1
|
Monack D, Butler D, Di Luccia B, Vilches-Moure J. Eosinophils Enhance Granuloma-Mediated Control of Persistent Salmonella Infection. RESEARCH SQUARE 2025:rs.3.rs-5610725. [PMID: 39801515 PMCID: PMC11722553 DOI: 10.21203/rs.3.rs-5610725/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/21/2025]
Abstract
Salmonella enterica can persist asymptomatically within tissues for extended periods. This remarkable feat is achieved through intricate host-pathogen interactions in immune cell aggregates called granulomas, wherein Salmonella find favorable cellular niches to exploit while the host limits its expansion and tissue dissemination. Here, using a mouse model of persistent Salmonella infection, we identify a host-protective role of eosinophils in control of Salmonella Typhimurium (STm) infection within the mesenteric lymph nodes (MLN), the main lymphoid tissue of STm persistence. Combining spatial transcriptomics and experimental manipulations, we found that macrophages responding to STm infection recruited eosinophils in a C-C motif chemokine ligand 11 (CCL11)-dependent manner and enhanced their activation. Eosinophil deficiencies increased Salmonella burdens, which was associated with altered granuloma size and impaired type-1 immunity in the MLN. Thus, eosinophils play a vital role in restraining Salmonella exploitation of granuloma macrophages at a key site of bacterial persistence.
Collapse
|
2
|
Xie L, Zhang H, Xu L. The Role of Eosinophils in Liver Disease. Cell Mol Gastroenterol Hepatol 2024; 19:101413. [PMID: 39349246 PMCID: PMC11719855 DOI: 10.1016/j.jcmgh.2024.101413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/20/2024] [Accepted: 09/23/2024] [Indexed: 10/02/2024]
Abstract
Previously, eosinophils were primarily regarded as effector toxic cells involved in allergic diseases and parasitic infections. Nevertheless, new research has shown that eosinophils are diverse and essential for immune regulation and tissue homeostasis. Their functional plasticity has been observed in patients with inflammatory diseases, cancer, infections, and other disorders. Although eosinophils are infrequently observed within the liver during periods of homeostasis, they are recruited to the liver in various liver diseases, including liver parasitosis, acute liver injury, autoimmune liver disease, and hepatocellular carcinoma. Furthermore, eosinophils have demonstrated the capacity to promote liver regeneration. This article explores the multifaceted roles of eosinophils in liver diseases, aiming to provide insights that could lead to more effective clinical therapies for these conditions.
Collapse
Affiliation(s)
- Linxi Xie
- School of Basic Medical Science, Anhui Medical University, Hefei, Anhui, China
| | - Hejiao Zhang
- Department of Gastroenterology, the First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Long Xu
- School of Basic Medical Science, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
3
|
Ren J, Zhuo Y, He F, Lv L, Xing M, Guo Y, Zhang Y, Liu J, Li Y, Bai T, Chen Y, Li G, Qin Z, Zhou D. Longitudinal Immune Profiling Highlights CD4+ T Cell Exhaustion Correlated with Liver Fibrosis in Schistosoma japonicum Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:82-95. [PMID: 36445332 DOI: 10.4049/jimmunol.2200301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 11/01/2022] [Indexed: 12/24/2022]
Abstract
Schistosomiasis remains an important public health concern. The eggs deposited in livers invoke a Th2-dominant response, which mediates the fibrotic granulomatous response. However, the mechanisms involved in this immunopathological process are still not perfectly clear. Here, we report a single-cell transcriptional landscape of longitudinally collected BALB/c mouse splenocytes at different time points after Schistosoma japonicum infection. We found that exhausted CD4+ T cells were enriched after infection, changing from coproducing multiple cytokines to predominantly producing the Th2 cytokine IL-4. Regulatory B cells had high expression of Fcrl5, Ptpn22, and Lgals1, potentially regulating exhausted CD4+ T cells via direct PD-1-PD-L2 and PD-1-PD-L1 interactions. Within the myeloid compartment, the number of precursor and immature neutrophils sharply increased after infection. Moreover, dendritic cells, macrophages, and basophils showed inhibitory interactions with exhausted CD4+ T cells. Besides, in mouse livers, we found that exhausted CD4+ T cells were distributed around egg granuloma, promoting collagen expression in primary mouse hepatic stellate cells via IL-4 secretion, resulting in liver fibrosis. Our study provides comprehensive characterization of the composition and cellular states of immune cells with disease progression, which will facilitate better understanding of the mechanism underlying liver fibrotic granulomatous response in schistosomiasis.
Collapse
Affiliation(s)
- Jiling Ren
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yue Zhuo
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Furong He
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Lihui Lv
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Man Xing
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yingying Guo
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yuchao Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.,School of Life Science, Fudan University, Shanghai, China
| | - Jiaojiao Liu
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Ying Li
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Tinghui Bai
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yanan Chen
- School of Medicine, Nankai University, Tianjin, China
| | - Guangru Li
- School of Medicine, Nankai University, Tianjin, China
| | - Zhiqiang Qin
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Centre for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, China
| | - Dongming Zhou
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
4
|
Zhang S, Lu S, Li Z. Extrahepatic factors in hepatic immune regulation. Front Immunol 2022; 13:941721. [PMID: 36052075 PMCID: PMC9427192 DOI: 10.3389/fimmu.2022.941721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
The liver is a site of complex immune activity. The hepatic immune system tolerates harmless immunogenic loads in homeostasis status, shelters liver function, while maintaining vigilance against possible infectious agents or tissue damage and providing immune surveillance at the same time. Activation of the hepatic immunity is initiated by a diverse repertoire of hepatic resident immune cells as well as non-hematopoietic cells, which can sense "danger signals" and trigger robust immune response. Factors that mediate the regulation of hepatic immunity are elicited not only in liver, but also in other organs, given the dual blood supply of the liver via both portal vein blood and arterial blood. Emerging evidence indicates that inter-organ crosstalk between the liver and other organs such as spleen, gut, lung, adipose tissue, and brain is involved in the pathogenesis of liver diseases. In this review, we present the features of hepatic immune regulation, with particular attention to the correlation with factors from extrahepatic organ. We describe the mechanisms by which other organs establish an immune association with the liver and then modulate the hepatic immune response. We discuss their roles and distinct mechanisms in liver homeostasis and pathological conditions from the cellular and molecular perspective, highlighting their potential for liver disease intervention. Moreover, we review the available animal models and methods for revealing the regulatory mechanisms of these extrahepatic factors. With the increasing understanding of the mechanisms by which extrahepatic factors regulate liver immunity, we believe that this will provide promising targets for liver disease therapy.
Collapse
Affiliation(s)
- Shaoying Zhang
- National-Local Joint Engineering Research Center of Biodiagnosis & Biotherapy, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
- Shaanxi Provincial Clinical Medical Research Center for Liver and Spleen Diseases, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
- Shaanxi International Cooperation Base for Inflammation and Immunity, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| | - Shemin Lu
- National-Local Joint Engineering Research Center of Biodiagnosis & Biotherapy, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
- Shaanxi International Cooperation Base for Inflammation and Immunity, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an, China
| | - Zongfang Li
- National-Local Joint Engineering Research Center of Biodiagnosis & Biotherapy, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
- Shaanxi Provincial Clinical Medical Research Center for Liver and Spleen Diseases, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
- Shaanxi International Cooperation Base for Inflammation and Immunity, The Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
5
|
Costain AH, Phythian-Adams AT, Colombo SAP, Marley AK, Owusu C, Cook PC, Brown SL, Webb LM, Lundie RJ, Borger JG, Smits HH, Berriman M, MacDonald AS. Dynamics of Host Immune Response Development During Schistosoma mansoni Infection. Front Immunol 2022; 13:906338. [PMID: 35958580 PMCID: PMC9362740 DOI: 10.3389/fimmu.2022.906338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/23/2022] [Indexed: 12/27/2022] Open
Abstract
Schistosomiasis is a disease of global significance, with severity and pathology directly related to how the host responds to infection. The immunological narrative of schistosomiasis has been constructed through decades of study, with researchers often focussing on isolated time points, cell types and tissue sites of interest. However, the field currently lacks a comprehensive and up-to-date understanding of the immune trajectory of schistosomiasis over infection and across multiple tissue sites. We have defined schistosome-elicited immune responses at several distinct stages of the parasite lifecycle, in three tissue sites affected by infection: the liver, spleen, and mesenteric lymph nodes. Additionally, by performing RNA-seq on the livers of schistosome infected mice, we have generated novel transcriptomic insight into the development of schistosome-associated liver pathology and fibrosis across the breadth of infection. Through depletion of CD11c+ cells during peak stages of schistosome-driven inflammation, we have revealed a critical role for CD11c+ cells in the co-ordination and regulation of Th2 inflammation during infection. Our data provide an updated and high-resolution account of how host immune responses evolve over the course of murine schistosomiasis, underscoring the significance of CD11c+ cells in dictating host immunopathology against this important helminth infection.
Collapse
Affiliation(s)
- Alice H. Costain
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Stefano A. P. Colombo
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Angela K. Marley
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Christian Owusu
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Peter C. Cook
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Sheila L. Brown
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| | - Lauren M. Webb
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
- Department of Immunology, University of Washington, Seattle, WA, United States
| | | | | | - Hermelijn H. Smits
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Matthew Berriman
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, United Kingdom
| | - Andrew S. MacDonald
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
6
|
Gobert GN, McManus DP, McMullan G, Creevey CJ, Carson J, Jones MK, Nawaratna SSK, Weerakoon KG, You H. Adult schistosomes have an epithelial bacterial population distinct from the surrounding mammalian host blood. PLoS One 2022; 17:e0263188. [PMID: 35085360 PMCID: PMC8794206 DOI: 10.1371/journal.pone.0263188] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 01/13/2022] [Indexed: 02/06/2023] Open
Abstract
Background
Schistosomiasis is a neglected tropical parasitic and chronic disease affecting hundreds of millions of people. Adult schistosomes reside in the blood stream of the definitive mammalian host. These helminth parasites possess two epithelial surfaces, the tegument and the gastrodermis, both of which interact with the host during immune evasion and in nutrient uptake.
Methods
Female ARC Swiss mice (4–6 weeks old) were infected percutaneously with Schistosoma japonicum cercariae freshly shed from Oncomelania hupensis quadrasi snails (Philippines strain). Fluorescent in situ hybridisation (FISH) was performed by using fresh adult S. japonicum perfused from those infected mice. Adult S. japonicum worms were processed to isolate the tegument from the carcass containing the gastrodermis; blood and bile were collected individually from infected and uninfected mice. Total DNA extracted from all those samples were used for microbiome profiling.
Results
FISH and microbiome profiling showed the presence of bacterial populations on two epithelial surfaces of adult worms, suggesting they were distinct not only from the host blood but also from each other. Whereas microbial diversity was reduced overall in the parasite epithelial tissues when compared with that of host blood, specific bacterial taxa, including Anoxybacillus and Escherichia, were elevated on the tegument. Minimal differences were evident in the microbiome of host blood during an active infection, compared with that of control uninfected blood. However, sampling of bile from infected animals identified some differences compared with controls, including elevated levels of Limnohabitans, Clostridium and Curvibacter.
Conclusions
Using FISH and microbial profiling, we were able to demonstrate, for the first time, that bacteria are presented on the epithelial surfaces of adult schistosomes. These schistosome surface-associated bacteria, which are distinct from the host blood microenvironment, should be considered as a new and important component of the host-schistosome interaction. The importance of individual bacterial species in relation to schistosome parasitism needs further elucidation.
Collapse
Affiliation(s)
- Geoffrey N. Gobert
- School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
- * E-mail: (HY); (GNG)
| | - Donald P. McManus
- Molecular Parasitology Laboratory, Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Geoff McMullan
- School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | | | - Jack Carson
- School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Malcolm K. Jones
- School of Veterinary Science, University of Queensland, Brisbane, Queensland, Australia
| | - Sujeevi S. K. Nawaratna
- Molecular Parasitology Laboratory, Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- School of Medicine, Griffith University, Gold Coast, Australia
| | - Kosala G. Weerakoon
- Molecular Parasitology Laboratory, Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Department of Parasitology, Faculty of Medicine and Allied Sciences, Rajarata University of Sri Lanka, Saliyapura, Sri Lanka
| | - Hong You
- Molecular Parasitology Laboratory, Immunology Department, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- * E-mail: (HY); (GNG)
| |
Collapse
|
7
|
Namulondo J, Mulindwa J, Nyangiri OA, Egesa M, Noyes H, Matovu E. Gene expression changes in mammalian hosts during schistosomiasis: a review. AAS Open Res 2021. [DOI: 10.12688/aasopenres.13312.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Schistosomiasis affects over 250 million people worldwide with an estimated mortality of more than 200,000 deaths per year in sub-Saharan Africa. Efforts to control schistosomiasis in the affected areas have mainly relied on mass administration of praziquantel, which kills adult but not immature worms of all Schistosoma species. Mammalian hosts respond differently to Schistosoma infection with some being more susceptible than others, which is associated with risk factors such as sociodemographic, epidemiological, immunological and/or genetic. Host genetic factors play a major role in influencing molecular processes in response to schistosomiasis as shown in gene expression studies. These studies highlight gene profiles expressed at different time points of infection using model animals. Immune function related genes; cytokines (Th1 and Th17) are upregulated earlier in infection and Th2 upregulated later indicating a mixed Th1/Th2 response. However, Th1 response has been shown to be sustained in S. japonicum infection. Immune mediators such as matrix metalloproteinases (Mmps) and tissue inhibitors of matrix metalloproteinases (Timps) are expressed later in the infection and these are linked to wound healing and fibrosis. Downregulation of metabolic associated genes is recorded in later stages of infection. Most mammalian host gene expression studies have been done using rodent models, with fewer in larger hosts such as bovines and humans. The majority of these studies have focused on S. japonicum infections and less on S. haematobium and S. mansoni infections (the two species that cause most global infections). The few human schistosomiasis gene expression studies so far have focused on S. japonicum and S. haematobium infections and none on S. mansoni, as far as we are aware. This highlights a paucity of gene expression data in humans, specifically with S. mansoni infection. This data is important to understand the disease pathology, identify biomarkers, diagnostics and possible drug targets.
Collapse
|
8
|
Shen H, Wang Z, Huang A, Zhu D, Sun P, Duan Y. Lipocalin 2 Is a Regulator During Macrophage Polarization Induced by Soluble Worm Antigens. Front Cell Infect Microbiol 2021; 11:747135. [PMID: 34616693 PMCID: PMC8489661 DOI: 10.3389/fcimb.2021.747135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 08/25/2021] [Indexed: 11/13/2022] Open
Abstract
Caused by schistosomes, the human schistosomiasis is a tropical zoonotic parasitic disease. Pathologically, it occurs most often in the intestines and the liver, the sites of Schistosoma japonicum egg accumulation. The parasites' produced eggs cause the main pathology in patients. Deposited parasite eggs in the liver induce the production of multiple cytokines that mediate the immune response, which in turn leads to granulomatous responses and liver fibrosis. These impact the hosts' quality of life and health status, resulting in severe morbidity and even mortality. In this study, differentially expressed genes (DEGs) between ordinary samples and three 6- week infected mice were mined from microarray analysis based on the limma package. In total, we excavated the differential expression LCN2 was exhibited high expressions profile in GSE59276, GSE61376 demonstrated the result. Furthermore, CIBERSORT suggested detailed analysis of the immune subtype distribution pattern. In vivo experiments like real-time quantitative PCR, immunohistochemical (IHC) staining, and immunofluorescence (IF) demonstrated the expressions of LCN2 was significantly upregulated in S. japonicum-infected mice liver tissues and located in macrophages. Previous studies have shown that macrophages act as the first line of defense during schistosome infection and are an important part of liver granuloma. We used S. japonicum soluble worm antigens (SWA) to induce RAW264.7 cells to construct an in vitro inflammatory model. The current study aimed to investigate whether the NF-κB signaling network is involved in LCN2 upregulation induced by SWA and whether LCN2 can promote M1 polarization of macrophages under SWA treatment. Our research work suggests that LCN2 is significant in the development of early infection caused by S. japonicum and is of great value for further exploration. Collectively, the findings indicated that SWA promoted the expression of LCN2 and promoted M1 polarization of macrophages via the upregulation of NF-κB signaling pathway. Our findings demonstrate that NF-κB/LCN2 is necessary for migration and phagocytosis of M1 macrophages in response to SWA infection. Our study highlights the essential role of NF-κB/LCN2 in early innate immune response to infection.
Collapse
Affiliation(s)
- Hanyu Shen
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, China
| | - Ziheng Wang
- Department of Clinical Biobank, Affiliated Hospital of Nantong University, Nantong, China
| | - Ailong Huang
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, China
| | - Dandan Zhu
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, China
| | - Pingping Sun
- Department of Clinical Biobank, Affiliated Hospital of Nantong University, Nantong, China
| | - Yinong Duan
- Department of Pathogen Biology, School of Medicine, Nantong University, Nantong, China
| |
Collapse
|
9
|
Ho CH, Cheng CH, Huang TW, Peng SY, Lee KM, Cheng PC. Switched phenotypes of macrophages during the different stages of Schistosoma japonicum infection influenced the subsequent trends of immune responses. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2021; 55:503-526. [PMID: 34330662 DOI: 10.1016/j.jmii.2021.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 05/28/2021] [Accepted: 06/24/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Macrophages play crucial roles in immune responses during the course of schistosomal infections. METHODS We currently investigated influence of immunocompetent changes in macrophages via microarray-based analysis, mRNA expression analysis, detection of serum cytokines, and subsequent evaluation of the immune phenotypes following the differentiation of infection-induced lymphocytes in a unique T1/T2 double-transgenic mouse model. RESULTS The gradual upregulation of genes encoding YM1, YM2, and interleukin (IL)-4/IL-13 receptors in infected mice indicated the role of type 2 alternatively activated macrophages (M2, AAMφs) in immune responses after Schistosoma japonicum egg production. FACS analysis showed that surface markers MHC class II (IA/IE) and CD8α+ of the macrophages also exhibited a dramatic change at the various time points before and after egg-production. The transgenic mouse experiments further demonstrated that the shifting of macrophage phenotypes influenced the percentage of helper T (Th)-2 cells, which was observed to be higher than that of Th1 cells, which increased only at 3 and 5 weeks post-infection. The differentiation of effector B cells showed a similar but more significant trend toward type-2 immunity. CONCLUSION These results suggest that the infection of mice with S. japonicum resulted in a final Th2- and Be2-skewed immune response. This may be due to phenotypic changes in the macrophages. The influence of alternatively activated macrophages was also activated by S. japonicum egg production. This study elucidated the existence of variations in immune mechanisms at the schistosome infection stages.
Collapse
Affiliation(s)
- Chen-Hsun Ho
- Division of Urology, Department of Surgery, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan; School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Chia-Hsiung Cheng
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Tzu-Wen Huang
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shih-Yi Peng
- Department of Biochemistry, College of Medicine, Tzu Chi University, Hualien, Taiwan.
| | - Kin-Mu Lee
- School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Po-Ching Cheng
- Department of Molecular Parasitology and Tropical Diseases, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Center for International Tropical Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
10
|
Labuda LA, Adegnika AA, Rosa BA, Martin J, Ateba-Ngoa U, Amoah AS, Lima HM, Meurs L, Mbow M, Manurung MD, Zinsou JF, Smits HH, Kremsner PG, Mitreva M, Yazdanbakhsh M. A Praziquantel Treatment Study of Immune and Transcriptome Profiles in Schistosoma haematobium-Infected Gabonese Schoolchildren. J Infect Dis 2021; 222:2103-2113. [PMID: 31844885 PMCID: PMC7661769 DOI: 10.1093/infdis/jiz641] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 12/15/2019] [Indexed: 12/13/2022] Open
Abstract
Background Although Schistosoma haematobium infection has been reported to be associated with alterations in immune function, in particular immune hyporesponsiveness, there have been only few studies that have used the approach of removing infection by drug treatment to establish this and to understand the underlying molecular mechanisms. Methods Schistosoma haematobium-infected schoolchildren were studied before and after praziquantel treatment and compared with uninfected controls. Cellular responses were characterized by cytokine production and flow cytometry, and in a subset of children RNA sequencing (RNA-Seq) transcriptome profiling was performed. Results Removal of S haematobium infection resulted in increased schistosome-specific cytokine responses that were negatively associated with CD4+CD25+FOXP3+ T-cells and accompanied by increased frequency of effector memory T-cells. Innate responses to Toll like receptor (TLR) ligation decreased with treatment and showed positive association with CD4+CD25+FOXP3+ T-cells. At the transcriptome level, schistosome infection was associated with enrichment in cell adhesion, whereas parasite removal was associated with a more quiescent profile. Further analysis indicated that alteration in cellular energy metabolism was associated with S haematobium infection and that the early growth response genes 2 and 3 (EGR 2 and EGR3), transcription factors that negatively regulate T-cell activation, may play a role in adaptive immune hyporesponsiveness. Conclusions Using a longitudinal study design, we found contrasting effects of schistosome infection on innate and adaptive immune responses. Whereas the innate immune system appears more activated, the adaptive immunity is in a hyporesponsive state reflected in alterations in CD4+CD25+FOXP3+ T-cells, cellular metabolism, and transcription factors involved in anergy.
Collapse
Affiliation(s)
- Lucja A Labuda
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands.,Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon.,Institut für Tropenmedizin, Universität Tübingen, Tübingen, Germany
| | - Ayola A Adegnika
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands.,Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon.,Institut für Tropenmedizin, Universität Tübingen, Tübingen, Germany
| | - Bruce A Rosa
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, Missouri, USA
| | - John Martin
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Ulysse Ateba-Ngoa
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands.,Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon.,Institut für Tropenmedizin, Universität Tübingen, Tübingen, Germany
| | - Abena Serwaa Amoah
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands.,Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
| | - Honorine Mbenkep Lima
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands.,Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon.,Institut für Tropenmedizin, Universität Tübingen, Tübingen, Germany
| | - Lynn Meurs
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Moustapha Mbow
- Service d'Immunologie du Département de Pharmacie, FMPO, Université Cheikh Anta Diop, Fann- Dakar, Sénégal
| | - Mikhael D Manurung
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jeannot F Zinsou
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon
| | - Hermelijn H Smits
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Peter G Kremsner
- Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon.,Institut für Tropenmedizin, Universität Tübingen, Tübingen, Germany
| | - Makedonka Mitreva
- McDonnell Genome Institute, Washington University in St. Louis, St. Louis, Missouri, USA.,Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Maria Yazdanbakhsh
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
11
|
Liao J, Zhang Z, Yuan Q, Liu Q, Kuang J, Fang Y, Hu X. A lncRNA Gpr137b-ps/miR-200a-3p/CXCL14 axis modulates hepatic stellate cell (HSC) activation. Toxicol Lett 2021; 336:21-31. [PMID: 33069761 DOI: 10.1016/j.toxlet.2020.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 08/31/2020] [Accepted: 10/02/2020] [Indexed: 01/08/2023]
Abstract
Hepatic fibrosis is the wound healing response upon the liver tissue damage caused by multiple stimuli. Targeting activated hepatic stellate cells (HSCs), the major extracellular matrix (ECM)-producing cells within the damaged liver, has been regarded as one of the main treatments for hepatic fibrosis. In the present study, we performed preliminary bioinformatics analysis attempting to identify possible factors related to hepatic fibrosis and found that lncRNA G protein-coupled receptor 137B (Gpr137b-ps) and C-X-C motif chemokine ligand 14 (CXCL14) showed to be markedly upregulated within carbon tetrachloride (CCl4)-caused hepatic fibrotic mice tissue samples and activated HSCs. CXCL14 The silencing of lncRNA Gpr137b-ps or CXCL14 alone could significantly improve CCl4-induced fibrotic changes in mice liver in vivo and collagen I and III release by HSCs and HSC proliferation in vitro. miR-200a-3p directly targeted lncRNA Gpr137b-ps and CXCL14, respectively. LncRNA Gpr137b-ps relieved miR-200a-3p-induced inhibition on CXCL14 expression via acting as a ceRNA. In HSCs, the effects of lncRNA Gpr137b-ps silencing on collagen I and III release by HSCs and HSC proliferation were significantly reversed by miR-200a-3p inhibition, and the effects of miR-200a-3p inhibition were reversed by CXCL14 silencing. In conclusion, we demonstrated a lncRNA Gpr137b-ps/miR-200a-3p/CXCL14 axis that modulates HSC activation and might exert an effect on the pathogenesis of liver fibrosis.
Collapse
Affiliation(s)
- Jinmao Liao
- Department of Hepatopathy, The Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410005, Hunan, China
| | - Zheng Zhang
- Department of Hepatopathy, The Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410005, Hunan, China
| | - Qi Yuan
- Department of Hepatopathy, The Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410005, Hunan, China
| | - Qiong Liu
- Department of Hepatopathy, The Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410005, Hunan, China
| | - Jia Kuang
- Department of Hepatopathy, The Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410005, Hunan, China
| | - Yuan Fang
- Department of Hepatopathy, The Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410005, Hunan, China
| | - Xiaoxuan Hu
- Department of Hepatopathy, The Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha 410005, Hunan, China.
| |
Collapse
|
12
|
Xia T, Giri BR, Liu J, Du P, Li X, Li X, Li S, Cheng G. RNA sequencing analysis of altered expression of long noncoding RNAs associated with Schistosoma japonicum infection in the murine liver and spleen. Parasit Vectors 2020; 13:601. [PMID: 33261628 PMCID: PMC7705434 DOI: 10.1186/s13071-020-04457-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 11/05/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Schistosomiasis is a chronic, debilitating infectious disease caused by members of the genus Schistosoma. Previous findings have suggested a relationship between infection with Schistosoma spp. and alterations in the liver and spleen of infected animals. Recent reports have shown the regulatory role of noncoding RNAs, such as long noncoding RNAs (lncRNAs), in different biological processes. However, little is known about the role of lncRNAs in the mouse liver and spleen during Schistosoma japonicum infection. METHODS In this study, we identified and investigated lncRNAs using standard RNA sequencing (RNA-Seq). The biological functions of the altered expression of lncRNAs and their target genes were predicted using bioinformatics. Ten dysregulated lncRNAs were selected randomly and validated in reverse transcription-quantitative real-time polymerase chain reaction (RT-qPCR) experiments. RESULTS Our study identified 29,845 and 33,788 lncRNAs from the liver and spleen, respectively, of which 212 were novel lncRNAs. We observed that 759 and 789 of the lncRNAs were differentially expressed in the respective organs. The RT-qPCR results correlated well with the sequencing data. In the liver, 657 differentially expressed lncRNAs were predicted to target 2548 protein-coding genes, whereas in the spleen 660 differentially expressed lncRNAs were predicted to target 2673 protein-coding genes. Moreover, functional annotation showed that the target genes of the differentially expressed lncRNAs were associated with cellular processes, metabolic processes, and binding, and were significantly enriched in metabolic pathways, the cell cycle, ubiquitin-mediated proteolysis, and pathways in cancer. CONCLUSIONS Our study showed that numerous lncRNAs were differentially expressed in S. japonicum-infected liver and spleen compared to control liver and spleen; this suggested that lncRNAs may be involved in pathogenesis in the liver and spleen during S. japonicum infection.
Collapse
Affiliation(s)
- Tianqi Xia
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture and Rural Affairs, Shanghai, 200241, People's Republic of China
| | - Bikash Ranjan Giri
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture and Rural Affairs, Shanghai, 200241, People's Republic of China
| | - Jingyi Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture and Rural Affairs, Shanghai, 200241, People's Republic of China
| | - Pengfei Du
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture and Rural Affairs, Shanghai, 200241, People's Republic of China
| | - Xue Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture and Rural Affairs, Shanghai, 200241, People's Republic of China
| | - Xuxin Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture and Rural Affairs, Shanghai, 200241, People's Republic of China
| | - Shun Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture and Rural Affairs, Shanghai, 200241, People's Republic of China
| | - Guofeng Cheng
- Shanghai Tenth People's Hospital, Institute for Infectious Diseases and Vaccine Development, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai, 200072, People's Republic of China. .,Tongji University School of Medicine, 1239 Si-ping Road, Shanghai, 200092, People's Republic of China.
| |
Collapse
|
13
|
Wang S, Shuai C, Gao S, Jiang J, Luan J, Lv X. Chemokine CXCL14 acts as a potential genetic target for liver fibrosis. Int Immunopharmacol 2020; 89:107067. [PMID: 33039963 DOI: 10.1016/j.intimp.2020.107067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/30/2020] [Accepted: 09/30/2020] [Indexed: 12/12/2022]
Abstract
There are multiple causes of liver fibrosis, common ones include ethanol, toxins, and cholestasis. However, whether these different etiologies lead to the same pathological outcomes contain common genetic targets or signaling pathways, the current research has not attracted widespread attention. GSE40041 and GSE55747 were downloaded from the Gene Expression Omnibus (GEO) database. GSE40041 and GSE55747 represent the differential expression profiles in the liver of mice with bile duct ligation (BDL) and carbon tetrachloride (CCl4) induced liver fibrosis models, respectively. By using GEO2R, 701 differential expression genes (DEGs) in GSE40041 and 6540 DEGs in GSE55747 were identified. 260 co-DEGs were shared and extracted for gene ontology (GO) analysis. Through GO analysis, it was found that the regulation of cell migration in biological processes (BPs) was closely related to the pathogenesis of liver fibrosis, and the genes involved in this process include a key gene, chemokine (C-X-C motif) ligand 14 (CXCL14). Subsequently, further bioinformatic analysis showed that CXCL14 may be regulated by miR-122 to participate in the progression of liver fibrosis. Then real-time PCR and western blotting were performed to validate the expression of CXCL14 in liver tissue after liver fibrosis caused by different etiologies (ethanol, CCl4). The expression of CXCL4 in liver fibrosis induced by BDL was verified in another GEO dataset. Basically consistent with our bioinformatics results, our experimental results showed that the expression of CXCL14 was most significantly increased in alcoholic liver fibrosis model, followed by CCl4-induced liver fibrosis, which was also significantly increased in the BDL-induced model. Thus, CXCL14 can act as a common potential genetic target for different liver fibrosis diseases.
Collapse
Affiliation(s)
- Sheng Wang
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province, China; The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Province Key Laboratory of Major Autoimmune Diseases, School of Pharmacy, Institute for Liver Disease of Anhui Medical University, Hefei, Anhui Province, China
| | - Chen Shuai
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Province Key Laboratory of Major Autoimmune Diseases, School of Pharmacy, Institute for Liver Disease of Anhui Medical University, Hefei, Anhui Province, China
| | - Songsen Gao
- Department of Orthopedics (Spinal Surgery), The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
| | - Jia Jiang
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province, China
| | - Jiajie Luan
- Department of Pharmacy, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui Province, China.
| | - Xiongwen Lv
- The Key Laboratory of Anti-inflammatory and Immune Medicines, Ministry of Education, Anhui Province Key Laboratory of Major Autoimmune Diseases, School of Pharmacy, Institute for Liver Disease of Anhui Medical University, Hefei, Anhui Province, China.
| |
Collapse
|
14
|
MANF regulates splenic macrophage differentiation in mice. Immunol Lett 2019; 212:37-45. [PMID: 31226359 DOI: 10.1016/j.imlet.2019.06.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 06/05/2019] [Accepted: 06/17/2019] [Indexed: 12/14/2022]
Abstract
Splenic immune cells, especially macrophages, play a key role in multiple pathological processes. With a proved anti-inflammatory and immunoregulatory function of mesencephalicastrocyte-derived neurotrophic factor (MANF) in inflammatory disorders, how MANF affects splenic immune cells in physiological and pathophysiological situations is still unknown. In this study, we constructed mono-macrophage-specific MANF knockout (Mø MANF-/-) mice and found the increased splenic M1 macrophages, but no significant change of splenic morphology and size compared with wild type (WT) mice. Also, we established the pathophysiological situation of carbon tetrachloride (CCl4)-induced hepatic fibrosis. Under the hepatic fibrosis, splenic M2 macrophages and CD138+ plasma cells were significantly increased in Mø MANF-/- mice. Consistently, we found the increased TGF-β1 level in serum and spleen of Mø MANF-/- mice as well. Mono-macrophage-specific MANF knockout did not affect the number of splenic T and B cells under both the normal and hepatic fibrosis conditions. Our results suggest a distinct regulation of MANF on splenic immune cells and a specific regulation of MANF on the differentiation of splenic macrophages, which may exert a significant impact on physiological and pathophysiological processes of the spleen.
Collapse
|
15
|
Figliuolo da Paz VR, Figueiredo-Vanzan D, dos Santos Pyrrho A. Interaction and involvement of cellular adhesion molecules in the pathogenesis of Schistosomiasis mansoni. Immunol Lett 2019; 206:11-18. [DOI: 10.1016/j.imlet.2018.11.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 11/20/2018] [Accepted: 11/25/2018] [Indexed: 12/11/2022]
|
16
|
Saruwatari J, Dong C, Utsumi T, Tanaka M, McConnell M, Iwakiri Y. Integrated analysis of microRNA and mRNA expression profiles in splenomegaly induced by non-cirrhotic portal hypertension in rats. Sci Rep 2018; 8:17983. [PMID: 30573742 PMCID: PMC6301948 DOI: 10.1038/s41598-018-36297-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 11/08/2018] [Indexed: 02/07/2023] Open
Abstract
The spleen plays an important role in the immune and hematopoietic systems. Splenomegaly is a frequent consequence of portal hypertension, but the underlying molecular and cellular mechanisms remain to be fully elucidated. In this study, we have performed a whole-genome microarray analysis combined with histological examination in enlarged spleens isolated from rats with partial portal vein ligation (PPVL) surgery to provide comprehensive profiles of microRNAs and their target mRNAs with a focus on their potential biological functions. A total of 964 mRNAs and 30 microRNAs showed significant differential expression in the spleens of PPVL rats compared to rats undergoing a sham procedure. Twenty-two down-regulated microRNAs were associated with significantly increased genes highly involved in fibrogenic activity and cell proliferation/migration (e.g., Ctgf, Serpine1, Col1a1). Consistently, histological analyses demonstrated increased splenic fibrosis and cell proliferation in the spleens of PPVL rats. Eight up-regulated microRNAs were associated with suppression of genes that are related to interferon-mediated antiviral activity in innate immune responses (e.g., Irf7, Dhx58). In conclusion, we determined a specific microRNA-mRNA network potentially implicated in the tissue fibrosis and cell proliferation in portal hypertension-induced splenomegaly. Our findings provide new insight into the mechanisms for regulation of spleen structure and function.
Collapse
Affiliation(s)
- Junji Saruwatari
- Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT, USA
| | - Chao Dong
- Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT, USA
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | | | - Masatake Tanaka
- Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT, USA
| | - Matthew McConnell
- Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT, USA
| | - Yasuko Iwakiri
- Section of Digestive Diseases, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
17
|
Chan JD, Day TA, Marchant JS. Coalescing beneficial host and deleterious antiparasitic actions as an antischistosomal strategy. eLife 2018; 7:35755. [PMID: 30059006 PMCID: PMC6095690 DOI: 10.7554/elife.35755] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 07/24/2018] [Indexed: 12/28/2022] Open
Abstract
Conventional approaches for antiparasitic drug discovery center upon discovering selective agents that adversely impact parasites with minimal host side effects. Here, we show that agents with a broad polypharmacology, often considered ‘dirtier’ drugs, can have unique efficacy if they combine deleterious effects on the parasite with beneficial actions in the host. This principle is evidenced through a screen for drugs to treat schistosomiasis, a parasitic flatworm disease that impacts over 230 million people. A target-based screen of a Schistosoma serotoninergic G protein coupled receptor yielded the potent agonist, ergotamine, which disrupted worm movement. In vivo, ergotamine decreased mortality, parasite load and intestinal egg counts but also uniquely reduced organ pathology through engagement of host GPCRs that repressed hepatic stellate cell activation, inflammatory damage and fibrosis. The unique ability of ergotamine to engage both host and parasite GPCRs evidences a future strategy for anthelmintic drug design that coalesces deleterious antiparasitic activity with beneficial host effects. More than 200 million people worldwide are infected with parasitic worms that cause the disease schistosomiasis. Most cases occur in sub-Saharan Africa. Long-term infections can damage organs, and children who are affected may suffer delayed growth and learning difficulties. Despite its significant health and economic impact, schistosomiasis is still considered a ‘neglected’ tropical disease. This means there has not been adequate investment into developing new treatments or cures. A drug called praziquantel is currently the only treatment for schistosomiasis. However, the drug has unpleasant side effects, cannot cure all infected individuals, and there is a concern that worms may develop resistance to its effects. This means there is an urgent need to develop new therapies. One possible approach would be to develop drugs that interfere with the worm’s ability to move. Chan et al. screened thousands of existing chemicals for interactions with a protein that is known to control how the worms move. A drug called ergotamine, which is currently used to treat migraines, strongly interacted with the protein. Treating infected mice with ergotamine eliminated the parasites and reduced the organ damage caused by the infection. Praziquantel also reduced the number of parasites in the mice but it did not prevent organ damage. The results presented by Chan et al. show that a single drug can interact with targets in both the worm and the animals it infects. Searching for drugs that have this dual effect may help to develop more effective treatments for schistosomiasis and other diseases caused by parasites. Ergotamine itself is unlikely to be used to treat people for schistosomiasis because of the side effects produced when using it repeatedly. However, these findings will help researchers identify and develop safer drugs with similar benefits.
Collapse
Affiliation(s)
- John D Chan
- Department of Biomedical Sciences, Iowa State University, Ames, United States
| | - Timothy A Day
- Department of Biomedical Sciences, Iowa State University, Ames, United States
| | - Jonathan S Marchant
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, United States
| |
Collapse
|
18
|
Protective and recuperative effects of 3-bromopyruvate on immunological, hepatic and renal homeostasis in a murine host bearing ascitic lymphoma: Implication of niche dependent differential roles of macrophages. Biomed Pharmacother 2018; 99:970-985. [PMID: 29689702 DOI: 10.1016/j.biopha.2018.01.149] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 01/28/2018] [Accepted: 01/29/2018] [Indexed: 02/06/2023] Open
Abstract
3-bromopyruvate (3-BP) possesses promising antineoplastic potential, however, its effects on immunological homeostasis vis a vis hepatic and renal functions in a tumor bearing host remain unclear. Therefore, the effect of 3-BP administration to a murine host bearing a progressively growing tumor of thymoma origin, designated as Dalton's lymphoma (DL), on immunological, renal and hepatic homeostasis was investigated. Administration of 3-BP (4 mg/kg) to the tumor bearing host reversed tumor growth associated thymic atrophy and splenomegaly, accompanied by altered cell survival and repertoire of splenic, bone marrow and tumor associated macrophages (TAM). TAM displayed augmented phagocytic, tumoricidal activities and production of IL-1 and TNF-α. 3-BP-induced activation of TAM was of indirect nature, mediated by IFN-γ. Blood count of T lymphocytes (CD4+ & CD8+) and NK cells showed a rise in 3-BP administered tumor bearing mice. Moreover, 3-BP administration triggered modulation of immunomodulatory cytokines in serum along with refurbished hepatic and renal functions. The study indicates the role of altered cytokines balance, site specific differential macrophage functions and myelopoiesis in restoration of lymphoid organ homeostasis in 3-BP administered tumor bearing host. These observations will have long lasting impact in understanding of alternate mechanisms underlying the antitumor action of 3-BP accompanying appraisal of safety issues for optimizing its antineoplastic actions.
Collapse
|
19
|
Praziquantel Targets M1 Macrophages and Ameliorates Splenomegaly in Chronic Schistosomiasis. Antimicrob Agents Chemother 2017; 62:AAC.00005-17. [PMID: 29061758 DOI: 10.1128/aac.00005-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 10/12/2017] [Indexed: 12/19/2022] Open
Abstract
Splenomegaly is a common feature of many infectious diseases, including schistosomiasis japonica. However, the immunopathogenesis and the treatment of splenomegaly due to schistosomiasis have been largely neglected. Praziquantel (PZQ), a classical schistosomicide, has been demonstrated by us and others to have antifibrotic and anti-inflammatory activities against schistosomiasis. In this study, we investigated the effect of PZQ on alleviating the splenomegaly caused by Schistosoma japonicum infection in mice. The results showed that the number of macrophages, especially the number of M1 macrophages, was significantly increased in the enlarged spleens of infected mice (P < 0.001). After PZQ treatment for 4 weeks, the number of splenic macrophages, especially the number of M1 macrophages, was significantly reduced (P < 0.001) by the way of apoptosis, and another schistosomicide, mefloquine, had no effect either on the splenomegaly or on reducing the number of macrophages. Furthermore, by using the murine macrophage line RAW 264.7, we found that PZQ could inhibit the formation of the NLRP3 inflammasome and attenuate phagocytic activity in M1 macrophages. Thus, our studies suggest that PZQ plays a powerful role in ameliorating the splenomegaly caused by S. japonicum infection, which presents a new strategy for the therapy of splenomegaly resulting from other pathological conditions.
Collapse
|
20
|
Hong Y, Fu Z, Cao X, Lin J. Changes in microRNA expression in response to Schistosoma japonicum infection. Parasite Immunol 2017; 39. [PMID: 28160510 DOI: 10.1111/pim.12416] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 01/30/2017] [Indexed: 11/29/2022]
Abstract
Schistosomiasis japonicum is one of the most serious zoonotic diseases in the world. There is increasing evidence to show that host miRNAs are modulated following Schistosoma japonicum infection, and some of these miRNAs may play important regulatory roles in response to schistosome infection. Several host miRNAs have been identified and shown to be potential diagnostic biomarkers or novel therapeutic targets for schistosomiasis. These studies have paved the way to a better understanding of the mechanisms of schistosome-host interaction and may facilitate the development of novel approaches to the control of the disease.
Collapse
Affiliation(s)
- Y Hong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai, China
| | - Z Fu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai, China
| | - X Cao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai, China.,Department of Clinical Laboratory, Ningbo Municipal Hospital of Traditional Chinese Medicine, Ningbo, China
| | - J Lin
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture of China, Shanghai, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
| |
Collapse
|
21
|
Li L, Duan M, Chen W, Jiang A, Li X, Yang J, Li Z. The spleen in liver cirrhosis: revisiting an old enemy with novel targets. J Transl Med 2017; 15:111. [PMID: 28535799 PMCID: PMC5442653 DOI: 10.1186/s12967-017-1214-8] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 05/16/2017] [Indexed: 12/15/2022] Open
Abstract
The spleen is a secondary lymphoid organ which can influence the progression of multiple diseases, notably liver cirrhosis. In chronic liver diseases, splenomegaly and hypersplenism can manifest following the development of portal hypertension. These splenic abnormalities correlate with and have been postulated to facilitate the progression of liver fibrosis to cirrhosis, although precise mechanisms remain poorly understood. In this review, we summarize the literature to highlight the mechanistic contributions of splenomegaly and hypersplenism to the development of liver cirrhosis, focusing on three key aspects: hepatic fibrogenesis, hepatic immune microenvironment dysregulation and liver regeneration. We conclude with a discussion of the possible therapeutic strategies for modulating splenic abnormalities, including the novel potential usage of nanomedicine in non-surgically targetting splenic disorders for the treatment of liver cirrhosis.
Collapse
Affiliation(s)
- Liang Li
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, No.157, Xiwu Road, Xi'an, 710004, Shaanxi, China.,Liver and Spleen Diseases Research Center, Shaanxi Province, No.157, Xiwu Road, Xi'an, 710004, Shaanxi, China
| | - Mubing Duan
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Bundoora, VIC, Australia
| | - Weisan Chen
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, No.157, Xiwu Road, Xi'an, 710004, Shaanxi, China.,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Bundoora, VIC, Australia
| | - An Jiang
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, No.157, Xiwu Road, Xi'an, 710004, Shaanxi, China.,Liver and Spleen Diseases Research Center, Shaanxi Province, No.157, Xiwu Road, Xi'an, 710004, Shaanxi, China.,Department of General Surgery, The Second Affiliated Hospital, Xi'an Jiaotong University, No.157, Xiwu Road, Xi'an, 710004, Shaanxi, China
| | - Xiaoming Li
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, No.157, Xiwu Road, Xi'an, 710004, Shaanxi, China
| | - Jun Yang
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, No.157, Xiwu Road, Xi'an, 710004, Shaanxi, China. .,Liver and Spleen Diseases Research Center, Shaanxi Province, No.157, Xiwu Road, Xi'an, 710004, Shaanxi, China. .,Department of Pathology, The Second Affiliated Hospital, Xi'an Jiaotong University, No.157, Xiwu Road, Xi'an, 710004, Shaanxi, China.
| | - Zongfang Li
- National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, No.157, Xiwu Road, Xi'an, 710004, Shaanxi, China. .,Liver and Spleen Diseases Research Center, Shaanxi Province, No.157, Xiwu Road, Xi'an, 710004, Shaanxi, China.
| |
Collapse
|
22
|
Jia G, Chandriani S, Abbas AR, DePianto DJ, N'Diaye EN, Yaylaoglu MB, Moore HM, Peng I, DeVoss J, Collard HR, Wolters PJ, Egen JG, Arron JR. CXCL14 is a candidate biomarker for Hedgehog signalling in idiopathic pulmonary fibrosis. Thorax 2017; 72:780-787. [PMID: 28250200 DOI: 10.1136/thoraxjnl-2015-207682] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Revised: 01/31/2017] [Accepted: 02/03/2017] [Indexed: 11/04/2022]
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF) is associated with aberrant expression of developmental pathways, including Hedgehog (Hh). As Hh signalling contributes to multiple pro-fibrotic processes, Hh inhibition may represent a therapeutic option for IPF. However, no non-invasive biomarkers are available to monitor lung Hh activity. METHODS We assessed gene and protein expression in IPF and control lung biopsies, mouse lung, fibroblasts stimulated in vitro with sonic hedgehog (SHh), and plasma in IPF patients versus controls, and cancer patients before and after treatment with vismodegib, a Hh inhibitor. RESULTS Lung tissue from IPF patients exhibited significantly greater expression of Hh-related genes versus controls. The gene most significantly upregulated in both IPF lung biopsies and fibroblasts stimulated in vitro with SHh was CXCL14, which encodes a soluble secreted chemokine whose expression is inhibited in vitro by the addition of vismodegib. CXCL14 expression was induced by SHh overexpression in mouse lung. Circulating CXCL14 protein levels were significantly higher in plasma from IPF patients than controls. In cancer patients, circulating CXCL14 levels were significantly reduced upon vismodegib treatment. CONCLUSIONS CXCL14 is a systemic biomarker that could be used to identify IPF patients with increased Hh pathway activity and monitor the pharmacodynamic effects of Hh antagonist therapy in IPF. TRIAL REGISTRATION NUMBER Post-results, NCT00968981.
Collapse
Affiliation(s)
- Guiquan Jia
- Genentech, Inc., South San Francisco, California, USA
| | | | | | | | | | | | | | - Ivan Peng
- Genentech, Inc., South San Francisco, California, USA
| | - Jason DeVoss
- Genentech, Inc., South San Francisco, California, USA
| | - Harold R Collard
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of California, San Francisco, California, USA
| | - Paul J Wolters
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of California, San Francisco, California, USA
| | | | | |
Collapse
|
23
|
The NIH-NIAID Schistosomiasis Resource Center at the Biomedical Research Institute: Molecular Redux. PLoS Negl Trop Dis 2016; 10:e0005022. [PMID: 27764112 PMCID: PMC5072641 DOI: 10.1371/journal.pntd.0005022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Schistosomiasis remains a health burden in many parts of the world. The complex life cycle of Schistosoma parasites and the economic and societal conditions present in endemic areas make the prospect of eradication unlikely in the foreseeable future. Continued and vigorous research efforts must therefore be directed at this disease, particularly since only a single World Health Organization (WHO)-approved drug is available for treatment. The National Institutes of Health (NIH)–National Institute of Allergy and Infectious Diseases (NIAID) Schistosomiasis Resource Center (SRC) at the Biomedical Research Institute provides investigators with the critical raw materials needed to carry out this important research. The SRC makes available, free of charge (including international shipping costs), not only infected host organisms but also a wide array of molecular reagents derived from all life stages of each of the three main human schistosome parasites. As the field of schistosomiasis research rapidly advances, it is likely to become increasingly reliant on omics, transgenics, epigenetics, and microbiome-related research approaches. The SRC has and will continue to monitor and contribute to advances in the field in order to support these research efforts with an expanding array of molecular reagents. In addition to providing investigators with source materials, the SRC has expanded its educational mission by offering a molecular techniques training course and has recently organized an international schistosomiasis-focused meeting. This review provides an overview of the materials and services that are available at the SRC for schistosomiasis researchers, with a focus on updates that have occurred since the original overview in 2008.
Collapse
|
24
|
Central Nervous System Stromal Cells Control Local CD8(+) T Cell Responses during Virus-Induced Neuroinflammation. Immunity 2016; 44:622-633. [PMID: 26921107 PMCID: PMC7111064 DOI: 10.1016/j.immuni.2015.12.022] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 11/09/2015] [Accepted: 12/01/2015] [Indexed: 11/23/2022]
Abstract
Stromal cells generate a complex cellular scaffold that provides specialized microenvironments for lymphocyte activation in secondary lymphoid organs. Here, we assessed whether local activation of stromal cells in the central nervous system (CNS) is mandatory to transfer immune recognition from secondary lymphoid organs into the infected tissue. We report that neurotropic virus infection in mice triggered the establishment of such stromal cell niches in the CNS. CNS stromal cell activation was dominated by a rapid and vigorous production of CC-motif chemokine receptor (CCR) 7 ligands CCL19 and CCL21 by vascular endothelial cells and adjacent fibroblastic reticular cell (FRC)-like cells in the perivascular space. Moreover, CCR7 ligands produced by CNS stromal cells were crucial to support recruitment and local re-activation of antiviral CD8+ T cells and to protect the host from lethal neuroinflammatory disease, indicating that CNS stromal cells generate confined microenvironments that control protective T cell immunity. CNS stromal cells swiftly generate CCR7 ligands during neurotropic virus infection CCR7-expressing antiviral CD8+ T cells prevent lethal CNS disease Stromal cell-derived CCR7 ligands guide CD8+ T cells to infected target cells
Collapse
|
25
|
Chuah C, Jones MK, McManus DP, Nawaratna SK, Burke ML, Owen HC, Ramm GA, Gobert GN. Characterising granuloma regression and liver recovery in a murine model of schistosomiasis japonica. Int J Parasitol 2016; 46:239-52. [PMID: 26812024 DOI: 10.1016/j.ijpara.2015.12.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 11/30/2015] [Accepted: 12/07/2015] [Indexed: 02/07/2023]
Abstract
For hepatic schistosomiasis the egg-induced granulomatous response and the development of extensive fibrosis are the main pathologies. We used a Schistosoma japonicum-infected mouse model to characterise the multi-cellular pathways associated with the recovery from hepatic fibrosis following clearance of the infection with the anti-schistosomal drug, praziquantel. In the recovering liver splenomegaly, granuloma density and liver fibrosis were all reduced. Inflammatory cell infiltration into the liver was evident, and the numbers of neutrophils, eosinophils and macrophages were significantly decreased. Transcriptomic analysis revealed the up-regulation of fatty acid metabolism genes and the identification of Peroxisome proliferator activated receptor alpha as the upstream regulator of liver recovery. The aryl hydrocarbon receptor signalling pathway which regulates xenobiotic metabolism was also differentially up-regulated. These findings provide a better understanding of the mechanisms associated with the regression of hepatic schistosomiasis.
Collapse
Affiliation(s)
- Candy Chuah
- QIMR Berghofer Medical Research Institute, Brisbane, Qld 4006, Australia; School of Veterinary Sciences, The University of Queensland, Gatton, Qld 4343, Australia; School of Medical Sciences, Universiti Sains Malaysia, 16150 Kelantan, Malaysia
| | - Malcolm K Jones
- School of Veterinary Sciences, The University of Queensland, Gatton, Qld 4343, Australia
| | - Donald P McManus
- QIMR Berghofer Medical Research Institute, Brisbane, Qld 4006, Australia
| | | | - Melissa L Burke
- QIMR Berghofer Medical Research Institute, Brisbane, Qld 4006, Australia
| | - Helen C Owen
- School of Veterinary Sciences, The University of Queensland, Gatton, Qld 4343, Australia
| | - Grant A Ramm
- QIMR Berghofer Medical Research Institute, Brisbane, Qld 4006, Australia
| | - Geoffrey N Gobert
- QIMR Berghofer Medical Research Institute, Brisbane, Qld 4006, Australia.
| |
Collapse
|
26
|
Cai P, Gobert GN, McManus DP. MicroRNAs in Parasitic Helminthiases: Current Status and Future Perspectives. Trends Parasitol 2016; 32:71-86. [DOI: 10.1016/j.pt.2015.09.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 09/04/2015] [Accepted: 09/11/2015] [Indexed: 01/08/2023]
|
27
|
Circulating miRNAs: Potential Novel Biomarkers for Hepatopathology Progression and Diagnosis of Schistosomiasis Japonica in Two Murine Models. PLoS Negl Trop Dis 2015; 9:e0003965. [PMID: 26230095 PMCID: PMC4521869 DOI: 10.1371/journal.pntd.0003965] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 07/08/2015] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Schistosomiasis remains a major public health issue, with an estimated 230 million people infected worldwide. Novel tools for early diagnosis and surveillance of schistosomiasis are currently needed. Elevated levels of circulating microRNAs (miRNAs) are commonly associated with the initiation and progression of human disease pathology. Hence, serum miRNAs are emerging as promising biomarkers for the diagnosis of a variety of human diseases. This study investigated circulating host miRNAs commonly associated with liver diseases and schistosome parasite-derived miRNAs during the progression of hepatic schistosomiasis japonica in two murine models. METHODOLOGY/PRINCIPAL FINDINGS Two mouse strains (C57BL/6 and BALB/c) were infected with a low dosage of Schistosoma japonicum cercariae. The dynamic patterns of hepatopathology, the serum levels of liver injury-related enzymes and the serum circulating miRNAs (both host and parasite-derived) levels were then assessed in the progression of schistosomiasis japonica. For the first time, an inverse correlation between the severity of hepatocyte necrosis and the level of liver fibrosis was revealed during S. japonicum infection in BALB/c, but not in C57BL/6 mice. The inconsistent levels of the host circulating miRNAs, miR-122, miR-21 and miR-34a in serum were confirmed in the two murine models during infection, which limits their potential value as individual diagnostic biomarkers for schistosomiasis. However, their serum levels in combination may serve as a novel biomarker to mirror the hepatic immune responses induced in the mammalian host during schistosome infection and the degree of hepatopathology. Further, two circulating parasite-specific miRNAs, sja-miR-277 and sja-miR-3479-3p, were shown to have potential as diagnostic markers for schistosomiasis japonica. CONCLUSIONS/SIGNIFICANCE We provide the first evidence for the potential of utilizing circulating host miRNAs to indicate different immune responses and the severity of hepatopathology outcomes induced in two murine strains infected with S. japonicum. This study also establishes a basis for the early and cell-free diagnosis of schistosomiasis by targeting circulating schistosome parasite-derived miRNAs.
Collapse
|
28
|
Transcriptional profiling of chronic clinical hepatic schistosomiasis japonica indicates reduced metabolism and immune responses. Parasitology 2015. [PMID: 26216487 DOI: 10.1017/s0031182015000682] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Schistosomiasis is a significant cause of human morbidity and mortality. We performed a genome-wide transcriptional survey of liver biopsies obtained from Chinese patients with chronic schistosomiasis only, or chronic schistosomiasis with a current or past history of viral hepatitis B. Both disease groups were compared with patients with no prior history or indicators of any liver disease. Analysis showed in the main, downregulation in gene expression, particularly those involved in signal transduction via EIF2 signalling and mTOR signalling, as were genes associated with cellular remodelling. Focusing on immune associated pathways, genes were generally downregulated. However, a set of three genes associated with granulocytes, MMP7, CLDN7, CXCL6 were upregulated. Differential gene profiles unique to schistosomiasis included the gene Granulin which was decreased despite being generally considered a marker for liver disease, and IGBP2 which is associated with increased liver size, and was the most upregulated gene in schistosomiasis only patients, all of which presented with hepatomegaly. The unique features of gene expression, in conjunction with previous reports in the murine model of the cellular composition of granulomas, granuloma formation and recovery, provide an increased understanding of the molecular immunopathology and general physiological processes underlying hepatic schistosomiasis.
Collapse
|
29
|
Gobert GN, Nawaratna SK, Harvie M, Ramm GA, McManus DP. An ex vivo model for studying hepatic schistosomiasis and the effect of released protein from dying eggs. PLoS Negl Trop Dis 2015; 9:e0003760. [PMID: 25965781 PMCID: PMC4428699 DOI: 10.1371/journal.pntd.0003760] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 04/14/2015] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND We report the use of an ex vivo precision cut liver slice (PCLS) mouse model for studying hepatic schistosomiasis. In this system, liver tissue is unfixed, unfrozen, and alive for maintenance in culture and subsequent molecular analysis. METHODS AND FINDINGS Using thick naive mouse liver tissue and sterile culture conditions, the addition of soluble egg antigen (SEA) derived from Schistosoma japonicum eggs, followed 4, 24 and 48 hrs time points. Tissue was collected for transcriptional analysis and supernatants collected to quantitate liver enzymes, cytokines and chemokines. No significant hepatotoxicity was demonstrated by supernatant liver enzymes due to the presence of SEA. A proinflammatory response was observed both at the transcriptional level and at the protein level by cytokine and chemokine bead assay. Key genes observed elevated transcription in response to the addition of SEA included: IL1-α and IL1-β, IL6, all associated with inflammation. The recruitment of antigen presenting cells was reflected in increases in transcription of CD40, CCL4 and CSF1. Indications of tissue remodeling were seen in elevated gene expression of various Matrix MetalloProteinases (MMP3, 9, 10, 13) and delayed increases in TIMP1. Collagen deposition was significantly reduced in the presence of SEA as shown in COL1A1 expression by qPCR after 24 hrs culture. Cytokine and chemokine analysis of the culture supernatants confirmed the elevation of proteins including IL6, CCL3, CCL4 and CXCL5. CONCLUSIONS This ex vivo model system for the synchronised delivery of parasite antigen to liver tissue provides an insight into the early phase of hepatic schistosomiasis, corresponding with the release of soluble proteins from dying schistosome eggs.
Collapse
Affiliation(s)
- Geoffrey N. Gobert
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- * E-mail:
| | | | - Marina Harvie
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Grant A. Ramm
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Donald P. McManus
- QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| |
Collapse
|
30
|
Flórez-Vargas O, Bramhall M, Noyes H, Cruickshank S, Stevens R, Brass A. The quality of methods reporting in parasitology experiments. PLoS One 2014; 9:e101131. [PMID: 25076044 PMCID: PMC4116335 DOI: 10.1371/journal.pone.0101131] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 06/03/2014] [Indexed: 12/23/2022] Open
Abstract
There is a growing concern both inside and outside the scientific community over the lack of reproducibility of experiments. The depth and detail of reported methods are critical to the reproducibility of findings, but also for making it possible to compare and integrate data from different studies. In this study, we evaluated in detail the methods reporting in a comprehensive set of trypanosomiasis experiments that should enable valid reproduction, integration and comparison of research findings. We evaluated a subset of other parasitic (Leishmania, Toxoplasma, Plasmodium, Trichuris and Schistosoma) and non-parasitic (Mycobacterium) experimental infections in order to compare the quality of method reporting more generally. A systematic review using PubMed (2000-2012) of all publications describing gene expression in cells and animals infected with Trypanosoma spp was undertaken based on PRISMA guidelines; 23 papers were identified and included. We defined a checklist of essential parameters that should be reported and have scored the number of those parameters that are reported for each publication. Bibliometric parameters (impact factor, citations and h-index) were used to look for association between Journal and Author status and the quality of method reporting. Trichuriasis experiments achieved the highest scores and included the only paper to score 100% in all criteria. The mean of scores achieved by Trypanosoma articles through the checklist was 65.5% (range 32-90%). Bibliometric parameters were not correlated with the quality of method reporting (Spearman's rank correlation coefficient <-0.5; p>0.05). Our results indicate that the quality of methods reporting in experimental parasitology is a cause for concern and it has not improved over time, despite there being evidence that most of the assessed parameters do influence the results. We propose that our set of parameters be used as guidelines to improve the quality of the reporting of experimental infection models as a pre-requisite for integrating and comparing sets of data.
Collapse
Affiliation(s)
- Oscar Flórez-Vargas
- Bio-health Informatics Group, School of Computer Science, University of Manchester, Manchester, United Kingdom
| | - Michael Bramhall
- Bio-health Informatics Group, School of Computer Science, University of Manchester, Manchester, United Kingdom
| | - Harry Noyes
- School of Biological Science, University of Liverpool, Liverpool, United Kingdom
| | - Sheena Cruickshank
- Manchester Immunology Group, Faculty of Life Science, University of Manchester, Manchester, United Kingdom
| | - Robert Stevens
- Bio-health Informatics Group, School of Computer Science, University of Manchester, Manchester, United Kingdom
| | - Andy Brass
- Bio-health Informatics Group, School of Computer Science, University of Manchester, Manchester, United Kingdom
- Manchester Immunology Group, Faculty of Life Science, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
31
|
Gobert GN, You H, McManus DP. Gaining biological perspectives from schistosome genomes. Mol Biochem Parasitol 2014; 196:21-8. [PMID: 25076011 DOI: 10.1016/j.molbiopara.2014.07.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 07/14/2014] [Accepted: 07/17/2014] [Indexed: 02/06/2023]
Abstract
Characterization of the genomic basis underlying schistosome biology is an important strategy for the development of future treatments and interventions. Genomic sequence is now available for the three major clinically relevant schistosome species, Schistosoma mansoni, S. japonicum and S. haematobium, and this information represents an invaluable resource for the future control of human schistosomiasis. The identification of a biologically important, but distinct from the host, schistosome gene product is the ultimate goal for many research groups. While the initial elucidation of the genome of an organism is critical for most biological research, continued improvement or curation of the genome construction should be an ongoing priority. In this review we will discuss prominent recent findings utilizing a systems approach to schistosome biology, as well as the increased use of interference RNA (RNAi). Both of these research strategies are aiming to place parasite genes into a more meaningful biological perspective.
Collapse
Affiliation(s)
- Geoffrey N Gobert
- Molecular Parasitology Laboratory, Infectious Diseases Division, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.
| | - Hong You
- Molecular Parasitology Laboratory, Infectious Diseases Division, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Donald P McManus
- Molecular Parasitology Laboratory, Infectious Diseases Division, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| |
Collapse
|
32
|
Han H, Peng J, Han Y, Zhang M, Hong Y, Fu Z, Yang J, Tao J, Lin J. Differential expression of microRNAs in the non-permissive schistosome host Microtus fortis under schistosome infection. PLoS One 2013; 8:e85080. [PMID: 24391986 PMCID: PMC3877346 DOI: 10.1371/journal.pone.0085080] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 11/22/2013] [Indexed: 11/19/2022] Open
Abstract
The reed vole Microtus fortis is the only mammal known in China in which the growth, development and maturation of schistosomes (Schistosoma japonicum) is prevented. It might be that the anti-schistosomiasis mechanisms of M. fortis associate with microRNA-mediated gene expression, given that the latter has been found to be involved in gene regulation in eukaryotes. In the present study, the difference between pathological changes in tissues of M. fortis and of mice (Mus musculus) post-schistosome infection were observed by using hematoxylin-eosin staining. In addition, microarray technique was applied to identify differentially expressed miRNAs in the same tissues before and post-infection to analyze the potential roles of miRNAs in schistosome infection in these two different types of host. Histological analyses showed that S. japonicum infection in M. fortis resulted in a more intensive inflammatory response and pathological change than in mice. The microarray analysis revealed that 162 miRNAs were expressed in both species, with 12 in liver, 32 in spleen and 34 in lung being differentially expressed in M. fortis. The functions of the differentially expressed miRNAs were mainly revolved in nutrient metabolism, immune regulation, etc. Further analysis revealed that important signaling pathways were triggered after infection by S. japonicum in M. fortis but not in the mice. These results provide new insights into the general mechanisms of regulation in the non-permissive schistosome host M. fortis that exploits potential miRNA regulatory networks. Such information will help improve current understanding of schistosome development and host-parasite interactions.
Collapse
Affiliation(s)
- Hongxiao Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Minhang, Shanghai, China
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jinbiao Peng
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yanhui Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Minhang, Shanghai, China
| | - Min Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Minhang, Shanghai, China
| | - Yang Hong
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Minhang, Shanghai, China
| | - Zhiqiang Fu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Minhang, Shanghai, China
| | - Jianmei Yang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Minhang, Shanghai, China
| | - Jianping Tao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- * E-mail: (JT); (JL)
| | - Jiaojiao Lin
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Minhang, Shanghai, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, China
- * E-mail: (JT); (JL)
| |
Collapse
|
33
|
A study of immunomodulatory genes responses to macrophages of Schistosoma japonicum infection during different stages by microarray analysis. Acta Trop 2013; 127:251-60. [PMID: 23732117 DOI: 10.1016/j.actatropica.2013.05.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 05/15/2013] [Accepted: 05/25/2013] [Indexed: 01/08/2023]
Abstract
Macrophages initiate, modulate, and also serve as final effector cells in immune responses during the course of schistosomal infections. In this study, we investigated the gene expression profile and functional changes of macrophages in immune responses against the Schistosoma japonicum by microarray analysis. Hierarchical clustering analysis demonstrated that a significant switch in gene transformation associated with a type-1 response and linked with a type-2 cytokine phenotype occurs between 4.5 and 8 weeks post-infection. Moreover, the gene profiles at 3 later time-points following egg challenge were similar in complexity and magnitude. The data also showed that there were mostly inhibition of gene expression related TLR, IFN, MHC and TNFrsf at the switch between 4.5 and 8 weeks post-infection, It is suggested that these immunomodulatory genes may be down-regulated in defense against S. japonicum eggs and granuloma pathology. The induction of alternatively activated macrophage (AAMϕ) was important for dampening the inflammation in hepatic granulomas and contributing to a decrease in cytotoxicity. The gene expressions involved in repair/remodeling during liver fibrosis were also observed after egg production. Understanding the immune mechanisms associated with parasitic resistance, pathology of parasite infection, and parasite growth will provide useful insight on host-schistosome interactions and for the control of schistosomiasis.
Collapse
|
34
|
MicroRNA-gene expression network in murine liver during Schistosoma japonicum infection. PLoS One 2013; 8:e67037. [PMID: 23825609 PMCID: PMC3692539 DOI: 10.1371/journal.pone.0067037] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 05/13/2013] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Schistosomiasis japonica remains a significant public health problem in China and Southeast Asian countries. The most typical and serious outcome of the chronic oriental schistosomiasis is the progressive granuloma and fibrosis in the host liver, which has been a major medical challenge. However, the molecular mechanism underling the hepatic pathogenesis is still not clear. METHODOLOGY AND PRINCIPAL FINDINGS Using microarrays, we quantified the temporal gene expression profiles in the liver of Schistosoma japonicum-infected BALB/c mice at 15, 30, and 45 day post infection (dpi) with that from uninfected mice as controls. Gene expression alternation associated with liver damage was observed in the initial phase of infection (dpi 15), which became more magnificent with the onset of egg-laying. Up-regulated genes were dominantly associated with inflammatory infiltration, whereas down-regulated genes primarily led to the hepatic functional disorders. Simultaneously, microRNA profiles from the same samples were decoded by Solexa sequencing. More than 130 miRNAs were differentially expressed in murine liver during S. japonicum infection. MiRNAs significantly dysregulated in the mid-phase of infection (dpi 30), such as mmu-miR-146b and mmu-miR-155, may relate to the regulation of hepatic inflammatory responses, whereas miRNAs exhibiting a peak expression in the late phase of infection (dpi 45), such as mmu-miR-223, mmu-miR-146a/b, mmu-miR-155, mmu-miR-34c, mmu-miR-199, and mmu-miR-134, may represent a molecular signature of the development of schistosomal hepatopathy. Further, a dynamic miRNA-gene co-expression network in the progression of infection was constructed. CONCLUSIONS AND SIGNIFICANCE This study presents a global view of dynamic expression of both mRNA and miRNA transcripts in murine liver during S. japonicum infection, and highlights that miRNAs may play a variety of regulatory roles in balancing the immune responses during the development of hepatic pathology. The data provide robust information for further researches on the pathogenesis and molecular events of hepatopathy induced by schistosome eggs.
Collapse
|
35
|
Beschin A, De Baetselier P, Van Ginderachter JA. Contribution of myeloid cell subsets to liver fibrosis in parasite infection. J Pathol 2012; 229:186-97. [DOI: 10.1002/path.4112] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 08/24/2012] [Accepted: 09/13/2012] [Indexed: 12/23/2022]
Affiliation(s)
- Alain Beschin
- Myeloid Cell Immunology Laboratory; VIB Brussels Belgium
- Cellular and Molecular Immunology Unit; Vrije Universiteit Brussel; Brussels Belgium
| | - Patrick De Baetselier
- Myeloid Cell Immunology Laboratory; VIB Brussels Belgium
- Cellular and Molecular Immunology Unit; Vrije Universiteit Brussel; Brussels Belgium
| | - Jo A Van Ginderachter
- Myeloid Cell Immunology Laboratory; VIB Brussels Belgium
- Cellular and Molecular Immunology Unit; Vrije Universiteit Brussel; Brussels Belgium
| |
Collapse
|
36
|
Gardner CR, Hankey P, Mishin V, Francis M, Yu S, Laskin JD, Laskin DL. Regulation of alternative macrophage activation in the liver following acetaminophen intoxication by stem cell-derived tyrosine kinase. Toxicol Appl Pharmacol 2012; 262:139-48. [PMID: 22575169 DOI: 10.1016/j.taap.2012.04.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 04/12/2012] [Accepted: 04/23/2012] [Indexed: 01/20/2023]
Abstract
Stem cell-derived tyrosine kinase (STK) is a transmembrane receptor reported to play a role in macrophage switching from a classically activated/proinflammatory phenotype to an alternatively activated/wound repair phenotype. In the present studies, STK⁻/⁻ mice were used to assess the role of STK in acetaminophen-induced hepatotoxicity as evidence suggests that the pathogenic process involves both of these macrophage subpopulations. In wild type mice, centrilobular hepatic necrosis and increases in serum transaminase levels were observed within 6h of acetaminophen administration (300 mg/kg, i.p.). Loss of STK resulted in a significant increase in sensitivity of mice to the hepatotoxic effects of acetaminophen and increased mortality, effects independent of its metabolism. This was associated with reduced levels of hepatic glutathione, rapid upregulation of inducible nitric oxide synthase, and prolonged induction of heme oxygenase-1, suggesting excessive oxidative stress in STK⁻/⁻ mice. F4/80, a marker of mature macrophages, was highly expressed on subpopulations of Kupffer cells in livers of wild type, but not STK⁻/⁻ mice. Whereas F4/80⁺ macrophages rapidly declined in the livers of wild type mice following acetaminophen intoxication, they increased in STK⁻/⁻ mice. In wild type mice hepatic expression of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-12, products of classically activated macrophages, increased after acetaminophen administration. Monocyte chemotactic protein-1 (MCP-1) and its receptor, CCR2, as well as IL-10, mediators involved in recruiting and activating anti-inflammatory/wound repair macrophages, also increased in wild type mice after acetaminophen. Loss of STK blunted the effects of acetaminophen on expression of TNFα, IL-1β, IL-12, MCP-1 and CCR2, while expression of IL-10 increased. Hepatic expression of CX3CL1, and its receptor, CX3CR1 also increased in STK⁻/⁻ mice treated with acetaminophen. These data demonstrate that STK plays a role in regulating macrophage recruitment and activation in the liver following acetaminophen administration, and in hepatotoxicity.
Collapse
Affiliation(s)
- Carol R Gardner
- Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, NJ 08854, USA.
| | | | | | | | | | | | | |
Collapse
|
37
|
Fairfax KC, Amiel E, King IL, Freitas TC, Mohrs M, Pearce EJ. IL-10R blockade during chronic schistosomiasis mansoni results in the loss of B cells from the liver and the development of severe pulmonary disease. PLoS Pathog 2012; 8:e1002490. [PMID: 22291593 PMCID: PMC3266936 DOI: 10.1371/journal.ppat.1002490] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 12/04/2011] [Indexed: 12/17/2022] Open
Abstract
In schistosomiasis patients, parasite eggs trapped in hepatic sinusoids become foci for CD4+ T cell-orchestrated granulomatous cellular infiltrates. Since the immune response is unable to clear the infection, the liver is subjected to ongoing cycles of focal inflammation and healing that lead to vascular obstruction and tissue fibrosis. This is mitigated by regulatory mechanisms that develop over time and which minimize the inflammatory response to newly deposited eggs. Exploring changes in the hepatic inflammatory infiltrate over time in infected mice, we found an accumulation of schistosome egg antigen-specific IgG1-secreting plasma cells during chronic infection. This population was significantly diminished by blockade of the receptor for IL-10, a cytokine implicated in plasma cell development. Strikingly, IL-10R blockade precipitated the development of portal hypertension and the accumulation of parasite eggs in the lungs and heart. This did not reflect more aggressive Th2 cell responsiveness, increased hepatic fibrosis, or the emergence of Th1 or Th17 responses. Rather, a role for antibody in the prevention of severe disease was suggested by the finding that pulmonary involvement was also apparent in mice unable to secrete class switched antibody. A major effect of anti-IL-10R treatment was the loss of a myeloid population that stained positively for surface IgG1, and which exhibited characteristics of regulatory/anti-inflammatory macrophages. This finding suggests that antibody may promote protective effects within the liver through local interactions with macrophages. In summary, our data describe a role for IL-10-dependent B cell responses in the regulation of tissue damage during a chronic helminth infection.
Collapse
MESH Headings
- Animals
- Antibodies, Helminth/genetics
- Antibodies, Helminth/immunology
- Antibodies, Helminth/metabolism
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD4-Positive T-Lymphocytes/pathology
- Chronic Disease
- Immunoglobulin G/genetics
- Immunoglobulin G/immunology
- Immunoglobulin G/metabolism
- Interleukin-10/genetics
- Interleukin-10/immunology
- Interleukin-10/metabolism
- Liver/immunology
- Liver/metabolism
- Liver/parasitology
- Liver/pathology
- Liver Cirrhosis/genetics
- Liver Cirrhosis/immunology
- Liver Cirrhosis/metabolism
- Liver Cirrhosis/parasitology
- Lung Diseases, Parasitic/genetics
- Lung Diseases, Parasitic/immunology
- Lung Diseases, Parasitic/metabolism
- Lung Diseases, Parasitic/parasitology
- Lung Diseases, Parasitic/pathology
- Mice
- Mice, Inbred BALB C
- Mice, Knockout
- Plasma Cells/immunology
- Plasma Cells/metabolism
- Plasma Cells/pathology
- Receptors, Interleukin-10/antagonists & inhibitors
- Receptors, Interleukin-10/genetics
- Receptors, Interleukin-10/immunology
- Receptors, Interleukin-10/metabolism
- Schistosoma mansoni
- Schistosomiasis mansoni/genetics
- Schistosomiasis mansoni/immunology
- Schistosomiasis mansoni/metabolism
- Schistosomiasis mansoni/pathology
Collapse
Affiliation(s)
- Keke C. Fairfax
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Trudeau Institute, Saranac Lake, New York, United States of America
| | - Eyal Amiel
- Trudeau Institute, Saranac Lake, New York, United States of America
| | - Irah L. King
- Trudeau Institute, Saranac Lake, New York, United States of America
| | - Tori C. Freitas
- Trudeau Institute, Saranac Lake, New York, United States of America
| | - Markus Mohrs
- Trudeau Institute, Saranac Lake, New York, United States of America
| | - Edward J. Pearce
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Trudeau Institute, Saranac Lake, New York, United States of America
- * E-mail:
| |
Collapse
|
38
|
Migrating Schistosoma japonicum schistosomula induce an innate immune response and wound healing in the murine lung. Mol Immunol 2011; 49:191-200. [PMID: 21917316 DOI: 10.1016/j.molimm.2011.08.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 08/10/2011] [Accepted: 08/18/2011] [Indexed: 01/13/2023]
Abstract
The migrating schistosomulum is an important stage of the schistosome lifecycle and represents a key target for elimination of infection by natural and vaccine-induced host immune responses. To gain a better understanding of how schistosomes initiate a primary host immune response we have characterised the host lung response to migrating Schistosoma japonicum schistosomula using a combination of histopathology, microarray analysis and real-time PCR. Our findings indicate that the early pulmonary response to these migrating larvae is characteristic of innate inflammation and wound healing. This response is associated with significant up-regulation of several genes with immunoregulatory function including Ch25h, Hmox1 and Retnla which may act to control the nature or magnitude of the inflammatory response to the migrating schistosomula, promoting both parasite and host survival. These findings contribute to our understanding of host-parasite interactions associated with schistosome and, especially, S. japonicum infection, and may aid the future design of novel vaccines that target the lung stage schistosomulum.
Collapse
|
39
|
Perry CR, Burke ML, Stenzel DJ, McManus DP, Ramm GA, Gobert GN. Differential expression of chemokine and matrix re-modelling genes is associated with contrasting schistosome-induced hepatopathology in murine models. PLoS Negl Trop Dis 2011; 5:e1178. [PMID: 21666794 PMCID: PMC3110159 DOI: 10.1371/journal.pntd.0001178] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 03/31/2011] [Indexed: 12/03/2022] Open
Abstract
The pathological outcomes of schistosomiasis are largely dependent on the molecular and cellular mechanisms of the host immune response. In this study, we investigated the contribution of variations in host gene expression to the contrasting hepatic pathology observed between two inbred mouse strains following Schistosoma japonicum infection. Whole genome microarray analysis was employed in conjunction with histological and immunohistochemical analysis to define and compare the hepatic gene expression profiles and cellular composition associated with the hepatopathology observed in S. japonicum-infected BALB/c and CBA mice. We show that the transcriptional profiles differ significantly between the two mouse strains with high statistical confidence. We identified specific genes correlating with the more severe pathology associated with CBA mice, as well as genes which may confer the milder degree of pathology associated with BALB/c mice. In BALB/c mice, neutrophil genes exhibited striking increases in expression, which coincided with the significantly greater accumulation of neutrophils at granulomatous regions seen in histological sections of hepatic tissue. In contrast, up-regulated expression of the eosinophil chemokine CCL24 in CBA mice paralleled the cellular influx of eosinophils to the hepatic granulomas. Additionally, there was greater down-regulation of genes involved in metabolic processes in CBA mice, reflecting the more pronounced hepatic damage in these mice. Profibrotic genes showed similar levels of expression in both mouse strains, as did genes associated with Th1 and Th2 responses. However, imbalances in expression of matrix metalloproteinases (e.g. MMP12, MMP13) and tissue inhibitors of metalloproteinases (TIMP1) may contribute to the contrasting pathology observed in the two strains. Overall, these results provide a more complete picture of the molecular and cellular mechanisms which govern the pathological outcome of hepatic schistosomiasis. This improved understanding of the immunopathogenesis in the murine model schistosomiasis provides the basis for a better appreciation of the complexities associated with chronic human schistosomiasis. Schistosomiasis is a significant cause of morbidity and mortality in the tropical world although its true burden has been historically underestimated. Millions of people currently endure severe pathology as a result of schistosome infections, although some individuals appear to be less susceptible to infection despite constant parasite exposure. A similar range of disease susceptibility is evident in different strains of inbred mice infected with schistosomes, thereby mirroring the clinical situation. Granuloma formation in the liver of both humans and mice is a characteristic manifestation of chronic schistosomiasis, and is largely controlled by gene signalling pathways. Certain genes expressed in particular cohorts of mice and humans may be associated with the development of severe pathology, or may confer a protective phenotype. This murine study highlights some key molecular aspects of chronic schistosomiasis which may be responsible for the development of both mild and severe pathology, and provides a bench mark for studying the mechanisms of schistosome-induced disease in humans.
Collapse
Affiliation(s)
- Carly R. Perry
- Molecular Parasitology Laboratory, Queensland Institute of Medical Research, Herston, Brisbane, Australia
- Faculty of Science and Technology, Queensland University of Technology, Gardens Point Campus, Brisbane, Queensland, Australia
| | - Melissa L. Burke
- Molecular Parasitology Laboratory, Queensland Institute of Medical Research, Herston, Brisbane, Australia
| | - Deborah J. Stenzel
- Faculty of Science and Technology, Queensland University of Technology, Gardens Point Campus, Brisbane, Queensland, Australia
| | - Donald P. McManus
- Molecular Parasitology Laboratory, Queensland Institute of Medical Research, Herston, Brisbane, Australia
| | - Grant A. Ramm
- Hepatic Fibrosis Group, Queensland Institute of Medical Research, Herston, Brisbane, Australia
| | - Geoffrey N. Gobert
- Molecular Parasitology Laboratory, Queensland Institute of Medical Research, Herston, Brisbane, Australia
- * E-mail:
| |
Collapse
|