1
|
Kitandwe PK, Rogers P, Hu K, Nayebare O, Blakney AK, McKay PF, Kaleebu P, Shattock RJ. A Lipid Nanoparticle-Formulated Self-Amplifying RNA Rift Valley Fever Vaccine Induces a Robust Humoral Immune Response in Mice. Vaccines (Basel) 2024; 12:1088. [PMID: 39460255 PMCID: PMC11511412 DOI: 10.3390/vaccines12101088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/30/2024] [Accepted: 09/10/2024] [Indexed: 10/28/2024] Open
Abstract
Rift Valley fever (RVF) is a mosquito-borne viral zoonosis that causes high fetal and neonatal mortality rates in ruminants and sometimes severe to fatal complications like encephalitis and hemorrhagic fever in humans. There is no licensed RVF vaccine for human use while approved livestock vaccines have suboptimal safety or efficacy. We designed self-amplifying RNA (saRNA) RVF vaccines and assessed their humoral immunogenicity in mice. Plasmid DNA encoding the Rift Valley fever virus (RVFV) medium (M) segment consensus sequence (WT consensus) and its derivatives mutated to enhance cell membrane expression of the viral surface glycoproteins n (Gn) and c (Gc) were assessed for in vitro expression. The WT consensus and best-expressing derivative (furin-T2A) were cloned into a Venezuelan equine encephalitis virus (VEEV) plasmid DNA replicon and in vitro transcribed into saRNA. The saRNA was formulated in lipid nanoparticles and its humoral immunogenicity in BALB/c mice was assessed. High quantities of dose-dependent RVFV Gn IgG antibodies were detected in the serum of all mice immunized with either WT consensus or furin-T2A saRNA RVF vaccines. Significant RVFV pseudovirus-neutralizing activity was induced in mice immunized with 1 µg or 10 µg of the WT consensus saRNA vaccine. The WT consensus saRNA RVF vaccine warrants further development.
Collapse
Affiliation(s)
- Paul K. Kitandwe
- MRC/UVRI & LSHTM Uganda Research Unit, Plot 51-59 Nakiwogo Road, Entebbe P.O. Box 49, Uganda; (O.N.); (P.K.)
| | - Paul Rogers
- Department of Infectious Diseases, Imperial College London, Norfolk Place, London W2 1PG, UK; (P.R.); (K.H.); (A.K.B.); (P.F.M.); (R.J.S.)
| | - Kai Hu
- Department of Infectious Diseases, Imperial College London, Norfolk Place, London W2 1PG, UK; (P.R.); (K.H.); (A.K.B.); (P.F.M.); (R.J.S.)
| | - Owen Nayebare
- MRC/UVRI & LSHTM Uganda Research Unit, Plot 51-59 Nakiwogo Road, Entebbe P.O. Box 49, Uganda; (O.N.); (P.K.)
| | - Anna K. Blakney
- Department of Infectious Diseases, Imperial College London, Norfolk Place, London W2 1PG, UK; (P.R.); (K.H.); (A.K.B.); (P.F.M.); (R.J.S.)
| | - Paul F. McKay
- Department of Infectious Diseases, Imperial College London, Norfolk Place, London W2 1PG, UK; (P.R.); (K.H.); (A.K.B.); (P.F.M.); (R.J.S.)
| | - Pontiano Kaleebu
- MRC/UVRI & LSHTM Uganda Research Unit, Plot 51-59 Nakiwogo Road, Entebbe P.O. Box 49, Uganda; (O.N.); (P.K.)
- Uganda Virus Research Institute, Plot 51-59, Nakiwogo Road, Entebbe P.O. Box 49, Uganda
| | - Robin J. Shattock
- Department of Infectious Diseases, Imperial College London, Norfolk Place, London W2 1PG, UK; (P.R.); (K.H.); (A.K.B.); (P.F.M.); (R.J.S.)
| |
Collapse
|
2
|
Alkan C, O’Brien T, Kenyon V, Ikegami T. Computer-Selected Antiviral Compounds: Assessing In Vitro Efficacies against Rift Valley Fever Virus. Viruses 2024; 16:88. [PMID: 38257788 PMCID: PMC10818293 DOI: 10.3390/v16010088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/03/2024] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Rift Valley fever is a zoonotic viral disease transmitted by mosquitoes, impacting both humans and livestock. Currently, there are no approved vaccines or antiviral treatments for humans. This study aimed to evaluate the in vitro efficacy of chemical compounds targeting the Gc fusion mechanism. These compounds were identified through virtual screening of millions of commercially available small molecules using a structure-based artificial intelligence bioactivity predictor. In our experiments, a pretreatment with small molecule compounds revealed that 3 out of 94 selected compounds effectively inhibited the replication of the Rift Valley fever virus MP-12 strain in Vero cells. As anticipated, these compounds did not impede viral RNA replication when administered three hours after infection. However, significant inhibition of viral RNA replication occurred upon viral entry when cells were pretreated with these small molecules. Furthermore, these compounds exhibited significant inhibition against Arumowot virus, another phlebovirus, while showing no antiviral effects on tick-borne bandaviruses. Our study validates AI-based virtual high throughput screening as a rational approach for identifying effective antiviral candidates for Rift Valley fever virus and other bunyaviruses.
Collapse
Affiliation(s)
- Cigdem Alkan
- Department of Pathology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA;
| | - Terrence O’Brien
- Discovery Chemistry, Genentech, Inc., South San Francisco, CA 94080, USA;
| | | | - Tetsuro Ikegami
- Department of Pathology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA;
- Sealy Institute for Vaccine Sciences, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
- Institute for Human Infections and Immunity, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| |
Collapse
|
3
|
Chen T, Ding Z, Lan J, Wong G. Advances and perspectives in the development of vaccines against highly pathogenic bunyaviruses. Front Cell Infect Microbiol 2023; 13:1174030. [PMID: 37274315 PMCID: PMC10234439 DOI: 10.3389/fcimb.2023.1174030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 05/03/2023] [Indexed: 06/06/2023] Open
Abstract
Increased human activities around the globe and the rapid development of once rural regions have increased the probability of contact between humans and wild animals. A majority of bunyaviruses are of zoonotic origin, and outbreaks may result in the substantial loss of lives, economy contraction, and social instability. Many bunyaviruses require manipulation in the highest levels of biocontainment, such as Biosafety Level 4 (BSL-4) laboratories, and the scarcity of this resource has limited the development speed of vaccines for these pathogens. Meanwhile, new technologies have been created, and used to innovate vaccines, like the mRNA vaccine platform and bioinformatics-based antigen design. Here, we summarize current vaccine developments for three different bunyaviruses requiring work in the highest levels of biocontainment: Crimean-Congo Hemorrhagic Fever Virus (CCHFV), Rift Valley Fever Virus (RVFV), and Hantaan virus (HTNV), and provide perspectives and potential future directions that can be further explored to advance specific vaccines for humans and livestock.
Collapse
Affiliation(s)
- Tong Chen
- Viral Hemorrhagic Fevers Research Unit, Chinese Academy of Sciences (CAS) Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences (CAS), Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhe Ding
- Viral Hemorrhagic Fevers Research Unit, Chinese Academy of Sciences (CAS) Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences (CAS), Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiaming Lan
- Viral Hemorrhagic Fevers Research Unit, Chinese Academy of Sciences (CAS) Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Gary Wong
- Viral Hemorrhagic Fevers Research Unit, Chinese Academy of Sciences (CAS) Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences (CAS), Shanghai, China
| |
Collapse
|
4
|
Merchant M, Mata CP, Liu Y, Zhai H, Protasio AV, Modis Y. A bioactive phlebovirus-like envelope protein in a hookworm endogenous virus. SCIENCE ADVANCES 2022; 8:eabj6894. [PMID: 35544562 PMCID: PMC9094657 DOI: 10.1126/sciadv.abj6894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 03/25/2022] [Indexed: 05/02/2023]
Abstract
Endogenous viral elements (EVEs), accounting for 15% of our genome, serve as a genetic reservoir from which new genes can emerge. Nematode EVEs are particularly diverse and informative of virus evolution. We identify Atlas virus-an intact retrovirus-like EVE in the human hookworm Ancylostoma ceylanicum, with an envelope protein genetically related to GN-GC glycoproteins from the family Phenuiviridae. A cryo-EM structure of Atlas GC reveals a class II viral membrane fusion protein fold not previously seen in retroviruses. Atlas GC has the structural hallmarks of an active fusogen. Atlas GC trimers insert into membranes with endosomal lipid compositions and low pH. When expressed on the plasma membrane, Atlas GC has cell-cell fusion activity. With its preserved biological activities, Atlas GC has the potential to acquire a cellular function. Our work reveals structural plasticity in reverse-transcribing RNA viruses.
Collapse
Affiliation(s)
- Monique Merchant
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge School of Clinical Medicine, Cambridge CB2 0AW, UK
| | - Carlos P. Mata
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge School of Clinical Medicine, Cambridge CB2 0AW, UK
| | - Yangci Liu
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge School of Clinical Medicine, Cambridge CB2 0AW, UK
| | - Haoming Zhai
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge School of Clinical Medicine, Cambridge CB2 0AW, UK
| | - Anna V. Protasio
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
- Christ’s College, University of Cambridge, St Andrew’s Street, Cambridge, CB2 3BU, UK
| | - Yorgo Modis
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), University of Cambridge School of Clinical Medicine, Cambridge CB2 0AW, UK
| |
Collapse
|
5
|
Ren F, Shen S, Wang Q, Wei G, Huang C, Wang H, Ning YJ, Zhang DY, Deng F. Recent Advances in Bunyavirus Reverse Genetics Research: Systems Development, Applications, and Future Perspectives. Front Microbiol 2021; 12:771934. [PMID: 34950119 PMCID: PMC8689132 DOI: 10.3389/fmicb.2021.771934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/03/2021] [Indexed: 12/25/2022] Open
Abstract
Bunyaviruses are members of the Bunyavirales order, which is the largest group of RNA viruses, comprising 12 families, including a large group of emerging and re-emerging viruses. These viruses can infect a wide variety of species worldwide, such as arthropods, protozoans, plants, animals, and humans, and pose substantial threats to the public. In view of the fact that a better understanding of the life cycle of a highly pathogenic virus is often a precondition for developing vaccines and antivirals, it is urgent to develop powerful tools to unravel the molecular basis of the pathogenesis. However, biosafety level −3 or even −4 containment laboratory is considered as a necessary condition for working with a number of bunyaviruses, which has hampered various studies. Reverse genetics systems, including minigenome (MG), infectious virus-like particle (iVLP), and infectious full-length clone (IFLC) systems, are capable of recapitulating some or all steps of the viral replication cycle; among these, the MG and iVLP systems have been very convenient and effective tools, allowing researchers to manipulate the genome segments of pathogenic viruses at lower biocontainment to investigate the viral genome transcription, replication, virus entry, and budding. The IFLC system is generally developed based on the MG or iVLP systems, which have facilitated the generation of recombinant infectious viruses. The MG, iVLP, and IFLC systems have been successfully developed for some important bunyaviruses and have been widely employed as powerful tools to investigate the viral replication cycle, virus–host interactions, virus pathogenesis, and virus evolutionary process. The majority of bunyaviruses is generally enveloped negative-strand RNA viruses with two to six genome segments, of which the viruses with bipartite and tripartite genome segments have mostly been characterized. This review aimed to summarize current knowledge on reverse genetic studies of representative bunyaviruses causing severe diseases in humans and animals, which will contribute to the better understanding of the bunyavirus replication cycle and provide some hints for developing designed antivirals.
Collapse
Affiliation(s)
- Fuli Ren
- Research Center for Translational Medicine, Wuhan Jinyintan Hospital, Wuhan, China.,State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Shu Shen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Qiongya Wang
- Research Center for Translational Medicine, Wuhan Jinyintan Hospital, Wuhan, China
| | - Gang Wei
- Research Center for Translational Medicine, Wuhan Jinyintan Hospital, Wuhan, China
| | - Chaolin Huang
- Research Center for Translational Medicine, Wuhan Jinyintan Hospital, Wuhan, China
| | - Hualin Wang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Yun-Jia Ning
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Ding-Yu Zhang
- Research Center for Translational Medicine, Wuhan Jinyintan Hospital, Wuhan, China
| | - Fei Deng
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
6
|
Hayashi M, Schultz EP, Lanchy JM, Lodmell JS. Time-Resolved Analysis of N-RNA Interactions during RVFV Infection Shows Qualitative and Quantitative Shifts in RNA Encapsidation and Packaging. Viruses 2021; 13:2417. [PMID: 34960686 PMCID: PMC8704896 DOI: 10.3390/v13122417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022] Open
Abstract
Rift Valley fever virus (RVFV) is a negative-sense, tripartite RNA virus that is endemic to Africa and the Arabian Peninsula. It can cause severe disease and mortality in humans and domestic livestock and is a concern for its potential to spread more globally. RVFV's nucleocapsid protein (N) is an RNA-binding protein that is necessary for viral transcription, replication, and the production of nascent viral particles. We have conducted crosslinking, immunoprecipitation, and sequencing (CLIP-seq) to characterize N interactions with host and viral RNAs during infection. In parallel, to precisely measure intracellular N levels, we employed multiple reaction monitoring mass spectrometry (MRM-MS). Our results show that N binds mostly to host RNAs at early stages of infection, yielding nascent virus particles of reduced infectivity. The expression of N plateaus 10 h post-infection, whereas the intracellular viral RNA concentration continues to increase. Moreover, the virions produced later in infection have higher infectivity. Taken together, the detailed examination of these N-RNA interactions provides insight into how the regulated expression of N and viral RNA produces both infectious and incomplete, noninfectious particles.
Collapse
Affiliation(s)
- Miyuki Hayashi
- Department of Chemistry and Biochemistry, University of Montana, Missoula, MT 59812, USA;
- Center for Biomolecular Structure and Dynamics, Missoula, MT 59812, USA;
| | - Eric P. Schultz
- Center for Biomolecular Structure and Dynamics, Missoula, MT 59812, USA;
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA;
| | - Jean-Marc Lanchy
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA;
| | - J. Stephen Lodmell
- Center for Biomolecular Structure and Dynamics, Missoula, MT 59812, USA;
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA;
| |
Collapse
|
7
|
El-Sissi AF, Mohamed FH, Danial NM, Gaballah AQ, Ali KA. Chitosan and chitosan nanoparticles as adjuvant in local Rift Valley Fever inactivated vaccine. 3 Biotech 2020; 10:88. [PMID: 32089983 DOI: 10.1007/s13205-020-2076-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 01/18/2020] [Indexed: 02/04/2023] Open
Abstract
The present study aimed to improve the potency of inactivated Rift Valley Fever Virus (RVFV) vaccine using chitosan (CS) or chitosan nanoparticles (CNP) as adjuvants. Chitosan nanoparticles were prepared by ionic gelation method. Rift Valley Fever Virus (RVFV) inactivated antigen was loaded on CS and CNP to form two vaccine formulations, RVFV-chitosan nanoparticles based vaccine (RVFV-CNP) and RVFV chitosan based vaccine (RVFV-CS). Five groups of mice were used in this study, each group was injected with one of the following: phosphate buffer saline (group1 G1), RVFV-CNP (G2), (RVF-CS) (G3), RVFV-Alum based vaccine (RVFV-Alum) (G4) and adjuvant free RVFV inactivated antigen (RVFV-Ag) (G5). The immunization was performed twice with 2 weeks interval. The results showed that, RVFV-CNP vaccine enhanced strongly the phagocytic activity of peritoneal macrophage (PM), neutralization antibodies titer against RVFV and IgG values against RVFV nucleoprotein than other vaccine formulations did. In addition, the RVFV-CNP and RVF-CS vaccines upregulate the gene expression of IL-2, IFN-γ (which promote cell mediated immunity) and IL-4 (which promote humeral immunity), while RVFV-Alum vaccine upregulate the gene expression of IL-4 only. These findings indicated that CS and CNP were comparable to the alum as adjuvant in efficacy but superior to it in inducing cell-mediated immune response and might be a candidate adjuvant for inactivated RVFV vaccine.
Collapse
Affiliation(s)
- Ashgan F El-Sissi
- Department of Immunology, Animal Health Research Institute, Dokki, Cairo, Egypt
| | - Farida H Mohamed
- Department of Immunology, Animal Health Research Institute, Dokki, Cairo, Egypt
| | - Nadia M Danial
- Department of Virology, Animal Health Research Institute, Dokki, Cairo, Egypt
| | - Ali Q Gaballah
- 3Holding Company for Biological products and Vaccines (VACSERA), Giza, Egypt
| | - Korany A Ali
- 4Applied Organic Chemistry Department, Center of Excellence, Advanced Materials and Nanotechnology Group, National Research Centre, Dokki, Giza, 12622 Egypt
| |
Collapse
|
8
|
Teklue T, Sun Y, Abid M, Luo Y, Qiu HJ. Current status and evolving approaches to African swine fever vaccine development. Transbound Emerg Dis 2019; 67:529-542. [PMID: 31538406 DOI: 10.1111/tbed.13364] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 08/22/2019] [Accepted: 09/09/2019] [Indexed: 12/21/2022]
Abstract
African swine fever (ASF) is a highly lethal haemorrhagic disease of swine caused by African swine fever virus (ASFV), a unique and genetically complex virus. The disease continues to be a huge burden to the pig industry in Africa, Europe and recently in Asia, especially China. The purpose of this review was to recapitulate the current scenarios and evolving trends in ASF vaccine development. The unavailability of an applicable ASF vaccine is partly due to the complex nature of the virus, which encodes various proteins associated with immune evasion. Moreover, the incomplete understanding of immune protection determinants of ASFV hampers the rational vaccine design. Developing an effective ASF vaccine continues to be a challenging task due to many undefined features of ASFV immunobiology. Recent attempts on DNA and live attenuated ASF vaccines have been reported with promising efficacy, and especially live attenuated vaccines have been proved to provide complete homologous protection. Single-cycle viral vaccines have been developed for various diseases such as Rift Valley fever and bluetongue, and the rational extension of these strategies could be helpful for developing single-cycle ASF vaccines. Therefore, live attenuated vaccines in short term and single-cycle vaccines in long term would be the next generation of ASF vaccines.
Collapse
Affiliation(s)
- Teshale Teklue
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.,Tigray Agricultural Research Institute, Mekelle, Ethiopia
| | - Yuan Sun
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Muhammad Abid
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yuzi Luo
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Hua-Ji Qiu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
9
|
Terasaki K, Juelich TL, Smith JK, Kalveram B, Perez DD, Freiberg AN, Makino S. A single-cycle replicable Rift Valley fever phlebovirus vaccine carrying a mutated NSs confers full protection from lethal challenge in mice. Sci Rep 2018; 8:17097. [PMID: 30459418 PMCID: PMC6244155 DOI: 10.1038/s41598-018-35472-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 11/05/2018] [Indexed: 11/09/2022] Open
Abstract
Rift Valley fever phlebovirus (RVFV) is a pathogen of Rift Valley fever, which is a mosquito-borne zoonotic disease for domestic livestock and humans in African countries. Currently, no approved vaccine is available for use in non-endemic areas. The MP-12 strain is so far the best live attenuated RVFV vaccine candidate because of its good protective efficacy in animal models. However, there are safety concerns for use of MP-12 in humans. We previously developed a single-cycle replicable MP-12 (scMP-12) which lacks NSs gene and undergoes only a single round of viral replication because of its impaired ability to induce membrane-membrane fusion. In the present study, we generated an scMP-12 mutant (scMP-12-mutNSs) carrying a mutant NSs, which degrades double-stranded RNA-dependent protein kinase R but does not inhibit host transcription. Immunization of mice with a single dose (105 PFU) of scMP-12-mutNSs elicited RVFV neutralizing antibodies and high titers of anti-N IgG production and fully protected the mice from lethal wild-type RVFV challenge. Immunogenicity and protective efficacy of scMP-12-mutNSs were better than scMP-12, demonstrating that scMP-12-mutNSs is a more efficacious vaccine candidate than scMP-12. Furthermore, our data suggested that RVFV vaccine efficacy can be improved by using this specific NSs mutant.
Collapse
Affiliation(s)
- Kaori Terasaki
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, 77555-1019, United States.,Institute for Human Infection and Immunity, The University of Texas Medical Branch, Galveston, Texas, 77555-1019, United States
| | - Terry L Juelich
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, 77555-1019, United States
| | - Jennifer K Smith
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, 77555-1019, United States
| | - Birte Kalveram
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, 77555-1019, United States
| | - David D Perez
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, 77555-1019, United States
| | - Alexander N Freiberg
- Department of Pathology, The University of Texas Medical Branch, Galveston, Texas, 77555-1019, United States.,Center for Biodefense and Emerging Infectious Diseases, The University of Texas Medical Branch, Galveston, Texas, 77555-1019, United States.,UTMB Center for Tropical Diseases, The University of Texas Medical Branch, Galveston, Texas, 77555-1019, United States.,The Sealy Institute for Vaccine Sciences, The University of Texas Medical Branch, Galveston, Texas, 77555-1019, United States.,Institute for Human Infection and Immunity, The University of Texas Medical Branch, Galveston, Texas, 77555-1019, United States
| | - Shinji Makino
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, Texas, 77555-1019, United States. .,Center for Biodefense and Emerging Infectious Diseases, The University of Texas Medical Branch, Galveston, Texas, 77555-1019, United States. .,UTMB Center for Tropical Diseases, The University of Texas Medical Branch, Galveston, Texas, 77555-1019, United States. .,The Sealy Institute for Vaccine Sciences, The University of Texas Medical Branch, Galveston, Texas, 77555-1019, United States. .,Institute for Human Infection and Immunity, The University of Texas Medical Branch, Galveston, Texas, 77555-1019, United States.
| |
Collapse
|
10
|
Holbrook MR. Will a Single-Cycle Adenovirus Vaccine Be Effective Against Ebola Virus? J Infect Dis 2018; 218:1858-1860. [PMID: 29982527 PMCID: PMC6217716 DOI: 10.1093/infdis/jiy412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 07/02/2018] [Indexed: 11/12/2022] Open
Affiliation(s)
- Michael R Holbrook
- Battelle Memorial Institute, National Institute of Allergy and Infectious Diseases Integrated Research Facility, Fort Detrick, Maryland
| |
Collapse
|
11
|
Guardado-Calvo P, Atkovska K, Jeffers SA, Grau N, Backovic M, Pérez-Vargas J, de Boer SM, Tortorici MA, Pehau-Arnaudet G, Lepault J, England P, Rottier PJ, Bosch BJ, Hub JS, Rey FA. A glycerophospholipid-specific pocket in the RVFV class II fusion protein drives target membrane insertion. Science 2018; 358:663-667. [PMID: 29097548 DOI: 10.1126/science.aal2712] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 07/20/2017] [Accepted: 09/25/2017] [Indexed: 12/19/2022]
Abstract
The Rift Valley fever virus (RVFV) is transmitted by infected mosquitoes, causing severe disease in humans and livestock across Africa. We determined the x-ray structure of the RVFV class II fusion protein Gc in its postfusion form and in complex with a glycerophospholipid (GPL) bound in a conserved cavity next to the fusion loop. Site-directed mutagenesis and molecular dynamics simulations further revealed a built-in motif allowing en bloc insertion of the fusion loop into membranes, making few nonpolar side-chain interactions with the aliphatic moiety and multiple polar interactions with lipid head groups upon membrane restructuring. The GPL head-group recognition pocket is conserved in the fusion proteins of other arthropod-borne viruses, such as Zika and chikungunya viruses, which have recently caused major epidemics worldwide.
Collapse
Affiliation(s)
- P Guardado-Calvo
- Institut Pasteur, Département de Virologie, Unité de Virologie Structurale, 75724 Paris Cedex 15, France. .,UMR 3569 Virologie, CNRS-Institut Pasteur, 25-28 Rue du Docteur Roux, 75015 Paris, France
| | - K Atkovska
- Institute for Microbiology and Genetics, University of Goettingen, Justus-von-Liebig weg 11, 37077 Göttingen, Germany
| | - S A Jeffers
- Institut Pasteur, Département de Virologie, Unité de Virologie Structurale, 75724 Paris Cedex 15, France.,UMR 3569 Virologie, CNRS-Institut Pasteur, 25-28 Rue du Docteur Roux, 75015 Paris, France
| | - N Grau
- Institut Pasteur, Département de Virologie, Unité de Virologie Structurale, 75724 Paris Cedex 15, France.,UMR 3569 Virologie, CNRS-Institut Pasteur, 25-28 Rue du Docteur Roux, 75015 Paris, France
| | - M Backovic
- Institut Pasteur, Département de Virologie, Unité de Virologie Structurale, 75724 Paris Cedex 15, France.,UMR 3569 Virologie, CNRS-Institut Pasteur, 25-28 Rue du Docteur Roux, 75015 Paris, France
| | - J Pérez-Vargas
- Institut Pasteur, Département de Virologie, Unité de Virologie Structurale, 75724 Paris Cedex 15, France.,UMR 3569 Virologie, CNRS-Institut Pasteur, 25-28 Rue du Docteur Roux, 75015 Paris, France
| | - S M de Boer
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - M A Tortorici
- Institut Pasteur, Département de Virologie, Unité de Virologie Structurale, 75724 Paris Cedex 15, France.,UMR 3569 Virologie, CNRS-Institut Pasteur, 25-28 Rue du Docteur Roux, 75015 Paris, France
| | - G Pehau-Arnaudet
- UMR 3528, CNRS, Institut Pasteur, 25-28 rue du Docteur Roux, 75015 Paris, France
| | - J Lepault
- Institut de Biologie Intégrative de la Cellule, CNRS (UMR 9198), Gif-sur-Yvette, France
| | - P England
- UMR 3528, CNRS, Institut Pasteur, 25-28 rue du Docteur Roux, 75015 Paris, France.,Proteopole, Plateforme de Biophysique des Macromolécules et de leurs Interactions (PFBMI), Institut Pasteur, 25-28 rue du Dr Roux, F-75724 Paris Cedex 15, France
| | - P J Rottier
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - B J Bosch
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - J S Hub
- Institute for Microbiology and Genetics, University of Goettingen, Justus-von-Liebig weg 11, 37077 Göttingen, Germany.
| | - F A Rey
- Institut Pasteur, Département de Virologie, Unité de Virologie Structurale, 75724 Paris Cedex 15, France. .,UMR 3569 Virologie, CNRS-Institut Pasteur, 25-28 Rue du Docteur Roux, 75015 Paris, France
| |
Collapse
|
12
|
Abstract
The Bunyavirales Order encompasses nine families of enveloped viruses containing a single-stranded negative-sense RNA genome divided into three segments. The small (S) and large (L) segments encode proteins participating in genome replication in the infected cell cytoplasm. The middle (M) segment encodes the viral glycoproteins Gn and Gc, which are derived from a precursor polyprotein by host cell proteases. Entry studies are available only for a few viruses in the Order, and in each case they were shown to enter cells via receptor-mediated endocytosis. The acidic endosomal pH triggers the fusion of the viral envelope with the membrane of an endosome. Structural studies on two members of this Order, the phleboviruses and the hantaviruses, have shown that the membrane fusion protein Gc displays a class II fusion protein fold and is homologous to its counterparts in flaviviruses and alphaviruses, which are positive-sense, single-stranded RNA viruses. We analyze here recent data on the structure and function of the structure of the phlebovirus Gc and hantavirus Gn and Gc glycoproteins, and extrapolate common features identified in the amino acid sequences to understand also the structure and function of their counterparts in other families of the Bunyavirales Order. Our analysis also identified clear structural homology between the hantavirus Gn and alphavirus E2 glycoproteins, which make a heterodimer with the corresponding fusion proteins Gc and E1, respectively, revealing that not only the fusion protein has been conserved across viral families.
Collapse
Affiliation(s)
- Pablo Guardado-Calvo
- Institut Pasteur, Unité de Virologie Structurale, Paris Cedex 15, France; CNRS UMR 3569 Virologie, Paris Cedex 15, France
| | - Félix A Rey
- Institut Pasteur, Unité de Virologie Structurale, Paris Cedex 15, France; CNRS UMR 3569 Virologie, Paris Cedex 15, France.
| |
Collapse
|
13
|
Abstract
Rift Valley fever virus (RVFV) (genus Phlebovirus, family Bunyaviridae) is an arbovirus that causes severe disease in humans and livestock in sub-Saharan African countries. The virus carries a tripartite, single-stranded, and negative-sense RNA genome, designated as L, M, and S RNAs. RVFV spread can be prevented by the effective vaccination of animals and humans. Although the MP-12 strain of RVFV is a live attenuated vaccine candidate, MP-12 showed neuroinvasiveness and neurovirulence in young mice and immunodeficiency mice. Hence, there is a concern for the use of MP-12 to certain individuals, especially those that are immunocompromised. To improve MP-12 safety, we have generated a single-cycle, replicable MP-12 (scMP-12), which carries L RNA, S RNA encoding green fluorescent protein in place of a viral nonstructural protein NSs, and an M RNA encoding a mutant envelope protein lacking an endoplasmic reticulum retrieval signal and defective for membrane fusion function. The scMP-12 undergoes efficient amplification in the Vero-G cell line, which is a Vero cell line stably expressing viral envelope proteins, while it undergoes single-cycle replication in naïve cells and completely lacks neurovirulence in suckling mice after intracranial inoculation. A single-dose vaccination of mice with scMP-12 confers protective immunity. Thus, scMP-12 represents a new, promising RVF vaccine candidate. Here we describe protocols for scMP-12 generation by using a reverse genetics system, establishment of Vero-G cells, and titration of scMP-12 in Vero-G cells.
Collapse
|
14
|
Middle East Respiratory Syndrome Coronavirus nsp1 Inhibits Host Gene Expression by Selectively Targeting mRNAs Transcribed in the Nucleus while Sparing mRNAs of Cytoplasmic Origin. J Virol 2015; 89:10970-81. [PMID: 26311885 DOI: 10.1128/jvi.01352-15] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 08/15/2015] [Indexed: 02/08/2023] Open
Abstract
UNLABELLED The newly emerged Middle East respiratory syndrome coronavirus (MERS-CoV) and severe acute respiratory syndrome CoV (SARS-CoV) represent highly pathogenic human CoVs that share a property to inhibit host gene expression at the posttranscriptional level. Similar to the nonstructural protein 1 (nsp1) of SARS-CoV that inhibits host gene expression at the translational level, we report that MERS-CoV nsp1 also exhibits a conserved function to negatively regulate host gene expression by inhibiting host mRNA translation and inducing the degradation of host mRNAs. Furthermore, like SARS-CoV nsp1, the mRNA degradation activity of MERS-CoV nsp1, most probably triggered by its ability to induce an endonucleolytic RNA cleavage, was separable from its translation inhibitory function. Despite these functional similarities, MERS-CoV nsp1 used a strikingly different strategy that selectively targeted translationally competent host mRNAs for inhibition. While SARS-CoV nsp1 is localized exclusively in the cytoplasm and binds to the 40S ribosomal subunit to gain access to translating mRNAs, MERS-CoV nsp1 was distributed in both the nucleus and the cytoplasm and did not bind stably to the 40S subunit, suggesting a distinctly different mode of targeting translating mRNAs. Interestingly, consistent with this notion, MERS-CoV nsp1 selectively targeted mRNAs, which are transcribed in the nucleus and transported to the cytoplasm, for translation inhibition and mRNA degradation but spared exogenous mRNAs introduced directly into the cytoplasm or virus-like mRNAs that originate in the cytoplasm. Collectively, these data point toward a novel viral strategy wherein the cytoplasmic origin of MERS-CoV mRNAs facilitates their escape from the inhibitory effects of MERS-CoV nsp1. IMPORTANCE Middle East respiratory syndrome coronavirus (MERS-CoV) is a highly pathogenic human CoV that emerged in Saudi Arabia in 2012. MERS-CoV has a zoonotic origin and poses a major threat to public health. However, little is known about the viral factors contributing to the high virulence of MERS-CoV. Many animal viruses, including CoVs, encode proteins that interfere with host gene expression, including those involved in antiviral immune responses, and these viral proteins are often major virulence factors. The nonstructural protein 1 (nsp1) of CoVs is one such protein that inhibits host gene expression and is a major virulence factor. This study presents evidence for a strategy used by MERS-CoV nsp1 to inhibit host gene expression that has not been described previously for any viral protein. The present study represents a meaningful step toward a better understanding of the factors and molecular mechanisms governing the virulence and pathogenesis of MERS-CoV.
Collapse
|
15
|
Mansfield KL, Banyard AC, McElhinney L, Johnson N, Horton DL, Hernández-Triana LM, Fooks AR. Rift Valley fever virus: A review of diagnosis and vaccination, and implications for emergence in Europe. Vaccine 2015; 33:5520-5531. [PMID: 26296499 DOI: 10.1016/j.vaccine.2015.08.020] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 06/12/2015] [Accepted: 08/05/2015] [Indexed: 12/14/2022]
Abstract
Rift Valley fever virus (RVFV) is a mosquito-borne virus, and is the causative agent of Rift Valley fever (RVF), a zoonotic disease characterised by an increased incidence of abortion or foetal malformation in ruminants. Infection in humans can also lead to clinical manifestations that in severe cases cause encephalitis or haemorrhagic fever. The virus is endemic throughout much of the African continent. However, the emergence of RVFV in the Middle East, northern Egypt and the Comoros Archipelago has highlighted that the geographical range of RVFV may be increasing, and has led to the concern that an incursion into Europe may occur. At present, there is a limited range of veterinary vaccines available for use in endemic areas, and there is no licensed human vaccine. In this review, the methods available for diagnosis of RVFV infection, the current status of vaccine development and possible implications for RVFV emergence in Europe, are discussed.
Collapse
Affiliation(s)
- Karen L Mansfield
- Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal and Plant Health Agency, Woodham Lane, New Haw KT15 3NB, UK.
| | - Ashley C Banyard
- Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal and Plant Health Agency, Woodham Lane, New Haw KT15 3NB, UK
| | - Lorraine McElhinney
- Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal and Plant Health Agency, Woodham Lane, New Haw KT15 3NB, UK; NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, Liverpool L69 7BE, UK
| | - Nicholas Johnson
- Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal and Plant Health Agency, Woodham Lane, New Haw KT15 3NB, UK
| | - Daniel L Horton
- School of Veterinary Medicine, University of Surrey, Guildford GU2 7XH, UK
| | - Luis M Hernández-Triana
- Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal and Plant Health Agency, Woodham Lane, New Haw KT15 3NB, UK
| | - Anthony R Fooks
- Wildlife Zoonoses and Vector-borne Diseases Research Group, Animal and Plant Health Agency, Woodham Lane, New Haw KT15 3NB, UK; NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, Liverpool L69 7BE, UK; Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool L69 7BE, UK
| |
Collapse
|
16
|
Terasaki K, Tercero BR, Makino S. Single-cycle replicable Rift Valley fever virus mutants as safe vaccine candidates. Virus Res 2015; 216:55-65. [PMID: 26022573 DOI: 10.1016/j.virusres.2015.05.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Revised: 05/05/2015] [Accepted: 05/06/2015] [Indexed: 10/23/2022]
Abstract
Rift Valley fever virus (RVFV) is an arbovirus circulating between ruminants and mosquitoes to maintain its enzootic cycle. Humans are infected with RVFV through mosquito bites or direct contact with materials of infected animals. The virus causes Rift Valley fever (RVF), which was first recognized in the Great Rift Valley of Kenya in 1931. RVF is characterized by a febrile illness resulting in a high rate of abortions in ruminants and an acute febrile illness, followed by fatal hemorrhagic fever and encephalitis in humans. Initially, the virus was restricted to the eastern region of Africa, but the disease has now spread to southern and western Africa, as well as outside of the African continent, e.g., Madagascar, Saudi Arabia and Yemen. There is a serious concern that the virus may spread to other areas, such as North America and Europe. As vaccination is an effective tool to control RVFV epidemics, formalin-inactivated vaccines and live-attenuated RVFV vaccines have been used in endemic areas. The formalin-inactivated vaccines require boosters for effective protection, whereas the live-attenuated vaccines enable the induction of protective immunity by a single vaccination. However, the use of live-attenuated RVFV vaccines for large human populations having a varied health status is of concern, because of these vaccines' residual neuro-invasiveness and neurovirulence. Recently, novel vaccine candidates have been developed using replication-defective RVFV that can undergo only a single round of replication in infected cells. The single-cycle replicable RVFV does not cause systemic infection in immunized hosts, but enables the conferring of protective immunity. This review summarizes the properties of various RVFV vaccines and recent progress on the development of the single-cycle replicable RVFV vaccines.
Collapse
Affiliation(s)
- Kaori Terasaki
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX 77555-1019, USA.
| | - Breanna R Tercero
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX 77555-1019, USA
| | - Shinji Makino
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX 77555-1019, USA; Center for Biodefense and Emerging Infectious Diseases, The University of Texas Medical Branch, Galveston, TX 77555-1019, USA; UTMB Center for Tropical Diseases, The University of Texas Medical Branch, Galveston, TX 77555-1019, USA; Sealy Center for Vaccine Development, The University of Texas Medical Branch, Galveston, TX 77555-1019, USA; Institute for Human Infections and Immunity, The University of Texas Medical Branch, Galveston, TX 77555-1019, USA
| |
Collapse
|