1
|
Gakuya F, Kock R, Lekolool I, Mihok S. Trypanosomiasis in Introduced Southern White Rhinoceros (Ceratotherium simum simum) Gifts to Ex Situ Habitat in Aitong, Kenya. J Wildl Dis 2024; 60:886-902. [PMID: 39166333 DOI: 10.7589/jwd-d-24-00026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 07/09/2024] [Indexed: 08/22/2024]
Abstract
During the opening of diplomatic relations in the 1990s, South Africa gifted 20 southern white rhinoceros (Ceratotherium simum simum) to Kenya. The species is not indigenous to Kenya, and management of the introduction was not clearly addressed in the legislation. Responsibility was left to the private sector and local authorities. Ten of the animals were introduced to land contiguous with the Maasai Mara National Reserve, an area with tsetse-trypanosomiasis challenges, and with rare cases of human sleeping sickness. Mortalities had been previously documented when indigenous naïve black rhinoceros were introduced to areas with tsetse; hence there was no consensus on the management of this introduction. Feasibility was only explored once before with the introduction of two animals in a monitored and managed translocation from Lewa Downs, Laikipia in 1992-1994. Ultimately, Kenyan experts were co-opted to address risk after trypanosomiasis occurred in many animals. Unfortunately, this finding was followed by gradual mortalities of most rhinoceros with only a few being saved by removal to highland private sanctuaries. This event was complicated by many factors. Samples were only sporadically collected, and mainly from sick animals. With no clear responsibility by government agencies, a collaboration between veterinarians and researchers resulted in characterization of the disease challenge, and when invited, assessment of health status. Laboratory diagnostics revealed common and sometimes severe infections with Trypanosoma brucei, a normally infrequent trypanosome. Infection was associated with disturbances in erythropoiesis, especially anemia. Symptoms varied from sudden death associated with intestinal atony, to a semiparalyzed animal that was partially responsive to treatment for trypanosomes. This event should be used as a caution to future movements of this species that are planned or ongoing in Africa, for conservation or other purposes.
Collapse
Affiliation(s)
- Francis Gakuya
- Wildlife Research and Training Institute, P.O. Box 842-20117, Naivasha, Kenya
- These authors contributed equally
| | - Richard Kock
- Providence House, Green Hill Lane, Harrietsham, Kent ME17 1NF, UK
- Formerly Kenya Wildlife Service, P.O. Box 40241-00100, Nairobi, Kenya
- Formerly Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, AL9 7TA, UK
- These authors contributed equally
| | - Isaac Lekolool
- Kenya Wildlife Service, P.O. Box 40241-00100, Nairobi, Kenya
| | - Steve Mihok
- 388 Church Street, Russell, Ontario K4R 1A8, Canada
- Formerly International Centre of Insect Physiology, P.O. Box 30772-00100, Nairobi, Kenya
- These authors contributed equally
| |
Collapse
|
2
|
Ekra JY, Mafie EM, Sonan H, Kanh M, Gragnon BG, N'Goran EK, Srinivasan J. Trypanocide Use and Molecular Characterization of Trypanosomes Resistant to Diminazene Aceturate in Cattle in Northern Côte D'Ivoire. Trop Med Infect Dis 2024; 9:192. [PMID: 39330881 PMCID: PMC11435713 DOI: 10.3390/tropicalmed9090192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/16/2024] [Accepted: 08/22/2024] [Indexed: 09/28/2024] Open
Abstract
The resistance of trypanosomes to the doses of trypanocide administered by farmers to their animals acts as a real brake on efforts to control to combat African trypanosomiasis. Thus, in-depth knowledge of the use of these different molecules and their resistance profiles will be necessary to establish an integrated strategy to combat African trypanosomiasis. To achieve these objectives, a participatory survey among farmers and a resistance diagnosis of trypanosome strains identified in three regions of northern Côte d'Ivoire (Bagoué, Poro and Tchologo) was carried out using the PCR-RFLP technique, followed by sequencing of genes of interest. This study made it possible to identify three molecules that are commonly used by 85% (63/74) of farmers. In descending order of use, we identified Isometamidium chloride (43%), Diminazene aceturate (28%) and Homidium bromide (14%). Three species of trypanosomes, Trypanosoma congolense, Trypanosoma. theileri and Trypanosoma vivax, were identified in farms, and only one strain had the adenosine transporter gene (Trypanosoma congolense), but this strain was sensitive to the Diminazene aceturate molecule. Comparison of the sequence of this trypanosome strain showed that it is different to the Kenyan strain diagnosed as resistant to the Diminazene aceturate molecule. This study shows that a variety of trypanocides are used by farmers, and that the resistance profile of the strains to the Diminazene aceturate molecule could not be observed. However, it is important to further investigate the other molecules encountered in Côte d'Ivoire.
Collapse
Affiliation(s)
- Jean-Yves Ekra
- Department of Veterinary Microbiology Parasitology and Biotechnology, Sokoine University of Agriculture, Morogoro 67125, Tanzania
- SACIDS Africa Centre of Excellence for Infectious Diseases, SACIDS Foundation for One Health, Sokoine University of Agriculture, Morogoro 67125, Tanzania
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| | - Eliakunda Michael Mafie
- Department of Veterinary Microbiology Parasitology and Biotechnology, Sokoine University of Agriculture, Morogoro 67125, Tanzania
| | - Henri Sonan
- Unité de Formation et de Recherche (UFR) des Sciences Biologiques, Département de Biochimie-Génétique, Université Peleforo Gon Coulibaly, Korhogo BP1328, Côte d'Ivoire
| | - Michael Kanh
- Unité de Formation et de Recherche (UFR) des Sciences Biologiques, Département de Biochimie-Génétique, Université Peleforo Gon Coulibaly, Korhogo BP1328, Côte d'Ivoire
| | - Biégo Guillaume Gragnon
- Laboratoire National d'Appui au Développement Agricole (LANADA), Korhogo BP1328, Côte d'Ivoire
| | - Edouard K N'Goran
- Unité de Formation et de Recherche (UFR) des Sciences Biologiques, Département de Biochimie-Génétique, Université Peleforo Gon Coulibaly, Korhogo BP1328, Côte d'Ivoire
| | - Jagan Srinivasan
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01609, USA
| |
Collapse
|
3
|
Morrison LJ, Barrett MP, Steketee PC, Cecchi G, Kijanga O, Mramba F, Auty HK. What is needed to achieve effective and sustainable control of African animal trypanosomosis? Trends Parasitol 2024; 40:679-686. [PMID: 39048503 DOI: 10.1016/j.pt.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 07/27/2024]
Abstract
A welcome resurgence in African animal trypanosomosis (AAT) research has resulted in advances in capabilities, foundational datasets, and understanding. Additionally, there is the prospect of the first new trypanocide in >60 years. However, it is vital to ensure that advances translate to improved and sustainable control in the field. A recent meeting, the Symposium on African Livestock Trypanosomes - Tanzania, convened stakeholders from across the spectrum of AAT research and control to ask how this can be achieved. Current constraints on progress were defined, as were critical gaps and opportunities that need addressing. There is a requirement and opportunity for the AAT research community to communicate, collaborate, and coordinate to maintain momentum and achieve the ultimate goal of sustainable AAT control.
Collapse
Affiliation(s)
| | | | | | - Giuliano Cecchi
- Animal Production and Health Division (NSA), Food and Agriculture Organization of the United Nations (FAO), Rome, Italy
| | - Oliver Kijanga
- Vector and Vector-Borne Diseases Institute, Tanga, Tanzania
| | | | - Harriet K Auty
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK
| |
Collapse
|
4
|
Morrison LJ, Steketee PC, Tettey MD, Matthews KR. Pathogenicity and virulence of African trypanosomes: From laboratory models to clinically relevant hosts. Virulence 2023; 14:2150445. [PMID: 36419235 DOI: 10.1080/21505594.2022.2150445] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022] Open
Abstract
African trypanosomes are vector-borne protozoa, which cause significant human and animal disease across sub-Saharan Africa, and animal disease across Asia and South America. In humans, infection is caused by variants of Trypanosoma brucei, and is characterized by varying rate of progression to neurological disease, caused by parasites exiting the vasculature and entering the brain. Animal disease is caused by multiple species of trypanosome, primarily T. congolense, T. vivax, and T. brucei. These trypanosomes also infect multiple species of mammalian host, and this complexity of trypanosome and host diversity is reflected in the spectrum of severity of disease in animal trypanosomiasis, ranging from hyperacute infections associated with mortality to long-term chronic infections, and is also a main reason why designing interventions for animal trypanosomiasis is so challenging. In this review, we will provide an overview of the current understanding of trypanosome determinants of infection progression and severity, covering laboratory models of disease, as well as human and livestock disease. We will also highlight gaps in knowledge and capabilities, which represent opportunities to both further our fundamental understanding of how trypanosomes cause disease, as well as facilitating the development of the novel interventions that are so badly needed to reduce the burden of disease caused by these important pathogens.
Collapse
Affiliation(s)
- Liam J Morrison
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Pieter C Steketee
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Mabel D Tettey
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Keith R Matthews
- Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
5
|
Morenikeji OB, Metelski JL, Grytsay A, Soulas J, Akinyemi MO, Thomas BN. Molecular genotyping reveals mixed bovine and human trypanosomiasis in cattle from West Africa. Vet World 2023; 16:149-153. [PMID: 36855345 PMCID: PMC9967721 DOI: 10.14202/vetworld.2023.149-153] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 11/30/2022] [Indexed: 01/25/2023] Open
Abstract
Background and Aim Animal trypanosomiasis is a major contributor to agricultural and economic losses, especially in sub-Saharan Africa. We have shown that some animal species expressed genes that are significant players in immune response to bovine trypanosomosis, impeding signs and symptoms of the disease. We hypothesize that such animals are contributors to disease transmission dynamics and severe outcomes. Therefore, this study aims to ascertain trypanosome species diversity in cattle and their potential role as reservoirs for the transmission of human disease. Materials and Methods We performed a molecular genotyping of trypanosome internal transcribed spacer 1 (ITS-1) and 18S ribosomal RNA genes on genomic DNA extracts from randomly sampled N'Dama cattle from slaughterhouses in Nigeria. We identified trypanosome species circulating among the animals through polymerase chain reaction and genomic sequencing. We performed multiple sequence alignments as well as conducted a phylogenetic relationship between identified species. Results In all, 9 of 127 (7.1%) samples were positively amplified (band sizes ranging from 250 bp to 710 bp), including an isolate with two distinct bands (700 and 710 bp), indicating two trypanosome types. Sequence similarity and homology analysis identified four species, namely: Trypanosoma vivax, Trypanosoma congolense forest type, T. congolense savannah type, and Trypanosoma brucei. Interestingly, one of the bands, additionally verified by nucleotide sequencing, was identified as a human trypanosome (Trypanosoma brucei gambiense), confirming our hypothesis that cattle are potential reservoir hosts for human trypanosomes. Conclusion Overall, we observed different trypanosome species in our study area, with animals on the same farm infected with multiple species, which could complicate treatment and disease control strategies. Finding human trypanosome species strengthens the argument that disease transmission dynamics are modulated by other vertebrates, further complicating control programs.
Collapse
Affiliation(s)
- Olanrewaju B. Morenikeji
- Division of Biological Health Sciences, University of Pittsburgh, Bradford, PA, 16701, United States,Corresponding authors: Olanrewaju B. Morenikeji, e-mail: ; Bolaji N. Thomas, e-mail: Co-authors: JLM: , AG: , JS: , MOA:
| | - Jessica L. Metelski
- Department of Biomedical Sciences, Rochester Institute of Technology, Rochester, NY 14623, United States
| | - Anastasia Grytsay
- Division of Biological Health Sciences, University of Pittsburgh, Bradford, PA, 16701, United States
| | - Jacob Soulas
- Division of Biological Health Sciences, University of Pittsburgh, Bradford, PA, 16701, United States
| | - Mabel O. Akinyemi
- Department of Biological Sciences, Fairleigh Dickinson University, Madison, NJ 07940, United States
| | - Bolaji N. Thomas
- Department of Biomedical Sciences, Rochester Institute of Technology, Rochester, NY 14623, United States
| |
Collapse
|
6
|
Efrem D, Kassa T, Kebede N, Worku T. Seasonal prevalence of bovine trypanosomosis and trypanosome species distribution in Jimma Horo district, Oromia regional state, Western Ethiopia. Parasite Epidemiol Control 2022; 20:e00280. [PMID: 36545242 PMCID: PMC9761842 DOI: 10.1016/j.parepi.2022.e00280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 08/04/2022] [Accepted: 11/26/2022] [Indexed: 12/02/2022] Open
Abstract
A study was conducted to determine the prevalence of bovine trypanosomosis in rainy (June 2019) and dry (February 2020) seasons in Jimma Horoo district, Kellem Wollega Zone, Oromia Regional State, Ethiopia. A total of 720 blood samples were examined using buffy coat and thin blood smear techniques. The packed cell volume (PCV) of each animal was determined. The overall bovine trypanosomosis prevalence was 4.3% (χ2 = 1.25, P = 0.26). The prevalence was 5% (95% CI = 4.1-8.3) and 3.3% (95% CI = 2.7-6.3) in the dry and rainy reasons, respectively (P > 0.05). Trypanosoma congolense, T. vivax and T. b. brucei were detected in (60%), (33.3%) and (6.7%) of infected cattle, respectively. The highest trypanosome prevalence was observed in Burka Gudina (7.6%), and the lowest in Melka Nega village (2.1%). There were significant variations between trypanosome prevalence in relation to body condition scores (χ2 = 23.16; P = 0.0.00) of examined cattle. No significant difference (P > 0.05) was observed between seasons, age, and sex categories of cattle. The PCV values of trypanosome infected (22.94%) was significantly lower than non-infected cattle (26.47%) (χ2 = 19.60; (P < 0.05). The prevalence of bovine trypanosomosis in Jimma Horo district was low and it can be controlled by treatment of infected cattle using sanative pairs of trypanocidal drugs with additional application of deltamethrin pour-on in the dry season. Further, in view of poor sensitivity of buffy coat technique used the use of molecular techniques should be encouraged.
Collapse
Affiliation(s)
- Degneh Efrem
- School of Veterinary Medicine, Wollega University, Nekemte, Ethiopia,Corresponding author.
| | - Tesfu Kassa
- Aklilu Lemma, Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Nigatu Kebede
- Aklilu Lemma, Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Tesfaye Worku
- School of Veterinary Medicine, Wollega University, Nekemte, Ethiopia
| |
Collapse
|
7
|
Geerts M, Chen Z, Bebronne N, Savill NJ, Schnaufer A, Büscher P, Van Reet N, Van den Broeck F. Deep kinetoplast genome analyses result in a novel molecular assay for detecting Trypanosoma brucei gambiense-specific minicircles. NAR Genom Bioinform 2022; 4:lqac081. [PMID: 36285287 PMCID: PMC9582789 DOI: 10.1093/nargab/lqac081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 09/28/2022] [Accepted: 10/06/2022] [Indexed: 11/14/2022] Open
Abstract
The World Health Organization targeted Trypanosoma brucei gambiense (Tbg) human African trypanosomiasis for elimination of transmission by 2030. Sensitive molecular markers that specifically detect Tbg type 1 (Tbg1) parasites will be important tools to assist in reaching this goal. We aim at improving molecular diagnosis of Tbg1 infections by targeting the abundant mitochondrial minicircles within the kinetoplast of these parasites. Using Next-Generation Sequencing of total cellular DNA extracts, we assembled and annotated the kinetoplast genome and investigated minicircle sequence diversity in 38 animal- and human-infective trypanosome strains. Computational analyses recognized a total of 241 Minicircle Sequence Classes as Tbg1-specific, of which three were shared by the 18 studied Tbg1 strains. We developed a minicircle-based assay that is applicable on animals and as specific as the TgsGP-based assay, the current golden standard for molecular detection of Tbg1. The median copy number of the targeted minicircle was equal to eight, suggesting our minicircle-based assay may be used for the sensitive detection of Tbg1 parasites. Annotation of the targeted minicircle sequence indicated that it encodes genes essential for the survival of the parasite and will thus likely be preserved in natural Tbg1 populations, the latter ensuring the reliability of our novel diagnostic assay.
Collapse
Affiliation(s)
- Manon Geerts
- Department of Biomedical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium
| | - Zihao Chen
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Nicolas Bebronne
- Department of Biomedical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium
| | - Nicholas J Savill
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Achim Schnaufer
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Philippe Büscher
- Department of Biomedical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium
| | | | | |
Collapse
|
8
|
Boundenga L, Mombo IM, Augustin MO, Barthélémy N, Nzassi PM, Moukodoum ND, Rougeron V, Prugnolle F. Molecular Identification of Trypanosome Diversity in Domestic Animals Reveals the Presence of Trypanosoma brucei gambiense in Historical Foci of Human African Trypanosomiasis in Gabon. Pathogens 2022; 11:pathogens11090992. [PMID: 36145424 PMCID: PMC9502807 DOI: 10.3390/pathogens11090992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/21/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Human African Trypanosomiasis (HAT) is an infectious disease caused by protozoan parasites belonging to the Trypanosoma genus. In sub-Saharan Africa, there is a significant threat as many people are at risk of infection. Despite this, HAT is classified as a neglected tropical disease. Over the last few years, several studies have reported the existence of a wide diversity of trypanosome species circulating in African animals. Thus, domestic and wild animals could be reservoirs of potentially dangerous trypanosomes for human populations. However, very little is known about the role of domestic animals in maintaining the transmission cycle of human trypanosomes in central Africa, especially in Gabon, where serious cases of infection are recorded each year, sometimes leading to hospitalization or death of patients. Komo-Mondah, located within Estuaries (Gabonese province), stays the most active HAT disease focus in Gabon, with a mean of 20 cases per year. In this study, we evaluated the diversity and prevalence of trypanosomes circulating in domestic animals using the Polymerase Chain Reaction (PCR) technique. We found that 19.34% (53/274) of the domestic animals we studied were infected with trypanosomes. The infection rates varied among taxa, with 23.21% (13/56) of dogs, 16.10% (19/118) of goats, and 21.00% (21/100) of sheep infected. In addition, we have observed a global mixed rate of infections of 20.75% (11/53) among infected individuals. Molecular analyses revealed that at least six Trypanosome species circulate in domestic animals in Gabon (T. congolense, T. simiae, T. simiae Tsavo, T. theileri, T. vivax, T. brucei (including T. brucei brucei, and T. brucei gambiense)). In conclusion, our study showed that domestic animals constitute important potential reservoirs for trypanosome parasites, including T. brucei gambiense, which is responsible for HAT.
Collapse
Affiliation(s)
- Larson Boundenga
- International Centre for Medical Research in Franceville (CIRMF), Franceville BP 769, Gabon
- Department of Anthropology, Durham University, South Road, Durham DH1 3LE, UK
- Correspondence: ; Tel.: +241-62521281
| | - Illich Manfred Mombo
- International Centre for Medical Research in Franceville (CIRMF), Franceville BP 769, Gabon
| | | | - Ngoubangoye Barthélémy
- International Centre for Medical Research in Franceville (CIRMF), Franceville BP 769, Gabon
- Department of Anthropology, Durham University, South Road, Durham DH1 3LE, UK
| | - Patrice Makouloutou Nzassi
- International Centre for Medical Research in Franceville (CIRMF), Franceville BP 769, Gabon
- Department of Animal Biology and Ecology, Tropical Ecology Research Institute (IRET-CENAREST), Libreville BP 13354, Gabon
| | - Nancy D. Moukodoum
- International Centre for Medical Research in Franceville (CIRMF), Franceville BP 769, Gabon
| | - Virginie Rougeron
- REHABS, International Research Laboratory, CNRS-NMU-UCBL, George Campus, Nelson Mandela University, George 6529, South Africa
| | - Franck Prugnolle
- REHABS, International Research Laboratory, CNRS-NMU-UCBL, George Campus, Nelson Mandela University, George 6529, South Africa
| |
Collapse
|
9
|
Getahun MN, Ngiela J, Makwatta JO, Ahuya P, Simon TK, Kamau SK, Torto B, Masiga D. Metabolites From Trypanosome-Infected Cattle as Sensitive Biomarkers for Animal Trypanosomosis. Front Microbiol 2022; 13:922760. [PMID: 35910617 PMCID: PMC9329068 DOI: 10.3389/fmicb.2022.922760] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/16/2022] [Indexed: 11/13/2022] Open
Abstract
Trypanosomes are important global livestock and human pathogens of public health importance. Elucidating the chemical mechanisms of trypanosome-relevant host interactions can enhance the design and development of a novel, next-generation trypanosomosis diagnostics. However, it is unknown how trypanosome infection affects livestock volatile odors. Here, we show that Trypanosoma congolense and Trypanosoma vivax infections induced dihydro-β- ionone and junenol, while abundance of dihydro-α-ionone, phenolics, p-cresol, and 3-propylphenol significantly elevated in cow urine. These biomarkers of trypanosome infection are conserved in cow breath and the urine metabolites of naturally infected cows, regardless of population, diet, or environment differences. Furthermore, treating trypanosome-infected cows reduced the levels of these indicators back to the pre-infection levels. Finally, we demonstrated that the potential of some specific biomarkers of phenolic origin may be used to detect active trypanosome infections, including low-level infections that are not detectable by microscopy. The sensitivity and specificity of biomarkers detection are suited for rapid, robust, and non-invasive trypanosomosis diagnosis under field conditions.
Collapse
Affiliation(s)
- Merid N. Getahun
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
- *Correspondence: Merid N. Getahun,
| | - John Ngiela
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
| | | | - Peter Ahuya
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
| | - Tawich K. Simon
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
| | | | - Baldwyn Torto
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
| | - Daniel Masiga
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
| |
Collapse
|
10
|
Okello I, Mafie E, Eastwood G, Nzalawahe J, Mboera LEG. African Animal Trypanosomiasis: A Systematic Review on Prevalence, Risk Factors and Drug Resistance in Sub-Saharan Africa. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:1099-1143. [PMID: 35579072 DOI: 10.1093/jme/tjac018] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Indexed: 06/15/2023]
Abstract
African animal trypanosomiasis (AAT) a parasitic disease of livestock in sub-Saharan Africa causing tremendous loses. Sub-Saharan continental estimation of mean prevalence in both large and small domestic animals, risk factors, tsetse and non-tsetse prevalence and drug resistance is lacking. A review and meta-analysis was done to better comprehend changes in AAT prevalence and drug resistance. Publish/Perish software was used to search and extract peer-reviewed articles in Google scholar, PubMed and CrossRef. In addition, ResearchGate and African Journals Online (AJOL) were used. Screening and selection of articles from 2000-2021 was performed according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). Articles 304 were retrieved; on domestic animals 192, tsetse and non-tsetse vectors 44, risk factors 49 and trypanocidal drug resistance 30. Prevalence varied by, host animals in different countries, diagnostic methods and species of Trypanosoma. Cattle had the highest prevalence with Ethiopia and Nigeria leading, T. congolense (11.80-13.40%) and T. vivax (10.50-18.80%) being detected most. This was followed by camels and pigs. Common diagnostic method used was buffy coat microscopy. However; polymerase chain reaction (PCR), CATT and ELISA had higher detection rates. G. pallidipes caused most infections in Eastern regions while G. palpalis followed by G. mortisans in Western Africa. Eastern Africa reported more non-tsetse biting flies with Stomoxys leading. Common risk factors were, body conditions, breed type, age, sex and seasons. Ethiopia and Nigeria had the highest trypanocidal resistance 30.00-35.00% and highest AAT prevalence. Isometamidium and diminazene showed more resistance with T. congolense being most resistant species 11.00-83.00%.
Collapse
Affiliation(s)
- Ivy Okello
- SACIDS Africa Centre of Excellence for Infectious Diseases of Humans and Animals in East and Southern Africa, P.O. Box 3297, Morogoro, Tanzania
- Sokoine University of Agriculture, Department of Veterinary Microbiology, Parasitology and Biotechnology, Chuo Kikuu, Morogoro, Tanzania
| | - Eliakunda Mafie
- Sokoine University of Agriculture, Department of Veterinary Microbiology, Parasitology and Biotechnology, Chuo Kikuu, Morogoro, Tanzania
| | - Gillian Eastwood
- Virginia Polytechnic Institute & State University, College of Agriculture & Life Sciences, Blacksburg, VA, USA
| | - Jahashi Nzalawahe
- Sokoine University of Agriculture, Department of Veterinary Microbiology, Parasitology and Biotechnology, Chuo Kikuu, Morogoro, Tanzania
| | - Leonard E G Mboera
- SACIDS Africa Centre of Excellence for Infectious Diseases of Humans and Animals in East and Southern Africa, P.O. Box 3297, Morogoro, Tanzania
| |
Collapse
|
11
|
Serem EK, Bargul JL, Ngari MM, Abdullahi OA, Mburu DM. Farmers' knowledge, perceptions, and practices on animal trypanosomosis and the tsetse fly vector: A cross-sectional study around Kenya's Arabuko-Sokoke Forest Reserve at the livestock-wildlife interface. OPEN RESEARCH AFRICA 2022; 5:22. [PMID: 37600566 PMCID: PMC10439355 DOI: 10.12688/openresafrica.13397.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/13/2022] [Indexed: 08/22/2023]
Abstract
Background: Animal African trypanosomosis (AAT) is a veterinary disease caused by trypanosomes transmitted cyclically by tsetse flies. AAT causes huge agricultural losses in sub-Saharan Africa. Both tsetse flies and trypanosomosis (T&T) are endemic in the study area inhabited by smallholder livestock farmers at the livestock-wildlife interface around Arabuko-Sokoke Forest Reserve (ASFR) in Kilifi County on the Kenyan coast. We assessed farmers' knowledge, perceptions and control practices towards T&T. Methods: A cross-sectional study was conducted during November and December 2017 to collect data from 404 randomly selected cattle-rearing households using a structured questionnaire. Descriptive statistics were used to determine farmers' knowledge, perceptions, and control practices towards T&T. Demographic factors associated with knowledge of T&T were assessed using a logistic regression model. Results: Participants consisted of 53% female, 77% married, 30% elderly (>55 years), and the majority (81%) had attained primary education or below. Most small-scale farmers (98%) knew the tsetse fly by its local name, and 76% could describe the morphology of the adult tsetse fly by size in comparison to the housefly's ( Musca domestica). Only 16% of the farmers knew tsetse flies as vectors of livestock diseases. Higher chances of adequate knowledge on T&T were associated with the participants' (i) age of 15-24 years (aOR 2.88 (95% CI 1.10-7.52), (ii) level of education including secondary (aOR 2.46 (95% CI 1.43-4.24)) and tertiary (aOR 3.80 (95% CI 1.54-9.37)), and (iii) employment status: self-employed farmers (aOR 6.54 (95% CI 4.36-9.80)). Conclusions: Our findings suggest that small-scale farmers around ASFR have limited knowledge of T&T. It is envisaged that efforts geared towards training of the farmers would bridge this knowledge gap and sharpen the perceptions and disease control tactics to contribute to the prevention and control of T&T.
Collapse
Affiliation(s)
- Erick K Serem
- Department of Public Health, School of Health and Human Sciences, Pwani University, Kilifi, P.O Box 195-80108 Kilifi, Kenya
- Pwani University Bioscience Research Centre (PUBReC), Pwani University, Kilifi, P.O Box 195-80108, Kenya
| | - Joel L Bargul
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi, P.O Box 62000-00200, Kenya
- Animal Health Theme, International Centre of Insect Physiology and Ecology (icipe), Nairobi, P.O Box 30772-00100, Kenya
| | - Moses M Ngari
- Department of Public Health, School of Health and Human Sciences, Pwani University, Kilifi, P.O Box 195-80108 Kilifi, Kenya
- KEMRI/Wellcome Trust Research Programme, Clinical Trials Facility, Kilifi, P.O Box 230-80108, Kenya
| | - Osman A Abdullahi
- Department of Public Health, School of Health and Human Sciences, Pwani University, Kilifi, P.O Box 195-80108 Kilifi, Kenya
- Pwani University Bioscience Research Centre (PUBReC), Pwani University, Kilifi, P.O Box 195-80108, Kenya
| | - David M Mburu
- Pwani University Bioscience Research Centre (PUBReC), Pwani University, Kilifi, P.O Box 195-80108, Kenya
- Department of Biological Sciences, Pwani University, Kilifi, P.O Box 195-80108, Kenya
| |
Collapse
|
12
|
Contreras Garcia M, Walshe E, Steketee PC, Paxton E, Lopez-Vidal J, Pearce MC, Matthews KR, Ezzahra-Akki F, Evans A, Fairlie-Clark K, Matthews JB, Grey F, Morrison LJ. Comparative Sensitivity and Specificity of the 7SL sRNA Diagnostic Test for Animal Trypanosomiasis. Front Vet Sci 2022; 9:868912. [PMID: 35450136 PMCID: PMC9017285 DOI: 10.3389/fvets.2022.868912] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 02/23/2022] [Indexed: 11/13/2022] Open
Abstract
Animal trypanosomiasis (AT) is a significant livestock disease, affecting millions of animals across Sub-Saharan Africa, Central and South America, and Asia, and is caused by the protozoan parasites Trypanosoma brucei, Trypanosoma vivax, and Trypanosoma congolense, with the largest economic impact in cattle. There is over-reliance on presumptive chemotherapy due to inadequate existing diagnostic tests, highlighting the need for improved AT diagnostics. A small RNA species, the 7SL sRNA, is excreted/secreted by trypanosomes in infected animals, and has been previously shown to reliably diagnose active infection. We sought to explore key properties of 7SL sRNA RT-qPCR assays; namely, assessing the potential for cross-reaction with the widespread and benign Trypanosoma theileri, directly comparing assay performance against currently available diagnostic methods, quantitatively assessing specificity and sensitivity, and assessing the rate of decay of 7SL sRNA post-treatment. Results showed that the 7SL sRNA RT-qPCR assays specific for T. brucei, T. vivax, and T. congolense performed better than microscopy and DNA PCR in detecting infection. The 7SL sRNA signal was undetectable or significantly reduced by 96-h post treatment; at 1 × curative dose there was no detectable signal in 5/5 cattle infected with T. congolense, and in 3/5 cattle infected with T. vivax, with the signal being reduced 14,630-fold in the remaining two T. vivax cattle. Additionally, the assays did not cross-react with T. theileri. Finally, by using a large panel of validated infected and uninfected samples, the species-specific assays are shown to be highly sensitive and specific by receiver operating characteristic (ROC) analysis, with 100% sensitivity (95% CI, 96.44-100%) and 100% specificity (95% CI, 96.53-100%), 96.73% (95% CI, 95.54-99.96%) and 99.19% specificity (95% CI, 92.58-99.60%), and 93.42% (95% CI, 85.51-97.16% %) and 82.43% specificity (95% CI, 72.23-89.44% %) for the T brucei, T. congolense and T. vivax assays, respectively, under the conditions used. These findings indicate that the 7SL sRNA has many attributes that would be required for a potential diagnostic marker of AT: no cross-reaction with T. theileri, high specificity and sensitivity, early infection detection, continued signal even in the absence of detectable parasitaemia in blood, and clear discrimination between infected and treated animals.
Collapse
Affiliation(s)
- Maria Contreras Garcia
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Emily Walshe
- Roslin Technologies Limited, Roslin Innovation Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Pieter C Steketee
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Edith Paxton
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Javier Lopez-Vidal
- Ashworth Laboratories, Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Michael C Pearce
- Global Alliance for Livestock Veterinary Medicines, Edinburgh, United Kingdom
| | - Keith R Matthews
- Ashworth Laboratories, Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | | | | | - Karen Fairlie-Clark
- Roslin Technologies Limited, Roslin Innovation Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Jacqueline B Matthews
- Roslin Technologies Limited, Roslin Innovation Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Finn Grey
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Liam J Morrison
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
13
|
Rosyadi I, Setsuda A, Eliakunda M, Takano A, Maeda K, Saito-Ito A, Suzuki K, Sato H. Genetic diversity of cervid Trypanosoma theileri in Honshu sika deer ( Cervus nippon) in Japan. Parasitology 2021; 148:1636-1647. [PMID: 34311794 PMCID: PMC11010218 DOI: 10.1017/s0031182021001360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 11/07/2022]
Abstract
The taxonomy of ruminant Trypanosoma theileri and its relatives (Kinetoplastida: Trypanosomatidae) is controversial, with recent phylogenetic studies segregating T. theileri in cattle and other ruminants worldwide into two major genetic lineages (the TthI and TthII clades) based on genetic markers. In the present study, T. theileri-like trypanosomes isolated from Honshu sika deer (Cervus nippon) in the western Japan (YMG isolate) were genetically characterized using a number of genetic markers. Sika deer trypanosomes of the YMG isolate were genetically different from the Trypanosoma sp. TSD1 isolate previously recorded from Hokkaido sika deer in northern Japan, with the former trypanosome isolate being genetically closer to European cervid trypanosomes and the bovine T. theileri TthII lineage. In contrast, the latter isolate exhibited greater relatedness to North American cervid trypanosomes and the bovine T. theileri TthI lineage, although a clear genetic distinction between these was apparent. Furthermore, trypanosomes in Honshu sika deer from the central part of Japan harboured additional genetic diversity and were closer to either TSD1 or YMG isolates, while distinct from known T. theileri-related genotypes. Importantly, cervids and wild ruminants worldwide might harbour divergent descendants of a T. theileri ancestor, which exhibit rigid host specificity to either bovines or cervid species.
Collapse
Affiliation(s)
- Imron Rosyadi
- Laboratory of Parasitology, Joint Graduate School of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi753-8515, Japan
| | - Aogu Setsuda
- Department of Pathological and Preventive Veterinary Science, United Graduate School of Veterinary Science, Yamaguchi University, 1677-1 Yoshida, Yamaguchi753-8515, Japan
| | - Mafie Eliakunda
- Department of Pathological and Preventive Veterinary Science, United Graduate School of Veterinary Science, Yamaguchi University, 1677-1 Yoshida, Yamaguchi753-8515, Japan
| | - Ai Takano
- Department of Pathological and Preventive Veterinary Science, United Graduate School of Veterinary Science, Yamaguchi University, 1677-1 Yoshida, Yamaguchi753-8515, Japan
- Division of Pathogenic Microorganisms, Research Center for Thermotolerant Microbial Resources, Yamaguchi University, 1677-1 Yoshida, Yamaguchi753-8515, Japan
| | - Ken Maeda
- Department of Pathological and Preventive Veterinary Science, United Graduate School of Veterinary Science, Yamaguchi University, 1677-1 Yoshida, Yamaguchi753-8515, Japan
- Division of Pathogenic Microorganisms, Research Center for Thermotolerant Microbial Resources, Yamaguchi University, 1677-1 Yoshida, Yamaguchi753-8515, Japan
| | - Atsuko Saito-Ito
- Section of Microbiology, School of Pharmacy, Hyogo University of Health Sciences, 1-3-6 Minatojima, Chuo-ku, Kobe, Hyogo650-8530, Japan
| | - Kazuo Suzuki
- Hikiiwa Park Center, 1629 Inari-cho, Tanabe, Wakayama646-0051, Japan
| | - Hiroshi Sato
- Laboratory of Parasitology, Joint Graduate School of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi753-8515, Japan
- Department of Pathological and Preventive Veterinary Science, United Graduate School of Veterinary Science, Yamaguchi University, 1677-1 Yoshida, Yamaguchi753-8515, Japan
- Division of Pathogenic Microorganisms, Research Center for Thermotolerant Microbial Resources, Yamaguchi University, 1677-1 Yoshida, Yamaguchi753-8515, Japan
| |
Collapse
|
14
|
Channumsin M, Ciosi M, Masiga D, Auty H, Turner CM, Kilbride E, Mable BK. Blood meal analysis of tsetse flies ( Glossina pallidipes: Glossinidae) reveals higher host fidelity on wild compared with domestic hosts. Wellcome Open Res 2021; 6:213. [PMID: 34703903 PMCID: PMC8513123 DOI: 10.12688/wellcomeopenres.16978.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2021] [Indexed: 11/20/2022] Open
Abstract
Background: Changes in climate and land use can alter risk of transmission of parasites between domestic hosts and wildlife, particularly when mediated by vectors that can travel between populations. Here we focused on tsetse flies (genus Glossina), the cyclical vectors for both Human African Trypanosomiasis (HAT) and Animal African Trypanosomiasis (AAT). The aims of this study were to investigate three issues related to G. palldipes from Kenya: 1) the diversity of vertebrate hosts that flies fed on; 2) whether host feeding patterns varied in relation to type of hosts, tsetse feeding behaviour, site or tsetse age and sex; and 3) if there was a relationship between trypanosome detection and host feeding behaviours or host types. Methods: Sources of blood meals of Glossina pallidipes were identified by sequencing of the mitochondrial cytochrome b gene and analyzed in relationship with previously determined trypanosome detection in the same flies. Results: In an area dominated by wildlife but with seasonal presence of livestock (Nguruman), 98% of tsetse fed on single wild host species, whereas in an area including a mixture of resident domesticated animals, humans and wildlife (Shimba Hills), 52% of flies fed on more than one host species. Multiple Correspondence Analysis revealed strong correlations between feeding pattern, host type and site but these were resolved along a different dimension than trypanosome status, sex and age of the flies. Conclusions: Our results suggest that individual G. pallidipes in interface areas may show higher feeding success on wild hosts when available but often feed on both wild and domesticated hosts. This illustrates the importance of G. pallidipes as a vector connecting the sylvatic and domestic cycles of African trypanosomes.
Collapse
Affiliation(s)
- Manun Channumsin
- Faculty of Veterinary Medicine, Rajamangala University of Technology Tawan-Ok, Chonburi, 20230, Thailand
| | - Marc Ciosi
- Institute of Molecular, Cell and Systems Biology, University of glasgow, University Place, Glasgow, G12 8QQ, UK
| | - Dan Masiga
- International Centre of Insect Physiology and Ecology (ICIPE), Nairobi, P.O. Box 30772, 00100, Kenya
| | - Harriet Auty
- Institute of Biodiversity, Animal Health and Comparative Medicine (BAHCM), University of Glasgow, University Place, Glasgow, G12 8QQ, UK
| | - C. Michael Turner
- Institute of Infection Immunity and Inflammation (III), University of Glasgow, University Place, Glasgow, G12 8QQ, UK
| | - Elizabeth Kilbride
- Institute of Biodiversity, Animal Health and Comparative Medicine (BAHCM), University of Glasgow, University Place, Glasgow, G12 8QQ, UK
| | - Barbara K. Mable
- Institute of Biodiversity, Animal Health and Comparative Medicine (BAHCM), University of Glasgow, University Place, Glasgow, G12 8QQ, UK
| |
Collapse
|
15
|
Kasozi KI, Zirintunda G, Ssempijja F, Buyinza B, Alzahrani KJ, Matama K, Nakimbugwe HN, Alkazmi L, Onanyang D, Bogere P, Ochieng JJ, Islam S, Matovu W, Nalumenya DP, Batiha GES, Osuwat LO, Abdelhamid M, Shen T, Omadang L, Welburn SC. Epidemiology of Trypanosomiasis in Wildlife-Implications for Humans at the Wildlife Interface in Africa. Front Vet Sci 2021; 8:621699. [PMID: 34222391 PMCID: PMC8248802 DOI: 10.3389/fvets.2021.621699] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 05/05/2021] [Indexed: 12/18/2022] Open
Abstract
While both human and animal trypanosomiasis continue to present as major human and animal public health constraints globally, detailed analyses of trypanosome wildlife reservoir hosts remain sparse. African animal trypanosomiasis (AAT) affects both livestock and wildlife carrying a significant risk of spillover and cross-transmission of species and strains between populations. Increased human activity together with pressure on land resources is increasing wildlife–livestock–human infections. Increasing proximity between human settlements and grazing lands to wildlife reserves and game parks only serves to exacerbate zoonotic risk. Communities living and maintaining livestock on the fringes of wildlife-rich ecosystems require to have in place methods of vector control for prevention of AAT transmission and for the treatment of their livestock. Major Trypanosoma spp. include Trypanosoma brucei rhodesiense, Trypanosoma brucei gambiense, and Trypanosoma cruzi, pathogenic for humans, and Trypanosoma vivax, Trypanosoma congolense, Trypanosoma evansi, Trypanosoma brucei brucei, Trypanosoma dionisii, Trypanosoma thomasbancrofti, Trypanosma elephantis, Trypanosoma vegrandis, Trypanosoma copemani, Trypanosoma irwini, Trypanosoma copemani, Trypanosoma gilletti, Trypanosoma theileri, Trypanosoma godfreyi, Trypansoma simiae, and Trypanosoma (Megatrypanum) pestanai. Wildlife hosts for the trypansomatidae include subfamilies of Bovinae, Suidae, Pantherinae, Equidae, Alcephinae, Cercopithecinae, Crocodilinae, Pteropodidae, Peramelidae, Sigmodontidae, and Meliphagidae. Wildlife species are generally considered tolerant to trypanosome infection following centuries of coexistence of vectors and wildlife hosts. Tolerance is influenced by age, sex, species, and physiological condition and parasite challenge. Cyclic transmission through Glossina species occurs for T. congolense, T. simiae, T. vivax, T. brucei, and T. b. rhodesiense, T. b. gambiense, and within Reduviid bugs for T. cruzi. T. evansi is mechanically transmitted, and T. vixax is also commonly transmitted by biting flies including tsetse. Wildlife animal species serve as long-term reservoirs of infection, but the delicate acquired balance between trypanotolerance and trypanosome challenge can be disrupted by an increase in challenge and/or the introduction of new more virulent species into the ecosystem. There is a need to protect wildlife, animal, and human populations from the infectious consequences of encroachment to preserve and protect these populations. In this review, we explore the ecology and epidemiology of Trypanosoma spp. in wildlife.
Collapse
Affiliation(s)
- Keneth Iceland Kasozi
- Infection Medicine, Deanery of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Scotland, United Kingdom.,School of Medicine, Kabale University, Kabale, Uganda
| | - Gerald Zirintunda
- Department of Animal Production and Management, Faculty of Agriculture and Animal Sciences, Busitema University Arapai Campus, Soroti, Uganda
| | - Fred Ssempijja
- Faculty of Biomedical Sciences, Kampala International University Western Campus, Bushenyi, Uganda
| | - Bridget Buyinza
- College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Khalid J Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Kevin Matama
- School of Pharmacy, Kampala International University Western Campus, Bushenyi, Uganda
| | - Helen N Nakimbugwe
- Department of Animal Production and Management, Faculty of Agriculture and Animal Sciences, Busitema University Arapai Campus, Soroti, Uganda.,Department of Agriculture, Faculty of Vocational Studies, Kyambogo University, Kampala, Uganda
| | - Luay Alkazmi
- Biology Department, Faculty of Applied Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - David Onanyang
- Department of Biology, Faculty of Science, Gulu University, Gulu, Uganda
| | - Paul Bogere
- Faculty of Agriculture and Environmental Science, Muni University, Arua, Uganda
| | - Juma John Ochieng
- Faculty of Biomedical Sciences, Kampala International University Western Campus, Bushenyi, Uganda
| | - Saher Islam
- Department of Biotechnology, Lahore College for Women University, Lahore, Pakistan
| | - Wycliff Matovu
- College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - David Paul Nalumenya
- College of Veterinary Medicine Animal Resources and Biosecurity, Makerere University, Kampala, Uganda
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | | | - Mahmoud Abdelhamid
- Department of Parasitology, Faculty of Veterinary Medicine, Aswan University, Aswan, Egypt
| | - Tianren Shen
- Infection Medicine, Deanery of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Scotland, United Kingdom.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, China
| | - Leonard Omadang
- Department of Animal Production and Management, Faculty of Agriculture and Animal Sciences, Busitema University Arapai Campus, Soroti, Uganda
| | - Susan Christina Welburn
- Infection Medicine, Deanery of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Scotland, United Kingdom.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Zhejiang University, Haining, China
| |
Collapse
|
16
|
Molecular characterization of Trypanosoma vivax in tsetse flies confirms the presence of the virulent Tvv4 genotype in Kenya: Potential implications for the control of trypanosomiasis in Shimba Hills. INFECTION GENETICS AND EVOLUTION 2021; 93:104953. [PMID: 34091066 DOI: 10.1016/j.meegid.2021.104953] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/27/2021] [Accepted: 06/01/2021] [Indexed: 11/20/2022]
Abstract
Trypanosoma vivax is a vector-borne protozoan parasite of livestock endemic to Africa and South America. To date, fifteen genotypes of the parasite have been described in vertebrate and insect hosts in East Africa. However, information regarding T. vivax diversity remains limited in many endemic countries in the sub-region, including Kenya. Such information could deepen insight into the local epidemiology of animal trypanosomiasis in Shimba Hills, a wildlife area in southeast Kenya where T. vivax is endemic and infects livestock. We employed two-gene conventional-PCR-sequencing and phylogenetic analysis to characterize T. vivax genotypes in tsetse flies collected between November 2018 and September 2019 in the wildlife-livestock interface of the Shimba Hills National Reserve. Phylogenetic analysis of Internal Transcribed Spacer-1 (ITS-1) sequences of T. vivax isolates confirmed the presence of two T. vivax genotypes in Shimba Hills of which >80% of T. vivax isolates from tsetse flies clustered within the virulent Tvv4-genotype clade. Tsetse infections with the Tvv4 genotype were also confirmed based on 18S rRNA gene sequencing. Expanded gene characterization identified three closely related haplotypes within the Tvv4-clade. The Tvv4-isolates were detected in male and female Glossina pallidipes tsetse flies, most of which were collected from grasslands and within two kilometres of the Shimba Hills National Reserve boundary. Considering that T. vivax is the most common trypanosome in the Shimba Hills area and causes severe clinical conditions in livestock, the Tvv4 genotype reported here for the first time in Kenya contributes to our understanding of these pathologies. The effectiveness of trypanocidal drugs in the management of Tvv4 is presently not clearly understood. Therefore, the parasite management in Shimba Hills should focus on vector control to reduce the density of G. pallidipes, especially in grasslands near the wildlife protectorate.
Collapse
|
17
|
Gashururu RS, Githigia SM, Gasana MN, Habimana R, Maingi N, Cecchi G, Paone M, Zhao W, Masiga DK, Gashumba J. An update on the distribution of Glossina (tsetse flies) at the wildlife-human-livestock interface of Akagera National Park, Rwanda. Parasit Vectors 2021; 14:294. [PMID: 34078446 PMCID: PMC8173956 DOI: 10.1186/s13071-021-04786-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 05/11/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Glossina (tsetse flies) biologically transmit trypanosomes that infect both humans and animals. Knowledge of their distribution patterns is a key element to better understand the transmission dynamics of trypanosomosis. Tsetse distribution in Rwanda has not been well enough documented, and little is known on their current distribution. This study determined the current spatial distribution, abundance, diversity, and seasonal variations of tsetse flies in and around the Akagera National Park. METHODS A longitudinal stratified sampling following the seasons was used. Biconical traps were deployed in 55 sites for 6 consecutive days of each study month from May 2018 to June 2019 and emptied every 48 h. Flies were identified using FAO keys, and the number of flies per trap day (FTD) was used to determine the apparent density. Pearson chi-square (χ2) and parametrical tests (t-test and ANOVA) were used to determine the variations between the variables. The significance (p < 0.05) at 95% confidence interval was considered. Logistic regression was used to determine the association between tsetse occurrence and the associated predictors. RESULTS A total of 39,516 tsetse flies were collected, of which 73.4 and 26.6% were from inside Akagera NP and the interface area, respectively. Female flies accounted for 61.3 while 38.7% were males. Two species were identified, i.e. G. pallidipes [n = 29,121, 7.4 flies/trap/day (FTD)] and G. morsitans centralis (n = 10,395; 2.6 FTD). The statistical difference in numbers was significant between the two species (p = 0.000). The flies were more abundant during the wet season (15.8 FTD) than the dry season (4.2 FTD). Large numbers of flies were trapped around the swamp areas (69.1 FTD) inside the park and in Nyagatare District (11.2 FTD) at the interface. Glossina morsitans was 0.218 times less likely to occur outside the park. The chance of co-existing between the two species reduced outside the protected area (0.021 times). CONCLUSIONS The occurrence of Glossina seems to be limited to the protected Akagera NP and a narrow band of its surrounding areas. This finding will be crucial to design appropriate control strategies. Glossina pallidipes was found in higher numbers and therefore is conceivably the most important vector of trypanosomosis. Regional coordinated control and regular monitoring of Glossina distribution are recommended.
Collapse
Affiliation(s)
- Richard S Gashururu
- School of Veterinary Medicine, University of Rwanda, P.O. Box 57, Nyagatare, Rwanda. .,Faculty of Veterinary Medicine, University of Nairobi, P.O. Box 29053, Nairobi, Kenya. .,International Centre of Insect Physiology and Ecology (Icipe), P.O. Box 30772-00100, Nairobi, Kenya.
| | - Samuel M Githigia
- Faculty of Veterinary Medicine, University of Nairobi, P.O. Box 29053, Nairobi, Kenya
| | - Methode N Gasana
- Rwanda Agriculture and Animal Resources Board, PO. Box 5016, Kigali, Rwanda
| | - Richard Habimana
- School of Veterinary Medicine, University of Rwanda, P.O. Box 57, Nyagatare, Rwanda
| | - Ndichu Maingi
- Faculty of Veterinary Medicine, University of Nairobi, P.O. Box 29053, Nairobi, Kenya
| | - Giuliano Cecchi
- Food and Agriculture Organization of the United Nations (FAO), Animal Production and Health Division, Rome, Italy
| | - Massimo Paone
- Food and Agriculture Organization of the United Nations (FAO), Animal Production and Health Division, Rome, Italy
| | - Weining Zhao
- Food and Agriculture Organization of the United Nations (FAO), Animal Production and Health Division, Rome, Italy
| | - Daniel K Masiga
- International Centre of Insect Physiology and Ecology (Icipe), P.O. Box 30772-00100, Nairobi, Kenya
| | | |
Collapse
|
18
|
Dario MA, Lisboa CV, Silva MV, Herrera HM, Rocha FL, Furtado MC, Moratelli R, Rodrigues Roque AL, Jansen AM. Crithidia mellificae infection in different mammalian species in Brazil. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2021; 15:58-69. [PMID: 33981571 PMCID: PMC8085711 DOI: 10.1016/j.ijppaw.2021.04.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/05/2021] [Accepted: 04/05/2021] [Indexed: 11/17/2022]
Abstract
Crithidia mellificae, a monoxenous trypanosomatid considered restricted to insects, was recently reported to infect a bat. Herein, C. mellificae has been demonstrated to have a wider range of vertebrate hosts and distribution in Brazilian biomes than once thought. Parasites isolated from haemocultures were characterized using V7V8 SSU rDNA and glyceraldehyde 3-phosphate dehydrogenase genes. Coatis (Nasua nasua) in the Cerrado; marmosets (Callithrix sp.) and bats (Carollia perspicillata, Myotis lavali, M. izecksohni, Artibeus lituratus) in the Atlantic Forest; crab-eating foxes (Cerdocyon thous) and ocelot (Leopardus pardalis) in the Pantanal biomes were infected by trypanosomatids that displayed choanomastigote forms in haemoculture in Giemsa-stained slide smears. Molecular characterization and phylogenetic inference confirmed the infection of C. mellificae in these animals. Moreover, slight differences in C. mellificae sequences were observed. Crithidia mellificae growth curves were counted at 27°C, 36°C and 37°C, and the morphotypes were able to grow and survive for up to 16 days. Serological titers for C. mellificae were observed in nonhuman primates, demonstrating that this parasite is able to induce a humoral immune response in an infected mammal. These results showed that host specificity in trypanosomatids is complex and far from understood.
Collapse
Affiliation(s)
- Maria Augusta Dario
- Laboratório de Biologia de Tripanosomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cristiane Varella Lisboa
- Laboratório de Biologia de Tripanosomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marlon Vicente Silva
- Laboratório de Biologia de Tripanosomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Heitor Miraglia Herrera
- Programa de Pós-Graduação em Ciências Ambientais e Sustentabilidade Agropecuária, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul, Brazil
- Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso do Sul, Brazil
| | - Fabiana Lopes Rocha
- Programa de Pós-graduação em Ecologia e Monitoramento Ambiental, Universidade Federal da Paraíba, Rio Tinto, Paraíba, Brazil
- IUCN SSC Species Survival Center. Parque das Aves, Foz do Iguaçú, Paraná, Brazil
| | | | - Ricardo Moratelli
- Fiocruz Mata Atlântica, Fundação Oswaldo Cruz Rio de Janeiro, Rio de Janeiro, Brazil
| | - André Luiz Rodrigues Roque
- Laboratório de Biologia de Tripanosomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Maria Jansen
- Laboratório de Biologia de Tripanosomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
- Corresponding author.
| |
Collapse
|
19
|
Magri A, Galuppi R, Fioravanti M. Autochthonous Trypanosoma spp. in European Mammals: A Brief Journey amongst the Neglected Trypanosomes. Pathogens 2021; 10:334. [PMID: 33805748 PMCID: PMC8000865 DOI: 10.3390/pathogens10030334] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/08/2021] [Accepted: 03/10/2021] [Indexed: 02/07/2023] Open
Abstract
The genus Trypanosoma includes flagellated protozoa belonging to the family Trypanosomatidae (Euglenozoa, Kinetoplastida) that can infect humans and several animal species. The most studied species are those causing severe human pathology, such as Chagas disease in South and Central America, and the human African trypanosomiasis (HAT), or infections highly affecting animal health, such as nagana in Africa and surra with a wider geographical distribution. The presence of these Trypanosoma species in Europe has been thus far linked only to travel/immigration history of the human patients or introduction of infected animals. On the contrary, little is known about the epidemiological status of trypanosomes endemically infecting mammals in Europe, such as Trypanosomatheileri in ruminants and Trypanosomalewisi in rodents and other sporadically reported species. This brief review provides an updated collection of scientific data on the presence of autochthonous Trypanosoma spp. in mammals on the European territory, in order to support epidemiological and diagnostic studies on Trypanosomatid parasites.
Collapse
Affiliation(s)
| | - Roberta Galuppi
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, Ozzano Emilia, 40064 Bologna, Italy; (A.M.); (M.F.)
| | | |
Collapse
|
20
|
Nakamura Y, Hayashida K, Delesalle V, Qiu Y, Omori R, Simuunza M, Sugimoto C, Namangala B, Yamagishi J. Genetic Diversity of African Trypanosomes in Tsetse Flies and Cattle From the Kafue Ecosystem. Front Vet Sci 2021; 8:599815. [PMID: 33585616 PMCID: PMC7873289 DOI: 10.3389/fvets.2021.599815] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 01/04/2021] [Indexed: 01/15/2023] Open
Abstract
We clarified the genetic diversity of Trypanosoma spp. within the Kafue ecosystem, using PCR targeting the internal transcribed spacer 1 and the cathepsin L-like cysteine protease (CatL) sequences. The overall prevalence of Trypanosoma spp. in cattle and tsetse flies was 12.65 and 26.85%, respectively. Cattle positive for Trypanosoma vivax had a significantly lower packed cell volume, suggesting that T. vivax is the dominant Trypanosoma spp. causing anemia in this area. Among the 12 operational taxonomic units (OTUs) of T. vivax CatL sequences detected, one was from a known T. vivax lineage, two OTUs were from known T. vivax-like lineages, and nine OTUs were considered novel T. vivax-like lineages. These findings support previous reports that indicated the extensive diversity of T. vivax-like lineages. The findings also indicate that combining CatL PCR with next generation sequencing is useful in assessing Trypanosoma spp. diversity, especially for T. vivax and T. vivax-like lineages. In addition, the 5.42% prevalence of Trypanosoma brucei rhodesiense found in cattle raises concern in the community and requires careful monitoring of human African trypanosomiasis.
Collapse
Affiliation(s)
- Yukiko Nakamura
- Graduate School of Infectious Diseases, Hokkaido University, Sapporo, Japan.,Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Kyoko Hayashida
- Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan.,International Collaboration Unit, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Victoire Delesalle
- Melindika, Non-governmental Organization of International Solidarity, Itezhi-Tezhi, Zambia
| | - Yongjin Qiu
- Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Ryosuke Omori
- Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Martin Simuunza
- Department of Disease Control, School of Veterinary Medicine, The University of Zambia, Lusaka, Zambia
| | - Chihiro Sugimoto
- Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Boniface Namangala
- Department of Para-Clinical Studies, School of Veterinary Medicine, The University of Zambia, Lusaka, Zambia
| | - Junya Yamagishi
- Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan.,International Collaboration Unit, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| |
Collapse
|
21
|
Fetene E, Leta S, Regassa F, Büscher P. Global distribution, host range and prevalence of Trypanosoma vivax: a systematic review and meta-analysis. Parasit Vectors 2021; 14:80. [PMID: 33494807 PMCID: PMC7830052 DOI: 10.1186/s13071-021-04584-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/06/2021] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Trypanosomosis caused by Trypanosoma vivax is one of the diseases threatening the health and productivity of livestock in Africa and Latin America. Trypanosoma vivax is mainly transmitted by tsetse flies; however, the parasite has also acquired the ability to be transmitted mechanically by hematophagous dipterans. Understanding its distribution, host range and prevalence is a key step in local and global efforts to control the disease. METHODS The study was conducted according to the methodological recommendations of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) checklist. A systematic literature search was conducted on three search engines, namely PubMed, Scopus and CAB Direct, to identify all publications reporting natural infection of T. vivax across the world. All the three search engines were screened using the search term Trypanosoma vivax without time and language restrictions. Publications on T. vivax that met our inclusion criteria were considered for systematic review and meta-analysis. RESULT The study provides a global database of T. vivax, consisting of 899 records from 245 peer-reviewed articles in 41 countries. A total of 232, 6277 tests were performed on 97 different mammalian hosts, including a wide range of wild animals. Natural infections of T. vivax were recorded in 39 different African and Latin American countries and 47 mammalian host species. All the 245 articles were included into the qualitative analysis, while information from 186 cross-sectional studies was used in the quantitative analysis mainly to estimate the pooled prevalence. Pooled prevalence estimates of T. vivax in domestic buffalo, cattle, dog, dromedary camel, equine, pig, small ruminant and wild animals were 30.6%, 6.4%, 2.6%, 8.4%, 3.7%, 5.5%, 3.8% and 12.9%, respectively. Stratified according to the diagnostic method, the highest pooled prevalences were found with serological techniques in domesticated buffalo (57.6%) followed by equine (50.0%) and wild animals (49.3%). CONCLUSION The study provides a comprehensive dataset on the geographical distribution and host range of T. vivax and demonstrates the potential of this parasite to invade other countries out of Africa and Latin America.
Collapse
Affiliation(s)
- Eyerusalem Fetene
- College of Veterinary Medicine and Agriculture, Addis Ababa University, P. O. Box 34, Bishoftu, Ethiopia
| | - Samson Leta
- College of Veterinary Medicine and Agriculture, Addis Ababa University, P. O. Box 34, Bishoftu, Ethiopia.
| | - Fikru Regassa
- College of Veterinary Medicine and Agriculture, Addis Ababa University, P. O. Box 34, Bishoftu, Ethiopia.,FDRE Ministry of Agriculture, P.O.Box 62347/3735, Addia Ababa, Ethiopia
| | - Philippe Büscher
- Institute of Tropical Medicine, Department of Biomedical Sciences, Nationalestraat 155, 2000, Antwerp, Belgium
| |
Collapse
|
22
|
Degneh E, Kassa T, Kebede N, Desta T. Bovine trypanosomosis: Prevalence and vector distribution in Sadi Chanka district, Kellem Wollega zone, Oromia regional state, Ethiopia. VETERINARY PARASITOLOGY- REGIONAL STUDIES AND REPORTS 2021; 23:100535. [PMID: 33678388 DOI: 10.1016/j.vprsr.2021.100535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 01/13/2021] [Accepted: 01/13/2021] [Indexed: 11/15/2022]
Abstract
Bovine trypanosomosis remains an important livestock disease constraint, which is threatening livestock health and production, despite ongoing tsetse and trypanosomosis control efforts in Sadi Chanka district, Kellem Wollega zone, Oromia regional state, Ethiopia. A cross-sectional study was conducted in May 2018, to determine the prevalence of bovine trypanosomosis and distribution of the vectors of disease in Sadi Chanka district, Western Ethiopia. A total of 370 blood samples were collected from randomly selected local Horro and Abigar cattle breeds covering five villages of the district. The collected samples were examined using buffy coat microscopy and Giemsa-stained thin blood smear techniques. In this study, 12.4% (95% CI: 12.3-12.4) of the animals were found to be infected with trypanosomes. The study showed that 69.6% of trypanosome infections were caused by T. congolense followed by 26.1% T. vivax and 4.3% mixed T. congolense and T. vivax. In the present study, the association of bovine trypanosomosis was assessed in releation to body condition scores, sex, and age of cattle, and a significant association (P < 0.05) was observed between body condition scores. However, significant differences were not observed between sex and age categories (P > 0.05). The Mean Packed Cell Volume (PCV) of infected (21.6%) and non-infected (24.5%) groups of cattle had significant variation (P < 0.05). In an entomological survey, a total of 616 flies were trapped, of which 280 (45.5%) were Glossina and the remaining 336 (54.5%) were Stomoxys, Tabanus, and Haematopota. The apparent density of Glossina, Stomoxys, Tabanus, and Haematopota was 3.5, 3.1, 0.7 and 0.4 fly per trap per day, respectively. This study generated basic scientific data on the epidemiology of bovine trypanosomosis and its vectors in Sadi Chanka district, which can be used in planning the control of bovine trypanosomosis in the area.
Collapse
Affiliation(s)
- Efrem Degneh
- School of Veterinary Medicine, Wollega University, Nekemte, Ethiopia.
| | - Tesfu Kassa
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Nigatu Kebede
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Tekalegn Desta
- National Institute for Control and Eradication of Tsetse Flies and Trypanosomosis, Ministry of Agriculture, Addis Ababa, Ethiopia
| |
Collapse
|
23
|
Tsetse blood-meal sources, endosymbionts and trypanosome-associations in the Maasai Mara National Reserve, a wildlife-human-livestock interface. PLoS Negl Trop Dis 2021; 15:e0008267. [PMID: 33406097 PMCID: PMC7822626 DOI: 10.1371/journal.pntd.0008267] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 01/22/2021] [Accepted: 11/22/2020] [Indexed: 01/06/2023] Open
Abstract
African trypanosomiasis (AT) is a neglected disease of both humans and animals caused by Trypanosoma parasites, which are transmitted by obligate hematophagous tsetse flies (Glossina spp.). Knowledge on tsetse fly vertebrate hosts and the influence of tsetse endosymbionts on trypanosome presence, especially in wildlife-human-livestock interfaces, is limited. We identified tsetse species, their blood-meal sources, and correlations between endosymbionts and trypanosome presence in tsetse flies from the trypanosome-endemic Maasai Mara National Reserve (MMNR) in Kenya. Among 1167 tsetse flies (1136 Glossina pallidipes, 31 Glossina swynnertoni) collected from 10 sampling sites, 28 (2.4%) were positive by PCR for trypanosome DNA, most (17/28) being of Trypanosoma vivax species. Blood-meal analyses based on high-resolution melting analysis of vertebrate cytochrome c oxidase 1 and cytochrome b gene PCR products (n = 354) identified humans as the most common vertebrate host (37%), followed by hippopotamus (29.1%), African buffalo (26.3%), elephant (3.39%), and giraffe (0.84%). Flies positive for trypanosome DNA had fed on hippopotamus and buffalo. Tsetse flies were more likely to be positive for trypanosomes if they had the Sodalis glossinidius endosymbiont (P = 0.0002). These findings point to complex interactions of tsetse flies with trypanosomes, endosymbionts, and diverse vertebrate hosts in wildlife ecosystems such as in the MMNR, which should be considered in control programs. These interactions may contribute to the maintenance of tsetse populations and/or persistent circulation of African trypanosomes. Although the African buffalo is a key reservoir of AT, the higher proportion of hippopotamus blood-meals in flies with trypanosome DNA indicates that other wildlife species may be important in AT transmission. No trypanosomes associated with human disease were identified, but the high proportion of human blood-meals identified are indicative of human African trypanosomiasis risk. Our results add to existing data suggesting that Sodalis endosymbionts are associated with increased trypanosome presence in tsetse flies.
Collapse
|
24
|
Maganga GD, Boundenga L, Ologui-Minkue-Edzo EJ, Kombila LB, Mebaley TGN, Kumulungui B, Mavoungou JF. Frequency and diversity of trypanosomes in sheep and goats from Mongo County in South Gabon, Central Africa. Vet World 2020; 13:2502-2507. [PMID: 33363347 PMCID: PMC7750216 DOI: 10.14202/vetworld.2020.2502-2507] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 10/19/2020] [Indexed: 11/16/2022] Open
Abstract
Background and Aim Trypanosomosis is a major impediment to livestock farming in sub-Saharan Africa. It is a vector-borne disease caused by several species of protozoan parasites, namely, trypanosomes. The present study aimed to identify the diversity of trypanosome species infecting sheep and goats from Mongo County and to determine the frequency of these parasites. Materials and Methods This study was conducted on 286 trypanotolerant goats and sheep from Mongo regions located in South Gabon, using polymerase chain reaction. Results Analyses showed that the overall occurrence of trypanosomosis in small ruminants was 13.6% (39/286). Our results also showed that two factors, species and season, could affect the occurrence rate of Trypanosoma. A total of six Trypanosoma species were identified, two in sheep (Trypanosoma simiae and Trypanosoma theileri) and five in goats (Trypanosoma vivax, T. simiae, T. simiae Tsavo, Trypanosoma congolense, and Trypanosoma brucei), though Trypanosoma simiae was the most important species. Mixed infections were also found in goats (54.5%) and sheep (3.57%). Conclusion Our study demonstrated that small ruminants could represent a reservoir of biodiversity for Trypanosoma parasites.
Collapse
Affiliation(s)
- Gael Darren Maganga
- Centre International de Recherches Médicales de Franceville, BP 769, Franceville, Gabon.,Département de Zootechnologie, Institut National Supérieur d'Agronomie et de Biotechnologies, BP 901, Franceville, Gabon
| | - Larson Boundenga
- Centre International de Recherches Médicales de Franceville, BP 769, Franceville, Gabon
| | | | - Linda Bohou Kombila
- Centre International de Recherches Médicales de Franceville, BP 769, Franceville, Gabon
| | | | - Brice Kumulungui
- Centre International de Recherches Médicales de Franceville, BP 769, Franceville, Gabon.,Département de Zootechnologie, Institut National Supérieur d'Agronomie et de Biotechnologies, BP 901, Franceville, Gabon
| | - Jacques François Mavoungou
- Department of Zootechnology, Institut de Recherche Agronomique et Forestière (IRAF-CENAREST), BP: 13354, Libreville, Gabon
| |
Collapse
|
25
|
Iroungou BA, Boundenga L, Guignali Mangouka L, Bivigou-Mboumba B, Nzenze JR, Maganga GD. Human African trypanosomiasis in two historical foci of the estuaire province, gabon: A case report. SAGE Open Med Case Rep 2020; 8:2050313X20959890. [PMID: 33088570 PMCID: PMC7543151 DOI: 10.1177/2050313x20959890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 08/28/2020] [Indexed: 11/17/2022] Open
Abstract
Human African Trypanosomiasis (HAT) is an infectious disease due to a protozoa parasite of the Trypanosoma genus. In West and Central Africa, this disease is caused by the subspecies Trypanosoma brucei gambiense. Several foci of this disease are currently active and causing the death of hundreds of people in endemic areas. In this article, we report two cases of gambiense HAT in one Indonesian and one Gabonese men in two historical foci of Gabon in 2019. Both patients had fever with temperatures above 38°C, an altered state of consciousness, cachexia, and multiple dermabrasions on the abdomen related to scratching lesions. The diagnostic revealed second-stage infection of both patients with T. b. gambiense; this result was confirmed by a polymerase chain reaction assay. Despite treatment with a combination of eflornithine and nifurtimox, as recommended by the World Health Organization for late-stage T. b. gambiense HAT, one of the two patients died. Thus, these cases highlight the importance of early HAT diagnosis and prompt patient care to fight effectively against this disease.
Collapse
Affiliation(s)
- Berthe Amélie Iroungou
- Unite Mixte de Recherches Centre International de Recherches Médicales de Franceville et le Service de Santé Militaire (UMR CIRMF-SSM), Franceville, Gabon.,Centre International de Recherches Médicales de Franceville (CIRMF), Franceville, Gabon
| | - Larson Boundenga
- Centre International de Recherches Médicales de Franceville (CIRMF), Franceville, Gabon
| | | | - Berthold Bivigou-Mboumba
- Unite Mixte de Recherches Centre International de Recherches Médicales de Franceville et le Service de Santé Militaire (UMR CIRMF-SSM), Franceville, Gabon.,Centre International de Recherches Médicales de Franceville (CIRMF), Franceville, Gabon
| | - Jean Raymond Nzenze
- Unite Mixte de Recherches Centre International de Recherches Médicales de Franceville et le Service de Santé Militaire (UMR CIRMF-SSM), Franceville, Gabon.,Médecine Interne, Hôpital d'Instruction des Armées Omar Bongo Ondimba (HIAOBO), Libreville, Gabon
| | - Gael Darren Maganga
- Centre International de Recherches Médicales de Franceville (CIRMF), Franceville, Gabon.,Institut National Supérieur d'Agronomie et de Biotechnologies (INSAB)/USTM, Franceville, Gabon
| |
Collapse
|
26
|
Nayupe SF, Simwela NV, Kamanga PM, Chisi JE, Senga E, Musaya J, Maganga E. The use of molecular technology to investigate trypanosome infections in tsetse flies at Liwonde Wild Life Reserve. Malawi Med J 2020; 31:233-237. [PMID: 32133052 PMCID: PMC7036428 DOI: 10.4314/mmj.v31i4.3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background Trypanosomes are protozoan flagellates that cause human African trypanosomiasis (HAT) and African animal trypanosomiasis (AAT). HAT is caused by Trypanosoma brucei rhodesiense in East and Central Africa and T.b. gambiense in West Africa, whereas AAT is caused by a number of trypanosome species, including T. brucei brucei, T. evansi, T. vivax, T. congolense, T. godfreyi and T. simiae. The aim of this study was to establish if tsetse flies at Liwonde Wild Life Reserve (LWLR) are infected with these trypanosomes and thus pose a risk to both humans and animals within and surrounding the LWLR. Methods A total of 150 tsetse flies were caught. Of these, 82 remained alive after capture and were dissected such that the mid-gut could be examined microscopically for trypanosomes. DNA extractions were performed from both mid-guts and the 68 dead flies using a Qiagen Kit. Amplification techniques involved the Internal Transcriber Spacer 1 (ITS 1) conventional polymerase chain reaction (PCR) with primers designed to identify trypanosome species, and Repetitive Insertion Mobile Element — Loop Mediated Isothermal Amplification (RIME LAMP), a sequence specific to T. brucei. Results Analysis showed that 79/82 (96.3%) of the mid-guts examined microscopically were positive for trypanosomes and that 75/150 (50%) of the DNA extracts (from the mid-gut, and tsetse fly carcasses) were positive for T. brucei, as determined by the RIME LAMP method. ITS1 PCR further showed that 87/150 (58.0%) flies were positive for trypanosomes, of which 56/87 (64.4%) were T. brucei, 9/87 (10.3%) were T. vivax; 7/87 (8.1%) were T. simiae; 6/87 (6.9%) were T. congolense, and 6/87 (6.9%) were T. godfreyi. Ten samples had a mixture of infections. Conclusion Our analysis demonstrated a mixture of infections from trypanosome species in tsetse flies at LWLR, and that T. brucei, the species that causes HAT, was the most common. Our study successfully used molecular techniques to demonstrate the presence of T. b. rhodesiense at LWLR, a species that causes HAT in both East and Central Africa.
Collapse
Affiliation(s)
| | | | - Peace M Kamanga
- College of Medicine, Blantyre, Malawi.,Malawi-Liverpool Wellcome Trust (MLW), Blantyre, Malawi
| | | | | | - Janelisa Musaya
- College of Medicine, Blantyre, Malawi.,Malawi-Liverpool Wellcome Trust (MLW), Blantyre, Malawi
| | - Emmanuel Maganga
- Mikolongwe Veterinary College of Agriculture and Food Security, Limbe, Malawi
| |
Collapse
|
27
|
Mulandane FC, Snyman LP, Brito DRA, Bouyer J, Fafetine J, Van Den Abbeele J, Oosthuizen M, Delespaux V, Neves L. Evaluation of the relative roles of the Tabanidae and Glossinidae in the transmission of trypanosomosis in drug resistance hotspots in Mozambique. Parasit Vectors 2020; 13:219. [PMID: 32349788 PMCID: PMC7189697 DOI: 10.1186/s13071-020-04087-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 04/15/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Tsetse flies (Diptera: Glossinidae) and tabanids (Diptera: Tabanidae) are haematophagous insects of medical and veterinary importance due to their respective role in the biological and mechanical transmission of trypanosomes. Few studies on the distribution and relative abundance of both families have been conducted in Mozambique since the country's independence. Despite Nicoadala, Mozambique, being a multiple trypanocidal drug resistance hotspot no information regarding the distribution, seasonality or infection rates of fly-vectors are available. This is, however, crucial to understanding the epidemiology of trypanosomosis and to refine vector management. METHODS For 365 days, 55 traps (20 NGU traps, 20 horizontal traps and 15 Epsilon traps) were deployed in three grazing areas of Nicoadala District: Namitangurine (25 traps); Zalala (15 traps); and Botao (15 traps). Flies were collected weekly and preserved in 70% ethanol. Identification using morphological keys was followed by molecular confirmation using cytochrome c oxidase subunit 1 gene. Trap efficiency, species distribution and seasonal abundance were also assessed. To determine trypanosome infection rates, DNA was extracted from the captured flies, and submitted to 18S PCR-RFLP screening for the detection of Trypanosoma. RESULTS In total, 4379 tabanids (of 10 species) and 24 tsetse flies (of 3 species), were caught. NGU traps were more effective in capturing both the Tabanidae and Glossinidae. Higher abundance and species diversity were observed in Namitangurine followed by Zalala and Botao. Tabanid abundance was approximately double during the rainy season compared to the dry season. Trypanosoma congolense and T. theileri were detected in the flies with overall infection rates of 75% for tsetse flies and 13% for tabanids. Atylotus agrestis had the highest infection rate of the tabanid species. The only pathogenic trypanosome detected was T. congolense. CONCLUSIONS Despite the low numbers of tsetse flies captured, it can be assumed that they are still the cyclical vectors of trypanosomosis in the area. However, the high numbers of tabanids captured, associated to their demonstrated capacity of transmitting trypanosomes mechanically, suggest an important role in the epidemiology of trypanosomosis in the Nicoadala district. These results on the composition of tsetse and tabanid populations as well as the observed infection rates, should be considered when defining strategies to control the disease.
Collapse
Affiliation(s)
| | - Louwtjie P. Snyman
- Vectors and Vector Borne Diseases Research Program, Department of Veterinary Tropical Diseases, University of Pretoria, Pretoria, South Africa
- Durban Museum of Natural History, Durban, South Africa
| | - Denise R. A. Brito
- Eduardo Mondlane University, Biotechnology Center (CB-EMU), Maputo, Mozambique
| | - Jeremy Bouyer
- CIRAD, UMR ASTRE CIRAD-INRA (Animal, Health, Territories, Risks and Ecosystems), Campus International de Baillarguet, 34398 Montpellier Cedex 05, France
- Insect Pest Control Laboratory, Joint Food and Agriculture Organization of the United Nations/International Atomic Energy Agency Programme of Nuclear Techniques in Food and Agriculture, 1400 Vienna, Austria
| | - José Fafetine
- Eduardo Mondlane University, Biotechnology Center (CB-EMU), Maputo, Mozambique
| | - Jan Van Den Abbeele
- Department of Biomedical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| | - Marinda Oosthuizen
- Vectors and Vector Borne Diseases Research Program, Department of Veterinary Tropical Diseases, University of Pretoria, Pretoria, South Africa
| | - Vincent Delespaux
- Bio-engineering Sciences, Vrije Universiteit Brussel, Brussel, Belgium
| | - Luis Neves
- Eduardo Mondlane University, Biotechnology Center (CB-EMU), Maputo, Mozambique
- Vectors and Vector Borne Diseases Research Program, Department of Veterinary Tropical Diseases, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
28
|
Blood meal sources and bacterial microbiome diversity in wild-caught tsetse flies. Sci Rep 2020; 10:5005. [PMID: 32193415 PMCID: PMC7081217 DOI: 10.1038/s41598-020-61817-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 02/28/2020] [Indexed: 12/02/2022] Open
Abstract
Tsetse flies are the vectors of African trypanosomiasis affecting 36 sub-Saharan countries. Both wild and domestic animals play a crucial role in maintaining the disease-causing parasites (trypanosomes). Thus, the identification of animal reservoirs of trypanosomes is vital for the effective control of African trypanosomiasis. Additionally, the biotic and abiotic factors that drive gut microbiome diversity in tsetse flies are primarily unresolved, especially under natural, field conditions. In this study, we present a comprehensive DNA metabarcoding approach for individual tsetse fly analysis in the identification of mammalian blood meal sources and fly bacterial microbiome composition. We analyzed samples from two endemic foci, Kafue, Zambia collected in June 2017, and Hurungwe, Zimbabwe sampled in April 2014 (pilot study) and detected DNA of various mammals including humans, wild animals, domestic animals and small mammals (rat and bat). The bacterial diversity was relatively similar in flies with different mammalian species DNA, trypanosome infected and uninfected flies, and female and male flies. This study is the first report on bat DNA detection in wild tsetse flies. This study reveals that small mammals such as bats and rats are among the opportunistic blood meal sources for tsetse flies in the wild, and the implication on tsetse biology and ecology needs to be studied.
Collapse
|
29
|
Rodrigues CMF, Garcia HA, Rodrigues AC, Pereira DL, Pereira CL, Viola LB, Neves L, Camargo EP, Gibson W, Teixeira MMG. Expanding our knowledge on African trypanosomes of the subgenus Pycnomonas: A novel Trypanosoma suis-like in tsetse flies, livestock and wild ruminants sympatric with Trypanosoma suis in Mozambique. INFECTION GENETICS AND EVOLUTION 2019; 78:104143. [PMID: 31837483 DOI: 10.1016/j.meegid.2019.104143] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/09/2019] [Accepted: 12/10/2019] [Indexed: 12/26/2022]
Abstract
Among the subgenera of African tsetse-transmitted trypanosomes pathogenic to livestock, the least known is the subgenus Pycnomonas, which contains a single species, Trypanosoma suis (TSU), a pathogen of domestic pigs first reported in 1905 and recently rediscovered in Tanzania and Mozambique. Analysis by Fluorescent Fragment Length Barcoding (FFLB) revealed an infection rate of 20.3% (108 out of 530 tsetse flies) in a recent study in the Gorongosa and Niassa wildlife reserves in Mozambique, and demonstrated two groups of Pycnomonas trypanosomes: one (14.1%, 75 flies) showing an FFLB profile identical to the reference TSU from Tanzania, and the other (6.2%, 33 flies) differing slightly from reference TSU and designated Trypanosoma suis-like (TSU-L). Phylogenetic analyses tightly clustered TSU and TSU-L from Mozambique with TSU from Tanzania forming the clade Pycnomonas positioned between the subgenera Trypanozoon and Nannomonas. Our preliminarily exploration of host ranges of Pycnomonas trypanosomes revealed TSU exclusively in warthogs while TSU-L was identified, for the first time for a member of the subgenus Pycnomonas, in ruminants (antelopes, Cape buffalo, and in domestic cattle and goats). The preferential blood meal sources of tsetse flies harbouring TSU and TSU-L were wild suids, and most of these flies concomitantly harboured the porcine trypanosomes T. simiae, T. simiae Tsavo, and T. godfreyi. Therefore, our findings support the link of TSU with suids while TSU-L remains to be comprehensively investigated in these hosts. Our results greatly expand our knowledge of the diversity, hosts, vectors, and epidemiology of Pycnomonas trypanosomes. Due to shortcomings of available molecular diagnostic methods, a relevant cohort of trypanosomes transmitted by tsetse flies to ungulates, especially suids, has been neglected or most likely misidentified. The method employed in the present study enables an accurate discrimination of trypanosome species and genotypes and, hence, a re-evaluation of the "lost" subgenus Pycnomonas and of porcine trypanosomes in general, the most neglected group of African trypanosomes pathogenic to ungulates.
Collapse
Affiliation(s)
- Carla M F Rodrigues
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Brazil; INCT-EpiAmO - Instituto Nacional de Epidemiologia na Amazônia Ocidental, Brazil
| | - Herakles A Garcia
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Brazil
| | - Adriana C Rodrigues
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Brazil
| | | | - Carlos Lopes Pereira
- National Administration of Conservation Areas (ANAC), Ministry of Land, Environment and Rural Development, Maputo, Mozambique
| | | | - Luis Neves
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, South Africa; Centro de Biotecnologia, Universidade Eduardo Mondlane, Maputo, Mozambique
| | - Erney P Camargo
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Brazil; INCT-EpiAmO - Instituto Nacional de Epidemiologia na Amazônia Ocidental, Brazil
| | - Wendy Gibson
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | - Marta M G Teixeira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, Brazil; INCT-EpiAmO - Instituto Nacional de Epidemiologia na Amazônia Ocidental, Brazil.
| |
Collapse
|
30
|
Olaide OY, Tchouassi DP, Yusuf AA, Pirk CWW, Masiga DK, Saini RK, Torto B. Zebra skin odor repels the savannah tsetse fly, Glossina pallidipes (Diptera: Glossinidae). PLoS Negl Trop Dis 2019; 13:e0007460. [PMID: 31181060 PMCID: PMC6586361 DOI: 10.1371/journal.pntd.0007460] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 06/20/2019] [Accepted: 05/11/2019] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND African trypanosomosis, primarily transmitted by tsetse flies, remains a serious public health and economic challenge in sub-Saharan Africa. Interventions employing natural repellents from non-preferred hosts of tsetse flies represent a promising management approach. Although zebras have been identified as non-preferred hosts of tsetse flies, the basis for this repellency is poorly understood. We hypothesized that zebra skin odors contribute to their avoidance by tsetse flies. METHODOLOGY/PRINCIPAL FINDINGS We evaluated the effect of crude zebra skin odors on catches of wild savannah tsetse flies (Glossina pallidipes Austen, 1903) using unbaited Ngu traps compared to the traps baited with two known tsetse fly management chemicals; a repellent blend derived from waterbuck odor, WRC (comprising geranylacetone, guaiacol, pentanoic acid and δ-octalactone), and an attractant comprising cow urine and acetone, in a series of Latin square-designed experiments. Coupled gas chromatography-electroantennographic detection (GC/EAD) and GC-mass spectrometry (GC/MS) analyses of zebra skin odors identified seven electrophysiologically-active components; 6-methyl-5-hepten-2-one, acetophenone, geranylacetone, heptanal, octanal, nonanal and decanal, which were tested in blends and singly for repellency to tsetse flies when combined with Ngu traps baited with cow urine and acetone in field trials. The crude zebra skin odors and a seven-component blend of the EAD-active components, formulated in their natural ratio of occurrence in zebra skin odor, significantly reduced catches of G. pallidipesby 66.7% and 48.9% respectively, and compared favorably with the repellency of WRC (58.1%- 59.2%). Repellency of the seven-component blend was attributed to the presence of the three ketones 6-methyl-5-hepten-2-one, acetophenone and geranylacetone, which when in a blend caused a 62.7% reduction in trap catch of G. pallidipes. CONCLUSIONS/SIGNIFICANCE Our findings reveal fundamental insights into tsetse fly ecology and the allomonal effect of zebra skin odor, and potential integration of the three-component ketone blend into the management toolkit for tsetse and African trypanosomosis control.
Collapse
Affiliation(s)
- Olabimpe Y. Olaide
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
- Department of Zoology and Entomology, University of Pretoria, Hatfield, South Africa
- * E-mail: ,
| | - David P. Tchouassi
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Abdullahi A. Yusuf
- Department of Zoology and Entomology, University of Pretoria, Hatfield, South Africa
| | - Christian W. W. Pirk
- Department of Zoology and Entomology, University of Pretoria, Hatfield, South Africa
| | - Daniel K. Masiga
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Rajinder K. Saini
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Baldwyn Torto
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
- Department of Zoology and Entomology, University of Pretoria, Hatfield, South Africa
| |
Collapse
|
31
|
Odeniran PO, Macleod ET, Ademola IO, Welburn SC. Molecular identification of bloodmeal sources and trypanosomes in Glossina spp., Tabanus spp. and Stomoxys spp. trapped on cattle farm settlements in southwest Nigeria. MEDICAL AND VETERINARY ENTOMOLOGY 2019; 33:269-281. [PMID: 30730048 DOI: 10.1111/mve.12358] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 12/03/2018] [Accepted: 12/18/2018] [Indexed: 06/09/2023]
Abstract
The interactions of host, vector and parasite in bovine trypanosomiasis transmission cycles in southwest Nigeria are not yet well understood. Trypanosoma (Trypanosomatida: Trypanosomatidae) species infection prevalences and bloodmeal sources were determined in transmitting vectors of the genera Glossina (Diptera: Glossinidae), Tabanus (Diptera: Tabanidae) and Stomoxys (Diptera: Muscidae) collected using Nzi traps in cattle settlements in southwest Nigeria. Sequenced cytochrome B mitochondrial DNA segments obtained from vector digestive tracts identified bloodmeal sources from eight host species, namely human, cattle, hippopotamus, giraffe, gazelle, spotted hyena, long-tailed rat and one unidentified species. Overall, 71.1% [95% confidence interval (CI) 63.0-78.1], 33.3% (95% CI 21.9-47.0) and 22.2% (95% CI 16.2-29.9), respectively, of Glossina, Tabanus and Stomoxys flies were positive for trypanosomes. The observed trypanosome species were Trypanosoma vivax, Trypanosoma congolense, Trypanosoma brucei, Trypanosoma evansi, Trypanosoma simiae and Trypanosoma godfreyi. Trypanosome DNA was more prevalent in tsetse (34.8% Tr. vivax, 51.1% Tr. b. brucei, 5.2% Tr. congolense, 4.4% Tr. simiae and 24.4% mixed infections) than in other flies and the main determinants in all flies were seasonal factors and host availability. To the best of the present group's knowledge, this is the first report of Trypanosoma species in Tabanus and Stomoxys flies in Nigeria. It indicates that vector control programmes should always consider biting flies along with tsetse flies in the control of human and animal trypanosomiasis.
Collapse
Affiliation(s)
- P O Odeniran
- Department of Veterinary Parasitology and Entomology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
- Division of Infection and Pathway Medicine, University of Edinburgh, Edinburgh, U.K
| | - E T Macleod
- Division of Infection and Pathway Medicine, University of Edinburgh, Edinburgh, U.K
| | - I O Ademola
- Department of Veterinary Parasitology and Entomology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - S C Welburn
- Division of Infection and Pathway Medicine, University of Edinburgh, Edinburgh, U.K
- Zhejiang University-University of Edinburgh Joint Institute, Zhejiang University, Haining, China
| |
Collapse
|
32
|
Gaithuma AK, Yamagishi J, Martinelli A, Hayashida K, Kawai N, Marsela M, Sugimoto C. A single test approach for accurate and sensitive detection and taxonomic characterization of Trypanosomes by comprehensive analysis of internal transcribed spacer 1 amplicons. PLoS Negl Trop Dis 2019; 13:e0006842. [PMID: 30802245 PMCID: PMC6414030 DOI: 10.1371/journal.pntd.0006842] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 03/12/2019] [Accepted: 12/04/2018] [Indexed: 11/18/2022] Open
Abstract
To improve our knowledge on the epidemiological status of African trypanosomiasis, better tools are required to monitor Trypanosome genotypes circulating in both mammalian hosts and tsetse fly vectors. This is important in determining the diversity of Trypanosomes and understanding how environmental factors and control efforts affect Trypanosome evolution. We present a single test approach for molecular detection of different Trypanosome species and subspecies using newly designed primers to amplify the Internal Transcribed Spacer 1 region of ribosomal RNA genes, coupled to Illumina sequencing of the amplicons. The protocol is based on Illumina's widely used 16s bacterial metagenomic analysis procedure that makes use of multiplex PCR and dual indexing. Results from analysis of wild tsetse flies collected from Zambia and Zimbabwe show that conventional methods for Trypanosome species detection based on band size comparisons on gels is not always able to accurately distinguish between T. vivax and T. godfreyi. Additionally, this approach shows increased sensitivity in the detection of Trypanosomes at species level with the exception of the Trypanozoon subgenus. We identified subspecies of T. congolense, T. simiae, T. vivax, and T. godfreyi without the need for additional tests. Results show T. congolense Kilifi subspecies is more closely related to T. simiae than to other T. congolense subspecies. This agrees with previous studies using satellite DNA and 18s RNA analysis. While current classification does not list any subspecies for T. godfreyi, we observed two distinct clusters for these species. Interestingly, sequences matching T. congolense Tsavo (now classified as T. simiae Tsavo) clusters distinctly from other T. simiae Tsavo sequences suggesting the Nannomonas group is more divergent than currently thought thus the need for better classification criteria. This method presents a simple but comprehensive way of identification of Trypanosome species and subspecies-specific using one PCR assay for molecular epidemiology of trypanosomes.
Collapse
Affiliation(s)
- Alex Kiarie Gaithuma
- Division of Collaboration and Education, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Junya Yamagishi
- Division of Collaboration and Education, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
- GI-CORE, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Axel Martinelli
- GI-CORE, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
- Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Kyoko Hayashida
- Division of Collaboration and Education, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Naoko Kawai
- Division of Collaboration and Education, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Megasari Marsela
- Division of Collaboration and Education, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Chihiro Sugimoto
- Division of Collaboration and Education, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
- GI-CORE, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| |
Collapse
|
33
|
Aregawi WG, Agga GE, Abdi RD, Büscher P. Systematic review and meta-analysis on the global distribution, host range, and prevalence of Trypanosoma evansi. Parasit Vectors 2019; 12:67. [PMID: 30704516 PMCID: PMC6357473 DOI: 10.1186/s13071-019-3311-4] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 01/10/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Surra is an animal trypanosomosis, caused by infection with Trypanosoma evansi and leading to severe economic loss due to mortality and morbidity. Compared to tsetse-transmitted animal trypanosomoses, little attention is given to the epidemiology and control of surra. Understanding its epidemiology is a first step in local and global efforts to control the disease. We conducted a systematic review and meta-analysis of published studies on distribution, host ranges and prevalence of T. evansi infection. METHODS Four electronic databases were searched for publications on T. evansi that met our inclusion criteria for the systematic review. Subsets of publications were subjected to meta-analysis for the pooled prevalence of T. evansi in various hosts as determined by multiple detection methods. RESULTS A total of 272 references published between 1906-2017 were included. Trypanosoma evansi was reported from 48 countries; largely confined to Africa and Asia with publications on natural T. evansi infections from 77% (n = 48) of countries, contrasting with seven countries in South America, and four in Europe where T. evansi is not endemic but was imported with infected animals. Although surra is a notifiable disease, many countries do not report surra cases to OIE. Trypanosoma evansi was mainly reported from dromedary camels in Africa and the Middle East, water buffaloes, cattle, dogs and horses in East and Southeast Asia. In South America, the acute form of the disease was reported in horses and dogs. Surra was also reported in a wide range of wild animals. Some rare human cases occurred in India and Vietnam. Meta-analysis on a subset of 165 publications indicated pooled prevalence of T. evansi in domestic animals ranging from 14-31%, 6-28% and 2-9% using respectively antibody detection, molecular and parasitological tests, with camels as the most affected, followed by buffalo and cattle. CONCLUSIONS This study illustrates that T. evansi affects a wide range of domestic and wild animals in Africa, Asia and South America with highest prevalence observed in dromedary camels. For successful control of T. evansi, both locally and globally, the role of wild animals in the epidemiology of surra needs further investigation.
Collapse
Affiliation(s)
- Weldegebrial G. Aregawi
- Werer Agricultural Research Center, Ethiopian Institute of Agricultural Research, Werer, Afar Ethiopia
| | - Getahun E. Agga
- Food Animal Environmental Systems Research Unit, U.S. Department of Agriculture, Agricultural Research Service, Bowling Green, KY USA
| | - Reta D. Abdi
- Department of Veterinary Biomedical Sciences, Long Island University, Greenvale, NY USA
| | - Philippe Büscher
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| |
Collapse
|
34
|
Ferrins L, Sharma A, Thomas SM, Mehta N, Erath J, Tanghe S, Leed SE, Rodriguez A, Mensa-Wilmot K, Sciotti RJ, Gillingwater K, Pollastri MP. Anilinoquinoline based inhibitors of trypanosomatid proliferation. PLoS Negl Trop Dis 2018; 12:e0006834. [PMID: 30475800 PMCID: PMC6283615 DOI: 10.1371/journal.pntd.0006834] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 12/06/2018] [Accepted: 09/10/2018] [Indexed: 11/18/2022] Open
Abstract
We recently reported the medicinal chemistry re-optimization of a series of compounds derived from the human tyrosine kinase inhibitor, lapatinib, for activity against Plasmodium falciparum. From this same library of compounds, we now report potent compounds against Trypanosoma brucei brucei (which causes human African trypanosomiasis), T. cruzi (the pathogen that causes Chagas disease), and Leishmania spp. (which cause leishmaniasis). In addition, sub-micromolar compounds were identified that inhibit proliferation of the parasites that cause African animal trypanosomiasis, T. congolense and T. vivax. We have found that this set of compounds display acceptable physicochemical properties and represent progress towards identification of lead compounds to combat several neglected tropical diseases. As part of our efforts to identify compounds that are active against the parasite that causes malaria (P. falciparum), we employed a “parasite hopping” approach in our drug discovery efforts. This involved screening a library of demonstrated antiparasitic agents against other parasites responsible for a host of neglected tropical diseases (NTDs) including Chagas disease (T. cruzi), human African trypanosomiasis (T. brucei) and cutaneous leishmaniasis (L. major). The compounds we identified generally show improved selectivity for the parasite of interest over the mammalian cell lines tested and, from this work, we have made progress towards the identification of lead compounds against multiple NTDs.
Collapse
Affiliation(s)
- Lori Ferrins
- Northeastern University, Department of Chemistry & Chemical Biology, Boston, United States of America
| | - Amrita Sharma
- University of Georgia, Department of Cellular Biology, Athens, United States of America
| | - Sarah M. Thomas
- University of Georgia, Department of Cellular Biology, Athens, United States of America
| | - Naimee Mehta
- Northeastern University, Department of Chemistry & Chemical Biology, Boston, United States of America
| | - Jessey Erath
- New York University School of Medicine, Department of Microbiology, New York, United States of America
- Anti-Infectives Screening Core, New York University School of Medicine, New York
| | - Scott Tanghe
- New York University School of Medicine, Department of Microbiology, New York, United States of America
- Anti-Infectives Screening Core, New York University School of Medicine, New York
| | - Susan E. Leed
- Experimental Therapeutics, Walter Reed Army Institute for Research, Silver Spring, United States of America
| | - Ana Rodriguez
- New York University School of Medicine, Department of Microbiology, New York, United States of America
- Anti-Infectives Screening Core, New York University School of Medicine, New York
| | - Kojo Mensa-Wilmot
- University of Georgia, Department of Cellular Biology, Athens, United States of America
| | - Richard J. Sciotti
- Experimental Therapeutics, Walter Reed Army Institute for Research, Silver Spring, United States of America
| | - Kirsten Gillingwater
- Swiss Tropical and Public Health Institute, Department of Medical Parasitology and Infection Biology, Socinstrasse 57, Basel, Switzerland
- University of Basel, Petersplatz 1, Basel, Switzerland
| | - Michael P. Pollastri
- Northeastern University, Department of Chemistry & Chemical Biology, Boston, United States of America
- * E-mail:
| |
Collapse
|
35
|
Channumsin M, Ciosi M, Masiga D, Turner CMR, Mable BK. Sodalis glossinidius presence in wild tsetse is only associated with presence of trypanosomes in complex interactions with other tsetse-specific factors. BMC Microbiol 2018; 18:163. [PMID: 30470184 PMCID: PMC6251152 DOI: 10.1186/s12866-018-1285-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background Susceptibility of tsetse flies (Glossina spp.) to trypanosomes of both humans and animals has been associated with the presence of the endosymbiont Sodalis glossinidius. However, intrinsic biological characteristics of the flies and environmental factors can influence the presence of both S. glossinidius and the parasites. It thus remains unclear whether it is the S. glossinidius or other attributes of the flies that explains the apparent association. The objective of this study was to test whether the presence of Trypanosoma vivax, T. congolense and T. brucei are related to the presence of S. glossinidius in tsetse flies when other factors are accounted for: geographic location, species of Glossina, sex or age of the host flies. Results Flies (n = 1090) were trapped from four sites in the Shimba Hills and Nguruman regions in Kenya. Sex and species of tsetse (G. austeni, G. brevipalpis, G. longipennis and G. pallidipes) were determined based on external morphological characters and age was estimated by a wing fray score method. The presence of trypanosomes and S. glossinidius was detected using PCR targeting the internal transcribed spacer region 1 and the haemolysin gene, respectively. Sequencing was used to confirm species identification. Generalised Linear Models (GLMs) and Multiple Correspondence Analysis (MCA) were applied to investigate multivariable associations. The overall prevalence of trypanosomes was 42.1%, but GLMs revealed complex patterns of associations: the presence of S. glossinidius was associated with trypanosome presence but only in interactions with other factors and only in some species of trypanosomes. The strongest association was found for T. congolense, and no association was found for T. vivax. The MCA also suggested only a weak association between the presence of trypanosomes and S. glossinidius. Trypanosome-positive status showed strong associations with sex and age while S. glossinidius-positive status showed a strong association with geographic location and species of fly. Conclusions We suggest that previous conclusions about the presence of endosymbionts increasing probability of trypanosome presence in tsetse flies may have been confounded by other factors, such as community composition of the tsetse flies and the specific trypanosomes found in different regions. Electronic supplementary material The online version of this article (10.1186/s12866-018-1285-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Manun Channumsin
- Institute of Biodiversity, Animal Health and Comparative Medicine (BAHCM), Graham Kerr Building, University of Glasgow, University Place, Glasgow, G12 8QQ, UK. .,Faculty of Veterinary Medicine, Rajamangala University of Technology Tawan-Ok, Chonburi, 20110, Thailand.
| | - Marc Ciosi
- Institute of Biodiversity, Animal Health and Comparative Medicine (BAHCM), Graham Kerr Building, University of Glasgow, University Place, Glasgow, G12 8QQ, UK. .,International Centre of Insect Physiology and Ecology (ICIPE), P.O. Box 30772, Nairobi, 00100, Kenya.
| | - Dan Masiga
- International Centre of Insect Physiology and Ecology (ICIPE), P.O. Box 30772, Nairobi, 00100, Kenya
| | - C Michael R Turner
- Institute of Infection, Immunity and Inflammation, Sir Graeme Davis Building, University of Glasgow, University Place, Glasgow, G12 0PT, UK
| | - Barbara K Mable
- Institute of Biodiversity, Animal Health and Comparative Medicine (BAHCM), Graham Kerr Building, University of Glasgow, University Place, Glasgow, G12 8QQ, UK
| |
Collapse
|
36
|
Alderton S, Macleod ET, Anderson NE, Machila N, Simuunza M, Welburn SC, Atkinson PM. Exploring the effect of human and animal population growth on vector-borne disease transmission with an agent-based model of Rhodesian human African trypanosomiasis in eastern province, Zambia. PLoS Negl Trop Dis 2018; 12:e0006905. [PMID: 30408045 PMCID: PMC6224050 DOI: 10.1371/journal.pntd.0006905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 10/05/2018] [Indexed: 11/19/2022] Open
Abstract
This paper presents the development of an agent-based model (ABM) to investigate Trypanosoma brucei rhodesiense human African trypanosomiasis (rHAT) disease transmission. The ABM model, fitted at a fine spatial scale, was used to explore the impact of a growing host population on the spread of disease along a 75 km transect in the Luangwa Valley, Zambia. The model was used to gain a greater understanding of how increases in human and domestic animal population could impact the contact network between vector and host, the subsequent transmission patterns, and disease incidence outcomes in the region. Modelled incidence rates showed increases in rHAT transmission in both humans and cattle. The primary demographic attribution of infection switched dramatically from young children of both sexes attending school, to adult women performing activities with shorter but more frequent trips, such as water and firewood collection, with men more protected due to the presence of cattle in their routines. The interpretation of model output provides a plausible insight into both population development and disease transmission in the near future in the region and such techniques could aid well-targeted mitigation strategies in the future. African trypanosomiasis is a parasitic disease which affects humans and other animals in 36 sub-Saharan African countries. The disease is transmitted by the tsetse fly, and the human form of the disease is known as sleeping sickness. With human and animal populations growing across Africa, demand for space to settle is on the rise, and people are being forced to occupy increasingly marginal spaces. This behaviour has the potential to increase exposure to pre-existing biological hazards, including vector-borne diseases. This investigation utilises agent-based modelling techniques to investigate the implications of a growing and spreading human and animal population in a region affected by Rhodesian human African trypanosomiasis. The model incorporates previously developed spatial data for the Luangwa Valley case study in Zambia, along with demographic data for its current inhabitants, and a detailed, seasonally-driven tsetse lifecycle. Tsetse and potential human and animal hosts are modelled at the individual level, allowing each contact and infection to be recorded through time. By modelling at a fine-scale, we can incorporate detailed mechanisms for tsetse birth, feeding, reproduction and death, as well as a realistic theoretical human and domestic animal population increase, before considering the possible spatial and demographic impact.
Collapse
Affiliation(s)
- Simon Alderton
- Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom
- Centre for Health Informatics, Computing and Statistics (CHICAS), Lancaster Medical School, Lancaster University, Lancaster, United Kingdom
- Geography and Environment, Faculty of Social and Human Sciences, University of Southampton, Southampton, United Kingdom
- * E-mail:
| | - Ewan T. Macleod
- Division of Infection and Pathway Medicine, Deanery of Biomedical Sciences, College of Medicine and Veterinary Medicine, 1 George Square, Edinburgh, United Kingdom
| | - Neil E. Anderson
- The Royal (Dick) School of Veterinary Studies and the Roslin Institute, University of Edinburgh, Roslin, United Kingdom
| | - Noreen Machila
- Division of Infection and Pathway Medicine, Deanery of Biomedical Sciences, College of Medicine and Veterinary Medicine, 1 George Square, Edinburgh, United Kingdom
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | - Martin Simuunza
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | - Susan C. Welburn
- Division of Infection and Pathway Medicine, Deanery of Biomedical Sciences, College of Medicine and Veterinary Medicine, 1 George Square, Edinburgh, United Kingdom
| | - Peter M. Atkinson
- Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom
- Centre for Health Informatics, Computing and Statistics (CHICAS), Lancaster Medical School, Lancaster University, Lancaster, United Kingdom
- Geography and Environment, Faculty of Social and Human Sciences, University of Southampton, Southampton, United Kingdom
- School of Geography, Archaeology and Palaeoecology, Queen's University Belfast, Northern Ireland, United Kingdom
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
37
|
Lord JS, Torr SJ, Auty HK, Brock PM, Byamungu M, Hargrove JW, Morrison LJ, Mramba F, Vale GA, Stanton MC. Geostatistical models using remotely-sensed data predict savanna tsetse decline across the interface between protected and unprotected areas in Serengeti, Tanzania. J Appl Ecol 2018; 55:1997-2007. [PMID: 30008483 PMCID: PMC6032868 DOI: 10.1111/1365-2664.13091] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 12/05/2017] [Indexed: 11/29/2022]
Abstract
Monitoring abundance is essential for vector management, but it is often only possible in a fraction of managed areas. For vector control programmes, sampling to estimate abundance is usually carried out at a local-scale (10s km2), while interventions often extend across 100s km2. Geostatistical models have been used to interpolate between points where data are available, but this still requires costly sampling across the entire area of interest. Instead, we used geostatistical models to predict local-scale spatial variation in the abundance of tsetse-vectors of human and animal African trypanosomes-beyond the spatial extent of data to which models were fitted, in Serengeti, Tanzania.We sampled Glossina swynnertoni and Glossina pallidipes >10 km inside the Serengeti National Park (SNP) and along four transects extending into areas where humans and livestock live. We fitted geostatistical models to data >10 km inside the SNP to produce maps of abundance for the entire region, including unprotected areas.Inside the SNP, the mean number of G. pallidipes caught per trap per day in dense woodland was 166 (± 24 SE), compared to 3 (±1) in grassland. Glossina swynnertoni was more homogenous with respective means of 15 (±3) and 15 (±8). In general, models predicted a decline in abundance from protected to unprotected areas, related to anthropogenic changes to vegetation, which was confirmed during field survey. Synthesis and applications. Our approach allows vector control managers to identify sites predicted to have relatively high tsetse abundance, and therefore to design and implement improved surveillance strategies. In East and Southern Africa, trypanosomiasis is associated with wilderness areas. Our study identified pockets of vegetation which could sustain tsetse populations in farming areas outside the Serengeti National Park. Our method will assist countries in identifying, monitoring and, if necessary, controlling tsetse in trypanosomiasis foci. This has specific application to tsetse, but the approach could also be developed for vectors of other pathogens.
Collapse
Affiliation(s)
- Jennifer S. Lord
- Department of Vector BiologyLiverpool School of Tropical MedicineLiverpoolUK
| | - Stephen J. Torr
- Department of Vector BiologyLiverpool School of Tropical MedicineLiverpoolUK
| | | | - Paddy M. Brock
- Institute of Biodiversity, Animal Health and Comparative MedicineCollege of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | | | | | - Liam J. Morrison
- Roslin InstituteRoyal (Dick) School of Veterinary StudiesUniversity of EdinburghMidlothianUK
| | - Furaha Mramba
- Vector and Vector‐Borne Diseases Research InstituteTangaTanzania
| | - Glyn A. Vale
- SACEMAUniversity of StellenboschStellenboschSouth Africa
- Natural Resources InstituteUniversity of GreenwichChathamUK
| | - Michelle C. Stanton
- Department of Vector BiologyLiverpool School of Tropical MedicineLiverpoolUK
| |
Collapse
|
38
|
Alderton S, Macleod ET, Anderson NE, Palmer G, Machila N, Simuunza M, Welburn SC, Atkinson PM. An agent-based model of tsetse fly response to seasonal climatic drivers: Assessing the impact on sleeping sickness transmission rates. PLoS Negl Trop Dis 2018; 12:e0006188. [PMID: 29425200 PMCID: PMC5806852 DOI: 10.1371/journal.pntd.0006188] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 12/22/2017] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND This paper presents the development of an agent-based model (ABM) to incorporate climatic drivers which affect tsetse fly (G. m. morsitans) population dynamics, and ultimately disease transmission. The model was used to gain a greater understanding of how tsetse populations fluctuate seasonally, and investigate any response observed in Trypanosoma brucei rhodesiense human African trypanosomiasis (rHAT) disease transmission, with a view to gaining a greater understanding of disease dynamics. Such an understanding is essential for the development of appropriate, well-targeted mitigation strategies in the future. METHODS The ABM was developed to model rHAT incidence at a fine spatial scale along a 75 km transect in the Luangwa Valley, Zambia. The model incorporates climatic factors that affect pupal mortality, pupal development, birth rate, and death rate. In combination with fine scale demographic data such as ethnicity, age and gender for the human population in the region, as well as an animal census and a sample of daily routines, we create a detailed, plausible simulation model to explore tsetse population and disease transmission dynamics. RESULTS The seasonally-driven model suggests that the number of infections reported annually in the simulation is likely to be a reasonable representation of reality, taking into account the high levels of under-detection observed. Similar infection rates were observed in human (0.355 per 1000 person-years (SE = 0.013)), and cattle (0.281 per 1000 cattle-years (SE = 0.025)) populations, likely due to the sparsity of cattle close to the tsetse interface. The model suggests that immigrant tribes and school children are at greatest risk of infection, a result that derives from the bottom-up nature of the ABM and conditioning on multiple constraints. This result could not be inferred using alternative population-level modelling approaches. CONCLUSIONS In producing a model which models the tsetse population at a very fine resolution, we were able to analyse and evaluate specific elements of the output, such as pupal development and the progression of the teneral population, allowing the development of our understanding of the tsetse population as a whole. This is an important step in the production of a more accurate transmission model for rHAT which can, in turn, help us to gain a greater understanding of the transmission system as a whole.
Collapse
Affiliation(s)
- Simon Alderton
- Geography and Environment, Faculty of Social and Human Sciences, University of Southampton, Southampton, United Kingdom
- Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom
- Centre for Health Informatics, Computing and Statistics (CHICAS), Lancaster Medical School, Lancaster University, Lancaster, United Kingdom
- * E-mail:
| | - Ewan T. Macleod
- Division of Infection and Pathway Medicine, Biomedical Sciences, Edinburgh Medical School, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, United Kingdom
| | - Neil E. Anderson
- The Royal (Dick) School of Veterinary Studies and the Roslin Institute, University of Edinburgh, Roslin, United Kingdom
| | - Gwen Palmer
- Independent Researcher, Leyland, Lancashire, United Kingdom
| | - Noreen Machila
- Division of Infection and Pathway Medicine, Biomedical Sciences, Edinburgh Medical School, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, United Kingdom
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | - Martin Simuunza
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | - Susan C. Welburn
- Division of Infection and Pathway Medicine, Biomedical Sciences, Edinburgh Medical School, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, United Kingdom
| | - Peter M. Atkinson
- Geography and Environment, Faculty of Social and Human Sciences, University of Southampton, Southampton, United Kingdom
- Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom
- Centre for Health Informatics, Computing and Statistics (CHICAS), Lancaster Medical School, Lancaster University, Lancaster, United Kingdom
- School of Geography, Archaeology and Palaeoecology, Queen's University Belfast, Northern Ireland, United Kingdom
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
39
|
Büscher P, Cecchi G, Jamonneau V, Priotto G. Human African trypanosomiasis. Lancet 2017; 390:2397-2409. [PMID: 28673422 DOI: 10.1016/s0140-6736(17)31510-6] [Citation(s) in RCA: 430] [Impact Index Per Article: 61.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/20/2017] [Accepted: 04/28/2017] [Indexed: 10/19/2022]
Abstract
Human African trypanosomiasis (sleeping sickness) is a parasitic infection that almost invariably progresses to death unless treated. Human African trypanosomiasis caused devastating epidemics during the 20th century. Thanks to sustained and coordinated efforts over the past 15 years, the number of reported cases has fallen to an historically low level. Fewer than 3000 cases were reported in 2015, and the disease is targeted for elimination by WHO. Despite these recent successes, the disease is still endemic in parts of sub-Saharan Africa, where it is a considerable burden on rural communities, most notably in central Africa. Since patients are also reported from non-endemic countries, human African trypanosomiasis should be considered in differential diagnosis for travellers, tourists, migrants, and expatriates who have visited or lived in endemic areas. In the absence of a vaccine, disease control relies on case detection and treatment, and vector control. Available drugs are suboptimal, but ongoing clinical trials provide hope for safer and simpler treatments.
Collapse
Affiliation(s)
- Philippe Büscher
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium.
| | - Giuliano Cecchi
- Food and Agriculture Organization of the United Nations, Sub-regional Office for Eastern Africa, Addis Ababa, Ethiopia
| | - Vincent Jamonneau
- UMR INTERTRYP, Institut de Recherche pour le Développement, Montpellier, France
| | - Gerardo Priotto
- World Health Organization, Control of Neglected Tropical Diseases, Innovative and Intensified Disease Management, Geneva, Switzerland
| |
Collapse
|
40
|
Abstract
Trypanosomes (genus Trypanosoma) are parasites of humans, and wild and domestic mammals, in which they cause several economically and socially important diseases, including sleeping sickness in Africa and Chagas disease in the Americas. Despite the development of numerous molecular diagnostics and increasing awareness of the importance of these neglected parasites, there is currently no universal genetic barcoding marker available for trypanosomes. In this review we provide an overview of the methods used for trypanosome detection and identification, discuss the potential application of different barcoding techniques and examine the requirements of the 'ideal' trypanosome genetic barcode. In addition, we explore potential alternative genetic markers for barcoding Trypanosoma species, including an analysis of phylogenetically informative nucleotide changes along the length of the 18S rRNA gene.
Collapse
|
41
|
Silvester E, Young J, Ivens A, Matthews KR. Interspecies quorum sensing in co-infections can manipulate trypanosome transmission potential. Nat Microbiol 2017; 2:1471-1479. [PMID: 28871083 PMCID: PMC5660621 DOI: 10.1038/s41564-017-0014-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 07/27/2017] [Indexed: 11/21/2022]
Abstract
Quorum sensing (QS) is commonly used in microbial communities and some unicellular parasites to coordinate group behaviours 1,2 . An example is Trypanosoma brucei, which causes human African trypanosomiasis, as well as the livestock disease, nagana. Trypanosomes are spread by tsetse flies, their transmission being enabled by cell-cycle arrested 'stumpy forms' that are generated in a density-dependent manner in mammalian blood. QS is mediated through a small (<500 Da), non-proteinaceous, stable but unidentified 'stumpy induction factor' 3 , whose signal response pathway has been identified. Although QS is characterized in T. brucei, co-infections with other trypanosome species (Trypanosoma congolense and Trypanosoma vivax) are common in animals, generating the potential for interspecies interactions. Here, we show that T. congolense exhibits density-dependent growth control in vivo and conserves QS regulatory genes, of which one can complement a T. brucei QS signal-blind mutant to restore stumpy formation. Thereafter, we demonstrate that T. congolense-conditioned culture medium promotes T. brucei stumpy formation in vitro, which is dependent on the integrity of the QS signalling pathway. Finally, we show that, in vivo, co-infection with T. congolense accelerates differentiation to stumpy forms in T. brucei, which is also QS dependent. These cross-species interactions have important implications for trypanosome virulence, transmission, competition and evolution in the field.
Collapse
Affiliation(s)
- Eleanor Silvester
- Centre for Immunity, Infection and Evolution, Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FL, UK
| | - Julie Young
- Centre for Immunity, Infection and Evolution, Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FL, UK
| | - Alasdair Ivens
- Centre for Immunity, Infection and Evolution, Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FL, UK
| | - Keith R Matthews
- Centre for Immunity, Infection and Evolution, Institute for Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FL, UK.
| |
Collapse
|
42
|
Simwango M, Ngonyoka A, Nnko HJ, Salekwa LP, Ole-Neselle M, Kimera SI, Gwakisa PS. Molecular prevalence of trypanosome infections in cattle and tsetse flies in the Maasai Steppe, northern Tanzania. Parasit Vectors 2017; 10:507. [PMID: 29061160 PMCID: PMC5654092 DOI: 10.1186/s13071-017-2411-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 09/28/2017] [Indexed: 11/16/2022] Open
Abstract
Background African trypanosomosis is a disease of public health and economic importance that poses a major threat to the livelihoods of people living in the Maasai Steppe, where there is a significant interaction between people, livestock and wildlife. The vulnerability of the Maasai people to the disease is enhanced by the interaction of their cattle, which act as vehicles for trypanosomes, and tsetse flies close to wildlife in protected areas. This study was aimed at identification of trypanosome infections circulating in cattle and tsetse flies in order to understand their distribution and prevalence in livestock/wildlife interface areas in the Maasai Steppe. Methods A total of 1002 cattle and 886 tsetse flies were sampled from June 2015 to February 2016 in five villages and PCR was conducted to amplify the internal transcribed spacer 1 (ITS1) from trypanosomes. All Trypanosoma brucei-positive samples were further tested for the presence of the serum resistance-associated (SRA) gene found in human-infective trypanosomes using the SRA-LAMP technique. Results The overall prevalence of trypanosome infections was 17.2% in cattle and 3.4% in tsetse flies. Using a nested PCR, prevalence and abundance of five trypanosome species, Trypanosoma vivax, T. brucei, T. simiae, T. theileri and T. congolense, were determined, which varied with season and location. The highest prevalence of the identified trypanosome species was recorded at the end of wet season with an exception of T. brucei which was high at the beginning of the wet season. No human-infective trypanosomes were detected in both cattle and tsetse fly DNA. Conclusions This study confirms that seasonality and location have a significant contribution to the prevalence of trypanosome species in both mammalian and vector hosts. These results are important for designing of community-wide vector and disease control interventions and planning of sustainable regimes for reduction of the burden of trypanosomosis in endemic pastoral areas, such as the Maasai Steppe in northern Tanzania.
Collapse
Affiliation(s)
- Mary Simwango
- Department of Veterinary Medicine and Public Health, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture (SUA), P.O box 3015, Morogoro, Tanzania.
| | - Anibariki Ngonyoka
- Nelson Mandela African Institution of Science and Technology, School of Life Sciences and Bioengineering, P. O. Box 447, Arusha, Tanzania.,Department of Geography and Environmental Studies, University of Dodoma, P. O. Box 395, Dodoma, Tanzania
| | - Happiness J Nnko
- Nelson Mandela African Institution of Science and Technology, School of Life Sciences and Bioengineering, P. O. Box 447, Arusha, Tanzania.,Department of Geography and Environmental Studies, University of Dodoma, P. O. Box 395, Dodoma, Tanzania
| | - Linda P Salekwa
- Genome Sciences Centre, Department of Microbiology, Parasitology and Biotechnology, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Moses Ole-Neselle
- FAO Emergency Centre for Transboundary Animal Disease (ECTAD), P.O Box 2, Dar es Salaam, Tanzania
| | - Sharadhuli I Kimera
- Department of Veterinary Medicine and Public Health, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture (SUA), P.O box 3015, Morogoro, Tanzania
| | - Paul S Gwakisa
- Genome Sciences Centre, Department of Microbiology, Parasitology and Biotechnology, College of Veterinary Medicine and Biomedical Sciences, Sokoine University of Agriculture, Morogoro, Tanzania
| |
Collapse
|
43
|
Tihon E, Imamura H, Dujardin JC, Van Den Abbeele J, Van den Broeck F. Discovery and genomic analyses of hybridization between divergent lineages of Trypanosoma congolense, causative agent of Animal African Trypanosomiasis. Mol Ecol 2017; 26:6524-6538. [PMID: 28752916 DOI: 10.1111/mec.14271] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 05/24/2017] [Accepted: 06/28/2017] [Indexed: 12/19/2022]
Abstract
Hybrid populations and introgressive hybridization remain poorly documented in pathogenic micro-organisms, as such that genetic exchange has been argued to play a minor role in their evolution. Recent work demonstrated the existence of hybrid microsatellite profiles in Trypanosoma congolense, a parasitic protozoan with detrimental effects on livestock productivity in sub-Saharan Africa. Here, we present the first population genomic study of T. congolense, revealing a remarkable number of single nucleotide polymorphisms (SNPs), small insertions/deletions (indels) and gene deletions among 56 parasite genomes from ten African countries. One group of parasites from Zambia was particularly diverse, displaying a substantial number of heterozygous SNP and indel sites compared to T. congolense parasites from the nine other sub-Saharan countries. Genomewide 5-kb phylogenetic analyses based on phased SNP data revealed that these parasites were the product of hybridization between phylogenetically distinct T. congolense lineages. Other parasites within the same region in Zambia presented a mosaic of haplotypic ancestry and genetic variability, indicating that hybrid parasites persisted and recombined beyond the initial hybridization event. Our observations challenge traditional views of trypanosome population biology and encourage future research on the role of hybridization in spreading genes for drug resistance, pathogenicity and virulence.
Collapse
Affiliation(s)
- Eliane Tihon
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Hideo Imamura
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Jean-Claude Dujardin
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Jan Van Den Abbeele
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | | |
Collapse
|
44
|
Rodrigues CM, Garcia HA, Rodrigues AC, Costa-Martins AG, Pereira CL, Pereira DL, Bengaly Z, Neves L, Camargo EP, Hamilton PB, Teixeira MM. New insights from Gorongosa National Park and Niassa National Reserve of Mozambique increasing the genetic diversity of Trypanosoma vivax and Trypanosoma vivax-like in tsetse flies, wild ungulates and livestock from East Africa. Parasit Vectors 2017; 10:337. [PMID: 28716154 PMCID: PMC5513381 DOI: 10.1186/s13071-017-2241-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 06/11/2017] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Trypanosoma (Duttonella) vivax is a major pathogen of livestock in Africa and South America (SA), and genetic studies limited to small sampling suggest greater diversity in East Africa (EA) compared to both West Africa (WA) and SA. METHODS Multidimensional scaling and phylogenetic analyses of 112 sequences of the glycosomal glyceraldehyde phosphate dehydrogenase (gGAPDH) gene and 263 sequences of the internal transcribed spacer of rDNA (ITS rDNA) were performed to compare trypanosomes from tsetse flies from Gorongosa National Park and Niassa National Reserve of Mozambique (MZ), wild ungulates and livestock from EA, and livestock isolates from WA and SA. RESULTS Multidimensional scaling (MDS) supported Tvv (T. vivax) and TvL (T. vivax-like) evolutionary lineages: 1) Tvv comprises two main groups, TvvA/B (all SA and WA isolates plus some isolates from EA) and TvvC/D (exclusively from EA). The network revealed five ITS-genotypes within Tvv: Tvv1 (WA/EA isolates), Tvv2 (SA) and Tvv3-5 (EA). EA genotypes of Tvv ranged from highly related to largely different from WA/SA genotypes. 2) TvL comprises two gGAPDH-groups formed exclusively by EA sequences, TvLA (Tanzania/Kenya) and TvLB-D (MZ). This lineage contains more than 11 ITS-genotypes, seven forming the lineage TvL-Gorongosa that diverged from T. vivax Y486 enough to be identified as another species of the subgenus Duttonella. While gGAPDH sequences were fundamental for classification at the subgenus, major evolutionary lineages and species levels, ITS rDNA sequences permitted identification of known and novel genotypes. CONCLUSIONS Our results corroborate a remarkable diversity of Duttonella trypanosomes in EA, especially in wildlife conservation areas, compared to the moderate diversity in WA. Surveys in wilderness areas in WA may reveal greater diversity. Biogeographical and phylogenetic data point to EA as the place of origin, diversification and spread of Duttonella trypanosomes across Africa, providing relevant insights towards the understanding of T. vivax evolutionary history.
Collapse
Affiliation(s)
- Carla Mf Rodrigues
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Herakles A Garcia
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil.,Departamento de Patología Veterinaria, Facultad de Ciencias Veterinarias, Universidad Central de Venezuela, Maracay, Aragua, Venezuela
| | - Adriana C Rodrigues
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - André G Costa-Martins
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Carlos L Pereira
- National Administration of Conservation Areas, Ministry of Tourism, Maputo, Mozambique.,Wildlife Conservation Society, Niassa National Reserve, Maputo, Mozambique
| | | | - Zakaria Bengaly
- Centre International de Recherche-Développement sur l'Elevage en zone Subhumide (CIRDES), Bobo-Dioulasso, Burkina Faso
| | - Luis Neves
- Centro de Biotecnologia, Eduardo Mondlane University, Maputo, Mozambique.,Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Erney P Camargo
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Patrick B Hamilton
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Marta Mg Teixeira
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil. .,Centre International de Recherche-Développement sur l'Elevage en zone Subhumide (CIRDES), Bobo-Dioulasso, Burkina Faso.
| |
Collapse
|
45
|
Garcia HA, Rodrigues CMF, Rodrigues AC, Pereira DL, Pereira CL, Camargo EP, Hamilton PB, Teixeira MMG. Remarkable richness of trypanosomes in tsetse flies (Glossina morsitans morsitans and Glossina pallidipes) from the Gorongosa National Park and Niassa National Reserve of Mozambique revealed by fluorescent fragment length barcoding (FFLB). INFECTION GENETICS AND EVOLUTION 2017; 63:370-379. [PMID: 28688979 DOI: 10.1016/j.meegid.2017.07.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 07/03/2017] [Accepted: 07/04/2017] [Indexed: 11/25/2022]
Abstract
Trypanosomes of African wild ungulates transmitted by tsetse flies can cause human and livestock diseases. However, trypanosome diversity in wild tsetse flies remains greatly underestimated. We employed FFLB (fluorescent fragment length barcoding) for surveys of trypanosomes in tsetse flies (3086) from the Gorongosa National Park (GNP) and Niassa National Reserve (NNR) in Mozambique (MZ), identified as Glossina morsitans morsitans (GNP/NNR=77.6%/90.5%) and Glossina pallidipes (22.4%/9.5%). Trypanosomes were microscopically detected in 8.3% of tsetse guts. FFLB of gut samples revealed (GNP/NNR): Trypanosoma congolense of Savannah (27%/63%), Kilifi (16.7%/29.7%) and Forest (1.0%/0.3%) genetic groups; T. simiae Tsavo (36.5%/6.1%); T. simiae (22.2%/17.7%); T. godfreyi (18.2%/7.0%); subgenus Trypanozoon (20.2%/25.7%); T. vivax/T. vivax-like (1.5%/5.2%); T. suis/T. suis-like (9.4%/11.9%). Tsetse proboscises exhibited similar species composition, but most prevalent species were (GNP/NNR): T. simiae (21.9%/28%), T. b. brucei (19.2%/31.7%), and T. vivax/T. vivax-like (19.2%/28.6%). Flies harboring mixtures of trypanosomes were common (~ 64%), and combinations of more than four trypanosomes were especially abundant in the pristine NNR. The non-pathogenic T. theileri was found in 2.5% while FFLB profiles of unknown species were detected in 19% of flies examined. This is the first report on molecular diversity of tsetse flies and their trypanosomes in MZ; all trypanosomes pathogenic for ungulates were detected, but no human pathogens were detected. Overall, two species of tsetse flies harbor 12 species/genotypes of trypanosomes. This notable species richness was likely uncovered because flies were captured in wildlife reserves and surveyed using the method of FFLB able to identify, with high sensitivity and accuracy, known and novel trypanosomes. Our findings importantly improve the knowledge on trypanosome diversity in tsetse flies, revealed the greatest species richness so far reported in tsetse fly of any African country, and indicate the existence of a hidden trypanosome diversity to be discovered in African wildlife protected areas.
Collapse
Affiliation(s)
- Herakles A Garcia
- Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Brazil
| | - Carla M F Rodrigues
- Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Brazil
| | - Adriana C Rodrigues
- Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Brazil
| | | | - Carlos L Pereira
- Ministry of Tourism of Mozambique, Wildlife Conservation Society, Mozambique
| | - Erney P Camargo
- Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Brazil
| | - P B Hamilton
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Marta M G Teixeira
- Department of Parasitology, Institute of Biomedical Sciences, University of Sao Paulo, Brazil.
| |
Collapse
|
46
|
Abdi RD, Agga GE, Aregawi WG, Bekana M, Van Leeuwen T, Delespaux V, Duchateau L. A systematic review and meta-analysis of trypanosome prevalence in tsetse flies. BMC Vet Res 2017; 13:100. [PMID: 28403841 PMCID: PMC5390347 DOI: 10.1186/s12917-017-1012-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 03/30/2017] [Indexed: 11/10/2022] Open
Abstract
Background The optimisation of trypanosomosis control programs warrants a good knowledge of the main vector of animal and human trypanosomes in sub-Saharan Africa, the tsetse fly. An important aspect of the tsetse fly population is its trypanosome infection prevalence, as it determines the intensity of the transmission of the parasite by the vector. We therefore conducted a systematic review of published studies documenting trypanosome infection prevalence from field surveys or from laboratory experiments under controlled conditions. Publications were screened in the Web of Science, PubMed and Google Scholar databases. Using the four-stage (identification, screening, eligibility and inclusion) process in the PRISMA statement the initial screened total of 605 studies were reduced to 72 studies. The microscopic examination of dissected flies (dissection method) remains the most used method to detect trypanosomes and thus constituted the main focus of this analysis. Meta-regression was performed to identify factors responsible for high trypanosome prevalence in the vectors and a random effects meta-analysis was used to report the sensitivity of molecular and serological tests using the dissection method as gold standard. Results The overall pooled prevalence was 10.3% (95% confidence interval [CI] = 8.1%, 12.4%) and 31.0% (95% CI = 20.0%, 42.0%) for the field survey and laboratory experiment data respectively. The country and the year of publication were found to be significantly factors associated with the prevalence of trypanosome infection in tsetse flies. The alternative diagnostic tools applied to dissection positive samples were characterised by low sensitivity, and no information on the specificity was available at all. Conclusion Both temporal and spatial variation in trypanosome infection prevalence of field collected tsetse flies exists, but further investigation on real risk factors is needed how this variation can be explained. Improving the sensitivity and determining the specificity of these alternative diagnostic tools should be a priority and will allow to estimate the prevalence of trypanosome infection in tsetse flies in high-throughput. Electronic supplementary material The online version of this article (doi:10.1186/s12917-017-1012-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Reta D Abdi
- Department of Clinical studies, College of Veterinary Medicine and Agriculture, Addis Ababa University, Bishoftu, Oromia, Ethiopia. .,Department of Animal Science, Institute of Agriculture, University of Tennessee, 2506 River Drive, Knoxville, USA.
| | - Getahun E Agga
- U.S. Department of Agriculture, Agricultural Research Service, Food Animal Environmental Systems Research Unit, Bowling Green, Kentucky, USA
| | - Weldegebrial G Aregawi
- Werer Agricultural Research Center, Ethiopian Institute of Agricultural Research, Afar, Ethiopia
| | - Merga Bekana
- Department of Clinical studies, College of Veterinary Medicine and Agriculture, Addis Ababa University, Bishoftu, Oromia, Ethiopia
| | - Thomas Van Leeuwen
- Department of Crop Protection, Faculty of Bioscience Engineering, Gent University, Ghent, Belgium
| | - Vincent Delespaux
- Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Luc Duchateau
- Department of Comparative Physiology and Biometrics, Faculty of Veterinary Sciences, Gent University, Ghent, Belgium
| |
Collapse
|
47
|
Maganga GD, Mavoungou JF, N'dilimabaka N, Moussadji Kinga IC, Mvé-Ondo B, Mombo IM, Ngoubangoye B, Cossic B, Mikala Okouyi CS, Souza A, Leroy EM, Kumulungui B, Ollomo B. Molecular identification of trypanosome species in trypanotolerant cattle from the south of Gabon. ACTA ACUST UNITED AC 2017; 24:4. [PMID: 28145221 PMCID: PMC5780766 DOI: 10.1051/parasite/2017003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 01/11/2017] [Indexed: 11/14/2022]
Abstract
The aim of this study was to provide information on trypanosome species infecting trypanotolerant cattle from southern Gabon. The study was conducted on 224 trypanotolerant cattle from three regions located in southern Gabon, using ITS1 primer-based PCR. Seventy-two (32%) N'dama cattle were found polymerase chain reaction (PCR) positive with trypanosomes. The overall prevalence of trypanosomosis was 57% (63/110), 4% (4/100), and 36% (5/14) in the Gala section of the Nyanga ranch, the Miyama ranch, and Ossiele, respectively. Trypanosoma congolense and Trypanosoma vivax were identified. In Gala section and Ossiele, T. congolense and T. vivax were found. In the Miyama ranch, only T. vivax was identified. Mixed infections were also found. The forest (9%) and savannah (63%) subgroups of T. congolense were identified. The presence of the two subgroups was detected in 16 out of 56 cattle (29%). T. congolense and T. vivax would appear to be the main agents responsible for bovine trypanosomosis in southern Gabon. Although trypanotolerant, N'dama cattle may serve as a reservoir, and this should be further studied. On the other hand, these trypanotolerant cattle can be reared in such tsetse infested areas, which gives them an advantage compared to other trypanosensitive breeds, and this shows that they represent a key factor in biodiversity which has to be promoted.
Collapse
Affiliation(s)
- Gaël Darren Maganga
- Centre International de Recherches Médicales de Franceville, BP 769 Franceville, Gabon - Université des Sciences et Techniques de Masuku (USTM), Institut National Supérieur d'Agronomie et de Biotechnologies (INSAB), BP 913 Franceville, Gabon
| | - Jacques-François Mavoungou
- Institut de Recherche en Écologie Tropicale (IRET-CENAREST), BP 13354 Libreville, Gabon - Université des Sciences et Techniques de Masuku (USTM), Institut National Supérieur d'Agronomie et de Biotechnologies (INSAB), BP 913 Franceville, Gabon
| | - Nadine N'dilimabaka
- Centre International de Recherches Médicales de Franceville, BP 769 Franceville, Gabon
| | | | - Bertrand Mvé-Ondo
- Centre International de Recherches Médicales de Franceville, BP 769 Franceville, Gabon
| | - Illich Manfred Mombo
- Centre International de Recherches Médicales de Franceville, BP 769 Franceville, Gabon
| | | | | | - Clency Sylde Mikala Okouyi
- Université des Sciences et Techniques de Masuku (USTM), Institut National Supérieur d'Agronomie et de Biotechnologies (INSAB), BP 913 Franceville, Gabon
| | - Alain Souza
- Université des Sciences et Techniques de Masuku (USTM), Institut National Supérieur d'Agronomie et de Biotechnologies (INSAB), BP 913 Franceville, Gabon
| | - Eric Maurice Leroy
- Centre International de Recherches Médicales de Franceville, BP 769 Franceville, Gabon
| | - Brice Kumulungui
- Université des Sciences et Techniques de Masuku (USTM), Institut National Supérieur d'Agronomie et de Biotechnologies (INSAB), BP 913 Franceville, Gabon
| | - Benjamin Ollomo
- Centre International de Recherches Médicales de Franceville, BP 769 Franceville, Gabon
| |
Collapse
|
48
|
Alderton S, Macleod ET, Anderson NE, Schaten K, Kuleszo J, Simuunza M, Welburn SC, Atkinson PM. A Multi-Host Agent-Based Model for a Zoonotic, Vector-Borne Disease. A Case Study on Trypanosomiasis in Eastern Province, Zambia. PLoS Negl Trop Dis 2016; 10:e0005252. [PMID: 28027323 PMCID: PMC5222522 DOI: 10.1371/journal.pntd.0005252] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 01/09/2017] [Accepted: 12/13/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND This paper presents a new agent-based model (ABM) for investigating T. b. rhodesiense human African trypanosomiasis (rHAT) disease dynamics, produced to aid a greater understanding of disease transmission, and essential for development of appropriate mitigation strategies. METHODS The ABM was developed to model rHAT incidence at a fine spatial scale along a 75 km transect in the Luangwa Valley, Zambia. The method offers a complementary approach to traditional compartmentalised modelling techniques, permitting incorporation of fine scale demographic data such as ethnicity, age and gender into the simulation. RESULTS Through identification of possible spatial, demographic and behavioural characteristics which may have differing implications for rHAT risk in the region, the ABM produced output that could not be readily generated by other techniques. On average there were 1.99 (S.E. 0.245) human infections and 1.83 (S.E. 0.183) cattle infections per 6 month period. The model output identified that the approximate incidence rate (per 1000 person-years) was lower amongst cattle owning households (0.079, S.E. 0.017), than those without cattle (0.134, S.E. 0.017). Immigrant tribes (e.g. Bemba I.R. = 0.353, S.E.0.155) and school-age children (e.g. 5-10 year old I.R. = 0.239, S.E. 0.041) were the most at-risk for acquiring infection. These findings have the potential to aid the targeting of future mitigation strategies. CONCLUSION ABMs provide an alternative way of thinking about HAT and NTDs more generally, offering a solution to the investigation of local-scale questions, and which generate results that can be easily disseminated to those affected. The ABM can be used as a tool for scenario testing at an appropriate spatial scale to allow the design of logistically feasible mitigation strategies suggested by model output. This is of particular importance where resources are limited and management strategies are often pushed to the local scale.
Collapse
Affiliation(s)
- Simon Alderton
- Institute of Complex System Simulation, School of Electronics and Computer Science, University of Southampton, Southampton, United Kingdom
- Geography and Environment, Faculty of Social and Human Sciences, University of Southampton, Southampton, United Kingdom
- Lancaster Environment Centre, Lancaster University, Lancaster, United Kingdom
- * E-mail:
| | - Ewan T. Macleod
- Division of Infection and Pathway Medicine, Edinburgh Medical School – Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, United Kingdom
| | - Neil E. Anderson
- The Royal (Dick) School of Veterinary Studies and the Roslin Institute, University of Edinburgh, Roslin, United Kingdom
| | - Kathrin Schaten
- Division of Infection and Pathway Medicine, Edinburgh Medical School – Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, United Kingdom
| | - Joanna Kuleszo
- Geography and Environment, Faculty of Social and Human Sciences, University of Southampton, Southampton, United Kingdom
| | - Martin Simuunza
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | - Susan C. Welburn
- Division of Infection and Pathway Medicine, Edinburgh Medical School – Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, United Kingdom
| | - Peter M. Atkinson
- Geography and Environment, Faculty of Social and Human Sciences, University of Southampton, Southampton, United Kingdom
- Faculty of Science and Technology, Engineering Building, Lancaster University, Lancaster, United Kingdom
- School of Geography, Archaeology and Palaeoecology, Queen’s University Belfast, Belfast, United Kingdom
| |
Collapse
|
49
|
Garcia HA, Ramírez OJ, Rodrigues CMF, Sánchez RG, Bethencourt AM, Del M Pérez G, Minervino AHH, Rodrigues AC, Teixeira MMG. Trypanosoma vivax in water buffalo of the Venezuelan Llanos: An unusual outbreak of wasting disease in an endemic area of typically asymptomatic infections. Vet Parasitol 2016; 230:49-55. [PMID: 27884441 DOI: 10.1016/j.vetpar.2016.10.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 10/09/2016] [Accepted: 10/14/2016] [Indexed: 10/20/2022]
Abstract
Trypanosoma vivax has been associated with asymptomatic infections in African and South American buffalo. In this study, T. vivax was analyzed in water buffalo (Bubalus bubalis) from Venezuela in a molecular survey involving 293 blood samples collected from 2006 to 2015 across the Llanos region. Results demonstrated constant infections (average 23%) during the years analyzed. In general, animals were healthy carriers of T. vivax with low levels of parasitemia and were diagnosed exclusively by TviCATL-PCR. However, an outbreak of severe acute infections mostly in dairy animals was reported during a prolonged drought affecting 30.4% of a buffalo herd (115 animals examined). During the outbreak, animals exhibiting anemia and neurological disorders developed fatal infections, and 7% of the herd died within nine months before treatment against trypanosomosis. Microsatellite locus genotyping (MLG) of T. vivax samples before and during the outbreak revealed similar genotypes, but outbreak isolates exhibited the most divergent MLG. Venezuelan samples from symptomless and sick buffalo did not share the MLGs previously detected in asymptomatic Brazilian buffalo. Trypanosoma evansi was not detected in the herd examined during the outbreak. However, as expected Babesia sp. (62.6%) and Anaplasma sp. (55.6%) infections were highly prevalent in asymptomatic buffalo in the studied areas. This is the first South American outbreak of highly lethal acute T. vivax infections in water buffalo. Our results suggest that chronically infected and asymptomatic buffalo living in areas of enzootic equilibrium can develop symptomatic/lethal disease triggered by stressful scarcity of green forage and water during long droughts, inappropriate management of herds and likely concomitant anaplasmosis and babesiosis. Altogether, these factors weaken buffalo immune defenses, allowing T. vivax to proliferate and, consequently, allowing for progression to wasting disease.
Collapse
Affiliation(s)
- Herakles A Garcia
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brasil, Brazil; Facultad de Ciencias Veterinarias, Universidad Central de Venezuela, Maracay, Aragua, Venezuela
| | - Oneyda J Ramírez
- Facultad de Ciencias Veterinarias, Universidad Central de Venezuela, Maracay, Aragua, Venezuela
| | - Carla M F Rodrigues
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brasil, Brazil
| | - Rafael G Sánchez
- Facultad de Ciencias Veterinarias, Universidad Central de Venezuela, Maracay, Aragua, Venezuela
| | - Angelica M Bethencourt
- Facultad de Ciencias Veterinarias, Universidad Central de Venezuela, Maracay, Aragua, Venezuela
| | - Gabriela Del M Pérez
- Facultad de Ciencias Veterinarias, Universidad Central de Venezuela, Maracay, Aragua, Venezuela
| | - Antonio H H Minervino
- Instituto de Biodiversidade e Floresta, Universidade Federal do Oeste do Pará, PA, Brazil
| | - Adriana C Rodrigues
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brasil, Brazil
| | - Marta M G Teixeira
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brasil, Brazil.
| |
Collapse
|
50
|
Abstract
Pathogenic animal trypanosomes affecting livestock have represented a major constraint to agricultural development in Africa for centuries, and their negative economic impact is increasing in South America and Asia. Chemotherapy and chemoprophylaxis represent the main means of control. However, research into new trypanocides has remained inadequate for decades, leading to a situation where the few compounds available are losing efficacy due to the emergence of drug-resistant parasites. In this review, we provide a comprehensive overview of the current options available for the treatment and prophylaxis of the animal trypanosomiases, with a special focus on the problem of resistance. The key issues surrounding the main economically important animal trypanosome species and the diseases they cause are also presented. As new investment becomes available to develop improved tools to control the animal trypanosomiases, we stress that efforts should be directed towards a better understanding of the biology of the relevant parasite species and strains, to identify new drug targets and interrogate resistance mechanisms.
Collapse
|