1
|
Zurita A, Trujillo I, García-Sánchez ÁM, Cutillas C. Survey of flea infestation in cats and dogs in Western Andalusia, Spain: Seasonality and other risk factors for flea infestation. MEDICAL AND VETERINARY ENTOMOLOGY 2024; 38:244-251. [PMID: 38259177 DOI: 10.1111/mve.12705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024]
Abstract
This epidemiological survey aims to provide an update on the main flea species that parasitize domestic animals in the Western Andalusia assessing several ecological features that could be considered as possible risk factors for flea infestation. Over a 19-month period (June 2021 to January 2023), we obtained a total of 802 flea samples from 182 dogs (Canis lupus familiaris, Carnivora: Canidae, Linnaeus, 1758) and 78 cats (Felis silvestris catus, Carnivora: Felidae, Schreber, 1775). For each parasitized host, an epidemiological survey was completed, including the following information: geographical origin, age, sex, rural or urban habitat, type of animal's lifestyle (domestic or non-domestic), health status, cohabiting or not with other animals and the total number of collected fleas. The most common species was Ctenocephalides felis (Siphonaptera: Pulicidae) (Bouché, 1835) with a total of 713 specimens, which accounted for 89% of the total fleas. The second most abundant species was Pulex irritans (Siphonaptera: Pulicidae) (Linnaeus, 1758) with a total of 46 collected fleas (6% of the total). The remaining species identified were Archaeopsylla erinacei (Siphonaptera: Pulicidae) (Bouché, 1835) (25 specimens), Spilopsyllus cuniculi (Siphonaptera: Pulicidae) (Dale, 1878) (12 specimens) and Ctenocephalides canis (Siphonaptera: Pulicidae) (Curtis, 1826) (6 specimens), which accounted for 3%, 1% and 1%, respectively, of the total fleas collected. The months with the highest number of collected fleas were, in ascending order, May 2022, September 2021 and July 2021. Dogs had a greater diversity of flea species, and flea sex ratios were female biased in all identified species and among all studied hosts. Finally, we identified some potential host risk factors that promoted higher flea intensities, such as living in rural areas, or presenting other pathologies.
Collapse
Affiliation(s)
- Antonio Zurita
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | - Ignacio Trujillo
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Seville, Spain
| | | | - Cristina Cutillas
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Seville, Seville, Spain
| |
Collapse
|
2
|
Sidhoum NR, Boucheikhchoukh M, Azzouzi C, Mechouk N, Culda CA, Ionică AM, Balmos OM, Mihalca AD, Deak G. Molecular survey of flea-borne pathogens in fleas associated with carnivores from Algeria and an Artificial Neural Network-based risk analysis of flea-borne diseases. Res Vet Sci 2024; 171:105235. [PMID: 38554609 DOI: 10.1016/j.rvsc.2024.105235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 04/02/2024]
Abstract
As ectoparasites and efficient vectors of pathogens fleas constitute a source of nuisance for animals as well as a major issue for public health in Algeria. In this study, a molecular survey has been conducted to investigate the presence of pathogens in fleas infesting domestic and wild carnivores in the central north and eastern north and south of Algeria. The molecular screening that targeted Acanthocheilonema reconditum, Bartonella spp.,and Dipylidium caninum, was supplemented by a comprehensive analysis of risk factors related to flea-borne pathogens, drawing data from all documentation across multiple languages and sources from Morocco, Algeria, and Tunisia. In the current study, several Bartonella spp. 56/430 (13.02%) and Dipylidium caninum 3/430 (0.7%) were identified. The sequencing results revealed 5/23 (21.74%) B. clarridgeiae, 3/23 (13.04%) B. henselae, and 3/23 (13.04%) B. vinsonii. The two haplotypes, H1 and H2, of D. caninum were identified for the first time in North Africa. The results of the Artificial Neural Network risk analyses unveiled that the prevalence of pathogens and the presence of host generalist fleas as well as the vectorial competence are the most determinant risk factors of flea-borne diseases in Maghreb.
Collapse
Affiliation(s)
- Noureddine Rabah Sidhoum
- Department of Veterinary Sciences, Chadli Bendjedid El Tarf University, PB 73, El-Tarf 36000, Algeria; Biodiversity and Ecosystems Pollution Laboratory, Faculty of Life and Nature Sciences, Chadli Bendjedid El Tarf University, El Tarf 36000, Algeria
| | - Mehdi Boucheikhchoukh
- Department of Veterinary Sciences, Chadli Bendjedid El Tarf University, PB 73, El-Tarf 36000, Algeria.
| | - Chaima Azzouzi
- Department of Veterinary Sciences, Chadli Bendjedid El Tarf University, PB 73, El-Tarf 36000, Algeria; Biodiversity and Ecosystems Pollution Laboratory, Faculty of Life and Nature Sciences, Chadli Bendjedid El Tarf University, El Tarf 36000, Algeria
| | - Noureddine Mechouk
- Ecology of Terrestrial and Aquatics Systems Laboratory (EcoSTAq), Department of Biology, Faculty of Science, Badji Mokhtar University, Annaba 23200, Algeria; Department of Parasitology and Parasitic Diseases, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Calea Mănăștur 3-5, Cluj-Napoca 400372, Romania
| | - Carla Andreea Culda
- Department of Parasitology and Parasitic Diseases, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Calea Mănăștur 3-5, Cluj-Napoca 400372, Romania
| | - Angela Monica Ionică
- Department of Parasitology and Parasitic Diseases, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Calea Mănăștur 3-5, Cluj-Napoca 400372, Romania; Clinical Hospital of Infectious Diseases of Cluj-Napoca, Iuliu Moldovan 23, Cluj-Napoca 400348, Romania
| | - Oana-Maria Balmos
- Department of Parasitology and Parasitic Diseases, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Calea Mănăștur 3-5, Cluj-Napoca 400372, Romania
| | - Andrei Daniel Mihalca
- Department of Parasitology and Parasitic Diseases, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Calea Mănăștur 3-5, Cluj-Napoca 400372, Romania
| | - Georgiana Deak
- Department of Parasitology and Parasitic Diseases, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Calea Mănăștur 3-5, Cluj-Napoca 400372, Romania.
| |
Collapse
|
3
|
Miarinjara A, Raveloson AO, Mugel SG, An N, Andriamiadanarivo A, Rajerison ME, Randremanana RV, Girod R, Gillespie TR. Socio-ecological risk factors associated with human flea infestations of rural household in plague-endemic areas of Madagascar. PLoS Negl Trop Dis 2024; 18:e0012036. [PMID: 38452122 PMCID: PMC10950221 DOI: 10.1371/journal.pntd.0012036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 03/19/2024] [Accepted: 02/29/2024] [Indexed: 03/09/2024] Open
Abstract
Plague is a flea-borne fatal disease caused by the bacterium Yersinia pestis, which persists in rural Madagascar. Although fleas parasitizing rats are considered the primary vectors of Y. pestis, the human flea, Pulex irritans, is abundant in human habitations in Madagascar, and has been found naturally infected by the plague bacterium during outbreaks. While P. irritans may therefore play a role in plague transmission if present in plague endemic areas, the factors associated with infestation and human exposure within such regions are little explored. To determine the socio-ecological risk factors associated with P. irritans infestation in rural households in plague-endemic areas of Madagascar, we used a mixed-methods approach, integrating results from P. irritans sampling, a household survey instrument, and an observational checklist. Using previously published vectorial capacity data, the minimal P. irritans index required for interhuman bubonic plague transmission was modeled to determine whether household infestations were enough to pose a plague transmission risk. Socio-ecological risk factors associated with a high P. irritans index were then identified for enrolled households using generalized linear models. Household flea abundance was also modeled using the same set of predictors. A high P. irritans index occurred in approximately one third of households and was primarily associated with having a traditional dirt floor covered with a plant fiber mat. Interventions targeting home improvement and livestock housing management may alleviate flea abundance and plague risk in rural villages experiencing high P. irritans infestation. As plague-control resources are limited in developing countries such as Madagascar, identifying the household parameters and human behaviors favoring flea abundance, such as those identified in this study, are key to developing preventive measures that can be implemented at the community level.
Collapse
Affiliation(s)
- Adélaïde Miarinjara
- Departments of Environmental Sciences and Environmental Health, Emory University and Rollins School of Public Health, Atlanta, United States of America
| | - Annick Onimalala Raveloson
- Medical Entomology Unit, Institut Pasteur de Madagascar, Antananarivo, Madagascar
- Ecole Doctorale Science de la Vie et de l’Environnement, Université d’Antananarivo, Antananarivo, Madagascar
| | - Stephen Gilbert Mugel
- Departments of Environmental Sciences and Environmental Health, Emory University and Rollins School of Public Health, Atlanta, United States of America
| | - Nick An
- Departments of Environmental Sciences and Environmental Health, Emory University and Rollins School of Public Health, Atlanta, United States of America
| | | | | | | | - Romain Girod
- Medical Entomology Unit, Institut Pasteur de Madagascar, Antananarivo, Madagascar
| | - Thomas Robert Gillespie
- Departments of Environmental Sciences and Environmental Health, Emory University and Rollins School of Public Health, Atlanta, United States of America
- Centre Valbio, Ranomafana, Madagascar
| |
Collapse
|
4
|
Wang N, Yin JX, Zhang Y, Wu L, Li WH, Luo YY, Li R, Li ZW, Liu SQ. Genetic Evolution Analysis and Host Characteristics of Hantavirus in Yunnan Province, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13433. [PMID: 36294012 PMCID: PMC9603364 DOI: 10.3390/ijerph192013433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/08/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
For a long time, the epidemic situation of hemorrhagic fever with renal syndrome (HFRS) caused by hantavirus (HV) in Yunnan Province of China has been relatively severe. The molecular epidemiology and host characteristics of HV in Yunnan Province are still not completely clear, and the systematic and long-term investigation of the epidemic area is very limited. In this study, a total of 488 murine-shaped animals were captured in the three regions of Mile City, Mangshi City and Lianghe County in Yunnan Province, and then the type of HV was identified by multiplex real-time RT-PCR and sequenced. The results indicate that 2.46% of the murine-shaped animal specimens were infected with HV. A new subtype of Seoul virus (SEOV) was found in the rare rat species Rattus nitidus in Lianghe County, and the two strains of this new subtype were named YNLH-K40 and YNLH-K53. Through the phylogenetic analysis of this new subtype, it is shown that this new subtype is very similar to the type S5 of SEOV, which is previously described as the main cause for the high incidence of HFRS in Longquan City, Zhejiang Province, China. This new subtype is highly likely to cause human infection and disease. Therefore, in addition to further promoting the improvement of the HV gene database and strengthening the discovery and monitoring of the host animals in Yunnan Province, more attention should be paid to the pathogenic potential of the newly discovered HV type.
Collapse
|
5
|
Mou W, Li B, Wang X, Wang Y, Liao P, Zhang X, Gui Y, Baokaixi G, Luo Y, Aihemaijiang M, Wang Q, Liu F. Flea index predicts plague epizootics among great gerbils (Rhombomys opimus) in the Junggar Basin China plague focus. Parasit Vectors 2022; 15:214. [PMID: 35715846 PMCID: PMC9205042 DOI: 10.1186/s13071-022-05330-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 05/20/2022] [Indexed: 11/10/2022] Open
Abstract
Background The Junggar Basin plague focus was the most recently identified natural plague focus in China. Through extensive field investigations, great gerbils (Rhombomys opimus) have been confirmed as the main host in this focus, and the community structure of their parasitic fleas is associated with the intensity of plague epizootics. The aim of this study is to provide an indicator that can be surveyed to evaluate the risk of plague epizootics. Methods Between 2005 and 2016, rodents and fleas were collected in the Junggar Basin plague focus. The parasitic fleas on great gerbils were harvested, and anti-F1 antibody in the serum or heart infusion of great gerbils was detected through indirect hemagglutination assay. Yersinia pestis (Y. pestis) was isolated from the liver and spleen of great gerbils and their parasitic fleas using Luria-Bertani plates. Receiver-operating characteristic (ROC) curve was used to evaluate the predictive value of flea index. Results Between 2005 and 2016, 98 investigations were performed, and 6778 great gerbils and 68,498 fleas were collected. Twenty-seven rodents were positive for Y. pestis isolation with a positivity rate of 0.4%; 674 rodents were positive for anti-F1 antibody with a positivity rate of 9.9%. Among these 98 investigations, plague epizootics were confirmed in 13 instances by Y. pestis-positive rodents and in 59 instances by anti-F1 antibody-positive rodents. We observed a higher flea index among rodents with confirmed plague epizootic compared to the negative ones (P = 0.001, 0.002), with an AUC value of 0.659 (95% CI: 0.524–0.835, P = 0.038) for Y. pestis-positive rodents and an AUC value of 0.718 (95% CI: 0.687–0.784, P < 0.001) for anti-F1 antibody-positive rodents. Conclusions Significantly higher flea index was associated with confirmed plague epizootic cases among great gerbils and could be used to predict plague epizootics in this focus. Graphical Abstract ![]()
Collapse
Affiliation(s)
- Wenting Mou
- Microbiological Laboratory, Urumqi Center for Disease Control and Prevention, Urumqi, China
| | - Bo Li
- Department of Emergency Response and Plague Control, Xinjiang Center for Disease Control and Prevention, Urumqi, China
| | - Xiaojun Wang
- Department of Emergency Response and Plague Control, Xinjiang Center for Disease Control and Prevention, Urumqi, China
| | - Ying Wang
- Department of Human Resource, Xinjiang Center for Disease Control and Prevention, Urumqi, China
| | - Peihua Liao
- Department of Science and Education, Xinjiang Center for Disease Control and Prevention, Urumqi, China
| | - Xiaobing Zhang
- Department of Emergency Response and Plague Control, Xinjiang Center for Disease Control and Prevention, Urumqi, China
| | - Youjun Gui
- Department of Emergency Response and Plague Control, Xinjiang Center for Disease Control and Prevention, Urumqi, China
| | - Guliayi Baokaixi
- Department of Emergency Response and Plague Control, Xinjiang Center for Disease Control and Prevention, Urumqi, China
| | - Yongjun Luo
- Department of Emergency Response and Plague Control, Xinjiang Center for Disease Control and Prevention, Urumqi, China
| | - Mukedaisi Aihemaijiang
- Department of Emergency Response and Plague Control, Xinjiang Center for Disease Control and Prevention, Urumqi, China
| | - Qiguo Wang
- Department of Emergency Response and Plague Control, Xinjiang Center for Disease Control and Prevention, Urumqi, China.
| | - Feng Liu
- Department of Emergency Response and Plague Control, Xinjiang Center for Disease Control and Prevention, Urumqi, China.
| |
Collapse
|
6
|
Suntsov VV. Host Aspect of Territorial Expansion of the Plague Microbe Yersinia pestis from the Populations of the Tarbagan Marmot (Marmota sibirica). BIOL BULL+ 2021. [DOI: 10.1134/s1062359021080288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Yin JX, Cheng XO, Luo YY, Zhao QF, Wei ZF, Xu DD, Wang MD, Zhou Y, Wang XF, Liu ZX. The relationship between fleas and small mammals in households of the Western Yunnan Province, China. Sci Rep 2020; 10:16705. [PMID: 33028907 PMCID: PMC7542161 DOI: 10.1038/s41598-020-73690-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 09/16/2020] [Indexed: 11/09/2022] Open
Abstract
The Yunnan province has one of the most serious outbreaks of the plague epidemic in China. Small mammals and fleas are risk factors for the occurrence of plague in commensal plague foci. Understanding the relationship between fleas and small mammals will help control fleas and prevent the onset of the plague. Four hundred and twenty-one small mammals, belonging to 9 species, were captured. Of these, 170 small mammals (40.4%) were found infested with fleas. A total of 992 parasitic fleas (including 5 species) were collected. The number of Leptopsylla segnis and Xenopsylla cheopis accounted for 91.03% (903/992). The final multiple hurdle negative binomial regression model showed that when compared with Rattus tanezumi, the probability of flea infestation with Mus musculus as well as other host species decreased by 58% and 99%, respectively, while the number of flea infestations of the other host species increased by 4.71 folds. The probability of flea prevalence in adult hosts increased by 74%, while the number of fleas decreased by 76%. The number of flea infestations in small male mammals increased by 62%. The number of fleas in small mammals weighing more than 59 g has been multiplied by about 4. R. tanezumi is the predominant species in households in the west Yunnan province, while L.segnis and X. cheopis were dominant parasitic fleas. There is a strong relationship between the abundance of fleas and the characteristics of small mammals (e.g. Species, age, sex, and body weight).
Collapse
Affiliation(s)
- Jia-Xiang Yin
- School of Public Health, Dali University, Dali, 671000, Yunnan Province, People's Republic of China.
| | - Xiao-Ou Cheng
- School of Public Health, Dali University, Dali, 671000, Yunnan Province, People's Republic of China
| | - Yun-Yan Luo
- School of Public Health, Dali University, Dali, 671000, Yunnan Province, People's Republic of China
| | - Qiu-Fang Zhao
- School of Public Health, Dali University, Dali, 671000, Yunnan Province, People's Republic of China
| | - Zhao-Fei Wei
- School of Public Health, Dali University, Dali, 671000, Yunnan Province, People's Republic of China
| | - Dan-Dan Xu
- School of Public Health, Dali University, Dali, 671000, Yunnan Province, People's Republic of China
| | - Meng-Di Wang
- School of Public Health, Dali University, Dali, 671000, Yunnan Province, People's Republic of China
| | - Yun Zhou
- School of Public Health, Dali University, Dali, 671000, Yunnan Province, People's Republic of China
| | - Xiu-Fang Wang
- School of Public Health, Dali University, Dali, 671000, Yunnan Province, People's Republic of China
| | - Zheng-Xiang Liu
- Yunnan Institute of Endemic Disease Control and Prevention, Dali, 671000, Yunnan Province, People's Republic of China
| |
Collapse
|
8
|
Miarinjara A, Rahelinirina S, Razafimahatratra NL, Girod R, Rajerison M, Boyer S. Field assessment of insecticide dusting and bait station treatment impact against rodent flea and house flea species in the Madagascar plague context. PLoS Negl Trop Dis 2019; 13:e0007604. [PMID: 31386661 PMCID: PMC6697362 DOI: 10.1371/journal.pntd.0007604] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 08/16/2019] [Accepted: 07/04/2019] [Indexed: 01/07/2023] Open
Abstract
Bubonic is the most prevalent plague form in Madagascar. Indoor ground application of insecticide dust is the conventional method used to control potentially infected rodent fleas that transmit the plague bacterium from rodents to humans. The use of bait stations is an alternative approach for vector control during plague epidemics, as well as a preventive control method during non-epidemic seasons. Bait stations have many advantages, principally by reducing the amount of insecticide used, lowering the cost of the treatment and minimizing insecticide exposure in the environment. A previous study reported promising results on controlling simultaneously the reservoir and vectors, when slow-acting rodenticide was incorporated in bait stations called "Boîtes de Kartman". However, little evidence of an effective control of the fleas prior to the elimination of rodents was found. In this study, we evaluated bait stations containing insecticide powder and non-toxic attractive rodent bait for their potential to control rat fleas. Its efficacy was compared to the standard method. The impact of both methods on indoor and outdoor rodent fleas, as well as the human household flea Pulex irritans were analyzed at different time points after treatments. Bait stations did not cause any significant immediate or delayed reduction of rat fleas and increasing the number of operational bait stations per household did not significantly improve their efficacy. Insecticide ground dusting appeared to be the most efficient method to control indoor rat fleas. Both methods appeared to have little impact on the density of outdoor rat fleas and human fleas. These results demonstrate limited effectiveness for bait stations and encourage the maintenance of insecticide dusting as a first-line control strategy in case of epidemic emergence of plague, when immediate effect on rodent fleas is needed. Recommendations are given to improve the efficacy of the bait station method.
Collapse
Affiliation(s)
- Adélaïde Miarinjara
- Medical Entomology Unit, Institut Pasteur de Madagascar, Antananarivo, Madagascar
- Ecole Doctorale Sciences de la Vie et de l’Environnement, Université d’Antananarivo, Antananarivo, Madagascar
| | | | - Nadia Lova Razafimahatratra
- Plague Unit, Institut Pasteur de Madagascar, Antananarivo, Madagascar
- Department of Animal Biology, University of Antananarivo, Antananarivo, Madagascar
| | - Romain Girod
- Medical Entomology Unit, Institut Pasteur de Madagascar, Antananarivo, Madagascar
| | | | - Sebastien Boyer
- Medical Entomology Unit, Institut Pasteur de Madagascar, Antananarivo, Madagascar
| |
Collapse
|
9
|
Šlapeta J, Lawrence A, Reichel MP. Cat fleas (Ctenocephalides felis) carrying Rickettsia felis and Bartonella species in Hong Kong. Parasitol Int 2017; 67:209-212. [PMID: 29217417 DOI: 10.1016/j.parint.2017.12.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 10/20/2017] [Accepted: 12/04/2017] [Indexed: 12/01/2022]
Abstract
Fleas are commonly recorded on stray as well as domestic dogs and cats in Hong Kong. Fleas can be a major cause of pruritus in dogs and cats and also vectors of potentially zoonotic bacteria in the genera Rickettsia and Bartonella. Morphological examination of 174 fleas from dogs and cats living in Hong Kong revealed only cat fleas (Ctenocephalides felis). Cytochrome c oxidase subunit 1 gene (cox1) genotyping of 20 randomly selected specimens, revealed three cox1 haplotypes (HK-h1 to HK-h3). The most common haplotype was HK-h1 with 17 specimens (17/20, 85%). HK-h1 was identical to cox1 sequences of fleas in Thailand and Fiji. HK-h1 and HK-h2 form a distinct cat flea cox1 clade previously recognized as the Clade 3. HK-h3 forms a new Clade 6. A multiplex Bartonella and Rickettsia real-time PCR of DNA from 20 C. felis found Bartonella and Rickettsia DNA in three (15%) and ten (50%) C. felis, respectively. DNA sequencing confirmed the presence of R. felis, B. clarridgeiae and Bartonella henselae. This is the first reported study of that kind in Hong Kong, and further work is required to expand the survey of companion animals in the geographical region. The sampling of fleas on domestic cats and dogs in Hong Kong revealed them to be exclusively infested by the cat flea and to be harbouring pathogens of zoonotic potential.
Collapse
Affiliation(s)
- Jan Šlapeta
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, New South Wales 2006, Australia.
| | - Andrea Lawrence
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Sydney, New South Wales 2006, Australia; Marie Bashir Institute of Infectious Diseases and Biosecurity, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Michael P Reichel
- College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon Tong, Hong Kong SAR, China.
| |
Collapse
|
10
|
Halpert E, Borrero E, Ibañez-Pinilla M, Chaparro P, Molina J, Torres M, García E. Prevalence of papular urticaria caused by flea bites and associated factors in children 1-6 years of age in Bogotá, D.C. World Allergy Organ J 2017; 10:36. [PMID: 29158868 PMCID: PMC5674867 DOI: 10.1186/s40413-017-0167-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 09/13/2017] [Indexed: 12/04/2022] Open
Abstract
Background Papular urticaria is a chronic inflammatory disease caused by exposure to arthropod bites. The disease has been reported in children attending medical centers, but the causes as the risk factors associated with the disease have not been established. The objective of this study was to determine the prevalence of papular urticaria caused by flea bite and identify the risk factors in children between 1 to 6 years of age in Bogotá D.C, between March 2009 and June 2011. Methods A cross-sectional, two-stage, clustered study using random probability sampling and stratified with proportional allocation was carried out in children (1–6 years of age) in educational institutions in Bogotá D.C. to determine the prevalence of the disease. Children underwent a dermatological examination by general practitioners with a previous training. Furthermore, digital photographs of skin lesions were taken for further confirmation of the diagnosis by dermatologists. A structured survey was completed by the parents or caregivers, and it was evaluated using an unconditional logistic regression to identify factors associated with the disease. Results A total of 2437 children were included in the study. The prevalence of papular urticaria caused by flea bite in this population was 20.3% (CI 95%: 18.2 to 22.5%). The major risk factors associated with the disease were the presence of fleas in households (OR 1.74, CI 95%: 1.35 to 2.25), using mattresses without springs (OR 1.73, CI 95%: 1.20 to 2.50), the use of daily public transportation to carry the children to the educational institutions (OR 1.76, CI 95%: 1.07 to 2.89), having a soil/earth floor in the main bedroom (OR 6.81, CI 95%:1.16–39.96), and having siblings with a history of atopic dermatitis (OR 1.76 CI 95%: 1.07–2.89). Conclusions A high prevalence of papular urticaria caused by flea bite was found in Bogotá D.C. The main factors associated with the disease might be modified with the implementation of prevention, control strategies in housing, educational institutions, and public transportation.
Collapse
Affiliation(s)
- Evelyne Halpert
- Dermatology Section, Hospital Universitario Fundación Santa Fe de Bogotá, Bogotá, Colombia
| | - Elizabeth Borrero
- Eje de Salud Pública, Fundación Santa Fe de Bogotá, Bogotá, Colombia
| | | | - Pablo Chaparro
- Escuela de Salud Pública, Maestría en Epidemiología, Universidad del Valle, Bogotá, Colombia
| | - Jorge Molina
- Centro de Investigaciones en Microbiología y Parasitología Tropical, Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia
| | - Maritza Torres
- Centro de Investigaciones en Microbiología y Parasitología Tropical, Departamento de Ciencias Biológicas, Universidad de los Andes, Bogotá, Colombia.,Universidad Manuela Beltrán, Bogotá, Colombia
| | - Elizabeth García
- Allergy Section, Hospital Universitario Fundación Santa Fe de Bogotá, Faculty of Medicine, Universidad de los Andes, Bogotá, Colombia.,Sección de Alergia Pediátrica, Fundación Santa Fe de Bogotá, Av 9 N° 116-20, oficina 213, Bogotá, D.C Colombia
| |
Collapse
|
11
|
Rust MK. The Biology and Ecology of Cat Fleas and Advancements in Their Pest Management: A Review. INSECTS 2017; 8:E118. [PMID: 29077073 PMCID: PMC5746801 DOI: 10.3390/insects8040118] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/18/2017] [Accepted: 10/18/2017] [Indexed: 01/10/2023]
Abstract
The cat flea Ctenocephalides felis felis (Bouché) is the most important ectoparasite of domestic cats and dogs worldwide. It has been two decades since the last comprehensive review concerning the biology and ecology of C. f. felis and its management. Since then there have been major advances in our understanding of the diseases associated with C. f. felis and their implications for humans and their pets. Two rickettsial diseases, flea-borne spotted fever and murine typhus, have been identified in domestic animal populations and cat fleas. Cat fleas are the primary vector of Bartonella henselae (cat scratch fever) with the spread of the bacteria when flea feces are scratched in to bites or wounds. Flea allergic dermatitis (FAD) common in dogs and cats has been successfully treated and tapeworm infestations prevented with a number of new products being used to control fleas. There has been a continuous development of new products with novel chemistries that have focused on increased convenience and the control of fleas and other arthropod ectoparasites. The possibility of feral animals serving as potential reservoirs for flea infestations has taken on additional importance because of the lack of effective environmental controls in recent years. Physiological insecticide resistance in C. f. felis continues to be of concern, especially because pyrethroid resistance now appears to be more widespread. In spite of their broad use since 1994, there is little evidence that resistance has developed to many of the on-animal or oral treatments such as fipronil, imidacloprid or lufenuron. Reports of the perceived lack of performance of some of the new on-animal therapies have been attributed to compliance issues and their misuse. Consequentially, there is a continuing need for consumer awareness of products registered for cats and dogs and their safety.
Collapse
Affiliation(s)
- Michael K Rust
- Department of Entomology, University of California Riverside, Riverside, CA 92521, USA.
| |
Collapse
|
12
|
Gálvez R, Montoya A, Checa R, Martín O, Marino V, Miró G. Flea species infesting dogs in Spain: updated spatial and seasonal distribution patterns. MEDICAL AND VETERINARY ENTOMOLOGY 2017; 31:107-113. [PMID: 27790728 DOI: 10.1111/mve.12204] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 08/08/2016] [Accepted: 08/11/2016] [Indexed: 06/06/2023]
Abstract
This entomological survey examines the spatial and seasonal distribution patterns of flea species infesting dogs in Spain. Bioclimatic zones covering broad climate and vegetation ranges were surveyed according to size. In a cross-sectional spatial survey carried out from late May 2013 to mid-July 2015, 1084 dogs from 42 different locations were examined. A total of 3032 fleas were collected and identified as belonging to the following species: Ctenocephalides felis (Siphonaptera: Pulicidae) (81.7%, 2476 fleas); Ctenocephalides canis (11.4%, 347 fleas); Pulex irritans (Siphonaptera: Pulicidae) (6.9%, 208 fleas), and Echidnophaga gallinacea (Siphonaptera: Pulicidae) (0.03%, one flea). Variables observed to have effects on flea abundance were animal weight, sex, length of hair and habitat. In the seasonal survey conducted from June 2014 to June 2015, 1014 fleas were collected from 239 dogs at 30 veterinary practices across Spain. Peaks in C. felis abundance were observed in early summer and late autumn, whereas high numbers of P. irritans and C. canis were recorded in autumn. Numbers of fleas detected in winter were low overall. Based on these findings, the present study updates the spatial and seasonal distributions of flea species in Spain and assesses the impacts of host and habitat variables on flea infestation.
Collapse
Affiliation(s)
- R Gálvez
- Grupo de Investigación Epicontrol-Carnívoros, Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - A Montoya
- Grupo de Investigación Epicontrol-Carnívoros, Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - R Checa
- Grupo de Investigación Epicontrol-Carnívoros, Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - O Martín
- Grupo de Investigación Epicontrol-Carnívoros, Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - V Marino
- Grupo de Investigación Epicontrol-Carnívoros, Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - G Miró
- Grupo de Investigación Epicontrol-Carnívoros, Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
13
|
Abstract
Whole-genome sequencing of wild-derived rat species can provide novel genomic resources, which may help decipher the genetics underlying complex phenotypes. As a notorious pest, reservoir of human pathogens, and colonizer, the Asian house rat, Rattus tanezumi, is successfully adapted to its habitat. However, little is known regarding genetic variation in this species. In this study, we identified over 41,000,000 single-nucleotide polymorphisms, plus insertions and deletions, through whole-genome sequencing and bioinformatics analyses. Moreover, we identified over 12,000 structural variants, including 143 chromosomal inversions. Further functional analyses revealed several fixed nonsense mutations associated with infection and immunity-related adaptations, and a number of fixed missense mutations that may be related to anticoagulant resistance. A genome-wide scan for loci under selection identified various genes related to neural activity. Our whole-genome sequencing data provide a genomic resource for future genetic studies of the Asian house rat species and have the potential to facilitate understanding of the molecular adaptations of rats to their ecological niches.
Collapse
|
14
|
Bland DM, Hinnebusch BJ. Feeding Behavior Modulates Biofilm-Mediated Transmission of Yersinia pestis by the Cat Flea, Ctenocephalides felis. PLoS Negl Trop Dis 2016; 10:e0004413. [PMID: 26829486 PMCID: PMC4734780 DOI: 10.1371/journal.pntd.0004413] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 01/08/2016] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The cat flea, Ctenocephalides felis, is prevalent worldwide, will parasitize animal reservoirs of plague, and is associated with human habitations in known plague foci. Despite its pervasiveness, limited information is available about the cat flea's competence as a vector for Yersinia pestis. It is generally considered to be a poor vector, based on studies examining early-phase transmission during the first week after infection, but transmission potential by the biofilm-dependent proventricular-blocking mechanism has never been systematically evaluated. In this study, we assessed the vector competence of cat fleas by both mechanisms. Because the feeding behavior of cat fleas differs markedly from important rat flea vectors, we also examined the influence of feeding behavior on transmission dynamics. METHODOLOGY/PRINCIPAL FINDINGS Groups of cat fleas were infected with Y. pestis and subsequently provided access to sterile blood meals twice-weekly, 5 times per week, or daily for 4 weeks and monitored for infection, the development of proventricular biofilm and blockage, mortality, and the ability to transmit. In cat fleas allowed prolonged, daily access to blood meals, mimicking their natural feeding behavior, Y. pestis did not efficiently colonize the digestive tract and could only be transmitted during the first week after infection. In contrast, cat fleas that were fed intermittently, mimicking the feeding behavior of the efficient vector Xenopsylla cheopis, could become blocked and regularly transmitted Y. pestis for 3-4 weeks by the biofilm-mediated mechanism, but early-phase transmission was not detected. CONCLUSIONS The normal feeding behavior of C. felis, more than an intrinsic resistance to infection or blockage by Y. pestis, limits its vector competence. Rapid turnover of midgut contents results in bacterial clearance and disruption of biofilm accumulation in the proventriculus. Anatomical features of the cat flea foregut may also restrict transmission by both early-phase and proventricular biofilm-dependent mechanisms.
Collapse
Affiliation(s)
- David M. Bland
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - B. Joseph Hinnebusch
- Laboratory of Zoonotic Pathogens, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| |
Collapse
|
15
|
Faunal distribution of fleas and their blood-feeding preferences using enzyme-linked immunosorbent assays from farm animals and human shelters in a new rural region of southern Iran. J Parasit Dis 2014; 40:169-75. [PMID: 27065620 DOI: 10.1007/s12639-014-0471-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 05/07/2014] [Indexed: 10/25/2022] Open
Abstract
Blood sucking insects, such as fleas, are responsible for the transmission of many infectious disease-causing agents which impose an intolerable burden on the health of people living particularly in endemic parts of the world. Fleas (Insecta: Siphonaptera) are found in many parts of the world including Iran. Both adult male and female fleas are obligatory ectoparasites. They are one of the main public health concerns as a result of their nuisance or the potential to act as vectors of a number of medically-important pathogens. The current study was conducted to examine the geographical distribution and fauna of fleas and their anthropophagic index in part of Fars province, southern Iran. This study was the first to be done in Iran. A total of 20 villages were randomly selected. From October 2011 to May 2012, adult fleas were collected by direct hand catch from human to animal shelters. Overall 848 fleas, most of which were blood-fed, were captured from the floor or the body of farm animal hosts (cattle, sheep, goat and hens). Only two different genera of fleas were identified, the main species (99.76 %) was human flea, Pulex irritans. The village of Shamsabad was the most heavily infested area. P. irritans had an anthropophagic index of 15 % using indirect enzyme-linked immunosorbent assays (ELISA). It could be concluded that P. irritans is widely distributed in this area. Based on their blood feeding activity, fleas thus posed a serious health threat to residents and their economically important livestock in this part of Iran.
Collapse
|
16
|
YfbA, a Yersinia pestis regulator required for colonization and biofilm formation in the gut of cat fleas. J Bacteriol 2014; 196:1165-73. [PMID: 24391055 DOI: 10.1128/jb.01187-13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
For transmission to new hosts, Yersinia pestis, the causative agent of plague, replicates as biofilm in the foregut of fleas that feed on plague-infected animals or humans. Y. pestis biofilm formation has been studied in the rat flea; however, little is known about the cat flea, a species that may bridge zoonotic and anthroponotic plague cycles. Here, we show that Y. pestis infects and replicates as a biofilm in the foregut of cat fleas in a manner requiring hmsFR, two determinants for extracellular biofilm matrix. Examining a library of transposon insertion mutants, we identified the LysR-type transcriptional regulator YfbA, which is essential for Y. pestis colonization and biofilm formation in cat fleas.
Collapse
|
17
|
Huang LQ, Guo XG, Speakman JR, Dong WG. Analysis of gamasid mites (Acari: Mesostigmata) associated with the Asian house rat, Rattus tanezumi (Rodentia: Muridae) in Yunnan Province, southwest China. Parasitol Res 2013; 112:1967-72. [PMID: 23471780 DOI: 10.1007/s00436-013-3354-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 02/14/2013] [Indexed: 11/29/2022]
Abstract
During a survey lasting from 1990 to 2008, we captured 4,113 Asian house rats, Rattus tanezumi Temminck 1844 (Rodentia: Muridae) from 28 counties of Yunnan Province in southwestern China. From these rats, a total of 19,304 gamasid mites (Acari: Mesostigmata) were collected and identified as comprising 50 different species. The species diversity of gamasid mites from this single rat species is higher than that reported previously from multiple hosts within a given geographical region. Of the 50 mite species, 31 species belonged to ectoparasites and 19 species belonged to free-living mites. The species diversity of the mites from rats trapped outdoors was much higher than from rats trapped indoors. The parameter K from the negative binomial distribution was used to measure the spatial distribution patterns of the dominant mite species and revealed that all the mites had an aggregated distribution among the rat hosts. Most mite species showed a predominantly female-biased population structure with many more females than males.
Collapse
Affiliation(s)
- Li-Qin Huang
- Vector Laboratory, Institute of Pathogens and Vectors, Dali University (Branch of Key Laboratory for Preventing and Controlling Plague of Yunnan Province), Dali, Yunnan, 671000, China.
| | | | | | | |
Collapse
|