1
|
Khan AH, Bilal M, Mahmood A, Rasool N, Qamar MU, Imran M, Toma SI, Andreescu O. Facile Synthesis of N-(4-Bromo-3-methylphenyl)pyrazine-2-carboxamide Derivatives, Their Antibacterial Activities against Clinically Isolated XDR S. Typhi, Alkaline Phosphatase Inhibitor Activities, and Docking Studies. Pharmaceuticals (Basel) 2024; 17:1241. [PMID: 39338403 PMCID: PMC11434897 DOI: 10.3390/ph17091241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
The emergence of extensively drug-resistant Salmonella Typhi (XDR-S. Typhi) poses a grave public health threat due to its resistance to fluoroquinolones and third-generation cephalosporins. This resistance significantly complicates treatment options, underscoring the urgent need for new therapeutic strategies. In this study, we synthesized pyrazine carboxamides (3, 5a-5d) in good yields through the Suzuki reaction. Afterward, we evaluate their antibacterial activities against XDR-S. Typhi via the agar well diffusion method; 5d has the strongest antibacterial activity with MIC 6.25 (mg/mL). Moreover, in vitro Alkaline Phosphatase inhibitor activity was also determined; 5d is the most potent compound, with an IC50 of 1.469 ± 0.02 µM. Further, in silico studies were performed to find the type of interactions between synthesized compounds and target proteins.
Collapse
Affiliation(s)
- Abdul Hannan Khan
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Bilal
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Abid Mahmood
- Department of Pharmaceutical Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Nasir Rasool
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Usman Qamar
- Institute of Microbiology, Faculty of Life Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Imran
- Chemistry Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | | | - Oana Andreescu
- Faculty of Medicine, Transilvania University of Brasov, 500036 Brasov, Romania
| |
Collapse
|
2
|
Peñil-Celis A, Tagg KA, Webb HE, Redondo-Salvo S, Francois Watkins L, Vielva L, Griffin C, Kim JY, Folster JP, Garcillan-Barcia MP, de la Cruz F. Mobile genetic elements define the non-random structure of the Salmonella enterica serovar Typhi pangenome. mSystems 2024; 9:e0036524. [PMID: 39058093 PMCID: PMC11334464 DOI: 10.1128/msystems.00365-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/30/2024] [Indexed: 07/28/2024] Open
Abstract
Bacterial relatedness measured using select chromosomal loci forms the basis of public health genomic surveillance. While approximating vertical evolution through this approach has proven exceptionally valuable for understanding pathogen dynamics, it excludes a fundamental dimension of bacterial evolution-horizontal gene transfer. Incorporating the accessory genome is the logical remediation and has recently shown promise in expanding epidemiological resolution for enteric pathogens. Employing k-mer-based Jaccard index analysis, and a novel genome length distance metric, we computed pangenome (i.e., core and accessory) relatedness for the globally important pathogen Salmonella enterica serotype Typhi (Typhi), and graphically express both vertical (homology-by-descent) and horizontal (homology-by-admixture) evolutionary relationships in a reticulate network of over 2,200 U.S. Typhi genomes. This analysis revealed non-random structure in the Typhi pangenome that is driven predominantly by the gain and loss of mobile genetic elements, confirming and expanding upon known epidemiological patterns, revealing novel plasmid dynamics, and identifying avenues for further genomic epidemiological exploration. With an eye to public health application, this work adds important biological context to the rapidly improving ways of analyzing bacterial genetic data and demonstrates the value of the accessory genome to infer pathogen epidemiology and evolution.IMPORTANCEGiven bacterial evolution occurs in both vertical and horizontal dimensions, inclusion of both core and accessory genetic material (i.e., the pangenome) is a logical step toward a more thorough understanding of pathogen dynamics. With an eye to public, and indeed, global health relevance, we couple contemporary tools for genomic analysis with decades of research on mobile genetic elements to demonstrate the value of the pangenome, known and unknown, annotated, and hypothetical, for stratification of Salmonella enterica serovar Typhi (Typhi) populations. We confirm and expand upon what is known about Typhi epidemiology, plasmids, and antimicrobial resistance dynamics, and offer new avenues of exploration to further deduce Typhi ecology and evolution, and ultimately to reduce the incidence of human disease.
Collapse
Affiliation(s)
- Arancha Peñil-Celis
- Instituto de Biomedicina y Biotecnología de Cantabria, (CSIC, Universidad de Cantabria), Santander, Spain
| | - Kaitlin A. Tagg
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Hattie E. Webb
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Santiago Redondo-Salvo
- Instituto de Biomedicina y Biotecnología de Cantabria, (CSIC, Universidad de Cantabria), Santander, Spain
- Biomar Microbial Technologies, León, Spain
| | - Louise Francois Watkins
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Luis Vielva
- Departamento de Ingeniería de las Comunicaciones, Universidad de Cantabria, Santander, Spain
| | - Chelsey Griffin
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, Tennessee, USA
| | - Justin Y. Kim
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- ASRT, Inc., Suwanee, Georgia, USA
| | - Jason P. Folster
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - M. Pilar Garcillan-Barcia
- Instituto de Biomedicina y Biotecnología de Cantabria, (CSIC, Universidad de Cantabria), Santander, Spain
| | - Fernando de la Cruz
- Instituto de Biomedicina y Biotecnología de Cantabria, (CSIC, Universidad de Cantabria), Santander, Spain
| |
Collapse
|
3
|
Prieto A, Miró L, Margolles Y, Bernabeu M, Salguero D, Merino S, Tomas J, Corbera JA, Perez-Bosque A, Huttener M, Fernández LÁ, Juarez A. Targeting plasmid-encoded proteins that contain immunoglobulin-like domains to combat antimicrobial resistance. eLife 2024; 13:RP95328. [PMID: 39046772 PMCID: PMC11268884 DOI: 10.7554/elife.95328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024] Open
Abstract
Antimicrobial resistance (AMR) poses a significant threat to human health. Although vaccines have been developed to combat AMR, it has proven challenging to associate specific vaccine antigens with AMR. Bacterial plasmids play a crucial role in the transmission of AMR. Our recent research has identified a group of bacterial plasmids (specifically, IncHI plasmids) that encode large molecular mass proteins containing bacterial immunoglobulin-like domains. These proteins are found on the external surface of the bacterial cells, such as in the flagella or conjugative pili. In this study, we show that these proteins are antigenic and can protect mice from infection caused by an AMR Salmonella strain harboring one of these plasmids. Furthermore, we successfully generated nanobodies targeting these proteins, that were shown to interfere with the conjugative transfer of IncHI plasmids. Considering that these proteins are also encoded in other groups of plasmids, such as IncA/C and IncP2, targeting them could be a valuable strategy in combating AMR infections caused by bacteria harboring different groups of AMR plasmids. Since the selected antigens are directly linked to AMR itself, the protective effect extends beyond specific microorganisms to include all those carrying the corresponding resistance plasmids.
Collapse
Affiliation(s)
- Alejandro Prieto
- Department of Genetics, Microbiology and Statistics, University of BarcelonaBarcelonaSpain
| | - Luïsa Miró
- Department of Biochemistry and Physiology, Universitat de BarcelonaBarcelonaSpain
- Institut de Nutrició i Seguretat Alimentària, Universitat de BarcelonaBarcelonaSpain
| | - Yago Margolles
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC)MadridSpain
| | - Manuel Bernabeu
- Department of Genetics, Microbiology and Statistics, University of BarcelonaBarcelonaSpain
| | - David Salguero
- Department of Genetics, Microbiology and Statistics, University of BarcelonaBarcelonaSpain
| | - Susana Merino
- Department of Genetics, Microbiology and Statistics, University of BarcelonaBarcelonaSpain
| | - Joan Tomas
- Department of Genetics, Microbiology and Statistics, University of BarcelonaBarcelonaSpain
| | - Juan Alberto Corbera
- Instituto Universitario de Investigaciones Biomédicas y Sanitarias (IUIBS), Facultad de Veterinaria, Universidad de Las Palmas de Gran Canaria (ULPGC), Campus Universitario de ArucasLas PalmasSpain
| | - Anna Perez-Bosque
- Department of Biochemistry and Physiology, Universitat de BarcelonaBarcelonaSpain
- Institut de Nutrició i Seguretat Alimentària, Universitat de BarcelonaBarcelonaSpain
| | - Mario Huttener
- Department of Genetics, Microbiology and Statistics, University of BarcelonaBarcelonaSpain
| | - Luis Ángel Fernández
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CNB-CSIC)MadridSpain
| | - Antonio Juarez
- Department of Genetics, Microbiology and Statistics, University of BarcelonaBarcelonaSpain
- Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and TechnologyBarcelonaSpain
| |
Collapse
|
4
|
Ng'eno E, Cobos ME, Kiplangat S, Mugoh R, Ouma A, Bigogo G, Omulo S, Peterson AT. Long-term antibiotic exposure landscapes and resistant Escherichia coli colonization in a densely populated setting. PLoS One 2024; 19:e0302521. [PMID: 38980845 PMCID: PMC11232973 DOI: 10.1371/journal.pone.0302521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 04/07/2024] [Indexed: 07/11/2024] Open
Abstract
Antibiotic exposure is associated with resistant bacterial colonization, but this relationship can be obscured in community settings owing to horizontal bacterial transmission and broad distributions. Locality-level exposure estimates considering inhabitants' length of stay, exposure history, and exposure conditions of areas nearby could clarify these relationships. We used prescription data filled during 2010-2015 for 23 antibiotic types for members of georeferenced households in a population-based infectious disease surveillance platform. For each antibiotic and locality, we generated exposure estimates, expressed in defined daily doses (DDD) per 1000 inhabitant days of observation (IDO). We also estimated relevant environmental parameters, such as the distance of each locality to water, sanitation, and other amenities. We used data on ampicillin, ceftazidime, and trimethoprim-and-sulfamethoxazole resistant Escherichia coli colonization from stool cultures of asymptomatic individuals in randomly selected households. We tested exposure-colonization associations using permutation analysis of variance and logistic generalized linear mixed-effect models. Overall, exposure was highest for trimethoprim-sulfamethoxazole (1.8 DDD per 1000 IDO), followed by amoxicillin (0.7 DDD per 1000 IDO). Of 1,386 unique household samples from 195 locations tested between September 2015 and January 2016, 90%, 85% and 4% were colonized with E. coli resistant to trimethoprim and sulfamethoxazole, ampicillin, and ceftazidime, respectively. Ceftazidime-resistant E. coli colonization was common in areas with increased trimethoprim-sulfamethoxazole, cloxacillin, and erythromycin exposure. No association with any of the physical environmental variables was observed. We did not detect relationships between distribution patterns of ampicillin or trimethoprim-and-sulfamethoxazole resistant E. coli colonization and the risk factors assessed. Appropriate temporal and spatial scaling of raw antibiotic exposure data to account for evolution and ecological contexts of antibiotic resistance could clarify exposure-colonization relationships in community settings and inform community stewardship program.
Collapse
Affiliation(s)
- Eric Ng'eno
- Centre for Global Health Research, Kenya Medical Research Institute, Nairobi, Kenya
- Department of Ecology and Evolutionary Biology and Biodiversity Institute, University of Kansas, Lawrence, KS, United States of America
| | - Marlon E Cobos
- Department of Ecology and Evolutionary Biology and Biodiversity Institute, University of Kansas, Lawrence, KS, United States of America
| | - Samuel Kiplangat
- Centre for Global Health Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Robert Mugoh
- Washington State University Global Health-Kenya, Nairobi, Kenya
| | - Alice Ouma
- Centre for Global Health Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Godfrey Bigogo
- Centre for Global Health Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Sylvia Omulo
- Washington State University Global Health-Kenya, Nairobi, Kenya
- Paul G. Allen School for Global Health, Washington State University, Pullman, WA, United States of America
- University of Nairobi Institute of Tropical and Infectious Diseases, Nairobi, Kenya
| | - A Townsend Peterson
- Department of Ecology and Evolutionary Biology and Biodiversity Institute, University of Kansas, Lawrence, KS, United States of America
| |
Collapse
|
5
|
Carey ME, Thi Nguyen TN, Tran DHN, Dyson ZA, Keane JA, Pham Thanh D, Mylona E, Nair S, Chattaway M, Baker S. The origins of haplotype 58 (H58) Salmonella enterica serovar Typhi. Commun Biol 2024; 7:775. [PMID: 38942806 PMCID: PMC11213900 DOI: 10.1038/s42003-024-06451-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 06/13/2024] [Indexed: 06/30/2024] Open
Abstract
Antimicrobial resistance (AMR) poses a serious threat to the clinical management of typhoid fever. AMR in Salmonella Typhi (S. Typhi) is commonly associated with the H58 lineage, a lineage that arose comparatively recently before becoming globally disseminated. To better understand when and how H58 emerged and became dominant, we performed detailed phylogenetic analyses on contemporary genome sequences from S. Typhi isolated in the period spanning the emergence. Our dataset, which contains the earliest described H58 S. Typhi organism, indicates that ancestral H58 organisms were already multi-drug resistant (MDR). These organisms emerged spontaneously in India in 1987 and became radially distributed throughout South Asia and then globally in the ensuing years. These early organisms were associated with a single long branch, possessing mutations associated with increased bile tolerance, suggesting that the first H58 organism was generated during chronic carriage. The subsequent use of fluoroquinolones led to several independent mutations in gyrA. The ability of H58 to acquire and maintain AMR genes continues to pose a threat, as extensively drug-resistant (XDR; MDR plus resistance to ciprofloxacin and third generation cephalosporins) variants, have emerged recently in this lineage. Understanding where and how H58 S. Typhi originated and became successful is key to understand how AMR drives successful lineages of bacterial pathogens. Additionally, these data can inform optimal targeting of typhoid conjugate vaccines (TCVs) for reducing the potential for emergence and the impact of new drug-resistant variants. Emphasis should also be placed upon the prospective identification and treatment of chronic carriers to prevent the emergence of new drug resistant variants with the ability to spread efficiently.
Collapse
Affiliation(s)
- Megan E Carey
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK.
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK.
- IAVI, Chelsea & Westminster Hospital, London, UK.
| | - To Nguyen Thi Nguyen
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Program, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
| | | | - Zoe A Dyson
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, VIC, 3004, Australia
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Jacqueline A Keane
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - Duy Pham Thanh
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Program, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Elli Mylona
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - Satheesh Nair
- United Kingdom Health Security Agency, Gastrointestinal Bacteria Reference Unit, London, UK
| | - Marie Chattaway
- United Kingdom Health Security Agency, Gastrointestinal Bacteria Reference Unit, London, UK
| | - Stephen Baker
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
- IAVI, Chelsea & Westminster Hospital, London, UK
| |
Collapse
|
6
|
Wang BX, Leshchiner D, Luo L, Tuncel M, Hokamp K, Hinton JCD, Monack DM. High-throughput fitness experiments reveal specific vulnerabilities of human-adapted Salmonella during stress and infection. Nat Genet 2024; 56:1288-1299. [PMID: 38831009 PMCID: PMC11176087 DOI: 10.1038/s41588-024-01779-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 04/25/2024] [Indexed: 06/05/2024]
Abstract
Salmonella enterica is comprised of genetically distinct 'serovars' that together provide an intriguing model for exploring the genetic basis of pathogen evolution. Although the genomes of numerous Salmonella isolates with broad variations in host range and human disease manifestations have been sequenced, the functional links between genetic and phenotypic differences among these serovars remain poorly understood. Here, we conduct high-throughput functional genomics on both generalist (Typhimurium) and human-restricted (Typhi and Paratyphi A) Salmonella at unprecedented scale in the study of this enteric pathogen. Using a comprehensive systems biology approach, we identify gene networks with serovar-specific fitness effects across 25 host-associated stresses encountered at key stages of human infection. By experimentally perturbing these networks, we characterize previously undescribed pseudogenes in human-adapted Salmonella. Overall, this work highlights specific vulnerabilities encoded within human-restricted Salmonella that are linked to the degradation of their genomes, shedding light into the evolution of this enteric pathogen.
Collapse
Affiliation(s)
- Benjamin X Wang
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Lijuan Luo
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Miles Tuncel
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Karsten Hokamp
- Department of Genetics, School of Genetics and Microbiology, Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Jay C D Hinton
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Denise M Monack
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
7
|
Onken A, Moyo S, Miraji MK, Bohlin J, Marijani M, Manyahi J, Kibwana KO, Müller F, Jenum PA, Abeid KA, Reimers M, Langeland N, Mørch K, Blomberg B. Predominance of multidrug-resistant Salmonella Typhi genotype 4.3.1 with low-level ciprofloxacin resistance in Zanzibar. PLoS Negl Trop Dis 2024; 18:e0012132. [PMID: 38630840 PMCID: PMC11057722 DOI: 10.1371/journal.pntd.0012132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 04/29/2024] [Accepted: 04/02/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Typhoid fever is a common cause of febrile illness in low- and middle-income countries. While multidrug-resistant (MDR) Salmonella Typhi (S. Typhi) has spread globally, fluoroquinolone resistance has mainly affected Asia. METHODS Consecutively, 1038 blood cultures were obtained from patients of all age groups with fever and/or suspicion of serious systemic infection admitted at Mnazi Mmoja Hospital, Zanzibar in 2015-2016. S. Typhi were analyzed with antimicrobial susceptibility testing and with short read (61 strains) and long read (9 strains) whole genome sequencing, including three S. Typhi strains isolated in a pilot study 2012-2013. RESULTS Sixty-three S. Typhi isolates (98%) were MDR carrying blaTEM-1B, sul1 and sul2, dfrA7 and catA1 genes. Low-level ciprofloxacin resistance was detected in 69% (43/62), with a single gyrase mutation gyrA-D87G in 41 strains, and a single gyrA-S83F mutation in the non-MDR strain. All isolates were susceptible to ceftriaxone and azithromycin. All MDR isolates belonged to genotype 4.3.1 lineage I (4.3.1.1), with the antimicrobial resistance determinants located on a composite transposon integrated into the chromosome. Phylogenetically, the MDR subgroup with ciprofloxacin resistance clusters together with two external isolates. CONCLUSIONS We report a high rate of MDR and low-level ciprofloxacin resistant S. Typhi circulating in Zanzibar, belonging to genotype 4.3.1.1, which is widespread in Southeast Asia and African countries and associated with low-level ciprofloxacin resistance. Few therapeutic options are available for treatment of typhoid fever in the study setting. Surveillance of the prevalence, spread and antimicrobial susceptibility of S. Typhi can guide treatment and control efforts.
Collapse
Affiliation(s)
- Annette Onken
- Department of Clinical Science, University of Medicine, Bergen, Norway
- National Centre for Tropical Infectious Diseases, Haukeland University Hospital, Bergen, Norway
- Department of Microbiology, Vestre Viken Hospital Trust, Drammen, Norway
| | - Sabrina Moyo
- Department of Clinical Science, University of Medicine, Bergen, Norway
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | | | - Jon Bohlin
- Department of methods and analysis, Section of modelling and bioinformatics, Domain of Infection Control, Oslo, Norway
- Center for Fertility and Health analysis, Norwegian Institute of Public Health, Oslo, Norway
| | - Msafiri Marijani
- Pathology Laboratory Department, Mnazi Mmoja Hospital, Zanzibar, Tanzania
| | - Joel Manyahi
- Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Kibwana Omar Kibwana
- Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Fredrik Müller
- Department of Microbiology, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Pål A. Jenum
- Department of Microbiology, Vestre Viken Hospital Trust, Drammen, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Khamis Ali Abeid
- Department of Pediatrics, Mnazi Mmoja Hospital, Zanzibar, Tanzania
| | - Marianne Reimers
- Emergency Care Clinic, Haukeland University Hospital, Bergen, Norway
| | - Nina Langeland
- Department of Clinical Science, University of Medicine, Bergen, Norway
- National Centre for Tropical Infectious Diseases, Haukeland University Hospital, Bergen, Norway
| | - Kristine Mørch
- Department of Clinical Science, University of Medicine, Bergen, Norway
- National Centre for Tropical Infectious Diseases, Haukeland University Hospital, Bergen, Norway
| | - Bjørn Blomberg
- Department of Clinical Science, University of Medicine, Bergen, Norway
- National Centre for Tropical Infectious Diseases, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
8
|
Browne AJ, Chipeta MG, Fell FJ, Haines-Woodhouse G, Kashef Hamadani BH, Kumaran EAP, Robles Aguilar G, McManigal B, Andrews JR, Ashley EA, Audi A, Baker S, Banda HC, Basnyat B, Bigogo G, Ngoun C, Chansamouth V, Chunga A, Clemens JD, Davong V, Dougan G, Dunachie SJ, Feasey NA, Garrett DO, Gordon MA, Hasan R, Haselbeck AH, Henry NJ, Heyderman RS, Holm M, Jeon HJ, Karkey A, Khanam F, Luby SP, Malik FR, Marks F, Mayxay M, Meiring JE, Moore CE, Munywoki PK, Musicha P, Newton PN, Pak G, Phommasone K, Pokharel S, Pollard AJ, Qadri F, Qamar FN, Rattanavong S, Reiner B, Roberts T, Saha S, Saha S, Shakoor S, Shakya M, Simpson AJ, Stanaway J, Turner C, Turner P, Verani JR, Vongsouvath M, Day NPJ, Naghavi M, Hay SI, Sartorius B, Dolecek C. Estimating the subnational prevalence of antimicrobial resistant Salmonella enterica serovars Typhi and Paratyphi A infections in 75 endemic countries, 1990-2019: a modelling study. Lancet Glob Health 2024; 12:e406-e418. [PMID: 38365414 PMCID: PMC10882211 DOI: 10.1016/s2214-109x(23)00585-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 11/19/2023] [Accepted: 12/04/2023] [Indexed: 02/18/2024]
Abstract
BACKGROUND Enteric fever, a systemic infection caused by Salmonella enterica serovars Typhi and Paratyphi A, remains a major cause of morbidity and mortality in low-income and middle-income countries. Enteric fever is preventable through the provision of clean water and adequate sanitation and can be successfully treated with antibiotics. However, high levels of antimicrobial resistance (AMR) compromise the effectiveness of treatment. We provide estimates of the prevalence of AMR S Typhi and S Paratyphi A in 75 endemic countries, including 30 locations without data. METHODS We used a Bayesian spatiotemporal modelling framework to estimate the percentage of multidrug resistance (MDR), fluoroquinolone non-susceptibility (FQNS), and third-generation cephalosporin resistance in S Typhi and S Paratyphi A infections for 1403 administrative level one districts in 75 endemic countries from 1990 to 2019. We incorporated data from a comprehensive systematic review, public health surveillance networks, and large multicountry studies on enteric fever. Estimates of the prevalence of AMR and the number of AMR infections (based on enteric fever incidence estimates by the Global Burden of Diseases study) were produced at the country, super-region, and total endemic area level for each year of the study. FINDINGS We collated data from 601 sources, comprising 184 225 isolates of S Typhi and S Paratyphi A, covering 45 countries over 30 years. We identified a decline of MDR S Typhi in south Asia and southeast Asia, whereas in sub-Saharan Africa, the overall prevalence increased from 6·0% (95% uncertainty interval 4·3-8·0) in 1990 to 72·7% (67·7-77·3) in 2019. Starting from low levels in 1990, the prevalence of FQNS S Typhi increased rapidly, reaching 95·2% (91·4-97·7) in south Asia in 2019. This corresponded to 2·5 million (1·5-3·8) MDR S Typhi infections and 7·4 million (4·7-11·3) FQNS S Typhi infections in endemic countries in 2019. The prevalence of third-generation cephalosporin-resistant S Typhi remained low across the whole endemic area over the study period, except for Pakistan where prevalence of third-generation cephalosporin resistance in S Typhi reached 61·0% (58·0-63·8) in 2019. For S Paratyphi A, we estimated low prevalence of MDR and third-generation cephalosporin resistance in all endemic countries, but a drastic increase of FQNS, which reached 95·0% (93·7-96·1; 3·5 million [2·2-5·6] infections) in 2019. INTERPRETATION This study provides a comprehensive and detailed analysis of the prevalence of MDR, FQNS, and third-generation cephalosporin resistance in S Typhi and S Paratyphi A infections in endemic countries, spanning the last 30 years. Our analysis highlights the increasing levels of AMR in this preventable infection and serves as a resource to guide urgently needed public health interventions, such as improvements in water, sanitation, and hygiene and typhoid fever vaccination campaigns. FUNDING Fleming Fund, UK Department of Health and Social Care; Wellcome Trust; and Bill and Melinda Gates Foundation.
Collapse
|
9
|
Feng Y, Pan H, Zheng B, Li F, Teng L, Jiang Z, Feng M, Zhou X, Peng X, Xu X, Wang H, Wu B, Xiao Y, Baker S, Zhao G, Yue M. An integrated nationwide genomics study reveals transmission modes of typhoid fever in China. mBio 2023; 14:e0133323. [PMID: 37800953 PMCID: PMC10653838 DOI: 10.1128/mbio.01333-23] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/16/2023] [Indexed: 10/07/2023] Open
Abstract
IMPORTANCE Typhoid fever is a life-threatening disease caused by Salmonella enterica serovar Typhi, resulting in a significant disease burden across developing countries. Historically, China was very much close to the global epicenter of typhoid, but the role of typhoid transmission within China and among epicenter remains overlooked in previous investigations. By using newly produced genomics on a national scale, we clarify the complex local and global transmission history of such a notorious disease agent in China spanning the most recent five decades, which largely undermines the global public health network.
Collapse
Affiliation(s)
- Ye Feng
- Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Hang Pan
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Beiwen Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fang Li
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Lin Teng
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Zhijie Jiang
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Mengyao Feng
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Xiao Zhou
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Xianqi Peng
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
| | - Xuebin Xu
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Haoqiu Wang
- Hangzhou Center for Disease Control and Prevention, Hangzhou, China
| | - Beibei Wu
- Zhejiang Province Center for Disease Control and Prevention, Hangzhou, China
- School of Public Health and Managemet, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yonghong Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Stephen Baker
- University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Guoping Zhao
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
- CAS Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Min Yue
- Department of Veterinary Medicine, Zhejiang University College of Animal Sciences, Hangzhou, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| |
Collapse
|
10
|
Carey ME, Dyson ZA, Ingle DJ, Amir A, Aworh MK, Chattaway MA, Chew KL, Crump JA, Feasey NA, Howden BP, Keddy KH, Maes M, Parry CM, Van Puyvelde S, Webb HE, Afolayan AO, Alexander AP, Anandan S, Andrews JR, Ashton PM, Basnyat B, Bavdekar A, Bogoch II, Clemens JD, da Silva KE, De A, de Ligt J, Diaz Guevara PL, Dolecek C, Dutta S, Ehlers MM, Francois Watkins L, Garrett DO, Godbole G, Gordon MA, Greenhill AR, Griffin C, Gupta M, Hendriksen RS, Heyderman RS, Hooda Y, Hormazabal JC, Ikhimiukor OO, Iqbal J, Jacob JJ, Jenkins C, Jinka DR, John J, Kang G, Kanteh A, Kapil A, Karkey A, Kariuki S, Kingsley RA, Koshy RM, Lauer AC, Levine MM, Lingegowda RK, Luby SP, Mackenzie GA, Mashe T, Msefula C, Mutreja A, Nagaraj G, Nagaraj S, Nair S, Naseri TK, Nimarota-Brown S, Njamkepo E, Okeke IN, Perumal SPB, Pollard AJ, Pragasam AK, Qadri F, Qamar FN, Rahman SIA, Rambocus SD, Rasko DA, Ray P, Robins-Browne R, Rongsen-Chandola T, Rutanga JP, Saha SK, Saha S, Saigal K, Sajib MSI, Seidman JC, Shakya J, Shamanna V, Shastri J, Shrestha R, Sia S, Sikorski MJ, Singh A, Smith AM, Tagg KA, Tamrakar D, Tanmoy AM, Thomas M, Thomas MS, Thomsen R, Thomson NR, Tupua S, Vaidya K, Valcanis M, Veeraraghavan B, Weill FX, Wright J, Dougan G, Argimón S, Keane JA, Aanensen DM, Baker S, Holt KE. Global diversity and antimicrobial resistance of typhoid fever pathogens: Insights from a meta-analysis of 13,000 Salmonella Typhi genomes. eLife 2023; 12:e85867. [PMID: 37697804 PMCID: PMC10506625 DOI: 10.7554/elife.85867] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 08/02/2023] [Indexed: 09/13/2023] Open
Abstract
Background The Global Typhoid Genomics Consortium was established to bring together the typhoid research community to aggregate and analyse Salmonella enterica serovar Typhi (Typhi) genomic data to inform public health action. This analysis, which marks 22 years since the publication of the first Typhi genome, represents the largest Typhi genome sequence collection to date (n=13,000). Methods This is a meta-analysis of global genotype and antimicrobial resistance (AMR) determinants extracted from previously sequenced genome data and analysed using consistent methods implemented in open analysis platforms GenoTyphi and Pathogenwatch. Results Compared with previous global snapshots, the data highlight that genotype 4.3.1 (H58) has not spread beyond Asia and Eastern/Southern Africa; in other regions, distinct genotypes dominate and have independently evolved AMR. Data gaps remain in many parts of the world, and we show the potential of travel-associated sequences to provide informal 'sentinel' surveillance for such locations. The data indicate that ciprofloxacin non-susceptibility (>1 resistance determinant) is widespread across geographies and genotypes, with high-level ciprofloxacin resistance (≥3 determinants) reaching 20% prevalence in South Asia. Extensively drug-resistant (XDR) typhoid has become dominant in Pakistan (70% in 2020) but has not yet become established elsewhere. Ceftriaxone resistance has emerged in eight non-XDR genotypes, including a ciprofloxacin-resistant lineage (4.3.1.2.1) in India. Azithromycin resistance mutations were detected at low prevalence in South Asia, including in two common ciprofloxacin-resistant genotypes. Conclusions The consortium's aim is to encourage continued data sharing and collaboration to monitor the emergence and global spread of AMR Typhi, and to inform decision-making around the introduction of typhoid conjugate vaccines (TCVs) and other prevention and control strategies. Funding No specific funding was awarded for this meta-analysis. Coordinators were supported by fellowships from the European Union (ZAD received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 845681), the Wellcome Trust (SB, Wellcome Trust Senior Fellowship), and the National Health and Medical Research Council (DJI is supported by an NHMRC Investigator Grant [GNT1195210]).
Collapse
Affiliation(s)
- Megan E Carey
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge School of Clinical Medicine, Cambridge Biomedical CampusCambridgeUnited Kingdom
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical MedicineLondonUnited Kingdom
- IAVI, Chelsea & Westminster HospitalLondonUnited Kingdom
| | - Zoe A Dyson
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical MedicineLondonUnited Kingdom
- Department of Infectious Diseases, Central Clinical School, Monash UniversityMelbourneAustralia
- Wellcome Sanger Institute, Wellcome Genome CampusHinxtonUnited Kingdom
| | - Danielle J Ingle
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of MelbourneMelbourneAustralia
| | | | - Mabel K Aworh
- Nigeria Field Epidemiology and Laboratory Training ProgrammeAbujaNigeria
- College of Veterinary Medicine, North Carolina State UniversityRaleighUnited States
| | | | - Ka Lip Chew
- National University HospitalSingaporeSingapore
| | - John A Crump
- Centre for International Health, University of OtagoDunedinNew Zealand
| | - Nicholas A Feasey
- Department of Clinical Sciences, Liverpool School of Tropical MedicineLiverpoolUnited Kingdom
- Malawi-Liverpool Wellcome Programme, Kamuzu University of Health SciencesBlantyreMalawi
| | - Benjamin P Howden
- Centre for Pathogen Genomics, Department of Microbiology and Immunology, University of Melbourne at Doherty Institute for Infection and ImmunityMelbourneAustralia
- Microbiological Diagnostic Unit Public Health Laboratory, The University of Melbourne at the Peter Doherty Institute for Infection and ImmunityMelbourneAustralia
| | | | - Mailis Maes
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge School of Clinical Medicine, Cambridge Biomedical CampusCambridgeUnited Kingdom
| | - Christopher M Parry
- Department of Clinical Sciences, Liverpool School of Tropical MedicineLiverpoolUnited Kingdom
| | - Sandra Van Puyvelde
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge School of Clinical Medicine, Cambridge Biomedical CampusCambridgeUnited Kingdom
- University of AntwerpAntwerpBelgium
| | - Hattie E Webb
- Centers for Disease Control and PreventionAtlantaUnited States
| | - Ayorinde Oluwatobiloba Afolayan
- Global Health Research Unit (GHRU) for the Genomic Surveillance of Antimicrobial Resistance, Faculty of Pharmacy, University of IbadanIbadanNigeria
| | | | - Shalini Anandan
- Department of Clinical Microbiology, Christian Medical CollegeVelloreIndia
| | - Jason R Andrews
- Division of Infectious Diseases and Geographic Medicine, Stanford UniversityStanfordUnited States
| | - Philip M Ashton
- Malawi-Liverpool Wellcome ProgrammeBlantyreMalawi
- Institute of Infection, Veterinary and Ecological Sciences, University of LiverpoolLiverpoolUnited Kingdom
| | - Buddha Basnyat
- Oxford University Clinical Research Unit NepalKathmanduNepal
| | | | - Isaac I Bogoch
- Department of Medicine, Division of Infectious Diseases, University of TorontoTorontoCanada
| | - John D Clemens
- International Vaccine InstituteSeoulRepublic of Korea
- International Centre for Diarrhoeal Disease ResearchDhakaBangladesh
- UCLA Fielding School of Public HealthLos AngelesUnited States
- Korea UniversitySeoulRepublic of Korea
| | - Kesia Esther da Silva
- Division of Infectious Diseases and Geographic Medicine, Stanford UniversityStanfordUnited States
| | - Anuradha De
- Topiwala National Medical CollegeMumbaiIndia
| | - Joep de Ligt
- ESR, Institute of Environmental Science and Research Ltd., PoriruaWellingtonNew Zealand
| | | | - Christiane Dolecek
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of OxfordOxfordUnited Kingdom
- Mahidol Oxford Tropical Medicine Research Unit, Mahidol UniversityBangkokThailand
| | - Shanta Dutta
- ICMR - National Institute of Cholera & Enteric DiseasesKolkataIndia
| | - Marthie M Ehlers
- Department of Medical Microbiology, Faculty of Health Sciences, University of PretoriaPretoriaSouth Africa
- Department of Medical Microbiology, Tshwane Academic Division, National Health Laboratory ServicePretoriaSouth Africa
| | | | | | - Gauri Godbole
- United Kingdom Health Security AgencyLondonUnited Kingdom
| | - Melita A Gordon
- Institute of Infection, Veterinary and Ecological Sciences, University of LiverpoolLiverpoolUnited Kingdom
| | - Andrew R Greenhill
- Federation University AustraliaChurchillAustralia
- Papua New Guinea Institute of Medical ResearchGorokaPapua New Guinea
| | - Chelsey Griffin
- Centers for Disease Control and PreventionAtlantaUnited States
| | - Madhu Gupta
- Post Graduate Institute of Medical Education and ResearchChandigarhIndia
| | | | - Robert S Heyderman
- Research Department of Infection, Division of Infection and Immunity, University College LondonLondonUnited Kingdom
| | | | - Juan Carlos Hormazabal
- Bacteriologia, Subdepartamento de Enfermedades Infecciosas, Departamento de Laboratorio Biomedico, Instituto de Salud Publica de Chile (ISP)SantiagoChile
| | - Odion O Ikhimiukor
- Global Health Research Unit (GHRU) for the Genomic Surveillance of Antimicrobial Resistance, Faculty of Pharmacy, University of IbadanIbadanNigeria
| | - Junaid Iqbal
- Department of Pediatrics and Child Health, Aga Khan UniversityKarachiPakistan
| | - Jobin John Jacob
- Department of Clinical Microbiology, Christian Medical CollegeVelloreIndia
| | - Claire Jenkins
- United Kingdom Health Security AgencyLondonUnited Kingdom
| | | | - Jacob John
- Department of Community Health, Christian Medical CollegeVelloreIndia
| | - Gagandeep Kang
- Department of Community Health, Christian Medical CollegeVelloreIndia
| | - Abdoulie Kanteh
- Medical Research Council Unit The Gambia at London School Hygiene & Tropical MedicineFajaraGambia
| | - Arti Kapil
- All India Institute of Medical SciencesDelhiIndia
| | | | - Samuel Kariuki
- Centre for Microbiology Research, Kenya Medical Research InstituteNairobiKenya
| | | | | | - AC Lauer
- Centers for Disease Control and PreventionAtlantaUnited States
| | - Myron M Levine
- Center for Vaccine Development and Global Health (CVD), University of Maryland School of Medicine, Baltimore, Maryland, USABaltimoreUnited States
| | | | - Stephen P Luby
- Division of Infectious Diseases and Geographic Medicine, Stanford UniversityStanfordUnited States
| | - Grant Austin Mackenzie
- Medical Research Council Unit The Gambia at London School Hygiene & Tropical MedicineFajaraGambia
| | - Tapfumanei Mashe
- National Microbiology Reference LaboratoryHarareZimbabwe
- World Health OrganizationHarareZimbabwe
| | | | - Ankur Mutreja
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge School of Clinical Medicine, Cambridge Biomedical CampusCambridgeUnited Kingdom
| | - Geetha Nagaraj
- Central Research Laboratory, Kempegowda Institute of Medical SciencesBengaluruIndia
| | | | - Satheesh Nair
- United Kingdom Health Security AgencyLondonUnited Kingdom
| | | | | | | | - Iruka N Okeke
- Global Health Research Unit (GHRU) for the Genomic Surveillance of Antimicrobial Resistance, Faculty of Pharmacy, University of IbadanIbadanNigeria
| | | | - Andrew J Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of OxfordOxfordUnited Kingdom
- The NIHR Oxford Biomedical Research CentreOxfordUnited Kingdom
| | | | - Firdausi Qadri
- International Centre for Diarrhoeal Disease ResearchDhakaBangladesh
| | - Farah N Qamar
- Department of Pediatrics and Child Health, Aga Khan UniversityKarachiPakistan
| | | | - Savitra Devi Rambocus
- Microbiological Diagnostic Unit Public Health Laboratory, The University of Melbourne at the Peter Doherty Institute for Infection and ImmunityMelbourneAustralia
| | - David A Rasko
- Department of Microbiology and Immunology, University of Maryland School of MedicineBaltimoreUnited States
- Institute for Genome Sciences, University of Maryland School of MedicineBaltimoreUnited States
| | - Pallab Ray
- Post Graduate Institute of Medical Education and ResearchChandigarhIndia
| | - Roy Robins-Browne
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of MelbourneMelbourneAustralia
- Murdoch Children’s Research Institute, Royal Children’s HospitalParkvilleAustralia
| | | | | | | | | | | | - Mohammad Saiful Islam Sajib
- Child Health Research FoundationDhakaBangladesh
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of GlasgowGlasgowUnited Kingdom
| | | | - Jivan Shakya
- Dhulikhel HospitalDhulikhelNepal
- Institute for Research in Science and TechnologyKathmanduNepal
| | - Varun Shamanna
- Central Research Laboratory, Kempegowda Institute of Medical SciencesBengaluruIndia
| | - Jayanthi Shastri
- Topiwala National Medical CollegeMumbaiIndia
- Kasturba Hospital for Infectious DiseasesMumbaiIndia
| | - Rajeev Shrestha
- Center for Infectious Disease Research & Surveillance, Dhulikhel Hospital, Kathmandu University HospitalDhulikhelNepal
| | - Sonia Sia
- Research Institute for Tropical Medicine, Department of HealthMuntinlupa CityPhilippines
| | - Michael J Sikorski
- Center for Vaccine Development and Global Health (CVD), University of Maryland School of Medicine, Baltimore, Maryland, USABaltimoreUnited States
- Department of Microbiology and Immunology, University of Maryland School of MedicineBaltimoreUnited States
- Institute for Genome Sciences, University of Maryland School of MedicineBaltimoreUnited States
| | | | - Anthony M Smith
- Centre for Enteric Diseases, National Institute for Communicable DiseasesJohannesburgSouth Africa
| | - Kaitlin A Tagg
- Centers for Disease Control and PreventionAtlantaUnited States
| | - Dipesh Tamrakar
- Center for Infectious Disease Research & Surveillance, Dhulikhel Hospital, Kathmandu University HospitalDhulikhelNepal
| | | | - Maria Thomas
- Christian Medical College, LudhianaLudhianaIndia
| | | | | | | | - Siaosi Tupua
- Ministry of Health, Government of SamoaApiaSamoa
| | | | - Mary Valcanis
- Microbiological Diagnostic Unit Public Health Laboratory, The University of Melbourne at the Peter Doherty Institute for Infection and ImmunityMelbourneAustralia
| | | | | | - Jackie Wright
- ESR, Institute of Environmental Science and Research Ltd., PoriruaWellingtonNew Zealand
| | - Gordon Dougan
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge School of Clinical Medicine, Cambridge Biomedical CampusCambridgeUnited Kingdom
| | - Silvia Argimón
- Centre for Genomic Pathogen Surveillance, Big Data Institute, University of OxfordOxfordUnited Kingdom
| | - Jacqueline A Keane
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge School of Clinical Medicine, Cambridge Biomedical CampusCambridgeUnited Kingdom
| | - David M Aanensen
- Centre for Genomic Pathogen Surveillance, Big Data Institute, University of OxfordOxfordUnited Kingdom
| | - Stephen Baker
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge School of Clinical Medicine, Cambridge Biomedical CampusCambridgeUnited Kingdom
- IAVI, Chelsea & Westminster HospitalLondonUnited Kingdom
| | - Kathryn E Holt
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical MedicineLondonUnited Kingdom
- Department of Infectious Diseases, Central Clinical School, Monash UniversityMelbourneAustralia
| |
Collapse
|
11
|
Rutanga JP, de Block T, Cuypers WL, Cafmeyer J, Peeters M, Umumararungu E, Ngabonziza JCS, Rucogoza A, Vandenberg O, Martiny D, Dusabe A, Nkubana T, Dougan G, Muvunyi CM, Mwikarago IE, Jacobs J, Deborggraeve S, Van Puyvelde S. Salmonella Typhi whole genome sequencing in Rwanda shows a diverse historical population with recent introduction of haplotype H58. PLoS Negl Trop Dis 2023; 17:e0011285. [PMID: 37327220 DOI: 10.1371/journal.pntd.0011285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 04/04/2023] [Indexed: 06/18/2023] Open
Abstract
Salmonella enterica serovar Typhi (S. Typhi) is the cause of typhoid fever, presenting high rates of morbidity and mortality in low- and middle-income countries. The H58 haplotype shows high levels of antimicrobial resistance (AMR) and is the dominant S. Typhi haplotype in endemic areas of Asia and East sub-Saharan Africa. The situation in Rwanda is currently unknown and therefore to reveal the genetic diversity and AMR of S. Typhi in Rwanda, 25 historical (1984-1985) and 26 recent (2010-2018) isolates from Rwanda were analysed using whole genome sequencing (WGS). WGS was locally implemented using Illumina MiniSeq and web-based analysis tools, thereafter complemented with bioinformatic approaches for more in-depth analyses. Whereas historical S. Typhi isolates were found to be fully susceptible to antimicrobials and show a diversity of genotypes, i.e 2.2.2, 2.5, 3.3.1 and 4.1; the recent isolates showed high AMR rates and were predominantly associated with genotype 4.3.1.2 (H58, 22/26; 84,6%), possibly resulting from a single introduction in Rwanda from South Asia before 2010. We identified practical challenges for the use of WGS in endemic regions, including a high cost for shipment of molecular reagents and lack of high-end computational infrastructure for the analyses, but also identified WGS to be feasible in the studied setting and giving opportunity for synergy with other programs.
Collapse
Affiliation(s)
- Jean Pierre Rutanga
- College of Science and Technology, University of Rwanda, Kigali, Rwanda
- Institute of Tropical Medicine, Antwerp, Belgium
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | | | - Wim L Cuypers
- Institute of Tropical Medicine, Antwerp, Belgium
- Department of Computer Science, University of Antwerp, Antwerp, Belgium
| | | | | | | | - Jean Claude S Ngabonziza
- Rwanda Biomedical Centre, Kigali, Rwanda
- Department of Clinical Biology, University of Rwanda, Kigali, Rwanda
| | | | - Olivier Vandenberg
- Department of Microbiology, Laboratoire Hospitalier Universitaire de Bruxelles (LHUB-ULB), Hôpital Erasme-Cliniques universitaires de Bruxelles, Université Libre de Bruxelles, Brussels, Belgium
| | - Delphine Martiny
- Department of Microbiology, Laboratoire des Hôpitaux Universitaires de Bruxelles - Universitaire Laboratorium Brussel (LHUB-ULB), Brussels, Belgium
- National Reference Centre for Campylobacter, CHU Saint-Pierre, Brussels, Belgium
- Faculté de Médecine et Pharmacie, Université de Mons (UMONS), Mons, Belgium
| | - Angélique Dusabe
- Centre Hospitalier Universtaire de Kigali (CHUK), Kigali, Rwanda
| | | | - Gordon Dougan
- Department of Medicine, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, United Kingdom
| | | | | | - Jan Jacobs
- Institute of Tropical Medicine, Antwerp, Belgium
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | | | - Sandra Van Puyvelde
- Institute of Tropical Medicine, Antwerp, Belgium
- Department of Medicine, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, United Kingdom
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
- Laboratory of Medical Microbiology, Vaccine & Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
12
|
Li X, Cao H, Chen JHK, Ng YZ, Fung KK, Cheng VCC, Ho PL. Genomic Investigation of Salmonella Typhi in Hong Kong Revealing the Predominance of Genotype 3.2.2 and the First Case of an Extensively Drug-Resistant H58 Genotype. Microorganisms 2023; 11:microorganisms11030667. [PMID: 36985239 PMCID: PMC10058776 DOI: 10.3390/microorganisms11030667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/03/2023] [Accepted: 03/04/2023] [Indexed: 03/08/2023] Open
Abstract
Typhoid fever is a notable disease in Hong Kong. We noticed two local cases of typhoid fever caused by Salmonella Typhi within a two-week period in late 2022, which had no apparent epidemiological linkage except for residing in the same region of Hong Kong. A phylogenetic study of Salmonella Typhi isolates from Hong Kong Island from 2020 to 2022 was performed, including a whole-genome analysis, the typing of plasmids, and the analysis of antibiotic-resistance genes (ARGs), to identify the dominant circulating strain and the spread of ARGs. A total of seven isolates, from six local cases and an imported case, were identified from positive blood cultures in two hospitals in Hong Kong. Five antibiotic-sensitive strains of genotype 3.2.2 were found, which clustered with another 30 strains originating from Southeast Asia. Whole-genome sequencing revealed clonal transmission between the two index cases. The remaining two local cases belong to genotype 2.3.4 and genotype 4.3.1.1.P1 (also known as the H58 lineage). The genotype 4.3.1.1.P1 strain has an extensively drug-resistant (XDR) phenotype (co-resistance to ampicillin, chloramphenicol, ceftriaxone, ciprofloxacin, and co-trimoxazole). Although the majority of local strains belong to the non-H58 genotype 3.2.2 with a low degree of antibiotic resistance, the introduction of XDR strains with the global dissemination of the H58 lineage remains a concern.
Collapse
Affiliation(s)
- Xin Li
- Department of Microbiology, and Carol Yu Centre for Infection, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Department of Microbiology, Queen Mary Hospital, Hong Kong SAR, China
| | - Huiluo Cao
- Department of Microbiology, and Carol Yu Centre for Infection, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | | | - Yuey-Zhun Ng
- Department of Microbiology, Queen Mary Hospital, Hong Kong SAR, China
| | - Ka-Kin Fung
- Department of Clinical Pathology, Pamela Youde Nethersole Eastern Hospital, Hong Kong SAR, China
| | | | - Pak-Leung Ho
- Department of Microbiology, and Carol Yu Centre for Infection, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Department of Microbiology, Queen Mary Hospital, Hong Kong SAR, China
- Correspondence:
| |
Collapse
|
13
|
Gibert M, Jiménez CJ, Comas J, Zechner EL, Madrid C, Balsalobre C. In Situ Monitoring and Quantitative Determination of R27 Plasmid Conjugation. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081212. [PMID: 36013391 PMCID: PMC9410318 DOI: 10.3390/life12081212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/06/2022] [Accepted: 08/07/2022] [Indexed: 11/16/2022]
Abstract
Horizontal gene transfer (HGT) by plasmid conjugation is a major driving force in the spread of antibiotic resistance among Enterobacteriaceae. Most of the conjugation studies are based on calculation of conjugation ratios (number of transconjugants/number of donors) after viable counting of transconjugant and donor cells. The development of robust, fast and reliable techniques for in situ monitoring and quantification of conjugation ratios might accelerate progress in understanding the impact of this cellular process in the HGT. The IncHI1 plasmids, involved in multiresistance phenotypes of relevant pathogens such as Salmonella and E. coli, are distinguished by the thermosensitivity of their conjugative transfer. Conjugation mediated by IncHI1 plasmids is more efficient at temperatures lower than 30 °C, suggesting that the transfer process takes place during the environmental transit of the bacteria. In this report, we described a methodology to monitor in situ the conjugation process during agar surface matings of the IncHI1 plasmid R27 and its derepressed derivative drR27 at different temperatures. A three-color-labeling strategy was used to visualize the spatial distribution of transconjugants within the heterogeneous environment by epifluorescence and confocal microscopy. Moreover, the fluorescent labelling was also used to quantify conjugation frequencies in liquid media by flow cytometry.
Collapse
Affiliation(s)
- Marta Gibert
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Avda, Diagonal 643, 08028 Barcelona, Spain
| | - Carlos J. Jiménez
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Avda, Diagonal 643, 08028 Barcelona, Spain
| | - Jaume Comas
- Laboratori de Citometria/Genòmica CCiT, Parc Científic de Barcelona, Baldiri Reixac 10, 08024 Barcelona, Spain
| | - Ellen L. Zechner
- Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50, A-8010 Graz, Austria
| | - Cristina Madrid
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Avda, Diagonal 643, 08028 Barcelona, Spain
- Correspondence: (C.M.); (C.B.); Tel.: +34-934-039-382 (C.M.); +34-934-034-622 (C.B.)
| | - Carlos Balsalobre
- Departament de Genètica, Microbiologia i Estadística, Universitat de Barcelona, Avda, Diagonal 643, 08028 Barcelona, Spain
- Correspondence: (C.M.); (C.B.); Tel.: +34-934-039-382 (C.M.); +34-934-034-622 (C.B.)
| |
Collapse
|
14
|
Asreah R, Atta S, SarKo S. Clinical Characteristics and Antibiotics Sensitivity of Culture Positive Typhoid Fever Patients in Baghdad Teaching Hospital - A Single Center Study. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.9336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: Enteric fever caused by Salmonella Typhi is an endemic disease in Iraq. Variations in presentations make it a diagnostic challenge. If untreated or treated inappropriately then it is a serious disease with potentially life-threatening complications. The recent emergence of drug resistant strains of S. Typhi is a rising public health problem and a clinical concern to the physician.
AIM: The objectives of the study were to assess and describe the patterns of antimicrobial resistance, clinical characteristics, epidemiological distribution, and complications of typhoid fever.
PATIENTS AND METHODS: Fifty cases of typhoid fever (culture proven) were collected during the period from February 2019 to November 2019 in the medical wards of Baghdad Teaching Hospital. Detailed history, physical examination, and laboratory investigations were conducted and statistical analysis of the results was done, prospective observational study was conducted.
RESULTS: During the study period, 50 cases of typhoid fever were documented, mean age of presentation was 30.7 ± 12.8, 60% of the cases were male gender, gastrointestinal complications were the most common (90%) followed by hematological complications (71%). Mortality of typhoid fever in our study was 2%. High percentage of resistance to third generation cephalosporins, ciprofloxacin, and azithromycin was found (96%, 56%, and 56%, respectively) while good sensitivity to trimethoprim and meropenem was found (94% and 76%, respectively). Significant association was also found between the development of typhoid fever complications and the presence of anemia, thrombocytopenia, lymphopenia, and eosinopenia. Significant association was also found between the complications and the infection with strains resistant to cephalosporins, ciprofloxacin, and azithromycin.
CONCLUSIONS: There is a concerning increase in resistance toward cephalosporins, ciprofloxacin, and azithromycin while meropenem and trimethoprim are emerging as effective drugs. There was high incidence of complications found (84%).Lymphopenia, anemia, eosinopenia, and thrombocytopenia are independent risk factors for the development of complications of typhoid fever.
Collapse
|
15
|
Liu J, Lin X, Soteyome T, Ye Y, Chen D, Yang L, Xu Z. A strategy design based on antibiotic‑resistance and plasmid replicons genes of clinical Escherichia coli strains. Bioengineered 2022; 13:7500-7514. [PMID: 35259054 PMCID: PMC9208507 DOI: 10.1080/21655979.2022.2047543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Since antimicrobial resistance, especially β-lactam resistance genes were common in clinical Escherichia coli strains, this study had designed and developed multiplex amplification platform for rapid and accurate detection of such resistance genes in 542 clinical E. coli isolates. The obtained specimens were subjected to bacteriological examination, antimicrobial susceptibility testing, and detection of β-lactamase genes and plasmid replicons. The major virulence genes were detected by 7 groups of multiplex PCR and eight groups of multiplex PCR were designed to detect 8 different plasmid replicons including parA-parB, iteron, repA, and RNAI. It was found that most MDR isolates were co-resistant to penicillins (AMP) and fluoroquindones (LVX, CIP) and distribution of LVX and CIP resistance was significantly higher among female than male gender. RNAI (AY234375) showed the highest detection rate, followed by the iteron (J01724) and repA (M26308), indicating the relatively higher carriage rate of corresponding plasmids. BlaOXA acquired the highest carriage rate, followed by group 2 blaCTX-M and blaSHV-1, indicating their prevalence among clinical E. coli. Among the β-lactamase genes, blaOXA acquired the highest carriage rate, followed by group 2 blaCTX-M and blaSHV-1, indicating their prevalence among clinical E. coli. The RNAI (AY234375) showed the highest detection rate, followed by the iteron (J01724) and repA (M26308), indicating the relatively higher carriage rate of the corresponding plasmids by clinical E. coli isolates. It is shown that the developed multiplex amplification methodology is applicable to AMR detection, and such identification of plasmid replicons and β-lactamase genes may aid in the understanding of clinical E. coli isolate epidemiology.
Collapse
Affiliation(s)
- Junyan Liu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou, Guangdong, China.,Department of Civil and Environmental Engineering, University of Maryland, College Park, MD, USA.,College of Light Industry and Food Sciences, Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Innovation Research Institute of Modern Agricultural Engineering, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China.,Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Xin Lin
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou, Guangdong, China
| | - Thanapop Soteyome
- Home Economics Technology, Rajamangala University of Technology Phra Nakhon, Bangkok, Thailand
| | - Yanrui Ye
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong, China
| | - Dingqiang Chen
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Ling Yang
- Department of Laboratory Medicine, The First Affiliated Hospital of Guangzhou University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhenbo Xu
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou, Guangdong, China.,Department of Civil and Environmental Engineering, University of Maryland, College Park, MD, USA.,Home Economics Technology, Rajamangala University of Technology Phra Nakhon, Bangkok, Thailand.,Research Institute for Food Nutrition and Human Health, Guangzhou, Guangdong, China
| |
Collapse
|
16
|
Clinically healthy household dogs and cats as carriers of multidrug-resistant Salmonella enterica with variable R plasmids. J Med Microbiol 2022; 71. [DOI: 10.1099/jmm.0.001488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Introduction. Antimicrobial resistance (AMR) is a One Health issue concerning humans, animals and the environment and a unified One Health approach is required to contain this problematic issue. Dogs and cats are popular pet animals and are known to carry many bacterial pathogens that are of public health importance, including
Salmonella
. However, data on AMR in companion animals is limited.
Gap statement. Scant AMR data from bacteria originating from companion animals limits an accurate assessment of the impacts of pet-animal-related AMR on public health.
Purpose. This study aimed to phenotypically and genetically investigate AMR in
Salmonella
isolated from pet dogs and cats in Thailand.
Methodology.
Salmonella enterica
were isolated from pet dogs (n=159) and cats (n=19) in Thailand between 2016 and 2019. All isolates were serotyped. Phenotypic and genotypic antimicrobial resistance was examined. PCR-based replicon typing, replicon sequence typing and plasmid multilocus sequence typing were conducted to characterize plasmids.
Results. Seventy-seven serovars were identified, with serovars Weltevreden (9.6%) and Stockholm (9.0%) the most common. Most of the isolates (34.3%) were multidrug-resistant. The serovar Stockholm was an ESBL-producer and carried the β-lactamase genes bla
TEM-1 and bla
CTX-M-55. The plasmid-mediated quinolone resistance (PMQR) gene, qnrS, was also detected (10.1%). Class 1 integrons carrying the dfrA12-aadA2 cassette array were most frequent (45.9%). Five plasmid replicon types as IncA/C (0.6%), N (1.1%), IncFIIA (28.7%), IncHI1 (2.2%), and IncI1 (3.4%) were identified. Based on the pMLST typing scheme (n=9), plasmids were assigned into five different STs including IncA/C-ST6 (n=1), IncH1-ST16 (n=4), IncI1-ST3 (n=1), IncI1-ST60 (n=1) and IncI1-ST136 (n=1). The ST 16 of IncHI1 plasmid was a novel plasmid ST. Subtyping F-type plasmids using the RST scheme (n=9) revealed four different combinations of replicons including S1:A-:B- (n=4), S1:A-:B22 (n=2), S3:A-:B- (n=1) and S-:A-:B47 (n=1).
Conclusions. Our findings highlight the role of clinically healthy household dogs and cats as carriers of AMR
Salmonella
strains with different R plasmid. The implementation of AMR phenotypes instigation and genotypic monitoring and surveillance programmes in companion animals are imperative as integral components of the One Health framework.
Collapse
|
17
|
Abstract
Horizontal transfer of bacterial plasmids generates genetic variability and contributes to the dissemination of the genes that enable bacterial cells to develop antimicrobial resistance (AMR). Several aspects of the conjugative process have long been known, namely, those related to the proteins that participate in the establishment of cell-to-cell contact and to the enzymatic processes associated with the processing of plasmid DNA and its transfer to the recipient cell. In this work, we describe the roles of newly identified proteins that influence the conjugation of several plasmids. Genes encoding high-molecular-weight bacterial proteins that contain one or several immunoglobulin-like domains (Big) are located in the transfer regions of several plasmids that usually harbor AMR determinants. These Big proteins are exported to the external medium and target two extracellular organelles: the flagella and conjugative pili. The plasmid gene-encoded Big proteins facilitate conjugation by reducing cell motility and facilitating cell-to-cell contact by binding both to the flagella and to the conjugative pilus. They use the same export machinery as that used by the conjugative pilus components. In the examples characterized in this paper, these proteins influence conjugation at environmental temperatures (i.e., 25°C). This suggests that they may play relevant roles in the dissemination of plasmids in natural environments. Taking into account that they interact with outer surface organelles, they could be targeted to control the dissemination of different bacterial plasmids carrying AMR determinants. IMPORTANCE Transmission of a plasmid from one bacterial cell to another, in several instances, underlies the dissemination of antimicrobial resistance (AMR) genes. The process requires well-characterized enzymatic machinery that facilitates cell-to-cell contact and the transfer of the plasmid. Our paper identifies novel plasmid gene-encoded high-molecular-weight proteins that contain an immunoglobulin-like domain and are required for plasmid transmission. They are encoded by genes on different groups of plasmids. These proteins are exported outside the cell. They bind to extracellular cell appendages such as the flagella and conjugative pili. Expression of these proteins reduces cell motility and increases the ability of the bacterial cells to transfer the plasmid. These proteins could be targeted with specific antibodies to combat infections caused by AMR microorganisms that harbor these plasmids.
Collapse
|
18
|
Khadka S, Shrestha B, Pokhrel A, Khadka S, Joshi RD, Banjara MR. Antimicrobial Resistance in Salmonella Typhi Isolated From a Referral Hospital of Kathmandu, Nepal. Microbiol Insights 2021; 14:11786361211056350. [PMID: 34916803 PMCID: PMC8669115 DOI: 10.1177/11786361211056350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/09/2021] [Indexed: 11/16/2022] Open
Abstract
Purpose: The morbidity and mortality due to typhoid fever can be significantly reduced with the use of effective antibiotics. At present, fluoroquinolones, third generation cephalosporins, and azithromycin are widely used to treat typhoid fever. However, changing antibiotic susceptibility among Salmonella Typhi and Salmonella Paratyphi poses a particular challenge to the therapeutic management of enteric fever. The objective of this study was to assess the antibiotic susceptibility pattern of Salmonella Typhi isolates. Patients and Methods: A total of 706 blood specimens were collected from febrile patients attending the outpatient department of Kathmandu Model Hospital during June to September, 2018. The antibiotic susceptibility testing for 11 different antibiotics (nalidixic acid, ciprofloxacin, ofloxacin, levofloxacin, cefixime, ceftriaxone, cefotaxime, azithromycin, cotrimoxazole, chloramphenicol, and amoxicillin) was performed by disk diffusion method. Furthermore, minimum inhibitory concentration (MIC) values of ciprofloxacin, ofloxacin, and azithromycin were determined by agar dilution method. Mutation at gyrA ser83 associated with reduced susceptibility to fluoroquinolones was determined by PCR-RFLP. Results: Out of 706 blood samples, 6.94% (n = 49) were culture positive for Salmonella enterica (S. Typhi, n = 46). It was revealed that 97.8% S. Typhi isolates were susceptible to conventional first-line antibiotics (ampicillin, chloramphenicol, and cotrimoxazole), 97.3% to cephalosporins and 95.7% to azithromycin. S. Typhi were either resistant or intermediately susceptible to fluoroquinolones: 97.8% to ciprofloxacin, 91.3% to ofloxacin, and 89.1% to levofloxacin. The MIC of ciprofloxacin, ofloxacin, and azithromycin for S. Typhi ranged from 0.008 to 32, 0.03 to 16, and 2 to 8 μg/mL, respectively. Out of 46 S. Typhi isolates, 44 (95.65%) had gyrA ser83 mutation. Conclusion: Fluoroquinolones have poor activity against Salmonella Typhi. The trends of increasing azithromycin MIC value among S. Typhi might limit its use for the treatment of typhoid fever. Effectiveness of conventional first-line antibiotics in vitro suggests considering their clinical use after large-scale studies.
Collapse
Affiliation(s)
- Saroj Khadka
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Nepal
| | - Basudha Shrestha
- Department of Microbiology, Kathmandu Model Hospital, Kathmandu, Nepal
| | - Anil Pokhrel
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Nepal
| | - Sachin Khadka
- Department of Medicine, Kathmandu Model Hospital, Kathmandu, Nepal
| | | | - Megha Raj Banjara
- Central Department of Microbiology, Tribhuvan University, Kirtipur, Nepal
| |
Collapse
|
19
|
Genomic Epidemiology and Antimicrobial Resistance Mechanisms of Imported Typhoid in Australia. Antimicrob Agents Chemother 2021; 65:e0120021. [PMID: 34543095 PMCID: PMC8597785 DOI: 10.1128/aac.01200-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Typhoid fever is an invasive bacterial disease of humans that disproportionately affects low- and middle-income countries. Antimicrobial resistance (AMR) has been increasingly prevalent in recent decades in Salmonella enterica serovar Typhi (S. Typhi), the causative agent of typhoid fever, limiting treatment options. In Australia, most cases of typhoid fever are imported due to travel to regions where typhoid fever is endemic. Here, all 116 isolates of S. Typhi isolated in Victoria, Australia, between 1 July 2018 and 30 June 2020, underwent whole-genome sequencing and antimicrobial susceptibility testing. Genomic data were linked to international travel data collected from routine case interviews. Travel to South Asia accounted for most cases, with 92.2% imported from seven primary countries (the top two were India, n = 87, and Pakistan, n = 12). A total of 17 S. Typhi genotypes were detected in the 2-year cohort, with 48.2% genotyped as part of global AMR lineages. Ciprofloxacin resistance was detected in two lineages, 3.3 and 4.3.1.2, all from cases with reported travel to India. Nearly all multidrug and extensively drug resistant isolates (90%) were from cases with reported travel to Pakistan in genotypes 4.3.1.1 and 4.3.1.1.P1. Extended spectrum beta-lactamases, blaCTX-M-15 and blaSHV-12, were detected in cases with travel to Pakistan and India, respectively. Linking epidemiological data with genomic studies of S. Typhi provides an opportunity to improve understanding of the emergence, spread and risk of drug-resistant S. Typhi infections and to better inform empirical treatment guidelines in returned travelers.
Collapse
|
20
|
Kariuki S, Dyson ZA, Mbae C, Ngetich R, Kavai SM, Wairimu C, Anyona S, Gitau N, Onsare RS, Ongandi B, Duchene S, Ali M, Clemens JD, Holt KE, Dougan G. Multiple introductions of multidrug-resistant typhoid associated with acute infection and asymptomatic carriage, Kenya. eLife 2021; 10:67852. [PMID: 34515028 PMCID: PMC8494480 DOI: 10.7554/elife.67852] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 09/08/2021] [Indexed: 02/02/2023] Open
Abstract
Background: Understanding the dynamics of infection and carriage of typhoid in endemic settings is critical to finding solutions to prevention and control. Methods: In a 3-year case-control study, we investigated typhoid among children aged <16 years (4670 febrile cases and 8549 age matched controls) living in an informal settlement, Nairobi, Kenya. Results: 148 S. Typhi isolates from cases and 95 from controls (stool culture) were identified; a carriage frequency of 1 %. Whole-genome sequencing showed 97% of cases and 88% of controls were genotype 4.3.1 (Haplotype 58), with the majority of each (76% and 88%) being multidrug-resistant strains in three sublineages of the H58 genotype (East Africa 1 (EA1), EA2, and EA3), with sequences from cases and carriers intermingled. Conclusions: The high rate of multidrug-resistant H58 S. Typhi, and the close phylogenetic relationships between cases and controls, provides evidence for the role of carriers as a reservoir for the community spread of typhoid in this setting. Funding: National Institutes of Health (R01AI099525); Wellcome Trust (106158/Z/14/Z); European Commission (TyphiNET No 845681); National Institute for Health Research (NIHR); Bill and Melinda Gates Foundation (OPP1175797).
Collapse
Affiliation(s)
- Samuel Kariuki
- Centre for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya.,Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom
| | - Zoe A Dyson
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, United Kingdom.,Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, United Kingdom.,London School of Hygiene & Tropical Medicine, London, United Kingdom.,Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Australia
| | - Cecilia Mbae
- Centre for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Ronald Ngetich
- Centre for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Susan M Kavai
- Centre for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Celestine Wairimu
- Centre for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Stephen Anyona
- Centre for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Naomi Gitau
- Centre for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Robert Sanaya Onsare
- Centre for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Beatrice Ongandi
- Centre for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Sebastian Duchene
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Mohamed Ali
- Department of International Health, John's Hopkins University, Baltimore, United States
| | | | - Kathryn E Holt
- London School of Hygiene & Tropical Medicine, London, United Kingdom.,Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Australia
| | - Gordon Dougan
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
21
|
Gong Y, Li J, Zhu D, Wang S, Xu Y, Li Y, Wang Y, Song Y, Liu W, Tian Y. Case Report: Near-Fatal Intestinal Hemorrhage and Acute Acalculous Cholecystitis due to Vi-Negative and Fluoroquinolone-Insensitive Salmonella enterica Serovar Typhi Infection: A Rare Entity. Front Med (Lausanne) 2021; 8:666643. [PMID: 34447758 PMCID: PMC8383206 DOI: 10.3389/fmed.2021.666643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 07/14/2021] [Indexed: 11/13/2022] Open
Abstract
Typhoid fever is usually a mild clinical disease. Typhoid fever with massive intestinal hemorrhage is rare in the antibiotic era. Acute acalculous cholecystitis (AAC) is also rare in adults. Here, we describe the first adult case of typhoid fever with both complications due to Vi-negative and fluoroquinolone-insensitive Salmonella enterica serovar Typhi (S. Typhi) infection. We aim to alert physicians to this rare condition.
Collapse
Affiliation(s)
- Yuehua Gong
- Yantai Center for Disease Control and Prevention, Yantai, China
| | - Jianlin Li
- Department of Radiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Dongnan Zhu
- Yantai Center for Disease Control and Prevention, Yantai, China
| | - Songsong Wang
- Yantai Center for Disease Control and Prevention, Yantai, China
| | - Yingchun Xu
- Yantai Center for Disease Control and Prevention, Yantai, China
| | - Yan Li
- Yantai Center for Disease Control and Prevention, Yantai, China
| | - Yanqing Wang
- Yantai Center for Disease Control and Prevention, Yantai, China
| | - Yan Song
- Yantai Center for Disease Control and Prevention, Yantai, China
| | - Wenjuan Liu
- Yantai Center for Disease Control and Prevention, Yantai, China
| | - Yunlong Tian
- Yantai Center for Disease Control and Prevention, Yantai, China
| |
Collapse
|
22
|
Harmer CJ. HI1 and I1 Resistance Plasmids from Salmonella enterica Serovar Typhimurium Strain SRC27 Are Epidemic. Microb Drug Resist 2021; 27:1495-1504. [PMID: 34242087 DOI: 10.1089/mdr.2020.0579] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Conjugative plasmids are a major contributor to the global spread of antibiotic resistance determinants, but the tracking of their evolutionary history is often neglected. Salmonella enterica serovar Typhimurium (S. Typhimurium) strain SRC27 was isolated from an equine infection in Australia in 1999. SRC27 was known to carry conjugative HI1 and I1 resistance plasmids. In this study, SRC27 was sequenced to determine the relationship between these HI1 and I1 resistance plasmids it was known to carry and HI1 and I1 resistance plasmids circulating worldwide. The resistance genes in the HI1 plasmid, pSRC27-H, are all located in a single complex 34.7 kb resistance region. The backbone sequence and location of the pSRC27-H resistance island were used to identify the most closely related HI1 plasmids among the >90 that have been sequenced since 2011. This defined a sublineage of 20 type 2 HI1 plasmids that have been circulating in Europe, Asia, North America, and Australia since at least 1993. The overall resistance gene content of these HI1 plasmids differs, indicating extensive evolution in situ through the acquisition of additional transposons and deletion or replacement of ancestral regions. The I1 plasmid contains a complete copy of Tn5393a, containing the strAB genes that confer resistance to streptomycin. The precise location of Tn5393a in the backbone also defined a globally disseminated sublineage of I1 plasmids, many of which have also acquired additional resistance determinants. The sequence revealed that SRC27 also carried two additional plasmids, the pSLT-type FIB(S):FII(S) virulence plasmid and a small cryptic theta-replicating Col156 plasmid.
Collapse
Affiliation(s)
- Christopher J Harmer
- School of Life and Environmental Sciences, The University of Sydney, Sydney, Australia
| |
Collapse
|
23
|
Mashe T, Leekitcharoenphon P, Mtapuri-Zinyowera S, Kingsley RA, Robertson V, Tarupiwa A, Kock MM, Makombe EP, Chaibva BV, Manangazira P, Phiri I, Nyadundu S, Chigwena CT, Mufoya LP, Thilliez G, Midzi S, Mwamakamba LW, Hamblion EL, Matheu J, Jensen JD, Aarestrup FM, Hendriksen RS, Ehlers MM. Salmonella enterica serovar Typhi H58 clone has been endemic in Zimbabwe from 2012 to 2019. J Antimicrob Chemother 2021; 76:1160-1167. [PMID: 33347558 DOI: 10.1093/jac/dkaa519] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 11/11/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Typhoid fever, caused by S. enterica ser. Typhi, continues to be a substantial health burden in developing countries. Little is known of the genotypic diversity of S. enterica ser. Typhi in Zimbabwe, but this is key for understanding the emergence and spread of this pathogen and devising interventions for its control. OBJECTIVES To report the molecular epidemiology of S. enterica ser. Typhi outbreak strains circulating from 2012 to 2019 in Zimbabwe, using comparative genomics. METHODS A review of typhoid cases records from 2012 to 2019 in Zimbabwe was performed. The phylogenetic relationship of outbreak isolates from 2012 to 2019 and emergence of antibiotic resistance was investigated by whole-genome sequence analysis. RESULTS A total 22 479 suspected typhoid cases, 760 confirmed cases were reported from 2012 to 2019 and 29 isolates were sequenced. The majority of the sequenced isolates were predicted to confer resistance to aminoglycosides, β-lactams, phenicols, sulphonamides, tetracycline and fluoroquinolones (including qnrS detection). The qnrS1 gene was associated with an IncN (subtype PST3) plasmid in 79% of the isolates. Whole-genome SNP analysis, SNP-based haplotyping and resistance determinant analysis showed that 93% of the isolates belonged to a single clade represented by multidrug-resistant H58 lineage I (4.3.1.1), with a maximum pair-wise distance of 22 SNPs. CONCLUSIONS This study has provided detailed genotypic characterization of the outbreak strain, identified as S. Typhi 4.3.1.1 (H58). The strain has reduced susceptibility to ciprofloxacin due to qnrS carried by an IncN (subtype PST3) plasmid resulting from ongoing evolution to full resistance.
Collapse
Affiliation(s)
- Tapfumanei Mashe
- Department of Medical Microbiology, University of Pretoria, Pretoria, South Africa.,National Microbiology Reference Laboratory, Harare, Zimbabwe
| | - Pimlapas Leekitcharoenphon
- Technical University of Denmark, National Food Institute, WHO Collaborating Center for Antimicrobial Resistance in Food borne Pathogens Genomics, FAO Reference Laboratory for Antimicrobial Resistance and European Union Reference Laboratory for Antimicrobial Resistance, Kgs. Lyngby, Denmark
| | | | - Robert A Kingsley
- Quadram Institute Bioscience, Norwich, UK.,University of East Anglia, Norwich, UK
| | - V Robertson
- Medical Microbiology, University of Zimbabwe, Zimbabwe
| | - Andrew Tarupiwa
- National Microbiology Reference Laboratory, Harare, Zimbabwe
| | - Marleen M Kock
- Department of Medical Microbiology, University of Pretoria, Pretoria, South Africa.,National Health Laboratory Service, Tshwane Academic Divisions, Pretoria, South Africa
| | - Evidence P Makombe
- Gweru Provincial Hospital, Ministry of Health and Child Care, Gweru, Zimbabwe
| | | | - Portia Manangazira
- Ministry of Health and Child Care, Epidemiology and Disease Control, Zimbabwe
| | - Isaac Phiri
- Ministry of Health and Child Care, Epidemiology and Disease Control, Zimbabwe
| | - Simon Nyadundu
- Provincial Medical Directorate Offices, Midlands Province, Ministry of Health and Child Care, Gweru, Zimbabwe
| | | | | | | | | | - Lusubilo W Mwamakamba
- World Health Organization Regional Office for Africa, Brazzaville, Republic of Congo
| | - Esther L Hamblion
- World Health Organization Regional Office for Africa, Brazzaville, Republic of Congo
| | | | - Jacob D Jensen
- Technical University of Denmark, National Food Institute, WHO Collaborating Center for Antimicrobial Resistance in Food borne Pathogens Genomics, FAO Reference Laboratory for Antimicrobial Resistance and European Union Reference Laboratory for Antimicrobial Resistance, Kgs. Lyngby, Denmark
| | - Frank M Aarestrup
- Technical University of Denmark, National Food Institute, WHO Collaborating Center for Antimicrobial Resistance in Food borne Pathogens Genomics, FAO Reference Laboratory for Antimicrobial Resistance and European Union Reference Laboratory for Antimicrobial Resistance, Kgs. Lyngby, Denmark
| | - Rene S Hendriksen
- Technical University of Denmark, National Food Institute, WHO Collaborating Center for Antimicrobial Resistance in Food borne Pathogens Genomics, FAO Reference Laboratory for Antimicrobial Resistance and European Union Reference Laboratory for Antimicrobial Resistance, Kgs. Lyngby, Denmark
| | - Marthie M Ehlers
- Department of Medical Microbiology, University of Pretoria, Pretoria, South Africa.,National Health Laboratory Service, Tshwane Academic Divisions, Pretoria, South Africa
| |
Collapse
|
24
|
Jacob JJ, Pragasam AK, Vasudevan K, Veeraraghavan B, Kang G, John J, Nagvekar V, Mutreja A. Salmonella Typhi acquires diverse plasmids from other Enterobacteriaceae to develop cephalosporin resistance. Genomics 2021; 113:2171-2176. [PMID: 33965548 PMCID: PMC8276774 DOI: 10.1016/j.ygeno.2021.05.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/22/2021] [Accepted: 05/04/2021] [Indexed: 11/25/2022]
Abstract
Background Recent reports have established the emergence and dissemination of extensively drug resistant (XDR) H58 Salmonella Typhi clone in Pakistan. In India where typhoid fever is endemic, only sporadic cases of ceftriaxone resistant S. Typhi are reported. This study aimed at elucidating the phylogenetic evolutionary framework of ceftriaxone resistant S. Typhi isolates from India to predict their potential dissemination. Methods Five ceftriaxone resistant S. Typhi isolates from three tertiary care hospitals in India were sequenced on an Ion Torrent Personal Genome Machine (PGM). A core genome single-nucleotide-polymorphism (SNP) based phylogeny of the isolates in comparison to the global collection of MDR and XDR S. Typhi isolates was built. Two of five isolates were additionally sequenced using Oxford Nanopore MinION to completely characterize the plasmid and understand its transmission dynamics within Enterobacteriaceae. Results Comparative genomic analysis and detailed plasmid characterization indicate that while in Pakistan (4.3.1 lineage I) the XDR trait is associated with blaCTX-M-15 gene on IncY plasmid, in India (4.3.1 lineage II), the ceftriaxone resistance is due to short term persistence of resistance plasmids such as IncX3 (blaSHV-12) or IncN (blaTEM-1B + blaDHA-1). Conclusion Considering the selection pressure exerted by the extensive use of ceftriaxone in India, there are potential risks for the occurrence of plasmid transmission events in the predominant H58 lineages. Therefore, continuous monitoring of S. Typhi lineages carrying plasmid-mediated cephalosporin resistant genes is vital not just for India but also globally. S. Typhi to develop cephalosporin resistance by acquiring diverse plasmids from other Enterobacteriaceae. Independent acquisition of drug-resistant plasmids such as IncX3 and IncN with genes encoding beta-lactamases in H58 lineage II of S. Typhi. A short-term persistence of drug-resistant plasmids in H58 lineage II can be the reason for the sporadic cases cephalosporin resistant S. Typhi in India. Plasmid acquisition and maintenance of cephalosporin resistant S. Typhi appears to be specific to the phylogenetic lineage. Critical strategies in monitoring and control of cephalosporin resistant S. Typhi is needed to tackle further public health crisis.
Collapse
Affiliation(s)
- Jobin John Jacob
- Department of Clinical Microbiology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Agila Kumari Pragasam
- Department of Clinical Microbiology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Karthick Vasudevan
- Department of Clinical Microbiology, Christian Medical College, Vellore, Tamil Nadu, India
| | - Balaji Veeraraghavan
- Department of Clinical Microbiology, Christian Medical College, Vellore, Tamil Nadu, India.
| | - Gagandeep Kang
- Division of Gastrointestinal Sciences, Christian Medical College, Vellore, Tamil Nadu, India
| | - Jacob John
- Department of Community Health, Christian Medical College, Vellore, Tamil Nadu, India
| | - Vasant Nagvekar
- Department of Physician/Internal Medicine, Lilavati Hospital & Research Centre, Mumbai, India
| | - Ankur Mutreja
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
25
|
Pragasam AK, Pickard D, Wong V, Dougan G, Kang G, Thompson A, John J, Balaji V, Mutreja A. Phylogenetic Analysis Indicates a Longer Term Presence of the Globally Distributed H58 Haplotype of Salmonella Typhi in Southern India. Clin Infect Dis 2021; 71:1856-1863. [PMID: 32003431 PMCID: PMC7643746 DOI: 10.1093/cid/ciz1112] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 01/29/2019] [Indexed: 12/28/2022] Open
Abstract
Background Typhoid fever caused by Salmonella Typhi is a major public health concern in low-/middle-income countries. A recent study of 1900 global S. Typhi indicated that South Asia might be the site of the original emergence of the most successful and hypervirulent clone belonging to the 4.3.1 genotype. However, this study had limited samples from India. Methods We analyzed 194 clinical S. Typhi, temporal representatives from those isolated from blood and bone marrow cultures in southern India, over 26 years (1991–2016). Antimicrobial resistance (AMR) testing was performed for most common clinical agents. Whole-genome sequencing and SNP-level analysis was conducted. Comparative genomics of Vellore isolates was performed to infer transmission and AMR events. Results We identified multidrug-resistance (MDR)–associated clade 4.3.1 as the dominant genotype. We detected 4.3.1 S. Typhi as early as 1991, the earliest to be reported form India, and the majority were fluoroquinolone resistant and not MDR. MDR was not detected at all in other genotypes circulating in Vellore. Comparison with global S. Typhi showed 2 Vellore subgroups (I and II) that were phylogenetically highly related to previously described South Asia (subgroup I, II) and Southeast Asia (subgroup II) clades. Conclusions 4.3.1 S. Typhi has dominated in Vellore for 2 decades. Our study would assist public health agencies in better tracking of transmission and persistence of this successful clade in India and globally. It informs clinicians of the AMR pattern of circulating clone, which would add confidence to their prophylactic/treatment decision making and facilitate efficient patient care.
Collapse
Affiliation(s)
- Agila Kumari Pragasam
- Department of Clinical Microbiology, Christian Medical College, Vellore, India.,Department of Medicine, Univesity of Cambridge, Cambridge, United Kingdom
| | - Derek Pickard
- Department of Medicine, Univesity of Cambridge, Cambridge, United Kingdom
| | - Vanessa Wong
- Department of Medicine, Univesity of Cambridge, Cambridge, United Kingdom
| | - Gordon Dougan
- Department of Medicine, Univesity of Cambridge, Cambridge, United Kingdom.,Wellcome Sanger Institute, Hinxton, United Kingdom
| | - Gagandeep Kang
- Department of Clinical Microbiology, Christian Medical College, Vellore, India
| | - Andrew Thompson
- Department of Medicine, Univesity of Cambridge, Cambridge, United Kingdom
| | - Jacob John
- Department of Clinical Microbiology, Christian Medical College, Vellore, India
| | | | - Ankur Mutreja
- Department of Medicine, Univesity of Cambridge, Cambridge, United Kingdom.,Wellcome Sanger Institute, Hinxton, United Kingdom
| |
Collapse
|
26
|
Yeo CC, Espinosa M, Venkova T. Editorial: Prokaryotic Communications: From Macromolecular Interdomain to Intercellular Talks (Recognition) and Beyond. Front Mol Biosci 2021; 8:670572. [PMID: 33968995 PMCID: PMC8097082 DOI: 10.3389/fmolb.2021.670572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 03/26/2021] [Indexed: 12/03/2022] Open
Affiliation(s)
- Chew Chieng Yeo
- Centre for Research in Infectious Diseases and Biotechnology (CeRIDB), Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu, Malaysia
| | - Manuel Espinosa
- Margarita Salas Center for Biological Research, Spanish National Research Council, Madrid, Spain
| | | |
Collapse
|
27
|
Enteric Fever Diagnosis: Current Challenges and Future Directions. Pathogens 2021; 10:pathogens10040410. [PMID: 33915749 PMCID: PMC8065732 DOI: 10.3390/pathogens10040410] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/23/2021] [Accepted: 03/27/2021] [Indexed: 12/21/2022] Open
Abstract
Enteric fever is a life-threatening systemic febrile disease caused by Salmonella enterica serovars Typhi and Paratyphi (S. Typhi and S. Paratyphi). Unfortunately, the burden of the disease remains high primarily due to the global spread of various drug-resistant Salmonella strains despite continuous advancement in the field. An accurate diagnosis is critical for effective control of the disease. However, enteric fever diagnosis based on clinical presentations is challenging due to overlapping symptoms with other febrile illnesses that are also prevalent in endemic areas. Current laboratory tests display suboptimal sensitivity and specificity, and no diagnostic methods are available for identifying asymptomatic carriers. Several research programs have employed systemic approaches to identify more specific biomarkers for early detection and asymptomatic carrier detection. This review discusses the pros and cons of currently available diagnostic tests for enteric fever, the advancement of research toward improved diagnostic tests, and the challenges of discovering new ideal biomarkers and tests.
Collapse
|
28
|
Sajib MSI, Tanmoy AM, Hooda Y, Rahman H, Andrews JR, Garrett DO, Endtz HP, Saha SK, Saha S. Tracking the Emergence of Azithromycin Resistance in Multiple Genotypes of Typhoidal Salmonella. mBio 2021; 12:e03481-20. [PMID: 33593966 PMCID: PMC8545119 DOI: 10.1128/mbio.03481-20] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 01/05/2021] [Indexed: 11/29/2022] Open
Abstract
The rising prevalence of antimicrobial resistance in Salmonella enterica serovars Typhi and Paratyphi A, causative agents of typhoid and paratyphoid, have led to fears of untreatable infections. Of specific concern is the emerging resistance against azithromycin, the only remaining oral drug to treat extensively drug resistant (XDR) typhoid. Since the first report of azithromycin resistance from Bangladesh in 2019, cases have been reported from Nepal, India, and Pakistan. The genetic basis of this resistance is a single point mutation in the efflux pump AcrB (R717Q/L). Here, we report 38 additional cases of azithromycin-resistant (AzmR) Salmonella Typhi and Paratyphi A isolated in Bangladesh between 2016 and 2018. Using genomic analysis of 56 AzmR isolates from South Asia with AcrB-R717Q/L, we confirm that this mutation has spontaneously emerged in different Salmonella Typhi and Paratyphi A genotypes. The largest cluster of AzmR Typhi belonged to genotype 4.3.1.1; Bayesian analysis predicts the mutation to have emerged sometime in 2010. A travel-related Typhi isolate with AcrB-R717Q belonging to 4.3.1.1 was isolated in the United Kingdom, increasing fears of global spread. For real-time detection of AcrB-R717Q/L, we developed an extraction-free, rapid, and low-cost mismatch amplification mutation assay (MAMA). Validation of MAMA using 113 AzmR and non-AzmR isolates yielded >98% specificity and sensitivity versus phenotypic and whole-genome sequencing assays currently used for azithromycin resistance detection. With increasing azithromycin use, AcrB-R717Q/L is likely to be acquired by XDR strains. The proposed tool for active detection and surveillance of this mutation may detect pan-oral drug resistance early, giving us a window to intervene.IMPORTANCE In the early 1900s, with mortality of ∼30%, typhoid and paratyphoid ravaged parts of the world; with improved water, sanitation, and hygiene in resource-rich countries and the advent of antimicrobials, mortality dwindled to <1%. Today, the burden rests disproportionately on South Asia, where the primary means for combatting the disease is antimicrobials. However, prevalence of antimicrobial resistance is rising and, in 2016, an extensively drug resistant Typhi strain triggered an ongoing outbreak in Pakistan, leaving only one oral drug, azithromycin, to treat it. Since the description of emergence of azithromycin resistance, conferred by a point mutation in acrB (AcrB-R717Q/L) in 2019, there have been increasing numbers of reports. Using genomics and Bayesian analysis, we illustrate that this mutation emerged in approximately 2010 and has spontaneously arisen multiple times. Emergence of pan-oral drug resistant Salmonella Typhi is imminent. We developed a low-cost, rapid PCR tool to facilitate real-time detection and prevention policies.
Collapse
Affiliation(s)
- Mohammad S I Sajib
- Child Health Research Foundation, Dhaka, Bangladesh
- Institute of Biodiversity, Animal Health, and Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Arif M Tanmoy
- Child Health Research Foundation, Dhaka, Bangladesh
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Yogesh Hooda
- Child Health Research Foundation, Dhaka, Bangladesh
- MRC-Laboratory Molecular Biology, Cambridge, United Kingdom
| | | | - Jason R Andrews
- Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, California, USA
| | | | - Hubert P Endtz
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
- Fondation Mérieux and Centre International de Recherche en Infectiologie, INSERM, Lyon, France
| | - Samir K Saha
- Child Health Research Foundation, Dhaka, Bangladesh
- Department of Microbiology, Dhaka Shishu Hospital, Dhaka, Bangladesh
- Bangladesh Institute of Child Health, Dhaka, Bangladesh
| | - Senjuti Saha
- Child Health Research Foundation, Dhaka, Bangladesh
| |
Collapse
|
29
|
Khadka P, Thapaliya J, Thapa S. Susceptibility pattern of Salmonella enterica against commonly prescribed antibiotics, to febrile-pediatric cases, in low-income countries. BMC Pediatr 2021; 21:38. [PMID: 33446146 PMCID: PMC7809854 DOI: 10.1186/s12887-021-02497-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/07/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In most low-income countries, febrile-pediatric-cases are often treated empirically with accessible antibiotics without periodic epidemiological surveillance, susceptibility testing, or minimal lethal dose calculations. With this backdrop, the study was undertaken to evaluate the susceptibility trend of Salmonella enterica against the commonly prescribed antibiotics. METHODS All isolates of Salmonella enterica were identified by standard protocols of biotyping and serotyping, then tested against antibiotics by the modified Kirby disk-diffusion method. Minimum Inhibitory Concentration (MIC) of isolates was determined by the agar-dilution method and compared with disk diffusion results and on nalidixic-acid sensitive/resistant strains. RESULTS Among 1815 febrile-pediatric patients, 90(4.9%) isolates of Salmonella enterica [serovar: Salmonella Typhi 62(68.8%) and Salmonella Paratyphi A 28(31.1%)] were recovered. The incidence of infection was higher among males, age groups 5 to 9, and patients enrolling in the out-patient department (OPD). On the disk-diffusion test, most isolates were sensitive against first-line drugs i.e.cephalosporins, and macrolides. However, against quinolones, a huge percentile 93.3%, of isolates were resistant [including 58 Typhiand 26 Paratyphiserovar] while nearly 14% were resistant against fluoroquinolones. When MICs breakpoint were adjusted as follows: 4 μg/ml for azithromycin, ≥1 μg/ml for ciprofloxacin, 2 μg/ml for ofloxacin, 8 μg/ml for nalidixic acid, and 1 μg/ml for cefixime, higher sensitivity and specificity achieved. Compared to other tested antibiotics, a low rate of azithromycin resistance was observed. Nevertheless, higher resistance against fluoroquinolones was observed on NARS strain. CONCLUSION Higher susceptibility of Salmonella enterica to the conventional anti-typhoidal drugs (amoxicillin, chloramphenicol, cotrimoxazole, cephotaxime) advocates for its reconsideration. Although, the lower susceptibility against fluoroquinolones among nalidixic-acid-resistant Salmonella (NARS) strain negates its empirical use among the study age group.
Collapse
Affiliation(s)
- Priyatam Khadka
- Medical Microbiology, Tri-Chandra Multiple Campus, Kathmandu, Nepal.
| | - Januka Thapaliya
- Medical Microbiology, Tri-Chandra Multiple Campus, Kathmandu, Nepal
| | - Shovana Thapa
- International Friendship Children's Hospital, Kathmandu, Nepal
| |
Collapse
|
30
|
Jamilah J, Hatta M, Natzir R, Umar F, Sjahril R, Agus R, Junita AR, Dwiyanti R, Primaguna MR, Sabir M. Analysis of existence of multidrug-resistant H58 gene in Salmonella enterica serovar Typhi isolated from typhoid fever patients in Makassar, Indonesia. New Microbes New Infect 2020; 38:100793. [PMID: 33294191 PMCID: PMC7695904 DOI: 10.1016/j.nmni.2020.100793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 10/13/2020] [Accepted: 10/13/2020] [Indexed: 11/02/2022] Open
Abstract
The surveillance of multidrug-resistant (MDR) H58 typhoid is highly important, especially in endemic areas. MDR strain detection is needed by using a simple PCR technique that only uses a pair of primers. This is conducted considering the detection of Salmonella Typhi strains that have been carried out so far are only using antimicrobial sensitivity tests to determine microbial resistance phenotypically and to determine genotypically using complex molecular techniques. We aimed to analyse the existence of Salmonella Typhi MDR H58 in patients with typhoid fever in Makassar, Indonesia. A total of 367 blood samples of typhoid fever patients were collected from April 2018 until April 2019. The blood sample was cultured, then confirmed via simple PCR. All of the confirmed samples were tested for susceptibility against antibiotics and molecularly analysed for MDR H58 existence using a simple PCR technique. We found 7% (27/367) of the samples to be positive by both blood culture and PCR. All 27 isolates were found to be sensitive to sulfamethoxazole/trimethoprim. The lowest drug sensitivities were to amoxicillin, at one (3.7%) of 27 isolates, and ampicillin, at 13 (48.1%) of 27 isolates. Salmonella Typhi H58 PCR results showed that one (3.7%) of 27 isolates carried a positive fragment of 993 bp that led to the H58 strain, since the deletion flanks this fragment. The isolate was also found to be resistant to amoxicillin and fluoroquinolone according to a sensitivity test. Further molecular analysis needs to be conducted to examine the single isolate that carried the 933 bp fragment.
Collapse
Affiliation(s)
- J Jamilah
- Alauddin State Islamic University, Makassar, Indonesia.,Postgraduate Program of Medical Science, Indonesia
| | - M Hatta
- Molecular Biology and Immunology Laboratory, Indonesia
| | - R Natzir
- Department of Biochemistry, Indonesia
| | - F Umar
- Postgraduate Program of Medical Science, Indonesia.,Makassar Medical State Laboratory, Indonesian Ministry of Health, Makassar, Indonesia
| | - R Sjahril
- Department of Medical Microbiology, Indonesia
| | - R Agus
- Laboratory of Genetics, Department of Biology, Faculty of Science, University of Hasanuddin, Makassar, Indonesia
| | - A R Junita
- Molecular Biology and Immunology Laboratory, Indonesia
| | - R Dwiyanti
- Department of Medical Microbiology, Faculty of Medicine, Tadulako University, Palu, Indonesia
| | - M R Primaguna
- Department of Internal Medicine, Faculty of Medicine, Indonesia
| | - M Sabir
- Department of Medical Microbiology, Faculty of Medicine, Tadulako University, Palu, Indonesia
| |
Collapse
|
31
|
Masuet-Aumatell C, Atouguia J. Typhoid fever infection - Antibiotic resistance and vaccination strategies: A narrative review. Travel Med Infect Dis 2020; 40:101946. [PMID: 33301931 DOI: 10.1016/j.tmaid.2020.101946] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/01/2020] [Accepted: 12/03/2020] [Indexed: 02/07/2023]
Abstract
Typhoid fever is a bacterial infection caused by the Gram-negative bacterium Salmonella enterica subspecies enterica serovar Typhi (S. Typhi), prevalent in many low- and middle-income countries. In high-income territories, typhoid fever is predominantly travel-related, consequent to travel in typhoid-endemic regions; however, data show that the level of typhoid vaccination in travellers is low. Successful management of typhoid fever using antibiotics is becoming increasingly difficult due to drug resistance; emerging resistance has spread geographically due to factors such as increasing travel connectivity, affecting those in endemic regions and travellers alike. This review provides an overview of: the epidemiology and diagnosis of typhoid fever; the emergence of drug-resistant typhoid strains in the endemic setting; drug resistance observed in travellers; vaccines currently available to prevent typhoid fever; vaccine recommendations for people living in typhoid-endemic regions; strategies for the introduction of typhoid vaccines and stakeholders in vaccination programmes; and travel recommendations for a selection of destinations with a medium or high incidence of typhoid fever.
Collapse
Affiliation(s)
- Cristina Masuet-Aumatell
- Preventive Medicine Department, Bellvitge Biomedical Research Institute (IDIBELL), University Hospital of Bellvitge, Faculty of Medicine, University of Barcelona, Feixa Llarga s/n, L'Hospitalet de Llobregat, 08907, Barcelona, Catalonia, Spain.
| | - Jorge Atouguia
- Instituto Higiene e Medicina Tropical, Universidade Nova de Lisboa, Rua da Junquiera, 100, Lisbon, Portugal.
| |
Collapse
|
32
|
Turner AK, Eckert SE, Turner DJ, Yasir M, Webber MA, Charles IG, Parkhill J, Wain J. A whole-genome screen identifies Salmonella enterica serovar Typhi genes involved in fluoroquinolone susceptibility. J Antimicrob Chemother 2020; 75:2516-2525. [PMID: 32514543 PMCID: PMC7443733 DOI: 10.1093/jac/dkaa204] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/31/2020] [Accepted: 04/21/2020] [Indexed: 12/03/2022] Open
Abstract
OBJECTIVES A whole-genome screen at sub-gene resolution was performed to identify candidate loci that contribute to enhanced or diminished ciprofloxacin susceptibility in Salmonella enterica serovar Typhi. METHODS A pool of over 1 million transposon insertion mutants of an S. Typhi Ty2 derivative were grown in a sub-MIC concentration of ciprofloxacin, or without ciprofloxacin. Transposon-directed insertion site sequencing (TraDIS) identified relative differences between the mutants that grew following the ciprofloxacin treatment compared with the untreated mutant pool, thereby indicating which mutations contribute to gain or loss of ciprofloxacin susceptibility. RESULTS Approximately 88% of the S. Typhi strain's 4895 annotated genes were assayed, and at least 116 were identified as contributing to gain or loss of ciprofloxacin susceptibility. Many of the identified genes are known to influence susceptibility to ciprofloxacin, thereby providing method validation. Genes were identified that were not known previously to be involved in susceptibility, and some of these had no previously known phenotype. Susceptibility to ciprofloxacin was enhanced by insertion mutations in genes coding for efflux, other surface-associated functions, DNA repair and expression regulation, including phoP, barA and marA. Insertion mutations that diminished susceptibility were predominantly in genes coding for surface polysaccharide biosynthesis and regulatory genes, including slyA, emrR, envZ and cpxR. CONCLUSIONS A genomics approach has identified novel contributors to gain or loss of ciprofloxacin susceptibility in S. Typhi, expanding our understanding of the impact of fluoroquinolones on bacteria and of mechanisms that may contribute to resistance. The data also demonstrate the power of the TraDIS technology for antibacterial research.
Collapse
Affiliation(s)
- A Keith Turner
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Sabine E Eckert
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
| | - Daniel J Turner
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
- Oxford Nanopore Technologies Ltd, Gosling Building, Edmund Halley Road, Oxford Science Park OX4 4DQ, UK
| | - Muhammud Yasir
- Quadram Institute, Norwich Research Park, Colney, Norwich NR4 7UA, UK
| | - Mark A Webber
- Quadram Institute, Norwich Research Park, Colney, Norwich NR4 7UA, UK
- University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Ian G Charles
- Quadram Institute, Norwich Research Park, Colney, Norwich NR4 7UA, UK
- University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | - Julian Parkhill
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 OES, UK
| | - John Wain
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK
- University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| |
Collapse
|
33
|
Samajpati S, Das S, Jain P, Ray U, Mandal S, Samanta S, Das S, Dutta S. Changes in antimicrobial resistance and molecular attributes of Salmonellae causing enteric fever in Kolkata, India, 2014-2018. INFECTION GENETICS AND EVOLUTION 2020; 84:104478. [PMID: 32736039 DOI: 10.1016/j.meegid.2020.104478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 07/22/2020] [Accepted: 07/23/2020] [Indexed: 11/18/2022]
Abstract
Globally, enteric fever caused by Salmonella Typhi (S. Typhi, ST) and S. Paratyphi A (SPA) remain one of the major diseases of public health importance. In this study, a total of 457 (380 ST, 77 SPA) blood isolates were collected from three tertiary care hospitals in Kolkata during 2014-18. Additionally, 66 (3.4%) ST and 5 (0.25%) SPA were recovered from blood culture of 1962 patients attending OPD of one pediatric hospital during 2016-18. The study isolates were tested for antimicrobial resistance (AMR) profiles; AMR genes; molecular sub-types by PFGE, MLVA and CRISPR. Among the total 446 ST and 82 SPA isolates, fluoroquinolone (FQ) resistance was very common in both serovars. Ciprofloxacin resistance of 24.9% and 9.8% & ofloxacin resistance of 20.9% and 87.8% were found in ST and SPA respectively. Majority (>70%) of the isolates showed decreased susceptibility to ciprofloxacin (DCS). A single point mutation in gyrA gene (S83F) was responsible for causing DCS in 37.5% (n = 42/112) ST and 63% (n = 46/73) SPA isolates. Multidrug resistance (MDR) was found only in 3.4% ST isolates and encoded the genes blaTEM-1, catA, sul, strA-strB, class 1 integron with dfrA7. All MDR ST (n = 15) possessed non-conjugative non-IncHI1 (180 kb) plasmid except one having conjugative IncHI1 (230 kb) plasmid and one without plasmid. The MDR genes were integrated near chromosomal cyaA gene site in ST with/without the presence of plasmid (nonIncH1). Almost 65.7% resistant ST belonged to H58 haplotype. PFGE showed clonally related isolates with 81% similarity in ST and 87% in SPA. Similarly, CRISPR typing showed less diversity among the isolates. However, the isolates (ST and SPA) were found to be more diverse by MLVA typing (D value 0.987 and 0.938). The study reports decrease in MDR and increase in FQ resistance among typhoidal Salmonella isolates over the years giving interesting information for enteric fever treatment.
Collapse
Affiliation(s)
- Sriparna Samajpati
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases, P-33 C.I.T Road, Kolkata, West Bengal 700010, India
| | - Surojit Das
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases, P-33 C.I.T Road, Kolkata, West Bengal 700010, India
| | - Priyanka Jain
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases, P-33 C.I.T Road, Kolkata, West Bengal 700010, India
| | - Ujjwayini Ray
- Microbiology Division, Apollo Gleneagles Hospitals, 58 Canal Circular Road, Kolkata, West Bengal 700054, India
| | - Subhranshu Mandal
- Microbiology Division, Calcutta Medical Research Institute, 7/2 Diamond Harbour Road, Kolkata, West Bengal 700027, India
| | - Sandip Samanta
- Department of Pediatrics, Dr. B. C. Roy Post Graduate Institute of Pediatric Sciences, Kolkata, West Bengal 700054, India
| | - Santasabuj Das
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases, P-33 C.I.T Road, Kolkata, West Bengal 700010, India
| | - Shanta Dutta
- Division of Bacteriology, National Institute of Cholera and Enteric Diseases, P-33 C.I.T Road, Kolkata, West Bengal 700010, India.
| |
Collapse
|
34
|
Saha S, Sajib MSI, Garrett D, Qamar FN. Antimicrobial Resistance in Typhoidal Salmonella: Around the World in 3 Days. Clin Infect Dis 2020; 71:S91-S95. [PMID: 32725234 PMCID: PMC7388716 DOI: 10.1093/cid/ciaa366] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
With the increasing antibacterial resistance in typhoidal Salmonella and the dearth of novel antimicrobials on the horizon, we risk losing our primary defense against widespread morbidity and mortality from enteric fever. During 26-28 March 2019, researchers from around the world came together in Hanoi, Vietnam, and shared some of their latest findings on antimicrobial resistance. From the 258 abstracts presented at the conference, at least 50 discussed phenotypic and genotypic characteristics of antimicrobial resistance in typhoidal Salmonella, covering data of at least 24 different countries, spanning 5 continents. Here, we summarize the key findings, focusing on our global journey ahead.
Collapse
Affiliation(s)
- Senjuti Saha
- Child Health Research Foundation, Department of Microbiology, Dhaka, Bangladesh
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | | | | | - Farah N Qamar
- Department of Pediatrics and Child Health, Karachi, Pakistan
| |
Collapse
|
35
|
Gibert M, Paytubi S, Madrid C, Balsalobre C. Temperature Dependent Control of the R27 Conjugative Plasmid Genes. Front Mol Biosci 2020; 7:124. [PMID: 32754612 PMCID: PMC7366339 DOI: 10.3389/fmolb.2020.00124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/02/2020] [Indexed: 11/25/2022] Open
Abstract
Conjugation of R27 plasmid is thermoregulated, being promoted at 25°C and repressed at 37°C. Previous studies identified plasmid-encoded regulators, HtdA, TrhR and TrhY, that control expression of conjugation-related genes (tra). Moreover, the nucleoid-associated protein H-NS represses conjugation at non-permissive temperature. A transcriptomic approach has been used to characterize the effect of temperature on the expression of the 205 R27 genes. Many of the 35 tra genes, directly involved in plasmid-conjugation, were upregulated at 25°C. However, the majority of the non-tra R27 genes—many of them with unknown function—were more actively expressed at 37°C. The role of HtdA, a regulator that causes repression of the R27 conjugation by counteracting TrhR/TrhY mediated activation of tra genes, has been investigated. Most of the R27 genes are severely derepressed at 25°C in an htdA mutant, suggesting that HtdA is involved also in the repression of R27 genes other than the tra genes. Interestingly, the effect of htdA mutation was abolished at non-permissive temperature, indicating that the HtdA-TrhR/TrhY regulatory circuit mediates the environmental regulation of R27 gene expression. The role of H-NS in the proposed model is discussed.
Collapse
Affiliation(s)
- Marta Gibert
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
| | - Sonia Paytubi
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
| | - Cristina Madrid
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
| | - Carlos Balsalobre
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
| |
Collapse
|
36
|
Islam MT, Im J, Ahmmed F, Kim DR, Khan AI, Zaman K, Ali M, Marks F, Qadri F, Kim JH, Clemens JD. Use of Typhoid Vi-Polysaccharide Vaccine as a Vaccine Probe to Delineate Clinical Criteria for Typhoid Fever. Am J Trop Med Hyg 2020; 103:665-671. [PMID: 32588803 PMCID: PMC7410438 DOI: 10.4269/ajtmh.19-0968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Blood cultures (BCs) detect an estimated 50% of typhoid fever cases. There is need for validated clinical criteria to define cases that are BC negative, both to help direct empiric antibiotic treatment and to better evaluate the magnitude of protection conferred by typhoid vaccines. To derive and validate a clinical rule for defining BC-negative typhoid fever, we assessed, in a cluster-randomized effectiveness trial of Vi-polysaccharide (ViPS) typhoid vaccine in Kolkata, India, 14,797 episodes of fever lasting at least 3 days during 4 years of comprehensive, BC-based surveillance of 70,865 persons. A recursive partitioning algorithm was used to develop a decision rule to predict BC-proven typhoid cases with a diagnostic specificity of 97–98%. To validate this rule as a definition for BC-negative typhoid fever, we assessed whether the rule defined culture-negative syndromes prevented by ViPS vaccine. In a training subset of individuals, we identified the following two rules: rule 1: patients aged < 15 years with prolonged fever accompanied by a measured body temperature ≥ 100°F, headache, and nausea; rule 2: patients aged ≥ 15 years with prolonged fever accompanied by nausea and palpable liver but without constipation. The adjusted protective efficacy of ViPS against clinical typhoid defined by these rules in persons aged ≥ 2 years in a separate validation subset was 33% (95% CI: 4–53%). We have defined and validated a clinical rule for predicting BC-negative typhoid fever using a novel vaccine probe approach. If validated in other settings, this rule may be useful to guide clinical care and to enhance typhoid vaccine evaluations.
Collapse
Affiliation(s)
- Md Taufiqul Islam
- International Centre for Diarrheal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Justin Im
- International Vaccine Institute, Seoul, Republic of Korea
| | - Faisal Ahmmed
- International Centre for Diarrheal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Deok Ryun Kim
- International Vaccine Institute, Seoul, Republic of Korea
| | - Ashraful Islam Khan
- International Centre for Diarrheal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Khalequ Zaman
- International Centre for Diarrheal Disease Research, Bangladesh, Dhaka, Bangladesh
| | | | - Florian Marks
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom.,International Vaccine Institute, Seoul, Republic of Korea
| | - Firdausi Qadri
- International Centre for Diarrheal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Jerome H Kim
- International Vaccine Institute, Seoul, Republic of Korea
| | - John D Clemens
- Korea University College of Medicine, Seoul, South Korea.,UCLA Fielding School of Public Health, Los Angeles, California.,International Centre for Diarrheal Disease Research, Bangladesh, Dhaka, Bangladesh
| |
Collapse
|
37
|
Kaufhold S, Yaesoubi R, Pitzer VE. Predicting the Impact of Typhoid Conjugate Vaccines on Antimicrobial Resistance. Clin Infect Dis 2020; 68:S96-S104. [PMID: 30845324 PMCID: PMC6405272 DOI: 10.1093/cid/ciy1108] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Empiric prescribing of antimicrobials in typhoid-endemic settings has increased selective pressure on the development of antimicrobial-resistant Salmonella enterica serovar Typhi. The introduction of typhoid conjugate vaccines (TCVs) in these settings may relieve this selective pressure, thereby reducing resistant infections and improving health outcomes. Methods A deterministic transmission dynamic model was developed to simulate the impact of TCVs on the number and proportion of antimicrobial-resistant typhoid infections and chronic carriers. One-way sensitivity analyses were performed to ascertain particularly impactful model parameters influencing the proportion of antimicrobial-resistant infections and the proportion of cases averted over 10 years. Results The model simulations suggested that increasing vaccination coverage would decrease the total number of antimicrobial-resistant typhoid infections but not affect the proportion of cases that were antimicrobial resistant. In the base-case scenario with 80% vaccination coverage, 35% of all typhoid infections were antimicrobial resistant, and 44% of the total cases were averted over 10 years by vaccination. Vaccination also decreased both the total number and proportion of chronic carriers of antimicrobial-resistant infections. The prevalence of chronic carriers, recovery rates from infection, and relative fitness of resistant strains were identified as crucially important parameters. Conclusions Model predictions for the proportion of antimicrobial resistant infections and number of cases averted depended strongly on the relative fitness of the resistant strain(s), prevalence of chronic carriers, and rates of recovery without treatment. Further elucidation of these parameter values in real-world typhoid-endemic settings will improve model predictions and assist in targeting future vaccination campaigns and treatment strategies.
Collapse
Affiliation(s)
- Samantha Kaufhold
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, Connecticut
- Present address: Analysis Group, 31 Menlo Park, CA 94025
| | - Reza Yaesoubi
- Department of Health Policy and Management, Yale School of Public Health, Yale University, New Haven, Connecticut
| | - Virginia E Pitzer
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, Connecticut
- Correspondence: V. E. Pitzer, Yale School of Public Health, P.O. Box 208034, New Haven, CT 06520-8034 ()
| |
Collapse
|
38
|
Wang M, Qazi IH, Wang L, Zhou G, Han H. Salmonella Virulence and Immune Escape. Microorganisms 2020; 8:microorganisms8030407. [PMID: 32183199 PMCID: PMC7143636 DOI: 10.3390/microorganisms8030407] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/02/2020] [Accepted: 03/10/2020] [Indexed: 02/07/2023] Open
Abstract
Salmonella genus represents the most common foodborne pathogens causing morbidity, mortality, and burden of disease in all regions of the world. The introduction of antimicrobial agents and Salmonella-specific phages has been considered as an effective intervention strategy to reduce Salmonella contamination. However, data from the United States, European countries, and low- and middle-income countries indicate that Salmonella cases are still a commonly encountered cause of bacterial foodborne diseases globally. The control programs have not been successful and even led to the emergence of some multidrug-resistant Salmonella strains. It is known that the host immune system is able to effectively prevent microbial invasion and eliminate microorganisms. However, Salmonella has evolved mechanisms of resisting host physical barriers and inhibiting subsequent activation of immune response through their virulence factors. There has been a high interest in understanding how Salmonella interacts with the host. Therefore, in the present review, we characterize the functions of Salmonella virulence genes and particularly focus on the mechanisms of immune escape in light of evidence from the emerging mainstream literature.
Collapse
Affiliation(s)
- Mengyao Wang
- Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.W.); (L.W.)
- Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Izhar Hyder Qazi
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China;
- Department of Veterinary Anatomy and Histology, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand 67210, Pakistan
| | - Linli Wang
- Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.W.); (L.W.)
- Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Guangbin Zhou
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China;
- Correspondence: (H.H.); (G.Z.)
| | - Hongbing Han
- Beijing Key Laboratory for Animal Genetic Improvement, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (M.W.); (L.W.)
- Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
- Correspondence: (H.H.); (G.Z.)
| |
Collapse
|
39
|
Rahman SIA, Dyson ZA, Klemm EJ, Khanam F, Holt KE, Chowdhury EK, Dougan G, Qadri F. Population structure and antimicrobial resistance patterns of Salmonella Typhi isolates in urban Dhaka, Bangladesh from 2004 to 2016. PLoS Negl Trop Dis 2020; 14:e0008036. [PMID: 32106221 PMCID: PMC7064254 DOI: 10.1371/journal.pntd.0008036] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 03/10/2020] [Accepted: 01/08/2020] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Multi-drug resistant typhoid fever remains an enormous public health threat in low and middle-income countries. However, we still lack a detailed understanding of the epidemiology and genomics of S. Typhi in many regions. Here we have undertaken a detailed genomic analysis of typhoid in urban Dhaka, Bangladesh to unravel the population structure and antimicrobial resistance patterns in S. Typhi isolated between 2004-2016. PRINCIPAL FINDINGS Whole genome sequencing of 202 S. Typhi isolates obtained from three study locations in urban Dhaka revealed a diverse range of S. Typhi genotypes and AMR profiles. The bacterial population within Dhaka were relatively homogenous with little stratification between different healthcare facilities or age groups. We also observed evidence of exchange of Bangladeshi genotypes with neighboring South Asian countries (India, Pakistan and Nepal) suggesting these are circulating throughout the region. This analysis revealed a decline in H58 (genotype 4.3.1) isolates from 2011 onwards, coinciding with a rise in a diverse range of non-H58 genotypes and a simultaneous rise in isolates with reduced susceptibility to fluoroquinolones, potentially reflecting a change in treatment practices. We identified a novel S. Typhi genotype, subclade 3.3.2 (previously defined only to clade level, 3.3), which formed two localized clusters (3.3.2.Bd1 and 3.3.2.Bd2) associated with different mutations in the Quinolone Resistance Determining Region (QRDR) of gene gyrA. SIGNIFICANCE Our analysis of S. Typhi isolates from urban Dhaka, Bangladesh isolated over a twelve year period identified a diverse range of AMR profiles and genotypes. The observed increase in non-H58 genotypes associated with reduced fluoroquinolone susceptibility may reflect a change in treatment practice in this region and highlights the importance of continued molecular surveillance to monitor the ongoing evolution of AMR in Dhaka. We have defined new genotypes and lineages of Bangladeshi S. Typhi which will facilitate the identification of these emerging AMR clones in future surveillance efforts.
Collapse
Affiliation(s)
- Sadia Isfat Ara Rahman
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Zoe A. Dyson
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Elizabeth J. Klemm
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Farhana Khanam
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Kathryn E. Holt
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Department of Infection Biology, Faculty of Infections and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Emran Kabir Chowdhury
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Gordon Dougan
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Firdausi Qadri
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| |
Collapse
|
40
|
Britto CD, John J, Verghese VP, Pollard AJ. A systematic review of antimicrobial resistance of typhoidal Salmonella in India. Indian J Med Res 2019; 149:151-163. [PMID: 31219079 PMCID: PMC6563740 DOI: 10.4103/ijmr.ijmr_830_18] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Background & objectives: The temporal trends in the development of antimicrobial resistance (AMR) among Salmonella Typhi and Salmonella Paratyphi in India have not been systematically reported. We aimed to systematically review the temporal AMR trends (phenotypic and molecular mechanisms) in bacterial isolates from patients with enteric fever over two decades in India. Methods: To identify trends in AMR in India, resistance patterns among 4611 individual S. Typhi isolates and 800 S. Paratyphi A isolates, reported from 1992 to 2017 in 40 publications, were analysed. Molecular resistance determinants were extracted from 22 publications and also reviewed in accordance with the PRISMA guidelines. Articles were sourced using a predefined search strategy from different databases. Results: The analyses suggested that multidrug-resistant (MDR) enteric fever was declining in India and being replaced by fluoroquinolone (FQ) resistance. Mutations in gyrA and parC were key mechanisms responsible for FQ resistance, whereas MDR was largely driven by resistance determinants encoded on mobile genetic elements (plasmids, transposons). Interpretation & conclusions: The results reflect the effect of antimicrobial pressure which has been driving AMR in typhoidal Salmonella in India. Understanding these trends is important in planning future approaches to therapy, which serve as a baseline for assessment of the impact of new typhoid conjugate vaccines against these resistant organisms.
Collapse
Affiliation(s)
- Carl D Britto
- Department of Paediatrics, University of Oxford & NIHR Oxford Biomedical Research Centre, Oxford, UK
| | - Jacob John
- Department of Community Medicine, Christian Medical College, Vellore, India
| | - Valsan P Verghese
- Department of Paediatrics, Christian Medical College, Vellore, India
| | - Andrew J Pollard
- Department of Paediatrics, University of Oxford & NIHR Oxford Biomedical Research Centre, Oxford, UK
| |
Collapse
|
41
|
Hooda Y, Sajib MSI, Rahman H, Luby SP, Bondy-Denomy J, Santosham M, Andrews JR, Saha SK, Saha S. Molecular mechanism of azithromycin resistance among typhoidal Salmonella strains in Bangladesh identified through passive pediatric surveillance. PLoS Negl Trop Dis 2019; 13:e0007868. [PMID: 31730615 PMCID: PMC6881056 DOI: 10.1371/journal.pntd.0007868] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 11/27/2019] [Accepted: 10/24/2019] [Indexed: 12/11/2022] Open
Abstract
Background With the rise in fluoroquinolone-resistant Salmonella Typhi and the recent emergence of ceftriaxone resistance, azithromycin is one of the last oral drugs available against typhoid for which resistance is uncommon. Its increasing use, specifically in light of the ongoing outbreak of extensively drug-resistant (XDR) Salmonella Typhi (resistant to chloramphenicol, ampicillin, cotrimoxazole, streptomycin, fluoroquinolones and third-generation cephalosporins) in Pakistan, places selective pressure for the emergence and spread of azithromycin-resistant isolates. However, little is known about azithromycin resistance in Salmonella, and no molecular data are available on its mechanism. Methods and findings We conducted typhoid surveillance in the two largest pediatric hospitals of Bangladesh from 2009–2016. All typhoidal Salmonella strains were screened for azithromycin resistance using disc diffusion and resistance was confirmed using E-tests. In total, we identified 1,082 Salmonella Typhi and Paratyphi A strains; among these, 13 strains (12 Typhi, 1 Paratyphi A) were azithromycin-resistant (MIC range: 32–64 μg/ml) with the first case observed in 2013. We sequenced the resistant strains, but no molecular basis of macrolide resistance was identified by the currently available antimicrobial resistance prediction tools. A whole genome SNP tree, made using RAxML, showed that the 12 Typhi resistant strains clustered together within the 4.3.1.1 sub-clade (H58 lineage 1). We found a non-synonymous single-point mutation exclusively in these 12 strains in the gene encoding AcrB, an efflux pump that removes small molecules from bacterial cells. The mutation changed the conserved amino acid arginine (R) at position 717 to a glutamine (Q). To test the role of R717Q present in azithromycin-resistant strains, we cloned acrB from azithromycin-resistant and sensitive strains, expressed them in E. coli, Typhi and Paratyphi A strains and tested their azithromycin susceptibility. Expression of AcrB-R717Q in E. coli and Typhi strains increased the minimum inhibitory concentration (MIC) for azithromycin by 11- and 3-fold respectively. The azithromycin-resistant Paratyphi A strain also contained a mutation at R717 (R717L), whose introduction in E. coli and Paratyphi A strains increased MIC by 7- and 3-fold respectively, confirming the role of R717 mutations in conferring azithromycin resistance. Conclusions This report confirms 12 azithromycin-resistant Salmonella Typhi strains and one Paratyphi A strain. The molecular basis of this resistance is one mutation in the AcrB protein at position 717. This is the first report demonstrating the impact of this non-synonymous mutation in conferring macrolide resistance in a clinical setting. With increasing azithromycin use, strains with R717 mutations may spread and be acquired by XDR strains. An azithromycin-resistant XDR strain would shift enteric fever treatment from outpatient departments, where patients are currently treated with oral azithromycin, to inpatient departments to be treated with injectable antibiotics like carbapenems, thereby further burdening already struggling health systems in endemic regions. Moreover, with the dearth of novel antimicrobials in the horizon, we risk losing our primary defense against widespread mortality from typhoid. In addition to rolling out the WHO prequalified typhoid conjugate vaccine in endemic areas to decrease the risk of pan-resistant Salmonella Typhi strains, it is also imperative to implement antimicrobial stewardship and water sanitation and hygiene intervention to decrease the overall burden of enteric fever. With the outbreak of extensively resistant (XDR) typhoid fever in Pakistan, azithromycin has become the last oral drug to treat typhoid. Although no azithromycin resistant XDR isolate has been reported to date, the increasing use of azithromycin and the clear historical record of widespread dissemination of resistance to all previously widely used antimicrobials by typhoidal Salmonella, suggest we will soon face strains resistant to all oral antibiotics. This makes it imperative to elucidate the mechanism of azithromycin resistance in typhoidal Salmonella. We tested 1,082 typhoidal Salmonella isolates from the two largest pediatric hospitals of Bangladesh and identified 13 azithromycin-resistant isolates. Using comparative genomics, we identified a mutation in a specific protein called AcrB that makes these isolates resistant to azithromycin. All azithromycin-resistant strains were susceptible to cephalosporin but resistant to all other oral antibiotics. The Pakistan outbreak strain is resistant to all common oral antibiotics and only susceptible to azithromycin. Acquisition of the plasmid that confers cephalosporin resistance in XDR strains by the Bangladeshi azithromycin-resistant strains or rise of the AcrB mutation in the XDR strains could be the end of oral treatment for typhoid. This poses serious threats to the health system of LMICs where typhoid is endemic. Currently, the majority of typhoid patients are prescribed oral treatment in the outpatient department, but an azithromycin-resistant XDR strain would shift enteric fever treatment from outpatient departments to inpatient departments to be treated with injectable antibiotics like carbapenems, further burdening already struggling health systems in endemic regions. Moreover, with the dearth of novel antimicrobials in the horizon, we risk losing our primary defense against widespread mortality from enteric fever.
Collapse
Affiliation(s)
- Yogesh Hooda
- Child Health Research Foundation, Department of Microbiology, Dhaka Shishu Hospital, Dhaka, Bangladesh
- MRC Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Mohammad S. I. Sajib
- Child Health Research Foundation, Department of Microbiology, Dhaka Shishu Hospital, Dhaka, Bangladesh
| | - Hafizur Rahman
- Child Health Research Foundation, Department of Microbiology, Dhaka Shishu Hospital, Dhaka, Bangladesh
| | - Stephen P. Luby
- Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, California, United States of America
| | - Joseph Bondy-Denomy
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, United States of America
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, California, United States of America
| | - Mathuram Santosham
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Jason R. Andrews
- Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, California, United States of America
| | - Samir K. Saha
- Child Health Research Foundation, Department of Microbiology, Dhaka Shishu Hospital, Dhaka, Bangladesh
- Bangladesh Institute of Child Health, Dhaka Shishu Hospital, Dhaka, Bangladesh
- * E-mail: (SKS); (SS)
| | - Senjuti Saha
- Child Health Research Foundation, Department of Microbiology, Dhaka Shishu Hospital, Dhaka, Bangladesh
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- * E-mail: (SKS); (SS)
| |
Collapse
|
42
|
Luque A, Paytubi S, Sánchez-Montejo J, Gibert M, Balsalobre C, Madrid C. Crosstalk between bacterial conjugation and motility is mediated by plasmid-borne regulators. ENVIRONMENTAL MICROBIOLOGY REPORTS 2019; 11:708-717. [PMID: 31309702 DOI: 10.1111/1758-2229.12784] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 07/12/2019] [Indexed: 06/10/2023]
Abstract
Plasmid conjugation is a major horizontal gene transfer mechanism. The acquisition of a plasmid may cause a perturbation of the cell functions in addition to provide advantageous properties for the recipient cell, such as the gaining of antibiotic resistances. The interplay between plasmid and chromosomal functions has been studied using the IncHI1 plasmid R27. Plasmids of the incompatibility group HI1, isolated from several Gram-negative pathogens, are associated with the spread of multidrug resistance. Their conjugation is tightly regulated by temperature, being repressed at temperatures within the host (37°C). In this report, we described that at permissive temperature, when conjugation of plasmid R27 is prompted, a reduction in the motility of the cells is observed. This reduction is mediated by the plasmid-encoded regulators TrhR/TrhY, which together with HtdA form a plasmid-borne regulatory circuit controlling R27 conjugation. TrhR/TrhY, required to induce R27 conjugation, is responsible for the downregulation of the flagella synthesis and the consequent decrease in motility. TrhR/TrhY repress, direct or indirectly, the expression of the specific flagellar sigma subunit FliA and, consequently, the expression of all genes located bellow in the flagellar expression cascade.
Collapse
Affiliation(s)
- Ainara Luque
- Secció de Microbiologia, Virologia i Biotecnologia. Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Avda. Diagonal 643, Barcelona, 08028, Spain
| | - Sonia Paytubi
- Secció de Microbiologia, Virologia i Biotecnologia. Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Avda. Diagonal 643, Barcelona, 08028, Spain
| | - Javier Sánchez-Montejo
- Secció de Microbiologia, Virologia i Biotecnologia. Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Avda. Diagonal 643, Barcelona, 08028, Spain
| | - Marta Gibert
- Secció de Microbiologia, Virologia i Biotecnologia. Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Avda. Diagonal 643, Barcelona, 08028, Spain
| | - Carlos Balsalobre
- Secció de Microbiologia, Virologia i Biotecnologia. Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Avda. Diagonal 643, Barcelona, 08028, Spain
| | - Cristina Madrid
- Secció de Microbiologia, Virologia i Biotecnologia. Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona, Avda. Diagonal 643, Barcelona, 08028, Spain
| |
Collapse
|
43
|
Hüttener M, Prieto A, Aznar S, Bernabeu M, Glaría E, Valledor AF, Paytubi S, Merino S, Tomás J, Juárez A. Expression of a novel class of bacterial Ig-like proteins is required for IncHI plasmid conjugation. PLoS Genet 2019; 15:e1008399. [PMID: 31527905 PMCID: PMC6764697 DOI: 10.1371/journal.pgen.1008399] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 09/27/2019] [Accepted: 09/04/2019] [Indexed: 01/10/2023] Open
Abstract
Antimicrobial resistance (AMR) is currently one of the most important challenges to the treatment of bacterial infections. A critical issue to combat AMR is to restrict its spread. In several instances, bacterial plasmids are involved in the global spread of AMR. Plasmids belonging to the incompatibility group (Inc)HI are widespread in Enterobacteriaceae and most of them express multiple antibiotic resistance determinants. They play a relevant role in the recent spread of colistin resistance. We present in this report novel findings regarding IncHI plasmid conjugation. Conjugative transfer in liquid medium of an IncHI plasmid requires expression of a plasmid-encoded, large-molecular-mass protein that contains an Ig-like domain. The protein, termed RSP, is encoded by a gene (ORF R0009) that maps in the Tra2 region of the IncHI1 R27 plasmid. The RSP protein is exported outside the cell by using the plasmid-encoded type IV secretion system that is also used for its transmission to new cells. Expression of the protein reduces cell motility and enables plasmid conjugation. Flagella are one of the cellular targets of the RSP protein. The RSP protein is required for a high rate of plasmid transfer in both flagellated and nonflagellated Salmonella cells. This effect suggests that RSP interacts with other cellular structures as well as with flagella. These unidentified interactions must facilitate mating pair formation and, hence, facilitate IncHI plasmid conjugation. Due to its location on the outer surfaces of the bacterial cell, targeting the RSP protein could be a means of controlling IncHI plasmid conjugation in natural environments or of combatting infections caused by AMR enterobacteria that harbor IncHI plasmids. Dissemination of antimicrobial resistance (AMR) among different bacterial populations occurs due to mainly the presence of plasmids that encode AMR determinants. IncHI plasmids are one of the groups of bacterial plasmids that confer AMR to several enterobacteria. Recently, resistance to one of the last-resort antibiotics (colistin) for some multidrug-resistant infections has spread very rapidly. IncHI plasmids represent 20% of all plasmids transmitting colistin resistance worldwide and 40% in Europe. When analyzing the interactions of the IncHI1 plasmid R27 with Salmonella, we identified a large-molecular-mass protein that is encoded by this plasmid and is exported to the external medium. The R27 plasmid gene coding for that protein (R0009) is widespread among IncHI plasmids. In this report, we characterize the protein, termed RSP. The presented data show that RSP plays a relevant role in IncHI plasmid conjugation and suggest that the protein is retained on the outer surface of the bacterial cells and facilitates cell-to-cell contact before plasmid DNA transfer. Considering that IncHI plasmids significantly contribute to AMR dissemination within enterobacteria, the findings reported in this paper suggest that the identified protein can be a target to control both IncHI-mediated AMR dissemination and infections caused by AMR enterobacteria that harbor these plasmids.
Collapse
Affiliation(s)
- Mário Hüttener
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
| | - Alejandro Prieto
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
| | - Sonia Aznar
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
| | - Manuel Bernabeu
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
| | - Estibaliz Glaría
- Department of Cell Biology, Physiology and Immunology, University of Barcelona, Barcelona, Spain
| | - Annabel F. Valledor
- Department of Cell Biology, Physiology and Immunology, University of Barcelona, Barcelona, Spain
| | - Sonia Paytubi
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
| | - Susana Merino
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
| | - Joan Tomás
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
| | - Antonio Juárez
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
- Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, Barcelona, Spain
- * E-mail:
| |
Collapse
|
44
|
Ingle DJ, Nair S, Hartman H, Ashton PM, Dyson ZA, Day M, Freedman J, Chattaway MA, Holt KE, Dallman TJ. Informal genomic surveillance of regional distribution of Salmonella Typhi genotypes and antimicrobial resistance via returning travellers. PLoS Negl Trop Dis 2019; 13:e0007620. [PMID: 31513580 PMCID: PMC6741848 DOI: 10.1371/journal.pntd.0007620] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 07/09/2019] [Indexed: 11/30/2022] Open
Abstract
Salmonella enterica serovar Typhi (S. Typhi) is the causative agent of typhoid fever, a systemic human infection with a burden exceeding 20 million cases each year that occurs disproportionately among children in low and middle income countries. Antimicrobial therapy is the mainstay for treatment, but resistance to multiple agents is common. Here we report genotypes and antimicrobial resistance (AMR) determinants detected from routine whole-genome sequencing (WGS) of 533 S. Typhi isolates referred to Public Health England between April 2014 and March 2017, 488 (92%) of which had accompanying patient travel information obtained via an enhanced surveillance questionnaire. The majority of cases involved S. Typhi 4.3.1 (H58) linked with travel to South Asia (59%). Travel to East and West Africa were associated with genotypes 4.3.1 and 3.3.1, respectively. Point mutations in the quinolone resistance determining region (QRDR), associated with reduced susceptibility to fluoroquinolones, were very common (85% of all cases) but the frequency varied significantly by region of travel: 95% in South Asia, 43% in East Africa, 27% in West Africa. QRDR triple mutants, resistant to ciprofloxacin, were restricted to 4.3.1 lineage II and associated with travel to India, accounting for 23% of cases reporting travel to the country. Overall 24% of isolates were MDR, however the frequency varied significantly by region and country of travel: 27% in West Africa, 52% in East Africa, 55% in Pakistan, 24% in Bangladesh, 3% in India. MDR determinants were plasmid-borne (IncHI1 PST2 plasmids) in S. Typhi 3.1.1 linked to West Africa, but in all other regions MDR was chromosomally integrated in 4.3.1 lineage I. We propose that routine WGS data from travel-associated cases in industrialised countries could serve as informal sentinel AMR genomic surveillance data for countries where WGS is not available or routinely performed. Our data demonstrate how routine WGS data produced by Public Health England can be further mined for informal passive surveillance of Salmonella Typhi circulating in different geographical regions where typhoid is endemic. We have shown the public health utility of a simplified approach to WGS reporting based on the GenoTyphi genotyping framework and nomenclature, which doesn’t require the generation of a phylogenetic tree or other phylogenetic analysis. These approaches yielded results consistent with previously reported antimicrobial resistance (AMR) patterns of S. Typhi, including prevalence of multi-drug resistant (MDR) and fluoroquinolone resistance in different regions in association with different pathogen variants. These data provide a rationale and framework for the extraction and reporting of geographically stratified genotype and AMR data from public health labs in non-endemic countries. Prospective analysis and reporting of such data could potentially detect shifts in regional S. Typhi populations, such as replacement or spread of different subclades and the emergence and dissemination of MDR, fluoroquinolone resistant and/or extensively drug resistant S. Typhi, providing valuable data to inform typhoid control measures in low and middle income countries that are still building their genomics capacity.
Collapse
Affiliation(s)
- Danielle J. Ingle
- National Centre for Epidemiology and Population Health, The Australian National University, Canberra, Australia
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- * E-mail:
| | - Satheesh Nair
- Gastrointestinal Bacteria Reference Unit, Bacteriology Reference Department, National Infection Service, Public Health England, London, United Kingdom
| | - Hassan Hartman
- Gastrointestinal Bacteria Reference Unit, Bacteriology Reference Department, National Infection Service, Public Health England, London, United Kingdom
| | - Philip M. Ashton
- Gastrointestinal Bacteria Reference Unit, Bacteriology Reference Department, National Infection Service, Public Health England, London, United Kingdom
| | - Zoe A. Dyson
- Department of Medicine, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Martin Day
- Gastrointestinal Bacteria Reference Unit, Bacteriology Reference Department, National Infection Service, Public Health England, London, United Kingdom
| | - Joanne Freedman
- Travel Migrant and Health Department, Public Health England, 61 Colindale Avenue, London, United Kingdom
| | - Marie A. Chattaway
- Gastrointestinal Bacteria Reference Unit, Bacteriology Reference Department, National Infection Service, Public Health England, London, United Kingdom
| | - Kathryn E. Holt
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
- London School of Hygiene and Tropical Medicine, Keppel Street, London, United Kingdom
- Department of Infectious Diseases, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Timothy J. Dallman
- Gastrointestinal Bacteria Reference Unit, Bacteriology Reference Department, National Infection Service, Public Health England, London, United Kingdom
| |
Collapse
|
45
|
Mutai WC, Waiyaki PG, Kariuki S, Muigai AWT. Plasmid profiling and incompatibility grouping of multidrug resistant Salmonella enterica serovar Typhi isolates in Nairobi, Kenya. BMC Res Notes 2019; 12:422. [PMID: 31311578 PMCID: PMC6636098 DOI: 10.1186/s13104-019-4468-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/11/2019] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVES Plasmids harbour antibiotic resistance genes which contribute to the emergence of multidrug resistant pathogens. We detected the presence of plasmids in multidrug resistant Salmonella enterica serovar Typhi (S. Typhi) isolates from our previous study and consequently determined their incompatibility groups and possibility of conjugation transmission. Plasmids were extracted from 98 multidrug resistant S. Typhi isolates based on alkaline lysis technique. Plasmid incompatibility grouping was established by PCR replicon typing using 18 pairs of primers to amplify FIA, FIB, FIC, HI1, HI2, I1-Iγ, L/M, N, P, W, T, A/C, K, B/O, X, Y, F and FIIA replicons. Antibiotic resistance phenotypes were conjugally transferred from S. Typhi isolates with plasmids to Escherichia coli K12F strain devoid of plasmids. RESULTS Approximately 79.6% of the MDR S. Typhi isolates were related to the existence of plasmids. We detected 93.6% of plasmids belonging to incompatibility (Inc) group HI1. The other incompatibility groups identified included IncFIC (16.7%), IncP (1.3%), and IncI1 (1.3%) which appeared together with Inc HI1. MDR S. Typhi isolated carried a homologous plasmid of incompatibility group HI1 most of which transferred the resistance phenotypes of ampicillin, tetracycline and chloramphenicol to the transconjugants.
Collapse
Affiliation(s)
- Winnie C Mutai
- Department of Medical Microbiology, School of Medicine, University of Nairobi, Nairobi, Kenya.
| | - Peter G Waiyaki
- Centre for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Samuel Kariuki
- Centre for Microbiology Research, Kenya Medical Research Institute, Nairobi, Kenya
| | - Anne W T Muigai
- School of Biological Sciences, Jomo Kenyatta University of Agriculture and Technology, Juja, Kenya
| |
Collapse
|
46
|
Lima NCB, Tanmoy AM, Westeel E, de Almeida LGP, Rajoharison A, Islam M, Endtz HP, Saha SK, de Vasconcelos ATR, Komurian-Pradel F. Analysis of isolates from Bangladesh highlights multiple ways to carry resistance genes in Salmonella Typhi. BMC Genomics 2019; 20:530. [PMID: 31253105 PMCID: PMC6599262 DOI: 10.1186/s12864-019-5916-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 06/20/2019] [Indexed: 12/12/2022] Open
Abstract
Background Typhoid fever, caused by Salmonella Typhi, follows a fecal-oral transmission route and is a major global public health concern, especially in developing countries like Bangladesh. Increasing emergence of antimicrobial resistance (AMR) is a serious issue; the list of treatments for typhoid fever is ever-decreasing. In addition to IncHI1-type plasmids, Salmonella genomic island (SGI) 11 has been reported to carry AMR genes. Although reports suggest a recent reduction in multidrug resistance (MDR) in the Indian subcontinent, the corresponding genomic changes in the background are unknown. Results Here, we assembled and annotated complete closed chromosomes and plasmids for 73 S. Typhi isolates using short-length Illumina reads. S. Typhi had an open pan-genome, and the core genome was smaller than previously reported. Considering AMR genes, we identified five variants of SGI11, including the previously reported reference sequence. Five plasmids were identified, including the new plasmids pK91 and pK43; pK43and pHCM2 were not related to AMR. The pHCM1, pPRJEB21992 and pK91 plasmids carried AMR genes and, along with the SGI11 variants, were responsible for resistance phenotypes. pK91 also contained qnr genes, conferred high ciprofloxacin resistance and was related to the H58-sublineage Bdq, which shows the same phenotype. The presence of plasmids (pHCM1 and pK91) and SGI11 were linked to two H58-lineages, Ia and Bd. Loss of plasmids and integration of resistance genes in genomic islands could contribute to the fitness advantage of lineage Ia isolates. Conclusions Such events may explain why lineage Ia is globally widespread, while the Bd lineage is locally restricted. Further studies are required to understand how these S. Typhi AMR elements spread and generate new variants. Preventive measures such as vaccination programs should also be considered in endemic countries; such initiatives could potentially reduce the spread of AMR. Electronic supplementary material The online version of this article (10.1186/s12864-019-5916-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nicholas Costa Barroso Lima
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil.,Laboratório Nacional de Computação Científica, Petrópolis, Brazil
| | - Arif M Tanmoy
- Department of Medical Microbiology & Infectious Diseases, Erasmus MC, Rotterdam, the Netherlands.,Fondation Mérieux - Laboratoire des Pathogènes Emergents, Lyon, France.,Child Health Research Foundation, Department of Microbiology, Dhaka Shishu Hospital, Dhaka, 1207, Bangladesh
| | - Emilie Westeel
- Fondation Mérieux - Laboratoire des Pathogènes Emergents, Lyon, France
| | | | - Alain Rajoharison
- Fondation Mérieux - Laboratoire des Pathogènes Emergents, Lyon, France
| | - Maksuda Islam
- Child Health Research Foundation, Department of Microbiology, Dhaka Shishu Hospital, Dhaka, 1207, Bangladesh
| | - Hubert P Endtz
- Department of Medical Microbiology & Infectious Diseases, Erasmus MC, Rotterdam, the Netherlands.,Fondation Mérieux - Laboratoire des Pathogènes Emergents, Lyon, France
| | - Samir K Saha
- Child Health Research Foundation, Department of Microbiology, Dhaka Shishu Hospital, Dhaka, 1207, Bangladesh.,Bangladesh Institute of Child Health, Dhaka Shishu Hospital, Dhaka, 1207, Bangladesh
| | | | | |
Collapse
|
47
|
Rozwandowicz M, Brouwer MSM, Fischer J, Wagenaar JA, Gonzalez-Zorn B, Guerra B, Mevius DJ, Hordijk J. Plasmids carrying antimicrobial resistance genes in Enterobacteriaceae. J Antimicrob Chemother 2019; 73:1121-1137. [PMID: 29370371 DOI: 10.1093/jac/dkx488] [Citation(s) in RCA: 522] [Impact Index Per Article: 104.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Bacterial antimicrobial resistance (AMR) is constantly evolving and horizontal gene transfer through plasmids plays a major role. The identification of plasmid characteristics and their association with different bacterial hosts provides crucial knowledge that is essential to understand the contribution of plasmids to the transmission of AMR determinants. Molecular identification of plasmid and strain genotypes elicits a distinction between spread of AMR genes by plasmids and dissemination of these genes by spread of bacterial clones. For this reason several methods are used to type the plasmids, e.g. PCR-based replicon typing (PBRT) or relaxase typing. Currently, there are 28 known plasmid types in Enterobacteriaceae distinguished by PBRT. Frequently reported plasmids [IncF, IncI, IncA/C, IncL (previously designated IncL/M), IncN and IncH] are the ones that bear the greatest variety of resistance genes. The purpose of this review is to provide an overview of all known AMR-related plasmid families in Enterobacteriaceae, the resistance genes they carry and their geographical distribution.
Collapse
Affiliation(s)
- M Rozwandowicz
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - M S M Brouwer
- Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - J Fischer
- Department of Biological Safety, Federal Institute for Risk Assessment, BfR, Berlin, Germany
| | - J A Wagenaar
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.,Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - B Gonzalez-Zorn
- Department of Animal Health and VISAVET, Complutense University of Madrid, Madrid, Spain
| | - B Guerra
- Department of Biological Safety, Federal Institute for Risk Assessment, BfR, Berlin, Germany
| | - D J Mevius
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.,Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - J Hordijk
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
48
|
The phylogeography and incidence of multi-drug resistant typhoid fever in sub-Saharan Africa. Nat Commun 2018; 9:5094. [PMID: 30504848 PMCID: PMC6269545 DOI: 10.1038/s41467-018-07370-z] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 10/18/2018] [Indexed: 11/18/2022] Open
Abstract
There is paucity of data regarding the geographical distribution, incidence, and phylogenetics of multi-drug resistant (MDR) Salmonella Typhi in sub-Saharan Africa. Here we present a phylogenetic reconstruction of whole genome sequenced 249 contemporaneous S. Typhi isolated between 2008-2015 in 11 sub-Saharan African countries, in context of the 2,057 global S. Typhi genomic framework. Despite the broad genetic diversity, the majority of organisms (225/249; 90%) belong to only three genotypes, 4.3.1 (H58) (99/249; 40%), 3.1.1 (97/249; 39%), and 2.3.2 (29/249; 12%). Genotypes 4.3.1 and 3.1.1 are confined within East and West Africa, respectively. MDR phenotype is found in over 50% of organisms restricted within these dominant genotypes. High incidences of MDR S. Typhi are calculated in locations with a high burden of typhoid, specifically in children aged <15 years. Antimicrobial stewardship, MDR surveillance, and the introduction of typhoid conjugate vaccines will be critical for the control of MDR typhoid in Africa. Typhoid fever is caused by the bacterium Salmonella Typhi. Here, Park et al. analyse the genomes of 249 S. Typhi isolates from 11 sub-Saharan African countries, identifying genes and plasmids associated with antibiotic resistance and showing that multi-drug resistance is highly pervasive in sub-Saharan Africa.
Collapse
|
49
|
Britto CD, Wong VK, Dougan G, Pollard AJ. A systematic review of antimicrobial resistance in Salmonella enterica serovar Typhi, the etiological agent of typhoid. PLoS Negl Trop Dis 2018; 12:e0006779. [PMID: 30307935 PMCID: PMC6198998 DOI: 10.1371/journal.pntd.0006779] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 10/23/2018] [Accepted: 08/23/2018] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The temporal and spatial change in trends of antimicrobial resistance (AMR) in typhoid have not been systematically studied, and such information will be critical for defining intervention, as well as planning sustainable prevention strategies. METHODOLOGY AND FINDINGS To identify the phenotypic trends in AMR, 13,833 individual S. Typhi isolates, reported from 1973 to 2018 in 62 publications, were analysed to determine the AMR preponderance over time. Separate analyses of molecular resistance determinants present in over 4,000 isolates reported in 61 publications were also conducted. Multi-drug resistant (MDR) typhoid is in decline in Asia in a setting of high fluoroquinolone resistance while it is on the increase in Africa. Mutations in QRDRs in gyrA (S83F, D87N) and parC (S80I) are the most common mechanisms responsible for fluoroquinolone resistance. Cephalosporin resistant S. Typhi, dubbed extensively drug-resistant (XDR) is a real threat and underscores the urgency in deploying the Vi-conjugate vaccines. CONCLUSION From these observations, it appears that AMR in S. Typhi will continue to emerge leading to treatment failure, changes in antimicrobial policy and further resistance developing in S. Typhi isolates and other Gram-negative bacteria in endemic regions. The deployment of typhoid conjugate vaccines to control the disease in endemic regions may be the best defence.
Collapse
Affiliation(s)
- Carl D. Britto
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Vanessa K. Wong
- Wellcome Trust Sanger Institute and the Department of Medicine, Cambridge University, Cambridge, United Kingdom
| | - Gordan Dougan
- Wellcome Trust Sanger Institute and the Department of Medicine, Cambridge University, Cambridge, United Kingdom
| | - Andrew J. Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| |
Collapse
|
50
|
Abstract
Typhoid fever, caused by Salmonella enterica serovar Typhi (S. Typhi), is a diminishing public health problem in Vietnam, and this process may represent a prototype for typhoid elimination in Asia. Here, we review typhoid epidemiology in Vietnam over 20 years and assess the potential drivers associated with typhoid reduction. In the 1990s, multidrug resistant S. Typhi were highly prevalent in a sentinel hospital in southern Vietnam. A national typhoid incidence rate of 14.7/100,000 population per year was estimated around the new millennium. The Vietnamese government recognized the public health issue of typhoid in the 1990s and initiated vaccine campaigns to protect the most vulnerable members of the population. At their peak, these campaigns immunized approximately 1,200,000 children in 35 provinces. Concurrently, Vietnam experienced unprecedented economic development from 1998 to 2014, with the gross national income per capita increasing from $360 to $1,890 over this period. More recent typhoid incidence data are not available, but surveillance suggests that the current disease burden is negligible. This trajectory can be considered a major public health success. However, a paucity of systematic data makes it difficult to disaggregate the roles of immunization and water, sanitation, and hygiene (WASH) interventions in typhoid reduction in Vietnam. Given the limitations of typhoid vaccines, we surmise the practical elimination of typhoid was largely driven by economic development and improvement in general population living standards. Better designed WASH intervention studies with clinical endpoints and systematic incidence data are essential to glean a greater understanding of contextual factors that impact typhoid incidence reduction.
Collapse
Affiliation(s)
- Tran Vu Thieu Nga
- Wellcome Trust Major Overseas Programme, Hospital for Tropical Diseases, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Pham Thanh Duy
- Wellcome Trust Major Overseas Programme, Hospital for Tropical Diseases, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Nguyen Phu Huong Lan
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom.,Wellcome Trust Major Overseas Programme, Hospital for Tropical Diseases, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Nguyen Van Vinh Chau
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, Oxford University, Oxford, United Kingdom
| | - Stephen Baker
- Wellcome Trust Major Overseas Programme, Hospital for Tropical Diseases, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam.,Department of Medicine, University of Cambridge, Cambridge, United Kingdom.,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, Oxford University, Oxford, United Kingdom
| |
Collapse
|