1
|
Tan YJ, Jin Y, Zhou J, Yang YF. Lipid droplets in pathogen infection and host immunity. Acta Pharmacol Sin 2024; 45:449-464. [PMID: 37993536 PMCID: PMC10834987 DOI: 10.1038/s41401-023-01189-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/30/2023] [Indexed: 11/24/2023] Open
Abstract
As the hub of cellular lipid metabolism, lipid droplets (LDs) have been linked to a variety of biological processes. During pathogen infection, the biogenesis, composition, and functions of LDs are tightly regulated. The accumulation of LDs has been described as a hallmark of pathogen infection and is thought to be driven by pathogens for their own benefit. Recent studies have revealed that LDs and their subsequent lipid mediators contribute to effective immunological responses to pathogen infection by promoting host stress tolerance and reducing toxicity. In this comprehensive review, we delve into the intricate roles of LDs in governing the replication and assembly of a wide spectrum of pathogens within host cells. We also discuss the regulatory function of LDs in host immunity and highlight the potential for targeting LDs for the diagnosis and treatment of infectious diseases.
Collapse
Affiliation(s)
- Yan-Jie Tan
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Yi Jin
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, China
| | - Jun Zhou
- Center for Cell Structure and Function, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan, 250014, China.
- State Key Laboratory of Medicinal Chemical Biology, Haihe Laboratory of Cell Ecosystem, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| | - Yun-Fan Yang
- Department of Cell Biology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| |
Collapse
|
2
|
Osorio EY, Uscanga-Palomeque A, Patterson GT, Cordova E, Travi BL, Soong L, Melby PC. Malnutrition-related parasite dissemination from the skin in visceral leishmaniasis is driven by PGE2-mediated amplification of CCR7-related trafficking of infected inflammatory monocytes. PLoS Negl Trop Dis 2023; 17:e0011040. [PMID: 36630476 PMCID: PMC9873180 DOI: 10.1371/journal.pntd.0011040] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 01/24/2023] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
People are infected with Leishmania donovani when the parasite is deposited in the dermis during the blood meal of the sand fly vector. Most infected people develop a subclinical latent infection, but some develop progressive visceral leishmaniasis. Malnutrition is a risk factor for the development of active VL. We previously demonstrated increased parasite dissemination from the skin to visceral organs in a murine model of malnutrition. Here we investigated the mechanism of early parasite dissemination. After delivery of L. donovani to the skin, we found enhanced capture of parasites by inflammatory monocytes and neutrophils in the skin of malnourished mice. However, parasite dissemination in malnourished mice was driven primarily by infected inflammatory monocytes, which showed increased CCR7 expression, greater intrinsic migratory capacity, and increased trafficking from skin to spleen. PGE2 production, which was increased at the site of skin infection, increased monocyte CCR7 expression and promoted CCR7-related monocyte-mediated early parasite dissemination in malnourished mice. Parasite dissemination in monocytes was reduced by inhibition of PGE2, knockdown or silencing of CCR7 in monocytes, and depletion of inflammatory monocytes through administration of diphtheria toxin to CSFR1-DTR transgenic mice that have monocyte-specific DT receptor expression. CCR7-driven trafficking of infected inflammatory monocytes through the lymph node was accompanied by increased expression of its ligands CCL19 and CCL21. These results show that the CCR7/PGE2 axis is responsible for the increased trafficking of L. donovani-infected inflammatory monocytes from the skin to the spleen in the malnourished host. Undernutrition and production of PGE2 are potential targets to reduce the risk of people developing VL. Nutritional interventions that target improved immune function and reduced PGE2 synthesis should be studied in people at risk of developing VL.
Collapse
Affiliation(s)
- E. Yaneth Osorio
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail: (PCM); (EYO)
| | - Ashanti Uscanga-Palomeque
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Grace T. Patterson
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Erika Cordova
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Bruno L. Travi
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Tropical Diseases and Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Lynn Soong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Tropical Diseases and Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Peter C. Melby
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Tropical Diseases and Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail: (PCM); (EYO)
| |
Collapse
|
3
|
Abstract
Leishmaniasis is a zoonotic and vector-borne infectious disease that is caused by the genus Leishmania belonging to the trypanosomatid family. The protozoan parasite has a digenetic life cycle involving a mammalian host and an insect vector. Leishmaniasisis is a worldwide public health problem falling under the neglected tropical disease category, with over 90 endemic countries, and approximately 1 million new cases and 20,000 deaths annually. Leishmania infection can progress toward the development of species–specific pathologic disorders, ranging in severity from self-healing cutaneous lesions to disseminating muco-cutaneous and fatal visceral manifestations. The severity and the outcome of leishmaniasis is determined by the parasite’s antigenic epitope characteristics, the vector physiology, and most importantly, the immune response and immune status of the host. This review examines the nature of host–pathogen interaction in leishmaniasis, innate and adaptive immune responses, and various strategies that have been employed for vaccine development.
Collapse
|
4
|
Demarta-Gatsi C, Mécheri S. Vector saliva controlled inflammatory response of the host may represent the Achilles heel during pathogen transmission. J Venom Anim Toxins Incl Trop Dis 2021; 27:e20200155. [PMID: 34035796 PMCID: PMC8128132 DOI: 10.1590/1678-9199-jvatitd-2020-0155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Infection with vector-borne pathogens starts with the inoculation of these pathogens during blood feeding. In endemic regions, the population is regularly bitten by naive vectors, implicating a permanent stimulation of the immune system by the vector saliva itself (pre-immune context). Comparatively, the number of bites received by exposed individuals from non-infected vectors is much higher than the bites from infected ones. Therefore, vector saliva and the immunological response in the skin may play an important role, so far underestimated, in the establishment of anti-pathogen immunity in endemic areas. Hence, the parasite biology and the disease pathogenesis in “saliva-primed” and “saliva-unprimed” individuals must be different. This integrated view on how the pathogen evolves within the host together with vector salivary components, which are known to be endowed with a variety of pharmacological and immunological properties, must remain the focus of any investigational study dealing with vector-borne diseases. Considering this three-way partnership, the host skin (immune system), the pathogen, and the vector saliva, the approach that consists in the validation of vector saliva as a source of molecular entities with anti-disease vaccine potential has been recently a subject of active and fruitful investigation. As an example, the vaccination with maxadilan, a potent vasodilator peptide extracted from the saliva of the sand fly Lutzomyia longipalpis, was able to protect against infection with various leishmanial parasites. More interestingly, a universal mosquito saliva vaccine that may potentially protect against a range of mosquito-borne infections including malaria, dengue, Zika, chikungunya and yellow fever. In this review, we highlight the key role played by the immunobiology of vector saliva in shaping the outcome of vector-borne diseases and discuss the value of studying diseases in the light of intimate cross talk among the pathogen, the vector saliva, and the host immune mechanisms.
Collapse
Affiliation(s)
- Claudia Demarta-Gatsi
- Institut Pasteur, Unité de Biologie des Interactions Hôte Parasites, Paris, France.,CNRS ERL9195, Paris, France.,INSERM U1201, Paris, France.,Medicines for Malaria Venture (MMV), Geneva, Switzerland.,Institut Pasteur, Unité de Biologie des Interactions Hôte Parasites, Paris, France
| | - Salah Mécheri
- Institut Pasteur, Unité de Biologie des Interactions Hôte Parasites, Paris, France.,CNRS ERL9195, Paris, France.,INSERM U1201, Paris, France
| |
Collapse
|
5
|
Rêgo FD, Soares RP. Lutzomyia longipalpis: an update on this sand fly vector. AN ACAD BRAS CIENC 2021; 93:e20200254. [PMID: 33950136 DOI: 10.1590/0001-37652021xxxx] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/17/2020] [Indexed: 12/13/2022] Open
Abstract
Lutzomyia longipalpis is the most important vector of Leishmania infantum, the etiological agent of visceral leishmaniasis (VL) in the New World. It is a permissive vector susceptible to infection with several Leishmania species. One of the advantages that favors the study of this sand fly is the possibility of colonization in the laboratory. For this reason, several researchers around the world use this species as a model for different subjects including biology, insecticides testing, host-parasite interaction, physiology, genetics, proteomics, molecular biology, and saliva among others. In 2003, we published our first review (Soares & Turco 2003) on this vector covering several aspects of Lu. longipalpis. This current review summarizes what has been published between 2003-2020. During this period, modern approaches were incorporated following the development of more advanced and sensitive techniques to assess this sand fly.
Collapse
Affiliation(s)
- Felipe D Rêgo
- Fundação Oswaldo Cruz (FIOCRUZ/MG), Instituto René Rachou, Avenida Augusto de Lima, 1715, Barro Preto, 30180-104 Belo Horizonte, MG, Brazil
| | - Rodrigo Pedro Soares
- Fundação Oswaldo Cruz (FIOCRUZ/MG), Instituto René Rachou, Avenida Augusto de Lima, 1715, Barro Preto, 30180-104 Belo Horizonte, MG, Brazil
| |
Collapse
|
6
|
Pradhan S, Ghosh S, Hussain S, Paul J, Mukherjee B. Linking membrane fluidity with defective antigen presentation in leishmaniasis. Parasite Immunol 2021; 43:e12835. [PMID: 33756007 DOI: 10.1111/pim.12835] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 12/11/2022]
Abstract
Hampering-surface presentation of immunogenic peptides by class I/II MHCs is a key strategy opted by several intracellular protozoan pathogens including Leishmania to escape CD8/CD4 mediated host-protective T-cell response. Although Leishmania parasites (LP) primarily hijack/inhibit host lysosomal/proteasomal pathways to hamper antigen-processing/presentation machinery, recent pieces of evidence have linked host-membrane fluidity as a major cause of defective antigen presentation in leishmaniasis. Increased membrane fluidity severely compromised peptide-MHC stability in the lipid raft regions, thereby abrogating T-cell mediated-signalling in the infected host. LP primarily achieves this by quenching host cholesterol, which acts as cementing material in maintaining the membrane fluidity. In this review, we have particularly focused on several strategies opted by LP to hijack-host cholesterol resulting in lipid droplets accumulation around leishmania-containing parasitophorous vacuole favouring intracellular survival of LP. In fact, LP infection can result in altered cholesterol and lipid metabolism in the infected host, thereby favouring the establishment and progression of the infection. From our analysis of two genome-wide transcriptomics data sets of LP infected host, we propose a possible molecular network that connects these interrelated events of altered lipid metabolism with eventual compromised antigen presentation, still existing as a gap in our current understanding of Leishmania infection.
Collapse
Affiliation(s)
- Supratim Pradhan
- School of Medical Science and Technology, IIT Kharagpur, Kharagpur, India
| | - Souradeepa Ghosh
- School of Medical Science and Technology, IIT Kharagpur, Kharagpur, India
| | - Shahbaj Hussain
- School of Medical Science and Technology, IIT Kharagpur, Kharagpur, India
| | - Joydeep Paul
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, India
| | | |
Collapse
|
7
|
Saini S, Rai AK. Linoleic Acid-A Feasible Preventive Approach for Visceral Leishmaniasis. Front Nutr 2021; 8:649025. [PMID: 33718424 PMCID: PMC7952607 DOI: 10.3389/fnut.2021.649025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 02/09/2021] [Indexed: 12/25/2022] Open
Affiliation(s)
- Sheetal Saini
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| | - Ambak Kumar Rai
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, India
| |
Collapse
|
8
|
RÊGO FELIPED, SOARES RODRIGOPEDRO. Lutzomyia longipalpis: an update on this sand fly vector. AN ACAD BRAS CIENC 2021. [DOI: 10.1590/0001-3765202120200254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
9
|
Bodhale N, Ohms M, Ferreira C, Mesquita I, Mukherjee A, André S, Sarkar A, Estaquier J, Laskay T, Saha B, Silvestre R. Cytokines and metabolic regulation: A framework of bidirectional influences affecting Leishmania infection. Cytokine 2020; 147:155267. [PMID: 32917471 DOI: 10.1016/j.cyto.2020.155267] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/14/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022]
Abstract
Leishmania, a protozoan parasite inflicting the complex of diseases called Leishmaniases, resides and replicates as amastigotes within mammalian macrophages. As macrophages are metabolically highly active and can generate free radicals that can destroy this parasite, Leishmania also devise strategies to modulate the host cell metabolism. However, the metabolic changes can also be influenced by the anti-leishmanial immune response mediated by cytokines. This bidirectional, dynamic and complex metabolic coupling established between Leishmania and its host is the result of a long co-evolutionary process. Due to the continuous alterations imposed by the host microenvironment, such metabolic coupling continues to be dynamically regulated. The constant pursuit and competition for nutrients in the host-Leishmania duet alter the host metabolic pathways with major consequences for its nutritional reserves, eventually affecting the phenotype and functionality of the host cell. Altered phenotype and functions of macrophages are particularly relevant to immune cells, as perturbed metabolic fluxes can crucially affect the activation, differentiation, and functions of host immune cells. All these changes can deterministically direct the outcome of an infection. Cytokines and metabolic fluxes can bidirectionally influence each other through molecular sensors and regulators to dictate the final infection outcome. Our studies along with those from others have now identified the metabolic nodes that can be targeted for therapy.
Collapse
Affiliation(s)
- Neelam Bodhale
- National Centre for Cell Science, 411007 Pune, India; Jagadis Bose National Science Talent Search (JBNSTS), Kolkata 700107 India
| | - Mareike Ohms
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck 23538, Germany
| | - Carolina Ferreira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Inês Mesquita
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | | | - Sónia André
- INSERM U1124, Université Paris Descartes, 75006 Paris, France
| | - Arup Sarkar
- Trident Academy of Creative Technology, Bhubaneswar, Odisha 751024, India
| | - Jérôme Estaquier
- INSERM U1124, Université Paris Descartes, 75006 Paris, France; Centre de Recherche du CHU de Québec - Université Laval, Québec, Canada
| | - Tamás Laskay
- Department of Infectious Diseases and Microbiology, University of Lübeck, Lübeck 23538, Germany
| | - Bhaskar Saha
- National Centre for Cell Science, 411007 Pune, India; Trident Academy of Creative Technology, Bhubaneswar, Odisha 751024, India
| | - Ricardo Silvestre
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
10
|
Barbosa-Lima G, Hottz ED, de Assis EF, Liechocki S, Souza TML, Zimmerman GA, Bozza FA, Bozza PT. Dengue virus-activated platelets modulate monocyte immunometabolic response through lipid droplet biogenesis and cytokine signaling. J Leukoc Biol 2020; 108:1293-1306. [PMID: 32663907 DOI: 10.1002/jlb.4ma0620-658r] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 06/11/2020] [Accepted: 06/28/2020] [Indexed: 01/09/2023] Open
Abstract
Dengue is characterized as one of the most important arthropod-borne human viral diseases, representing a public health problem. Increased activation of immune cells is involved in the progression of infection to severe forms. Recently, our group demonstrated the contribution of platelet-monocyte interaction to inflammatory responses in dengue, adding to evolving evidence that platelets have inflammatory functions and can regulate different aspects of innate immune responses. Furthermore, stimuli-specific-activated platelets can promote phenotypic changes and metabolic reprogramming in monocytes. Thus, this study aimed to evaluate the roles of dengue virus (DENV)-activated platelets on immunometabolic reprogramming of monocytes in vitro, focusing on lipid droplet (LD) biogenesis. We demonstrated that platelets exposed to DENV in vitro form aggregates with monocytes and signal to LD formation and CXCL8/IL-8, IL-10, CCL2, and PGE2 secretion. Pharmacologic inhibition of LD biogenesis prevents PGE2 secretion, but not CXCL8/IL-8 release, by platelet-monocyte complexes. In exploring the mechanisms involved, we demonstrated that LD formation in monocytes exposed to DENV-activated platelets is partially dependent on platelet-produced MIF. Additionally, LD formation is higher in monocytes, which have platelets adhered on their surface, suggesting that beyond paracrine signaling, platelet adhesion is an important event in platelet-mediated modulation of lipid metabolism in monocytes. Together, our results demonstrate that activated platelets aggregate with monocytes during DENV infection and signal to LD biogenesis and the secretion of inflammatory mediators, which may contribute to dengue immunopathogenesis.
Collapse
Affiliation(s)
- Giselle Barbosa-Lima
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Eugenio D Hottz
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil.,Laboratory of Immunothrombosis, Department of Biochemistry, Federal University of Juiz de Fora (UFJF), Juiz de Fora, MG, Brazil
| | - Edson F de Assis
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Sally Liechocki
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Thiago Moreno L Souza
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil.,National Institute for Science and Technology on Innovation on Neglected Diseases (INCT/IDN), Center for Technological Development in Health (CDTS), Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Guy A Zimmerman
- Molecular Medicine Program and Department of Internal Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Fernando A Bozza
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil.,Intensive Medicine Laboratory, National Institute of Infectious Disease Evandro Chagas, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil.,D'Or Institute of Research, Rio de Janeiro, RJ, Brazil
| | - Patricia T Bozza
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
11
|
Aldan JT, Jansen C, Speck M, Maaetoft-Udsen K, Cordasco EA, Faiai M, Shimoda LM, Greineisen WE, Turner H, Stokes AJ. Insulin-induced lipid body accumulation is accompanied by lipid remodelling in model mast cells. Adipocyte 2019; 8:265-279. [PMID: 31311389 PMCID: PMC6768188 DOI: 10.1080/21623945.2019.1636624] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Mast cell lipid bodies are key to initiation, maintenance and resolution of inflammatory responses in tissue. Mast cell lines, primary bone marrow-derived mast cells and peripheral blood basophils present a ‘steatotic’ phenotype in response to chronic insulin exposure, where cells become loaded with lipid bodies. Here we show this state is associated with reduced histamine release, but increased capacity to release bioactive lipids. We describe the overall lipid phenotype of mast cells in this insulin-induced steatotic state and the consequences for critical cellular lipid classes involved in stages of inflammation. We show significant insulin-induced shifts in specific lipid classes, especially arachidonic acid derivatives, MUFA and PUFA, the EPA/DHA ratio, and in cardiolipins, especially those conjugated to certain DHA and EPAs. Functionally, insulin exposure markedly alters the FcϵRI-induced release of Series 4 leukotriene LTC4, Series 2 prostaglandin PGD2, Resolvin-D1, Resolvin-D2 and Resolvin-1, reflecting the expanded precursor pools and impact on both the pro-inflammation and pro-resolution bioactive lipids that are released during mast cell activation. Chronic hyperinsulinemia is a feature of obesity and progression to Type 2 Diabetes, these data suggest that mast cell release of key lipid mediators is altered in patients with metabolic syndrome.
Collapse
Affiliation(s)
- Johnny T. Aldan
- Laboratory of Immunology and Signal Transduction, Chaminade University, Honolulu, HI, USA
- Laboratory of Experimental Medicine, John A. Burns School of Medicine, University of Hawai‘i, Honolulu, HI, USA
| | - Chad Jansen
- Laboratory of Immunology and Signal Transduction, Chaminade University, Honolulu, HI, USA
| | - Mark Speck
- Laboratory of Immunology and Signal Transduction, Chaminade University, Honolulu, HI, USA
| | | | - Edward A. Cordasco
- Laboratory of Immunology and Signal Transduction, Chaminade University, Honolulu, HI, USA
- Laboratory of Experimental Medicine, John A. Burns School of Medicine, University of Hawai‘i, Honolulu, HI, USA
| | - Mata’Uitafa Faiai
- Laboratory of Immunology and Signal Transduction, Chaminade University, Honolulu, HI, USA
| | - Lori M.N. Shimoda
- Laboratory of Immunology and Signal Transduction, Chaminade University, Honolulu, HI, USA
| | - William E. Greineisen
- Laboratory of Immunology and Signal Transduction, Chaminade University, Honolulu, HI, USA
| | - Helen Turner
- Laboratory of Immunology and Signal Transduction, Chaminade University, Honolulu, HI, USA
| | - Alexander J. Stokes
- Laboratory of Experimental Medicine, John A. Burns School of Medicine, University of Hawai‘i, Honolulu, HI, USA
| |
Collapse
|
12
|
Repurposing Butenafine as An Oral Nanomedicine for Visceral Leishmaniasis. Pharmaceutics 2019; 11:pharmaceutics11070353. [PMID: 31330776 PMCID: PMC6680852 DOI: 10.3390/pharmaceutics11070353] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/15/2019] [Accepted: 07/18/2019] [Indexed: 12/28/2022] Open
Abstract
Leishmaniasis is a neglected tropical disease affecting more than 12 million people worldwide, which in its visceral clinical form (VL) is characterised by the accumulation of parasites in the liver and spleen, and can lead to death if not treated. Available treatments are not well tolerated due to severe adverse effects, need for parenteral administration and patient hospitalisation, and long duration of expensive treatments. These treatment realities justify the search for new effective drugs, repurposing existing licensed drugs towards safer and non-invasive cost-effective medicines for VL. In this work, we provide proof of concept studies of butenafine and butenafine self-nanoemulsifying drug delivery systems (B-SNEDDS) against Leishmania infantum. Liquid B-SNEDDS were optimised using design of experiments, and then were spray-dried onto porous colloidal silica carriers to produce solid-B-SNEDDS with enhanced flow properties and drug stability. Optimal liquid B-SNEDDS consisted of Butenafine:Capryol 90:Peceol:Labrasol (3:49.5:24.2:23.3 w/w), which were then sprayed-dried with Aerosil 200 with a final 1:2 (Aerosil:liquid B-SNEDDS w/w) ratio. Spray-dried particles exhibited near-maximal drug loading, while maintaining excellent powder flow properties (angle of repose <10°) and sustained release in acidic gastrointestinal media. Solid-B-SNEDDS demonstrated greater selectivity index against promastigotes and L. infantum-infected amastigotes than butenafine alone. Developed oral solid nanomedicines enable the non-invasive and safe administration of butenafine as a cost-effective and readily scalable repurposed medicine for VL.
Collapse
|
13
|
Tomiotto-Pellissier F, Bortoleti BTDS, Assolini JP, Gonçalves MD, Carloto ACM, Miranda-Sapla MM, Conchon-Costa I, Bordignon J, Pavanelli WR. Macrophage Polarization in Leishmaniasis: Broadening Horizons. Front Immunol 2018; 9:2529. [PMID: 30429856 PMCID: PMC6220043 DOI: 10.3389/fimmu.2018.02529] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 10/15/2018] [Indexed: 01/14/2023] Open
Abstract
Leishmaniasis is a vector-borne neglected tropical disease that affects more than 700,000 people annually. Leishmania parasites cause the disease, and different species trigger a distinct immune response and clinical manifestations. Macrophages are the final host cells for the proliferation of Leishmania parasites, and these cells are the key to a controlled or exacerbated response that culminates in clinical manifestations. M1 and M2 are the two main macrophage phenotypes. M1 is a pro-inflammatory subtype with microbicidal properties, and M2, or alternatively activated, is an anti-inflammatory/regulatory subtype that is related to inflammation resolution and tissue repair. The present review elucidates the roles of M1 and M2 polarization in leishmaniasis and highlights the role of the salivary components of the vector and the action of the parasite in the macrophage plasticity.
Collapse
Affiliation(s)
- Fernanda Tomiotto-Pellissier
- Biosciences and Biotechnology Postgraduate Program, Carlos Chagas Institute (ICC), Fiocruz, Curitiba, Brazil.,Laboratory of Immunoparasitology, Department of Pathological Sciences, State University of Londrina, Londrina, Brazil
| | - Bruna Taciane da Silva Bortoleti
- Biosciences and Biotechnology Postgraduate Program, Carlos Chagas Institute (ICC), Fiocruz, Curitiba, Brazil.,Laboratory of Immunoparasitology, Department of Pathological Sciences, State University of Londrina, Londrina, Brazil
| | - João Paulo Assolini
- Laboratory of Immunoparasitology, Department of Pathological Sciences, State University of Londrina, Londrina, Brazil
| | - Manoela Daiele Gonçalves
- Laboratory of Biotransformation and Phytochemistry, Department of Chemistry, State University of Londrina, Universitary Hospital, Londrina, Brazil
| | | | | | - Ivete Conchon-Costa
- Laboratory of Immunoparasitology, Department of Pathological Sciences, State University of Londrina, Londrina, Brazil
| | - Juliano Bordignon
- Biosciences and Biotechnology Postgraduate Program, Carlos Chagas Institute (ICC), Fiocruz, Curitiba, Brazil.,Laboratory of Molecular Virology, Carlos Chagas Institute (ICC), Fiocruz, Curitiba, Brazil
| | - Wander Rogério Pavanelli
- Biosciences and Biotechnology Postgraduate Program, Carlos Chagas Institute (ICC), Fiocruz, Curitiba, Brazil.,Laboratory of Immunoparasitology, Department of Pathological Sciences, State University of Londrina, Londrina, Brazil
| |
Collapse
|
14
|
A Snake Venom-Secreted Phospholipase A 2 Induces Foam Cell Formation Depending on the Activation of Factors Involved in Lipid Homeostasis. Mediators Inflamm 2018; 2018:2547918. [PMID: 30013451 PMCID: PMC6022332 DOI: 10.1155/2018/2547918] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 03/29/2018] [Accepted: 05/06/2018] [Indexed: 01/18/2023] Open
Abstract
MT-III, a snake venom GIIA sPLA2, which shares structural and functional features with mammalian GIIA sPLA2s, activates macrophage defense functions including lipid droplet (LDs) formation, organelle involved in both lipid metabolism and inflammatory processes. Macrophages (MΦs) loaded with LDs, termed foam cells, characterize early blood vessel fatty-streak lesions during atherosclerosis. However, the factors involved in foam cell formation induced by a GIIA sPLA2 are still unknown. Here, we investigated the participation of lipid homeostasis-related factors in LD formation induced by MT-III in macrophages. We found that MT-III activated PPAR-γ and PPAR-β/δ and increased the protein levels of both transcription factors and CD36 in macrophages. Pharmacological interventions evidenced that PPAR-γ, PPAR-β/δ, and CD36 as well as the endoplasmic reticulum enzymes ACAT and DGAT are essential for LD formation. Moreover, PPAR-β/δ, but not PPAR-γ, is involved in MT-III-induced PLIN2 protein expression, and both PPAR-β/δ and PPAR-γ upregulated CD36 protein expression, which contributes to MT-III-induced COX-2 expression. Furthermore, production of 15-d-PGJ2, an activator of PPARs, induced by MT-III, was dependent on COX-1 being LDs an important platform for generation of this mediator.
Collapse
|
15
|
Vallochi AL, Teixeira L, Oliveira KDS, Maya-Monteiro CM, Bozza PT. Lipid Droplet, a Key Player in Host-Parasite Interactions. Front Immunol 2018; 9:1022. [PMID: 29875768 PMCID: PMC5974170 DOI: 10.3389/fimmu.2018.01022] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/24/2018] [Indexed: 12/18/2022] Open
Abstract
Lipid droplets (lipid bodies, LDs) are dynamic organelles that have important roles in regulating lipid metabolism, energy homeostasis, cell signaling, membrane trafficking, and inflammation. LD biogenesis, composition, and functions are highly regulated and may vary according to the stimuli, cell type, activation state, and inflammatory environment. Increased cytoplasmic LDs are frequently observed in leukocytes and other cells in a number of infectious diseases. Accumulating evidence reveals LDs participation in fundamental mechanisms of host-pathogen interactions, including cell signaling and immunity. LDs are sources of eicosanoid production, and may participate in different aspects of innate signaling and antigen presentation. In addition, intracellular pathogens evolved mechanisms to subvert host metabolism and may use host LDs, as ways of immune evasion and nutrients source. Here, we review mechanisms of LDs biogenesis and their contributions to the infection progress, and discuss the latest discoveries on mechanisms and pathways involving LDs roles as regulators of the immune response to protozoan infection.
Collapse
Affiliation(s)
- Adriana Lima Vallochi
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | | | | | | | - Patricia T. Bozza
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| |
Collapse
|
16
|
Batista LFS, Utsunomiya YT, Silva TBF, Carneiro MM, Paiva JSF, Silva RB, Tomokane TY, Rossi CN, Pacheco AD, Torrecilha RBP, Silveira FT, Marcondes M, Nunes CM, Laurenti MD. Canine leishmaniasis: Genome-wide analysis and antibody response to Lutzomyia longipalpis saliva. PLoS One 2018; 13:e0197215. [PMID: 29742167 PMCID: PMC5942812 DOI: 10.1371/journal.pone.0197215] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 04/27/2018] [Indexed: 01/22/2023] Open
Abstract
The anti-inflammatory properties of sand fly saliva favor the establishment of the Leishmania infantum infection. In contrast, an antibody response against Lutzomyia longipalpis saliva is often associated with a protective cell-mediated response against canine visceral leishmaniasis. Genetic studies may demonstrate to what extent the ability to secrete anti-saliva antibodies depends on genetic or environmental factors. However, the genetic basis of canine antibody response against sand fly saliva has not been assessed. The aim of this study was to identify chromosomal regions associated with the anti-Lu. longipalpis salivary IgG response in 189 dogs resident in endemic areas in order to provide information for prophylactic strategies. Dogs were classified into five groups based on serological and parasitological diagnosis and clinical evaluation. Anti-salivary gland homogenate (SGH) IgG levels were assessed by Enzyme-Linked Immunosorbent Assay (ELISA). Genomic DNA was isolated from blood samples and genotyped using a SNP chip with 173,662 single nucleotide polymorphism (SNP) markers. The following linear regression model was fitted: IgG level = mean + origin + sex + age + use of a repellent collar, and the residuals were assumed as pseudo-phenotypes for the association test between phenotypes and genotypes (GWA). A component of variance model that takes into account polygenic and sample structure effects (EMMAX) was employed for GWA. Phenotypic findings indicated that anti-SGH IgG levels remained higher in exposed and subclinically infected dogs than in severely diseased dogs even in regression model residuals. Five associated markers were identified on chromosomes 2, 20 and 31. The mapped genes included CD180 (RP105) and MITF related to the rapid activation of B lymphocytes and differentiation into antibody-secreting plasma cells. The findings pointed to chromosomal segments useful for functional confirmation studies and a search for adjuvant molecules of the anti-saliva response.
Collapse
Affiliation(s)
- Luís F. S. Batista
- Departamento de Patologia Veterinária, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, Brazil
- Escola de Saúde, Universidade Salvador, Salvador, Bahia, Brazil
| | - Yuri T. Utsunomiya
- Departamento de Medicina Veterinária Preventiva e Reprodução Animal, Faculdade de Ciências Agrárias e Veterinárias, Univ Estadual Paulista, Jaboticabal, São Paulo, Brazil
| | - Thaís B. F. Silva
- Laboratório de Patologia de Doenças Infecciosas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | | | | | | | - Thaíse Y. Tomokane
- Laboratório de Patologia de Doenças Infecciosas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Claudio N. Rossi
- Departmento de Clínica, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, Brazil
| | - Acácio D. Pacheco
- Departamento de Clínica, Cirurgia e Reprodução Animal, Faculdade de Medicina Veterinária, Univ Estadual Paulista, Araçatuba, São Paulo, Brazil
| | - Rafaela B. P. Torrecilha
- Departamento de Medicina Veterinária Preventiva e Reprodução Animal, Faculdade de Ciências Agrárias e Veterinárias, Univ Estadual Paulista, Jaboticabal, São Paulo, Brazil
| | - Fernando T. Silveira
- Deparatmento de Parasitologia, Instituto Evandro Chagas, Ananindeua, Pará, Brazil
| | - Mary Marcondes
- Departamento de Clínica, Cirurgia e Reprodução Animal, Faculdade de Medicina Veterinária, Univ Estadual Paulista, Araçatuba, São Paulo, Brazil
| | - Cáris M. Nunes
- Departmento de Saúde Animal e Produção, Faculdade de Medicina Veterinária, Univ Estadual Paulista, Araçatuba, São Paulo, Brazil
| | - Márcia D. Laurenti
- Laboratório de Patologia de Doenças Infecciosas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
17
|
Teixeira CR, Santos CDS, Prates DB, Dos Santos RT, Araújo-Santos T, de Souza-Neto SM, Borges VM, Barral-Netto M, Brodskyn CI. Lutzomyia longipalpis Saliva Drives Interleukin-17-Induced Neutrophil Recruitment Favoring Leishmania infantum Infection. Front Microbiol 2018; 9:881. [PMID: 29867796 PMCID: PMC5953329 DOI: 10.3389/fmicb.2018.00881] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 04/17/2018] [Indexed: 11/22/2022] Open
Abstract
During bloodfeeding, the presence of sand fly saliva in the hemorrhagic pool where Leishmania is also inoculated modulates the development of host immune mechanisms creating a favorable environment for disease progression. To date, information obtained through experimental models suggests that sand fly saliva induces cellular recruitment and modulates production of eicosanoids. However, the effect of sand fly saliva in the different steps of the inflammatory response triggered by Leishmania remains undefined. Here we further investigate if interaction of Lutzomyia longipalpis salivary gland sonicate (SGS) with different host cells present during the initial inflammatory events regulate Leishmania infantum infectivity. Initially, we observed that incubation of human peripheral blood mononuclear cells (PBMC) with Lu. longipalpis SGS in the presence of L. infantum significantly increased IL-10 but did not alter expression of IFN-γ and TNF-α by CD4+ T cells induced by the parasite alone. Interestingly, incubation of PBMC with Lu. longipalpis SGS alone or in the presence of L. infantum resulted in increased IL-17 production. The presence of IL-17 is related to neutrophil recruitment and plays an important role at the site of infection. Here, we also observed increased migration of neutrophil using an in vitro chemotactic assay following incubation with supernatants from PBMC stimulated with L. infantum and Lu. longipalpis SGS. Neutrophil migration was abrogated following neutralization of IL-17 with specific antibodies. Moreover, culture of human neutrophils with L. infantum in the presence of Lu. longipalpis SGS promoted neutrophil apoptosis resulting in increased parasite viability. Neutrophils operate as the first line of defense in the early stages of infection and later interact with different cells, such as macrophages. The crosstalk between neutrophils and macrophages is critical to determine the type of specific immune response that will develop. Here, we observed that co-culture of human macrophages with autologous neutrophils previously infected in the presence of Lu. longipalpis SGS resulted in a higher infection rate, accompanied by increased production of TGF-β and PGE2. Our results provide new insight into the contribution of Lu. longipalpis SGS to L. infantum-induced regulation of important inflammatory events, creating a favorable environment for parasite survival inside different host cells.
Collapse
Affiliation(s)
| | | | - Deboraci B Prates
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil.,Instituto de Ciências da Saúde da Universidade Federal da Bahia, Departamentos de Biomorfologia e Biointeração, Salvador, Brazil
| | | | - Théo Araújo-Santos
- Centro de Ciências Biológicas e Saúde, Universidade Federal do Oeste da Bahia, Barreiras, Brazil
| | | | - Valéria M Borges
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
| | - Manoel Barral-Netto
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil.,Faculdade de Medicina da Universidade Federal da Bahia, Departamento de Patologia e Medicina Legal, Salvador, Brazil.,Instituto de Investigação em Imunologia, iii-INCT, São Paulo, Brazil
| | - Cláudia I Brodskyn
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil.,Instituto de Ciências da Saúde da Universidade Federal da Bahia, Departamentos de Biomorfologia e Biointeração, Salvador, Brazil.,Instituto de Investigação em Imunologia, iii-INCT, São Paulo, Brazil
| |
Collapse
|
18
|
Lima JB, Araújo-Santos T, Lázaro-Souza M, Carneiro AB, Ibraim IC, Jesus-Santos FH, Luz NF, Pontes SDM, Entringer PF, Descoteaux A, Bozza PT, Soares RP, Borges VM. Leishmania infantum lipophosphoglycan induced-Prostaglandin E 2 production in association with PPAR-γ expression via activation of Toll like receptors-1 and 2. Sci Rep 2017; 7:14321. [PMID: 29084985 PMCID: PMC5662570 DOI: 10.1038/s41598-017-14229-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 10/05/2017] [Indexed: 01/16/2023] Open
Abstract
Lipophosphoglycan (LPG) is a key virulence factor expressed on the surfaces of Leishmania promastigotes. Although LPG is known to activate macrophages, the underlying mechanisms resulting in the production of prostaglandin E2 (PGE2) via signaling pathways remain unknown. Here, the inflammatory response arising from stimulation by Leishmania infantum LPG and/or its lipid and glycan motifs was evaluated with regard to PGE2 induction. Intact LPG, but not its glycan and lipid moieties, induced a range of proinflammatory responses, including PGE2 and nitric oxide (NO) release, increased lipid droplet formation, and iNOS and COX2 expression. LPG also induced ERK-1/2 and JNK phosphorylation in macrophages, in addition to the release of PGE2, MCP-1, IL-6, TNF-α and IL-12p70, but not IL-10. Pharmacological inhibition of ERK1/2 and PKC affected PGE2 and cytokine production. Moreover, treatment with rosiglitazone, an agonist of peroxisome proliferator-activated receptor gamma (PPAR-γ), also modulated the release of PGE2 and other proinflammatory mediators. Finally, we determined that LPG-induced PPAR-γ signaling occurred via TLR1/2. Taken together, these results reinforce the role played by L. infantum-derived LPG in the proinflammatory response seen in Leishmania infection.
Collapse
Affiliation(s)
- Jonilson Berlink Lima
- Gonçalo Moniz Institut, Oswaldo Cruz Foundation (FIOCRUZ-BA), 40296-710, Salvador, BA, Brazil.,Center of Biological Sciences and Health, Federal University of Western Bahia (UFOB), 47808-021, Barreiras, BA, Brazil
| | - Théo Araújo-Santos
- Gonçalo Moniz Institut, Oswaldo Cruz Foundation (FIOCRUZ-BA), 40296-710, Salvador, BA, Brazil.,Center of Biological Sciences and Health, Federal University of Western Bahia (UFOB), 47808-021, Barreiras, BA, Brazil
| | - Milena Lázaro-Souza
- Gonçalo Moniz Institut, Oswaldo Cruz Foundation (FIOCRUZ-BA), 40296-710, Salvador, BA, Brazil.,Federal University of Bahia (UFBA), 40110-170, Salvador, BA, Brazil
| | - Alan Brito Carneiro
- Laboratory of Immunopharmacology, Oswaldo Cruz Institut, FIOCRUZ-RJ, 21040-900, Rio de Janeiro, RJ, Brazil
| | - Izabela Coimbra Ibraim
- René Rachou Institut, Oswaldo Cruz Foundation (FIOCRUZ-MG), 30190-002, Belo Horizonte, MG, Brazil
| | - Flávio Henrique Jesus-Santos
- Gonçalo Moniz Institut, Oswaldo Cruz Foundation (FIOCRUZ-BA), 40296-710, Salvador, BA, Brazil.,Federal University of Bahia (UFBA), 40110-170, Salvador, BA, Brazil
| | - Nívea Farias Luz
- Gonçalo Moniz Institut, Oswaldo Cruz Foundation (FIOCRUZ-BA), 40296-710, Salvador, BA, Brazil
| | - Sara de Moura Pontes
- Gonçalo Moniz Institut, Oswaldo Cruz Foundation (FIOCRUZ-BA), 40296-710, Salvador, BA, Brazil.,Federal University of Bahia (UFBA), 40110-170, Salvador, BA, Brazil
| | - Petter Franco Entringer
- Federal University of Rio de Janeiro (UFRJ), NUPEM, Campus Macaé, 27933-378, Macaé, RJ, Brazil
| | - Albert Descoteaux
- Institut National de la Recherche Scientifique, Institut Armand-Frappier, H7V 1B7, Laval, Canada
| | - Patrícia Torres Bozza
- Laboratory of Immunopharmacology, Oswaldo Cruz Institut, FIOCRUZ-RJ, 21040-900, Rio de Janeiro, RJ, Brazil
| | - Rodrigo Pedro Soares
- René Rachou Institut, Oswaldo Cruz Foundation (FIOCRUZ-MG), 30190-002, Belo Horizonte, MG, Brazil.
| | - Valéria Matos Borges
- Gonçalo Moniz Institut, Oswaldo Cruz Foundation (FIOCRUZ-BA), 40296-710, Salvador, BA, Brazil. .,Federal University of Bahia (UFBA), 40110-170, Salvador, BA, Brazil.
| |
Collapse
|
19
|
Lestinova T, Rohousova I, Sima M, de Oliveira CI, Volf P. Insights into the sand fly saliva: Blood-feeding and immune interactions between sand flies, hosts, and Leishmania. PLoS Negl Trop Dis 2017; 11:e0005600. [PMID: 28704370 PMCID: PMC5509103 DOI: 10.1371/journal.pntd.0005600] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background Leishmaniases are parasitic diseases present worldwide that are transmitted to the vertebrate host by the bite of an infected sand fly during a blood feeding. Phlebotomine sand flies inoculate into the mammalian host Leishmania parasites embedded in promastigote secretory gel (PSG) with saliva, which is composed of a diverse group of molecules with pharmacological and immunomodulatory properties. Methods and findings In this review, we focus on 3 main aspects of sand fly salivary molecules: (1) structure and composition of salivary glands, including the properties of salivary molecules related to hemostasis and blood feeding, (2) immunomodulatory properties of salivary molecules and the diverse impacts of these molecules on leishmaniasis, ranging from disease exacerbation to vaccine development, and (3) use of salivary molecules for field applications, including monitoring host exposure to sand flies and the risk of Leishmania transmission. Studies showed interesting differences between salivary proteins of Phlebotomus and Lutzomyia species, however, no data were ever published on salivary proteins of Sergentomyia species. Conclusions In the last 15 years, numerous studies have characterized sand fly salivary proteins and, in parallel, have addressed the impact of such molecules on the biology of the host–sand fly–parasite interaction. The results obtained shall pave the way for the development of field-application tools that could contribute to the management of leishmaniasis in endemic areas.
Collapse
Affiliation(s)
- Tereza Lestinova
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
- * E-mail:
| | - Iva Rohousova
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Michal Sima
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | | | - Petr Volf
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
20
|
A snake venom group IIA PLA 2 with immunomodulatory activity induces formation of lipid droplets containing 15-d-PGJ 2 in macrophages. Sci Rep 2017. [PMID: 28642580 PMCID: PMC5481388 DOI: 10.1038/s41598-017-04498-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Crotoxin B (CB) is a catalytically active group IIA sPLA2 from Crotalus durissus terrificus snake venom. In contrast to most GIIA sPLA2s, CB exhibits anti-inflammatory effects, including the ability to inhibit leukocyte functions. Lipid droplets (LDs) are lipid-rich organelles associated with inflammation and recognized as a site for the synthesis of inflammatory lipid mediators. Here, the ability of CB to induce formation of LDs and the mechanisms involved in this effect were investigated in isolated macrophages. The profile of CB-induced 15-d-PGJ2 (15-Deoxy-Delta-12,14-prostaglandin J2) production and involvement of LDs in 15-d-PGJ2 biosynthesis were also investigated. Stimulation of murine macrophages with CB induced increased number of LDs and release of 15-d-PGJ2. LDs induced by CB were associated to PLIN2 recruitment and expression and required activation of PKC, PI3K, MEK1/2, JNK, iPLA2 and PLD. Both 15-d-PGJ2 and COX-1 were found in CB-induced LDs indicating that LDs contribute to the inhibitory effects of CB by acting as platform for synthesis of 15-d-PGJ2, a pro-resolving lipid mediator. Together, our data indicate that an immunomodulatory GIIA sPLA2 can directly induce LD formation and production of a pro-resolving mediator in an inflammatory cell and afford new insights into the roles of LDs in resolution of inflammatory processes.
Collapse
|
21
|
Rodríguez NE, Lockard RD, Turcotte EA, Araújo-Santos T, Bozza PT, Borges VM, Wilson ME. Lipid bodies accumulation in Leishmania infantum-infected C57BL/6 macrophages. Parasite Immunol 2017; 39. [PMID: 28518475 DOI: 10.1111/pim.12443] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 05/14/2017] [Indexed: 12/20/2022]
Abstract
Lipid bodies (LBs) are intracellular accumulations of neutral lipids surrounded by a single membrane. These organelles are involved in the production of eicosanoids, which modulate immunity by either promoting or dampening inflammatory responses. Leishmania infantum, the etiological agent of visceral leishmaniasis in Brazil, is an intracellular parasite that causes disease by suppressing macrophage microbicidal responses. C57BL/6 mouse bone marrow-derived macrophages infected with L. infantum strain LcJ had higher numbers of LB+ cells (P<.0001) and total LBs than noninfected cultures. Large (>3 μm) LBs were present inside parasitophorous vacuoles (PVs). These results contrast with those of L. infantum-infected BALB/c macrophages, in which the only LBs are derived from parasite, not macrophage origin. Increased LBs in C57BL/6 macrophages in close association with parasites would position host LBs where they could modulate L. infantum infection. These results imply a potential influence of the host genetics on the role of LBs in host-pathogen interactions. Overall, our data support a model in which the expression, and the role of LBs upon infection, ultimately depends on the specific combination of host-pathogen interactions.
Collapse
Affiliation(s)
- N E Rodríguez
- Department of Biology, University of Northern Iowa, Cedar Falls, IA, USA
| | - R D Lockard
- Department of Biology, University of Northern Iowa, Cedar Falls, IA, USA
| | - E A Turcotte
- Department of Biology, University of Northern Iowa, Cedar Falls, IA, USA
| | - T Araújo-Santos
- Center of Biological Sciences and Health, Federal University of Western Bahia (UFOB), Barreiras, BA, Brazil
| | - P T Bozza
- Laboratory of Immunopharmacology, Oswaldo Cruz Institut, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | - V M Borges
- Gonçalo Moniz Institut, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, BA, Brazil
| | - M E Wilson
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA.,Department of Microbiology, University of Iowa, Iowa City, IA, USA.,Veterans' Affairs Medical Center, Iowa City, IA, USA
| |
Collapse
|
22
|
Arcanjo AF, Nunes MP, Silva-Junior EB, Leandro M, Rocha JDBD, Morrot A, Decote-Ricardo D, Freire-de-Lima CG. B-1 cells modulate the murine macrophage response to Leishmania major infection. World J Biol Chem 2017; 8:151-162. [PMID: 28588758 PMCID: PMC5439166 DOI: 10.4331/wjbc.v8.i2.151] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Revised: 12/16/2016] [Accepted: 03/17/2017] [Indexed: 02/05/2023] Open
Abstract
AIM To investigate the modulatory effect of B-1 cells on murine peritoneal macrophages infected with Leishmania major (L. major) in vitro.
METHODS Peritoneal macrophages obtained from BALB/c and BALB/c XID mice were infected with L. major and cultured in the presence or absence of B-1 cells obtained from wild-type BALB/c mice. Intracellular amastigotes were counted, and interleukin-10 (IL-10) production was quantified in the cellular supernatants using an enzyme-linked immunosorbent assay. The levels of the lipid mediator prostaglandin E2 (PGE2) were determined using a PGE2 enzyme immunoassay kit (Cayman Chemical, Ann Arbor, MI), and the number of lipid bodies was quantified in the cytoplasm of infected macrophages in the presence and absence of B-1 cells. Culturing the cells with selective PGE2-neutralizing drugs inhibited PGE2 production and confirmed the role of this lipid mediator in IL-10 production. In contrast, we demonstrated that B-1 cells derived from IL-10 KO mice did not favor the intracellular growth of L. major.
RESULTS We report that B-1 cells promote the growth of L. major amastigotes inside peritoneal murine macrophages. We demonstrated that the modulatory effect was independent of physical contact between the cells, suggesting that soluble factor(s) were released into the cultures. We demonstrated in our co-culture system that B-1 cells trigger IL-10 production by L. major-infected macrophages. Furthermore, the increased secretion of IL-10 was attributed to the presence of the lipid mediator PGE2 in supernatants of L. major-infected macrophages. The presence of B-1 cells also favors the production of lipid bodies by infected macrophages. In contrast, we failed to obtain the same effect on parasite replication inside L. major-infected macrophages when the B-1 cells were isolated from IL-10 knockout mice.
CONCLUSION Our results show that elevated levels of PGE2 and IL-10 produced by B-1 cells increase L. major growth, as indicated by the number of parasites in cell cultures.
Collapse
|
23
|
Hu X, Binns D, Reese ML. The coccidian parasites Toxoplasma and Neospora dysregulate mammalian lipid droplet biogenesis. J Biol Chem 2017; 292:11009-11020. [PMID: 28487365 DOI: 10.1074/jbc.m116.768176] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 05/05/2017] [Indexed: 11/06/2022] Open
Abstract
Upon infection, the intracellular parasite Toxoplasma gondii co-opts critical functions of its host cell to avoid immune clearance and gain access to nutritional resources. One route by which Toxoplasma co-opts its host cell is through hijacking host organelles, many of which have roles in immunomodulation. Here we demonstrate that Toxoplasma infection results in increased biogenesis of host lipid droplets through rewiring of multiple components of host neutral lipid metabolism. These metabolic changes cause increased responsiveness of host cells to free fatty acid, leading to a radical increase in the esterification of free fatty acids into triacylglycerol. We identified c-Jun kinase and mammalian target of rapamycin (mTOR) as components of two distinct host signaling pathways that modulate the parasite-induced lipid droplet accumulation. We also found that, unlike many host processes dysregulated during Toxoplasma infection, the induction of lipid droplet generation is conserved not only during infection with genetically diverse Toxoplasma strains but also with Neospora caninum, which is closely related to Toxoplasma but has a restricted host range and uses different effector proteins to alter host signaling. Finally, by showing that a Toxoplasma strain deficient in exporting a specific class of effectors is unable to induce lipid droplet accumulation, we demonstrate that the parasite plays an active role in this process. These results indicate that, despite their different host ranges, Toxoplasma and Neospora use a conserved mechanism to co-opt these host organelles, which suggests that lipid droplets play a critical role at the coccidian host-pathogen interface.
Collapse
Affiliation(s)
- Xiaoyu Hu
- From the Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9041
| | - Derk Binns
- From the Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9041
| | - Michael L Reese
- From the Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9041
| |
Collapse
|
24
|
Valverde JG, Paun A, Inbar E, Romano A, Lewis M, Ghosh K, Sacks D. Increased Transmissibility of Leishmania donovani From the Mammalian Host to Vector Sand Flies After Multiple Exposures to Sand Fly Bites. J Infect Dis 2017; 215:1285-1293. [PMID: 28329329 PMCID: PMC5853764 DOI: 10.1093/infdis/jix115] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/06/2017] [Indexed: 11/14/2022] Open
Abstract
Background Patients with active visceral leishmaniasis are important reservoirs in the anthroponotic transmission cycle of Leishmania donovani. The role of the blood or skin as a source of infection to sand flies remains unclear, and the possible effect of multiple exposures to fly bites on transmissibility has not been addressed. Methods L. donovani-infected hamsters underwent xenodiagnoses with Lutzomyia longipalpis on the same or different sites on the abdomen on 2 consecutive days or by artificial feeding on the skin or blood. Results The transmission of L. donovani from sick hamsters to flies was surprisingly low (mean, 24% of fed flies). New flies fed on the same site acquired significantly more infections (mean, 61%; P < .0001). By artificial feeding, flies could acquire infection from blood and skin. However, only artificial feeding on blood produced infections that correlated with the natural feeding (R = 0.792; P < .0001). Infections acquired from blood increased dramatically for blood obtained after exposure to bites, as did the parasitemia level and the number of monocytes in the circulation. Conclusions The bites of uninfected sand flies favor the transmissibility of L. donovani by infected hosts, owing to a systemic effect that exposure to bites has on the parasitemia. Patients with active visceral leishmaniasis are important reservoirs in the anthroponotic transmission cycle of Leishmania donovani. Using the hamster model of visceral disease, we demonstrate that prior exposure to bites of uninfected sand flies potentiates their ability to transmit infection to the vector.
Collapse
Affiliation(s)
- Joanna G Valverde
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Andrea Paun
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Ehud Inbar
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Audrey Romano
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Michael Lewis
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Kashinath Ghosh
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - David Sacks
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
25
|
Mendes MT, Carvalho-Costa TM, da Silva MV, Anhê ACBM, Guimarães RM, da Costa TA, Ramirez LE, Rodrigues V, Oliveira CJF. Effect of the saliva from different triatomine species on the biology and immunity of TLR-4 ligand and Trypanosoma cruzi-stimulated dendritic cells. Parasit Vectors 2016; 9:634. [PMID: 27938380 PMCID: PMC5148907 DOI: 10.1186/s13071-016-1890-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 11/16/2016] [Indexed: 02/07/2023] Open
Abstract
Background Triatomines are blood-sucking vectors of Trypanosoma cruzi, the causative agent of Chagas disease. During feeding, triatomines surpass the skin host response through biomolecules present in their saliva. Dendritic cells (DCs) play a crucial role in the induction of the protection to aggressive agents, including blood-sucking arthropods. Here, we evaluated if salivary components of triatomines from different genera evade the host immunity by modulating the biology and the function of LPS- or T. cruzi-stimulated DCs. Methods Saliva of Panstrongylus lignarius, Meccus pallidipennis, Triatoma lecticularia and Rhodnius prolixus were obtained by dissection of salivary glands and the DCs were obtained from the differentiation of mouse bone marrow precursors. Results The differentiation of DCs was inhibited by saliva of all species tested. Saliva differentially inhibited the expression of MHC-II, CD40, CD80 and CD86 in LPS-matured DCs. Except for the saliva of R. prolixus, which induced IL-6 cytokine production, TNF-α, IL-12 and IL-6 were inhibited by the saliva of the other three tested species and IL-10 was increased in all of them. Saliva per se, also induced the production of IL-12, IL-6 and IL-10. Only the saliva of R. prolixus induced DCs apoptosis. The presence of PGE2 was not detected in the saliva of the four triatomines studied. Finally, T. cruzi invasion on DCs is enhanced by the presence of the triatomine saliva. Conclusions These results demonstrate that saliva from different triatomine species exhibit immunomodulatory effects on LPS and T. cruzi-stimulated DCs. These effects could be related to hematophagy and transmission of T. cruzi during feeding. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1890-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maria Tays Mendes
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA.,Laboratory of Immunology, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | | | - Marcos Vinicius da Silva
- Laboratory of Immunology, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil.
| | | | - Rafaela Mano Guimarães
- Laboratory of Immunology, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Thiago Alvares da Costa
- Laboratory of Immunology, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Luis Eduardo Ramirez
- Laboratory of Immunology, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Virmondes Rodrigues
- Laboratory of Immunology, Federal University of Triângulo Mineiro, Uberaba, Minas Gerais, Brazil
| | | |
Collapse
|
26
|
Chaves MM, Canetti C, Coutinho-Silva R. Crosstalk between purinergic receptors and lipid mediators in leishmaniasis. Parasit Vectors 2016; 9:489. [PMID: 27595742 PMCID: PMC5011846 DOI: 10.1186/s13071-016-1781-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 08/29/2016] [Indexed: 11/10/2022] Open
Abstract
Leishmaniasis is a neglected tropical disease affecting millions of people around the world caused by organisms of the genus Leishmania. Parasite escape mechanisms of the immune system confer the possibility of resistance and dissemination of the disease. A group of molecules that has become a target for Leishmania survival strategies are lipid mediators. Among them, leukotriene B4 (LTB4) has been described as a pro-inflammatory molecule capable of activating cells of the immune system to combat Leishmania. In an opposite way, prostaglandin E2 (PGE2) is a lipid mediator described as a deactivator of macrophages and neutrophils. The balance of these two molecules can be generated by extracellular nucleotides, such as adenosine 5'-triphosphate (ATP) and adenosine (Ado), which activate the purinergic receptors system. Herein, we discuss the role of extracellular nucleotides and the resulting balance of LTB4 and PGE2 in Leishmania fate, survival or death.
Collapse
Affiliation(s)
- Mariana M Chaves
- Laboratory of Immunophysiology, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil.,Laboratory of Inflammation, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil.,National Institute of Translational Research in Health and Environment in the Amazon Region, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Cláudio Canetti
- Laboratory of Inflammation, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil.,National Institute of Translational Research in Health and Environment in the Amazon Region, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Robson Coutinho-Silva
- Laboratory of Immunophysiology, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil. .,National Institute of Translational Research in Health and Environment in the Amazon Region, Biophysics Institute Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941-902, Brazil.
| |
Collapse
|
27
|
Soayfane Z, Tercé F, Cantiello M, Robenek H, Nauze M, Bézirard V, Allart S, Payré B, Capilla F, Cartier C, Peres C, Al Saati T, Théodorou V, Nelson DW, Yen CLE, Collet X, Coméra C. Exposure to dietary lipid leads to rapid production of cytosolic lipid droplets near the brush border membrane. Nutr Metab (Lond) 2016; 13:48. [PMID: 27478484 PMCID: PMC4965885 DOI: 10.1186/s12986-016-0107-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 07/21/2016] [Indexed: 12/17/2022] Open
Abstract
Background Intestinal absorption of dietary lipids involves their hydrolysis in the lumen of proximal intestine as well as uptake, intracellular transport and re-assembly of hydrolyzed lipids in enterocytes, leading to the formation and secretion of the lipoproteins chylomicrons and HDL. In this study, we examined the potential involvement of cytosolic lipid droplets (CLD) whose function in the process of lipid absorption is poorly understood. Methods Intestinal lipid absorption was studied in mouse after gavage. Three populations of CLD were purified by density ultracentrifugations, as well as the brush border membranes, which were analyzed by western-blots. Immunofluorescent localization of membranes transporters or metabolic enzymes, as well as kinetics of CLD production, were also studied in intestine or Caco-2 cells. Results We isolated three populations of CLD (ranging from 15 to 1000 nm) which showed differential expression of the major lipid transporters scavenger receptor BI (SR-BI), cluster of differentiation 36 (CD-36), Niemann Pick C-like 1 (NPC1L1), and the ATP-binding cassette transporters ABCG5/G8 but also caveolin 2 and fatty acid binding proteins. The enzyme monoacylglycerol acyltransferase 2 (MGAT2) was identified in the brush border membrane (BBM) in addition to the endoplasmic reticulum, suggesting local synthesis of triglycerides and CLD at both places. Conclusions We show a very fast production of CLD by enterocytes associated with a transfer of apical constituents as lipid transporters. Our findings suggest that following their uptake by enterocytes, lipids can be partially metabolized at the BBM and packaged into CLD for their transportation to the ER. Electronic supplementary material The online version of this article (doi:10.1186/s12986-016-0107-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zeina Soayfane
- Institut des Maladies Métaboliques et Cardiovasculaires - I2MC, UMR 1048, Institut National de la Santé et de la Recherche Médicale, Université Toulouse III Paul Sabatier, Toulouse, F-31000 France
| | - François Tercé
- Institut des Maladies Métaboliques et Cardiovasculaires - I2MC, UMR 1048, Institut National de la Santé et de la Recherche Médicale, Université Toulouse III Paul Sabatier, Toulouse, F-31000 France
| | - Michela Cantiello
- Institut des Maladies Métaboliques et Cardiovasculaires - I2MC, UMR 1048, Institut National de la Santé et de la Recherche Médicale, Université Toulouse III Paul Sabatier, Toulouse, F-31000 France
| | - Horst Robenek
- Leibniz-Institut für Arterioskleroseforschung, Universität Münster, Münster, Germany
| | - Michel Nauze
- Institut des Maladies Métaboliques et Cardiovasculaires - I2MC, UMR 1048, Institut National de la Santé et de la Recherche Médicale, Université Toulouse III Paul Sabatier, Toulouse, F-31000 France
| | - Valérie Bézirard
- UMR 1331 Toxalim, INRA, Université de Toulouse, ENVT, INP-Purpan, 180 chemin de Tournefeuille, BP 93173, 31027 Toulouse, cedex 3, France
| | - Sophie Allart
- INSERM UMR 1043 (INSERM/UPS/CNRS/USC Inra), CHU Purpan, Toulouse, France
| | - Bruno Payré
- CMEAB, Faculté de Médecine Rangueil, Toulouse, France
| | - Florence Capilla
- INSERM/UPS - US006/CREFRE, Service d'Histopathologie, CHU Purpan, Toulouse, France
| | - Christel Cartier
- UMR 1331 Toxalim, INRA, Université de Toulouse, ENVT, INP-Purpan, 180 chemin de Tournefeuille, BP 93173, 31027 Toulouse, cedex 3, France
| | - Christine Peres
- Institut des Maladies Métaboliques et Cardiovasculaires - I2MC, UMR 1048, Institut National de la Santé et de la Recherche Médicale, Université Toulouse III Paul Sabatier, Toulouse, F-31000 France
| | - Talal Al Saati
- INSERM/UPS - US006/CREFRE, Service d'Histopathologie, CHU Purpan, Toulouse, France
| | - Vassilia Théodorou
- UMR 1331 Toxalim, INRA, Université de Toulouse, ENVT, INP-Purpan, 180 chemin de Tournefeuille, BP 93173, 31027 Toulouse, cedex 3, France
| | - David W Nelson
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI USA
| | - Chi-Liang Eric Yen
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI USA
| | - Xavier Collet
- Institut des Maladies Métaboliques et Cardiovasculaires - I2MC, UMR 1048, Institut National de la Santé et de la Recherche Médicale, Université Toulouse III Paul Sabatier, Toulouse, F-31000 France
| | - Christine Coméra
- Institut des Maladies Métaboliques et Cardiovasculaires - I2MC, UMR 1048, Institut National de la Santé et de la Recherche Médicale, Université Toulouse III Paul Sabatier, Toulouse, F-31000 France.,UMR 1331 Toxalim, INRA, Université de Toulouse, ENVT, INP-Purpan, 180 chemin de Tournefeuille, BP 93173, 31027 Toulouse, cedex 3, France
| |
Collapse
|
28
|
Dichlberger A, Schlager S, Kovanen PT, Schneider WJ. Lipid droplets in activated mast cells - a significant source of triglyceride-derived arachidonic acid for eicosanoid production. Eur J Pharmacol 2015; 785:59-69. [PMID: 26164793 DOI: 10.1016/j.ejphar.2015.07.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 05/28/2015] [Accepted: 07/07/2015] [Indexed: 12/17/2022]
Abstract
Mast cells are potent effectors of immune reactions and key players in various inflammatory diseases such as atherosclerosis, asthma, and rheumatoid arthritis. The cellular defense response of mast cells represents a unique and powerful system, where external signals can trigger cell activation resulting in a stimulus-specific and highly coordinated release of a plethora of bioactive mediators. The arsenal of mediators encompasses preformed molecules stored in cytoplasmic secretory granules, as well as newly synthesized proteinaceous and lipid mediators. The release of mediators occurs in strict chronological order and requires proper coordination between the endomembrane system and various enzymatic machineries. For the generation of lipid mediators, cytoplasmic lipid droplets have been shown to function as a major intracellular pool of arachidonic acid, the precursor for eicosanoid biosynthesis. Recent studies have revealed that not only phospholipids in mast cell membranes, but also triglycerides in mast cell lipid droplets are a substrate source for eicosanoid formation. The present review summarizes current knowledge about mast cell lipid droplet biology, and discusses expansions and challenges of traditional mechanistic models for eicosanoid production.
Collapse
Affiliation(s)
- Andrea Dichlberger
- Wihuri Research Institute, Biomedicum Helsinki 1, Haartmaninkatu 8, 00290 Helsinki, Finland; Medical University of Vienna, Max F. Perutz Laboratories, Department of Medical Biochemistry, Dr. Bohrgasse 9/2, 1030 Vienna, Austria.
| | - Stefanie Schlager
- Medical University of Graz, Institute of Molecular Biology and Biochemistry, Harrachgasse 21, 8010 Graz, Austria; Medical University of Vienna, Max F. Perutz Laboratories, Department of Medical Biochemistry, Dr. Bohrgasse 9/2, 1030 Vienna, Austria
| | - Petri T Kovanen
- Wihuri Research Institute, Biomedicum Helsinki 1, Haartmaninkatu 8, 00290 Helsinki, Finland; Medical University of Vienna, Max F. Perutz Laboratories, Department of Medical Biochemistry, Dr. Bohrgasse 9/2, 1030 Vienna, Austria
| | - Wolfgang J Schneider
- Wihuri Research Institute, Biomedicum Helsinki 1, Haartmaninkatu 8, 00290 Helsinki, Finland; Medical University of Graz, Institute of Molecular Biology and Biochemistry, Harrachgasse 21, 8010 Graz, Austria; Medical University of Vienna, Max F. Perutz Laboratories, Department of Medical Biochemistry, Dr. Bohrgasse 9/2, 1030 Vienna, Austria
| |
Collapse
|
29
|
Carregaro V, Ribeiro JM, Valenzuela JG, Souza-Júnior DL, Costa DL, Oliveira CJF, Sacramento LA, Nascimento MSL, Milanezi CM, Cunha FQ, Silva JS. Nucleosides present on phlebotomine saliva induce immunossuppression and promote the infection establishment. PLoS Negl Trop Dis 2015; 9:e0003600. [PMID: 25849562 PMCID: PMC4388340 DOI: 10.1371/journal.pntd.0003600] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 02/05/2015] [Indexed: 01/30/2023] Open
Abstract
Background Sand fly saliva plays a crucial role in establishing Leishmania infection. We identified adenosine (ADO) and adenosine monophosphate (AMP) as active pharmacologic compounds present in Phlebotomus papatasi saliva that inhibit dendritic cell (DC) functions through a PGE2/IL 10-dependent mechanism. Methodology/Principal Findings Herein, we prepared a mixture of ADO and AMP in equimolar amounts similar to those present in the salivary-gland extract (SGE) form one pair of salivary glands of P. papatasi and co-injected it with Leishmania amazonensis or L. major into mouse ears. ADO+AMP mimicked exacerbative effects of P. papatasi saliva in leishmaniasis, increasing parasite burden and cutaneous lesions. Enzymatic catabolism of salivary nucleosides reversed the SGE-induced immunosuppressive effect associated with IL-10 enhancement. Immunosuppressive factors COX2 and IL-10 were upregulated and failed to enhance ear lesion and parasite burden in IL 10-/- infected mice. Furthermore, nucleosides increased regulatory T cell (Treg) marker expression on CD4+CD25- cells, suggesting induction of Tregs on effector T cells (T eff). Treg induction (iTreg) was associated with nucleoside-induced tolerogenic dendritic cells (tDCs) expressing higher levels of COX2 and IL-10. In vitro generation of Tregs was more efficient in DCs treated with nucleosides. Suppressive effects of nucleosides during cutaneous leishmaniasis were mediated through an A2AR-dependent mechanism. Using BALB/c mice deficient in A2A ADO receptor (A2AR–/–), we showed that co-inoculated mice controlled infection, displaying lower parasite numbers at infection sites and reduced iTreg generation. Conclusion/Significance We have demonstrated that ADO and AMP in P. papatasi saliva mediate exacerbative effects of Leishmania infection by acting preferentially on DCs promoting a tolerogenic profile in DCs and by generating iTregs in inflammatory foci through an A2AR mechanism. Leishmania parasites are transmitted to their vertebrate hosts by infected Phlebotomine sand flies during the blood meal of the flies. During the Leishmania transmission, the saliva is inoculated together with parasites and exhibit several pharmacological compounds that facilitate blood feeding, interfering on homeostasis and avoiding inflammation. Thus, these compounds allow the establishment of pathogen infection. We recently identified adenosine (ADO) and adenosine monophosphate (AMP) as major immunomodulatory compounds present within the Old World sand fly species Phlebotomus papatasii, which protected mice from extreme inflammatory insults. ADO limits the magnitude of immune response by displaying a potent anti-inflammatory activity. Here, we demonstrated that ADO and AMP present in Phlebotomus papatasi saliva are involved in the establishment of parasite infection. Such nucleosides act through adenosine A2A receptor (A2AR), inducing a tolerogenic profile on dendritic cells (tDC) that may generate regulatory T cells differentiation, thus leading to suppression of the immune response and parasite survival. The identification of the active salivary constituents could serve as a strategy for the development of new vaccines to control pathogen transmission.
Collapse
Affiliation(s)
- Vanessa Carregaro
- Department of Biochemistry and Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - José M. Ribeiro
- Section of Vector Biology, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- Vector Molecular Biology Unit, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jesus G. Valenzuela
- Section of Vector Biology, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- Vector Molecular Biology Unit, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Djalma L. Souza-Júnior
- Department of Biochemistry and Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Diego L. Costa
- Department of Biochemistry and Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Carlo J. F. Oliveira
- Institute of Biological and Natural Sciences, Federal University of Triângulo Mineiro, Uberaba, Brazil
| | - Laís A. Sacramento
- Department of Biochemistry and Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Manuela S. L. Nascimento
- Department of Biochemistry and Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Cristiane M. Milanezi
- Department of Biochemistry and Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Fernando Q. Cunha
- Department of Biochemistry and Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - João S. Silva
- Department of Biochemistry and Immunology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
- * E-mail:
| |
Collapse
|
30
|
Podinovskaia M, Descoteaux A. Leishmania and the macrophage: a multifaceted interaction. Future Microbiol 2015; 10:111-29. [DOI: 10.2217/fmb.14.103] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
ABSTRACT Leishmania, the causative agent of leishmaniases, is an intracellular parasite of macrophages, transmitted to humans via the bite of its sand fly vector. This protozoan organism has evolved strategies for efficient uptake into macrophages and is able to regulate phagosome maturation in order to make the phagosome more hospitable for parasite growth and to avoid destruction. As a result, macrophage defenses such as oxidative damage, antigen presentation, immune activation and apoptosis are compromised whereas nutrient availability is improved. Many Leishmania survival factors are involved in shaping the phagosome and reprogramming the macrophage to promote infection. This review details the complexity of the host–parasite interactions and summarizes our latest understanding of key events that make Leishmania such a successful intracellular parasite.
Collapse
Affiliation(s)
- Maria Podinovskaia
- INRS – Institut Armand-Frappier & Center for Host–Parasite Interactions, 531 boul. des Prairies, Laval, Quebec, H7V 1B7, Canada
| | - Albert Descoteaux
- INRS – Institut Armand-Frappier & Center for Host–Parasite Interactions, 531 boul. des Prairies, Laval, Quebec, H7V 1B7, Canada
| |
Collapse
|
31
|
Araújo-Santos T, Prates DB, França-Costa J, Luz NF, Andrade BB, Miranda JC, Brodskyn CI, Barral A, Bozza PT, Borges VM. Prostaglandin E2/leukotriene B4 balance induced by Lutzomyia longipalpis saliva favors Leishmania infantum infection. Parasit Vectors 2014; 7:601. [PMID: 25526785 PMCID: PMC4282730 DOI: 10.1186/s13071-014-0601-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 12/11/2014] [Indexed: 11/30/2022] Open
Abstract
Background Eicosanoids and sand fly saliva have a critical role in the Leishmania infection. Here, we evaluated the effect of Lutzomyia longipalpis salivary gland sonicate (SGS) on neutrophil and monocyte recruitment and activation of eicosanoid production in a murine model of inflammation. Methods C57BL/6 mice were inoculated intraperitonealy with Lutzomyia longipalpis SGS or Leishmania infantum or both, followed by analyses of cell recruitment, parasite load and eicosanoid production. Results Intraperitoneal injection of Lutzomyia longipalpis SGS together with Leishmania infantum induced an early increased parasite viability in monocytes and neutrophils. L. longipalpis SGS increased prostaglandin E2 (PGE2), but reduced leukotriene B4 (LTB4) production ex vivo in peritoneal leukocytes. In addition, the pharmacological inhibition of cyclooxygenase 2 (COX-2) with NS-398 decreased parasite viability inside macrophages during Leishmania infection in the presence of L. longipalpis SGS arguing that PGE2 production is associated with diminished parasite killing. Conclusions These findings indicate that L. longipalpis SGS is a critical factor driving immune evasion of Leishmania through modulation of PGE2/LTB4 axis, which may represent an important mechanism on establishment of the infection.
Collapse
Affiliation(s)
- Théo Araújo-Santos
- Gonçalo Moniz Research Center, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, BA, Brazil. .,Present address: Center of Biological Sciences and Health, Federal University of Western Bahia, Barreiras, BA, Brazil.
| | - Deboraci Brito Prates
- Gonçalo Moniz Research Center, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, BA, Brazil. .,Departamento de Biomorfologia, Instituto de Ciências da Saúde, Universidade Federal da Bahia, 40110-100, Salvador, BA, Brazil.
| | - Jaqueline França-Costa
- Gonçalo Moniz Research Center, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, BA, Brazil. .,Federal University of Bahia (UFBA), Salvador, BA, Brazil.
| | - Nívea F Luz
- Gonçalo Moniz Research Center, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, BA, Brazil. .,Federal University of Bahia (UFBA), Salvador, BA, Brazil.
| | - Bruno B Andrade
- Immunobiology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 20893, Bethesda, MD, USA.
| | - José Carlos Miranda
- Gonçalo Moniz Research Center, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, BA, Brazil.
| | - Claudia I Brodskyn
- Gonçalo Moniz Research Center, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, BA, Brazil. .,Federal University of Bahia (UFBA), Salvador, BA, Brazil. .,Institute for Investigation in Immunology, iii-INCT (National Institute of Science and Technology), São Paulo, Brazil.
| | - Aldina Barral
- Gonçalo Moniz Research Center, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, BA, Brazil. .,Federal University of Bahia (UFBA), Salvador, BA, Brazil. .,Institute for Investigation in Immunology, iii-INCT (National Institute of Science and Technology), São Paulo, Brazil.
| | - Patrícia T Bozza
- Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil.
| | - Valéria Matos Borges
- Gonçalo Moniz Research Center, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, BA, Brazil. .,Institute for Investigation in Immunology, iii-INCT (National Institute of Science and Technology), São Paulo, Brazil.
| |
Collapse
|
32
|
Ockenfels B, Michael E, McDowell MA. Meta-analysis of the effects of insect vector saliva on host immune responses and infection of vector-transmitted pathogens: a focus on leishmaniasis. PLoS Negl Trop Dis 2014; 8:e3197. [PMID: 25275509 PMCID: PMC4183472 DOI: 10.1371/journal.pntd.0003197] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 08/18/2014] [Indexed: 11/18/2022] Open
Abstract
A meta-analysis of the effects of vector saliva on the immune response and progression of vector-transmitted disease, specifically with regard to pathology, infection level, and host cytokine levels was conducted. Infection in the absence or presence of saliva in naïve mice was compared. In addition, infection in mice pre-exposed to uninfected vector saliva was compared to infection in unexposed mice. To control for differences in vector and pathogen species, mouse strain, and experimental design, a random effects model was used to compare the ratio of the natural log of the experimental to the control means of the studies. Saliva was demonstrated to enhance pathology, infection level, and the production of Th2 cytokines (IL-4 and IL-10) in naïve mice. This effect was observed across vector/pathogen pairings, whether natural or unnatural, and with single salivary proteins used as a proxy for whole saliva. Saliva pre-exposure was determined to result in less severe leishmaniasis pathology when compared with unexposed mice infected either in the presence or absence of sand fly saliva. The results of further analyses were not significant, but demonstrated trends toward protection and IFN-γ elevation for pre-exposed mice. Arthropod vectors transmit a wide variety of diseases resulting in substantial human morbidity and economic costs worldwide. When hematophagous arthropods blood feed, they release saliva into the host. This saliva elicits a strong immune response and has recently been a focus for vaccine research. There is evidence that the saliva enhances infection in naïve hosts, but that prior exposure to saliva results in less severe infection. This analysis endeavored to determine whether there was a statistically significant enhancement or protective effect with regard to saliva exposure and the progression of disease, and to determine the underlying immune mechanism driving these effects. We found that saliva does indeed enhance infection levels of vector-transmitted pathogens and leishmaniasis pathology in naïve mice and elevates Th2 cytokine levels (IL-4 and IL-10). We also determined that pre-exposure to saliva results in less severe pathology of experimental leishmaniasis in mice. These results are important for vaccine trials and vector control programs, though more studies are needed with regard to pre-exposure.
Collapse
Affiliation(s)
- Brittany Ockenfels
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Edwin Michael
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
| | - Mary Ann McDowell
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
- * E-mail:
| |
Collapse
|
33
|
Dichlberger A, Schlager S, Maaninka K, Schneider WJ, Kovanen PT. Adipose triglyceride lipase regulates eicosanoid production in activated human mast cells. J Lipid Res 2014; 55:2471-8. [PMID: 25114172 DOI: 10.1194/jlr.m048553] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human mast cells (MCs) contain TG-rich cytoplasmic lipid droplets (LDs) with high arachidonic acid (AA) content. Here, we investigated the functional role of adipose TG lipase (ATGL) in TG hydrolysis and the ensuing release of AA as substrate for eicosanoid generation by activated human primary MCs in culture. Silencing of ATGL in MCs by siRNAs induced the accumulation of neutral lipids in LDs. IgE-dependent activation of MCs triggered the secretion of the two major eicosanoids, prostaglandin D2 (PGD2) and leukotriene C4 (LTC4). The immediate release of PGD2 from the activated MCs was solely dependent on cyclooxygenase (COX) 1, while during the delayed phase of lipid mediator production, the inducible COX-2 also contributed to its release. Importantly, when ATGL-silenced MCs were activated, the secretion of both PGD2 and LTC4 was significantly reduced. Interestingly, the inhibitory effect on the release of LTC4 was even more pronounced in ATGL-silenced MCs than in cytosolic phospholipase A2-silenced MCs. These data show that ATGL hydrolyzes AA-containing TGs present in human MC LDs and define ATGL as a novel regulator of the substrate availability of AA for eicosanoid generation upon MC activation.
Collapse
Affiliation(s)
| | | | | | - Wolfgang J Schneider
- Department of Medical Biochemistry, Medical University Vienna, Max F. Perutz Laboratories, 1030 Vienna, Austria
| | | |
Collapse
|
34
|
Abdeladhim M, Kamhawi S, Valenzuela JG. What's behind a sand fly bite? The profound effect of sand fly saliva on host hemostasis, inflammation and immunity. INFECTION GENETICS AND EVOLUTION 2014; 28:691-703. [PMID: 25117872 DOI: 10.1016/j.meegid.2014.07.028] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Revised: 07/15/2014] [Accepted: 07/24/2014] [Indexed: 10/24/2022]
Abstract
Sand flies are blood-feeding insects and vectors of the Leishmania parasite. For many years, saliva of these insects has represented a gold mine for the discovery of molecules with anti-hemostatic and immuno-modulatory activities. Furthermore, proteins in sand fly saliva have been shown to be a potential vaccine against leishmaniasis and also markers of vector exposure. A bottleneck to progress in these areas of research has been the identification of molecules responsible for the observed activities and properties of saliva. Over the past decade, rapid advances in transcriptomics and proteomics resulted in the completion of a number of sialomes (salivary gland transcriptomes) and the expression of several recombinant salivary proteins from different species of sand fly vectors. This review will provide readers with a comprehensive update of recent advances in the characterization of these salivary molecules and their biological activities and offer insights pertaining to their protective effect against leishmaniasis and their potential as markers of vector exposure.
Collapse
Affiliation(s)
- Maha Abdeladhim
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, United States
| | - Shaden Kamhawi
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, United States.
| | - Jesus G Valenzuela
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, United States.
| |
Collapse
|
35
|
Dias FF, Zarantonello VC, Parreira GG, Chiarini-Garcia H, Melo RCN. The intriguing ultrastructure of lipid body organelles within activated macrophages. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2014; 20:869-878. [PMID: 24786359 DOI: 10.1017/s143192761400066x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Macrophages are widely distributed immune system cells with essential functions in tissue homeostasis, apoptotic cell clearance, and first defense in infections. A distinguishing feature of activated macrophages participating in different situations such as inflammatory and metabolic diseases is the presence of increased numbers of lipid-rich organelles, termed lipid bodies (LBs) or lipid droplets, in their cytoplasm. LBs are considered structural markers of activated macrophages and are involved in different functions such as lipid metabolism, intracellular trafficking, and synthesis of inflammatory mediators. In this review, we revisit the distinct morphology of LB organelles actively formed within macrophages in response to infections and cell clearance, taking into account new insights provided by ultrastructural studies. We also discuss the LB interactions within macrophages, revealed by transmission electron microscopy, with a focus on the remarkable LB-phagosome association and discuss potential links between structural aspects and function.
Collapse
Affiliation(s)
- Felipe F Dias
- 1Laboratory of Cellular Biology,Department of Biology,Federal University of Juiz de Fora (UFJF),Juiz de Fora,MG 36036-900,Brazil
| | - Victor C Zarantonello
- 1Laboratory of Cellular Biology,Department of Biology,Federal University of Juiz de Fora (UFJF),Juiz de Fora,MG 36036-900,Brazil
| | - Gleydes G Parreira
- 2Laboratory of Structural Biology and Reproduction,Federal University of Minas Gerais (UFMG),Belo Horizonte,MG 31270-901,Brazil
| | - Hélio Chiarini-Garcia
- 2Laboratory of Structural Biology and Reproduction,Federal University of Minas Gerais (UFMG),Belo Horizonte,MG 31270-901,Brazil
| | - Rossana C N Melo
- 1Laboratory of Cellular Biology,Department of Biology,Federal University of Juiz de Fora (UFJF),Juiz de Fora,MG 36036-900,Brazil
| |
Collapse
|
36
|
Tavares NM, Araújo-Santos T, Afonso L, Nogueira PM, Lopes UG, Soares RP, Bozza PT, Bandeira-Melo C, Borges VM, Brodskyn C. Understanding the mechanisms controlling Leishmania amazonensis infection in vitro: the role of LTB4 derived from human neutrophils. J Infect Dis 2014; 210:656-66. [PMID: 24634497 PMCID: PMC4111911 DOI: 10.1093/infdis/jiu158] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Neutrophils are rapidly recruited to the site of Leishmania infection and play an active role in capturing and killing parasites. They are the main source of leukotriene B4 (LTB4), a potent proinflammatory lipid mediator. However, the role of LTB4 in neutrophil infection by Leishmania amazonensis is not clear. In this study, we show that L. amazonensis or its lipophosphoglycan can induce neutrophil activation, degranulation, and LTB4 production. Using pharmacological inhibitors of leukotriene synthesis, our findings reveal an LTB4-driven autocrine/paracrine regulatory effect. In particular, neutrophil-derived LTB4 controls L. amazonensis killing, degranulation, and reactive oxygen species production. In addition, L. amazonensis infection induces an early increase in Toll-like receptor 2 expression, which facilitates parasite internalization. Nuclear factor kappa B (NFkB) pathway activation represents a required upstream event for L. amazonensis–induced LTB4 synthesis. These leishmanicidal mechanisms mediated by neutrophil-derived LTB4 act through activation of its receptor, B leukotriene receptor 1 (BLT1).
Collapse
Affiliation(s)
- Natalia Machado Tavares
- Gonçalo Moniz Research Center, Oswaldo Cruz Foundation-FIOCRUZ Federal University of Bahia-UFBA, Salvador, Brazil
| | - Théo Araújo-Santos
- Gonçalo Moniz Research Center, Oswaldo Cruz Foundation-FIOCRUZ Federal University of Bahia-UFBA, Salvador, Brazil
| | - Lilian Afonso
- Gonçalo Moniz Research Center, Oswaldo Cruz Foundation-FIOCRUZ
| | | | | | - Rodrigo Pedro Soares
- René Rachou Research Center, Oswaldo Cruz Foundation-FIOCRUZ, Belo Horizonte, Brazil
| | - Patrícia Torres Bozza
- Immunopharmacology Laboratory, Oswaldo Cruz Institute-Oswaldo Cruz Foundation-FIOCRUZ, Rio de Janeiro, Brazil
| | | | - Valeria Matos Borges
- Gonçalo Moniz Research Center, Oswaldo Cruz Foundation-FIOCRUZ Federal University of Bahia-UFBA, Salvador, Brazil National Institute of Science and Technology for Immunology Investigation (iii-INCT), Salvador, Bahia, Brazil
| | - Cláudia Brodskyn
- Gonçalo Moniz Research Center, Oswaldo Cruz Foundation-FIOCRUZ Federal University of Bahia-UFBA, Salvador, Brazil National Institute of Science and Technology for Immunology Investigation (iii-INCT), Salvador, Bahia, Brazil
| |
Collapse
|
37
|
Barbosa B, Paulesu L, Ietta F, Bechi N, Romagnoli R, Gomes A, Favoreto-Junior S, Silva D, Mineo J, Mineo T, Ferro E. Susceptibility to Toxoplasma gondii proliferation in BeWo human trophoblast cells is dose-dependent of macrophage migration inhibitory factor (MIF), via ERK1/2 phosphorylation and prostaglandin E2 production. Placenta 2014; 35:152-62. [DOI: 10.1016/j.placenta.2013.12.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 12/19/2013] [Accepted: 12/24/2013] [Indexed: 12/21/2022]
|
38
|
Oliveira F, de Carvalho AM, de Oliveira CI. Sand-fly saliva-leishmania-man: the trigger trio. Front Immunol 2013; 4:375. [PMID: 24312093 PMCID: PMC3832839 DOI: 10.3389/fimmu.2013.00375] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 10/31/2013] [Indexed: 11/23/2022] Open
Abstract
Leishmaniases are worldwide diseases transmitted to the vertebrate host by the bite of an infected sand-fly. Sand-fly biting and parasite inoculation are accompanied by the injection of salivary molecules, whose immunomodulatory properties are actively being studied. This mini review focuses on how the interactions between sand-fly saliva and the immune system may shape the outcome of infection, given its immunomodulatory properties, in experimental models and in the endemic area. Additionally, we approach the recent contributions regarding the identification of individual salivary components and how these are currently being considered as additional components of a vaccine against leishmaniasis.
Collapse
Affiliation(s)
- Fabiano Oliveira
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health , Rockville, MD , USA
| | | | | |
Collapse
|
39
|
Nose F, Yamaguchi T, Kato R, Aiuchi T, Obama T, Hara S, Yamamoto M, Itabe H. Crucial role of perilipin-3 (TIP47) in formation of lipid droplets and PGE2 production in HL-60-derived neutrophils. PLoS One 2013; 8:e71542. [PMID: 23936516 PMCID: PMC3731282 DOI: 10.1371/journal.pone.0071542] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Accepted: 06/29/2013] [Indexed: 11/18/2022] Open
Abstract
Cytosolic lipid droplets (LDs), which are now recognized as multifunctional organelles, accumulate in leukocytes under various inflammatory conditions. However, little is known about the characteristic features of LDs in neutrophils. In this study, we show that perilipin-3 (PLIN3; formerly called TIP47) is involved in LD formation and the inflammatory response in HL-60-derived neutrophils. HL-60, a promyelocytic cell line, was differentiated into neutrophils via treatment with all-trans retinoic acid. After differentiation, cells were stimulated with Porphyromonas gingivalis lipopolysaccharide (P.g-LPS), a major pathogen in adult periodontitis. When HL-60-derived neutrophils were stimulated with P.g-LPS, LDs increased in both number and size. In the differentiated cells, PLIN3 was induced while PLIN1, PLIN2 and PLIN5 were not detected. PGE2 production and the PLIN3 protein level were increased by the P.g-LPS treatment of the cells in a dose-dependent manner. When PLIN3 was down-regulated with siRNA treatment, LDs essentially disappeared and the level of PGE2 secreted in the cell culture medium decreased by 65%. In addition, the suppression of PLIN3 repressed the PGE2 producing enzymes; i.e., microsomal PGE synthase-1, -2 and cyclooxygenase-2. These findings indicate that PLIN3 has a pivotal role in LD-biogenesis in HL-60-derived neutrophils, and that PLIN3 is associated with the synthesis and secretion of PGE2.
Collapse
Affiliation(s)
- Fuyuki Nose
- Department of Periodontology, Showa University School of Dentistry, Tokyo, Japan
- Division of Biological Chemistry, Department of Molecular Biology, Showa University School of Pharmacy, Tokyo, Japan
| | - Tomohiro Yamaguchi
- Division of Biological Chemistry, Department of Molecular Biology, Showa University School of Pharmacy, Tokyo, Japan
| | - Rina Kato
- Division of Biological Chemistry, Department of Molecular Biology, Showa University School of Pharmacy, Tokyo, Japan
| | - Toshihiro Aiuchi
- Division of Biological Chemistry, Department of Molecular Biology, Showa University School of Pharmacy, Tokyo, Japan
| | - Takashi Obama
- Division of Biological Chemistry, Department of Molecular Biology, Showa University School of Pharmacy, Tokyo, Japan
| | - Shuntaro Hara
- Division of Health Chemistry, Department of Healthcare and Regulatory Sciences, Showa University School of Pharmacy, Tokyo, Japan
| | - Matsuo Yamamoto
- Department of Periodontology, Showa University School of Dentistry, Tokyo, Japan
| | - Hiroyuki Itabe
- Division of Biological Chemistry, Department of Molecular Biology, Showa University School of Pharmacy, Tokyo, Japan
- * E-mail:
| |
Collapse
|
40
|
A Lys49 phospholipase A2, isolated from Bothrops asper snake venom, induces lipid droplet formation in macrophages which depends on distinct signaling pathways and the C-terminal region. BIOMED RESEARCH INTERNATIONAL 2012; 2013:807982. [PMID: 23509782 PMCID: PMC3591195 DOI: 10.1155/2013/807982] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 10/11/2012] [Indexed: 11/25/2022]
Abstract
MT-II, a Lys49PLA2 homologue devoid of catalytic activity from B. asper venom, stimulates inflammatory events in macrophages. We investigated the ability of MT-II to induce formation of lipid droplets (LDs), key elements of inflammatory responses, in isolated macrophages and participation of protein kinases and intracellular PLA2s in this effect. Influence of MT-II on PLIN2 recruitment and expression was assessed, and the effects of some synthetic peptides on LD formation were further evaluated. At noncytotoxic concentrations, MT-II directly activated macrophages to form LDs. This effect was reproduced by a synthetic peptide corresponding to the C-terminal sequence 115–129 of MT-II, evidencing the critical role of C-terminus for MT-II-induced effect. Moreover, MT-II induced expression and recruitment of PLIN2. Pharmacological interventions with specific inhibitors showed that PKC, PI3K, ERK1/2, and iPLA2, but not P38MAPK or cPLA2, signaling pathways are involved in LD formation induced by MT-II. This sPLA2 homologue also induced synthesis of PGE2 that colocalized to LDs. In conclusion, MT-II is able to induce formation of LDs committed to PGE2 formation in a process dependent on C-terminal loop engagement and regulated by distinct protein kinases and iPLA2. LDs may constitute an important inflammatory mechanism triggered by MT-II in macrophages.
Collapse
|
41
|
Gomes R, Oliveira F. The immune response to sand fly salivary proteins and its influence on leishmania immunity. Front Immunol 2012; 3:110. [PMID: 22593758 PMCID: PMC3349933 DOI: 10.3389/fimmu.2012.00110] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 04/19/2012] [Indexed: 11/13/2022] Open
Abstract
Leishmaniasis is a vector-borne disease transmitted by bites of phlebotomine sand flies. During Leishmania transmission, sand fly saliva is co-inoculated with parasites into the skin of the mammalian host. Sand fly saliva consists of roughly thirty different salivary proteins, many with known roles linked to blood feeding facilitation. Apart from the anti-hemostatic capacity of saliva, several sand fly salivary proteins have been shown to be immunogenic. Immunization with a single salivary protein or exposure to uninfected bites was shown to result in a protective immune response against leishmaniasis. Antibodies to saliva were not required for this protection. A strong body of evidence points to the role for saliva-specific T cells producing IFN-γ in the form of a delayed-type hypersensitivity reaction at the bite site as the main protective response. Herein, we review the immunity to sand fly salivary proteins in the context of its vector-parasite-host combinations and their vaccine potential, as well as some recent advances to shed light on the mechanism of how an immune response to sand fly saliva protects against leishmaniasis.
Collapse
Affiliation(s)
- Regis Gomes
- Laboratory of Malaria and Vector Research, National Institutes of Health, National Institute of Allergy and Infectious Disease Rockville, MD, USA
| | | |
Collapse
|
42
|
New Insights on the Inflammatory Role of Lutzomyia longipalpis Saliva in Leishmaniasis. J Parasitol Res 2012; 2012:643029. [PMID: 22506098 PMCID: PMC3306990 DOI: 10.1155/2012/643029] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 10/24/2011] [Accepted: 10/27/2011] [Indexed: 11/17/2022] Open
Abstract
When an haematophagous sand fly vector insect bites a vertebrate host, it introduces its mouthparts into the skin and lacerates blood vessels, forming a hemorrhagic pool which constitutes an intricate environment of cell interactions. In this scenario, the initial performance of host, parasite, and vector “authors” will heavily influence the course of Leishmania infection. Recent advances in vector-parasite-host interaction have elucidated “co-authors” and “new roles” not yet described. We review here the stimulatory role of Lutzomyia longipalpis saliva leading to inflammation and try to connect them in an early context of Leishmania infection.
Collapse
|
43
|
Bozza PT, Bakker-Abreu I, Navarro-Xavier RA, Bandeira-Melo C. Lipid body function in eicosanoid synthesis: an update. Prostaglandins Leukot Essent Fatty Acids 2011; 85:205-13. [PMID: 21565480 DOI: 10.1016/j.plefa.2011.04.020] [Citation(s) in RCA: 136] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Eicosanoids (prostaglandins, leukotrienes and lipoxins) are signaling lipids derived from arachidonic acid metabolism that have important roles in physiological and pathological processes. Lately, intracellular compartmentalization of eicosanoid-synthetic machinery has emerged as a key component in the regulation of eicosanoid synthesis and functions. Over the past years substantial progresses have been made demonstrating that precursors and enzymes involved in eicosanoid synthesis localize at lipid bodies (also known as lipid droplets) and lipid bodies are distinct sites for eicosanoid generation. Here we will review the current knowledge on the functions of lipid bodies as specialized intracellular sites of compartmentalization of signaling with major roles in eicosanoid formation within cells engaged in inflammatory, infectious and neoplastic process.
Collapse
Affiliation(s)
- Patricia T Bozza
- Laboratory of Immunopharmacology, Oswaldo Cruz Institute, FIOCRUZ, Brazil.
| | | | | | | |
Collapse
|
44
|
Prates DB, Araújo-Santos T, Luz NF, Andrade BB, França-Costa J, Afonso L, Clarêncio J, Miranda JC, Bozza PT, Dosreis GA, Brodskyn C, Barral-Netto M, Borges VM, Borges VDM, Barral A. Lutzomyia longipalpis saliva drives apoptosis and enhances parasite burden in neutrophils. J Leukoc Biol 2011; 90:575-82. [PMID: 21685247 DOI: 10.1189/jlb.0211105] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Neutrophils are considered the host's first line of defense against infections and have been implicated in the immunopathogenesis of Leishmaniasis. Leishmania parasites are inoculated alongside vectors' saliva, which is a rich source of pharmacologically active substances that interfere with host immune response. In the present study, we tested the hypothesis that salivary components from Lutzomyia longipalpis, an important vector of visceral Leishmaniasis, enhance neutrophil apoptosis. Murine inflammatory peritoneal neutrophils cultured in the presence of SGS presented increased surface expression of FasL and underwent caspase-dependent and FasL-mediated apoptosis. This proapoptosis effect of SGS on neutrophils was abrogated by pretreatment with protease as well as preincubation with antisaliva antibodies. Furthermore, in the presence of Leishmania chagasi, SGS also increased apoptosis on neutrophils and increased PGE(2) release and decreased ROS production by neutrophils, while enhancing parasite viability inside these cells. The increased parasite burden was abrogated by treatment with z-VAD, a pan caspase inhibitor, and NS-398, a COX-2 inhibitor. In the presence of SGS, Leishmania-infected neutrophils produced higher levels of MCP-1 and attracted a high number of macrophages by chemotaxis in vitro assays. Both of these events were abrogated by pretreatment of neutrophils with bindarit, an inhibitor of CCL2/MCP-1 expression. Taken together, our data support the hypothesis that vector salivary proteins trigger caspase-dependent and FasL-mediated apoptosis, thereby favoring Leishmania survival inside neutrophils, which may represent an important mechanism for the establishment of Leishmania infection.
Collapse
|
45
|
Tavares NM, Silva RA, Costa DJ, Pitombo MA, Fukutani KF, Miranda JC, Valenzuela JG, Barral A, de Oliveira CI, Barral-Netto M, Brodskyn C. Lutzomyia longipalpis saliva or salivary protein LJM19 protects against Leishmania braziliensis and the saliva of its vector, Lutzomyia intermedia. PLoS Negl Trop Dis 2011; 5:e1169. [PMID: 21655303 PMCID: PMC3104964 DOI: 10.1371/journal.pntd.0001169] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2010] [Accepted: 03/21/2011] [Indexed: 12/03/2022] Open
Abstract
Background Leishmania transmission occurs in the presence of insect saliva. Immunity to Phlebotomus papatasi or Lutzomyia longipalpis saliva or salivary components confers protection against an infection by Leishmania in the presence of the homologous saliva. However, immunization with Lutzomyia intermedia saliva did not protect mice against Leishmania braziliensis plus Lu. intermedia saliva. In the present study, we have studied whether the immunization with Lu. longipalpis saliva or a DNA plasmid coding for LJM19 salivary protein would be protective against L. braziliensis infection in the presence of Lu. intermedia saliva, the natural vector for L. braziliensis. Methodology/Principal Findings Immunization with Lu. longipalpis saliva or with LJM19 DNA plasmid induced a Delayed-Type Hypersensitivity (DTH) response against Lu. longipalpis as well as against a Lu. intermedia saliva challenge. Immunized and unimmunized control hamsters were then intradermally infected in the ears with L. braziliensis in the presence of Lu. longipalpis or Lu. intermedia saliva. Animals immunized with Lu. longipalpis saliva exhibited smaller lesion sizes as well as reduced disease burdens both at lesion site and in the draining lymph nodes. These alterations were associated with a significant decrease in the expression levels of IL-10 and TGF-β. Animals immunized with LJM19 DNA plasmid presented similar findings in protection and immune response and additionally increased IFN-γ expression. Conclusions/Significance Immunization with Lu. longipalpis saliva or with a DNA plasmid coding LJM19 salivary protein induced protection in hamsters challenged with L. braziliensis plus Lu. intermedia saliva. These findings point out an important role of immune response against saliva components, suggesting the possibility to develop a vaccine using a single component of Lu. longipalpis saliva to generate protection against different species of Leishmania, even those transmitted by a different vector. Leishmaniasis, caused by parasitic protozoa Leishmania, is transmitted by bites of female sand flies that, during blood-feeding, inject humans with parasites and saliva. Sand fly saliva has been investigated as a potential vaccine candidate. It was previously shown that immunization with Lutzomyia longipalpis saliva or salivary proteins protects against cutaneous and visceral leishmaniasis. In the present study, we evaluated if immunization with Lu. longipalpis saliva or DNA plasmid coding for a specific sand fly salivary protein (LJM19) can protect hamsters against L. braziliensis plus another sand fly saliva. Immunization with saliva or LJM19 DNA plasmid induced a mononuclear cell infiltrate which can be a marker of protection. The immune response induced by immunization with these insect molecules was able to protect animals against L. braziliensis infection as shown by the significant reduction in lesion size, parasite load in the ear and draining lymph node. These data show the important role of immune response against sand fly saliva components, suggesting the possibility to develop vaccines using a single component of saliva against Leishmania transmitted by different vectors.
Collapse
Affiliation(s)
| | - Robson A. Silva
- Universidade Federal da Bahia, Instituto Multidisciplinar em Saúde, Campus Anisio Teixeira, Vitoria da Conquista, Bahia, Brazil
| | - Dirceu J. Costa
- Centro de Pesquisa Gonçalo Moniz, FIOCRUZ, Salvador, Bahia, Brazil
| | | | | | - José C. Miranda
- Centro de Pesquisa Gonçalo Moniz, FIOCRUZ, Salvador, Bahia, Brazil
| | - Jesus G. Valenzuela
- Vector Molecular Biology Unit, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, Maryland, United States of America
| | - Aldina Barral
- Centro de Pesquisa Gonçalo Moniz, FIOCRUZ, Salvador, Bahia, Brazil
- Instituto de Investigação em Imunologia, São Paulo, São Paulo, Brazil
| | - Camila I. de Oliveira
- Centro de Pesquisa Gonçalo Moniz, FIOCRUZ, Salvador, Bahia, Brazil
- Instituto de Investigação em Imunologia, São Paulo, São Paulo, Brazil
| | - Manoel Barral-Netto
- Centro de Pesquisa Gonçalo Moniz, FIOCRUZ, Salvador, Bahia, Brazil
- Instituto de Investigação em Imunologia, São Paulo, São Paulo, Brazil
| | - Claudia Brodskyn
- Centro de Pesquisa Gonçalo Moniz, FIOCRUZ, Salvador, Bahia, Brazil
- Instituto de Investigação em Imunologia, São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|