengue cases. Finally, the second scenario simulates a total isolation of the network, i.e., mobility between nodes is completely limited. We have found that this control measure increases the number of total dengue cases in the network by 2.36%.
Collapse
Affiliation(s)
- Carolina Ospina-Aguirre
- ABCDynamics, Facultad de ciencias exactas y naturales, Universidad Nacional de Colombia - Sede Manizales, Manizales, Colombia
- Departamento de electrónica y automatización, Universidad Autonoma de Manizales, Manizales, Colombia
| | - David Soriano-Paños
- Instituto Gulbenkian de Ciência, Oeiras, Portugal
- GOTHAM lab, Institute for Biocomputation & Physics of Complex Systems (BIFI), Zaragoza, España
| | - Gerard Olivar-Tost
- Departamento de Ciencias Naturales y Tecnología, Universidad de Aysén, Coyhaique, Chile
| | - Cristian C. Galindo-González
- Percepción y Control Inteligente (PCI), Departamento de Ingeniería Eléctrica, Electrónica y Computación, Universidad Nacional de Colombia - Sede Manizales, Manizales, Colombia
| | - Jesús Gómez-Gardeñes
- Departamento de Física de la Materia Condensada Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, España
- GOTHAM lab, Institute for Biocomputation & Physics of Complex Systems (BIFI), Zaragoza, España
| | - Gustavo Osorio
- Percepción y Control Inteligente (PCI), Departamento de Ingeniería Eléctrica, Electrónica y Computación, Universidad Nacional de Colombia - Sede Manizales, Manizales, Colombia
| |
Collapse
|
18
|
Robsky KO, Tram KH, Dowdy DW, Zelner J. Methods for measuring short-term geographical mobility used in infectious disease research: a scoping review protocol. BMJ Open 2023; 13:e072439. [PMID: 37793932 PMCID: PMC10551932 DOI: 10.1136/bmjopen-2023-072439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 08/30/2023] [Indexed: 10/06/2023] Open
Abstract
INTRODUCTION Geographical mobility, the movement of individuals or populations, may increase an individual's risk of acquiring or transmitting infectious diseases, including HIV, tuberculosis, malaria and COVID-19. Many studies have collected information on short-term mobility through self-reported travel histories or using GPS trackers, but there has been no consistent conceptualisation and operationalisation of such geographical mobility in global health research. This protocol aims to describe and synthesise different approaches to measuring short-term mobility. METHODS AND ANALYSIS We will search three databases (PubMed, Embase and Global Health) for peer-reviewed articles. After removing duplicates, two reviewers will first screen the titles and abstracts and then proceed to full-text screening. We will include studies that measure mobility at the individual level in the context of infectious diseases, including clinical trials, epidemiological studies and analyses of register data. Additional articles for inclusion may be identified through review of references in selected papers. We will summarise the method of data collection (GPS trackers, cellphones, retrospective self-report, travel journal, etc) and the specific measures used (overnight travel, having a secondary residence, travel outside of district, etc). ETHICS AND DISSEMINATION This study consists of reviewing and abstracting existing data from publicly available materials, and therefore does not require ethical approval. The results of this study will be submitted for peer reviewed publication and may be presented at a relevant global health conference.
Collapse
Affiliation(s)
- Katherine O Robsky
- Center for Global Health Practice and Impact, Georgetown University, Washington, District of Columbia, USA
| | - Khai Hoan Tram
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - David W Dowdy
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jon Zelner
- Department of Epidemiology, University of Michigan, Ann Arbor, Michigan, USA
- Center for Social Epidemiology and Population Health, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
19
|
Tun STT, Min MC, Aguas R, Fornace K, Htoo GN, White LJ, Parker DM. Human movement patterns of farmers and forest workers from the Thailand-Myanmar border. Wellcome Open Res 2023; 6:148. [PMID: 37990719 PMCID: PMC10660292 DOI: 10.12688/wellcomeopenres.16784.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2023] [Indexed: 11/23/2023] Open
Abstract
Background: Human travel patterns play an important role in infectious disease epidemiology and ecology. Movement into geographic spaces with high transmission can lead to increased risk of acquiring infections. Pathogens can also be distributed across the landscape via human travel. Most fine scale studies of human travel patterns have been done in urban settings in wealthy nations. Research into human travel patterns in rural areas of low- and middle-income nations are useful for understanding the human components of epidemiological systems for malaria or other diseases of the rural poor. The goal of this research was to assess the feasibility of using GPS loggers to empirically measure human travel patterns in this setting, as well as to quantify differing travel patterns by age, gender, and seasonality among study participants. Methods: In this pilot study we recruited 50 rural villagers from along the Myanmar-Thailand border to carry GPS loggers for the duration of a year. The GPS loggers were programmed to take a time-stamped reading every 30 minutes. We calculated daily movement ranges and multi-day trips by age and gender. We incorporated remote sensing data to assess patterns of days and nights spent in forested or farm areas, also by age and gender. Results: Our study showed that it is feasible to use GPS devices to measure travel patterns, though we had difficulty recruiting women and management of the project was relatively intensive. We found that older adults traveled farther distances than younger adults and adult males spent more nights in farms or forests. Conclusion: The results of this study suggest that further work along these lines would be feasible in this region. Furthermore, the results from this study are useful for individual-based models of disease transmission and land use.
Collapse
Affiliation(s)
- Sai Thein Than Tun
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Myo Chit Min
- Shoklo Malaria Research Unit, Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Ricardo Aguas
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Kimberly Fornace
- Centre for Climate Change and Planetary Health, London School of Hygiene & Tropical Medicine, London, UK
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Gay Nay Htoo
- Shoklo Malaria Research Unit, Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - Lisa J. White
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Daniel M. Parker
- Department of Population Health and Disease Prevention, University of California, Irvine, CA, 92697, USA
- Epidemiology and Biostatistics, University of California, Irvine, CA, 92697, USA
| |
Collapse
|
20
|
Cavany S, Huber JH, Wieler A, Tran QM, Alkuzweny M, Elliott M, España G, Moore SM, Perkins TA. Does ignoring transmission dynamics lead to underestimation of the impact of interventions against mosquito-borne disease? BMJ Glob Health 2023; 8:e012169. [PMID: 37652566 PMCID: PMC10476117 DOI: 10.1136/bmjgh-2023-012169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/17/2023] [Indexed: 09/02/2023] Open
Abstract
New vector-control technologies to fight mosquito-borne diseases are urgently needed, the adoption of which depends on efficacy estimates from large-scale cluster-randomised trials (CRTs). The release of Wolbachia-infected mosquitoes is one promising strategy to curb dengue virus (DENV) transmission, and a recent CRT reported impressive reductions in dengue incidence following the release of these mosquitoes. Such trials can be affected by multiple sources of bias, however. We used mathematical models of DENV transmission during a CRT of Wolbachia-infected mosquitoes to explore three such biases: human movement, mosquito movement and coupled transmission dynamics between trial arms. We show that failure to account for each of these biases would lead to underestimated efficacy, and that the majority of this underestimation is due to a heretofore unrecognised bias caused by transmission coupling. Taken together, our findings suggest that Wolbachia-infected mosquitoes could be even more promising than the recent CRT suggested. By emphasising the importance of accounting for transmission coupling between arms, which requires a mathematical model, we highlight the key role that models can play in interpreting and extrapolating the results from trials of vector control interventions.
Collapse
Affiliation(s)
- Sean Cavany
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - John H Huber
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Annaliese Wieler
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Quan Minh Tran
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Manar Alkuzweny
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Margaret Elliott
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Guido España
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Sean M Moore
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - T Alex Perkins
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
21
|
Brown JJ, Pascual M, Wimberly MC, Johnson LR, Murdock CC. Humidity - The overlooked variable in the thermal biology of mosquito-borne disease. Ecol Lett 2023; 26:1029-1049. [PMID: 37349261 DOI: 10.1111/ele.14228] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 04/05/2023] [Indexed: 06/24/2023]
Abstract
Vector-borne diseases cause significant financial and human loss, with billions of dollars spent on control. Arthropod vectors experience a complex suite of environmental factors that affect fitness, population growth and species interactions across multiple spatial and temporal scales. Temperature and water availability are two of the most important abiotic variables influencing their distributions and abundances. While extensive research on temperature exists, the influence of humidity on vector and pathogen parameters affecting disease dynamics are less understood. Humidity is often underemphasized, and when considered, is often treated as independent of temperature even though desiccation likely contributes to declines in trait performance at warmer temperatures. This Perspectives explores how humidity shapes the thermal performance of mosquito-borne pathogen transmission. We summarize what is known about its effects and propose a conceptual model for how temperature and humidity interact to shape the range of temperatures across which mosquitoes persist and achieve high transmission potential. We discuss how failing to account for these interactions hinders efforts to forecast transmission dynamics and respond to epidemics of mosquito-borne infections. We outline future research areas that will ground the effects of humidity on the thermal biology of pathogen transmission in a theoretical and empirical framework to improve spatial and temporal prediction of vector-borne pathogen transmission.
Collapse
Affiliation(s)
- Joel J Brown
- Department of Entomology, Cornell University, Ithaca, New York, USA
| | - Mercedes Pascual
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois, USA
| | - Michael C Wimberly
- Department of Geography and Environmental Sustainability, University of Oklahoma, Norman, Oklahoma, USA
| | - Leah R Johnson
- Department of Statistics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA
| | | |
Collapse
|
22
|
Zeng Q, Yu X, Ni H, Xiao L, Xu T, Wu H, Chen Y, Deng H, Zhang Y, Pei S, Xiao J, Guo P. Dengue transmission dynamics prediction by combining metapopulation networks and Kalman filter algorithm. PLoS Negl Trop Dis 2023; 17:e0011418. [PMID: 37285385 DOI: 10.1371/journal.pntd.0011418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 05/24/2023] [Indexed: 06/09/2023] Open
Abstract
Predicting the specific magnitude and the temporal peak of the epidemic of individual local outbreaks is critical for infectious disease control. Previous studies have indicated that significant differences in spatial transmission and epidemic magnitude of dengue were influenced by multiple factors, such as mosquito population density, climatic conditions, and population movement patterns. However, there is a lack of studies that combine the above factors to explain their complex nonlinear relationships in dengue transmission and generate accurate predictions. Therefore, to study the complex spatial diffusion of dengue, this research combined the above factors and developed a network model for spatiotemporal transmission prediction of dengue fever using metapopulation networks based on human mobility. For improving the prediction accuracy of the epidemic model, the ensemble adjusted Kalman filter (EAKF), a data assimilation algorithm, was used to iteratively assimilate the observed case data and adjust the model and parameters. Our study demonstrated that the metapopulation network-EAKF system provided accurate predictions for city-level dengue transmission trajectories in retrospective forecasts of 12 cities in Guangdong province, China. Specifically, the system accurately predicts local dengue outbreak magnitude and the temporal peak of the epidemic up to 10 wk in advance. In addition, the system predicted the peak time, peak intensity, and total number of dengue cases more accurately than isolated city-specific forecasts. The general metapopulation assimilation framework presented in our study provides a methodological foundation for establishing an accurate system with finer temporal and spatial resolution for retrospectively forecasting the magnitude and temporal peak of dengue fever outbreaks. These forecasts based on the proposed method can be interoperated to better support intervention decisions and inform the public of potential risks of disease transmission.
Collapse
Affiliation(s)
- Qinghui Zeng
- Department of Preventive Medicine, Shantou University Medical College, Shantou, China
| | - Xiaolin Yu
- Department of Preventive Medicine, Shantou University Medical College, Shantou, China
| | - Haobo Ni
- Department of Preventive Medicine, Shantou University Medical College, Shantou, China
| | - Lina Xiao
- Department of Preventive Medicine, Shantou University Medical College, Shantou, China
| | - Ting Xu
- Department of Preventive Medicine, Shantou University Medical College, Shantou, China
| | - Haisheng Wu
- Department of Preventive Medicine, Shantou University Medical College, Shantou, China
| | - Yuliang Chen
- Department of Medical Quality Management, Nanfang Hospital, Guangzhou, China
| | - Hui Deng
- Institute of Vector Control, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Yingtao Zhang
- Institute of Infectious Disease Control and Prevention, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Sen Pei
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York, United States of America
| | - Jianpeng Xiao
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, China
| | - Pi Guo
- Department of Preventive Medicine, Shantou University Medical College, Shantou, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou, China
| |
Collapse
|
23
|
Man O, Kraay A, Thomas R, Trostle J, Lee GO, Robbins C, Morrison AC, Coloma J, Eisenberg JNS. Characterizing dengue transmission in rural areas: A systematic review. PLoS Negl Trop Dis 2023; 17:e0011333. [PMID: 37289678 PMCID: PMC10249895 DOI: 10.1371/journal.pntd.0011333] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023] Open
Abstract
Dengue has historically been considered an urban disease associated with dense human populations and the built environment. Recently, studies suggest increasing dengue virus (DENV) transmission in rural populations. It is unclear whether these reports reflect recent spread into rural areas or ongoing transmission that was previously unnoticed, and what mechanisms are driving this rural transmission. We conducted a systematic review to synthesize research on dengue in rural areas and apply this knowledge to summarize aspects of rurality used in current epidemiological studies of DENV transmission given changing and mixed environments. We described how authors defined rurality and how they defined mechanisms for rural dengue transmission. We systematically searched PubMed, Web of Science, and Embase for articles evaluating dengue prevalence or cumulative incidence in rural areas. A total of 106 articles published between 1958 and 2021 met our inclusion criteria. Overall, 56% (n = 22) of the 48 estimates that compared urban and rural settings reported rural dengue incidence as being as high or higher than in urban locations. In some rural areas, the force of infection appears to be increasing over time, as measured by increasing seroprevalence in children and thus likely decreasing age of first infection, suggesting that rural dengue transmission may be a relatively recent phenomenon. Authors characterized rural locations by many different factors, including population density and size, environmental and land use characteristics, and by comparing their context to urban areas. Hypothesized mechanisms for rural dengue transmission included travel, population size, urban infrastructure, vector and environmental factors, among other mechanisms. Strengthening our understanding of the relationship between rurality and dengue will require a more nuanced definition of rurality from the perspective of DENV transmission. Future studies should focus on characterizing details of study locations based on their environmental features, exposure histories, and movement dynamics to identify characteristics that may influence dengue transmission.
Collapse
Affiliation(s)
- Olivia Man
- Department of Epidemiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Alicia Kraay
- Department of Kinesiology and Community Health, University of Illinois, Urbana, Illinois, United States of America
- Institution for Genomic Biology, University of Illinois, Urbana, Illinois, United States of America
| | - Ruth Thomas
- Department of Epidemiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - James Trostle
- Department of Anthropology, Trinity College, Hartford, Connecticut, United States of America
| | - Gwenyth O. Lee
- Rutgers Global Health Institute, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, United States of America
- Rutgers Department of Biostatistics and Epidemiology, School of Public Health, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, United States of America
| | - Charlotte Robbins
- Department of Anthropology, Trinity College, Hartford, Connecticut, United States of America
| | - Amy C. Morrison
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, California, United States of America
| | - Josefina Coloma
- Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, Berkeley, California, United States of America
| | - Joseph N. S. Eisenberg
- Department of Epidemiology, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
24
|
Baldoquín Rodríguez W, Mirabal M, Van der Stuyft P, Gómez Padrón T, Fonseca V, Castillo RM, Monteagudo Díaz S, Baetens JM, De Baets B, Toledo Romaní ME, Vanlerberghe V. The Potential of Surveillance Data for Dengue Risk Mapping: An Evaluation of Different Approaches in Cuba. Trop Med Infect Dis 2023; 8:tropicalmed8040230. [PMID: 37104355 PMCID: PMC10143650 DOI: 10.3390/tropicalmed8040230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/03/2023] [Accepted: 04/11/2023] [Indexed: 04/28/2023] Open
Abstract
To better guide dengue prevention and control efforts, the use of routinely collected data to develop risk maps is proposed. For this purpose, dengue experts identified indicators representative of entomological, epidemiological and demographic risks, hereafter called components, by using surveillance data aggregated at the level of Consejos Populares (CPs) in two municipalities of Cuba (Santiago de Cuba and Cienfuegos) in the period of 2010-2015. Two vulnerability models (one with equally weighted components and one with data-derived weights using Principal Component Analysis), and three incidence-based risk models were built to construct risk maps. The correlation between the two vulnerability models was high (tau > 0.89). The single-component and multicomponent incidence-based models were also highly correlated (tau ≥ 0.9). However, the agreement between the vulnerability- and the incidence-based risk maps was below 0.6 in the setting with a prolonged history of dengue transmission. This may suggest that an incidence-based approach does not fully reflect the complexity of vulnerability for future transmission. The small difference between single- and multicomponent incidence maps indicates that in a setting with a narrow availability of data, simpler models can be used. Nevertheless, the generalized linear mixed multicomponent model provides information of covariate-adjusted and spatially smoothed relative risks of disease transmission, which can be important for the prospective evaluation of an intervention strategy. In conclusion, caution is needed when interpreting risk maps, as the results vary depending on the importance given to the components involved in disease transmission. The multicomponent vulnerability mapping needs to be prospectively validated based on an intervention trial targeting high-risk areas.
Collapse
Affiliation(s)
| | - Mayelin Mirabal
- Unidad de Información y Biblioteca, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | | | - Tania Gómez Padrón
- Centro Provincial de Higiene Epidemiología y Microbiología, Dirección Provincial de Salud, Santiago de Cuba 90100, Cuba
| | - Viviana Fonseca
- Centro Provincial de Higiene Epidemiología y Microbiología, Dirección Provincial de Salud, Santiago de Cuba 90100, Cuba
| | - Rosa María Castillo
- Unidad Provincial de Vigilancia y Lucha Antivectorial, Dirección Provincial de Salud, Santiago de Cuba 90100, Cuba
| | - Sonia Monteagudo Díaz
- Centro Provincial de Higiene Epidemiología y Microbiología, Dirección Provincial de Salud, Cienfuegos 55100, Cuba
| | - Jan M Baetens
- KERMIT, Department of Data Analysis and Mathematical Modelling, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Bernard De Baets
- KERMIT, Department of Data Analysis and Mathematical Modelling, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | | | - Veerle Vanlerberghe
- Public Health Department, Institute of Tropical Medicine, Nationalestraat 155, 2000 Antwerp, Belgium
| |
Collapse
|
25
|
Vazquez-Prokopec GM, Morrison AC, Paz-Soldan V, Stoddard ST, Koval W, Waller LA, Alex Perkins T, Lloyd AL, Astete H, Elder J, Scott TW, Kitron U. Inapparent infections shape the transmission heterogeneity of dengue. PNAS NEXUS 2023; 2:pgad024. [PMID: 36909820 PMCID: PMC10003742 DOI: 10.1093/pnasnexus/pgad024] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 01/08/2023] [Accepted: 01/17/2023] [Indexed: 02/02/2023]
Abstract
Transmission heterogeneity, whereby a disproportionate fraction of pathogen transmission events result from a small number of individuals or geographic locations, is an inherent property of many, if not most, infectious disease systems. For vector-borne diseases, transmission heterogeneity is inferred from the distribution of the number of vectors per host, which could lead to significant bias in situations where vector abundance and transmission risk at the household do not correlate, as is the case with dengue virus (DENV). We used data from a contact tracing study to quantify the distribution of DENV acute infections within human activity spaces (AS), the collection of residential locations an individual routinely visits, and quantified measures of virus transmission heterogeneity from two consecutive dengue outbreaks (DENV-4 and DENV-2) that occurred in the city of Iquitos, Peru. Negative-binomial distributions and Pareto fractions showed evidence of strong overdispersion in the number of DENV infections by AS and identified super-spreading units (SSUs): i.e. AS where most infections occurred. Approximately 8% of AS were identified as SSUs, contributing to more than 50% of DENV infections. SSU occurrence was associated more with DENV-2 infection than with DENV-4, a predominance of inapparent infections (74% of all infections), households with high Aedes aegypti mosquito abundance, and high host susceptibility to the circulating DENV serotype. Marked heterogeneity in dengue case distribution, and the role of inapparent infections in defining it, highlight major challenges faced by reactive interventions if those transmission units contributing the most to transmission are not identified, prioritized, and effectively treated.
Collapse
Affiliation(s)
| | - Amy C Morrison
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Valerie Paz-Soldan
- Department of Global Community Health and Behavioral Sciences, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA
| | - Steven T Stoddard
- Division of Health Promotion & Behavioral Sciences, School of Public Health, San Diego State University, San Diego, CA 92182, USA
| | - William Koval
- Department of Biology, University of Chicago, Chicago, IL 60637, USA
| | - Lance A Waller
- Department of Biostatistics, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
| | - T Alex Perkins
- Department of Biology, University of Notre Dame, South Bend, IN 46556, USA
| | - Alun L Lloyd
- Biomathematics Graduate Program and Department of Mathematics, North Carolina State University, Raleigh, NC 27607, USA
| | - Helvio Astete
- Virology Department, Naval Medical Research Unit-6, Iquitos 16003, Peru
| | - John Elder
- Division of Health Promotion & Behavioral Sciences, School of Public Health, San Diego State University, San Diego, CA 92182, USA
| | - Thomas W Scott
- Department of Entomology and Nematology, University of California, Davis, CA 95616, USA
| | - Uriel Kitron
- Department of Environmental Sciences, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
26
|
Kamal ASMM, Al-Montakim MN, Hasan MA, Mitu MMP, Gazi MY, Uddin MM, Mia MB. Relationship between Urban Environmental Components and Dengue Prevalence in Dhaka City-An Approach of Spatial Analysis of Satellite Remote Sensing, Hydro-Climatic, and Census Dengue Data. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3858. [PMID: 36900868 PMCID: PMC10001735 DOI: 10.3390/ijerph20053858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/18/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Dengue fever is a tropical viral disease mostly spread by the Aedes aegypti mosquito across the globe. Each year, millions of people have dengue fever, and many die as a result. Since 2002, the severity of dengue in Bangladesh has increased, and in 2019, it reached its worst level ever. This research used satellite imagery to determine the spatial relationship between urban environmental components (UEC) and dengue incidence in Dhaka in 2019. Land surface temperature (LST), urban heat-island (UHI), land-use-land-cover (LULC), population census, and dengue patient data were evaluated. On the other hand, the temporal association between dengue and 2019 UEC data for Dhaka city, such as precipitation, relative humidity, and temperature, were explored. The calculation indicates that the LST in the research region varies between 21.59 and 33.33 degrees Celsius. Multiple UHIs are present within the city, with LST values ranging from 27 to 32 degrees Celsius. In 2019, these UHIs had a higher incidence of dengue. NDVI values between 0.18 and 1 indicate the presence of vegetation and plants, and the NDWI identifies waterbodies with values between 0 and 1. About 2.51%, 2.66%, 12.81%, and 82% of the city is comprised of water, bare ground, vegetation, and settlement, respectively. The kernel density estimate of dengue data reveals that the majority of dengue cases were concentrated in the city's north edge, south, north-west, and center. The dengue risk map was created by combining all of these spatial outputs (LST, UHI, LULC, population density, and dengue data) and revealed that UHIs of Dhaka are places with high ground temperature and lesser vegetation, waterbodies, and dense urban characteristics, with the highest incidence of dengue. The average yearly temperature in 2019 was 25.26 degrees Celsius. May was the warmest month, with an average monthly temperature of 28.83 degrees Celsius. The monsoon and post-monsoon seasons (middle of March to middle of September) of 2019 sustained higher ambient temperatures (>26 °C), greater relative humidity (>80%), and at least 150 mm of precipitation. The study reveals that dengue transmits faster under climatological circumstances characterized by higher temperatures, relative humidity, and precipitation.
Collapse
Affiliation(s)
- A. S. M. Maksud Kamal
- Department of Disaster Science and Climate Resilience, University of Dhaka, Dhaka 1000, Bangladesh
| | - Md. Nahid Al-Montakim
- Geoinformatics Laboratory, Department of Geology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Md. Asif Hasan
- Geoinformatics Laboratory, Department of Geology, University of Dhaka, Dhaka 1000, Bangladesh
| | | | - Md. Yousuf Gazi
- Geoinformatics Laboratory, Department of Geology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Md. Mahin Uddin
- Geoinformatics Laboratory, Department of Geology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Md. Bodruddoza Mia
- Geoinformatics Laboratory, Department of Geology, University of Dhaka, Dhaka 1000, Bangladesh
| |
Collapse
|
27
|
Li Y, Stewart K, Han KT, Han ZY, Aung PP, Thein ZW, Htay T, Chen D, Nyunt MM, Plowe CV. Understanding Spatiotemporal Human Mobility Patterns for Malaria Control Using a Multiagent Mobility Simulation Model. Clin Infect Dis 2023; 76:e867-e874. [PMID: 35851600 PMCID: PMC10169429 DOI: 10.1093/cid/ciac568] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/24/2022] [Accepted: 07/07/2022] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND More details about human movement patterns are needed to evaluate relationships between daily travel and malaria risk at finer scales. A multiagent mobility simulation model was built to simulate the movements of villagers between home and their workplaces in 2 townships in Myanmar. METHODS An agent-based model (ABM) was built to simulate daily travel to and from work based on responses to a travel survey. Key elements for the ABM were land cover, travel time, travel mode, occupation, malaria prevalence, and a detailed road network. Most visited network segments for different occupations and for malaria-positive cases were extracted and compared. Data from a separate survey were used to validate the simulation. RESULTS Mobility characteristics for different occupation groups showed that while certain patterns were shared among some groups, there were also patterns that were unique to an occupation group. Forest workers were estimated to be the most mobile occupation group, and also had the highest potential malaria exposure associated with their daily travel in Ann Township. In Singu Township, forest workers were not the most mobile group; however, they were estimated to visit regions that had higher prevalence of malaria infection over other occupation groups. CONCLUSIONS Using an ABM to simulate daily travel generated mobility patterns for different occupation groups. These spatial patterns varied by occupation. Our simulation identified occupations at a higher risk of being exposed to malaria and where these exposures were more likely to occur.
Collapse
Affiliation(s)
- Yao Li
- Department of Geographical Sciences, Center for Geospatial Information Science, University of Maryland, College Park, Maryland, USA
| | - Kathleen Stewart
- Department of Geographical Sciences, Center for Geospatial Information Science, University of Maryland, College Park, Maryland, USA
| | - Kay Thwe Han
- Department of Medical Research, Ministry of Health and Sports, Yangon, Myanmar
| | - Zay Yar Han
- Department of Medical Research, Ministry of Health and Sports, Yangon, Myanmar.,Duke Global Health Institute, Duke University, Durham, North Carolina, USA
| | - Poe P Aung
- Duke Global Health Institute, Duke University, Durham, North Carolina, USA
| | - Zaw W Thein
- Duke Global Health Institute, Duke University, Durham, North Carolina, USA
| | - Thura Htay
- Duke Global Health Institute, Duke University, Durham, North Carolina, USA
| | - Dong Chen
- Department of Geographical Sciences, University of Maryland, College Park, Maryland, USA
| | - Myaing M Nyunt
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Christopher V Plowe
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
28
|
Abdalal SA, Yukich J, Andrinoplous K, Harakeh S, Altwaim SA, Gattan H, Carter B, Shammaky M, Niyazi HA, Alruhaili MH, Keating J. An insight to better understanding cross border malaria in Saudi Arabia. Malar J 2023; 22:37. [PMID: 36732819 PMCID: PMC9893606 DOI: 10.1186/s12936-023-04467-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 01/23/2023] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Border malaria is a major obstacle for the malaria elimination in Saudi Arabia. Today, the southern border of Saudi Arabia is a region where malaria cases are resurging, and malaria control is dwindling mainly due to the humanitarian crisis and the conflict in Yemen. This study analyses the current border malaria epidemiology along the southern border of Saudi Arabia from 2015 to 2018. METHODS All reported cases maintained by the malaria elimination centres in Aledabi and Baish, Jazan Province, Saudi Arabia, from 2015 to 2018 were analysed to examine the epidemiological changes over time. Pearson's Chi-Square test of differences was utilized to assess differences between the characteristics of imported and local causes and between border cases. A logistic regression model was used to predict imported status was related to living along side of the border area. RESULTS A total of 3210 malaria cases were reported in Baish and Aledabi malaria centres between 2015 and 2018, of which 170 were classified as local cases and 3040 were classified as imported cases. Reported malaria cases were mainly among males, within the imported cases 61.5% (1868/3039) were residents of the border areas. CONCLUSIONS Given the complexity of cross-border malaria, creating a malaria buffer zone that covers a certain margin from both sides of the border would allow for a joint force, cross-border malaria elimination programme. To initiate a malaria elimination activity and cases reported as belonging to this zone, rather than being pushed from one country to the other, would allow malaria elimination staff to work collaboratively with local borderland residents and other stakeholders to come up with innovative solutions to combat malaria and reach malaria-free borders.
Collapse
Affiliation(s)
- Shaymaa A. Abdalal
- grid.412126.20000 0004 0607 9688Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University and King Abdulaziz University Hospital, Jeddah, Saudi Arabia
| | - Joshua Yukich
- grid.265219.b0000 0001 2217 8588Tulane University School of Public Health and Tropical Medicine, New Orleans, LA USA
| | - Katherine Andrinoplous
- grid.265219.b0000 0001 2217 8588Tulane University School of Public Health and Tropical Medicine, New Orleans, LA USA
| | - Steve Harakeh
- Saudi Arabia Ministry of Health, Jazan, Saudi Arabia
| | - Sarah A. Altwaim
- grid.412126.20000 0004 0607 9688Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University and King Abdulaziz University Hospital, Jeddah, Saudi Arabia
| | - Hattan Gattan
- grid.412125.10000 0001 0619 1117Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Brendan Carter
- grid.265219.b0000 0001 2217 8588Tulane University School of Public Health and Tropical Medicine, New Orleans, LA USA
| | | | - Hatoon A. Niyazi
- grid.412126.20000 0004 0607 9688Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University and King Abdulaziz University Hospital, Jeddah, Saudi Arabia
| | - Mohammed H. Alruhaili
- grid.412126.20000 0004 0607 9688Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University and King Abdulaziz University Hospital, Jeddah, Saudi Arabia
| | - Joseph Keating
- grid.265219.b0000 0001 2217 8588Tulane University School of Public Health and Tropical Medicine, New Orleans, LA USA
| |
Collapse
|
29
|
Lu W, Ren H. Diseases spectrum in the field of spatiotemporal patterns mining of infectious diseases epidemics: A bibliometric and content analysis. Front Public Health 2023; 10:1089418. [PMID: 36699887 PMCID: PMC9868952 DOI: 10.3389/fpubh.2022.1089418] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 12/21/2022] [Indexed: 01/12/2023] Open
Abstract
Numerous investigations of the spatiotemporal patterns of infectious disease epidemics, their potential influences, and their driving mechanisms have greatly contributed to effective interventions in the recent years of increasing pandemic situations. However, systematic reviews of the spatiotemporal patterns of communicable diseases are rare. Using bibliometric analysis, combined with content analysis, this study aimed to summarize the number of publications and trends, the spectrum of infectious diseases, major research directions and data-methodological-theoretical characteristics, and academic communities in this field. Based on 851 relevant publications from the Web of Science core database, from January 1991 to September 2021, the study found that the increasing number of publications and the changes in the disease spectrum have been accompanied by serious outbreaks and pandemics over the past 30 years. Owing to the current pandemic of new, infectious diseases (e.g., COVID-19) and the ravages of old infectious diseases (e.g., dengue and influenza), illustrated by the disease spectrum, the number of publications in this field would continue to rise. Three logically rigorous research directions-the detection of spatiotemporal patterns, identification of potential influencing factors, and risk prediction and simulation-support the research paradigm framework in this field. The role of human mobility in the transmission of insect-borne infectious diseases (e.g., dengue) and scale effects must be extensively studied in the future. Developed countries, such as the USA and England, have stronger leadership in the field. Therefore, much more effort must be made by developing countries, such as China, to improve their contribution and role in international academic collaborations.
Collapse
Affiliation(s)
- Weili Lu
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Hongyan Ren
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China,*Correspondence: Hongyan Ren ✉
| |
Collapse
|
30
|
Zheng W, Deng X, Peng C, Yan X, Zheng N, Chen Z, Yang J, Ajelli M, Zhang J, Yu H. Risk Factors Associated with the Spatiotemporal Spread of the SARS-CoV-2 Omicron BA.2 Variant — Shanghai Municipality, China, 2022. China CDC Wkly 2023; 5:97-102. [PMID: 37006708 PMCID: PMC10061774 DOI: 10.46234/ccdcw2023.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
What is already known about this topic? Previous studies have explored the spatial transmission patterns of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and have assessed the associated risk factors. However, none of these studies have quantitatively described the spatiotemporal transmission patterns and risk factors for Omicron BA.2 at the micro (within-city) scale. What is added by this report? This study highlights the heterogeneous spread of the 2022 Omicron BA.2 epidemic in Shanghai, and identifies associations between different metrics of spatial spread at the subdistrict level and demographic and socioeconomic characteristics of the population, human mobility patterns, and adopted interventions. What are the implications for public health practice? Disentangling different risk factors might contribute to a deeper understanding of the transmission dynamics and ecology of coronavirus disease 2019 and an effective design of monitoring and management strategies.
Collapse
Affiliation(s)
- Wen Zheng
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai Municipality, China
| | - Xiaowei Deng
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai Municipality, China
| | - Cheng Peng
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai Municipality, China
| | - Xuemei Yan
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai Municipality, China
| | - Nan Zheng
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai Municipality, China
| | - Zhiyuan Chen
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai Municipality, China
| | - Juan Yang
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai Municipality, China
| | - Marco Ajelli
- Laboratory for Computational Epidemiology and Public Health, Department of Epidemiology and Biostatistics, Indiana University School of Public Health, Bloomington, IN, USA
| | - Juanjuan Zhang
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai Municipality, China
- Juanjuan Zhang,
| | - Hongjie Yu
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai Municipality, China
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai Municipality, China
- Hongjie Yu,
| |
Collapse
|
31
|
Hast M, Mharakurwa S, Shields TM, Lubinda J, Searle K, Gwanzura L, Munyati S, Moss WJ. Characterizing human movement patterns using GPS data loggers in an area of persistent malaria in Zimbabwe along the Mozambique border. BMC Infect Dis 2022; 22:942. [PMID: 36522643 PMCID: PMC9756631 DOI: 10.1186/s12879-022-07903-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Human mobility is a driver for the reemergence or resurgence of malaria and has been identified as a source of cross-border transmission. However, movement patterns are difficult to measure in rural areas where malaria risk is high. In countries with malaria elimination goals, it is essential to determine the role of mobility on malaria transmission to implement appropriate interventions. METHODS A study was conducted in Mutasa District, Zimbabwe, to investigate human movement patterns in an area of persistent transmission along the Mozambique border. Over 1 year, a convenience sample of 20 participants/month was recruited from active malaria surveillance cohorts to carry an IgotU® GT-600 global positioning system (GPS) data logger during all daily activities. Consenting participants were tested for malaria at data logger distribution using rapid antigen diagnostic tests and completed a survey questionnaire. GPS data were analyzed using a trajectory analysis tool, and participant movement patterns were characterized throughout the study area and across the border into Mozambique using movement intensity maps, activity space plots, and statistical analyses. RESULTS From June 2016-May 2017, 184 participants provided movement tracks encompassing > 350,000 data points and nearly 8000 person-days. Malaria prevalence at logger distribution was 3.7%. Participants traveled a median of 2.8 km/day and spent a median of 4.6 h/day away from home. Movement was widespread within and outside the study area, with participants traveling up to 500 km from their homes. Indices of mobility were higher in the dry season than the rainy season (median km traveled/day = 3.5 vs. 2.2, P = 0.03), among male compared to female participants (median km traveled/day = 3.8 vs. 2.0, P = 0.0008), and among adults compared to adolescents (median total km traveled = 104.6 vs. 59.5, P = 0.05). Half of participants traveled outside the study area, and 30% traveled into Mozambique, including 15 who stayed in Mozambique overnight. CONCLUSIONS Study participants in Mutasa District, Zimbabwe, were highly mobile throughout the year. Many participants traveled long distances from home, including overnight trips into Mozambique, with clear implications for malaria control. Interventions targeted at mobile populations and cross-border transmission may be effective in preventing malaria introductions in this region.
Collapse
Affiliation(s)
- Marisa Hast
- grid.21107.350000 0001 2171 9311Johns Hopkins Bloomberg School of Public Health, Baltimore, MD USA
| | - Sungano Mharakurwa
- grid.418347.d0000 0004 8265 7435Biomedical Research and Training Institute, Harare, Zimbabwe ,grid.442719.d0000 0000 8930 0245Africa University, Old Mutare, Mutare, Zimbabwe
| | - Timothy M. Shields
- grid.21107.350000 0001 2171 9311Johns Hopkins Bloomberg School of Public Health, Baltimore, MD USA
| | - Jailos Lubinda
- grid.414659.b0000 0000 8828 1230Telethon Kids Institute, Malaria Atlas Project, Nedlands, WA Australia
| | - Kelly Searle
- grid.17635.360000000419368657School of Public Health, University of Minnesota, Minneapolis, MN USA
| | - Lovemore Gwanzura
- grid.418347.d0000 0004 8265 7435Biomedical Research and Training Institute, Harare, Zimbabwe
| | - Shungu Munyati
- grid.418347.d0000 0004 8265 7435Biomedical Research and Training Institute, Harare, Zimbabwe
| | - William J. Moss
- grid.21107.350000 0001 2171 9311Johns Hopkins Bloomberg School of Public Health, Baltimore, MD USA
| |
Collapse
|
32
|
Saucedo O, Tien JH. Host movement, transmission hot spots, and vector-borne disease dynamics on spatial networks. Infect Dis Model 2022; 7:742-760. [PMID: 36439402 PMCID: PMC9672958 DOI: 10.1016/j.idm.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 09/04/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022] Open
Abstract
We examine how spatial heterogeneity combines with mobility network structure to influence vector-borne disease dynamics. Specifically, we consider a Ross-Macdonald-type disease model on n spatial locations that are coupled by host movement on a strongly connected, weighted, directed graph. We derive a closed form approximation to the domain reproduction number using a Laurent series expansion, and use this approximation to compute sensitivities of the basic reproduction number to model parameters. To illustrate how these results can be used to help inform mitigation strategies, as a case study we apply these results to malaria dynamics in Namibia, using published cell phone data and estimates for local disease transmission. Our analytical results are particularly useful for understanding drivers of transmission when mobility sinks and transmission hot spots do not coincide.
Collapse
Affiliation(s)
- Omar Saucedo
- Department of Mathematics, Virginia Tech, Blacksburg, VA, USA
| | - Joseph H. Tien
- Department of Mathematics, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
33
|
Labadin J, Hong BH, Tiong WK, Gill BS, Perera D, Rigit ARH, Singh S, Tan CV, Ghazali SM, Jelip J, Mokhtar N, Rashid NBA, Bakar HBA, Lim JH, Taib NM, George A. Development and user testing study of MozzHub: a bipartite network-based dengue hotspot detector. MULTIMEDIA TOOLS AND APPLICATIONS 2022; 82:17415-17436. [PMID: 36404933 PMCID: PMC9649007 DOI: 10.1007/s11042-022-14120-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 10/14/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Traditionally, dengue is controlled by fogging, and the prime location for the control measure is at the patient's residence. However, when Malaysia was hit by the first wave of the Coronavirus disease (COVID-19), and the government-imposed movement control order, dengue cases have decreased by more than 30% from the previous year. This implies that residential areas may not be the prime locations for dengue-infected mosquitoes. The existing early warning system was focused on temporal prediction wherein the lack of consideration for spatial component at the microlevel and human mobility were not considered. Thus, we developed MozzHub, which is a web-based application system based on the bipartite network-based dengue model that is focused on identifying the source of dengue infection at a small spatial level (400 m) by integrating human mobility and environmental predictors. The model was earlier developed and validated; therefore, this study presents the design and implementation of the MozzHub system and the results of a preliminary pilot test and user acceptance of MozzHub in six district health offices in Malaysia. It was found that the MozzHub system is well received by the sample of end-users as it was demonstrated as a useful (77.4%), easy-to-operate system (80.6%), and has achieved adequate client satisfaction for its use (74.2%).
Collapse
Affiliation(s)
- Jane Labadin
- Faculty of Computer Science and Information Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Malaysia
| | - Boon Hao Hong
- Faculty of Computer Science and Information Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Malaysia
| | - Wei King Tiong
- Faculty of Computer Science and Information Technology, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Malaysia
| | | | - David Perera
- Institute for Health and Community Medicine, Universiti Malaysia Sarawak, 94300 Kota Samarahan, Malaysia
| | | | - Sarbhan Singh
- Institute for Medical Research, Ministry of Health, Kuala Lumpur, Malaysia
| | - Cia Vei Tan
- Institute for Medical Research, Ministry of Health, Kuala Lumpur, Malaysia
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Bridging landscape ecology and urban science to respond to the rising threat of mosquito-borne diseases. Nat Ecol Evol 2022; 6:1601-1616. [DOI: 10.1038/s41559-022-01876-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 08/03/2022] [Indexed: 11/09/2022]
|
35
|
Lee SA, Economou T, Lowe R. A Bayesian modelling framework to quantify multiple sources of spatial variation for disease mapping. J R Soc Interface 2022; 19:20220440. [PMID: 36128702 PMCID: PMC9490350 DOI: 10.1098/rsif.2022.0440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/31/2022] [Indexed: 11/23/2022] Open
Abstract
Spatial connectivity is an important consideration when modelling infectious disease data across a geographical region. Connectivity can arise for many reasons, including shared characteristics between regions and human or vector movement. Bayesian hierarchical models include structured random effects to account for spatial connectivity. However, conventional approaches require the spatial structure to be fully defined prior to model fitting. By applying penalized smoothing splines to coordinates, we create two-dimensional smooth surfaces describing the spatial structure of the data while making minimal assumptions about the structure. The result is a non-stationary surface which is setting specific. These surfaces can be incorporated into a hierarchical modelling framework and interpreted similarly to traditional random effects. Through simulation studies, we show that the splines can be applied to any symmetric continuous connectivity measure, including measures of human movement, and that the models can be extended to explore multiple sources of spatial structure in the data. Using Bayesian inference and simulation, the relative contribution of each spatial structure can be computed and used to generate hypotheses about the drivers of disease. These models were found to perform at least as well as existing modelling frameworks, while allowing for future extensions and multiple sources of spatial connectivity.
Collapse
Affiliation(s)
- Sophie A. Lee
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK
- Centre on Climate Change and Planetary Health, London School of Hygiene & Tropical Medicine, London, UK
| | - Theodoros Economou
- Climate and Atmosphere Research Centre, The Cyprus Institute, Nicosia, Cyprus
| | - Rachel Lowe
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK
- Centre on Climate Change and Planetary Health, London School of Hygiene & Tropical Medicine, London, UK
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| |
Collapse
|
36
|
Vavilala H, Yaladanda N, Krishna Kondeti P, Mopuri R, Gouda KC, Rao Bhimala K, Rao Kadiri M, Upadhyayula SM, Rao Mutheneni S. Weather integrated malaria prediction system using Bayesian structural time series model for northeast states of India. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:68232-68246. [PMID: 35538339 DOI: 10.1007/s11356-022-20642-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/02/2022] [Indexed: 06/14/2023]
Abstract
Malaria is an endemic disease in India and targeted to eliminate by the year 2030. The present study is aimed at understanding the epidemiological patterns of malaria transmission dynamics in Assam and Arunachal Pradesh followed by the development of a malaria prediction model using monthly climate factors. A total of 144,055 cases in Assam during 2011-2018 and 42,970 cases in Arunachal Pradesh were reported during the 2011-2019 period observed, and Plasmodium falciparum (74.5%) was the most predominant parasite in Assam, whereas Plasmodium vivax (66%) in Arunachal Pradesh. Malaria transmission showed a strong seasonal variation where most of the cases were reported during the monsoon period (Assam, 51.9%, and Arunachal Pradesh, 53.6%). Similarly, the malaria incidence was highest in the male population in both states (Asam, 55.75%, and Arunachal Pradesh, 51.43%), and the disease risk is also higher among the > 15 years age group (Assam, 61.7%, and Arunachal Pradesh, 67.9%). To predict the malaria incidence, Bayesian structural time series (BSTS) and Seasonal Auto-Regressive Integrated Moving Average with eXogenous factors (SARIMAX) models were implemented. A statistically significant association between malaria cases and climate variables was observed. The most influencing climate factors are found to be maximum and mean temperature with a 6-month lag, and it showed a negative association with malaria incidence. The BSTS model has shown superior performance on the optimal auto-correlated dataset (OAD) which contains auto-correlated malaria cases, cross-correlated climate variables besides malaria cases in both Assam (RMSE, 0.106; MAE, 0.089; and SMAPE, 19.2%) and Arunachal Pradesh (RMSE, 0.128; MAE, 0.122; and SMAPE, 22.6%) than the SARIMAX model. The findings suggest that the predictive performance of the BSTS model is outperformed, and it may be helpful for ongoing intervention strategies by governmental and nongovernmental agencies in the northeast region to combat the disease effectively.
Collapse
Affiliation(s)
- Hariprasad Vavilala
- ENVIS Resource Partner On Climate Change and Public Health, Applied Biology Division, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Tarnaka, Hyderabad, 500007, Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Nikhila Yaladanda
- ENVIS Resource Partner On Climate Change and Public Health, Applied Biology Division, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Tarnaka, Hyderabad, 500007, Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Phani Krishna Kondeti
- ENVIS Resource Partner On Climate Change and Public Health, Applied Biology Division, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Tarnaka, Hyderabad, 500007, Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Rajasekhar Mopuri
- ENVIS Resource Partner On Climate Change and Public Health, Applied Biology Division, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Tarnaka, Hyderabad, 500007, Telangana, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Krushna Chandra Gouda
- CSIR-Fourth Paradigm Institute, NAL Belur Campus, Bangalore, 560037, Karnataka, India
| | - Kantha Rao Bhimala
- CSIR-Fourth Paradigm Institute, NAL Belur Campus, Bangalore, 560037, Karnataka, India
| | - Madhusudhan Rao Kadiri
- ENVIS Resource Partner On Climate Change and Public Health, Applied Biology Division, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Tarnaka, Hyderabad, 500007, Telangana, India
| | - Suryanaryana Murty Upadhyayula
- National Institute of Pharmaceutical Education and Research (NIPER), Sila Katamur, Halugurisuk, Changsari, Kamrup, 781101, Assam, India
| | - Srinivasa Rao Mutheneni
- ENVIS Resource Partner On Climate Change and Public Health, Applied Biology Division, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Tarnaka, Hyderabad, 500007, Telangana, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
37
|
Hassett E, Diuk-Wasser M, Harrington L, Fernandez P. Integrating tick density and park visitor behaviors to assess the risk of tick exposure in urban parks on Staten Island, New York. BMC Public Health 2022; 22:1602. [PMID: 35999523 PMCID: PMC9396585 DOI: 10.1186/s12889-022-13989-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 08/04/2022] [Indexed: 11/19/2022] Open
Abstract
Background Public green spaces are important for human health, but they may expose visitors to ticks and tick-borne pathogens. We sought to understand, for the first time, visitors’ exposure risk and drivers of tick-preventative behavior in three popular parks on Staten Island, New York City, NY, USA, by integrating tick hazard and park visitors’ behaviors, risk perceptions and knowledge. Methods We conducted tick sampling in three parks, across three site types (open spaces, the edge of open spaces, and trails) and three within-park habitats (maintained grass, unmaintained herbaceous, and leaf litter) to estimate tick density during May-August 2019. Human behavior was assessed by observations of time spent and activity type in each site. We integrated the time spent in each location by park visitors and the tick density to estimate the probability of human-tick encounter. To assess visitors’ tick prevention behaviors, a knowledge, attitude, and practices (KAP) survey was administered. Results Three tick species (Ixodes scapularis, Amblyomma americanum and Haemaphysalis longicornis) were collected. For all species, the density of nymphs was greatest in unmaintained herbaceous habitats and trails, however, the fewest people entered these hazardous locations. The KAP survey revealed that most respondents (N = 190) identified parks as the main location for tick exposure, but most believed they had minimal risk for tick encounter. Consequently, many visitors did not conduct tick checks. People were most likely to practice tick checks if they knew multiple prevention methods and perceived a high likelihood of tick encounter. Conclusions By integrating acarological indices with park visitor behaviors, we found a mismatch between areas with higher tick densities and areas more frequently used by park visitors. However, this exposure risk varied among demographic groups, the type of activities and parks, with a higher probability of human-tick encounters in trails compared to open spaces. Furthermore, we showed that people’s KAP did not change across parks even if parks represented different exposure risks. Our research is a first step towards identifying visitor risk, attitudes, and practices that could be targeted by optimized messaging strategies for tick bite prevention among park visitors. Supplementary Information The online version contains supplementary material available at 10.1186/s12889-022-13989-x.
Collapse
Affiliation(s)
- Erin Hassett
- Department of Entomology, Cornell University, Ithaca, NY, 14850, USA.,Department of Environmental Science, SUNY College of Environmental Science and Forestry, Syracuse, NY, 13210, USA
| | - Maria Diuk-Wasser
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY, 10027, USA
| | - Laura Harrington
- Department of Entomology, Cornell University, Ithaca, NY, 14850, USA
| | - Pilar Fernandez
- Department of Ecology, Evolution, and Environmental Biology, Columbia University, New York, NY, 10027, USA. .,Paul G. Allen School for Global Health, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
38
|
Lefebvre B, Karki R, Misslin R, Nakhapakorn K, Daudé E, Paul RE. Importance of Public Transport Networks for Reconciling the Spatial Distribution of Dengue and the Association of Socio-Economic Factors with Dengue Risk in Bangkok, Thailand. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10123. [PMID: 36011755 PMCID: PMC9408777 DOI: 10.3390/ijerph191610123] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/07/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
Dengue is the most widespread mosquito-borne viral disease of man and spreading at an alarming rate. Socio-economic inequality has long been thought to contribute to providing an environment for viral propagation. However, identifying socio-economic (SE) risk factors is confounded by intra-urban daily human mobility, with virus being ferried across cities. This study aimed to identify SE variables associated with dengue at a subdistrict level in Bangkok, analyse how they explain observed dengue hotspots and assess the impact of mobility networks on such associations. Using meteorological, dengue case, national statistics, and transport databases from the Bangkok authorities, we applied statistical association and spatial analyses to identify SE variables associated with dengue and spatial hotspots and the extent to which incorporating transport data impacts the observed associations. We identified three SE risk factors at the subdistrict level: lack of education, % of houses being cement/brick, and number of houses as being associated with increased risk of dengue. Spatial hotspots of dengue were found to occur consistently in the centre of the city, but which did not entirely have the socio-economic risk factor characteristics. Incorporation of the intra-urban transport network, however, much improved the overall statistical association of the socio-economic variables with dengue incidence and reconciled the incongruous difference between the spatial hotspots and the SE risk factors. Our study suggests that incorporating transport networks enables a more real-world analysis within urban areas and should enable improvements in the identification of risk factors.
Collapse
Affiliation(s)
- Bertrand Lefebvre
- French Institute of Pondicherry, UMIFRE 21 CNRS-MEAE, Pondicherry 605001, India
| | - Rojina Karki
- CNRS, ARENES—UMR 6051, EHESP, Université de Rennes, 35000 Rennes, France
| | | | - Kanchana Nakhapakorn
- Faculty of Environment and Resource Studies, Mahidol University, Salaya, Nakhon Pathom 73170, Thailand
| | - Eric Daudé
- CNRS, UMR 6266 IDEES, 7 rue Thomas Becket, 76821 Rouen, France
| | - Richard E. Paul
- Institut Pasteur, Université de Paris, CNRS, UMR 2000, Unité de Génétique Fonctionnelle des Maladies Infectieuses, 75015 Paris, France
| |
Collapse
|
39
|
Rana A, Mukherjee T, Adak S. Mobility patterns and COVID growth: Moderating role of country culture. INTERNATIONAL JOURNAL OF INTERCULTURAL RELATIONS : IJIR 2022; 89:124-151. [PMID: 35761827 PMCID: PMC9220803 DOI: 10.1016/j.ijintrel.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 01/10/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
The COVID-19 pandemic has resulted in countries reacting differently to an ongoing crisis situation. Latent to this reaction mechanism is the inherent cultural characteristics of each society resulting in differential responses to epidemic spread. Epidemiological studies have confirmed the positive effect of population mobility on the growth of infection. However, the effect of culture on indigenous mobility patterns during pandemics needs further investigation. This study aims to bridge this gap by exploring the moderating role of country culture on the relationship between population mobility and growth of CoVID-19. Hofstede's cultural factors; power distance, individualism/collectivism, masculinity/femininity, uncertainty avoidance, long-term and short-term orientation are hypothesised to moderate the effect of mobility on the reproduction number (R) of COVID-19. Panel regression model, using mobility data and number of confirmed cases across 95 countries for a period of 170 days has been preferred to test the hypotheses. The results are further substantiated using slope analysis and Johnson-Neyman technique. The findings suggest that as power distance, individualism and long-term orientation scores increase, the impact of mobility on epidemic growth decreases. However, masculinity scores in a society have an opposite moderating impact on epidemic growth rate. These Hofstede factors act as quasi moderators affecting mobility and epidemic growth. Similar conclusions could be not be confirmed for uncertainty avoidance. Cross-cultural impact, as elucidated by this study, forms a crucial element in policy formulation on epidemic control by indigenous Governing bodies.
Collapse
Affiliation(s)
- Arunima Rana
- Indian Institute of Foreign Trade (IIFT), New Delhi, India
| | | | | |
Collapse
|
40
|
Vargas Bernal E, Saucedo O, Tien JH. Relating Eulerian and Lagrangian spatial models for vector-host disease dynamics through a fundamental matrix. J Math Biol 2022; 84:57. [PMID: 35676373 DOI: 10.1007/s00285-022-01761-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 01/21/2022] [Accepted: 05/11/2022] [Indexed: 11/26/2022]
Abstract
We explore the relationship between Eulerian and Lagrangian approaches for modeling movement in vector-borne diseases for discrete space. In the Eulerian approach we account for the movement of hosts explicitly through movement rates captured by a graph Laplacian matrix L. In the Lagrangian approach we only account for the proportion of time that individuals spend in foreign patches through a mixing matrix P. We establish a relationship between an Eulerian model and a Lagrangian model for the hosts in terms of the matrices L and P. We say that the two modeling frameworks are consistent if for a given matrix P, the matrix L can be chosen so that the residence times of the matrix P and the matrix L match. We find a sufficient condition for consistency, and examine disease quantities such as the final outbreak size and basic reproduction number in both the consistent and inconsistent cases. In the special case of a two-patch model, we observe how similar values for the basic reproduction number and final outbreak size can occur even in the inconsistent case. However, there are scenarios where the final sizes in both approaches can significantly differ by means of the relationship we propose.
Collapse
Affiliation(s)
| | - Omar Saucedo
- Department of Mathematics, Virginia Tech., Blacksburg, VA, USA
| | - Joseph Hua Tien
- Department of Mathematics, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
41
|
Michalska-Smith M, VanderWaal K, Craft ME. Asymmetric host movement reshapes local disease dynamics in metapopulations. Sci Rep 2022; 12:9365. [PMID: 35672422 PMCID: PMC9171740 DOI: 10.1038/s41598-022-12774-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
Understanding how the movement of individuals affects disease dynamics is critical to accurately predicting and responding to the spread of disease in an increasingly interconnected world. In particular, it is not yet known how movement between patches affects local disease dynamics (e.g., whether pathogen prevalence remains steady or oscillates through time). Considering a set of small, archetypal metapopulations, we find three surprisingly simple patterns emerge in local disease dynamics following the introduction of movement between patches: (1) movement between identical patches with cyclical pathogen prevalence dampens oscillations in the destination while increasing synchrony between patches; (2) when patches differ from one another in the absence of movement, adding movement allows dynamics to propagate between patches, alternatively stabilizing or destabilizing dynamics in the destination based on the dynamics at the origin; and (3) it is easier for movement to induce cyclical dynamics than to induce a steady-state. Considering these archetypal networks (and the patterns they exemplify) as building blocks of larger, more realistically complex metapopulations provides an avenue for novel insights into the role of host movement on disease dynamics. Moreover, this work demonstrates a framework for future predictive modelling of disease spread in real populations.
Collapse
Affiliation(s)
- Matthew Michalska-Smith
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, USA. .,Department of Plant Pathology, University of Minnesota, St. Paul, MN, USA.
| | - Kimberly VanderWaal
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, USA
| | - Meggan E Craft
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, MN, USA.,Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN, USA
| |
Collapse
|
42
|
Shragai T, Pérez-Pérez J, Del Pilar Quimbayo-Forero M, Rojo R, Harrington LC, Rúa-Uribe G. Distance to public transit predicts spatial distribution of dengue virus incidence in Medellín, Colombia. Sci Rep 2022; 12:8333. [PMID: 35585133 PMCID: PMC9117184 DOI: 10.1038/s41598-022-12115-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 05/04/2022] [Indexed: 12/12/2022] Open
Abstract
Dengue is a growing global threat in some of the world’s most rapidly growing landscapes. Research shows that urbanization and human movement affect the spatial dynamics and magnitude of dengue outbreaks; however, precise effects of urban growth on dengue are not well understood because of a lack of sufficiently fine-scaled data. We analyzed nine years of address-level dengue case data in Medellin, Colombia during a period of public transit expansion. We correlate changes in the spread and magnitude of localized outbreaks to changes in accessibility and usage of public transit. Locations closer to and with a greater utilization of public transit had greater dengue incidence. This relationship was modulated by socioeconomic status; lower socioeconomic status locations experienced stronger effects of public transit accessibility and usage on dengue incidence. Public transit is a vital urban resource, particularly among low socioeconomic populations. These results highlight the importance of public health services concurrent with urban growth.
Collapse
Affiliation(s)
- Talya Shragai
- Department of Entomology, Cornell University, Ithaca, NY, 14853, USA
| | | | | | - Raúl Rojo
- Centro Administrativo la Alpujarra, Secretaría de Salud de Medellín, 050015, Medellín, Colombia
| | | | | |
Collapse
|
43
|
Tracking COVID-19 urban activity changes in the Middle East from nighttime lights. Sci Rep 2022; 12:8096. [PMID: 35577917 PMCID: PMC9109745 DOI: 10.1038/s41598-022-12211-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 05/03/2022] [Indexed: 11/08/2022] Open
Abstract
In response to the COVID-19 pandemic, governments around the world have enacted widespread physical distancing measures to prevent and control virus transmission. Quantitative, spatially-disaggregated information about the population-scale shifts in activity that have resulted from these measures is extremely scarce, particularly for regions outside of Europe and the US. Public health institutions often must make decisions about control measures with limited region-specific data about how they will affect societal behavior, patterns of exposure, and infection outcomes. The Visible Infrared Imaging Radiometer Suite Day/Night Band (VIIRS DNB), a new-generation space-borne low-light imager, has the potential to track changes in human activity, but the capability has not yet been applied to a cross-country analysis of COVID-19 responses. Here, we examine multi-year (2015–2020) daily time-series data derived from NASA’s Black Marble VIIRS nighttime lights product (VNP46A2) covering 584 urban areas, in 17 countries in the Middle East to understand how communities have adhered to COVID-19 measures in the first 4 months of the pandemic. Nighttime lights capture the onset of national curfews and lockdowns well, but also expose the inconsistent response to control measures both across and within countries. In conflict-afflicted countries, low adherence to lockdowns and curfews was observed, highlighting the compound health and security threats that fragile states face. Our findings show how satellite measurements can aid in assessing the public response to physical distancing policies and the socio-cultural factors that shape their success, especially in fragile and data-sparse regions.
Collapse
|
44
|
Pepey A, Obadia T, Kim S, Sovannaroth S, Mueller I, Witkowski B, Vantaux A, Souris M. Mobility evaluation by GPS tracking in a rural, low-income population in Cambodia. PLoS One 2022; 17:e0266460. [PMID: 35559983 PMCID: PMC9106150 DOI: 10.1371/journal.pone.0266460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 03/21/2022] [Indexed: 01/31/2023] Open
Abstract
Global Positioning System (GPS) technology is an effective tool for quantifying individuals' mobility patterns and can be used to understand their influence on infectious disease transmission. In Cambodia, mobility measurements have been limited to questionnaires, which are of limited efficacy in rural environments. In this study, we used GPS tracking to measure the daily mobility of Cambodian forest goers, a population at high risk of malaria, and developed a workflow adapted to local constraints to produce an optimal dataset representative of the participants' mobility. We provide a detailed assessment of the GPS tracking and analysis of the data, and highlight the associated difficulties to facilitate the implementation of similar studies in the future.
Collapse
Affiliation(s)
- Anaïs Pepey
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
- * E-mail:
| | - Thomas Obadia
- Department of Parasites and Insect Vectors, Infectious Diseases Epidemiology and Analytics, Institut Pasteur, Paris, France
- Département de Biologie Computationnelle, Hub de Bioinformatique et Biostatistique, Institut Pasteur, Paris, France
| | - Saorin Kim
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Siv Sovannaroth
- National Centre for Parasitology Entomology and Malaria Control (CNM), Phnom Penh, Cambodia
| | - Ivo Mueller
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Benoit Witkowski
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Amélie Vantaux
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Marc Souris
- UMR Unité des Virus Emergents, UVE: Aix-Marseille Univ–IRD 190–Inserm 1207–IHU 5 Méditerranée Infection, Marseille, France
| |
Collapse
|
45
|
Niraula P, Mateu J, Chaudhuri S. A Bayesian machine learning approach for spatio-temporal prediction of COVID-19 cases. STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT : RESEARCH JOURNAL 2022; 36:2265-2283. [PMID: 35095341 PMCID: PMC8787453 DOI: 10.1007/s00477-021-02168-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/30/2021] [Indexed: 05/11/2023]
Abstract
Modeling the spread of infectious diseases in space and time needs to take care of complex dependencies and uncertainties. Machine learning methods, and neural networks, in particular, are useful in modeling this sort of complex problems, although they generally lack of probabilistic interpretations. We propose a neural network method embedded in a Bayesian framework for modeling and predicting the number of cases of infectious diseases in areal units. A key feature is that our combined model considers the impact of human movement on the spread of the infectious disease, as an additional random factor to the also considered spatial neighborhood and temporal correlation components. Our model is evaluated over a COVID-19 dataset for 245 health zones of Castilla-Leon (Spain). The results show that a Bayesian model informed by a neural network method is generally able to predict the number of cases of COVID-19 in both space and time, with the human mobility factor having a strong influence on the model, together with the number of infections and deaths in nearby areas.
Collapse
Affiliation(s)
- Poshan Niraula
- Department of Mathematics, University of Jaume I, Castellón, Spain
| | - Jorge Mateu
- Department of Mathematics, University of Jaume I, Castellón, Spain
| | - Somnath Chaudhuri
- Department of Mathematics, University of Jaume I, Castellón, Spain
- Research Group on Statistics, Econometrics and Health (GRECS), University of Girona, Girona, Spain
| |
Collapse
|
46
|
Ponte C, Carmona HA, Oliveira EA, Caminha C, Lima AS, Andrade JS, Furtado V. Tracing contacts to evaluate the transmission of COVID-19 from highly exposed individuals in public transportation. Sci Rep 2021; 11:24443. [PMID: 34961776 PMCID: PMC8712527 DOI: 10.1038/s41598-021-03998-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 12/06/2021] [Indexed: 11/18/2022] Open
Abstract
We investigate, through a data-driven contact tracing model, the transmission of COVID-19 inside buses during distinct phases of the pandemic in a large Brazilian city. From this microscopic approach, we recover the networks of close contacts within consecutive time windows. A longitudinal comparison is then performed by upscaling the traced contacts with the transmission computed from a mean-field compartmental model for the entire city. Our results show that the effective reproduction numbers inside the buses, [Formula: see text], and in the city, [Formula: see text], followed a compatible behavior during the first wave of the local outbreak. Moreover, by distinguishing the close contacts of healthcare workers in the buses, we discovered that their transmission, [Formula: see text], during the same period, was systematically higher than [Formula: see text]. This result reinforces the need for special public transportation policies for highly exposed groups of people.
Collapse
Affiliation(s)
- Caio Ponte
- Programa de Pós Graduação em Informática Aplicada, Universidade de Fortaleza, Fortaleza, Ceará, 60811-905, Brasil
| | - Humberto A Carmona
- Departamento de Física, Universidade Federal do Ceará, Fortaleza, Ceará, 60455-760, Brasil
| | - Erneson A Oliveira
- Programa de Pós Graduação em Informática Aplicada, Universidade de Fortaleza, Fortaleza, Ceará, 60811-905, Brasil.
- Laboratório de Ciência de Dados e Inteligência Artificial, Universidade de Fortaleza, Fortaleza, Ceará, 60811-905, Brasil.
- Mestrado Profissional em Ciências da Cidade, Universidade de Fortaleza, Fortaleza, Ceará, 60811-905, Brasil.
| | - Carlos Caminha
- Programa de Pós Graduação em Informática Aplicada, Universidade de Fortaleza, Fortaleza, Ceará, 60811-905, Brasil
| | - Antonio S Lima
- Célula de Vigilância Epidemiológica, Secretaria Municipal da Saúde, Fortaleza, Ceará, 60810-670, Brasil
- Centro de Ciências da Saúde, Universidade de Fortaleza, Fortaleza, Ceará, 60811-905, Brasil
| | - José S Andrade
- Departamento de Física, Universidade Federal do Ceará, Fortaleza, Ceará, 60455-760, Brasil
| | - Vasco Furtado
- Programa de Pós Graduação em Informática Aplicada, Universidade de Fortaleza, Fortaleza, Ceará, 60811-905, Brasil
- Empresa de Tecnologia da Informação do Ceará, Governo do Estado do Ceará, Fortaleza, Ceará, 60130-240, Brasil
| |
Collapse
|
47
|
Sang S, Liu Q, Guo X, Wu D, Ke C, Liu-Helmersson J, Jiang J, Weng Y, Wang Y. The epidemiological characteristics of dengue in high-risk areas of China, 2013-2016. PLoS Negl Trop Dis 2021; 15:e0009970. [PMID: 34928951 PMCID: PMC8687583 DOI: 10.1371/journal.pntd.0009970] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 11/03/2021] [Indexed: 11/30/2022] Open
Abstract
Introduction Dengue has become a more serious human health concern in China, with increased incidence and expanded outbreak regions. The knowledge of the cross-sectional and longitudinal epidemiological characteristics and the evolutionary dynamics of dengue in high-risk areas of China is limited. Methods Records of dengue cases from 2013 to 2016 were obtained from the China Notifiable Disease Surveillance System. Full envelope gene sequences of dengue viruses detected from the high-risk areas of China were collected. Maximum Likelihood tree and haplotype network analyses were conducted to explore the phylogenetic relationship of viruses from high-risk areas of China. Results A total of 56,520 cases was reported in China from 2013 to 2016. During this time, Yunnan, Guangdong and Fujian provinces were the high-risk areas. Imported cases occurred almost year-round, and were mainly introduced from Southeast Asia. The first indigenous case usually occurred in June to August, and the last one occurred before December in Yunnan and Fujian provinces but in December in Guangdong Province. Seven genotypes of DENV 1–3 were detected in the high-risk areas, with DENV 1-I the main genotype and DENV 2-Cosmopolitan the secondary one. The Maximum Likelihood trees show that almost all the indigenous viruses separated into different clusters. DENV 1-I viruses were found to be clustered in Guangdong Province, but not in Fujian and Yunnan, from 2013 to 2015. The ancestors of the Guangdong viruses in the cluster in 2013 and 2014 were most closely related to strains from Thailand or Singapore, and the Guangdong virus in 2015 was most closely related to the Guangdong virus of 2014. Based on closest phylogenetic relationships, viruses from Myanmar possibly initiated further indigenous cases in Yunnan, those from Indonesia in Fujian, while viruses from Thailand, Malaysia, Singapore and Indonesia were predominant in Guangdong Province. Conclusions Dengue is still an imported disease in China, although some genotypes continued to circulate in successive years. Viral phylogenies based on the envelope gene suggested periodic introductions of dengue strains into China, primarily from Southeast Asia, with occasional sustained, multi-year transmission in some regions of China. Dengue is the most prevalent and rapidly spreading mosquito-borne viral disease globally. Because of the multiple introductions, dengue outbreaks occurred in epidemic seasons in Southern China, supported by suitable weather conditions. Surveillance data from 2013 to 2016 in China showed that Guangdong, Yunnan and Fujian provinces were the high-risk areas, with dengue outbreaks occurring almost every year. However, knowledge has been lacking of the epidemiological characteristics and the evolution pattern of dengue virus in these high-risk areas. This study shows a variety of epidemiological characteristics and sources of imported cases among the high-risk areas in China, with likely origins primarily from countries in Southeast Asia. Seven genotypes of the DENV 1–3 variety co-circulated with DENV1-I, the main genotype, and DENV 2-Cosmopolitan, the secondary. Genetic relationships among viral strains suggest that the indigenous viruses in the high-risk areas arose from imported viruses and sometimes persisted between years into the next epidemic season, especially in Guangdong Province. Population movement has played a vital role in dengue epidemics in China. This information may be useful in dengue control, especially during epidemic seasons and in the development of an early warning system within the region, in collaboration with bordering countries.
Collapse
Affiliation(s)
- Shaowei Sang
- Clinical Epidemiology Unit, Qilu Hospital of Shandong University, Jinan, Shandong, People’s Republic of China
- Clinical Research Center of Shandong University, Jinan, Shandong, People’s Republic of China
- Department of Epidemiology and Health Statistics, School of Public Health, Shandong University, Jinan, Shandong, People’s Republic of China
- * E-mail:
| | - Qiyong Liu
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Changping, Beijing, People’s Republic of China
| | - Xiaofang Guo
- Yunnan Provincial Center of Arborvirus Research, Yunnan Provincial Key Laboratory of Vector-borne Diseases Control and Research, Yunnan Institute of Parasitic Diseases, Pu’er, Yunnan, People’s Republic of China
| | - De Wu
- Institute of Microbiology, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, People’s Republic of China
| | - Changwen Ke
- Institute of Microbiology, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong, People’s Republic of China
| | | | - Jinyong Jiang
- Yunnan Provincial Center of Arborvirus Research, Yunnan Provincial Key Laboratory of Vector-borne Diseases Control and Research, Yunnan Institute of Parasitic Diseases, Pu’er, Yunnan, People’s Republic of China
| | - Yuwei Weng
- Fujian center for disease control and prevention, Fuzhou, People’s Republic of China
| | - Yiguan Wang
- School of Biological Sciences, University of Queensland, St Lucia, Australia
| |
Collapse
|
48
|
House-Level Risk Factors for Aedes aegypti Infestation in the Urban Center of Castilla la Nueva, Meta State, Colombia. J Trop Med 2021; 2021:8483236. [PMID: 34725551 PMCID: PMC8557085 DOI: 10.1155/2021/8483236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 10/12/2021] [Indexed: 11/18/2022] Open
Abstract
Aedes aegypti is the main vector of the dengue virus in Colombia. Some factors have been associated with its presence; however, in the local context, it has not been sufficiently evaluated. The present study seeks to identify the socioeconomic, environmental, and behavioral factors associated with the presence and abundance of A. aegypti in urban dwellings in the municipality of Castilla la Nueva. A cross-sectional cohort study was conducted in houses in the urban area of the municipality of Castilla la Nueva, where 307 houses were sampled by systematic random sampling during May 2018. A multifactorial survey was used to measure the socioeconomic, environmental, and behavioral factors as explanatory variables. The infestation and relative abundance were established by the presence of larval stages and ovitraps. The associated factors for the presence and abundance of A. aegypti were identified using negative binomial and logistic regression models. A positive housing infestation of 33.2% was identified by direct inspection and 78.5% with ovitraps. The main factors positively associated with the presence and abundance of A. aegypti were one-story homes (PR = 2.26; 95% CI: 1.31-3.87), the storage of water for domestic use (PR = 1.91; 95% CI: 1.18-3.09), and local conditions such as disorganized backyard (PR = 79.95; 95% CI: 10.96-583.24) and the proportion of shade greater than 50% of the backyard (PR = 62.32; 95% CI: 6.47-600.32). And, it is negatively associated with residential gas service (PR = 0.3; 95% CI: 0.16-0.58) and self-administered internal fumigation (PR = 0.37; 95% CI: 0.2-0.69). The presence and abundance of A. aegypti were explained by interrelated socioeconomic, environmental, and behavioral factors where local conditions and habits such as the organization of the patio, knowledge about vector biology, and cleaning containers are identified as main topics for future prevention strategies for the transmission of dengue in the local and national context.
Collapse
|
49
|
Cuenca PR, Key S, Jumail A, Surendra H, Ferguson HM, Drakeley CJ, Fornace K. Epidemiology of the zoonotic malaria Plasmodium knowlesi in changing landscapes. ADVANCES IN PARASITOLOGY 2021; 113:225-286. [PMID: 34620384 DOI: 10.1016/bs.apar.2021.08.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Within the past two decades, incidence of human cases of the zoonotic malaria Plasmodium knowlesi has increased markedly. P. knowlesi is now the most common cause of human malaria in Malaysia and threatens to undermine malaria control programmes across Southeast Asia. The emergence of zoonotic malaria corresponds to a period of rapid deforestation within this region. These environmental changes impact the distribution and behaviour of the simian hosts, mosquito vector species and human populations, creating new opportunities for P. knowlesi transmission. Here, we review how landscape changes can drive zoonotic disease emergence, examine the extent and causes of these changes across Southeast and identify how these mechanisms may be impacting P. knowlesi dynamics. We review the current spatial epidemiology of reported P. knowlesi infections in people and assess how these demographic and environmental changes may lead to changes in transmission patterns. Finally, we identify opportunities to improve P. knowlesi surveillance and develop targeted ecological interventions within these landscapes.
Collapse
Affiliation(s)
- Pablo Ruiz Cuenca
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Stephanie Key
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | | - Henry Surendra
- Eijkman-Oxford Clinical Research Unit, Jakarta, Indonesia; Centre for Tropical Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Heather M Ferguson
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Chris J Drakeley
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Kimberly Fornace
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom; Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, Scotland, United Kingdom.
| |
Collapse
|
50
|
Yuan B, Lee H, Nishiura H. Analysis of international traveler mobility patterns in Tokyo to identify geographic foci of dengue fever risk. Theor Biol Med Model 2021; 18:17. [PMID: 34602095 PMCID: PMC8487561 DOI: 10.1186/s12976-021-00149-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/21/2021] [Indexed: 11/10/2022] Open
Abstract
Travelers play a role in triggering epidemics of imported dengue fever because they can carry the virus to other countries during the incubation period. If a traveler carrying dengue virus visits open green space and is bitten by mosquitoes, a local outbreak can ensue. In the present study, we aimed to understand the movement patterns of international travelers in Tokyo using mobile phone data, with the goal of identifying geographical foci of dengue transmission. We analyzed datasets based on mobile phone access to WiFi systems and measured the spatial distribution of international visitors in Tokyo on two specific dates (one weekday in July 2017 and another weekday in August 2017). Mobile phone users were classified by nationality into three groups according to risk of dengue transmission. Sixteen national parks were selected based on their involvement in a 2014 dengue outbreak and abundance of Aedes mosquitoes. We found that not all national parks were visited by international travelers and that visits to cemeteries were very infrequent. We also found that travelers from countries with high dengue prevalence were less likely to visit national parks compared with travelers from dengue-free countries. Travelers from countries with sporadic dengue cases and countries with regional transmission tended to visit common destinations. By contrast, the travel footprints of visitors from countries with continuous dengue transmission were focused on non-green spaces. Entomological surveillance in Tokyo has been restricted to national parks since the 2014 dengue outbreak. However, our results indicate that areas subject to surveillance should include both public and private green spaces near tourist sites.
Collapse
Affiliation(s)
- Baoyin Yuan
- Graduate School of Medicine, Hokkaido University, Kita 15 Jo Nishi 7 Chome, Kita-ku, Sapporo-shi, Hokkaido, 060-8638, Japan.,CREST, Japan Science and Technology Agency, Honcho 4-1-8, Kawaguchi, Saitama, 332-0012, Japan.,School of Mathematics, South China University of Technology, 381 Wushan Rd, Tianhe District, Guangzhou, China
| | - Hyojung Lee
- Graduate School of Medicine, Hokkaido University, Kita 15 Jo Nishi 7 Chome, Kita-ku, Sapporo-shi, Hokkaido, 060-8638, Japan.,CREST, Japan Science and Technology Agency, Honcho 4-1-8, Kawaguchi, Saitama, 332-0012, Japan.,Department of Statistics, Kyungpook National University, Daegu, 41566, South Korea
| | - Hiroshi Nishiura
- Graduate School of Medicine, Hokkaido University, Kita 15 Jo Nishi 7 Chome, Kita-ku, Sapporo-shi, Hokkaido, 060-8638, Japan. .,CREST, Japan Science and Technology Agency, Honcho 4-1-8, Kawaguchi, Saitama, 332-0012, Japan. .,Kyoto University School of Public Health, Yoshidakonoecho, Sakyoku, Kyoto, 6068501, Japan.
| |
Collapse
|