1
|
Han L, Song S, Feng H, Ma J, Wei W, Si F. A roadmap for developing Venezuelan equine encephalitis virus (VEEV) vaccines: Lessons from the past, strategies for the future. Int J Biol Macromol 2023:125514. [PMID: 37353130 DOI: 10.1016/j.ijbiomac.2023.125514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023]
Abstract
Venezuelan equine encephalitis (VEE) is a zoonotic infectious disease caused by the Venezuelan equine encephalitis virus (VEEV), which can lead to severe central nervous system infections in both humans and animals. At present, the medical community does not possess a viable means of addressing VEE, rendering the prevention of the virus a matter of paramount importance. Regarding the prevention and control of VEEV, the implementation of a vaccination program has been recognized as the most efficient strategy. Nevertheless, there are currently no licensed vaccines or drugs available for human use against VEEV. This imperative has led to a surge of interest in vaccine research, with VEEV being a prime focus for researchers in the field. In this paper, we initially present a comprehensive overview of the current taxonomic classification of VEEV and the cellular infection mechanism of the virus. Subsequently, we provide a detailed introduction of the prominent VEEV vaccine types presently available, including inactivated vaccines, live attenuated vaccines, genetic, and virus-like particle vaccines. Moreover, we emphasize the challenges that current VEEV vaccine development faces and suggest urgent measures that must be taken to overcome these obstacles. Notably, based on our latest research, we propose the feasibility of incorporation codon usage bias strategies to create the novel VEEV vaccine. Finally, we prose several areas that future VEEV vaccine development should focus on. Our objective is to encourage collaboration between the medical and veterinary communities, expedite the translation of existing vaccines from laboratory to clinical applications, while also preparing for future outbreaks of new VEEV variants.
Collapse
Affiliation(s)
- Lulu Han
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Engineering Research Center of Breeding Pig, Shanghai 201106, China; Huaihe Hospital of Henan University, Clinical Medical College of Henan University, Kai Feng 475000, China
| | - Shuai Song
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, PR China
| | - Huilin Feng
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences of Henan University, Kai Feng 475000, China
| | - Jing Ma
- Huaihe Hospital of Henan University, Clinical Medical College of Henan University, Kai Feng 475000, China
| | - Wenqiang Wei
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences of Henan University, Kai Feng 475000, China.
| | - Fusheng Si
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Engineering Research Center of Breeding Pig, Shanghai 201106, China.
| |
Collapse
|
2
|
Development of a Bicistronic Yellow Fever Live Attenuated Vaccine with Reduced Neurovirulence and Viscerotropism. Microbiol Spectr 2022; 10:e0224622. [PMID: 35980184 PMCID: PMC9602263 DOI: 10.1128/spectrum.02246-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The yellow fever (YF) live attenuated vaccine strain 17D (termed 17D) has been widely used for the prevention and control of YF disease. However, 17D retains significant neurovirulence and viscerotropism in mice, which is probably linked to the increased occurrences of serious adverse events following 17D vaccination. Thus, the development of an updated version of the YF vaccine with an improved safety profile is of high priority. Here, we generated a viable bicistronic YF virus (YFV) by incorporating the internal ribosome entry site (IRES) from Encephalomyocarditis virus into an infectious clone of YFV 17D. The resulting recombinant virus, 17D-IRES, exhibited similar replication efficiency to its parental virus (17D) in mammalian cell lines, while it was highly restricted in mosquito cells. Serial passage of 17D-IRES in BHK-21 cells showed good genetic stability. More importantly, in comparison with the parental 17D, 17D-IRES displayed significantly decreased mouse neurovirulence and viscerotropism in type I interferon (IFN)-signaling-deficient and immunocompetent mouse models. Interestingly, 17D-IRES showed enhanced sensitivity to type I IFN compared with 17D. Moreover, immunization with 17D-IRES provided solid protection for mice against a lethal challenge with YFV. These preclinical data support further development of 17D-IRES as an updated version for the approved YF vaccine. This IRES-based attenuation strategy could be also applied to the design of live attenuated vaccines against other mosquito-borne flaviviruses. IMPORTANCE Yellow fever (YF) continually spreads and causes epidemics around the world, posing a great threat to human health. The YF live attenuated vaccine 17D is considered the most efficient vaccine available and helps to successfully control disease epidemics. However, side effects may occur after vaccination, such as viscerotropic disease (YEL-AVD) and neurotropic adverse disease (YEL-AND). Thus, there is an urgent need for a safer YF vaccine. Here, an IRES strategy was employed, and a bicistronic YFV was successfully developed (named 17D-IRES). 17D-IRES showed effective replication and genetic stability in vitro and high attenuation in vivo. Importantly, 17D-IRES induced humoral and cellular immune responses and conferred full protection against lethal YFV challenge. Our study provides data suggesting that 17D-IRES, with its prominent advantages, could be a vaccine candidate against YF. Moreover, this IRES-based bicistronic technology platform represents a promising strategy for developing other live attenuated vaccines against emerging viruses.
Collapse
|
3
|
A DNA vaccine targeting VEE virus delivered by needle-free jet-injection protects macaques against aerosol challenge. NPJ Vaccines 2022; 7:46. [PMID: 35459271 PMCID: PMC9033795 DOI: 10.1038/s41541-022-00469-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/18/2022] [Indexed: 11/09/2022] Open
Abstract
We have previously shown that DNA vaccines expressing codon optimized alphavirus envelope glycoprotein genes protect both mice and nonhuman primates from viral challenge when delivered by particle-mediated epidermal delivery (PMED) or intramuscular (IM) electroporation (EP). Another technology with fewer logistical drawbacks is disposable syringe jet injection (DSJI) devices developed by PharmaJet, Inc. These needle-free jet injection systems are spring-powered and capable of delivering vaccines either IM or into the dermis (ID). Here, we evaluated the immunogenicity of our Venezuelan equine encephalitis virus (VEEV) DNA vaccine delivered by either the IM- or ID-DSJI devices in nonhuman primates. The protective efficacy was assessed following aerosol challenge. We found that a prime and single boost by either the IM or ID route resulted in humoral and cellular immune responses that provided significant protection against disease and viremia. Although the ID route utilized one-fifth the DNA dose used in the IM route of vaccination, and the measured humoral and cellular immune responses trended lower, the level of protection was high and performed as well as the IM route for several clinical endpoints.
Collapse
|
4
|
Torres-Ruesta A, Chee RSL, Ng LF. Insights into Antibody-Mediated Alphavirus Immunity and Vaccine Development Landscape. Microorganisms 2021; 9:microorganisms9050899. [PMID: 33922370 PMCID: PMC8145166 DOI: 10.3390/microorganisms9050899] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 12/11/2022] Open
Abstract
Alphaviruses are mosquito-borne pathogens distributed worldwide in tropical and temperate areas causing a wide range of symptoms ranging from inflammatory arthritis-like manifestations to the induction of encephalitis in humans. Historically, large outbreaks in susceptible populations have been recorded followed by the development of protective long-lasting antibody responses suggesting a potential advantageous role for a vaccine. Although the current understanding of alphavirus antibody-mediated immunity has been mainly gathered in natural and experimental settings of chikungunya virus (CHIKV) infection, little is known about the humoral responses triggered by other emerging alphaviruses. This knowledge is needed to improve serology-based diagnostic tests and the development of highly effective cross-protective vaccines. Here, we review the role of antibody-mediated immunity upon arthritogenic and neurotropic alphavirus infections, and the current research efforts for the development of vaccines as a tool to control future alphavirus outbreaks.
Collapse
Affiliation(s)
- Anthony Torres-Ruesta
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore; (A.T.-R.); (R.S.-L.C.)
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
| | - Rhonda Sin-Ling Chee
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore; (A.T.-R.); (R.S.-L.C.)
| | - Lisa F.P. Ng
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore 138648, Singapore; (A.T.-R.); (R.S.-L.C.)
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117596, Singapore
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 3BX, UK
- Correspondence: ; Tel.: +65-6407-0028
| |
Collapse
|
5
|
Zeng D, Qiu C, Shen Y, Hou J, Li Z, Zhang J, Liu S, Shang J, Qin W, Xu L, Bao X. An innovative protein expression system using RNA polymerase I for large-scale screening of high-nucleic-acid content Saccharomyces cerevisiae strains. Microb Biotechnol 2020; 13:2008-2019. [PMID: 32854170 PMCID: PMC7533336 DOI: 10.1111/1751-7915.13653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 07/19/2020] [Accepted: 08/01/2020] [Indexed: 01/05/2023] Open
Abstract
Saccharomyces cerevisiae is the preferred source of RNA derivatives, which are widely used as supplements for foods and pharmaceuticals. As the most abundant RNAs, the ribosomal RNAs (rRNAs) transcribed by RNA polymerase I (Pol I) have no 5' caps, thus cannot be translated to proteins. To screen high-nucleic-acid content yeasts more efficiently, a cap-independent protein expression system mediated by Pol I has been designed and established to monitor the regulatory changes of rRNA synthesis by observing the variation in the reporter genes expression. The elements including Pol I-recognized rDNA promoter, the internal ribosome entry site from cricket paralytic virus which can recruit ribosomes internally, reporter genes (URA3 and yEGFP3), oligo-dT and an rDNA terminator were ligated to a yeast episomal plasmid. This system based on the URA3 gene worked well by observing the growth phenotype and did not require the disruption of cap-dependent initiation factors. The fluorescence intensity of strains expressing the yEGFP3 gene increased and drifted after mutagenesis. Combined with flow cytometry, cells with higher GFP level were sorted out. A strain showed 58% improvement in RNA content and exhibited no sequence alteration in the whole expression cassette introduced. This study provides a novel strategy for breeding high-nucleic-acid content yeasts.
Collapse
Affiliation(s)
- Duwen Zeng
- College of Bioengineering, Key Laboratory of Shandong Microbial Engineering, State Key Laboratory of Biobased Material and Green PapermakingQilu University of Technology, Shandong Academy of Sciences3501 Daxue RoadJinan250353China
| | - Chenxi Qiu
- State Key Laboratory of Microbial Technology, Institute of Microbial TechnologyShandong University72 Binhai RoadQingdao266237China
| | - Yu Shen
- State Key Laboratory of Microbial Technology, Institute of Microbial TechnologyShandong University72 Binhai RoadQingdao266237China
| | - Jin Hou
- State Key Laboratory of Microbial Technology, Institute of Microbial TechnologyShandong University72 Binhai RoadQingdao266237China
| | - Zailu Li
- College of Bioengineering, Key Laboratory of Shandong Microbial Engineering, State Key Laboratory of Biobased Material and Green PapermakingQilu University of Technology, Shandong Academy of Sciences3501 Daxue RoadJinan250353China
| | - Jixiang Zhang
- Shandong Sunkeen Biological Company6789 Xingfuhe RoadJining273517China
| | - Shuai Liu
- Shandong Sunkeen Biological Company6789 Xingfuhe RoadJining273517China
| | - Jianli Shang
- Shandong Sunkeen Biological Company6789 Xingfuhe RoadJining273517China
| | - Wensheng Qin
- Department of BiologyLakehead University955 Oliver RoadThunder BayONP7B 5E1Canada
| | - Lili Xu
- College of Bioengineering, Key Laboratory of Shandong Microbial Engineering, State Key Laboratory of Biobased Material and Green PapermakingQilu University of Technology, Shandong Academy of Sciences3501 Daxue RoadJinan250353China
- State Key Laboratory of Microbial Technology, Institute of Microbial TechnologyShandong University72 Binhai RoadQingdao266237China
- Shandong Sunkeen Biological Company6789 Xingfuhe RoadJining273517China
| | - Xiaoming Bao
- College of Bioengineering, Key Laboratory of Shandong Microbial Engineering, State Key Laboratory of Biobased Material and Green PapermakingQilu University of Technology, Shandong Academy of Sciences3501 Daxue RoadJinan250353China
- State Key Laboratory of Microbial Technology, Institute of Microbial TechnologyShandong University72 Binhai RoadQingdao266237China
| |
Collapse
|
6
|
Weiss CM, Liu H, Riemersma KK, Ball EE, Coffey LL. Engineering a fidelity-variant live-attenuated vaccine for chikungunya virus. NPJ Vaccines 2020; 5:97. [PMID: 33083032 PMCID: PMC7560698 DOI: 10.1038/s41541-020-00241-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/15/2020] [Indexed: 12/27/2022] Open
Abstract
Chikungunya virus (CHIKV), which causes a febrile illness characterized by severe and prolonged polyarthralgia/polyarthritis, is responsible for a global disease burden of millions of cases each year with autochthonous transmission in over 100 countries and territories worldwide. There is currently no approved treatment or vaccine for CHIKV. One live-attenuated vaccine (LAV) developed by the United States Army progressed to Phase II human clinical trials but was withdrawn when 8% of volunteers developed joint pain associated with vaccination. Attenuation of the Army’s CHIKV LAV strain 181 clone 25 (CHIKV-181/25) relies on two mutations in the envelope 2 (E2) glycoprotein responsible for cell binding and entry, making it particularly prone to reversion, a common concern for replication-competent vaccines. High error rates associated with RNA virus replication have posed a challenge for LAV development where stable incorporation of attenuating elements is necessary for establishing safety in pre-clinical models. Herein, we incorporate two replicase mutations into CHIKV-181/25 which modulate CHIKV replication fidelity combined with additional attenuating features that cannot be eliminated by point mutation. The mutations were stably incorporated in the LAV and did not increase virulence in mice. Two fidelity-variant CHIKV LAVs generated neutralizing antibodies and were protective from CHIKV disease in adult mice. Unexpectedly, our fidelity-variant candidates were more mutable than CHIKV-181/25 and exhibited restricted replication in mice and Aedes mosquitoes, a possible consequence of hypermutation. Our data demonstrate safety and efficacy but highlight a further need to evaluate fidelity-altering phenotypes before use as a LAV given the potential for virulent reversion.
Collapse
Affiliation(s)
- Christopher M Weiss
- Department of Pathology Microbiology and Immunology, University of California, Davis, CA USA
| | - Hongwei Liu
- Department of Pathology Microbiology and Immunology, University of California, Davis, CA USA
| | - Kasen K Riemersma
- Department of Pathology Microbiology and Immunology, University of California, Davis, CA USA.,Present Address: University of Wisconsin, Madison, WI USA
| | - Erin E Ball
- Department of Pathology Microbiology and Immunology, University of California, Davis, CA USA
| | - Lark L Coffey
- Department of Pathology Microbiology and Immunology, University of California, Davis, CA USA
| |
Collapse
|
7
|
Rossi SL, Russell-Lodrigue KE, Plante KS, Bergren NA, Gorchakov R, Roy CJ, Weaver SC. Rationally Attenuated Vaccines for Venezuelan Equine Encephalitis Protect Against Epidemic Strains with a Single Dose. Vaccines (Basel) 2020; 8:E497. [PMID: 32887313 PMCID: PMC7563393 DOI: 10.3390/vaccines8030497] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/31/2020] [Accepted: 08/31/2020] [Indexed: 12/24/2022] Open
Abstract
Venezuelan equine encephalitis virus (VEEV) is a re-emerging virus of human, agriculture, and bioweapon threat importance. No FDA-approved treatment is available to combat Venezuelan equine encephalitis in humans, prompting the need to create a vaccine that is safe, efficacious, and cannot be replicated in the mosquito vector. Here we describe the use of a serotype ID VEEV (ZPC-738) vaccine with an internal ribosome entry site (IRES) to alter gene expression patterns. This ZPC/IRES vaccine was genetically engineered in two ways based on the position of the IRES insertion to create a vaccine that is safe and efficacious. After a single dose, both versions of the ZPC/IRES vaccine elicited neutralizing antibody responses in mice and non-human primates after a single dose, with more robust responses produced by version 2. Further, all mice and primates were protected from viremia following VEEV challenge. These vaccines were also safer in neonatal mice than the current investigational new drug vaccine, TC-83. These results show that IRES-based attenuation of alphavirus genomes consistently produce promising vaccine candidates, with VEEV/IRES version 2 showing promise for further development.
Collapse
Affiliation(s)
- Shannan L. Rossi
- Department of Pathology and Microbiology and Immunology, Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
| | | | - Kenneth S. Plante
- Department of Microbiology and Immunology and World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX 77555, USA;
| | - Nicholas A. Bergren
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA;
| | - Rodion Gorchakov
- Department of Health, Safety and Environment, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia;
| | - Chad J. Roy
- Tulane National Primate Research Center, Covington, LA 70433, USA; (K.E.R.-L.); (C.J.R.)
- Department of Microbiology and Immunology, Tulane School of Medicine, New Orleans, LA 70112, USA
| | - Scott C. Weaver
- World Reference Center for Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, TX 77555, USA
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
8
|
Guzmán-Terán C, Calderón-Rangel A, Rodriguez-Morales A, Mattar S. Venezuelan equine encephalitis virus: the problem is not over for tropical America. Ann Clin Microbiol Antimicrob 2020; 19:19. [PMID: 32429942 PMCID: PMC7236962 DOI: 10.1186/s12941-020-00360-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 04/30/2020] [Indexed: 12/31/2022] Open
Abstract
The equine encephalitis viruses, Venezuelan (VEEV), East (EEEV) and West (WEEV), belong to the genus alphavirus, family Togaviridae and still represent a threat for human and animal public health in the Americas. In both, these infections are characterized by high viremia, rash, fever, encephalitis and death. VEEV encephalitis is similar, clinically, to other arboviral diseases, such as dengue, Zika or chikungunya. Most of the alphaviruses are transmitted between vertebrates and mosquitoes. They are able to replicate in a wide number of hosts, including mammals, birds, reptiles, amphibian and arthropods. The VEEV has enzootic and epizootic transmission cycles. At the enzootic one, enzootic strains (subtype I, serotypes D-F and serotypes II-VI) are continuously circulating between mosquitoes and wild rodents in tropical forests and mangroves of the Americas. The main reseroivrs are wild rodent species of the subfamily Sigmodontinae. However, bats can be also accidental reservoirs of VEEV. In this article, we reviewed the main features, epidemiology, clinical aspects and the current perspectives of the VEEV.
Collapse
Affiliation(s)
- Camilo Guzmán-Terán
- Instituto de Investigaciones Biológicas del Trópico (IIBT), Programa Regencia en Farmacia, Facultad de Ciencias de la Salud, Universidad de Córdoba, Montería, Córdoba, Colombia
| | - Alfonso Calderón-Rangel
- Instituto de Investigaciones Biológicas del Trópico (IIBT), Facultad de Medicina Veterinaria y Zootecnia, Universidad de Córdoba, Montería, Córdoba, Colombia
| | - Alfonso Rodriguez-Morales
- Public Health and Infection Research Group, Faculty of Health Sciences, Universidad Tecnológica de Pereira, Pereira, Risaralda, Colombia
- Grupo de Investigación Biomedicina, Faculty of Medicine, Fundación Universitaria Autónoma de las Américas, Pereira, Risaralda, Colombia
| | - Salim Mattar
- Instituto de Investigaciones Biológicas del Trópico (IIBT), Facultad de Medicina Veterinaria y Zootecnia, Universidad de Córdoba, Montería, Córdoba, Colombia.
| |
Collapse
|
9
|
Johnson DM, Sokoloski KJ, Jokinen JD, Pfeffer TL, Chu YK, Adcock RS, Chung D, Tretyakova I, Pushko P, Lukashevich IS. Advanced Safety and Genetic Stability in Mice of a Novel DNA-Launched Venezuelan Equine Encephalitis Virus Vaccine with Rearranged Structural Genes. Vaccines (Basel) 2020; 8:vaccines8010114. [PMID: 32121666 PMCID: PMC7157698 DOI: 10.3390/vaccines8010114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 02/26/2020] [Accepted: 02/28/2020] [Indexed: 12/19/2022] Open
Abstract
The safety and genetic stability of V4020, a novel Venezuelan Equine Encephalitis Virus (VEEV) vaccine based on the investigational VEEV TC-83 strain, was evaluated in mice. V4020 was generated from infectious DNA, contains a stabilizing mutation in the E2-120 glycoprotein, and includes rearrangement of structural genes. After intracranial inoculation (IC), replication of V4020 was more attenuated than TC-83, as documented by low clinical scores, inflammation, viral load in brain, and earlier viral clearance. During the first 9 days post-inoculation (DPI), genes involved in inflammation, cytokine signaling, adaptive immune responses, and apoptosis were upregulated in both groups. However, the magnitude of upregulation was greater in TC-83 than V4020 mice, and this pattern persisted till 13 DPI, while V4020 gene expression profiles declined to mock-infected levels. In addition, genetic markers of macrophages, DCs, and microglia were strongly upregulated in TC-83 mice. During five serial passages in the brain, less severe clinical manifestations and a lower viral load were observed in V4020 mice and all animals survived. In contrast, 13.3% of mice met euthanasia criteria during the passages in TC-83 group. At 2 DPI, RNA-Seq analysis of brain tissues revealed that V4020 mice had lower rates of mutations throughout five passages. A higher synonymous mutation ratio was observed in the nsP4 (RdRP) gene of TC-83 compared to V4020 mice. At 2 DPI, both viruses induced different expression profiles of host genes involved in neuro-regeneration. Taken together, these results provide evidence for the improved safety and genetic stability of the experimental V4020 VEEV vaccine in a murine model.
Collapse
Affiliation(s)
- Dylan M. Johnson
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY 40202, USA; (K.J.S.); (D.C.)
- Center for Predictive Medicine, School of Medicine, University of Louisville, Louisville, KY 40202, USA; (T.L.P.); (Y.-K.C.); (R.S.A.)
- Correspondence: (D.M.J.); (I.S.L.)
| | - Kevin J. Sokoloski
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY 40202, USA; (K.J.S.); (D.C.)
- Center for Predictive Medicine, School of Medicine, University of Louisville, Louisville, KY 40202, USA; (T.L.P.); (Y.-K.C.); (R.S.A.)
| | - Jenny D. Jokinen
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY 40202, USA;
| | - Tia L. Pfeffer
- Center for Predictive Medicine, School of Medicine, University of Louisville, Louisville, KY 40202, USA; (T.L.P.); (Y.-K.C.); (R.S.A.)
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY 40202, USA;
| | - Yong-Kyu Chu
- Center for Predictive Medicine, School of Medicine, University of Louisville, Louisville, KY 40202, USA; (T.L.P.); (Y.-K.C.); (R.S.A.)
| | - Robert S. Adcock
- Center for Predictive Medicine, School of Medicine, University of Louisville, Louisville, KY 40202, USA; (T.L.P.); (Y.-K.C.); (R.S.A.)
| | - Donghoon Chung
- Department of Microbiology and Immunology, School of Medicine, University of Louisville, Louisville, KY 40202, USA; (K.J.S.); (D.C.)
- Center for Predictive Medicine, School of Medicine, University of Louisville, Louisville, KY 40202, USA; (T.L.P.); (Y.-K.C.); (R.S.A.)
| | | | - Peter Pushko
- Medigen, Inc., Frederick, MD 21701, USA; (I.T.); (P.P.)
| | - Igor S. Lukashevich
- Center for Predictive Medicine, School of Medicine, University of Louisville, Louisville, KY 40202, USA; (T.L.P.); (Y.-K.C.); (R.S.A.)
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY 40202, USA;
- Correspondence: (D.M.J.); (I.S.L.)
| |
Collapse
|
10
|
Sharma A, Knollmann-Ritschel B. Current Understanding of the Molecular Basis of Venezuelan Equine Encephalitis Virus Pathogenesis and Vaccine Development. Viruses 2019; 11:v11020164. [PMID: 30781656 PMCID: PMC6410161 DOI: 10.3390/v11020164] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 01/30/2019] [Accepted: 02/07/2019] [Indexed: 12/30/2022] Open
Abstract
Dedication This review is dedicated in the memory of Dr Radha K. Maheshwari, a great mentor and colleague, whose passion for research and student training has left a lasting effect on this manuscript and many other works. Abstract Venezuelan equine encephalitis virus (VEEV) is an alphavirus in the family Togaviridae. VEEV is highly infectious in aerosol form and a known bio-warfare agent that can cause severe encephalitis in humans. Periodic outbreaks of VEEV occur predominantly in Central and South America. Increased interest in VEEV has resulted in a more thorough understanding of the pathogenesis of this disease. Inflammation plays a paradoxical role of antiviral response as well as development of lethal encephalitis through an interplay between the host and viral factors that dictate virus replication. VEEV has efficient replication machinery that adapts to overcome deleterious mutations in the viral genome or improve interactions with host factors. In the last few decades there has been ongoing development of various VEEV vaccine candidates addressing the shortcomings of the current investigational new drugs or approved vaccines. We review the current understanding of the molecular basis of VEEV pathogenesis and discuss various types of vaccine candidates.
Collapse
Affiliation(s)
- Anuj Sharma
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
| | | |
Collapse
|
11
|
Suschak JJ, Bagley K, Six C, Shoemaker CJ, Kwilas S, Spik KW, Dupuy LC, Schmaljohn CS. The genetic adjuvant IL-12 enhances the protective efficacy of a DNA vaccine for Venezuelan equine encephalitis virus delivered by intramuscular injection in mice. Antiviral Res 2018; 159:113-121. [PMID: 30268913 DOI: 10.1016/j.antiviral.2018.09.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/18/2018] [Accepted: 09/26/2018] [Indexed: 01/01/2023]
Abstract
We have previously shown that DNA vaccines expressing codon-optimized alphavirus envelope glycoprotein genes protect both mice and non-human primates from viral challenge when delivered by intramuscular electroporation (IM-EP). To determine if we could achieve equivalent immunogenicity and protective efficacy in the absence of electroporation, we co-delivered our Venezuelan equine encephalitis virus (VEEV) DNA vaccine with DNA plasmids expressing genetic adjuvants designed to augment immune responses. We tested the Th1-inducing cytokine IL-12 as well as the granulocyte growth factor GM-CSF, both of which have demonstrated significant adjuvant effect when included in clinical DNA vaccine formulations. Additionally, as multiple reports have described the necessity of IFN-αβ in DNA vaccine immunogenicity, we tested vaccine plasmids encoding a potent stimulator of the IFN-αβ pathway. Our data suggest that IM vaccination of mice with plasmid DNA encoding genetic adjuvants enhances VEEV vaccine immunogenicity, resulting in improved T cell responses, as well as skewing of the anti-VEEV IgG antibody isotype. Additionally, IM vaccination of VEEV DNA vaccine and IL-12 provided complete protection against aerosol VEEV challenge. Overall, our data suggest that co-delivery of genetic adjuvants with alphavirus DNA vaccines using IM delivery can influence the type of immune response obtained and provide comparable protective immunity to that achieved by IM-EP delivery of the vaccine without adjuvants.
Collapse
MESH Headings
- Adjuvants, Immunologic
- Animals
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/immunology
- Encephalitis Virus, Venezuelan Equine
- Encephalomyelitis, Venezuelan Equine/immunology
- Encephalomyelitis, Venezuelan Equine/prevention & control
- Female
- Granulocyte-Macrophage Colony-Stimulating Factor/genetics
- Granulocyte-Macrophage Colony-Stimulating Factor/immunology
- Immunogenicity, Vaccine
- Injections, Intramuscular
- Interleukin-12/genetics
- Interleukin-12/immunology
- Mice
- Mice, Inbred BALB C
- Vaccines, DNA/immunology
- Viral Vaccines/immunology
Collapse
Affiliation(s)
- John J Suschak
- U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | | | - Carolyn Six
- U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Charles J Shoemaker
- U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Steven Kwilas
- U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Kristin W Spik
- U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Lesley C Dupuy
- U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Connie S Schmaljohn
- U.S. Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA.
| |
Collapse
|
12
|
Unbiased Strain-Typing of Arbovirus Directly from Mosquitoes Using Nanopore Sequencing: A Field-forward Biosurveillance Protocol. Sci Rep 2018; 8:5417. [PMID: 29615665 PMCID: PMC5883038 DOI: 10.1038/s41598-018-23641-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 03/16/2018] [Indexed: 12/17/2022] Open
Abstract
The future of infectious disease surveillance and outbreak response is trending towards smaller hand-held solutions for point-of-need pathogen detection. Here, samples of Culex cedecei mosquitoes collected in Southern Florida, USA were tested for Venezuelan Equine Encephalitis Virus (VEEV), a previously-weaponized arthropod-borne RNA-virus capable of causing acute and fatal encephalitis in animal and human hosts. A single 20-mosquito pool tested positive for VEEV by quantitative reverse transcription polymerase chain reaction (RT-qPCR) on the Biomeme two3. The virus-positive sample was subjected to unbiased metatranscriptome sequencing on the Oxford Nanopore MinION and shown to contain Everglades Virus (EVEV), an alphavirus in the VEEV serocomplex. Our results demonstrate, for the first time, the use of unbiased sequence-based detection and subtyping of a high-consequence biothreat pathogen directly from an environmental sample using field-forward protocols. The development and validation of methods designed for field-based diagnostic metagenomics and pathogen discovery, such as those suitable for use in mobile “pocket laboratories”, will address a growing demand for public health teams to carry out their mission where it is most urgent: at the point-of-need.
Collapse
|
13
|
Kautz TF, Guerbois M, Khanipov K, Patterson EI, Langsjoen RM, Yun R, Warmbrod KL, Fofanov Y, Weaver SC, Forrester NL. Low-fidelity Venezuelan equine encephalitis virus polymerase mutants to improve live-attenuated vaccine safety and efficacy. Virus Evol 2018; 4:vey004. [PMID: 29593882 PMCID: PMC5841381 DOI: 10.1093/ve/vey004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
During RNA virus replication, there is the potential to incorporate mutations that affect virulence or pathogenesis. For live-attenuated vaccines, this has implications for stability, as replication may result in mutations that either restore the wild-type phenotype via reversion or compensate for the attenuating mutations by increasing virulence (pseudoreversion). Recent studies have demonstrated that altering the mutation rate of an RNA virus is an effective attenuation tool. To validate the safety of low-fidelity mutations to increase vaccine attenuation, several mutations in the RNA-dependent RNA-polymerase (RdRp) were tested in the live-attenuated Venezuelan equine encephalitis virus vaccine strain, TC-83. Next generation sequencing after passage in the presence of mutagens revealed a mutant containing three mutations in the RdRp, TC-83 3x, to have decreased replication fidelity, while a second mutant, TC-83 4x displayed no change in fidelity, but shared many phenotypic characteristics with TC-83 3x. Both mutants exhibited increased, albeit inconsistent attenuation in an infant mouse model, as well as increased immunogenicity and complete protection against lethal challenge of an adult murine model compared with the parent TC-83. During serial passaging in a highly permissive model, the mutants increased in virulence but remained less virulent than the parent TC-83. These results suggest that the incorporation of low-fidelity mutations into the RdRp of live-attenuated vaccines for RNA viruses can confer increased immunogenicity whilst showing some evidence of increased attenuation. However, while in theory such constructs may result in more effective vaccines, the instability of the vaccine phenotype decreases the likelihood of this being an effective vaccine strategy.
Collapse
Affiliation(s)
- Tiffany F Kautz
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Mathilde Guerbois
- Department of Pathology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Kamil Khanipov
- Department of Pharmacology and Toxicology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA
| | - Edward I Patterson
- Department of Pathology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Rose M Langsjoen
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX, USA
| | - Ruimei Yun
- Department of Pathology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Kelsey L Warmbrod
- Department of Pathology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Yuriy Fofanov
- Department of Pharmacology and Toxicology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA
| | - Scott C Weaver
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA.,Department of Pathology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| | - Naomi L Forrester
- Department of Pathology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
14
|
Abstract
Beginning in 2004, chikungunya virus (CHIKV) went from an endemic pathogen limited to Africa and Asia that caused periodic outbreaks to a global pathogen. Given that outbreaks caused by CHIKV have continued and expanded, serious consideration must be given to identifying potential options for vaccines and therapeutics. Currently, there are no licensed products in this realm, and control relies completely on the use of personal protective measures and integrated vector control, which are only minimally effective. Therefore, it is prudent to urgently examine further possibilities for control. Vaccines have been shown to be highly effective against vector-borne diseases. However, as CHIKV is known to rapidly spread and generate high attack rates, therapeutics would also be highly valuable. Several candidates are currently being developed; this review describes the multiple options under consideration for future development and assesses their relative advantages and disadvantages.
Collapse
|
15
|
Thoka B, Jaimipak T, Onnome S, Yoksan S, Ubol S, Pulmanausahakul R. The synergistic effect of nsP2-L 618, nsP3-R 117, and E2-K 187 on the large plaque phenotype of chikungunya virus. Virus Genes 2017; 54:48-56. [PMID: 29185115 DOI: 10.1007/s11262-017-1524-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 11/20/2017] [Indexed: 01/28/2023]
Abstract
Chikungunya virus (CHIKV), a mosquito-borne Alphavirus, is the etiological agent of chikungunya fever. CHIKV re-emerged from 2004 onwards, and subsequently caused major outbreaks in many parts of the world including the Indian Ocean islands, Asia, and the Americas. In this study, a large plaque variant of CHIKV isolated from patient in Thailand was subjected to repeated cycles of plaque-purification in Vero cells. The resulting virus produced homogenous large plaques and showed a more pathogenic phenotype than the parental wild-type CHIKV. Whole genome analysis of the large plaque virus in comparison to parental isolate revealed a number of mutations, leading to the following amino acid changes: nsP2 (P618→L), nsP3 (G117→R), and E2 (N187→K). Eight recombinant CHIKVs were constructed to determine which amino acids mediated the large plaque phenotype. The results showed the recombinant virus which contains all three mutations, rCHK-L, produced significantly larger plaques than the other recombinant viruses (p < 0.01). Moreover, the plaque size of the other recombinant virus tended to be smaller if they contained only one or two of the large plaque associated mutations in the viral genome. In conclusion, the combination of all three residues (nsP2-L618, nsP3-R117, and E2-K187) is required to produce the large plaque phenotype of CHIKV.
Collapse
Affiliation(s)
- Benjawan Thoka
- Institute of Molecular Biosciences, Mahidol University, Salaya campus, 25/25 Phutthamonthon sai 4, Salaya, Nakhon Pathom, 73170, Thailand
| | - Thitigun Jaimipak
- Institute of Molecular Biosciences, Mahidol University, Salaya campus, 25/25 Phutthamonthon sai 4, Salaya, Nakhon Pathom, 73170, Thailand
| | - Supachoke Onnome
- Institute of Molecular Biosciences, Mahidol University, Salaya campus, 25/25 Phutthamonthon sai 4, Salaya, Nakhon Pathom, 73170, Thailand
| | - Sutee Yoksan
- Institute of Molecular Biosciences, Mahidol University, Salaya campus, 25/25 Phutthamonthon sai 4, Salaya, Nakhon Pathom, 73170, Thailand
| | - Sukathida Ubol
- Department of Microbiology, Faculty of Science, Mahidol University, Bangkok, Thailand.,Center for Emerging and Neglected Infectious Diseases, Mahidol University, Salaya, Thailand
| | - Rojjanaporn Pulmanausahakul
- Institute of Molecular Biosciences, Mahidol University, Salaya campus, 25/25 Phutthamonthon sai 4, Salaya, Nakhon Pathom, 73170, Thailand.
| |
Collapse
|
16
|
Abstract
Vaccines for neuroinfectious diseases are becoming an ever-increasing global health priority, as neurologic manifestations and sequelae from existing and emerging central nervous system infections account for significant worldwide morbidity and mortality. The prevention of neurotropic infections can be achieved through globally coordinated vaccination campaigns, which have successfully eradicated nonzoonotic agents such as the variola viruses and, hopefully soon, poliovirus. This review discusses vaccines that are currently available or under development for zoonotic flaviviruses and alphaviruses, including Japanese and tick-borne encephalitis, yellow fever, West Nile, dengue, Zika, encephalitic equine viruses, and chikungunya. Also discussed are nonzoonotic agents, including measles and human herpesviruses, as well as select bacterial, fungal, and protozoal pathogens. While therapeutic vaccines will be required to treat a multitude of ongoing infections of the nervous system, the ideal vaccination strategy is pre-exposure vaccination, with the ultimate goals of minimizing disease associated with zoonotic viruses and the total eradication of nonzoonotic agents.
Collapse
Affiliation(s)
- Emily C Leibovitch
- Viral Immunology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
- Institute for Biomedical Sciences, The George Washington University School of Medicine, Washington, DC, 20037, USA
| | - Steven Jacobson
- Viral Immunology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
17
|
Plante KS, Rossi SL, Bergren NA, Seymour RL, Weaver SC. Extended Preclinical Safety, Efficacy and Stability Testing of a Live-attenuated Chikungunya Vaccine Candidate. PLoS Negl Trop Dis 2015; 9:e0004007. [PMID: 26340754 PMCID: PMC4560411 DOI: 10.1371/journal.pntd.0004007] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 07/24/2015] [Indexed: 01/08/2023] Open
Abstract
We recently described a new, live-attenuated vaccine candidate for chikungunya (CHIK) fever, CHIKV/IRES. This vaccine was shown to be well attenuated, immunogenic and efficacious in protecting against CHIK virus (CHIKV) challenge of mice and nonhuman primates. To further evaluate its preclinical safety, we compared CHIKV/IRES distribution and viral loads in interferon-α/β receptor-incompetent A129 mice to another CHIK vaccine candidate, 181/clone25, which proved highly immunogenic but mildly reactive in human Phase I/II clinical trials. Compared to wild-type CHIK virus, (wt-CHIKV), both vaccines generated lower viral loads in a wide variety of tissues and organs, including the brain and leg muscle, but CHIKV/IRES exhibited marked restrictions in dissemination and viral loads compared to 181/clone25, and was never found outside the blood, spleen and muscle. Unlike wt-CHIKV, which caused disrupted splenic architecture and hepatic lesions, histopathological lesions were not observed in animals infected with either vaccine strain. To examine the stability of attenuation, both vaccines were passaged 5 times intracranially in infant A129 mice, then assessed for changes in virulence by comparing parental and passaged viruses for footpad swelling, weight stability and survival after subcutaneous infection. Whereas strain 181/clone25 p5 underwent a significant increase in virulence as measured by weight loss (from <10% to >30%) and mortality (from 0 to 100%), CHIKV/IRES underwent no detectible change in any measure of virulence (no significant weight loss and no mortality). These data indicate greater nonclinical safety of the CHIKV/IRES vaccine candidate compared to 181/clone25, further supporting its eligibility for human testing. Chikungunya fever is a reemerging, mosquito-borne viral disease that causes severe, debilitating, and often chronic arthralgia. The virus reemerged from Africa in 2004 and has since caused disease in millions of persons, including in over one million in the Americas since it arrived for the first time in modern scientific history in late 2013. An effective vaccine is critically needed to protect against this medically and economically devastating disease as well as to interrupt the human-mosquito transmission cycle. To further test a new, live-attenuated vaccine candidate for chikungunya fever, we conducted extensive preclinical safety evaluations using another vaccine candidate tested in humans, 181/clone 25, as a benchmark. The new vaccine candidate, CHIKV/IRES, replicated to lower levels in a mouse model and generated lesser signs of disease. Furthermore, it was more stably attenuated following mouse passages. These results support the further development of the new CHIKV/IRES vaccine candidate toward clinical testing in humans.
Collapse
Affiliation(s)
- Kenneth S Plante
- Institute for Human Infections and Immunity, Sealy Center for Vaccine Development and Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Shannan L. Rossi
- Institute for Human Infections and Immunity, Sealy Center for Vaccine Development and Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Nicholas A. Bergren
- Institute for Human Infections and Immunity, Sealy Center for Vaccine Development and Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Robert L. Seymour
- Institute for Human Infections and Immunity, Sealy Center for Vaccine Development and Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Scott C. Weaver
- Institute for Human Infections and Immunity, Sealy Center for Vaccine Development and Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
18
|
Venezuelan equine encephalitis virus variants lacking transcription inhibitory functions demonstrate highly attenuated phenotype. J Virol 2014; 89:71-82. [PMID: 25320296 DOI: 10.1128/jvi.02252-14] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED Alphaviruses represent a significant public health threat worldwide. They are transmitted by mosquitoes and cause a variety of human diseases ranging from severe meningoencephalitis to polyarthritis. To date, no efficient and safe vaccines have been developed against any alphavirus infection. However, in recent years, significant progress has been made in understanding the mechanism of alphavirus replication and virus-host interactions. These data have provided the possibility for the development of new rationally designed alphavirus vaccine candidates that combine efficient immunogenicity, high safety, and inability to revert to pathogenic phenotype. New attenuated variants of Venezuelan equine encephalitis virus (VEEV) designed in this study combine a variety of characteristics that independently contribute to a reduction in virulence. These constructs encode a noncytopathic VEEV capsid protein that is incapable of interfering with the innate immune response. The capsid-specific mutations strongly affect neurovirulence of the virus. In other constructs, they were combined with changes in control of capsid translation and an extensively mutated packaging signal. These modifications also affected the residual neurovirulence of the virus, but it remained immunogenic, and a single immunization protected mice against subsequent infection with epizootic VEEV. Similar approaches of attenuation can be applied to other encephalitogenic New World alphaviruses. IMPORTANCE Venezuelan equine encephalitis virus (VEEV) is an important human and animal pathogen, which causes periodic outbreaks of highly debilitating disease. Despite a continuous public health threat, no safe and efficient vaccine candidates have been developed to date. In this study, we applied accumulated knowledge about the mechanism of VEEV replication, RNA packaging, and interaction with the host to design new VEEV vaccine candidates that demonstrate exceptionally high levels of safety due to a combination of extensive modifications in the viral genome. The introduced mutations did not affect RNA replication or structural protein synthesis but had deleterious effects on VEEV neuroinvasion and virulence. In spite of dramatically reduced virulence, the designed mutants remained highly immunogenic and protected mice against subsequent infection with epizootic VEEV. Similar methodologies can be applied for attenuation of other encephalitogenic New World alphaviruses.
Collapse
|
19
|
A novel live-attenuated vaccine candidate for mayaro Fever. PLoS Negl Trop Dis 2014; 8:e2969. [PMID: 25101995 PMCID: PMC4125120 DOI: 10.1371/journal.pntd.0002969] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 05/22/2014] [Indexed: 12/19/2022] Open
Abstract
Mayaro virus (MAYV) is an emerging, mosquito-borne alphavirus that causes a dengue-like illness in many regions of South America, and which has the potential to urbanize. Because no specific treatment or vaccine is available for MAYV infection, we capitalized on an IRES-based approach to develop a live-attenuated MAYV vaccine candidate. Testing in infant, immunocompetent as well as interferon receptor-deficient mice demonstrated a high degree of attenuation, strong induction of neutralizing antibodies, and efficacy against lethal challenge. This vaccine strain was also unable to infect mosquito cells, a major safety feature for a live vaccine derived from a mosquito-borne virus. Further preclinical development of this vaccine candidate is warranted to protect against this important emerging disease. Mayaro virus (MAYV) is a mosquito-borne alphavirus that causes severe and sometimes chronic arthralgia in persons in South America, where it circulates in forest habitats. It is widely neglected because it is typically mistaken for dengue due to the overlap in the clinical signs and symptoms, and the lack of laboratory diagnostics in most endemic locations. Furthermore, MAYV has the potential to initiate an urban transmission cycle like that of dengue, which could result in a dramatic increase in human exposure. Because there is no effective vaccine or specific treatment, we developed a candidate vaccine to protect against MAYV infection. We used an attenuation approach based on the elimination of the MAYV subgenomic promoter and insertion of a picornavirus internal ribosome entry site to mediate translation of the structural proteins. This vaccine was well attenuated in mouse models, highly immunogenic, and protected against fatal MAYV infection. Our results indicate that this MAYV strain is promising for further development as a potential human vaccine.
Collapse
|
20
|
Wolfe DN, Heppner DG, Gardner SN, Jaing C, Dupuy LC, Schmaljohn CS, Carlton K. Current strategic thinking for the development of a trivalent alphavirus vaccine for human use. Am J Trop Med Hyg 2014; 91:442-50. [PMID: 24842880 DOI: 10.4269/ajtmh.14-0055] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Vaccinations against the encephalitic alphaviruses (western, eastern, and Venezuelan equine encephalitis virus) are of significant interest to biological defense, public health, and agricultural communities alike. Although vaccines licensed for veterinary applications are used in the Western Hemisphere and attenuated or inactivated viruses have been used under Investigational New Drug status to protect at-risk personnel, there are currently no licensed vaccines for use in humans. Here, we will discuss the need for a trivalent vaccine that can protect humans against all three viruses, recent progress to such a vaccine, and a strategy to continue development to Food and Drug Administration licensure.
Collapse
Affiliation(s)
- Daniel N Wolfe
- Chemical and Biological Technologies Department, Defense Threat Reduction Agency, Fort Belvoir, Virginia; TASC, Inc., Lorton, Virginia; Computations/Global Security, Lawrence Livermore National Laboratory, Livermore, California; Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California; US Army Medical Research Institute for Infectious Diseases, Fort Detrick, Maryland; Joint Vaccine Acquisition Program, Medical Countermeasure Systems, Joint Program Executive Office, Fort Detrick, Maryland
| | - D Gray Heppner
- Chemical and Biological Technologies Department, Defense Threat Reduction Agency, Fort Belvoir, Virginia; TASC, Inc., Lorton, Virginia; Computations/Global Security, Lawrence Livermore National Laboratory, Livermore, California; Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California; US Army Medical Research Institute for Infectious Diseases, Fort Detrick, Maryland; Joint Vaccine Acquisition Program, Medical Countermeasure Systems, Joint Program Executive Office, Fort Detrick, Maryland
| | - Shea N Gardner
- Chemical and Biological Technologies Department, Defense Threat Reduction Agency, Fort Belvoir, Virginia; TASC, Inc., Lorton, Virginia; Computations/Global Security, Lawrence Livermore National Laboratory, Livermore, California; Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California; US Army Medical Research Institute for Infectious Diseases, Fort Detrick, Maryland; Joint Vaccine Acquisition Program, Medical Countermeasure Systems, Joint Program Executive Office, Fort Detrick, Maryland
| | - Crystal Jaing
- Chemical and Biological Technologies Department, Defense Threat Reduction Agency, Fort Belvoir, Virginia; TASC, Inc., Lorton, Virginia; Computations/Global Security, Lawrence Livermore National Laboratory, Livermore, California; Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California; US Army Medical Research Institute for Infectious Diseases, Fort Detrick, Maryland; Joint Vaccine Acquisition Program, Medical Countermeasure Systems, Joint Program Executive Office, Fort Detrick, Maryland
| | - Lesley C Dupuy
- Chemical and Biological Technologies Department, Defense Threat Reduction Agency, Fort Belvoir, Virginia; TASC, Inc., Lorton, Virginia; Computations/Global Security, Lawrence Livermore National Laboratory, Livermore, California; Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California; US Army Medical Research Institute for Infectious Diseases, Fort Detrick, Maryland; Joint Vaccine Acquisition Program, Medical Countermeasure Systems, Joint Program Executive Office, Fort Detrick, Maryland
| | - Connie S Schmaljohn
- Chemical and Biological Technologies Department, Defense Threat Reduction Agency, Fort Belvoir, Virginia; TASC, Inc., Lorton, Virginia; Computations/Global Security, Lawrence Livermore National Laboratory, Livermore, California; Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California; US Army Medical Research Institute for Infectious Diseases, Fort Detrick, Maryland; Joint Vaccine Acquisition Program, Medical Countermeasure Systems, Joint Program Executive Office, Fort Detrick, Maryland
| | - Kevin Carlton
- Chemical and Biological Technologies Department, Defense Threat Reduction Agency, Fort Belvoir, Virginia; TASC, Inc., Lorton, Virginia; Computations/Global Security, Lawrence Livermore National Laboratory, Livermore, California; Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, California; US Army Medical Research Institute for Infectious Diseases, Fort Detrick, Maryland; Joint Vaccine Acquisition Program, Medical Countermeasure Systems, Joint Program Executive Office, Fort Detrick, Maryland
| |
Collapse
|
21
|
Roy CJ, Adams AP, Wang E, Plante K, Gorchakov R, Seymour RL, Vinet-Oliphant H, Weaver SC. Chikungunya vaccine candidate is highly attenuated and protects nonhuman primates against telemetrically monitored disease following a single dose. J Infect Dis 2014; 209:1891-9. [PMID: 24403555 DOI: 10.1093/infdis/jiu014] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that causes major epidemics of rash, fever, and debilitating arthritis. Currently, there are no vaccines or antivirals available for prevention or treatment. We therefore generated 2 live-attenuated vaccine candidates based on the insertion of a picornavirus internal ribosome entry site (IRES) sequence into the genome of CHIKV. Vaccination of cynomolgus macaques with a single dose of either vaccine produced no signs of disease but was highly immunogenic. After challenge with a subcutaneous inoculation of wild-type CHIKV, both vaccine candidates prevented the development of detectable viremia. Protected animals also exhibited no significant changes in core body temperature or cardiovascular rhythm, whereas sham-vaccinated animals showed hyperthermia, followed by sustained hypothermia, as well as significant changes in heart rate. These CHIKV/IRES vaccine candidates appear to be safe and efficacious, supporting their strong potential as human vaccines to protect against CHIKV infection and reduce transmission and further spread.
Collapse
Affiliation(s)
- Chad J Roy
- Division of Microbiology, Tulane National Primate Research Center, Covington, Louisiana
| | - A Paige Adams
- Institute for Human Infections and Immunity, Sealy Center for Vaccine Development Department of Pathology, University of Texas Medical Branch, Galveston, Texas
| | - Eryu Wang
- Institute for Human Infections and Immunity, Sealy Center for Vaccine Development Department of Pathology, University of Texas Medical Branch, Galveston, Texas
| | - Kenneth Plante
- Institute for Human Infections and Immunity, Sealy Center for Vaccine Development Department of Pathology, University of Texas Medical Branch, Galveston, Texas
| | - Rodion Gorchakov
- Institute for Human Infections and Immunity, Sealy Center for Vaccine Development Department of Pathology, University of Texas Medical Branch, Galveston, Texas
| | - Robert L Seymour
- Institute for Human Infections and Immunity, Sealy Center for Vaccine Development Department of Pathology, University of Texas Medical Branch, Galveston, Texas
| | - Heather Vinet-Oliphant
- Division of Veterinary Medicine, Tulane National Primate Research Center, Covington, Louisiana
| | - Scott C Weaver
- Institute for Human Infections and Immunity, Sealy Center for Vaccine Development Department of Pathology, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
22
|
Internal ribosome entry site-based attenuation of a flavivirus candidate vaccine and evaluation of the effect of beta interferon coexpression on vaccine properties. J Virol 2013; 88:2056-70. [PMID: 24307589 DOI: 10.1128/jvi.03051-13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Infectious clone technologies allow the rational design of live attenuated viral vaccines with the possibility of vaccine-driven coexpression of immunomodulatory molecules for additional vaccine safety and efficacy. The latter could lead to novel strategies for vaccine protection against infectious diseases where traditional approaches have failed. Here we show for the flavivirus Murray Valley encephalitis virus (MVEV) that incorporation of the internal ribosome entry site (IRES) of Encephalomyocarditis virus between the capsid and prM genes strongly attenuated virulence and that the resulting bicistronic virus was both genetically stable and potently immunogenic. Furthermore, the novel bicistronic genome organization facilitated the generation of a recombinant virus carrying an beta interferon (IFN-β) gene. Given the importance of IFNs in limiting virus dissemination and in efficient induction of memory B and T cell antiviral immunity, we hypothesized that coexpression of the cytokine with the live vaccine might further increase virulence attenuation without loss of immunogenicity. We found that bicistronic mouse IFN-β coexpressing MVEV yielded high virus and IFN titers in cultured cells that do not respond to the coexpressed IFN. However, in IFN response-sufficient cell cultures and mice, the virus produced a self-limiting infection. Nevertheless, the attenuated virus triggered robust innate and adaptive immune responses evidenced by the induced expression of Mx proteins (used as a sensitive biomarker for measuring the type I IFN response) and the generation of neutralizing antibodies, respectively. IMPORTANCE The family Flaviviridae includes a number of important human pathogens, such as Dengue virus, Yellow fever virus, Japanese encephalitis virus, West Nile virus, and Hepatitis C virus. Flaviviruses infect large numbers of individuals on all continents. For example, as many as 100 million people are infected annually with Dengue virus, and 150 million people suffer a chronic infection with Hepatitis C virus. However, protective vaccines against dengue and hepatitis C are still missing, and improved vaccines against other flaviviral diseases are needed. The present study investigated the effects of a redesigned flaviviral genome and the coexpression of an antiviral protein (interferon) on virus replication, pathogenicity, and immunogenicity. Our findings may aid in the rational design of a new class of well-tolerated and safe vaccines.
Collapse
|