1
|
Kim J, Sohn WM, Bae YA. Prostaglandin synthase activity of sigma- and mu-class glutathione transferases in a parasitic trematode, Clonorchis sinensis. PARASITES, HOSTS AND DISEASES 2024; 62:205-216. [PMID: 38835261 PMCID: PMC11150925 DOI: 10.3347/phd.24004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/21/2024] [Indexed: 06/06/2024]
Abstract
Sigma-class glutathione transferase (GST) proteins with dual GST and prostaglandin synthase (PGS) activities play a crucial role in the establishment of Clonorchis sinensis infection. Herein, we analyzed the structural and enzymatic properties of sigma-class GST (CsGST-σ) proteins to obtain insight into their antioxidant and immunomodulatory functions in comparison with mu-class GST (CsGST-μ) proteins. CsGST-σ proteins conserved characteristic structures, which had been described in mammalian hematopoietic prostaglandin D2 synthases. Recombinant forms of these CsGST-σ and CsGST-μ proteins expressed in Escherichia coli exhibited considerable degrees of GST and PGS activities with substantially different specific activities. All recombinant proteins displayed higher affinities toward prostaglandin H2 (PGS substrate; average Km of 30.7 and 3.0 μm for prostaglandin D2 [PGDS] and E2 synthase [PGES], respectively) than those toward CDNB (GST substrate; average Km of 1,205.1 μm). Furthermore, the catalytic efficiency (Kcat/Km) of the PGDS/PGES activity was higher than that of GST activity (average Kcat/Km of 3.1, 0.7, and 7.0×10-3 s-1μm-1 for PGDS, PGES, and GST, respectively). Our data strongly suggest that the C. sinensis sigma- and mu-class GST proteins are deeply involved in regulating host immune responses by generating PGD2 and PGE2 in addition to their roles in general detoxification.
Collapse
Affiliation(s)
- Jiyoung Kim
- Department of Microbiology, Gachon University College of Medicine, Incheon 21999,
Korea
| | - Woon-Mok Sohn
- Department of Parasitology and Tropical Medicine, and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 52727,
Korea
| | - Young-An Bae
- Department of Microbiology, Gachon University College of Medicine, Incheon 21999,
Korea
- Lee Gil Ya Cancer and Diabetes Institute, Gachon University College of Medicine, Incheon 21999,
Korea
| |
Collapse
|
2
|
Kim JG, Kang I, Ahn CS, Sohn WM, Kong Y. Omega-Class Glutathione Transferases Protect DNA from Oxidative Stress in Pathogenic Helminth Reproductive Cells. Antioxidants (Basel) 2023; 12:antiox12030560. [PMID: 36978808 PMCID: PMC10045047 DOI: 10.3390/antiox12030560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 02/27/2023] Open
Abstract
Pathogenic helminths have evolved mechanisms to preserve reproductive function while surviving long-term in the host via robust protective responses. A protective role of antioxidant enzymes in preventing DNA degradation has long been proposed, but little evidence has been provided. Here, we show that omega-class glutathione transferases (GSTOs) are critical for maintaining viability by protecting the reproductive cell DNA of the carcinogenic liver fluke, Clonorchis sinensis. Clonorchis sinensis GSTO (CsGSTO) activities modified by changes in the GSH/GSSG and NADPH/NADP+ molar ratios suppressed the overproduction of reactive oxygen species. CsGSTO1 and CsGSTO2 catalyzed deglutathionylation under physiologic and low-stress conditions (GSH/GSSG ratio of 23:1 or higher) but promoted glutathionylation under high-stress conditions (GSH/GSSG ratio of 3:1 or lower). Gliotoxin-induced functional disruption of CsGSTOs in living C. sinensis reduced the GSH/GSSG molar ratio and increased the production of protein glutathionylation (PSSG) under physiologic and low-stress conditions, indicating that suppression of GSTO function did not affect deglutathionylation. However, the perturbation of CsGSTOs decreased the GSH/GSSG ratio but also reduced PSSG production under high oxidative stress, demonstrating that glutathionylation was impeded. In response to oxidative stimuli, C. sinensis decreased GSTO-specific dehydroascorbate reductase and thiol transferase activities and the GSH/GSSG ratio, while it increased the NADPH/NADP+ ratio and PSSG. CsGSTOs utilized GSH to regulate GSH/GSSG and NADPH/NADP+ recycling and triggered a redox signal leading to nuclear translocation. Nuclear-imported CsGSTOs were modified by glutathionylation to prevent DNA damage. Antibodies specific to CsGSTOs dose-dependently inhibited this process. Disruption of CsGSTOs or the depletion of GSH caused glutathionylation defects, leading to DNA degradation. Our results demonstrate that CsGSTOs and the GSH system play a previously unappreciated role in protecting DNA from oxidative stress.
Collapse
Affiliation(s)
- Jeong-Geun Kim
- Department of Molecular Parasitology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Insug Kang
- Department of Biochemistry and Molecular Biology, Kyung Hee University School of Medicine, Seoul 02447, Republic of Korea
| | - Chun-Seob Ahn
- Department of Molecular Parasitology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
| | - Woon-Mok Sohn
- Department of Parasitology and Tropical Medicine, Gyeongsang National University College of Medicine, Jinju 52727, Republic of Korea
| | - Yoon Kong
- Department of Molecular Parasitology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon 16419, Republic of Korea
- Correspondence:
| |
Collapse
|
3
|
Kim SH, Yang D, Bae YA. Hypoxic and nitrosative stress conditions modulate expression of myoglobin genes in a carcinogenic hepatobiliary trematode, Clonorchis sinensis. PLoS Negl Trop Dis 2021; 15:e0009811. [PMID: 34591853 PMCID: PMC8483323 DOI: 10.1371/journal.pntd.0009811] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 09/13/2021] [Indexed: 11/18/2022] Open
Abstract
Despite recent evidence suggesting that adult trematodes require oxygen for the generation of bioenergy and eggshells, information on the molecular mechanism by which the parasites acquire oxygen remains largely elusive. In this study, the structural and expressional features of globin genes identified in Clonorchis sinensis, a carcinogenic trematode parasite that invades the hypoxic biliary tracts of mammalian hosts, were investigated to gain insight into the molecules that enable oxygen metabolism. The number of globin paralogs substantially differed among parasitic platyhelminths, ranging from one to five genes, and the C. sinensis genome encoded at least five globin genes. The expression of these Clonorchis genes, named CsMb (CsMb1—CsMb3), CsNgb, and CsGbX, according to their preferential similarity patterns toward respective globin subfamilies, exponentially increased in the worms coinciding with their sexual maturation, after being downregulated in early juveniles compared to those in metacercariae. The CsMb1 protein was detected throughout the parenchymal region of adult worms as well as in excretory-secretory products, whereas the other proteins were localized exclusively in the sexual organs and intrauterine eggs. Stimuli generated by exogenous oxygen, nitric oxide (NO), and nitrite as well as co-incubation with human cholangiocytes variously affected globin gene expression in live C. sinensis adults. Together with the specific histological distributions, these hypoxia-induced patterns may suggest that oxygen molecules transported by CsMb1 from host environments are provided to cells in the parenchyma and intrauterine eggs/sex organs of the worms for energy metabolism and/or, more importantly, eggshell formation by CsMb1 and CsMb3, respectively. Other globin homologs are likely to perform non-respiratory functions. Based on the responsive expression profile against nitrosative stress, an oxygenated form of secreted CsMb1 is suggested to play a pivotal role in parasite survival by scavenging NO generated by host immune cells via its NO dioxygenase activity. Trematode parasites that invade mammalian tissues have long been believed to produce bioenergy via anaerobic respiration in their definitive hosts. However, recent studies have revealed that these parasites require considerable amounts of oxygen for the generation of hard eggshells during sexual reproduction as well as energy metabolism. Despite these findings, information on the biological mechanisms and relevant molecules responsible for oxygen uptake in the host environment remains largely elusive. Clonorchis sinensis is a carcinogenic trematode parasite that causes clonorchiasis in humans by infecting the bile ducts. Here, we investigated globin genes/proteins in the liver fluke. The genome of C. sinensis encoded at least five globin paralogs (CsMb1, CsMb2, CsMb3, CsNgb, and CsGbX). Temporal expression of these globin genes coincided with the sexual maturation of C. sinensis. Based on the histological localities and induction profiles upon hypoxia, it could be postulated that the oxygen molecules transported by CsMb1 from host environments are provided to cells in the parenchyma and intrauterine eggs/sex organs of the worms by CsMb1 and CsMb3, respectively, for energy metabolism and eggshell formation. Other globin homologs were likely to perform non-respiratory functions. In addition, the oxygenated form of secreted CsMb1 seemed to participate in the scavenging of nitric oxide generated by host immune cells via its nitric oxide dioxygenase activity to increase the survival of the parasite.
Collapse
Affiliation(s)
- Seon-Hee Kim
- Department of Microbiology, Lee Gil Ya Cancer and Diabetes Institute, Gachon University College of Medicine, Incheon, Republic of Korea
| | - Dongki Yang
- Department of Physiology, Lee Gil Ya Cancer and Diabetes Institute, Gachon University College of Medicine, Incheon, Republic of Korea
- * E-mail: (DY); (Y-AB)
| | - Young-An Bae
- Department of Microbiology, Lee Gil Ya Cancer and Diabetes Institute, Gachon University College of Medicine, Incheon, Republic of Korea
- * E-mail: (DY); (Y-AB)
| |
Collapse
|
4
|
Ahn CS, Kim JG, Kang I, Kong Y. Omega-Class Glutathione Transferases of Carcinogenic Liver Fluke, Clonorchis sinensis, Modulate Apoptosis and Differentiation of Host Cholangiocytes. Antioxidants (Basel) 2021; 10:antiox10071017. [PMID: 34202740 PMCID: PMC8300630 DOI: 10.3390/antiox10071017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/19/2021] [Accepted: 06/22/2021] [Indexed: 11/25/2022] Open
Abstract
The small liver fluke Clonorchis sinensis causes hepatobiliary ductal infections in humans. Clonorchiasis is characterized histopathologically by ductal dysplasia, hyperplasia and metaplasia, which closely resembles cholangiocarcinoma (CCA). The disruption of programmed cell death is critical for malignant transformation, while molecular events underlying these phenomena have poorly been understood in clonorchiasis-related CCA tumorigenesis. We incorporated recombinant C. sinensis omega-class glutathione transferase (rCsGSTo) 1 or 2 into human intrahepatic biliary epithelial cells (HIBECs) and analyzed pathophysiological alterations of HIBECs upon the application of oxidative stress. rCsGSTos partially but significantly rescued HIBECs from cell death by inhibiting oxidative stress-induced apoptosis (p < 0.01). rCsGSTos modulated transcriptional levels of numerous genes. We analyzed 13 genes involved in programmed cell death (the upregulation of five antiapoptotic and two apoptotic genes, and the downregulation of one antiapoptotic and five apoptotic genes) and 11 genes associated with cell differentiation (the increase in seven and decrease in four genes) that showed significant modifications (p < 0.05). The induction profiles of the mRNA and proteins of these differentially regulated genes correlated well with each other, and mostly favored apoptotic suppression and/or cell differentiation. We detected increased active, phosphorylated forms of Src, PI3K/Akt, NF-κB p65, MKK3/6 and p38 MAPK, but not JNK and ERK1/2. CsGSTos were localized in the C. sinensis-infected rat cholangiocytes, where cytokeratin 19 was distributed. Our results demonstrated that CsGSTos excreted to the biliary lumen are internalized and accumulated in the host cholangiocytes. When cholangiocytes underwent oxidative stressful condition, CsGSTos appeared to be critically involved in both antiapoptotic process and the differentiation of host cholangiocytes through the regulation of target genes following the activation of responsible signal molecules.
Collapse
Affiliation(s)
- Chun-Seob Ahn
- Department of Molecular Parasitology, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Suwon 16419, Korea; (C.-S.A.); (J.-G.K.)
| | - Jeong-Geun Kim
- Department of Molecular Parasitology, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Suwon 16419, Korea; (C.-S.A.); (J.-G.K.)
| | - Insug Kang
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Korea;
| | - Yoon Kong
- Department of Molecular Parasitology, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Suwon 16419, Korea; (C.-S.A.); (J.-G.K.)
- Correspondence: ; Tel.: +82-31-290-6251; Fax: +82-290-6269
| |
Collapse
|
5
|
Liu ZL, Wang S, Cai XP, Zeng QY. Transcriptome profiling of Cysticercus Pisiformis provides insight into responses to host bile acids. Parasitol Int 2020; 81:102246. [PMID: 33276143 DOI: 10.1016/j.parint.2020.102246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 10/25/2020] [Accepted: 11/10/2020] [Indexed: 11/18/2022]
Abstract
Bile acids in host intestine activate larvae of tapeworms and facilitate its invasion. However, the mechanism underlying this process is poorly understood. In order to better understand responses of tapeworms to host biles, we used RNA-Seq profiling method to study the transcriptomes of Cysticercus Pisiformis (larvae of Taenia Pisiformis) after host bile acid treatment. A total of 338.32 million high-quality clean reads were obtained by Illumina Hiseq platform. Totally, 62,009 unigenes were assembled, 38,382 of which were successfully annotated to known databases. A total of 9324 unigenes were identified as differentially expressed genes (DEGs), of which 5380 and 3944 genes were up- and down-regulated in the group treated with bile acids, respectively. Gene Ontology analysis revealed that biosynthesis and energy metabolism potential were significantly strengthened after host bile treatment in C. pisiformis. Similarly, KEGG pathway analysis revealed an enrichment of pathways related to lipid metabolism and carbohydrate metabolism. Among them, 'AMPK signaling pathway' which is critical in balancing cellular energy, was significantly enriched after bile acids activation. In addition, pathways of 'Fatty acid biosynthesis', 'Fatty acid elongation', 'Starch and sucrose metabolism', and 'glycolysis gluconeogenesis' were also significantly changed after bile acid treatment. qRT-PCR analysis confirmed the differential abundances of some key genes in these pathways. Our data suggest that host bile acids remarkably promote the pathways of energy metabolism of this parasite and regulate the genes involved in balancing lipid metabolism and carbohydrate metabolism. These findings provide new insights on the lifecycle of Taenia parasites.
Collapse
Affiliation(s)
- Zhong-Li Liu
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu 730070, China; State Key laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, Lanzhou 730046, China
| | - Shuai Wang
- State Key laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, Lanzhou 730046, China
| | - Xue-Peng Cai
- State Key laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, CAAS, Lanzhou 730046, China
| | - Qiao-Ying Zeng
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu 730070, China.
| |
Collapse
|
6
|
Na BK, Pak JH, Hong SJ. Clonorchis sinensis and clonorchiasis. Acta Trop 2020; 203:105309. [PMID: 31862466 DOI: 10.1016/j.actatropica.2019.105309] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 11/22/2019] [Accepted: 12/16/2019] [Indexed: 01/25/2023]
Abstract
Clonorchis sinensis is a fish-borne trematode that inhabits the bile duct of mammals including humans. Clonorchiasis is prevalent in China, Korea, and Vietnam, and 15-20 million people are estimated to be infected by this fluke. Freshwater snails act as the first intermediate host for the proliferation of C. sinensis larvae and shed the cercariae into water. The cercariae penetrate the skin of freshwater fish and transform to metacercariae. Humans are infected by eating raw or undercooked freshwater fish as dishes of filet, "sashimi," or congee, which contain C. sinensis metacercariae. In humans, the C. sinensis metacercariae excyst in the duodenum, and juvenile flukes migrate up via bile chemotaxis into bile ducts. Once there, C. sinensis provokes hyperplasia of the bile duct epithelium, obstructive jaundice, ascites, liver enlargement and cirrhosis, and infrequent cholangiocarcinoma (CCA). Although the association between C. sinensis infection and CCA has been firmly established in past decades, the underlying mechanisms are not elucidated in detail. In the context of chronic clonorchiasis-associated hepatobiliary aberrations, the constitutive disruption of redox homeostasis and dysregulation of physiological signaling pathways may promote the malignant transformation of cholangiocytes, thus leading to substantial acquisition of a more aggressive phenotype by these cells: CCA. With advances of genomic and molecular biological approaches, diverse C. sinensis proteins that are essential for parasite physiology and pathogenicity have been identified and characterized. Some of the proteins have been considered as attractive targets for development of vaccines and chemotherapeutics. Candidate antigens for reliable serodiagnosis of clonorchiasis have been studied.
Collapse
|
7
|
Cancela M, Paes JA, Moura H, Barr JR, Zaha A, Ferreira HB. Unraveling oxidative stress response in the cestode parasite Echinococcus granulosus. Sci Rep 2019; 9:15876. [PMID: 31685918 PMCID: PMC6828748 DOI: 10.1038/s41598-019-52456-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 10/18/2019] [Indexed: 01/19/2023] Open
Abstract
Cystic hydatid disease (CHD) is a worldwide neglected zoonotic disease caused by Echinococcus granulosus. The parasite is well adapted to its host by producing protective molecules that modulate host immune response. An unexplored issue associated with the parasite's persistence in its host is how the organism can survive the oxidative stress resulting from parasite endogenous metabolism and host defenses. Here, we used hydrogen peroxide (H2O2) to induce oxidative stress in E. granulosus protoescoleces (PSCs) to identify molecular pathways and antioxidant responses during H2O2 exposure. Using proteomics, we identified 550 unique proteins; including 474 in H2O2-exposed PSCs (H-PSCs) samples and 515 in non-exposed PSCs (C-PSCs) samples. Larger amounts of antioxidant proteins, including GSTs and novel carbonyl detoxifying enzymes, such as aldo-keto reductase and carbonyl reductase, were detected after H2O2 exposure. Increased concentrations of caspase-3 and cathepsin-D proteases and components of the 26S proteasome were also detected in H-PSCs. Reduction of lamin-B and other caspase-substrate, such as filamin, in H-PSCs suggested that molecular events related to early apoptosis were also induced. We present data that describe proteins expressed in response to oxidative stress in a metazoan parasite, including novel antioxidant enzymes and targets with potential application to treatment and prevention of CHD.
Collapse
Affiliation(s)
- Martín Cancela
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil. .,Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil. .,Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil.
| | - Jéssica A Paes
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil
| | - Hercules Moura
- Biological Mass Spectrometry Laboratory, Clinical Chemistry Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - John R Barr
- Biological Mass Spectrometry Laboratory, Clinical Chemistry Branch, Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Arnaldo Zaha
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil.,Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil.,Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil.,Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, UFRGS, Porto Alegre, Brazil
| | - Henrique B Ferreira
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil. .,Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, UFRGS, Porto Alegre, Brazil. .,Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, UFRGS, Porto Alegre, Brazil. .,Departamento de Biologia Molecular e Biotecnologia, Instituto de Biociências, UFRGS, Porto Alegre, Brazil.
| |
Collapse
|
8
|
Kim JG, Ahn CS, Sripa B, Eom K, Kang I, Sohn WM, Nawa Y, Kong Y. Clonorchis sinensis omega-class glutathione transferases are reliable biomarkers for serodiagnosis of clonorchiasis and opisthorchiasis. Clin Microbiol Infect 2019; 25:109.e1-109.e6. [DOI: 10.1016/j.cmi.2018.03.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 03/25/2018] [Accepted: 03/29/2018] [Indexed: 01/14/2023]
|
9
|
Molecular characteristics and induction profiles of hypoxia-inducible factor-1α and other basic helix-loop-helix and Per-Arnt-Sim domain-containing proteins identified in a carcinogenic liver fluke Clonorchis sinensis. Parasitology 2018; 146:176-186. [PMID: 30070186 DOI: 10.1017/s0031182018001245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Clonorchis sinensis (C. sinensis), a trematode parasite that invades the hypoxic hepatobiliary tract of vertebrate hosts requires a considerable amount of oxygen for its sexual reproduction and energy metabolism. However, little is known regarding the molecular mechanism of C. sinensis involved in the adaptation to the hypoxic environments. In this study, we investigated the molecular structures and induction patterns of hypoxia-inducible factor-1α (HIF-1α) and other basic helix-loop-helix and Per-Arnt-Sim (bHLH-PAS) domain-containing proteins such as HIF-1β, single-minded protein and aryl hydrocarbon receptor, which might prompt adaptive response to hypoxia, in C. sinensis. These proteins possessed various bHLH-PAS family-specific domains. Expression of C. sinensis HIF-1α (CsHIF-1α) was highly induced in worms which were either exposed to a hypoxic condition or co-incubated with human cholangiocytes. In addition to oxygen, nitric oxide and nitrite affected the CsHIF-1α expression depending on the surrounding oxygen concentration. Treatment using a prolyl hydroxylase-domain protein inhibitor under 20%-oxygen condition resulted in an increase in the CsHIF-1α level. Conversely, the other bHLH-PAS genes were less responsive to these exogenous stimuli. We suggest that nitrite and nitric oxide, as well as oxygen, coordinately involve in the regulation of HIF-1α expression to adapt to the hypoxic host environments in C. sinensis.
Collapse
|
10
|
Chen T, Jiang H, Sun H, Xie Z, Ren P, Zhao L, Dong H, Shi M, Lv Z, Wu Z, Li X, Yu X, Huang Y, Xu J. Sequence analysis and characterization of pyruvate kinase from Clonorchis sinensis, a 53.1-kDa homopentamer, implicated immune protective efficacy against clonorchiasis. Parasit Vectors 2017; 10:557. [PMID: 29121987 PMCID: PMC5680780 DOI: 10.1186/s13071-017-2494-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 10/23/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Clonorchis sinensis, the causative agent of clonorchiasis, is classified as one of the most neglected tropical diseases and affects more than 15 million people globally. This hepatobiliary disease is highly associated with cholangiocarcinoma. As key molecules in the infectivity and subsistence of trematodes, glycolytic enzymes have been targets for drug and vaccine development. Clonorchis sinensis pyruvate kinase (CsPK), a crucial glycolytic enzyme, was characterized in this research. RESULTS Differences were observed in the sequences and spatial structures of CsPK and PKs from humans, rats, mice and rabbits. CsPK possessed a characteristic active site signature (IKLIAKIENHEGV) and some unique sites but lacked the N-terminal domain. The predicted subunit molecular mass (Mr) of CsPK was 53.1 kDa. Recombinant CsPK (rCsPK) was a homopentamer with a Mr. of approximately 290 kDa by both native PAGE and gel filtration chromatography. Significant differences in the protein and mRNA levels of CsPK were observed among four life stages of C. sinensis (egg, adult worm, excysted metacercaria and metacercaria), suggesting that these developmental stages may be associated with diverse energy demands. CsPK was widely distributed in adult worms. Moreover, an intense Th1-biased immune response was persistently elicited in rats immunized with rCsPK. Also, rat anti-rCsPK sera suppressed C. sinensis adult subsistence both in vivo and in vitro. CONCLUSIONS The sequences and spatial structures, molecular mass, and expression profile of CsPK have been characterized. rCsPK was indicated to be a homopentamer. Rat anti-rCsPK sera suppressed C. sinensis adult subsistence both in vivo and in vitro. CsPK is worthy of further study as a promising target for drug and vaccine development.
Collapse
Affiliation(s)
- Tingjin Chen
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, Guangdong, 510080, China.,Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, 510080, China.,Provincial Engineering Technology Research Centre for Diseases-vectors Control, Guangzhou, Guangdong, 510080, China
| | - Hongye Jiang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, Guangdong, 510080, China.,Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, 510080, China.,Provincial Engineering Technology Research Centre for Diseases-vectors Control, Guangzhou, Guangdong, 510080, China
| | - Hengchang Sun
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, Guangdong, 510080, China.,Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, 510080, China.,Provincial Engineering Technology Research Centre for Diseases-vectors Control, Guangzhou, Guangdong, 510080, China
| | - Zhizhi Xie
- Department of Clinical Laboratory, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510630, China
| | - Pengli Ren
- Department of Clinical Laboratory, Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510260, China
| | - Lu Zhao
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, Guangdong, 510080, China.,Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, 510080, China.,Provincial Engineering Technology Research Centre for Diseases-vectors Control, Guangzhou, Guangdong, 510080, China
| | - Huimin Dong
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, Guangdong, 510080, China.,Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, 510080, China.,Provincial Engineering Technology Research Centre for Diseases-vectors Control, Guangzhou, Guangdong, 510080, China.,Department of Clinical Laboratory, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510630, China
| | - Mengchen Shi
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, Guangdong, 510080, China.,Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, 510080, China.,Provincial Engineering Technology Research Centre for Diseases-vectors Control, Guangzhou, Guangdong, 510080, China
| | - Zhiyue Lv
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, Guangdong, 510080, China.,Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, 510080, China.,Provincial Engineering Technology Research Centre for Diseases-vectors Control, Guangzhou, Guangdong, 510080, China
| | - Zhongdao Wu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, Guangdong, 510080, China.,Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, 510080, China.,Provincial Engineering Technology Research Centre for Diseases-vectors Control, Guangzhou, Guangdong, 510080, China
| | - Xuerong Li
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, Guangdong, 510080, China.,Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, 510080, China.,Provincial Engineering Technology Research Centre for Diseases-vectors Control, Guangzhou, Guangdong, 510080, China
| | - Xinbing Yu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, Guangdong, 510080, China.,Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, 510080, China.,Provincial Engineering Technology Research Centre for Diseases-vectors Control, Guangzhou, Guangdong, 510080, China
| | - Yan Huang
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, Guangdong, 510080, China. .,Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, 510080, China. .,Provincial Engineering Technology Research Centre for Diseases-vectors Control, Guangzhou, Guangdong, 510080, China.
| | - Jin Xu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou, Guangdong, 510080, China. .,Key Laboratory for Tropical Diseases Control, Sun Yat-sen University, Ministry of Education, Guangzhou, Guangdong, 510080, China. .,Provincial Engineering Technology Research Centre for Diseases-vectors Control, Guangzhou, Guangdong, 510080, China.
| |
Collapse
|
11
|
Kim JG, Ahn CS, Kim SH, Bae YA, Kwon NY, Kang I, Yang HJ, Sohn WM, Kong Y. Clonorchis sinensis omega-class glutathione transferases play major roles in the protection of the reproductive system during maturation and the response to oxidative stress. Parasit Vectors 2016; 9:337. [PMID: 27296469 PMCID: PMC4906895 DOI: 10.1186/s13071-016-1622-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 06/02/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Clonorchis sinensis causes a major food-borne helminthic infection. This species locates in mammalian hepatobiliary ducts, where oxidative stressors and hydrophobic substances are profuse. To adapt to the hostile micromilieu and to ensure its long-term survival, the parasite continuously produces a diverse repertoire of antioxidant enzymes including several species of glutathione transferases (GSTs). Helminth GSTs play pertinent roles during sequestration of harmful xenobiotics since most helminths lack the cytochrome P-450 detoxifying enzyme. METHODS We isolated and analyzed the biochemical properties of two omega-class GSTs of C. sinensis (CsGSTo1 and CsGSTo2). We observed spatiotemporal expression patterns in accordance with the maturation of the worm's reproductive system. Possible biological protective roles of CsGSTos in these organs under oxidative stress were investigated. RESULTS The full-length cDNAs of CsGSTo1 and 2 constituted 965 bp and 1,061 bp with open reading frames of 737 bp (246 amino acids) and 669 bp (223 amino acids). They harbored characteristic N-terminal thioredoxin-like and C-terminal α-helical domains. A cysteine residue, which constituted omega-class specific active site, and the glutathione-binding amino acids, were recognized in appropriate positions. They shared 44 % sequence identity with each other and 14.8-44.8 % with orthologues/homologues from other organisms. Bacterially expressed recombinant proteins (rCsGSTo1 and 2) exhibited dehydroascorbate reductase (DHAR) and thioltransferase activities. DHAR activity was higher than thioltransferase activity. They showed weak canonical GST activity toward 1-chloro-2,4-dinitrobenzene. S-hexylglutathione potently and competitively inhibited the active-site at nanomolar concentrations (0.63 and 0.58 nM for rCsGSTo1 and 2). Interestingly, rCsGSTos exhibited high enzyme activity toward mu- and theta-class GST specific substrate, 4-nitrobenzyl chloride. Expression of CsGSTo transcripts and proteins increased beginning in 2-week-old juveniles and reached their highest levels in 4-week-old adults. The proteins were mainly expressed in the elements of the reproductive system, such as vitelline follicles, testes, seminal receptacle, sperm and eggs. Oxidative stressors induced upregulated expression of CsGSTos in these organs. Regardless of oxidative stresses, CsGSTos continued to be highly expressed in eggs. CsGSTo1 or 2 overexpressing bacteria demonstrated high resistance under oxidative killing. CONCLUSIONS CsGSTos might be critically involved in protection of the reproductive system during maturation of C. sinensis worms and in response to oxidative conditions, thereby contributing to maintenance of parasite fecundity.
Collapse
Affiliation(s)
- Jeong-Geun Kim
- Department of Molecular Parasitology, Sungkyunkwan University School of Medicine, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Korea
| | - Chun-Seob Ahn
- Department of Molecular Parasitology, Sungkyunkwan University School of Medicine, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Korea
| | - Seon-Hee Kim
- Department of Microbiology, Graduate School of Medicine, Gachon University, Incheon, Korea
| | - Young-An Bae
- Department of Microbiology, Graduate School of Medicine, Gachon University, Incheon, Korea
| | - Na-Young Kwon
- Department of Molecular Parasitology, Sungkyunkwan University School of Medicine, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Korea
| | - Insug Kang
- Department of Molecular Biology and Biochemistry, School of Medicine, Kyung Hee University, Seoul, Korea
| | - Hyun-Jong Yang
- Department of Parasitology, Ewha Womans University, School of Medicine, Seoul, Korea
| | - Woon-Mok Sohn
- Department of Parasitology and Tropical Medicine, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, Korea
| | - Yoon Kong
- Department of Molecular Parasitology, Sungkyunkwan University School of Medicine, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Korea.
| |
Collapse
|
12
|
Cortés A, Sotillo J, Muñoz-Antolí C, Trelis M, Esteban JG, Toledo R. Definitive host influences the proteomic profile of excretory/secretory products of the trematode Echinostoma caproni. Parasit Vectors 2016; 9:185. [PMID: 27036527 PMCID: PMC4815245 DOI: 10.1186/s13071-016-1465-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 03/21/2016] [Indexed: 12/18/2022] Open
Abstract
Background Echinostoma caproni is an intestinal trematode extensively used as experimental model for the study of factors that determine the course of intestinal helminth infections, since this markedly depends on the host species. Although the host-dependent mechanisms for either chronic establishment or early parasite rejection have been broadly studied, little is known regarding the parasite response against different host environments. Methods To identify host-dependent differentially expressed proteins, a comparative proteomic analysis of the excretory/secretory products released from E. caproni adults, isolated from hosts displaying different compatibility with this trematode, was performed. Results A total of 19 differential protein spots were identified (14 overexpressed in mice and 5 overexpressed in rats). The establishment of chronic infections in mice is mainly associated with the overexpression by adult worms of antioxidant and detoxifying enzymes (e.g. glutathione S-transferase, hydroxyacylglutathione hydrolase, thiopurine S-transferase, etc.) and metabolic enzymes like enolase, leucine aminopeptidase or malate dehydrogenase. However, the overexpression of cathepsin L and the structural protein actin observed in worms isolated from rats seems not to be effective for the colonization of the intestinal mucosa of this host. Conclusions The observed differences suggest that protein expression and/or release is modulated by the local environment generated inside the host and provide useful insights in regards to the resistance mechanisms developed by parasites to ensure their long-term survival. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1465-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alba Cortés
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Av. Vicente Andrés Estellés s/n, 46100, Burjassot, Valencia, Spain.
| | - Javier Sotillo
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Av. Vicente Andrés Estellés s/n, 46100, Burjassot, Valencia, Spain.,Centre for Biodiscovery and Molecular Development of Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD, Australia
| | - Carla Muñoz-Antolí
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Av. Vicente Andrés Estellés s/n, 46100, Burjassot, Valencia, Spain
| | - María Trelis
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Av. Vicente Andrés Estellés s/n, 46100, Burjassot, Valencia, Spain
| | - J Guillermo Esteban
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Av. Vicente Andrés Estellés s/n, 46100, Burjassot, Valencia, Spain
| | - Rafael Toledo
- Departamento de Parasitología, Facultad de Farmacia, Universidad de Valencia, Av. Vicente Andrés Estellés s/n, 46100, Burjassot, Valencia, Spain
| |
Collapse
|
13
|
Abstract
On Aug 21, 1875, James McConnell published in The Lancet his findings from a post-mortem examination of a 20-year-old Chinese man--undertaken at the Medical College Hospital in Calcutta, India--in whom he found Clonorchis sinensis in the bile ducts. Now, exactly 140 years later, we have a sound understanding of the lifecycle of this liver fluke, including key clinical, diagnostic, and epidemiological features. Developments in the so-called -omics sciences have not only advanced our knowledge of the biology and pathology of the parasite, but also led to the discovery of new diagnostic, drug, and vaccine targets. C sinensis infection is primarily related to liver and biliary disorders, especially cholangiocarcinoma. Clonorchiasis mainly occurs in east Asia, as a result of the region's social-ecological systems and deeply rooted cultural habit of consuming raw freshwater fish. The Kato-Katz technique, applied on fresh stool samples, is the most widely used diagnostic approach. Praziquantel is the treatment of choice and has been considered for preventive chemotherapy. Tribendimidine showed good safety and therapeutic profiles in phase 2 trials and warrants further investigation. Still today, the precise distribution, the exact number of infected people, subtle morbidities and pathogenesis, and the global burden of clonorchiasis are unknown. Integrated control strategies, consisting of preventive chemotherapy; information, education, and communication; environmental management; and capacity building through intersectoral collaboration should be advocated.
Collapse
Affiliation(s)
- Men-Bao Qian
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China; Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China; World Health Organization Collaborating Center for Tropical Diseases, Shanghai, China
| | - Jürg Utzinger
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, and University of Basel, Basel, Switzerland
| | - Jennifer Keiser
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, and University of Basel, Basel, Switzerland
| | - Xiao-Nong Zhou
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China; Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China; World Health Organization Collaborating Center for Tropical Diseases, Shanghai, China.
| |
Collapse
|
14
|
Gasser RB, Tan P, Teh BT, Wongkham S, Young ND. Genomics of worms, with an emphasis on Opisthorchis viverrini - opportunities for fundamental discovery and biomedical outcomes. Parasitol Int 2016; 66:341-345. [PMID: 26792076 DOI: 10.1016/j.parint.2016.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 01/07/2016] [Accepted: 01/10/2016] [Indexed: 12/24/2022]
Abstract
Neglected tropical diseases cause substantial morbidity and mortality in animals and people globally. Opisthorchiasis is one such disease, caused by the carcinogenic, Asian liver fluke, Opisthorchis viverrini. This hepatobiliary disease is known to be associated with malignant cancer (cholangiocarcinoma, CCA) and affects millions of people in Asia, including Thailand, Lao People's Democratic Republic (PDR) and Cambodia. No vaccine is available, and only one drug (praziquantel) is routinely employed against the parasite. Relatively little is known about the molecular biology of the fluke itself and the disease complex that it causes in humans. With the advent of high-throughput nucleic acid sequencing and bioinformatic technologies, it has now become possible to gain global insights into the molecular biology of parasites. The purpose of this minireview is (i) to discuss recent progress on the genomics of parasitic worms, with an emphasis on the draft genome and transcriptome of O. viverrini; (ii) to use results from an integrated, global analysis of the genomic and transcriptomic data, to explain how we believe that this carcinogenic fluke establishes in the biliary system, how it feeds, survives and protects itself in such a hostile, microaerobic environment within the liver, and to propose how this parasite evades or modulates host attack; and (iii) to indicate some of the challenges, and, more importantly, the exciting opportunities that the 'omic resources for O. viverrini now provide for a plethora of fundamental and applied research areas. Looking ahead, we hope that this genomic resource stimulates vibrant and productive collaborations within a consortium context, focused on the effective control of opisthorchiasis.
Collapse
Affiliation(s)
- Robin B Gasser
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia.
| | - Patrick Tan
- Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Republic of Singapore; Division of Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore 138672, Republic of Singapore
| | - Bin Tean Teh
- Division of Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore 138672, Republic of Singapore
| | - Sopit Wongkham
- Faculty of Medicine, Department of Biochemistry, Liver Fluke and Cholangiocarcinoma Research Center, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Neil D Young
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
15
|
Bae YA, Kim JG, Kong Y. Phylogenetic characterization of Clonorchis sinensis proteins homologous to the sigma-class glutathione transferase and their differential expression profiles. Mol Biochem Parasitol 2016; 206:46-55. [PMID: 26792248 DOI: 10.1016/j.molbiopara.2016.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 01/05/2016] [Accepted: 01/06/2016] [Indexed: 12/11/2022]
Abstract
Glutathione transferase (GST) is one of the major antioxidant proteins with diverse supplemental activities including peroxidase, isomerase, and thiol transferase. GSTs are classified into multiple classes on the basis of their primary structures and substrate/inhibitor specificity. However, the evolutionary routes and physiological environments specific to each of the closely related bioactive enzymes remain elusive. The sigma-like GSTs exhibit amino acid conservation patterns similar to the prostaglandin D synthases (PGDSs). In this study, we analyzed the phylogenetic position of the GSTs of the biocarcinogenic liver fluke, Clonorchis sinensis. We also observed induction profile of the GSTs in association with the parasite's maturation and in response to exogenous oxidative stresses, with special attention to sigma-class GSTs and PGDSs. The C. sinensis genome encoded 12 GST protein species, which were separately assigned to cytosolic (two omega-, one zeta-, two mu-, and five sigma-class), mitochondrial (one kappa-class), and microsomal (one membrane-associated proteins in eicosanoid and glutathione metabolism-like protein) GST families. Multiple sigma GST (or PGDS) orthologs were also detected in Opisthorchis viverrini. Other trematode species possessed only a single sigma-like GST gene. A phylogenetic analysis demonstrated that one of the sigma GST lineages duplicated in the common ancestor of trematodes were specifically expanded in the opisthorchiids, but deleted in other trematodes. The induction profiles of these sigma GST genes along with the development and aging of C. sinensis, and against various exogenous chemical stimuli strongly suggest that the paralogous sigma GST genes might be undergone specialized evolution to cope with the diverse hostile biochemical environments within the mammalian hepatobiliary ductal system.
Collapse
Affiliation(s)
- Young-An Bae
- Department of Microbiology, Gachon University Graduate School of Medicine, 191 Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Republic of Korea
| | - Jeong-Geun Kim
- Department of Molecular Parasitology, Sungkyunkwan University School of Medicine, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Yoon Kong
- Department of Molecular Parasitology, Sungkyunkwan University School of Medicine, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea.
| |
Collapse
|
16
|
Lai DH, Hong XK, Su BX, Liang C, Hide G, Zhang X, Yu X, Lun ZR. Current status ofClonorchis sinensisand clonorchiasis in China. Trans R Soc Trop Med Hyg 2016; 110:21-7. [DOI: 10.1093/trstmh/trv100] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
17
|
Bian M, Xu Q, Xu Y, Li S, Wang X, Sheng J, Wu Z, Huang Y, Yu X. Investigation on oxidative stress of nitric oxide synthase interacting protein from Clonorchis sinensis. Parasitol Res 2015; 115:77-83. [PMID: 26391171 DOI: 10.1007/s00436-015-4723-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 09/02/2015] [Indexed: 11/24/2022]
Abstract
Numerous evidences indicate that excretory-secretory products (ESPs) from liver flukes trigger the generation of free radicals that are associated with the initial pathophysiological responses in host cells. In this study, we first constructed a Clonorchis sinensis (C. sinensis, Cs)-infected BALB/c mouse model and examined relative results respectively at 3, 5, 7, and 9 weeks postinfection (p.i.). Quantitative reverse transcription (RT)-PCR indicated that the transcriptional level of both endothelial nitric oxide synthase (eNOS) and superoxide dismutase (SOD) gradually decreased with lastingness of infection, while the transcriptional level of inducible NOS (iNOS) significantly increased. The level of malondialdehyde (MDA) in sera of infected mouse significantly increased versus the healthy control group. These results showed that the liver of C. sinensis-infected mouse was in a state with elevated levels of oxidation stress. Previously, C. sinensis NOS interacting protein coding gene (named CsNOSIP) has been isolated and recombinant CsNOSIP (rCsNOSIP) has been expressed in Escherichia coli, which has been confirmed to be a component present in CsESPs and confirmed to play important roles in immune regulation of the host. In the present paper, we investigated the effects of rCsNOSIP on the lipopolysaccharide (LPS)-induced activated RAW264.7, a murine macrophage cell line. We found that endotoxin-free rCsNOSIP significantly promoted the levels of nitric oxide (NO) and reactive oxygen species (ROS) after pretreated with rCsNOSIP, while the level of SOD decreased. Furthermore, rCsNOSIP could also increase the level of lipid peroxidation MDA. Taken together, these results suggested that CsNOSIP was a key molecule which was involved in the production of nitric oxide (NO) and its reactive intermediates, and played an important role in oxidative stress during C. sinensis infection.
Collapse
Affiliation(s)
- Meng Bian
- Department of Clinical Laboratory, Affiliated Tumor Hospital of Zhengzhou University, Henan Tumor Hospital, Zhengzhou, Henan, China.,Key Laboratory for Tropical Diseases Control, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Qingxia Xu
- Department of Clinical Laboratory, Affiliated Tumor Hospital of Zhengzhou University, Henan Tumor Hospital, Zhengzhou, Henan, China
| | - Yanquan Xu
- Key Laboratory for Tropical Diseases Control, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Shan Li
- Key Laboratory for Tropical Diseases Control, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.,Department of Pathology and Pathophysiology, Henan University of Traditional Chinese Medicine, Zhengzhou, 450000, People's Republic of China
| | - Xiaoyun Wang
- Key Laboratory for Tropical Diseases Control, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Jiahe Sheng
- Department of Clinical Laboratory, Affiliated Tumor Hospital of Zhengzhou University, Henan Tumor Hospital, Zhengzhou, Henan, China
| | - Zhongdao Wu
- Key Laboratory for Tropical Diseases Control, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Yan Huang
- Key Laboratory for Tropical Diseases Control, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China
| | - Xinbing Yu
- Key Laboratory for Tropical Diseases Control, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.
| |
Collapse
|
18
|
van der Ree AM, Mutapi F. The helminth parasite proteome at the host-parasite interface - Informing diagnosis and control. Exp Parasitol 2015; 157:48-58. [PMID: 26116863 DOI: 10.1016/j.exppara.2015.06.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 05/16/2015] [Accepted: 06/15/2015] [Indexed: 12/27/2022]
Abstract
Helminth parasites are a significant health burden for humans in the developing world and also cause substantial economic losses in livestock production across the world. The combined lack of vaccines for the major human and veterinary helminth parasites in addition to the development of drug resistance to anthelmintics in sheep and cattle mean that controlling helminth infection and pathology remains a challenge. However, recent high throughput technological advances mean that screening for potential drug and vaccine candidates is now easier than in previous decades. A better understanding of the host-parasite interactions occurring during infection and pathology and identifying pathways that can be therapeutically targeted for more effective and 'evolution proof' interventions is now required. This review highlights some of the advances that have been made in understanding the host-parasite interface in helminth infections using studies of the temporal expression of parasite proteins, i.e. the parasite proteome, and discuss areas for potential future research and translation.
Collapse
Affiliation(s)
- Anna M van der Ree
- Institute of Immunology & Infection Research, Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, UK
| | - Francisca Mutapi
- Institute of Immunology & Infection Research, Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
19
|
Egg-specific expression of protein with DNA methyltransferase activity in the biocarcinogenic liver fluke Clonorchis sinensis. Parasitology 2015; 142:1228-38. [PMID: 26036304 DOI: 10.1017/s0031182015000566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Despite recent reports regarding the biology of cytosine methylation in Schistosoma mansoni, the impact of the regulatory machinery remains unclear in diverse platyhelminthes. This ambiguity is reinforced by discoveries of DNA methyltransferase 2 (DNMT2)-only organisms and the substrate specificity of DNMT2 preferential to RNA molecules. Here, we characterized a novel DNA methyltransferase, named CsDNMT2, in a liver fluke Clonorchis sinensis. The protein exhibited structural properties conserved in other members of the DNMT2 family. The native and recombinant CsDNMT2 exhibited considerable enzymatic activity on DNA. The spatiotemporal expression of CsDNMT2 mirrored that of 5-methylcytosine (5 mC), both of which were elevated in the C. sinensis eggs. However, CsDNMT2 and 5 mC were marginally detected in other histological regions of C. sinensis adults including ovaries and seminal receptacle. The methylation site seemed not related to genomic loci occupied by progenies of an active long-terminal-repeat retrotransposon. Taken together, our data strongly suggest that C. sinensis has preserved the functional DNA methylation machinery and that DNMT2 acts as a genuine alternative to DNMT1/DNMT3 to methylate DNA in the DNMT2-only organism. The epigenetic regulation would target functional genes primarily involved in the formation and/or maturation of eggs, rather than retrotransposons.
Collapse
|
20
|
Ahn CS, Na BK, Chung DL, Kim JG, Kim JT, Kong Y. Expression characteristics and specific antibody reactivity of diverse cathepsin F members of Paragonimus westermani. Parasitol Int 2015; 64:37-42. [DOI: 10.1016/j.parint.2014.09.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 08/29/2014] [Accepted: 09/23/2014] [Indexed: 12/01/2022]
|
21
|
Young ND, Nagarajan N, Lin SJ, Korhonen PK, Jex AR, Hall RS, Safavi-Hemami H, Kaewkong W, Bertrand D, Gao S, Seet Q, Wongkham S, Teh BT, Wongkham C, Intapan PM, Maleewong W, Yang X, Hu M, Wang Z, Hofmann A, Sternberg PW, Tan P, Wang J, Gasser RB. The Opisthorchis viverrini genome provides insights into life in the bile duct. Nat Commun 2014; 5:4378. [PMID: 25007141 PMCID: PMC4104445 DOI: 10.1038/ncomms5378] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 06/11/2014] [Indexed: 12/15/2022] Open
Abstract
Opisthorchiasis is a neglected, tropical disease caused by the carcinogenic Asian liver fluke, Opisthorchis viverrini. This hepatobiliary disease is linked to malignant cancer (cholangiocarcinoma, CCA) and affects millions of people in Asia. No vaccine is available, and only one drug (praziquantel) is used against the parasite. Little is known about O. viverrini biology and the diseases that it causes. Here we characterize the draft genome (634.5 Mb) and transcriptomes of O. viverrini, elucidate how this fluke survives in the hostile environment within the bile duct and show that metabolic pathways in the parasite are highly adapted to a lipid-rich diet from bile and/or cholangiocytes. We also provide additional evidence that O. viverrini and other flukes secrete proteins that directly modulate host cell proliferation. Our molecular resources now underpin profound explorations of opisthorchiasis/CCA and the design of new interventions. The Asian liver fluke is a parasitic worm that is linked to an increased risk of malignant cancer. Here, the authors sequence the draft genome and transcriptome of this fluke and provide insight into how the species has adapted to be able to survive in the bile duct.
Collapse
Affiliation(s)
- Neil D Young
- 1] Faculty of Veterinary Science, The University of Melbourne, Melbourne, Victoria 3010, Australia [2]
| | - Niranjan Nagarajan
- 1] Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Republic of Singapore [2]
| | - Suling Joyce Lin
- Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Republic of Singapore
| | - Pasi K Korhonen
- Faculty of Veterinary Science, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Aaron R Jex
- Faculty of Veterinary Science, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Ross S Hall
- Faculty of Veterinary Science, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | | | - Worasak Kaewkong
- Liver Fluke and Cholangiocarcinoma Research Center, Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Denis Bertrand
- Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Republic of Singapore
| | - Song Gao
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 138672, Republic of Singapore
| | - Qihui Seet
- Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Republic of Singapore
| | - Sopit Wongkham
- Liver Fluke and Cholangiocarcinoma Research Center, Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Bin Tean Teh
- Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore 138672, Republic of Singapore
| | - Chaisiri Wongkham
- Liver Fluke and Cholangiocarcinoma Research Center, Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Pewpan Maleewong Intapan
- Research and Diagnostic Center for Emerging Infectious Diseases, Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Wanchai Maleewong
- Research and Diagnostic Center for Emerging Infectious Diseases, Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | | | | | | | - Andreas Hofmann
- 1] Faculty of Veterinary Science, The University of Melbourne, Melbourne, Victoria 3010, Australia [2] Structural Chemistry Program, Eskitis Institute, Griffith University, Brisbane, Queensland 4111, Australia
| | - Paul W Sternberg
- Division of Biology, HHMI, California Institute of Technology, Pasadena, California 91125, USA
| | - Patrick Tan
- 1] Genome Institute of Singapore, 60 Biopolis Street, Singapore 138672, Republic of Singapore [2] Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore 138672, Republic of Singapore
| | - Jun Wang
- 1] [2] Department of Biology, University of Copenhagen, Copenhagen 2200, Denmark [3] Princess Al Jawhara Center of Excellence in the Research of Hereditary Disorders, King Abdulaziz University, Jeddah 21589, Saudi Arabia [4] Macau University of Science and Technology, Avenida Wai long, Taipa, Macau 999078, China
| | - Robin B Gasser
- Faculty of Veterinary Science, The University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
22
|
Molecular and biochemical characterizations of three fructose-1,6-bisphosphate aldolases from Clonorchis sinensis. Mol Biochem Parasitol 2014; 194:36-43. [DOI: 10.1016/j.molbiopara.2014.04.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 04/13/2014] [Accepted: 04/15/2014] [Indexed: 11/20/2022]
|