1
|
Perera DJ, Koger-Pease C, Paulini K, Daoudi M, Ndao M. Beyond schistosomiasis: unraveling co-infections and altered immunity. Clin Microbiol Rev 2024; 37:e0009823. [PMID: 38319102 PMCID: PMC10938899 DOI: 10.1128/cmr.00098-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024] Open
Abstract
Schistosomiasis is a neglected tropical disease caused by the helminth Schistosoma spp. and has the second highest global impact of all parasites. Schistosoma are transmitted through contact with contaminated fresh water predominantly in Africa, Asia, the Middle East, and South America. Due to the widespread prevalence of Schistosoma, co-infection with other infectious agents is common but often poorly described. Herein, we review recent literature describing the impact of Schistosoma co-infection between species and Schistosoma co-infection with blood-borne protozoa, soil-transmitted helminths, various intestinal protozoa, Mycobacterium, Salmonella, various urinary tract infection-causing agents, and viral pathogens. In each case, disease severity and, of particular interest, the immune landscape, are altered as a consequence of co-infection. Understanding the impact of schistosomiasis co-infections will be important when considering treatment strategies and vaccine development moving forward.
Collapse
Affiliation(s)
- Dilhan J. Perera
- Division of Experimental Medicine, McGill University, Montreal, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Cal Koger-Pease
- Division of Experimental Medicine, McGill University, Montreal, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, Canada
| | - Kayla Paulini
- Department of Microbiology and Immunology, McGill University, Montreal, Canada
| | - Mohamed Daoudi
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Canada
| | - Momar Ndao
- Division of Experimental Medicine, McGill University, Montreal, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montreal, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, Canada
- National Reference Centre for Parasitology, Research Institute of the McGill University Health Centre, Montreal, Canada
| |
Collapse
|
2
|
Baya B, Kone B, Somboro A, Kodio O, Somboro AM, Diarra B, Traore FG, Kone D, Traore MA, Kone M, Togo AG, Sarro YS, Maiga A, Maiga M, Toloba Y, Diallo S, Murphy RL, Doumbia S. Prevalence and Clinical Relevance of Schistosoma mansoni Co-Infection with Mycobacterium tuberculosis: A Systematic Literature Review. OPEN JOURNAL OF EPIDEMIOLOGY 2023; 13:97-111. [PMID: 36910425 PMCID: PMC9997105 DOI: 10.4236/ojepi.2023.131008] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Tuberculosis disease stands for the second leading cause of death worldwide after COVID-19, most active tuberculosis cases result from the reactivation of latent TB infection through impairment of immune response. Several factors are known to sustain that process. Schistosoma mansoni, a parasite of the helminth genus that possesses switching power from an immune profile type Th1 to Th2 that favors reactivation of latent TB bacteria. The aim of the study was to assess the prevalence of the co-infection between the two endemic infections. Systematic literature was contacted at the University Clinical Research Center at the University of Sciences, Techniques, and Technologies of Bamako in Mali. Original articles were included, and full texts were reviewed to assess the prevalence and better understand the immunological changes that occur during the co-infection. In total, 3530 original articles were retrieved through database search, 53 were included in the qualitative analysis, and data from 10 were included in the meta-analysis. Prevalence of the co-infection ranged from 4% to 34% in the literature. Most of the articles reported that immunity against infection with helminth parasite and more specifically Schistosoma mansoni infection enhances latent TB reactivation through Th1/Th2. In sum, the impact of Schistosoma mansoni co-infection with Mycobacterium tuberculosis is under-investigated. Understanding the role of this endemic tropical parasite as a contributing factor to TB epidemiology and burden could help integrate its elimination as one of the strategies to achieve the END-TB objectives by the year 2035.
Collapse
Affiliation(s)
- Bocar Baya
- University Clinical Research Center (UCRC) of the University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali.,Service of Pneumopthisiology of the University Teaching Hospital of Point G, Bamako, Mali
| | - Bourahima Kone
- University Clinical Research Center (UCRC) of the University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Amadou Somboro
- University Clinical Research Center (UCRC) of the University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Ousmane Kodio
- University Clinical Research Center (UCRC) of the University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Anou Moise Somboro
- University Clinical Research Center (UCRC) of the University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Bassirou Diarra
- University Clinical Research Center (UCRC) of the University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Fah Gaoussou Traore
- University Clinical Research Center (UCRC) of the University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Drissa Kone
- Clinical Laboratory of the University Teaching Hospital of Point G, Bamako, Mali
| | - Mama Adama Traore
- Clinical Laboratory of the University Teaching Hospital of Point G, Bamako, Mali
| | - Mahamadou Kone
- University Clinical Research Center (UCRC) of the University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Antieme Georges Togo
- University Clinical Research Center (UCRC) of the University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Yeya Sadio Sarro
- University Clinical Research Center (UCRC) of the University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Almoustapha Maiga
- University Clinical Research Center (UCRC) of the University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Mamoudou Maiga
- Clinical Laboratory of the University Teaching Hospital of Point G, Bamako, Mali.,Havey Institute for Global Health (Havey IGH), Northwestern University (NU), Chicago, USA
| | - Yacouba Toloba
- Service of Pneumopthisiology of the University Teaching Hospital of Point G, Bamako, Mali
| | - Souleymane Diallo
- University Clinical Research Center (UCRC) of the University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Robert L Murphy
- Havey Institute for Global Health (Havey IGH), Northwestern University (NU), Chicago, USA
| | - Seydou Doumbia
- University Clinical Research Center (UCRC) of the University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| |
Collapse
|
3
|
Midzi H, Vengesai A, Muleya V, Kasambala M, Mduluza-Jokonya TL, Chipako I, Siamayuwa CE, Mutapi F, Naicker T, Mduluza T. Metabolomics for biomarker discovery in schistosomiasis: A systematic scoping review. FRONTIERS IN TROPICAL DISEASES 2023. [DOI: 10.3389/fitd.2023.1108317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
BackgroundMetabolomic based approaches are essential tools in the discovery of unique biomarkers for infectious diseases via high-throughput global assessment of metabolites and metabolite pathway dysregulation. This in-turn allows the development of diagnostic tools and provision of therapeutics. In this review, we aimed to give an overview of metabolite biomarkers and metabolic pathway alterations during Schistosoma haematobium and Schistosoma mansoni infections.MethodsWe conducted the review by systematically searching electronic databases and grey literature to identify relevant metabolomics studies on schistosomiasis. Arksey and O’Malley methodology for conducting systematic scoping reviews was applied. A narrative summary of results was conducted following the Preferred Reporting Items for Systematic reviews and Meta-Analyses extension for scoping review guidelines.ResultsTwelve articles included in the review identified 127 metabolites, whose concentrations were considerably altered during S. mansoni and S. haematobium infections. The metabolites were assigned to metabolic pathways involved in energy (34.6%), gut microbial (11.0%), amino acid (25.2%), nucleic acids (6.3%), immune proteins (8.7%) hormones (2.4%) and structural proteins/lipids (11.8%). Energy related metabolic pathways were the most affected during schistosome infections with metabolites such as succinate, citrate, aconitate and fumarate of the tricarbocylic acid cycle being significantly altered in organ, serum and plasma samples. Amino acid metabolism was also impacted during schistosome infections as phenylacetylglycine, alanine, taurine, 2-oxoisocaproate and 2-oxoisovalerate emerged as potent biomarkers. Elevated structural proteins such as actin, collagen and keratin concentrations were identified as biomarkers of liver fibrosis, a common pathological feature in chronic schistosomiasis infections. Hippurate was a major metabolite biomarker in the gut microbial related pathway.ConclusionsThe analysis of the literature revealed that energy related metabolic pathways are considerably altered during S. mansoni and S. haematobium infections. Therefore, their metabolites may provide biomarkers for diagnosis and prognosis in addition to providing therapeutics for parasitic infections. This scoping review has identified a need to replicate more schistosomiasis metabolomic studies in humans to complement animal-model based studies.
Collapse
|
4
|
Dibo N, Liu X, Chang Y, Huang S, Wu X. Pattern recognition receptor signaling and innate immune responses to schistosome infection. Front Cell Infect Microbiol 2022; 12:1040270. [PMID: 36339337 PMCID: PMC9633954 DOI: 10.3389/fcimb.2022.1040270] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/03/2022] [Indexed: 08/22/2023] Open
Abstract
Schistosomiasis remains to be a significant public health problem in tropical and subtropical regions. Despite remarkable progress that has been made in the control of the disease over the past decades, its elimination remains a daunting challenge in many countries. This disease is an inflammatory response-driven, and the positive outcome after infection depends on the regulation of immune responses that efficiently clear worms and allow protective immunity to develop. The innate immune responses play a critical role in host defense against schistosome infection and pathogenesis. Initial pro-inflammatory responses are essential for clearing invading parasites by promoting appropriate cell-mediated and humoral immunity. However, elevated and prolonged inflammatory responses against the eggs trapped in the host tissues contribute to disease progression. A better understanding of the molecular mechanisms of innate immune responses is important for developing effective therapies and vaccines. Here, we update the recent advances in the definitive host innate immune response to schistosome infection, especially highlighting the critical roles of pattern recognition receptors and cytokines. The considerations for further research are also provided.
Collapse
Affiliation(s)
- Nouhoum Dibo
- Department of medical parasitology, Xiangya School of Basic Medicine, Central South University, Changsha, China
| | - Xianshu Liu
- Department of medical parasitology, Xiangya School of Basic Medicine, Central South University, Changsha, China
| | - Yunfeng Chang
- Department of Forensic Medicine Science, Xiangya School of Basic Medicine, Central South University, Yueyang, China
| | - Shuaiqin Huang
- Department of medical parasitology, Xiangya School of Basic Medicine, Central South University, Changsha, China
- Hunan Provincial Key Lab of Immunology and Transmission Control on Schistosomiasis, Hunan Provincial Institute of Schistosomiasis Control, Yueyang, China
| | - Xiang Wu
- Department of medical parasitology, Xiangya School of Basic Medicine, Central South University, Changsha, China
- Hunan Provincial Key Lab of Immunology and Transmission Control on Schistosomiasis, Hunan Provincial Institute of Schistosomiasis Control, Yueyang, China
| |
Collapse
|
5
|
Cytokine Response Profiles of School-Aged Children Infected with Schistosomiasis before and after Praziquantel Treatment. J Trop Med 2021; 2021:6678981. [PMID: 34239575 PMCID: PMC8233078 DOI: 10.1155/2021/6678981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/09/2021] [Accepted: 06/11/2021] [Indexed: 11/25/2022] Open
Abstract
Schistosomiasis is a parasitic disease that affects millions of people in 78 countries globally. Children under the age of 14, who have the chronic disease may suffer from anemia and malnutrition that contribute to lost days at school and pervasive learning disabilities. The infection is prevalent in Kenya, especially in endemic areas, contributing to significant morbidity. The cellular response pattern is associated with both the acute and chronic phases of the disease, in which cytokines play a critical role. The objective of this study was to evaluate the cytokine profiles of IL-4, IL-2, IL-10, IL-5, IFN-γ, and TNF in serum samples of infected school-aged children by using flow cytometry before and after treatment. The analysis indicated a shift in the expression of the cytokines after treatment with all the cytokines being downregulated, except TNF. There was a general trend of decrease in the expression of the cytokines at six and twelve weeks after treatment as compared to the pretreatment levels. There were statistically significant differences in the expression in IL-2 (P=0.001∗∗), IL-4 (P=0.033∗), IL-10 (P=0.001∗∗∗), IFN-γ (P=0.023∗), and IL-5 (P=0.0001∗∗∗), except in TNF (P=0.095). The reduction in the cytokine levels can be directly related to the influence of the drug praziquantel, modulating the cytokine response by elimination of adult worms, decline in parasitic load, and reduction of morbidity. Therefore, cytokine response is directly related with the influence of treatment in the variation of the immune response.
Collapse
|
6
|
Arndts K, Elfaki TEM, Jelden N, Ritter M, Wiszniewsky A, Katawa G, Goreish IA, Atti El Mekki MEYA, Doenhoff MJ, Hoerauf A, Layland LE. Schistosoma mansoni PCR + -infected individuals in the Sudan present elevated systemic levels of chemokines when compared to uninfected and egg + cohorts. Clin Exp Immunol 2019; 196:364-373. [PMID: 30724349 DOI: 10.1111/cei.13270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2019] [Indexed: 12/01/2022] Open
Abstract
Infections with Schistosoma mansoni remain a major health problem in the Sudan where endemic communities, such as those in Kassala and Khartoum states, continue to face severe social-economic difficulties. Our previous immunoepidemiological findings revealed different immune [cytokine and S. mansoni egg (SEA) antibody] profiles in individuals with active infections (eggs in stool n = 110), individuals positive for S. mansoni via polymerase chain reaction (PCR) using sera (SmPCR+ n = 63) and those uninfected (Sm uninf). As antibody responses to eggs and worms are known to change during infection, we have expanded the profiling further by determining levels of adult worm (SWA) antibodies and nine chemokines in the serum of each individual in the three different cohorts. With the exception of C-C motif chemokine ligand (CCL)2, all measured chemokines were significantly higher in SmPCR+ individuals when compared to the egg+ group and in addition they also presented elevated levels of SWA-specific immunoglobulin (Ig)G2. Multivariable regression analysis further revealed that infection per se was strongly linked to SWA-specific IgG3 levels and CCL5 was strongly associated with a SmPCR+ diagnostic state. In the absence of PCR diagnostics that recognize juvenile worms or schistosomulae motives, identifying schistosome-specific traits should provide better insights into current prevalence rates in endemic communities and, in doing so, take into consideration PCR+ non-egg+ individuals in current treatment programmes.
Collapse
Affiliation(s)
- K Arndts
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital of Bonn, Bonn, Germany
| | - T E M Elfaki
- Department of Parasitology and Medical Entomology, College of Medical Laboratory Science, Sudan University of Science and Technology, Khartoum, Sudan
| | - N Jelden
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital of Bonn, Bonn, Germany
| | - M Ritter
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital of Bonn, Bonn, Germany
| | - A Wiszniewsky
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital of Bonn, Bonn, Germany
| | - G Katawa
- Ecole Supérieure des Techniques Biologiques et Alimentaires (ESTBA)/Unité d'Immunologie, Université de Lomé, Lome, Togo
| | - I A Goreish
- Animal Resources Research Corporation, Ministry of Livestock, Fisheries and Rangelands, Khartoum, Sudan
| | - M E Y A Atti El Mekki
- Department of Parasitology and Medical Entomology, College of Medical Laboratory Science, Sudan University of Science and Technology, Khartoum, Sudan
| | - M J Doenhoff
- School of Life Sciences, University of Nottingham, University Park, Nottingham, UK
| | - A Hoerauf
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital of Bonn, Bonn, Germany.,German Centre for Infection Research (DZIF), Partner Site, Bonn-Cologne, Bonn, Germany
| | - L E Layland
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital of Bonn, Bonn, Germany.,German Centre for Infection Research (DZIF), Partner Site, Bonn-Cologne, Bonn, Germany
| |
Collapse
|
7
|
Nono JK, Kamdem SD, Netongo PM, Dabee S, Schomaker M, Oumarou A, Brombacher F, Moyou-Somo R. Schistosomiasis Burden and Its Association With Lower Measles Vaccine Responses in School Children From Rural Cameroon. Front Immunol 2018; 9:2295. [PMID: 30356757 PMCID: PMC6189399 DOI: 10.3389/fimmu.2018.02295] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 09/17/2018] [Indexed: 12/19/2022] Open
Abstract
Background and Methods: Schistosomiasis is debilitating and reported to impair immune responsiveness of infected hosts. In Cameroon, mass drug administration (MDA) is used in schoolchildren to reduce transmission of S. haematobium and S. mansoni. The effects of MDA and the impact of schistosomiasis on the titers of antibodies in vaccinated children have been poorly studied. We therefore assessed the prevalence of schistosomiasis in schoolchildren, eight months after MDA, in two locations: Barombi Koto (BK), endemic for S. haematobium (N = 169) and Yoro (Y), endemic for S. mansoni (N = 356). Age, gender, residence time and frequency of contact with river water were assessed as risk factors for infection and morbidity in both localities. In 70 schoolchildren from BK and 83 from Y, ultrasound was used to assess morbidity according to the WHO guidelines. Evaluation of measles antibodies was performed in previously vaccinated schoolchildren (14 with S. haematobium and 12 egg-negative controls from BK and 47 with S. mansoni and12 egg-negative controls from Y). Principal Findings and conclusions: The prevalence of S. haematobium was 25. 4% in BK (43/169) and 34.8% for S. mansoni in Y (124/356), indicating the persistent transmission of schistosomiasis despite MDA. Older age (AOR 1.31; 95%CI 1.12–1.54) and higher frequencies of exposure to river water (AOR 1.99; 95%CI 1.03–3.86) were identified as risks for infection in BK whereas only older age (OR 1.15; 95%CI 1.04–1.27) was a risk for infection in Y. Bladder pathology (score 2 to 5) was observed in 29.2% (7/24) of egg-positive children in BK and liver pathology (pattern C) in 31.1% (19/61) of egg-positive children in Y. There was a positive correlation between S. haematobium egg burden and bladder pathology (AOR 1.01; 95% CI 0.99–1.02) and positive correlation between S. mansoni-driven liver pathology and female gender (AOR 3.01; 95% CI 0.88–10.26). Anti-measles antibodies in vaccinated children were significantly lower in S. mansoni-infected when compared to egg-negative controls (p = 0.001), which was not observed in the S. haematobium-infected group from BK. Our results demonstrate a questionable efficacy of MDA alone in halting schistosomiasis transmission and confirm a possible immunomodulatory effect of S. mansoni on response to vaccines.
Collapse
Affiliation(s)
- Justin Komguep Nono
- The Medical Research Centre, Institute of Medical Research and Medicinal Plant Studies, Ministry of Scientific Research and Innovation, Yaoundé, Cameroon.,Division of Immunology, Health Science Faculty, University of Cape Town, Cape Town, South Africa.,Cytokines and Diseases Group, International Centre for Genetic Engineering and Biotechnology, Cape Town, South Africa.,Immunology of Infectious Disease Research Unit, South African Medical Research Council, Cape Town, South Africa
| | - Severin Donald Kamdem
- Division of Immunology, Health Science Faculty, University of Cape Town, Cape Town, South Africa.,Cytokines and Diseases Group, International Centre for Genetic Engineering and Biotechnology, Cape Town, South Africa.,Immunology of Infectious Disease Research Unit, South African Medical Research Council, Cape Town, South Africa
| | | | - Smritee Dabee
- Division of Medical Virology, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Michael Schomaker
- Centre for Infectious Disease Epidemiology & Research, University of Cape Town, Cape Town, South Africa
| | | | - Frank Brombacher
- Division of Immunology, Health Science Faculty, University of Cape Town, Cape Town, South Africa.,Cytokines and Diseases Group, International Centre for Genetic Engineering and Biotechnology, Cape Town, South Africa.,Immunology of Infectious Disease Research Unit, South African Medical Research Council, Cape Town, South Africa.,Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Roger Moyou-Somo
- The Medical Research Centre, Institute of Medical Research and Medicinal Plant Studies, Ministry of Scientific Research and Innovation, Yaoundé, Cameroon
| |
Collapse
|
8
|
Floudas A, Cluxton CD, Fahel J, Khan AR, Saunders SP, Amu S, Alcami A, Fallon PG. Composition of the Schistosoma mansoni worm secretome: Identification of immune modulatory Cyclophilin A. PLoS Negl Trop Dis 2017; 11:e0006012. [PMID: 29073139 PMCID: PMC5681295 DOI: 10.1371/journal.pntd.0006012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 11/10/2017] [Accepted: 10/04/2017] [Indexed: 12/16/2022] Open
Abstract
The helminth Schistosoma mansoni modulates the infected host's immune system to facilitate its own survival, by producing excretory/secretory molecules that interact with a variety of the host's cell types including those of the immune system. Herein, we characterise the S. mansoni adult male worm secretome and identify 111 proteins, including 7 vaccine candidates and several molecules with potential immunomodulatory activity. Amongst the molecules present in the secretome, a 17-19kDa protein analogous to human cyclophilin A was identified. Given the ability of cyclophilin A to modulate the immune system by regulating antigen presenting cell activity, we sought to determine whether recombinant S. mansoni Cyclophilin A (rSmCypA) is capable of modulating bone-marrow derived dendritic cell (BMDC) and T cell responses under in vitro conditions. rSmCypA was enzymatically active and able to alter the pro-inflammatory cytokine profile of LPS-activated dendritic cells. rSmCypA also modulated DC function in the induction of CD4+ T cell proliferation with a preferential expansion of Treg cells. This work demonstrates the unique protein composition of the S. mansoni male worm secretome and immunomodulatory activity of S. mansoni Cyclophilin A.
Collapse
Affiliation(s)
- Achilleas Floudas
- Trinity Biomedical Sciences Institute, School of Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - Christopher D. Cluxton
- Trinity Biomedical Sciences Institute, School of Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - Julia Fahel
- Trinity Biomedical Sciences Institute, School of Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - Adnan R. Khan
- Trinity Biomedical Sciences Institute, School of Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - Sean P. Saunders
- Trinity Biomedical Sciences Institute, School of Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - Sylvie Amu
- Trinity Biomedical Sciences Institute, School of Medicine, Trinity College Dublin, Dublin 2, Ireland
| | - Antonio Alcami
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Madrid, Spain
| | - Padraic G. Fallon
- Trinity Biomedical Sciences Institute, School of Medicine, Trinity College Dublin, Dublin 2, Ireland
- * E-mail:
| |
Collapse
|
9
|
Elfaki TEM, Arndts K, Wiszniewsky A, Ritter M, Goreish IA, Atti El Mekki MEYA, Arriens S, Pfarr K, Fimmers R, Doenhoff M, Hoerauf A, Layland LE. Multivariable Regression Analysis in Schistosoma mansoni-Infected Individuals in the Sudan Reveals Unique Immunoepidemiological Profiles in Uninfected, egg+ and Non-egg+ Infected Individuals. PLoS Negl Trop Dis 2016; 10:e0004629. [PMID: 27152725 PMCID: PMC4859533 DOI: 10.1371/journal.pntd.0004629] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 03/24/2016] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND In the Sudan, Schistosoma mansoni infections are a major cause of morbidity in school-aged children and infection rates are associated with available clean water sources. During infection, immune responses pass through a Th1 followed by Th2 and Treg phases and patterns can relate to different stages of infection or immunity. METHODOLOGY This retrospective study evaluated immunoepidemiological aspects in 234 individuals (range 4-85 years old) from Kassala and Khartoum states in 2011. Systemic immune profiles (cytokines and immunoglobulins) and epidemiological parameters were surveyed in n = 110 persons presenting patent S. mansoni infections (egg+), n = 63 individuals positive for S. mansoni via PCR in sera but egg negative (SmPCR+) and n = 61 people who were infection-free (Sm uninf). Immunoepidemiological findings were further investigated using two binary multivariable regression analysis. PRINCIPAL FINDINGS Nearly all egg+ individuals had no access to latrines and over 90% obtained water via the canal stemming from the Atbara River. With regards to age, infection and an egg+ status was linked to young and adolescent groups. In terms of immunology, S. mansoni infection per se was strongly associated with increased SEA-specific IgG4 but not IgE levels. IL-6, IL-13 and IL-10 were significantly elevated in patently-infected individuals and positively correlated with egg load. In contrast, IL-2 and IL-1β were significantly lower in SmPCR+ individuals when compared to Sm uninf and egg+ groups which was further confirmed during multivariate regression analysis. CONCLUSIONS/SIGNIFICANCE Schistosomiasis remains an important public health problem in the Sudan with a high number of patent individuals. In addition, SmPCR diagnostics revealed another cohort of infected individuals with a unique immunological profile and provides an avenue for future studies on non-patent infection states. Future studies should investigate the downstream signalling pathways/mechanisms of IL-2 and IL-1β as potential diagnostic markers in order to distinguish patent from non-patent individuals.
Collapse
Affiliation(s)
- Tayseer Elamin Mohamed Elfaki
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital of Bonn, Bonn, Germany
- Department of Parasitology and Immunology, College of Medical Laboratory Science, Sudan University of Science and Technology, Khartoum, Sudan
| | - Kathrin Arndts
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital of Bonn, Bonn, Germany
| | - Anna Wiszniewsky
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital of Bonn, Bonn, Germany
| | - Manuel Ritter
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital of Bonn, Bonn, Germany
| | - Ibtisam A. Goreish
- Animal Resources Research Corporation, Ministry of Livestock, Fisheries and Rangelands, Khartoum, Sudan
| | - Misk El Yemen A. Atti El Mekki
- Department of Parasitology and Immunology, College of Medical Laboratory Science, Sudan University of Science and Technology, Khartoum, Sudan
| | - Sandra Arriens
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital of Bonn, Bonn, Germany
| | - Kenneth Pfarr
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital of Bonn, Bonn, Germany
| | - Rolf Fimmers
- Institute of Medical Biometry, Informatics and Epidemiology (IMBIE), University Hospital of Bonn, Bonn, Germany
| | - Mike Doenhoff
- School of Biology, University of Nottingham, Nottingham, United Kingdom
| | - Achim Hoerauf
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital of Bonn, Bonn, Germany
- German Centre for Infection Research (DZIF), partner site, Bonn-Cologne, Bonn, Germany
| | - Laura E. Layland
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital of Bonn, Bonn, Germany
- German Centre for Infection Research (DZIF), partner site, Bonn-Cologne, Bonn, Germany
- * E-mail:
| |
Collapse
|
10
|
Abstract
Schistosomiasis is a major neglected tropical disease that afflicts more than 240 million people, including many children and young adults, in the tropics and subtropics. The disease is characterized by chronic infections with significant residual morbidity and is of considerable public health importance, with substantial socioeconomic impacts on impoverished communities. Morbidity reduction and eventual elimination through integrated intervention measures are the focuses of current schistosomiasis control programs. Precise diagnosis of schistosome infections, in both mammalian and snail intermediate hosts, will play a pivotal role in achieving these goals. Nevertheless, despite extensive efforts over several decades, the search for sensitive and specific diagnostics for schistosomiasis is ongoing. Here we review the area, paying attention to earlier approaches but emphasizing recent developments in the search for new diagnostics for schistosomiasis with practical applications in the research laboratory, the clinic, and the field. Careful and rigorous validation of these assays and their cost-effectiveness will be needed, however, prior to their adoption in support of policy decisions for national public health programs aimed at the control and elimination of schistosomiasis.
Collapse
|
11
|
Epidemiological Interactions between Urogenital and Intestinal Human Schistosomiasis in the Context of Praziquantel Treatment across Three West African Countries. PLoS Negl Trop Dis 2015; 9:e0004019. [PMID: 26469347 PMCID: PMC4607489 DOI: 10.1371/journal.pntd.0004019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 07/30/2015] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND In many parts of sub-Saharan Africa, urogenital and intestinal schistosomiasis co-occur, and mixed species infections containing both Schistosoma haematobium and S. mansoni can be common. During co-infection, interactions between these two species are possible, yet the extent to which such interactions influence disease dynamics or the outcome of control efforts remains poorly understood. METHODOLOGY/PRINCIPAL FINDINGS Here we analyse epidemiological data from three West African countries co-endemic for urogenital and intestinal schistosomiasis (Senegal, Niger and Mali) to test whether the impact of praziquantel (PZQ) treatment, subsequent levels of re-infection or long-term infection dynamics are altered by co-infection. In all countries, positive associations between the two species prevailed at baseline: infection by one species tended to predict infection intensity for the other, with the strength of association varying across sites. Encouragingly, we found little evidence that co-infection influenced PZQ efficacy: species-specific egg reduction rates (ERR) and cure rates (CR) did not differ significantly with co-infection, and variation in treatment success was largely geographical. In Senegal, despite positive associations at baseline, children with S. mansoni co-infection at the time of treatment were less intensely re-infected by S. haematobium than those with single infections, suggesting competition between the species may occur post-treatment. Furthermore, the proportion of schistosome infections attributable to S. mansoni increased over time in all three countries examined. CONCLUSIONS/SIGNIFICANCE These findings suggest that while co-infection between urinary and intestinal schistosomes may not directly affect PZQ treatment efficacy, competitive interspecific interactions may influence epidemiological patterns of re-infection post-treatment. While re-infection patterns differed most strongly according to geographic location, interspecific interactions also seem to play a role, and could cause the community composition in mixed species settings to shift as disease control efforts intensify, a situation with implications for future disease management in this multi-species system.
Collapse
|
12
|
Van den Broeck F, Maes GE, Larmuseau MHD, Rollinson D, Sy I, Faye D, Volckaert FAM, Polman K, Huyse T. Reconstructing Colonization Dynamics of the Human Parasite Schistosoma mansoni following Anthropogenic Environmental Changes in Northwest Senegal. PLoS Negl Trop Dis 2015; 9:e0003998. [PMID: 26275049 PMCID: PMC4537236 DOI: 10.1371/journal.pntd.0003998] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 07/20/2015] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Anthropogenic environmental changes may lead to ecosystem destabilization and the unintentional colonization of new habitats by parasite populations. A remarkable example is the outbreak of intestinal schistosomiasis in Northwest Senegal following the construction of two dams in the '80s. While many studies have investigated the epidemiological, immunological and geographical patterns of Schistosoma mansoni infections in this region, little is known about its colonization history. METHODOLOGY/PRINCIPAL FINDINGS Parasites were collected at several time points after the disease outbreak and genotyped using a 420 bp fragment of the mitochondrial cytochrome c oxidase subunit 1 gene (cox1) and nine nuclear DNA microsatellite markers. Phylogeographic and population genetic analyses revealed the presence of (i) many genetically different haplotypes at the non-recombining mitochondrial marker and (ii) one homogenous S. mansoni genetic group at the recombining microsatellite markers. These results suggest that the S. mansoni population in Northwest Senegal was triggered by intraspecific hybridization (i.e. admixture) between parasites that were introduced from different regions. This would comply with the extensive immigration of infected seasonal agricultural workers from neighboring regions in Senegal, Mauritania and Mali. The spatial and temporal stability of the established S. mansoni population suggests a swift local adaptation of the parasite to the local intermediate snail host Biomphalaria pfeifferi at the onset of the epidemic. CONCLUSIONS/SIGNIFICANCE Our results show that S. mansoni parasites are very successful in colonizing new areas without significant loss of genetic diversity. Maintaining high levels of diversity guarantees the adaptive potential of these parasites to cope with selective pressures such as drug treatment, which might complicate efforts to control the disease.
Collapse
Affiliation(s)
- Frederik Van den Broeck
- Department of Biology, University of Leuven, Leuven, Belgium
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Gregory E. Maes
- Department of Biology, University of Leuven, Leuven, Belgium
- College of Marine and Environmental Sciences, James Cook University, Townsville, Australia
| | - Maarten H. D. Larmuseau
- Department of Biology, University of Leuven, Leuven, Belgium
- Department of Imaging and Pathology, University of Leuven, Leuven, Belgium
| | - David Rollinson
- Division of Life Sciences, Natural History Museum, London, United Kingdom
| | - Ibrahima Sy
- UFR Pharmacy, University of Caen Basse-Normandie, Caen, France
| | | | | | - Katja Polman
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Tine Huyse
- Department of Biology, University of Leuven, Leuven, Belgium
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Department of Biology, Royal Museum for Central Africa, Tervuren, Belgium
| |
Collapse
|