1
|
Ishengoma DS, Mandara CI, Madebe RA, Warsame M, Ngasala B, Kabanywanyi AM, Mahende MK, Kamugisha E, Kavishe RA, Muro F, Mandike R, Mkude S, Chacky F, Njau R, Martin T, Mohamed A, Bailey JA, Fola AA. Microsatellites reveal high polymorphism and high potential for use in anti-malarial efficacy studies in areas with different transmission intensities in mainland Tanzania. Malar J 2024; 23:79. [PMID: 38491359 PMCID: PMC10943981 DOI: 10.1186/s12936-024-04901-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 03/04/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Tanzania is currently implementing therapeutic efficacy studies (TES) in areas of varying malaria transmission intensities as per the World Health Organization (WHO) recommendations. In TES, distinguishing reinfection from recrudescence is critical for the determination of anti-malarial efficacy. Recently, the WHO recommended genotyping polymorphic coding genes, merozoite surface proteins 1 and 2 (msp1 and msp2), and replacing the glutamate-rich protein (glurp) gene with one of the highly polymorphic microsatellites in Plasmodium falciparum to adjust the efficacy of antimalarials in TES. This study assessed the polymorphisms of six neutral microsatellite markers and their potential use in TES, which is routinely performed in Tanzania. METHODS Plasmodium falciparum samples were obtained from four TES sentinel sites, Kibaha (Pwani), Mkuzi (Tanga), Mlimba (Morogoro) and Ujiji (Kigoma), between April and September 2016. Parasite genomic DNA was extracted from dried blood spots on filter papers using commercial kits. Genotyping was done using six microsatellites (Poly-α, PfPK2, TA1, C3M69, C2M34 and M2490) by capillary method, and the data were analysed to determine the extent of their polymorphisms and genetic diversity at the four sites. RESULTS Overall, 83 (88.3%) of the 94 samples were successfully genotyped (with positive results for ≥ 50.0% of the markers), and > 50.0% of the samples (range = 47.6-59.1%) were polyclonal, with a mean multiplicity of infection (MOI) ranging from 1.68 to 1.88 among the four sites. There was high genetic diversity but limited variability among the four sites based on mean allelic richness (RS = 7.48, range = 7.27-8.03, for an adjusted minimum sample size of 18 per site) and mean expected heterozygosity (He = 0.83, range = 0.80-0.85). Cluster analysis of haplotypes using STRUCTURE, principal component analysis, and pairwise genetic differentiation (FST) did not reveal population structure or clustering of parasites according to geographic origin. Of the six markers, Poly-α was the most polymorphic, followed by C2M34, TA1 and C3M69, while M2490 was the least polymorphic. CONCLUSION Microsatellite genotyping revealed high polyclonality and genetic diversity but no significant population structure. Poly-α, C2M34, TA1 and C3M69 were the most polymorphic markers, and Poly-α alone or with any of the other three markers could be adopted for use in TES in Tanzania.
Collapse
Affiliation(s)
- Deus S Ishengoma
- National Institute for Medical Research, Dar es Salaam, Tanzania.
- Faculty of Pharmaceutical Sciences, Monash University, Melbourne, Australia.
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA.
| | - Celine I Mandara
- National Institute for Medical Research, Dar es Salaam, Tanzania
| | - Rashid A Madebe
- National Institute for Medical Research, Dar es Salaam, Tanzania
| | | | - Billy Ngasala
- Department of Parasitology, School of Public Health, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
- Department of Women's and Children's Health, International Maternal and Child Health (IMCH), Uppsala University, Uppsala, Sweden
| | | | | | - Erasmus Kamugisha
- Bugando Medical Centre, Catholic University of Health and Allied Sciences, Mwanza, Tanzania
| | - Reginald A Kavishe
- Kilimanjaro Christian Medical Centre, Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Florida Muro
- Kilimanjaro Christian Medical Centre, Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Renata Mandike
- National Malaria Control Programme, Ministry of Health, Dodoma, Tanzania
| | - Sigsbert Mkude
- National Malaria Control Programme, Ministry of Health, Dodoma, Tanzania
| | - Frank Chacky
- National Malaria Control Programme, Ministry of Health, Dodoma, Tanzania
| | - Ritha Njau
- Malariologist and Public Health Specialist, Dar es Salaam, Tanzania
| | - Troy Martin
- HIV Vaccine Trials Network, Fred Hutch Cancer Research Centre, Seattle, WA, USA
| | - Ally Mohamed
- National Malaria Control Programme, Ministry of Health, Dodoma, Tanzania
| | - Jeffrey A Bailey
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Abebe A Fola
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI, USA
| |
Collapse
|
2
|
Kattenberg JH, Monsieurs P, De Meyer J, De Meulenaere K, Sauve E, de Oliveira TC, Ferreira MU, Gamboa D, Rosanas‐Urgell A. Population genomic evidence of structured and connected Plasmodium vivax populations under host selection in Latin America. Ecol Evol 2024; 14:e11103. [PMID: 38529021 PMCID: PMC10961478 DOI: 10.1002/ece3.11103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/15/2024] [Accepted: 02/20/2024] [Indexed: 03/27/2024] Open
Abstract
Pathogen genomic epidemiology has the potential to provide a deep understanding of population dynamics, facilitating strategic planning of interventions, monitoring their impact, and enabling timely responses, and thereby supporting control and elimination efforts of parasitic tropical diseases. Plasmodium vivax, responsible for most malaria cases outside Africa, shows high genetic diversity at the population level, driven by factors like sub-patent infections, a hidden reservoir of hypnozoites, and early transmission to mosquitoes. While Latin America has made significant progress in controlling Plasmodium falciparum, it faces challenges with residual P. vivax. To characterize genetic diversity and population structure and dynamics, we have analyzed the largest collection of P. vivax genomes to date, including 1474 high-quality genomes from 31 countries across Asia, Africa, Oceania, and America. While P. vivax shows high genetic diversity globally, Latin American isolates form a distinctive population, which is further divided into sub-populations and occasional clonal pockets. Genetic diversity within the continent was associated with the intensity of transmission. Population differentiation exists between Central America and the North Coast of South America, vs. the Amazon Basin, with significant gene flow within the Amazon Basin, but limited connectivity between the Northwest Coast and the Amazon Basin. Shared genomic regions in these parasite populations indicate adaptive evolution, particularly in genes related to DNA replication, RNA processing, invasion, and motility - crucial for the parasite's survival in diverse environments. Understanding these population-level adaptations is crucial for effective control efforts, offering insights into potential mechanisms behind drug resistance, immune evasion, and transmission dynamics.
Collapse
Affiliation(s)
| | - Pieter Monsieurs
- Malariology UnitInstitute of Tropical Medicine AntwerpAntwerpBelgium
| | - Julie De Meyer
- Malariology UnitInstitute of Tropical Medicine AntwerpAntwerpBelgium
- Present address:
Integrated Molecular Plant physiology Research (IMPRES) and Plants and Ecosystems (PLECO), Department of BiologyUniversity of AntwerpAntwerpBelgium
| | | | - Erin Sauve
- Malariology UnitInstitute of Tropical Medicine AntwerpAntwerpBelgium
| | - Thaís C. de Oliveira
- Department of Parasitology, Institute of Biomedical SciencesUniversity of São PauloSão PauloBrazil
| | - Marcelo U. Ferreira
- Department of Parasitology, Institute of Biomedical SciencesUniversity of São PauloSão PauloBrazil
- Global Health and Tropical Medicine, Institute of Hygiene and Tropical MedicineNova University of LisbonLisbonPortugal
| | - Dionicia Gamboa
- Instituto de Medicina Tropical “Alexander von Humboldt”Universidad Peruana Cayetano HerediaLimaPeru
- Laboratorio de Malaria: Parásitos y Vectores, Laboratorios de Investigación y Desarrollo, Departamento de Ciencias Celulares y Moleculares, Facultad de Ciencias e IngenieríaUniversidad Peruana Cayetano HerediaLimaPeru
| | | |
Collapse
|
3
|
Fola AA, Moser KA, Aydemir O, Hennelly C, Kobayashi T, Shields T, Hamapumbu H, Musonda M, Katowa B, Matoba J, Stevenson JC, Norris DE, Thuma PE, Wesolowski A, Moss WJ, Bailey JA, Juliano JJ. Temporal and spatial analysis of Plasmodium falciparum genomics reveals patterns of parasite connectivity in a low-transmission district in Southern Province, Zambia. Malar J 2023; 22:208. [PMID: 37420265 PMCID: PMC10327325 DOI: 10.1186/s12936-023-04637-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/30/2023] [Indexed: 07/09/2023] Open
Abstract
BACKGROUND Understanding temporal and spatial dynamics of malaria transmission will help to inform effective interventions and strategies in regions approaching elimination. Parasite genomics are increasingly used to monitor epidemiologic trends, including assessing residual transmission across seasons and importation of malaria into these regions. METHODS In a low and seasonal transmission setting of southern Zambia, a total of 441 Plasmodium falciparum samples collected from 8 neighbouring health centres between 2012 and 2018 were genotyped using molecular inversion probes (MIPs n = 1793) targeting a total of 1832 neutral and geographically informative SNPs distributed across the parasite genome. After filtering for quality and missingness, 302 samples and 1410 SNPs were retained and used for downstream population genomic analyses. RESULTS The analyses revealed most (67%, n = 202) infections harboured one clone (monogenomic) with some variation at local level suggesting low, but heterogenous malaria transmission. Relatedness identity-by-descent (IBD) analysis revealed variable distribution of IBD segments across the genome and 6% of pairs were highly-related (IBD ≥ 0.25). Some of the highly-related parasite populations persisted across multiple seasons, suggesting that persistence of malaria in this low-transmission region is fueled by parasites "seeding" across the dry season. For recent years, clusters of clonal parasites were identified that were dissimilar to the general parasite population, suggesting parasite populations were increasingly fragmented at small spatial scales due to intensified control efforts. Clustering analysis using PCA and t-SNE showed a lack of substantial parasite population structure. CONCLUSION Leveraging both genomic and epidemiological data provided comprehensive picture of fluctuations in parasite populations in this pre-elimination setting of southern Zambia over 7 years.
Collapse
Affiliation(s)
- Abebe A. Fola
- Department of Pathology and Laboratory Medicine, Brown University, 55 Claverick Street, Providence, RI 02906 USA
| | - Kara A. Moser
- University of North Carolina Institute for Global Health and Infectious Diseases, University of North Carolina Chapel Hill, Chapel Hill, NC 27599 USA
| | - Ozkan Aydemir
- Department of Pathology and Laboratory Medicine, Brown University, 55 Claverick Street, Providence, RI 02906 USA
| | - Chris Hennelly
- University of North Carolina Institute for Global Health and Infectious Diseases, University of North Carolina Chapel Hill, Chapel Hill, NC 27599 USA
| | - Tamaki Kobayashi
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205 USA
| | - Timothy Shields
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205 USA
| | | | | | - Ben Katowa
- Macha Research Trust, Choma District, Choma, Zambia
| | | | | | - Douglas E. Norris
- Department of Molecular Microbiology and Immunology, The Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205 USA
| | | | - Amy Wesolowski
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205 USA
| | - William J. Moss
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205 USA
- Department of Molecular Microbiology and Immunology, The Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205 USA
| | - Jeffrey A. Bailey
- Department of Pathology and Laboratory Medicine, Brown University, 55 Claverick Street, Providence, RI 02906 USA
| | - Jonathan J. Juliano
- University of North Carolina Institute for Global Health and Infectious Diseases, University of North Carolina Chapel Hill, Chapel Hill, NC 27599 USA
- Division of Infectious Diseases, School of Medicine, University of North Carolina Chapel Hill, Chapel Hill, NC 27599 USA
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina Chapel Hill, Chapel Hill, NC 27599 USA
- Curriculum in Genetics and Molecular Biology, School of Medicine, University of North Carolina Chapel Hill, Chapel Hill, NC 27599 USA
| | - the Southern, Central Africa International Center of Excellence for Malaria Research (ICEMR)
- Department of Pathology and Laboratory Medicine, Brown University, 55 Claverick Street, Providence, RI 02906 USA
- University of North Carolina Institute for Global Health and Infectious Diseases, University of North Carolina Chapel Hill, Chapel Hill, NC 27599 USA
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205 USA
- Macha Research Trust, Choma District, Choma, Zambia
- Department of Molecular Microbiology and Immunology, The Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205 USA
- Division of Infectious Diseases, School of Medicine, University of North Carolina Chapel Hill, Chapel Hill, NC 27599 USA
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina Chapel Hill, Chapel Hill, NC 27599 USA
- Curriculum in Genetics and Molecular Biology, School of Medicine, University of North Carolina Chapel Hill, Chapel Hill, NC 27599 USA
| |
Collapse
|
4
|
Holzschuh A, Lerch A, Gerlovina I, Fakih BS, Al-Mafazy AWH, Reaves EJ, Ali A, Abbas F, Ali MH, Ali MA, Hetzel MW, Yukich J, Koepfli C. Multiplexed ddPCR-amplicon sequencing reveals isolated Plasmodium falciparum populations amenable to local elimination in Zanzibar, Tanzania. Nat Commun 2023; 14:3699. [PMID: 37349311 PMCID: PMC10287761 DOI: 10.1038/s41467-023-39417-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 06/13/2023] [Indexed: 06/24/2023] Open
Abstract
Zanzibar has made significant progress toward malaria elimination, but recent stagnation requires novel approaches. We developed a highly multiplexed droplet digital PCR (ddPCR)-based amplicon sequencing method targeting 35 microhaplotypes and drug-resistance loci, and successfully sequenced 290 samples from five districts covering both main islands. Here, we elucidate fine-scale Plasmodium falciparum population structure and infer relatedness and connectivity of infections using an identity-by-descent (IBD) approach. Despite high genetic diversity, we observe pronounced fine-scale spatial and temporal parasite genetic structure. Clusters of near-clonal infections on Pemba indicate persistent local transmission with limited parasite importation, presenting an opportunity for local elimination efforts. Furthermore, we observe an admixed parasite population on Unguja and detect a substantial fraction (2.9%) of significantly related infection pairs between Zanzibar and the mainland, suggesting recent importation. Our study provides a high-resolution view of parasite genetic structure across the Zanzibar archipelago and provides actionable insights for prioritizing malaria elimination efforts.
Collapse
Affiliation(s)
- Aurel Holzschuh
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Indiana, IN, USA.
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland.
| | - Anita Lerch
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Indiana, IN, USA
| | - Inna Gerlovina
- EPPIcenter Research Program, Division of HIV, ID and Global Medicine, Department of Medicine, University of California, San Francisco, CA, USA
| | - Bakar S Fakih
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
- Ifakara Health Institute, Dar es Salaam, United Republic of Tanzania
| | | | - Erik J Reaves
- U.S. Centers for Disease Control and Prevention, President's Malaria Initiative, Dar es Salaam, United Republic of Tanzania
| | - Abdullah Ali
- Zanzibar Malaria Elimination Programme, Zanzibar, United Republic of Tanzania
| | - Faiza Abbas
- Zanzibar Malaria Elimination Programme, Zanzibar, United Republic of Tanzania
| | - Mohamed Haji Ali
- Zanzibar Malaria Elimination Programme, Zanzibar, United Republic of Tanzania
| | - Mohamed Ali Ali
- Zanzibar Malaria Elimination Programme, Zanzibar, United Republic of Tanzania
| | - Manuel W Hetzel
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Joshua Yukich
- School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - Cristian Koepfli
- Department of Biological Sciences, Eck Institute for Global Health, University of Notre Dame, Indiana, IN, USA.
| |
Collapse
|
5
|
Duong MC, Pham OKN, Thai TT, Lee R, Nguyen TP, Nguyen VVC, Nguyen HP. Magnitude and patterns of severe Plasmodium vivax monoinfection in Vietnam: a 4-year single-center retrospective study. Front Med (Lausanne) 2023; 10:1128981. [PMID: 37324161 PMCID: PMC10265633 DOI: 10.3389/fmed.2023.1128981] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 05/10/2023] [Indexed: 06/17/2023] Open
Abstract
Introduction Infection with Plasmodium vivax is a recognized cause of severe malaria including deaths. The exact burden and patterns of severe P. vivax monoinfections is however still not well quantified, especially in P. vivax endemic regions. We examined the magnitude and patterns of severe malaria caused by monoinfections of P. vivax and associated predictors among patients admitted to a tertiary care center for malaria in Vietnam. Methods A retrospective cohort study was conducted based on the patients' medical records at the Hospital for Tropical Diseases from January 2015 to December 2018. Extracted information included demographic, epidemiologic, clinical, laboratory and treatment characteristics. Results Monoinfections with P. vivax were found in 153 (34.5, 95% CI 30.3-39.1%) patients of whom, uncomplicated and severe malaria were documented in 89.5% (137/153, 95% CI 83.7-93.5%) and 10.5% (16/153, 95% CI 6.5-16.3%), respectively. Patterns of severe malaria included jaundice (8 cases), hypoglycemia (3 cases), shock (2 cases), anemia (2 cases), and cerebral malaria (1 case). Among 153 patients, 73 (47.7%) had classic malaria paroxysm, 57 (37.3%) had >7 days of illness at the time of admission, and 40 (26.1%) were referred from other hospitals. A misdiagnosis as having other diseases from malaria cases coming from other hospitals was up to 32.5% (13/40). Being admitted to hospital after day 7th of illness (AOR = 6.33, 95% CI 1.14-35.30, p = 0.035) was a predictor of severe malaria. Severe malaria was statistically associated with longer hospital length of stay (p = 0.035). Early and late treatment failures and recrudescence were not recorded. All patients recovered completely. Discussion This study confirms the emergence of severe vivax malaria in Vietnam which is associated with delayed hospital admission and increased hospital length of stay. Clinical manifestations of P. vivax infection can be misdiagnosed which results in delayed treatment. To meet the goal of malaria elimination by 2030, it is crucial that the non-tertiary hospitals have the capacity to quickly and correctly diagnose malaria and then provide treatment for malaria including P. vivax infections. More robust studies need to be conducted to fully elucidate the magnitude of severe P. vivax in Vietnam.
Collapse
Affiliation(s)
- Minh Cuong Duong
- School of Population Health, University of New South Wales, Sydney, NSW, Australia
| | | | - Thanh Truc Thai
- Faculty of Public Health, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Rogan Lee
- Centre for Infectious Diseases and Microbiology, Pathology West-ICPMR and Marie Bashir Institute, University of Sydney, Westmead Hospital, Westmead, NSW, Australia
| | | | - Van Vinh Chau Nguyen
- Department of Health, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Hoan Phu Nguyen
- Medical School, Vietnam National University of Ho Chi Minh City, Ho Chi Minh City, Vietnam
- Oxford University Clinical Research Unit (OUCRU), Ho Chi Minh City, Vietnam
| |
Collapse
|
6
|
Ghansah A, Tiedje KE, Argyropoulos DC, Onwona CO, Deed SL, Labbé F, Oduro AR, Koram KA, Pascual M, Day KP. Comparison of molecular surveillance methods to assess changes in the population genetics of Plasmodium falciparum in high transmission. FRONTIERS IN PARASITOLOGY 2023; 2:1067966. [PMID: 38031549 PMCID: PMC10686283 DOI: 10.3389/fpara.2023.1067966] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 03/14/2023] [Indexed: 12/01/2023]
Abstract
A major motivation for developing molecular methods for malaria surveillance is to measure the impact of control interventions on the population genetics of Plasmodium falciparum as a potential marker of progress towards elimination. Here we assess three established methods (i) single nucleotide polymorphism (SNP) barcoding (panel of 24-biallelic loci), (ii) microsatellite genotyping (panel of 12-multiallelic loci), and (iii) varcoding (fingerprinting var gene diversity, akin to microhaplotyping) to identify changes in parasite population genetics in response to a short-term indoor residual spraying (IRS) intervention. Typical of high seasonal transmission in Africa, multiclonal infections were found in 82.3% (median 3; range 1-18) and 57.8% (median 2; range 1-12) of asymptomatic individuals pre- and post-IRS, respectively, in Bongo District, Ghana. Since directly phasing multilocus haplotypes for population genetic analysis is not possible for biallelic SNPs and microsatellites, we chose ~200 low-complexity infections biased to single and double clone infections for analysis. Each genotyping method presented a different pattern of change in diversity and population structure as a consequence of variability in usable data and the relative polymorphism of the molecular markers (i.e., SNPs < microsatellites < var). Varcoding and microsatellite genotyping showed the overall failure of the IRS intervention to significantly change the population structure from pre-IRS characteristics (i.e., many diverse genomes of low genetic similarity). The 24-SNP barcode provided limited information for analysis, largely due to the biallelic nature of SNPs leading to a high proportion of double-allele calls and a view of more isolate relatedness compared to microsatellites and varcoding. Relative performance, suitability, and cost-effectiveness of the methods relevant to sample size and local malaria elimination in high-transmission endemic areas are discussed.
Collapse
Affiliation(s)
- Anita Ghansah
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Kathryn E. Tiedje
- Department of Microbiology and Immunology, The University of Melbourne, Bio21 Institute and Peter Doherty Institute, Melbourne, VIC, Australia
| | - Dionne C. Argyropoulos
- Department of Microbiology and Immunology, The University of Melbourne, Bio21 Institute and Peter Doherty Institute, Melbourne, VIC, Australia
| | - Christiana O. Onwona
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Samantha L. Deed
- Department of Microbiology and Immunology, The University of Melbourne, Bio21 Institute and Peter Doherty Institute, Melbourne, VIC, Australia
| | - Frédéric Labbé
- Department Ecology and Evolution, The University of Chicago, Chicago, IL, United States
| | - Abraham R. Oduro
- Navrongo Health Research Centre, Ghana Health Service, Navrongo, Ghana
| | - Kwadwo A. Koram
- Epidemiology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Mercedes Pascual
- Department Ecology and Evolution, The University of Chicago, Chicago, IL, United States
- Santa Fe Institute, Santa Fe, NM, United States
| | - Karen P. Day
- Department of Microbiology and Immunology, The University of Melbourne, Bio21 Institute and Peter Doherty Institute, Melbourne, VIC, Australia
| |
Collapse
|
7
|
Genetic Diversity of Merozoite Surface Protein-1 and -2 Genes in Plasmodium falciparum Isolates among Asymptomatic Population in Boset and Badewacho Districts, Southern Ethiopia. J Parasitol Res 2022; 2022:7728975. [PMID: 36569519 PMCID: PMC9771644 DOI: 10.1155/2022/7728975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/13/2022] [Accepted: 11/26/2022] [Indexed: 12/15/2022] Open
Abstract
Background The genetic variation of Plasmodium falciparum has been studied to assess local malaria transmission genetic profile using evidence-based intervention measures. However, there are no known previous reports of P. falciparum polymorphism in Badewacho and Boset districts, Southern Ethiopia. The purpose of this study was to determine the genetic diversity of the merozoite surface protein-1 and -2 (msp-1 and msp-2) allelic families in P. falciparum isolates from an asymptomatic populations. Methods This study was conducted from finger-prick blood samples spotted on 3 mm Whatman filter paper collected during a community-based cross-sectional study. Nested polymerase chain reaction amplification was used to type the allelic variants of msp-1 and msp-2. Results From 669 asymptomatic study participants, a total of 50 samples positive for P. falciparum were included for molecular analysis. Of 50 positive samples, 43 P. falciparum isolates were successfully amplified for the msp-1 and msp-2 allelic families. A total of twelve different allele sizes (75-250 bp) were identified within the three allelic families of msp-1, whereas ten different allele sizes (250-500 bp) were detected within the two allelic families of msp-2. MAD20 had a higher allelic proportion, 65% among allelic families of msp-1, whereas the 3D7 allelic family 90.7% was higher in msp-2. A slightly higher frequency of polyclonal infection 53.5% was found in msp-2 allelic family, whereas a low proportion polyclonal infection 46.5% was found in msp-1 allelic family. The overall mean multiplicity of infection (MOI) for msp-1 and msp-2 was identical (MOI = 1.56). Correspondingly, the expected heterozygosity (He) value for msp-1 (He = 0.23) and msp-2 (He = 0.22) was almost similar. Conclusions The findings of this study revealed low genetic diversity of the msp-1 and msp-2 allelic families in P. falciparum isolates. However, continued monitoring status of the local genetic diversity profile in the P. falciparum population is required to support current malaria control and elimination strategies.
Collapse
|
8
|
Sugiarto SR, Baird JK, Singh B, Elyazar I, Davis TME. The history and current epidemiology of malaria in Kalimantan, Indonesia. Malar J 2022; 21:327. [DOI: 10.1186/s12936-022-04366-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 11/05/2022] [Indexed: 11/15/2022] Open
Abstract
AbstractKalimantan is a part of Indonesia, which occupies the southern three-quarters of the island of Borneo, sharing a border with the Malaysian states of Sabah and Sarawak. Although most areas of Kalimantan have low and stable transmission of Plasmodium falciparum and Plasmodium vivax, there are relatively high case numbers in the province of East Kalimantan. Two aspects of malaria endemicity in Kalimantan differentiate it from the rest of Indonesia, namely recent deforestation and potential exposure to the zoonotic malaria caused by Plasmodium knowlesi that occurs in relatively large numbers in adjacent Malaysian Borneo. In the present review, the history of malaria and its current epidemiology in Kalimantan are examined, including control and eradication efforts over the past two centuries, mosquito vector prevalence, anti-malarial use and parasite resistance, and the available data from case reports of knowlesi malaria and the presence of conditions which would support transmission of this zoonotic infection.
Collapse
|
9
|
Agonhossou R, Akoton R, Lagnika H, Djihinto OY, Sovegnon PM, Saizonou HD, Ntoumi F, Wondji CS, Borrmann S, Adegnika AA, Djogbénou LS. P. falciparum msp1 and msp2 genetic diversity in P. falciparum single and mixed infection with P. malariae among the asymptomatic population in Southern Benin. Parasitol Int 2022; 89:102590. [PMID: 35472441 DOI: 10.1016/j.parint.2022.102590] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 04/17/2022] [Accepted: 04/19/2022] [Indexed: 10/18/2022]
Abstract
Plasmodium falciparum and Plasmodium malariae infections are prevalent in malaria-endemic countries. However, very little is known about their interactions especially the effect of P. malariae on P. falciparum genetic diversity. This study aimed to assess P. falciparum genetic diversity in P. falciparum and mixed infection P. falciparum/P. malariae isolates among the asymptomatic populations in Southern Benin. Two hundred and fifty blood samples (125 of P. falciparum and 125 P. falciparum/P. malariae isolates) were analysed by a nested PCR amplification of msp1 and msp2 genes. The R033 allelic family was the most represented for the msp1 gene in mono and mixed infection isolates (99.2% vs 86.4%), while the K1 family had the lowest frequency (38.3% vs 20.4%). However, with the msp2 gene, the two allelic families displayed similar frequencies in P. falciparum isolates while the 3D7 allelic family was more represented in P. falciparum/P. malariae isolates (88.7%). Polyclonal infections were also lower (62.9%) in P. falciparum/P. malariae isolates (p < 0.05). Overall, 96 individual alleles were identified (47 for msp1 and 49 for msp2) in P. falciparum isolates while a total of 50 individual alleles were identified (23 for msp1 and 27 for msp2) in P. falciparum/P. malariae isolates. The Multiplicity of Infection (MOI) was lower in P. falciparum/P. malariae isolates (p < 0.05). This study revealed a lower genetic diversity of P. falciparum in P. falciparum/P. malariae isolates using msp1 and msp2 genes among the asymptomatic population in Southern Benin.
Collapse
Affiliation(s)
- Romuald Agonhossou
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi, 01BP 526, Cotonou, Benin; Fondation Pour la Recherche Scientifique (FORS), ISBA, BP 88, Cotonou, Bénin.
| | - Romaric Akoton
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi, 01BP 526, Cotonou, Benin; Fondation Pour la Recherche Scientifique (FORS), ISBA, BP 88, Cotonou, Bénin
| | - Hamirath Lagnika
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi, 01BP 526, Cotonou, Benin
| | - Oswald Y Djihinto
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi, 01BP 526, Cotonou, Benin
| | - Pierre M Sovegnon
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi, 01BP 526, Cotonou, Benin
| | - Helga D Saizonou
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi, 01BP 526, Cotonou, Benin
| | - Francine Ntoumi
- Fondation Congolaise pour la Recherche Médicale (FCRM), Brazzaville, Congo; Institute for Tropical Medicine (ITM), University of Tübingen, Tübingen, Germany
| | - Charles S Wondji
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK; Department of Parasitology and Medical Entomology, Centre for Research in Infectious Diseases (CRID), Yaoundé, Centre Region, 237, Cameroon
| | - Steffen Borrmann
- Institute for Tropical Medicine (ITM), University of Tübingen, Tübingen, Germany; German Center for Infection Research (DZIF), Tübingen, Germany
| | - Ayola A Adegnika
- Fondation Pour la Recherche Scientifique (FORS), ISBA, BP 88, Cotonou, Bénin; Centre de Recherches Médicales de Lambaréné (CERMEL), Lambaréné, Gabon; Institute for Tropical Medicine (ITM), University of Tübingen, Tübingen, Germany; Eberhard Karls Universität Tübingen, Tübingen, Germany; German Center for Infection Research (DZIF), Tübingen, Germany
| | - Luc S Djogbénou
- Tropical Infectious Diseases Research Centre (TIDRC), University of Abomey-Calavi, 01BP 526, Cotonou, Benin; Institut Régional de Santé Publique/Université d'Abomey-Calavi, BP 384 Ouidah, Bénin
| |
Collapse
|
10
|
Reciprocal positive effects on parasitemia between coinfecting haemosporidian parasites in house sparrows. BMC Ecol Evol 2022; 22:73. [PMID: 35655150 PMCID: PMC9164529 DOI: 10.1186/s12862-022-02026-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/23/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hosts are often simultaneously infected with several parasite species. These co-infections can lead to within-host interactions of parasites, including mutualism and competition, which may affect both virulence and transmission. Birds are frequently co-infected with different haemosporidian parasites, but very little is known about if and how these parasites interact in natural host populations and what consequences there are for the infected hosts. We therefore set out to study Plasmodium and Haemoproteus parasites in house sparrows Passer domesticus with naturally acquired infections using a protocol where the parasitemia (infection intensity) is quantified by qPCR separately for the two parasites. We analysed infection status (presence/absence of the parasite) and parasitemia of parasites in the blood of both adult and juvenile house sparrows repeatedly over the season. RESULTS Haemoproteus passeris and Plasmodium relictum were the two dominating parasite species, found in 99% of the analyzed Sanger sequences. All birds were infected with both Plasmodium and Haemoproteus parasites during the study period. Seasonality explained infection status for both parasites in the adults: H. passeris was completely absent in the winter while P. relictum was present all year round. Among adults infected with H. passeris there was a positive effect of P. relictum parasitemia on H. passeris parasitemia and likewise among adults infected with P. relictum there was a positive effect of H. passeris parasitemia on P. relictum parasitemia. No such associations on parasitemia were seen in juvenile house sparrows. CONCLUSIONS The reciprocal positive relationships in parasitemia between P. relictum and H. passeris in adult house sparrows suggests either mutualistic interactions between these frequently occurring parasites or that there is variation in immune responses among house sparrow individuals, hence some individuals suppress the parasitemia of both parasites whereas other individuals suppress neither. Our detailed screening of haemosporidian parasites over the season shows that co-infections are very frequent in both juvenile and adult house sparrows, and since co-infections often have stronger negative effects on host fitness than the single infection, it is imperative to use screening systems with the ability to detect multiple parasites in ecological studies of host-parasite interactions.
Collapse
|
11
|
Lestarisa T, Arwati H, Dachlan YP, Keman S, Safruddin D. THE USE OF ARCHIVED GIEMSA-STAINED BLOOD SMEARS AND RDT FOR PCR-BASED GENOTYPING OF Plasmodium v ivax MEROZOITE SURFACE PROTEIN-1 IN CENTRAL KALIMANTAN PROVINCE, INDONESIA. Afr J Infect Dis 2022; 16:13-20. [PMID: 35047726 PMCID: PMC8751392 DOI: 10.21010/ajid.v16i1.3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/11/2021] [Accepted: 11/17/2021] [Indexed: 11/23/2022] Open
Abstract
Background: Plasmodium vivax is transmitted most across the country of Indonesia. The country has set out a malaria elimination program by 2030. The information on genetic diversity of malarial parasites relates to malaria transmission in an endemic area may provide the information that can help the malaria control program to achieve the target. Therefore, the purpose of this study was to determine the genetic diversity of the Pvmsp-1 gene in Central Kalimantan Province. Materials and Methods: Samples were 140 of archived Giemsa-stained blood smear and rapid detection test. Samples were divided into the indigenous and migrant populations. After confirmation by single-step PCR, only P. vivax and mixed infection samples were amplified to nested PCR for genotyping of Pvmsp-1 allelic variation in segments F1, F2, and F3. Results: Genotyping of 23 PCR positive samples resulted in 13 genotypes. In segment F1, three allelic variants type A containing subtype A1 (1,050 bp), A2 (350 bp), A3 (150 bp), and type B (100 bp). In segment F2, mono genotypes were detected as variant type A (1,050 bp) and type B3 (150 bp), multiple genotypes were detected as type B containing subtype B1 (250 bp), B2 (200 bp), and B3 (150bp). In segment F3, three allelic variants generated from four mono genotypes were type A (350 bp), type B (300 bp), and two type C (250 bp). Conclusion: The low allelic variation of Pvmsp-1 gene may reflect the actual situation of the low malaria endemic status of the study sites.
Collapse
Affiliation(s)
- Trilianty Lestarisa
- Doctoral Program on Public Health, Faculty of Public Health, Universitas Airlangga, Surabaya, Indonesia.,Department of Public Health, Faculty of Medicine, Universitas Palangka Raya, Palangka Raya City, Indonesia
| | - Heny Arwati
- Department of Medical Parasitology, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Yoes Prijatna Dachlan
- Department of Medical Parasitology, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia
| | - Soedjajadi Keman
- Department of Environmental Health, Faculty of Public Health, Universitas Airlangga, Surabaya, Indonesia
| | - Din Safruddin
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia.,Department of Parasitology, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| |
Collapse
|
12
|
File T, Chekol T, Solomon G, Dinka H, Golassa L. Detection of high frequency of MAD20 allelic variants of Plasmodium falciparum merozoite surface protein 1 gene from Adama and its surroundings, Oromia, Ethiopia. Malar J 2021; 20:385. [PMID: 34579727 PMCID: PMC8477549 DOI: 10.1186/s12936-021-03914-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/09/2021] [Indexed: 11/20/2022] Open
Abstract
Background One of the major challenges in developing an effective vaccine against asexual stages of Plasmodium falciparum is genetic polymorphism within parasite population. Understanding the genetic polymorphism like block 2 region of merozoite surface protein-1 (msp-1) gene of P. falciparum enlighten mechanisms underlining disease pathology, identification of the parasite clone profile from the isolates, transmission intensity and potential deficiencies of the ongoing malaria control and elimination efforts in the locality. Detailed understanding of local genetic polymorphism is an input to pave the way for better management, control and elimination of malaria. The aim of this study was to detect the most frequent allelic variant of the msp-1 gene of P. falciparum clinical isolates from selected health facilities in Adama town and its surroundings, Oromia, Ethiopia. Methods One hundred thirty-nine clinical isolates were successfully amplified for msp-1 gene using specific primers. Nested PCR amplification was conducted targeting K1, MAD20, and R033 alleles followed by gel electrophoresis for fragment analysis. Based on the detection of a PCR fragment, infections were classified as monoclonal or multiple infections. Results 19 different size polymorphism of msp-1 gene were identified in the study, with 67(48%) MAD20, 18 (13%) K-1 and 18 (13%) RO33 allelic family. Whereas, the multiple infections were 21(15%), 8 (5.8%), 4(2.9%), 3(2.2%) for MAD20 + K-1, MAD20 + RO33, K-1 + RO33, and MAD20 + K-1, RO33, respectively. The overall Multiplicity of infection (MOI) was 1.3 and the expected heterozygosity (He) was 0.39 indicating slightly low falciparum malaria transmission. Conclusion The status of msp-1 allele size polymorphism, MOI and He observed in the study revealed the presence of slightly low genetic diversity of P. falciparum clinical isolates. However, highly frequent MAD20 allelic variant was detected from clinical isolates in the study area. Moreover, the driving force that led to high predominance of MAD20 allelic variant revealed in such malaria declining region demands further research. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-021-03914-9.
Collapse
Affiliation(s)
- Temesgen File
- Department of Applied Biology, Adama Science and Technology University, P.O.Box 1888, Adama, Ethiopia.
| | - Tsegaye Chekol
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, P.O.Box 1176, Addis Ababa, Ethiopia
| | - Gezahegn Solomon
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, P.O.Box 1176, Addis Ababa, Ethiopia
| | - Hunduma Dinka
- Department of Applied Biology, Adama Science and Technology University, P.O.Box 1888, Adama, Ethiopia
| | - Lemu Golassa
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, P.O.Box 1176, Addis Ababa, Ethiopia
| |
Collapse
|
13
|
Auburn S, Cheng Q, Marfurt J, Price RN. The changing epidemiology of Plasmodium vivax: Insights from conventional and novel surveillance tools. PLoS Med 2021; 18:e1003560. [PMID: 33891580 PMCID: PMC8064506 DOI: 10.1371/journal.pmed.1003560] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Sarah Auburn and co-authors discuss the unique biology and epidemiology of P. vivax and current evidence on conventional and new approaches to surveillance.
Collapse
Affiliation(s)
- Sarah Auburn
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| | - Qin Cheng
- Department of Drug Resistance and Diagnostics, Australian Defence Force Malaria and Infectious Disease Institute, Brisbane, Australia
- The Australian Defence Force Malaria and Infectious Disease Institute Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Jutta Marfurt
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
| | - Ric N. Price
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
| |
Collapse
|
14
|
Kattenberg JH, Razook Z, Keo R, Koepfli C, Jennison C, Lautu-Gumal D, Fola AA, Ome-Kaius M, Barnadas C, Siba P, Felger I, Kazura J, Mueller I, Robinson LJ, Barry AE. Monitoring Plasmodium falciparum and Plasmodium vivax using microsatellite markers indicates limited changes in population structure after substantial transmission decline in Papua New Guinea. Mol Ecol 2020; 29:4525-4541. [PMID: 32985031 PMCID: PMC10008436 DOI: 10.1111/mec.15654] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 07/27/2020] [Indexed: 02/01/2023]
Abstract
Monitoring the genetic structure of pathogen populations may be an economical and sensitive approach to quantify the impact of control on transmission dynamics, highlighting the need for a better understanding of changes in population genetic parameters as transmission declines. Here we describe the first population genetic analysis of two major human malaria parasites, Plasmodium falciparum (Pf) and Plasmodium vivax (Pv), following nationwide distribution of long-lasting insecticide-treated nets (LLINs) in Papua New Guinea (PNG). Parasite isolates from pre- (2005-2006) and post-LLIN (2010-2014) were genotyped using microsatellite markers. Despite parasite prevalence declining substantially (East Sepik Province: Pf = 54.9%-8.5%, Pv = 35.7%-5.6%, Madang Province: Pf = 38.0%-9.0%, Pv: 31.8%-19.7%), genetically diverse and intermixing parasite populations remained. Pf diversity declined modestly post-LLIN relative to pre-LLIN (East Sepik: Rs = 7.1-6.4, HE = 0.77-0.71; Madang: Rs = 8.2-6.1, HE = 0.79-0.71). Unexpectedly, population structure present in pre-LLIN populations was lost post-LLIN, suggesting that more frequent human movement between provinces may have contributed to higher gene flow. Pv prevalence initially declined but increased again in one province, yet diversity remained high throughout the study period (East Sepik: Rs = 11.4-9.3, HE = 0.83-0.80; Madang: Rs = 12.2-14.5, HE = 0.85-0.88). Although genetic differentiation values increased between provinces over time, no significant population structure was observed at any time point. For both species, a decline in multiple infections and increasing clonal transmission and significant multilocus linkage disequilibrium post-LLIN were positive indicators of impact on the parasite population using microsatellite markers. These parameters may be useful adjuncts to traditional epidemiological tools in the early stages of transmission reduction.
Collapse
Affiliation(s)
- Johanna Helena Kattenberg
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Vector Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Yagaum, Papua New Guinea
| | - Zahra Razook
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Raksmei Keo
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Cristian Koepfli
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Charlie Jennison
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Dulcie Lautu-Gumal
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Vector Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Yagaum, Papua New Guinea.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Abebe A Fola
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Maria Ome-Kaius
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Vector Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Yagaum, Papua New Guinea.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Céline Barnadas
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Vector Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Yagaum, Papua New Guinea.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Peter Siba
- Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
| | - Ingrid Felger
- Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - James Kazura
- Centre for Global Health and Diseases, Case Western Reserve University, Cleveland, OH, USA
| | - Ivo Mueller
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia.,Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
| | - Leanne J Robinson
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Vector Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Yagaum, Papua New Guinea.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia.,Disease Elimination, Burnet Institute, Melbourne, VIC, Australia
| | - Alyssa E Barry
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
15
|
Spatial and genetic clustering of Plasmodium falciparum and Plasmodium vivax infections in a low-transmission area of Ethiopia. Sci Rep 2020; 10:19975. [PMID: 33203956 PMCID: PMC7672087 DOI: 10.1038/s41598-020-77031-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 11/02/2020] [Indexed: 11/23/2022] Open
Abstract
The distribution of malaria infections is heterogeneous in space and time, especially in low transmission settings. Understanding this clustering may allow identification and targeting of pockets of transmission. In Adama district, Ethiopia, Plasmodium falciparum and P. vivax malaria patients and controls were examined, together with household members and immediate neighbors. Rapid diagnostic test and quantitative PCR (qPCR) were used for the detection of infections that were genetically characterized by a panel of microsatellite loci for P. falciparum (26) and P. vivax (11), respectively. Individuals living in households of clinical P. falciparum patients were more likely to have qPCR detected P. falciparum infections (22.0%, 9/41) compared to individuals in control households (8.7%, 37/426; odds ratio, 2.9; 95% confidence interval, 1.3–6.4; P = .007). Genetically related P. falciparum, but not P. vivax infections showed strong clustering within households. Genotyping revealed a marked temporal cluster of P. falciparum infections, almost exclusively comprised of clinical cases. These findings uncover previously unappreciated transmission dynamics and support a rational approach to reactive case detection strategies for P. falciparum in Ethiopia.
Collapse
|
16
|
Ndiaye T, Sy M, Gaye A, Siddle KJ, Park DJ, Bei AK, Deme AB, Mbaye A, Dieye B, Ndiaye YD, Ndiaye IM, Diallo MA, Diongue K, Volkman SK, Badiane AS, Ndiaye D. Molecular epidemiology of Plasmodium falciparum by multiplexed amplicon deep sequencing in Senegal. Malar J 2020; 19:403. [PMID: 33172455 PMCID: PMC7654156 DOI: 10.1186/s12936-020-03471-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/30/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Molecular epidemiology can provide important information regarding the genetic diversity and transmission of Plasmodium falciparum, which can assist in designing and monitoring elimination efforts. However, malaria molecular epidemiology including understanding the genetic diversity of the parasite and performing molecular surveillance of transmission has been poorly documented in Senegal. Next Generation Sequencing (NGS) offers a practical, fast and high-throughput approach to understand malaria population genetics. This study aims to unravel the population structure of P. falciparum and to estimate the allelic diversity, multiplicity of infection (MOI), and evolutionary patterns of the malaria parasite using the NGS platform. METHODS Multiplex amplicon deep sequencing of merozoite surface protein 1 (PfMSP1) and merozoite surface protein 2 (PfMSP2) in fifty-three P. falciparum isolates from two epidemiologically different areas in the South and North of Senegal, was carried out. RESULTS A total of 76 Pfmsp1 and 116 Pfmsp2 clones were identified and 135 different alleles were found, 56 and 79 belonged to the pfmsp1 and pfmsp2 genes, respectively. K1 and IC3D7 allelic families were most predominant in both sites. The local haplotype diversity (Hd) and nucleotide diversity (π) were higher in the South than in the North for both genes. For pfmsp1, a high positive Tajima's D (TD) value was observed in the South (D = 2.0453) while negative TD value was recorded in the North (D = - 1.46045) and F-Statistic (Fst) was 0.19505. For pfmsp2, non-directional selection was found with a highly positive TD test in both areas and Fst was 0.02111. The mean MOI for both genes was 3.07 and 1.76 for the South and the North, respectively, with a statistically significant difference between areas (p = 0.001). CONCLUSION This study revealed a high genetic diversity of pfmsp1 and pfmsp2 genes and low genetic differentiation in P. falciparum population in Senegal. The MOI means were significantly different between the Southern and Northern areas. Findings also showed that multiplexed amplicon deep sequencing is a useful technique to investigate genetic diversity and molecular epidemiology of P. falciparum infections.
Collapse
Affiliation(s)
- Tolla Ndiaye
- Laboratoire de Parasitologie-Mycologie, Université Cheikh Anta Diop de Dakar (UCAD), Hôpital Aristide Le Dantec, Dakar, Senegal.
| | - Mouhamad Sy
- Laboratoire de Parasitologie-Mycologie, Université Cheikh Anta Diop de Dakar (UCAD), Hôpital Aristide Le Dantec, Dakar, Senegal
| | - Amy Gaye
- Laboratoire de Parasitologie-Mycologie, Université Cheikh Anta Diop de Dakar (UCAD), Hôpital Aristide Le Dantec, Dakar, Senegal
| | | | - Daniel J Park
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Amy K Bei
- Yale School of Public Health, 60 College Street, New Haven, CT, 06510, USA
| | - Awa B Deme
- Laboratoire de Parasitologie-Mycologie, Université Cheikh Anta Diop de Dakar (UCAD), Hôpital Aristide Le Dantec, Dakar, Senegal
| | - Aminata Mbaye
- Laboratoire de Parasitologie-Mycologie, Université Cheikh Anta Diop de Dakar (UCAD), Hôpital Aristide Le Dantec, Dakar, Senegal
| | - Baba Dieye
- Laboratoire de Parasitologie-Mycologie, Université Cheikh Anta Diop de Dakar (UCAD), Hôpital Aristide Le Dantec, Dakar, Senegal
| | - Yaye Die Ndiaye
- Laboratoire de Parasitologie-Mycologie, Université Cheikh Anta Diop de Dakar (UCAD), Hôpital Aristide Le Dantec, Dakar, Senegal
| | - Ibrahima Mbaye Ndiaye
- Laboratoire de Parasitologie-Mycologie, Université Cheikh Anta Diop de Dakar (UCAD), Hôpital Aristide Le Dantec, Dakar, Senegal
| | - Mamadou Alpha Diallo
- Laboratoire de Parasitologie-Mycologie, Université Cheikh Anta Diop de Dakar (UCAD), Hôpital Aristide Le Dantec, Dakar, Senegal
| | - Khadim Diongue
- Laboratoire de Parasitologie-Mycologie, Université Cheikh Anta Diop de Dakar (UCAD), Hôpital Aristide Le Dantec, Dakar, Senegal
| | - Sarah K Volkman
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Immunology and Infectious Diseases, Harvard University, Cambridge, MA, USA
| | - Aida Sadikh Badiane
- Laboratoire de Parasitologie-Mycologie, Université Cheikh Anta Diop de Dakar (UCAD), Hôpital Aristide Le Dantec, Dakar, Senegal
| | - Daouda Ndiaye
- Laboratoire de Parasitologie-Mycologie, Université Cheikh Anta Diop de Dakar (UCAD), Hôpital Aristide Le Dantec, Dakar, Senegal
- Department of Immunology and Infectious Diseases, Harvard University, Cambridge, MA, USA
| |
Collapse
|
17
|
Noviyanti R, Miotto O, Barry A, Marfurt J, Siegel S, Thuy-Nhien N, Quang HH, Anggraeni ND, Laihad F, Liu Y, Sumiwi ME, Trimarsanto H, Coutrier F, Fadila N, Ghanchi N, Johora FT, Puspitasari AM, Tavul L, Trianty L, Utami RAS, Wang D, Wangchuck K, Price RN, Auburn S. Implementing parasite genotyping into national surveillance frameworks: feedback from control programmes and researchers in the Asia-Pacific region. Malar J 2020; 19:271. [PMID: 32718342 PMCID: PMC7385952 DOI: 10.1186/s12936-020-03330-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/09/2020] [Indexed: 01/13/2023] Open
Abstract
The Asia-Pacific region faces formidable challenges in achieving malaria elimination by the proposed target in 2030. Molecular surveillance of Plasmodium parasites can provide important information on malaria transmission and adaptation, which can inform national malaria control programmes (NMCPs) in decision-making processes. In November 2019 a parasite genotyping workshop was held in Jakarta, Indonesia, to review molecular approaches for parasite surveillance and explore ways in which these tools can be integrated into public health systems and inform policy. The meeting was attended by 70 participants from 8 malaria-endemic countries and partners of the Asia Pacific Malaria Elimination Network. The participants acknowledged the utility of multiple use cases for parasite genotyping including: quantifying the prevalence of drug resistant parasites, predicting risks of treatment failure, identifying major routes and reservoirs of infection, monitoring imported malaria and its contribution to local transmission, characterizing the origins and dynamics of malaria outbreaks, and estimating the frequency of Plasmodium vivax relapses. However, the priority of each use case varies with different endemic settings. Although a one-size-fits-all approach to molecular surveillance is unlikely to be applicable across the Asia-Pacific region, consensus on the spectrum of added-value activities will help support data sharing across national boundaries. Knowledge exchange is needed to establish local expertise in different laboratory-based methodologies and bioinformatics processes. Collaborative research involving local and international teams will help maximize the impact of analytical outputs on the operational needs of NMCPs. Research is also needed to explore the cost-effectiveness of genetic epidemiology for different use cases to help to leverage funding for wide-scale implementation. Engagement between NMCPs and local researchers will be critical throughout this process.
Collapse
Affiliation(s)
| | - Olivo Miotto
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- Wellcome Sanger Institute, Hinxton, Cambridge, UK
- Centre for Genomics and Global Health, Big Data Institute, University of Oxford, Oxford, UK
| | - Alyssa Barry
- School of Medicine, Deakin University, Geelong, VIC, Australia
- Burnet Institute, Melbourne, VIC, Australia
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Jutta Marfurt
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia
| | - Sasha Siegel
- Wellcome Sanger Institute, Hinxton, Cambridge, UK
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia
| | - Nguyen Thuy-Nhien
- Centre for Tropical Medicine, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
| | - Huynh Hong Quang
- Institute of Malariology, Parasitology and Entomology, Quy Nhon, Vietnam
| | | | | | - Yaobao Liu
- National Health Commission Key Laboratory of Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasite and Vector Control Technology, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu Province, China
| | | | | | - Farah Coutrier
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - Nadia Fadila
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - Najia Ghanchi
- Pathology, Aga Khan University Hospital, Karachi, Pakistan
| | - Fatema Tuj Johora
- Infectious Diseases Division, International Centre for Diarrheal Diseases Research, Bangladesh Mohakhali, Dhaka, Bangladesh
| | | | - Livingstone Tavul
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Leily Trianty
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | | | - Duoquan Wang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China
| | - Kesang Wangchuck
- Royal Center for Disease Control, Department of Public Health, Ministry of Health, Thimphu, Bhutan
| | - Ric N Price
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Sarah Auburn
- Mahidol-Oxford Tropical Medicine Research Unit, Mahidol University, Bangkok, Thailand.
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, Australia.
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
18
|
Roh ME, Tessema SK, Murphy M, Nhlabathi N, Mkhonta N, Vilakati S, Ntshalintshali N, Saini M, Maphalala G, Chen A, Wilheim J, Prach L, Gosling R, Kunene S, S Hsiang M, Greenhouse B. High Genetic Diversity of Plasmodium falciparum in the Low-Transmission Setting of the Kingdom of Eswatini. J Infect Dis 2020; 220:1346-1354. [PMID: 31190073 PMCID: PMC6743842 DOI: 10.1093/infdis/jiz305] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 06/12/2019] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND To better understand transmission dynamics, we characterized Plasmodium falciparum genetic diversity in Eswatini, where transmission is low and sustained by importation. METHODS Twenty-six P. falciparum microsatellites were genotyped in 66% of confirmed cases (2014-2016; N = 582). Population and within-host diversity were used to characterize differences between imported and locally acquired infections. Logistic regression was used to assess the added value of diversity metrics to classify imported and local infections beyond epidemiology data alone. RESULTS Parasite population in Eswatini was highly diverse (expected heterozygosity [HE] = 0.75) and complex: 67% polyclonal infections, mean multiplicity of infection (MOI) 2.2, and mean within-host infection fixation index (FWS) 0.84. Imported cases had comparable diversity to local cases but exhibited higher MOI (2.4 vs 2.0; P = .004) and lower mean FWS (0.82 vs 0.85; P = .03). Addition of MOI and FWS to multivariate analyses did not increase discrimination between imported and local infections. CONCLUSIONS In contrast to the common perception that P. falciparum diversity declines with decreasing transmission intensity, Eswatini isolates exhibited high parasite diversity consistent with high rates of malaria importation and limited local transmission. Estimates of malaria transmission intensity from genetic data need to consider the effect of importation, especially as countries near elimination.
Collapse
Affiliation(s)
- Michelle E Roh
- Malaria Elimination Initiative, Institute of Global Health Sciences, University of California, San Francisco.,Department of Epidemiology and Biostatistics, University of California, San Francisco
| | - Sofonias K Tessema
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California, San Francisco
| | - Maxwell Murphy
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California, San Francisco
| | | | | | | | | | - Manik Saini
- Clinton Health Access Initiative, Mbabane, Eswatini
| | | | - Anna Chen
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California, San Francisco
| | - Jordan Wilheim
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California, San Francisco
| | - Lisa Prach
- Malaria Elimination Initiative, Institute of Global Health Sciences, University of California, San Francisco
| | - Roly Gosling
- Malaria Elimination Initiative, Institute of Global Health Sciences, University of California, San Francisco.,Department of Epidemiology and Biostatistics, University of California, San Francisco
| | | | - Michelle S Hsiang
- Malaria Elimination Initiative, Institute of Global Health Sciences, University of California, San Francisco.,Department of Pediatrics, University of California, San Francisco.,Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas
| | - Bryan Greenhouse
- Division of HIV, Infectious Diseases, and Global Medicine, Department of Medicine, University of California, San Francisco.,Chan Zuckerberg Biohub, San Francisco, California
| |
Collapse
|
19
|
Teklehaimanot A, Teklehaimanot H, Girmay A, Woyessa A. Case Report: Primaquine Failure for Radical Cure of Plasmodium vivax Malaria in Gambella, Ethiopia. Am J Trop Med Hyg 2020; 103:415-420. [PMID: 32394882 DOI: 10.4269/ajtmh.19-0890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Failures of primaquine for the treatment of relapsed Plasmodium vivax malaria is a serious challenge to malaria elimination in Ethiopia, where P. vivax accounts for up to 40% of malaria infections. We report here occurrence of a total of 15 episodes of primaquine treatment failure for radical cure in three historical P. vivax malaria patients from Gambella, Ethiopia, during 8-16 months of follow-up in 1985-1987. The total primaquine doses received were 17.5 mg/kg, 25.8 mg/kg, and 35.8 mg/kg, respectively. These total doses are much higher than in previous reports of patients with treatment failure in Ethiopia and East Africa. The possibility of new infection was excluded for these cases as the treatment and follow-up were carried out in Addis Ababa, a malaria-free city. Recrudescences were unlikely, considering the short duration pattern of the recurrences. The cytochrome P450 2D6 (CYP2D6) status for these patients is unknown, but polymorphisms have been described in Ethiopia and may have contributed to primaquine treatment failures. It is suggested that further studies be carried out in Ethiopia to determine the prevalence and distribution of primaquine treatment failures in different ethnic groups, considering the impact of CYP2D6 polymorphisms and the potential value of increasing the primaquine dose to avoid relapse.
Collapse
Affiliation(s)
| | | | - Abeba Girmay
- Laboratory Department, Saint Paulos Hospital, Millennium Collage, Addis Ababa, Ethiopia
| | - Adugna Woyessa
- National Research Institute of Health, Addis Ababa, Ethiopia
| |
Collapse
|
20
|
Pava Z, Puspitasari AM, Rumaseb A, Handayuni I, Trianty L, Utami RAS, Tirta YK, Burdam F, Kenangalem E, Wirjanata G, Kho S, Trimarsanto H, Anstey NM, Poespoprodjo JR, Noviyanti R, Price RN, Marfurt J, Auburn S. Molecular surveillance over 14 years confirms reduction of Plasmodium vivax and falciparum transmission after implementation of Artemisinin-based combination therapy in Papua, Indonesia. PLoS Negl Trop Dis 2020; 14:e0008295. [PMID: 32379762 PMCID: PMC7237043 DOI: 10.1371/journal.pntd.0008295] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 05/19/2020] [Accepted: 04/15/2020] [Indexed: 01/13/2023] Open
Abstract
Genetic epidemiology can provide important insights into parasite transmission that can inform public health interventions. The current study compared long-term changes in the genetic diversity and structure of co-endemic Plasmodium falciparum and P. vivax populations. The study was conducted in Papua Indonesia, where high-grade chloroquine resistance in P. falciparum and P. vivax led to a universal policy of Artemisinin-based Combination Therapy (ACT) in 2006. Microsatellite typing and population genetic analyses were undertaken on available isolates collected between 2004 and 2017 from patients with uncomplicated malaria (n = 666 P. falciparum and n = 615 P. vivax). The proportion of polyclonal P. falciparum infections fell from 28% (38/135) before policy change (2004-2006) to 18% (22/125) at the end of the study (2015-2017); p<0.001. Over the same period, polyclonal P. vivax infections fell from 67% (80/119) to 35% (33/93); p<0.001. P. falciparum strains persisted for up to 9 years compared to 3 months for P. vivax, reflecting higher rates of outbreeding in the latter. Sub-structure was observed in the P. falciparum population, but not in P. vivax, confirming different patterns of outbreeding. The P. falciparum population exhibited 4 subpopulations that changed in frequency over time. Notably, a sharp rise was observed in the frequency of a minor subpopulation (K2) in the late post-ACT period, accounting for 100% of infections in late 2016-2017. The results confirm epidemiological evidence of reduced P. falciparum and P. vivax transmission over time. The smaller change in P. vivax population structure is consistent with greater outbreeding associated with relapsing infections and highlights the need for radical cure to reduce recurrent infections. The study emphasizes the challenge in disrupting P. vivax transmission and demonstrates the potential of molecular data to inform on the impact of public health interventions.
Collapse
Affiliation(s)
- Zuleima Pava
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Australia
| | | | - Angela Rumaseb
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Australia
| | - Irene Handayuni
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Australia
| | - Leily Trianty
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | | | | | - Faustina Burdam
- Mimika District Health Authority, Timika, Papua, Indonesia
- Timika Malaria Research Programme, Papuan Health and Community Development Foundation, Timika, Papua, Indonesia
| | - Enny Kenangalem
- Mimika District Health Authority, Timika, Papua, Indonesia
- Timika Malaria Research Programme, Papuan Health and Community Development Foundation, Timika, Papua, Indonesia
| | - Grennady Wirjanata
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Australia
| | - Steven Kho
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Australia
| | | | - Nicholas M. Anstey
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Australia
| | - Jeanne Rini Poespoprodjo
- Mimika District Health Authority, Timika, Papua, Indonesia
- Timika Malaria Research Programme, Papuan Health and Community Development Foundation, Timika, Papua, Indonesia
- Pediatric Research Office, Department of Child Health, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | | | - Ric N. Price
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Australia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, United Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Jutta Marfurt
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Australia
| | - Sarah Auburn
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Australia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, United Kingdom
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
21
|
Li Y, Hu Y, Zhao Y, Wang Q, Ngassa Mbenda HG, Kittichai V, Lawpoolsri S, Sattabongkot J, Menezes L, Liu X, Cui L, Cao Y. Dynamics of Plasmodium vivax populations in border areas of the Greater Mekong sub-region during malaria elimination. Malar J 2020; 19:145. [PMID: 32268906 PMCID: PMC7140319 DOI: 10.1186/s12936-020-03221-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 04/03/2020] [Indexed: 12/18/2022] Open
Abstract
Background Countries within the Greater Mekong Sub-region (GMS) of Southeast Asia have committed to eliminating malaria by 2030. Although the malaria situation has greatly improved, malaria transmission remains at international border regions. In some areas, Plasmodium vivax has become the predominant parasite. To gain a better understanding of transmission dynamics, knowledge on the changes of P. vivax populations after the scale-up of control interventions will guide more effective targeted control efforts. Methods This study investigated genetic diversity and population structures in 206 P. vivax clinical samples collected at two time points in two international border areas: the China-Myanmar border (CMB) (n = 50 in 2004 and n = 52 in 2016) and Thailand-Myanmar border (TMB) (n = 50 in 2012 and n = 54 in 2015). Parasites were genotyped using 10 microsatellite markers. Results Despite intensified control efforts, genetic diversity remained high (HE = 0.66–0.86) and was not significantly different among the four populations (P > 0.05). Specifically, HE slightly decreased from 0.76 in 2004 to 0.66 in 2016 at the CMB and increased from 0.80 in 2012 to 0.86 in 2015 at the TMB. The proportions of polyclonal infections varied significantly among the four populations (P < 0.05), and showed substantial decreases from 48.0% in 2004 to 23.7 at the CMB and from 40.0% in 2012 to 30.7% in 2015 at the TMB, with corresponding decreases in the multiplicity of infection. Consistent with the continuous decline of malaria incidence in the GMS over time, there were also increases in multilocus linkage disequilibrium, suggesting more fragmented and increasingly inbred parasite populations. There were considerable genetic differentiation and sub-division among the four tested populations. Temporal genetic differentiation was observed at each site (FST = 0.081 at the CMB and FST = 0.133 at the TMB). Various degrees of clustering were evident between the older parasite samples collected in 2004 at the CMB and the 2016 CMB and 2012 TMB populations, suggesting some of these parasites had shared ancestry. In contrast, the 2015 TMB population was genetically distinctive, which may reflect a process of population replacement. Whereas the effective population size (Ne) at the CMB showed a decrease from 4979 in 2004 to 3052 in 2016 with the infinite allele model, the Ne at the TMB experienced an increase from 6289 to 10,259. Conclusions With enhanced control efforts on malaria, P. vivax at the TMB and CMB showed considerable spatial and temporal differentiation, but the presence of large P. vivax reservoirs still sustained genetic diversity and transmission. These findings provide new insights into P. vivax transmission dynamics and population structure in these border areas of the GMS. Coordinated and integrated control efforts on both sides of international borders are essential to reach the goal of regional malaria elimination.
Collapse
Affiliation(s)
- Yuling Li
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, 110122, Liaoning, China.,Emergency Department, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, Liaoning, China
| | - Yubing Hu
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, 110122, Liaoning, China
| | - Yan Zhao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, 110122, Liaoning, China
| | - Qinghui Wang
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, 110122, Liaoning, China
| | - Huguette Gaelle Ngassa Mbenda
- Division of Infectious Diseases and International Medicine, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Veerayuth Kittichai
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Saranath Lawpoolsri
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Lynette Menezes
- Division of Infectious Diseases and International Medicine, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Xiaoming Liu
- Center for Global Health and Infectious Disease Research, College of Public Health, University of South Florida, Tampa, FL, 33612, USA
| | - Liwang Cui
- Division of Infectious Diseases and International Medicine, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA. .,Center for Global Health and Infectious Disease Research, College of Public Health, University of South Florida, Tampa, FL, 33612, USA.
| | - Yaming Cao
- Department of Immunology, College of Basic Medical Sciences, China Medical University, Shenyang, 110122, Liaoning, China.
| |
Collapse
|
22
|
Izri A, Cojean S, Leblanc C, Cohen Y, Bouchaud O, Durand R. Plasmodium vivax severe imported malaria in two migrants in France. Malar J 2019; 18:422. [PMID: 31842880 PMCID: PMC6916050 DOI: 10.1186/s12936-019-3067-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/08/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND With less than one severe case per year in average, Plasmodium vivax is very rarely associated with severe imported malaria in France. Two cases of P. vivax severe malaria occurred in patients with no evident co-morbidity. Interestingly, both cases did not occur at the primary infection but during relapses. CASE PRESENTATIONS Patient 1: A 27-year old male, born in Afghanistan and living in France since 2012, was admitted on August 2015 to the Avicenne hospital because of abdominal pain, intense headache, fever and hypotension. The patient was haemodynamically unstable despite 5 L of filling solution. A thin blood film showed P. vivax trophozoites within the red blood cells. To take care of the septic shock, the patient was given rapid fluid resuscitation, norepinephrine (0.5 mg/h), and intravenous artesunate. Nested polymerase chain reactions of the SSUrRNA gene were negative for Plasmodium falciparum but positive for P. vivax. The patient became apyretic in less than 24H and the parasitaemia was negative at the same time. Patient 2: A 24-year old male, born in Pakistan and living in France, was admitted on August 2016 because of fever, abdominal pain, headache, myalgia, and nausea. The last travel of the patient in a malaria endemic area occurred in 2013. A thin blood film showed P. vivax trophozoites within the red blood cells. The patient was treated orally by dihydroartemisinin-piperaquine and recovered rapidly. Nine months later, the patient returned to the hospital with a relapse of P. vivax malaria. The malaria episode was uncomplicated and the patient recovered rapidly. Three months later, the patient came back again with a third episode of P. vivax malaria. Following a rapid haemodynamic deterioration, the patient was transferred to the intensive care unit of the hospital. In all the patient received 10 L of filling solution to manage the septic shock. After 5 days of hospitalization and a specific treatment, the patient was discharged in good clinical conditions. CONCLUSION Clinicians should be aware of the potential severe complications associated with P. vivax in imported malaria, even though the primary infection is uncomplicated.
Collapse
Affiliation(s)
- Arezki Izri
- Service de Parasitologie- Mycologie, CHU Avicenne, Assistance Publique-Hôpitaux de Paris, 125 rue de Stalingrad, 93009, Bobigny Cedex, France.,Unité des Virus Émergents (UVE: Aix-Marseille Univ-IRD 190-Inserm 1207-IHU Méditerranée Infection), Marseille, France.,UFR SMBH, Université Paris 13, Bobigny, France
| | - Sandrine Cojean
- UMR 8076 CNRS BioCIS, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France.,Centre National de Référence du Paludisme, hôpital Bichat-Claude Bernard, APHP, Paris, France
| | - Claire Leblanc
- Service de Pédiatrie générale, CHU Jean Verdier, Bondy, France
| | - Yves Cohen
- Réanimation Médico-Chirurgicale, CHU Avicenne, Bobigny, France
| | - Olivier Bouchaud
- Service de Maladies Infectieuses et Tropicales, CHU Avicenne, Bobigny, France
| | - Rémy Durand
- Service de Parasitologie- Mycologie, CHU Avicenne, Assistance Publique-Hôpitaux de Paris, 125 rue de Stalingrad, 93009, Bobigny Cedex, France. .,UMR 8076 CNRS BioCIS, Université Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France.
| |
Collapse
|
23
|
Characterization of drug resistance and genetic diversity of Plasmodium falciparum parasites from Tripura, Northeast India. Sci Rep 2019; 9:13704. [PMID: 31548652 PMCID: PMC6757058 DOI: 10.1038/s41598-019-50152-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 09/06/2019] [Indexed: 01/23/2023] Open
Abstract
Monitoring of anti-malarial drug resistance is vital in Northeast India as this region shares its international border with Southeast Asia. Genetic diversity of Plasmodium parasites regulates transmission dynamics, disease severity and vaccine efficacy. P. falciparum chloroquine resistance transporter (Pfcrt), multidrug resistance-1 (Pfmdr-1) and kelch 13 propeller (PfK-13) genes which govern antimalarial drug resistance and three genetic diversity markers, merozoite surface protein 1 and 2 (Pfmsp-1, Pfmsp-2) and glutamate rich protein (Pfglurp) were evaluated from Tripura, Northeast India using molecular tools. In the Pfcrt gene, 87% isolates showed triple mutations at codons M74I, N75E and K76T. 12.5% isolates in Pfmdr-1 gene showed mutation at N86Y. No polymorphism in PfK-13 propeller was found. Polyclonal infections were observed in 53.85% isolates and more commonly in adults (p = 0.0494). In the Pfmsp-1 locus, the K1 allelic family was predominant (71.2%) followed by the 3D7/IC family (69.2%) in the Pfmsp-2 locus. RII region of Pfglurp exhibited nine alleles with expected heterozygosity of 0.85. The multiplicity of infection for Pfmsp-1, Pfmsp-2 and Pfglurp were 1.56, 1.31 and 1.06 respectively. Overall, the study demonstrated a high level of chloroquine resistance and extensive parasite diversity in the region, necessitating regular surveillance in this population group.
Collapse
|
24
|
Lover AA, Baird JK, Gosling R, Price RN. Malaria Elimination: Time to Target All Species. Am J Trop Med Hyg 2018; 99:17-23. [PMID: 29761762 PMCID: PMC6035869 DOI: 10.4269/ajtmh.17-0869] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 03/14/2018] [Indexed: 01/13/2023] Open
Abstract
Important strides have been made within the past decade toward malaria elimination in many regions, and with this progress, the feasibility of eradication is once again under discussion. If the ambitious goal of eradication is to be achieved by 2040, all species of Plasmodium infecting humans will need to be targeted with evidence-based and concerted interventions. In this perspective, the potential barriers to achieving global malaria elimination are discussed with respect to the related diversities in host, parasite, and vector populations. We argue that control strategies need to be reorientated from a sequential attack on each species, dominated by Plasmodium falciparum to one that targets all species in parallel. A set of research themes is proposed to mitigate the potential setbacks on the pathway to a malaria-free world.
Collapse
Affiliation(s)
- Andrew A. Lover
- Malaria Elimination Initiative at the University of California, San Francisco, San Francisco, California
| | - J. Kevin Baird
- Eijkman-Oxford Clinical Research Unit, Eijkman Institute of Molecular Biology, Jakarta, Indonesia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Roly Gosling
- Malaria Elimination Initiative at the University of California, San Francisco, San Francisco, California
| | - Ric N. Price
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Australia
| |
Collapse
|
25
|
Zhong D, Lo E, Wang X, Yewhalaw D, Zhou G, Atieli HE, Githeko A, Hemming-Schroeder E, Lee MC, Afrane Y, Yan G. Multiplicity and molecular epidemiology of Plasmodium vivax and Plasmodium falciparum infections in East Africa. Malar J 2018; 17:185. [PMID: 29720181 PMCID: PMC5932820 DOI: 10.1186/s12936-018-2337-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 04/26/2018] [Indexed: 11/18/2022] Open
Abstract
Background Parasite genetic diversity and multiplicity of infection (MOI) affect clinical outcomes, response to drug treatment and naturally-acquired or vaccine-induced immunity. Traditional methods often underestimate the frequency and diversity of multiclonal infections due to technical sensitivity and specificity. Next-generation sequencing techniques provide a novel opportunity to study complexity of parasite populations and molecular epidemiology. Methods Symptomatic and asymptomatic Plasmodium vivax samples were collected from health centres/hospitals and schools, respectively, from 2011 to 2015 in Ethiopia. Similarly, both symptomatic and asymptomatic Plasmodium falciparum samples were collected, respectively, from hospitals and schools in 2005 and 2015 in Kenya. Finger-pricked blood samples were collected and dried on filter paper. Long amplicon (> 400 bp) deep sequencing of merozoite surface protein 1 (msp1) gene was conducted to determine multiplicity and molecular epidemiology of P. vivax and P. falciparum infections. The results were compared with those based on short amplicon (117 bp) deep sequencing. Results A total of 139 P. vivax and 222 P. falciparum samples were pyro-sequenced for pvmsp1 and pfmsp1, yielding a total of 21 P. vivax and 99 P. falciparum predominant haplotypes. The average MOI for P. vivax and P. falciparum were 2.16 and 2.68, respectively, which were significantly higher than that of microsatellite markers and short amplicon (117 bp) deep sequencing. Multiclonal infections were detected in 62.2% of the samples for P. vivax and 74.8% of the samples for P. falciparum. Four out of the five subjects with recurrent P. vivax malaria were found to be a relapse 44–65 days after clearance of parasites. No difference was observed in MOI among P. vivax patients of different symptoms, ages and genders. Similar patterns were also observed in P. falciparum except for one study site in Kenyan lowland areas with significantly higher MOI. Conclusions The study used a novel method to evaluate Plasmodium MOI and molecular epidemiological patterns by long amplicon ultra-deep sequencing. The complexity of infections were similar among age groups, symptoms, genders, transmission settings (spatial heterogeneity), as well as over years (pre- vs. post-scale-up interventions). This study demonstrated that long amplicon deep sequencing is a useful tool to investigate multiplicity and molecular epidemiology of Plasmodium parasite infections. Electronic supplementary material The online version of this article (10.1186/s12936-018-2337-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daibin Zhong
- Program in Public Health, University of California at Irvine, Irvine, CA, 92617, USA.
| | - Eugenia Lo
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Xiaoming Wang
- Program in Public Health, University of California at Irvine, Irvine, CA, 92617, USA
| | - Delenasaw Yewhalaw
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, Jimma University, Jimma, Ethiopia.,Tropical and Infectious Diseases Research Center, Jimma University, Jimma, Ethiopia
| | - Guofa Zhou
- Program in Public Health, University of California at Irvine, Irvine, CA, 92617, USA
| | - Harrysone E Atieli
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Andrew Githeko
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | | | - Ming-Chieh Lee
- Program in Public Health, University of California at Irvine, Irvine, CA, 92617, USA
| | - Yaw Afrane
- Department of Medical Microbiology, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Guiyun Yan
- Program in Public Health, University of California at Irvine, Irvine, CA, 92617, USA.
| |
Collapse
|
26
|
Zhong D, Koepfli C, Cui L, Yan G. Molecular approaches to determine the multiplicity of Plasmodium infections. Malar J 2018; 17:172. [PMID: 29685152 PMCID: PMC5914063 DOI: 10.1186/s12936-018-2322-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 04/18/2018] [Indexed: 12/26/2022] Open
Abstract
Multiplicity of infection (MOI), also termed complexity of infection (COI), is defined as the number of genetically distinct parasite strains co-infecting a single host, which is an important indicator of malaria epidemiology. PCR-based genotyping often underestimates MOI. Next generation sequencing technologies provide much more accurate and genome-wide characterization of polyclonal infections. However, complete haplotype characterization of multiclonal infections remains a challenge due to PCR artifacts and sequencing errors, and requires efficient computational tools. In this review, the advantages and limitations of current molecular approaches to determine multiplicity of malaria parasite infection are discussed.
Collapse
Affiliation(s)
- Daibin Zhong
- Program in Public Health, University of California, Irvine, CA, 92617, USA.
| | - Cristian Koepfli
- Program in Public Health, University of California, Irvine, CA, 92617, USA
| | - Liwang Cui
- Department of Entomology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Guiyun Yan
- Program in Public Health, University of California, Irvine, CA, 92617, USA.
| |
Collapse
|
27
|
Figan CE, Sá JM, Mu J, Melendez-Muniz VA, Liu CH, Wellems TE. A set of microsatellite markers to differentiate Plasmodium falciparum progeny of four genetic crosses. Malar J 2018; 17:60. [PMID: 29394891 PMCID: PMC5797376 DOI: 10.1186/s12936-018-2210-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 01/27/2018] [Indexed: 11/24/2022] Open
Abstract
Background Four Plasmodium falciparum genetic crosses (HB3×3D7, HB3×Dd2, 7G8×GB4, and 803×GB4) have produced sets of recombinant progeny that are widely used for malaria research, including investigations of anti-malarial drug resistance. It is critical to maintain the progeny free from cross-contamination. Microsatellite polymorphisms can be used to validate parasite identity. Results A set of 12 markers was developed that differentiates the parents of the four P. falciparum crosses. This typing set identified distinguishing patterns of inheritance (fingerprints) in segregant collections of 15 progeny clones from HB3×3D7, 32 from HB3×Dd2, 33 from 7G8×GB4, and 81 from 803×GB4. Stronger amplification was observed with shorter relative to longer alleles of individual microsatellites. In experiments with mixed parental DNAs, electropherograms showed that signals of cross-contamination can be missed when minor peaks less than 1/4 or 1/3 the height of the major peak are disregarded by threshold settings commonly used for population studies. Conclusions Microsatellite typing is an effective method to check the identity of P. falciparum lines and detect parasite cross-contamination in cultures; however, care must be taken not to ignore minor peaks that can be overlooked. The 12 microsatellite markers presented here provide a rapid and efficient means to distinguish the segregants of laboratory crosses. Fingerprint patterns from these markers are useful to maintain the integrity of diverse parasite lines in and between research laboratories. Electronic supplementary material The online version of this article (10.1186/s12936-018-2210-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Christine E Figan
- Laboratory of Malaria and Vector Research (LMVR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Juliana M Sá
- Laboratory of Malaria and Vector Research (LMVR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Jianbing Mu
- Laboratory of Malaria and Vector Research (LMVR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Viviana A Melendez-Muniz
- Laboratory of Malaria and Vector Research (LMVR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Chia Hao Liu
- Laboratory of Malaria and Vector Research (LMVR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| | - Thomas E Wellems
- Laboratory of Malaria and Vector Research (LMVR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, 20892, USA.
| |
Collapse
|
28
|
Increasingly inbred and fragmented populations of Plasmodium vivax associated with the eastward decline in malaria transmission across the Southwest Pacific. PLoS Negl Trop Dis 2018; 12:e0006146. [PMID: 29373596 PMCID: PMC5802943 DOI: 10.1371/journal.pntd.0006146] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 02/07/2018] [Accepted: 12/01/2017] [Indexed: 01/17/2023] Open
Abstract
The human malaria parasite Plasmodium vivax is more resistant to malaria control strategies than Plasmodium falciparum, and maintains high genetic diversity even when transmission is low. To investigate whether declining P. vivax transmission leads to increasing population structure that would facilitate elimination, we genotyped samples from across the Southwest Pacific region, which experiences an eastward decline in malaria transmission, as well as samples from two time points at one site (Tetere, Solomon Islands) during intensified malaria control. Analysis of 887 P. vivax microsatellite haplotypes from hyperendemic Papua New Guinea (PNG, n = 443), meso-hyperendemic Solomon Islands (n = 420), and hypoendemic Vanuatu (n = 24) revealed increasing population structure and multilocus linkage disequilibrium yet a modest decline in diversity as transmission decreases over space and time. In Solomon Islands, which has had sustained control efforts for 20 years, and Vanuatu, which has experienced sustained low transmission for many years, significant population structure was observed at different spatial scales. We conclude that control efforts will eventually impact P. vivax population structure and with sustained pressure, populations may eventually fragment into a limited number of clustered foci that could be targeted for elimination. Plasmodium vivax is a major human malaria parasite, common in endemic areas outside sub-Saharan Africa, and more difficult to control than other malaria parasite species. The distinct lifecycle biology of P. vivax is thought to contribute to its more stable and efficient transmission allowing the maintenance of high diversity and potentially, gene flow. Independent studies are therefore needed to understand how P. vivax populations respond to changing transmission levels, in order to inform malaria control and elimination efforts. Here we have determined parasite population genetic structure in three countries of the Southwest Pacific, an island chain with a natural west to east decline in transmission intensity (Papua New Guinea > Solomon Islands > Vanuatu). With declining transmission, P. vivax populations experience only a modest decline in diversity but a significant increase in multilocus linkage disequilibrium and population structure, indicating that parasite populations become more inbred and begin to fragment into clustered foci. Analysis of two time points in one study area (Tetere, Solomon Islands) also show similar changes in association with intensifying malaria control. The results indicate that with long term sustained malaria control P. vivax populations will eventually fracture into population clusters that could be targeted for elimination.
Collapse
|
29
|
Pava Z, Handayuni I, Trianty L, Utami RAS, Tirta YK, Puspitasari AM, Burdam F, Kenangalem E, Wirjanata G, Kho S, Trimarsanto H, Anstey N, Poespoprodjo JR, Noviyanti R, Price RN, Marfurt J, Auburn S. Passively versus Actively Detected Malaria: Similar Genetic Diversity but Different Complexity of Infection. Am J Trop Med Hyg 2017; 97:1788-1796. [PMID: 29016343 PMCID: PMC5790166 DOI: 10.4269/ajtmh.17-0364] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The surveillance of malaria is generally undertaken on the assumption that samples passively collected at health facilities are comparable to or representative of the broader Plasmodium reservoir circulating in the community. Further characterization and comparability of the hidden asymptomatic parasite reservoir are needed to inform on the potential impact of sampling bias. This study explores the impact of sampling strategy on molecular surveillance by comparing the genetic make-up of Plasmodium falciparum and Plasmodium vivax isolates collected by passive versus active case detection. Sympatric isolates of P. falciparum and P. vivax were collected from a large community survey and ongoing clinical surveillance studies undertaken in the hypomesoendemic setting of Mimika District (Papua, Indonesia). Plasmodium falciparum isolates were genotyped at nine microsatellite loci and P. vivax at eight loci. Measures of diversity and differentiation were used to compare different patient and parasitological sample groups. The results demonstrated that passively detected cases (symptomatic) had comparable population diversity to those circulating in the community (asymptomatic) in both species. In addition, asymptomatic patent infections were as diverse as subpatent infections. However, a significant difference in multiplicity of infection (MOI) and percentage of polyclonal infections was observed between actively and passively detected P. vivax cases (mean MOI: 1.7 ± 0.7 versus 1.4 ± 1.4, respectively; P = 0.001). The study findings infer that, in hypomesoendemic settings, passive sampling is appropriate for molecular parasite surveillance strategies using the predominant clone in any given infection; however, the findings suggest caution when analyzing complexity of infection. Further evaluation is required in other endemic settings.
Collapse
Affiliation(s)
- Zuleima Pava
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Irene Handayuni
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Leily Trianty
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | | | | | | | - Faustina Burdam
- Mimika District Health Authority, Timika, Papua, Indonesia;,Timika Malaria Research Programme, Papuan Health and Community Development Foundation, Timika, Papua, Indonesia;,Maternal and Child Health and Reproductive Health, Department of Public Health, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Enny Kenangalem
- Mimika District Health Authority, Timika, Papua, Indonesia;,Timika Malaria Research Programme, Papuan Health and Community Development Foundation, Timika, Papua, Indonesia
| | - Grennady Wirjanata
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Steven Kho
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| | | | - Nicholas Anstey
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Jeanne Rini Poespoprodjo
- Mimika District Health Authority, Timika, Papua, Indonesia;,Timika Malaria Research Programme, Papuan Health and Community Development Foundation, Timika, Papua, Indonesia;,Maternal and Child Health and Reproductive Health, Department of Public Health, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | | | - Ric N. Price
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia;,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Jutta Marfurt
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Sarah Auburn
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia;,Address correspondence to Sarah Auburn, Menzies School of Health Research, PO Box 41096, Casuarina, Darwin, NT 0811, Australia. E-mail:
| |
Collapse
|
30
|
Nationwide genetic surveillance of Plasmodium vivax in Papua New Guinea reveals heterogeneous transmission dynamics and routes of migration amongst subdivided populations. INFECTION GENETICS AND EVOLUTION 2017; 58:83-95. [PMID: 29313805 DOI: 10.1016/j.meegid.2017.11.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/27/2017] [Accepted: 11/30/2017] [Indexed: 11/20/2022]
Abstract
The Asia Pacific Leaders in Malaria Alliance (APLMA) have committed to eliminate malaria from the region by 2030. Papua New Guinea (PNG) has the highest malaria burden in the Asia-Pacific region but with the intensification of control efforts since 2005, transmission has been dramatically reduced and Plasmodium vivax is now the dominant malaria infection in some parts of the country. To gain a better understanding of the transmission dynamics and migration patterns of P. vivax in PNG, here we investigate population structure in eight geographically and ecologically distinct regions of the country. A total of 219 P. vivax isolates (16-30 per population) were successfully haplotyped using 10 microsatellite markers. A wide range of genetic diversity (He=0.37-0.87, Rs=3.60-7.58) and significant multilocus linkage disequilibrium (LD) was observed in six of the eight populations (IAS=0.08-0.15 p-value<0.05) reflecting a spectrum of transmission intensities across the country. Genetic differentiation between regions was evident (Jost's D=0.07-0.72), with increasing divergence of populations with geographic distance. Overall, P. vivax isolates clustered into three major genetic populations subdividing the Mainland lowland and coastal regions, the Islands and the Highlands. P. vivax gene flow follows major human migration routes, and there was higher gene flow amongst Mainland parasite populations than among Island populations. The Central Province (samples collected in villages close to the capital city, Port Moresby), acts as a sink for imported infections from the three major endemic areas. These insights into P. vivax transmission dynamics and population networks will inform targeted strategies to contain malaria infections and to prevent the spread of drug resistance in PNG.
Collapse
|
31
|
Malaria Epidemiology at the Clone Level. Trends Parasitol 2017; 33:974-985. [PMID: 28966050 DOI: 10.1016/j.pt.2017.08.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/14/2017] [Accepted: 08/30/2017] [Indexed: 01/08/2023]
Abstract
Genotyping to distinguish between parasite clones is nowadays a standard in many molecular epidemiological studies of malaria. It has become crucial in drug trials and to follow individual clones in epidemiological studies, and to understand how drug resistance emerges and spreads. Here, we review the applications of the increasingly available genotyping tools and whole-genome sequencing data, and argue for a better integration of population genetics findings into malaria-control strategies.
Collapse
|
32
|
Abstract
Plasmodium vivax is the second most prevalent cause of malaria worldwide and the leading cause of malaria outside of Africa. Although infections are seldom fatal clinical disease can be debilitating and imposes significant health and economic impacts on affected populations. Estimates of transmission and prevalence intensity can be problematic because many episodes of vivax originate from hypnozoite stages in the liver that have remained dormant from previous infections by an unknown mechanism. Lack of treatment options to clear hypnozoites and the ability to infect mosquitoes before disease symptoms present represent major challenges for control and eradication of vivax malaria. Compounding these challenges is the unique biology of P. vivax and limited progress in development of experimental research tools, thereby hindering development of new drugs and vaccines. Renewed emphasis on vivax malaria research is beginning to make progress in overcoming some of these challenges.
Collapse
Affiliation(s)
- John H Adams
- Center for Global Health and Infectious Diseases, Department of Global Health, University of South Florida, Tampa, Florida 33612
| | - Ivo Mueller
- Population Health & Immunity Division, Walter & Eliza Hall Institute, Parkville, Victoria 3052, Australia
| |
Collapse
|
33
|
Carrasco-Escobar G, Gamboa D, Castro MC, Bangdiwala SI, Rodriguez H, Contreras-Mancilla J, Alava F, Speybroeck N, Lescano AG, Vinetz JM, Rosas-Aguirre A, Llanos-Cuentas A. Micro-epidemiology and spatial heterogeneity of P. vivax parasitaemia in riverine communities of the Peruvian Amazon: A multilevel analysis. Sci Rep 2017; 7:8082. [PMID: 28808240 PMCID: PMC5556029 DOI: 10.1038/s41598-017-07818-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 07/04/2017] [Indexed: 01/07/2023] Open
Abstract
Malaria has steadily increased in the Peruvian Amazon over the last five years. This study aimed to determine the parasite prevalence and micro-geographical heterogeneity of Plasmodium vivax parasitaemia in communities of the Peruvian Amazon. Four cross-sectional active case detection surveys were conducted between May and July 2015 in four riverine communities in Mazan district. Analysis of 2785 samples of 820 individuals nested within 154 households for Plasmodium parasitaemia was carried out using light microscopy and qPCR. The spatio-temporal distribution of Plasmodium parasitaemia, dominated by P. vivax, was shown to cluster at both household and community levels. Of enrolled individuals, 47% had at least one P. vivax parasitaemia and 10% P. falciparum, by qPCR, both of which were predominantly sub-microscopic and asymptomatic. Spatial analysis detected significant clustering in three communities. Our findings showed that communities at small-to-moderate spatial scales differed in P. vivax parasite prevalence, and multilevel Poisson regression models showed that such differences were influenced by factors such as age, education, and location of households within high-risk clusters, as well as factors linked to a local micro-geographic context, such as travel and occupation. Complex transmission patterns were found to be related to human mobility among communities in the same micro-basin.
Collapse
Affiliation(s)
- Gabriel Carrasco-Escobar
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigacióny Desarrollo, Facultad de Cienciasy Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru.
- Facultad de Salud Públicay Administración, Universidad Peruana Cayetano Heredia, Lima, Peru.
| | - Dionicia Gamboa
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigacióny Desarrollo, Facultad de Cienciasy Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
- Instituto de Medicina Tropical "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru
- Departamento de Ciencias Celularesy Moleculares, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Marcia C Castro
- Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Shrikant I Bangdiwala
- Department of Biostatistics, University of North Carolina Gillings School of Global Public Health, Chapel Hill, NC, USA
- Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, ON, Canada
| | | | - Juan Contreras-Mancilla
- Laboratorio ICEMR-Amazonia, Laboratorios de Investigacióny Desarrollo, Facultad de Cienciasy Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | - Niko Speybroeck
- Research Institute of Health and Society (IRSS), Université Catholique de Louvain, Brussels, Belgium
| | - Andres G Lescano
- Facultad de Salud Públicay Administración, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Joseph M Vinetz
- Instituto de Medicina Tropical "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru
- Departamento de Ciencias Celularesy Moleculares, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
- Division of Infectious Diseases, Department of Medicine, University of California San Diego School of Medicine, La Jolla, California, USA
| | - Angel Rosas-Aguirre
- Instituto de Medicina Tropical "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru
- Research Institute of Health and Society (IRSS), Université Catholique de Louvain, Brussels, Belgium
| | - Alejandro Llanos-Cuentas
- Facultad de Salud Públicay Administración, Universidad Peruana Cayetano Heredia, Lima, Peru.
- Instituto de Medicina Tropical "Alexander von Humboldt", Universidad Peruana Cayetano Heredia, Lima, Peru.
| |
Collapse
|
34
|
Douglas NM, Poespoprodjo JR, Patriani D, Malloy MJ, Kenangalem E, Sugiarto P, Simpson JA, Soenarto Y, Anstey NM, Price RN. Unsupervised primaquine for the treatment of Plasmodium vivax malaria relapses in southern Papua: A hospital-based cohort study. PLoS Med 2017; 14:e1002379. [PMID: 28850568 PMCID: PMC5574534 DOI: 10.1371/journal.pmed.1002379] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 07/27/2017] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Primaquine is the only licensed drug for eradicating Plasmodium vivax hypnozoites and, therefore, preventing relapses of vivax malaria. It is a vital component of global malaria elimination efforts. Primaquine is efficacious when supervised in clinical trials, but its effectiveness in real-world settings is unknown. We aimed to determine whether unsupervised primaquine was effective for preventing re-presentation to hospital with vivax malaria in southern Papua, Indonesia. METHODS AND FINDINGS Routinely-collected hospital surveillance data were used to undertake a pragmatic comparison of the risk of re-presentation to hospital with vivax malaria in patients prescribed dihydroartemisinin-piperaquine (DHP) combined with primaquine versus those patients prescribed DHP alone. The omission of primaquine was predominantly due to 3 stock outages. Individual clinical, pharmacy, and laboratory data were merged using individual hospital identification numbers and the date of presentation to hospital. Between April 2004 and December 2013, there were 86,797 documented episodes of vivax malaria, of which 62,492 (72.0%) were included in the analysis. The risk of re-presentation with vivax malaria within 1 year was 33.8% (95% confidence Interval [CI] 33.1%-34.5%) after initial monoinfection with P. vivax and 29.2% (95% CI 28.1%-30.4%) after mixed-species infection. The risk of re-presentation with P. vivax malaria was higher in children 1 to <5 years of age (49.6% [95% CI 48.4%-50.9%]) compared to patients 15 years of age or older (24.2% [95% CI 23.4-24.9%]); Adjusted Hazard Ratio (AHR) = 2.23 (95% CI 2.15-2.31), p < 0.001. Overall, the risk of re-presentation was 37.2% (95% CI 35.6%-38.8%) in patients who were prescribed no primaquine compared to 31.6% (95% CI 30.9%-32.3%) in those prescribed either a low (≥1.5 mg/kg and <5 mg/kg) or high (≥5 mg/kg) dose of primaquine (AHR = 0.90 [95% CI 0.86-0.95, p < 0.001]). Limiting the comparison to high dose versus no primaquine in the period during and 12 months before and after a large stock outage resulted in minimal change in the estimated clinical effectiveness of primaquine (AHR 0.91, 95% CI 0.85-0.97, p = 0.003). Our pragmatic study avoided the clinical influences associated with prospective study involvement but was subject to attrition bias caused by passive follow-up. CONCLUSIONS Unsupervised primaquine for vivax malaria, prescribed according to the current World Health Organization guidelines, was associated with a minimal reduction in the risk of clinical recurrence within 1 year in Papua, Indonesia. New strategies for the effective radical cure of vivax malaria are needed in resource-poor settings.
Collapse
Affiliation(s)
- Nicholas M. Douglas
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
- Division of Infectious Diseases, Christchurch Hospital, Christchurch, New Zealand
| | - Jeanne Rini Poespoprodjo
- Timika Malaria Research Program, Papuan Health and Community Development Foundation, Timika, Papua, Indonesia
- Department of Child Health, Faculty of Medicine, University Gadjah Mada, Yogyakarta, Indonesia
| | - Dewi Patriani
- Department of Child Health, Faculty of Medicine, University Gadjah Mada, Yogyakarta, Indonesia
| | - Michael J. Malloy
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Victoria, Australia
- Victorian Cytology Service Ltd., Melbourne, Victoria, Australia
| | - Enny Kenangalem
- Timika Malaria Research Program, Papuan Health and Community Development Foundation, Timika, Papua, Indonesia
- Mimika District Hospital, Timika, Papua, Indonesia
| | | | - Julie A. Simpson
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Yati Soenarto
- Department of Child Health, Faculty of Medicine, University Gadjah Mada, Yogyakarta, Indonesia
| | - Nicholas M. Anstey
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Ric N. Price
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
35
|
Lo E, Hemming-Schroeder E, Yewhalaw D, Nguyen J, Kebede E, Zemene E, Getachew S, Tushune K, Zhong D, Zhou G, Petros B, Yan G. Transmission dynamics of co-endemic Plasmodium vivax and P. falciparum in Ethiopia and prevalence of antimalarial resistant genotypes. PLoS Negl Trop Dis 2017; 11:e0005806. [PMID: 28746333 PMCID: PMC5546713 DOI: 10.1371/journal.pntd.0005806] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 08/07/2017] [Accepted: 07/13/2017] [Indexed: 11/19/2022] Open
Abstract
Ethiopia is one of the few African countries where Plasmodium vivax is co-endemic with P. falciparum. Malaria transmission is seasonal and transmission intensity varies mainly by landscape and climate. Although the recent emergence of drug resistant parasites presents a major issue to malaria control in Ethiopia, little is known about the transmission pathways of parasite species and prevalence of resistant markers. This study used microsatellites to determine population diversity and gene flow patterns of P. falciparum (N = 226) and P. vivax (N = 205), as well as prevalence of drug resistant markers to infer the impact of gene flow and existing malaria treatment regimes. Plasmodium falciparum indicated a higher rate of polyclonal infections than P. vivax. Both species revealed moderate genetic diversity and similar population structure. Populations in the northern highlands were closely related to the eastern Rift Valley, but slightly distinct from the southern basin area. Gene flow via human migrations between the northern and eastern populations were frequent and mostly bidirectional. Landscape genetic analyses indicated that environmental heterogeneity and geographical distance did not constrain parasite gene flow. This may partly explain similar patterns of resistant marker prevalence. In P. falciparum, a high prevalence of mutant alleles was detected in codons related to chloroquine (pfcrt and pfmdr1) and sulfadoxine-pyrimethamine (pfdhps and pfdhfr) resistance. Over 60% of the samples showed pfmdr1 duplications. Nevertheless, no mutation was detected in pfK13 that relates to artemisinin resistance. In P. vivax, while sequences of pvcrt-o were highly conserved and less than 5% of the samples showed pvmdr duplications, over 50% of the samples had pvmdr1 976F mutation. It remains to be tested if this mutation relates to chloroquine resistance. Monitoring the extent of malaria spread and markers of drug resistance is imperative to inform policy for evidence-based antimalarial choice and interventions. To effectively reduce malaria burden in Ethiopia, control efforts should focus on seasonal migrant populations.
Collapse
MESH Headings
- Adolescent
- Adult
- Aged
- Aged, 80 and over
- Antimalarials/pharmacology
- Child
- Child, Preschool
- Drug Resistance
- Endemic Diseases
- Ethiopia/epidemiology
- Female
- Gene Flow
- Genes, Protozoan
- Genetics, Population
- Genotype
- Humans
- Infant
- Infant, Newborn
- Malaria, Falciparum/epidemiology
- Malaria, Falciparum/parasitology
- Malaria, Falciparum/transmission
- Malaria, Vivax/epidemiology
- Malaria, Vivax/parasitology
- Malaria, Vivax/transmission
- Male
- Microsatellite Repeats
- Middle Aged
- Plasmodium falciparum/drug effects
- Plasmodium falciparum/genetics
- Plasmodium falciparum/isolation & purification
- Plasmodium vivax/drug effects
- Plasmodium vivax/genetics
- Plasmodium vivax/isolation & purification
- Prevalence
- Young Adult
Collapse
Affiliation(s)
- Eugenia Lo
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, North Carolina, United States of America
- * E-mail: (EL); (GY)
| | | | - Delenasaw Yewhalaw
- Department of Medical Laboratory Sciences and Pathology, College of Public Health and Medical Sciences, Jimma University, Jimma, Ethiopia
| | - Jennifer Nguyen
- Program in Public Health, University of California, Irvine, California, United States of America
| | - Estifanos Kebede
- Department of Medical Laboratory Sciences and Pathology, College of Public Health and Medical Sciences, Jimma University, Jimma, Ethiopia
| | - Endalew Zemene
- Department of Medical Laboratory Sciences and Pathology, College of Public Health and Medical Sciences, Jimma University, Jimma, Ethiopia
| | - Sisay Getachew
- College of Natural Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Kora Tushune
- Department of Health Services Management, College of Public Health and Medical Sciences, Jimma University, Jimma, Ethiopia
| | - Daibin Zhong
- Program in Public Health, University of California, Irvine, California, United States of America
| | - Guofa Zhou
- Program in Public Health, University of California, Irvine, California, United States of America
| | - Beyene Petros
- College of Natural Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Guiyun Yan
- Program in Public Health, University of California, Irvine, California, United States of America
- * E-mail: (EL); (GY)
| |
Collapse
|
36
|
Htun MW, Mon NCN, Aye KM, Hlaing CM, Kyaw MP, Handayuni I, Trimarsanto H, Bustos D, Ringwald P, Price RN, Auburn S, Thriemer K. Chloroquine efficacy for Plasmodium vivax in Myanmar in populations with high genetic diversity and moderate parasite gene flow. Malar J 2017; 16:281. [PMID: 28693552 PMCID: PMC5504659 DOI: 10.1186/s12936-017-1912-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 06/26/2017] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Plasmodium vivax malaria remains a major public health burden in Myanmar. Resistance to chloroquine (CQ), the first-line treatment for P. vivax, has been reported in the country and has potential to undermine local control efforts. METHODS Patients over 6 years of age with uncomplicated P. vivax mono-infection were enrolled into clinical efficacy studies in Myawaddy in 2014 and Kawthoung in 2012. Study participants received a standard dose of CQ (25 mg/kg over 3 days) followed by weekly review until day 28. Pvmdr1 copy number (CN) and microsatellite diversity were assessed on samples from the patients enrolled in the clinical study and additional cross-sectional surveys undertaken in Myawaddy and Shwegyin in 2012. RESULTS A total of 85 patients were enrolled in the CQ clinical studies, 25 in Myawaddy and 60 in Kawthoung. One patient in Myawaddy (1.2%) had an early treatment failure and two patients (2.3%) in Kawthoung presented with late treatment failures on day 28. The day 28 efficacy was 92.0% (95% CI 71.6-97.9) in Myawaddy and 98.3% (95% CI 88.7-99.8) in Kawthoung. By day 2, 92.2% (23/25) in Myawaddy and 85.0% (51/60) in Kawthoung were aparasitaemic. Genotyping and pvmdr1 CN assessment was undertaken on 43, 52 and 46 clinical isolates from Myawaddy, Kawthoung and Shwegyin respectively. Pvmdr1 amplification was observed in 3.2% (1/31) of isolates in Myawaddy, 0% (0/49) in Kawthoung and 2.5% (1/40) in Shwegyin. Diversity was high in all sites (H E 0.855-0.876), with low inter-population differentiation (F ST 0.016-0.026, P < 0.05). CONCLUSIONS Treatment failures after chloroquine were observed following chloroquine monotherapy, with pvmdr1 amplification present in both Myawaddy and Shwegyin. The results emphasize the importance of ongoing P. vivax drug resistance surveillance in Myanmar, particularly given the potential connectivity between parasite population at different sites.
Collapse
Affiliation(s)
- Myo Win Htun
- grid.415741.2Department of Medical Research, Yangon, 11191 Myanmar
| | - Nan Cho Nwe Mon
- grid.415741.2Department of Medical Research, Yangon, 11191 Myanmar
| | - Khin Myo Aye
- grid.415741.2Department of Medical Research, Yangon, 11191 Myanmar
| | - Chan Myae Hlaing
- grid.415741.2Department of Medical Research, Yangon, 11191 Myanmar
| | - Myat Phone Kyaw
- grid.415741.2Department of Medical Research, Yangon, 11191 Myanmar
| | - Irene Handayuni
- 0000 0000 8523 7955grid.271089.5Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT 0810 Australia
| | - Hidayat Trimarsanto
- 0000 0004 1795 0993grid.418754.bEijkman Institute for Molecular Biology, Jl. Diponegoro 69, Central Jakarta, 10430 Indonesia ,grid.466915.9The Ministry of Research and Technology (RISTEK), Jakarta, Indonesia ,0000 0001 0746 0534grid.432292.cAgency for Assessment and Application of Technology, Jl. MH Thamrin 8, Jakarta, 10340 Indonesia
| | - Dorina Bustos
- 0000 0004 0576 2573grid.415836.dWorld Health Organization, Country Office for Thailand, Ministry of Public Health, Nonthaburi, Thailand
| | - Pascal Ringwald
- 0000000121633745grid.3575.4Global Malaria Programme, World Health Organization, 20 Avenue Appia, 1211 Geneva, 27, Switzerland
| | - Ric N. Price
- 0000 0000 8523 7955grid.271089.5Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT 0810 Australia ,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine Research Building, University of Oxford Old Road Campus, Oxford, UK
| | - Sarah Auburn
- 0000 0000 8523 7955grid.271089.5Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT 0810 Australia
| | - Kamala Thriemer
- 0000 0000 8523 7955grid.271089.5Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT 0810 Australia
| |
Collapse
|
37
|
Pava Z, Noviyanti R, Handayuni I, Trimarsanto H, Trianty L, Burdam FH, Kenangalem E, Utami RAS, Tirta YK, Coutrier F, Poespoprodjo JR, Price RN, Marfurt J, Auburn S. Genetic micro-epidemiology of malaria in Papua Indonesia: Extensive P. vivax diversity and a distinct subpopulation of asymptomatic P. falciparum infections. PLoS One 2017; 12:e0177445. [PMID: 28498860 PMCID: PMC5428948 DOI: 10.1371/journal.pone.0177445] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 04/27/2017] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Genetic analyses of Plasmodium have potential to inform on transmission dynamics, but few studies have evaluated this on a local spatial scale. We used microsatellite genotyping to characterise the micro-epidemiology of P. vivax and P. falciparum diversity to inform malaria control strategies in Timika, Papua Indonesia. METHODS Genotyping was undertaken on 713 sympatric P. falciparum and P. vivax isolates from a cross-sectional household survey and clinical studies conducted in Timika. Standard population genetic measures were applied, and the data was compared to published data from Kalimantan, Bangka, Sumba and West Timor. RESULTS Higher diversity (HE = 0.847 vs 0.625; p = 0.017) and polyclonality (46.2% vs 16.5%, p<0.001) were observed in P. vivax versus P. falciparum. Distinct P. falciparum substructure was observed, with two subpopulations, K1 and K2. K1 was comprised solely of asymptomatic infections and displayed greater relatedness to isolates from Sumba than to K2, possibly reflecting imported infections. CONCLUSIONS The results demonstrate the greater refractoriness of P. vivax versus P. falciparum to control measures, and risk of distinct parasite subpopulations persisting in the community undetected by passive surveillance. These findings highlight the need for complimentary new surveillance strategies to identify transmission patterns that cannot be detected with traditional malariometric methods.
Collapse
Affiliation(s)
- Zuleima Pava
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Rintis Noviyanti
- Malaria Pathogenesis Unit, Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - Irene Handayuni
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Hidayat Trimarsanto
- Bioinformatics Laboratory, Eijkman Institute for Molecular Biology, Jakarta, Indonesia
- Agency for Assessment and Application of Technology, Jakarta, Indonesia
| | - Leily Trianty
- Malaria Pathogenesis Unit, Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - Faustina H. Burdam
- Mimika District Health Authority, Timika, Papua, Indonesia
- Timika Malaria Research Programme, Papuan Health and Community Development Foundation, Timika, Papua, Indonesia
- Pediatric Research Office, Department of Child Health, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Enny Kenangalem
- Mimika District Health Authority, Timika, Papua, Indonesia
- Timika Malaria Research Programme, Papuan Health and Community Development Foundation, Timika, Papua, Indonesia
| | - Retno A. S. Utami
- Malaria Pathogenesis Unit, Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - Yusrifar K. Tirta
- Malaria Pathogenesis Unit, Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - Farah Coutrier
- Malaria Pathogenesis Unit, Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | - Jeanne R. Poespoprodjo
- Mimika District Health Authority, Timika, Papua, Indonesia
- Timika Malaria Research Programme, Papuan Health and Community Development Foundation, Timika, Papua, Indonesia
- Pediatric Research Office, Department of Child Health, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Ric N. Price
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
- Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Jutta Marfurt
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Sarah Auburn
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| |
Collapse
|
38
|
Fola AA, Harrison GLA, Hazairin MH, Barnadas C, Hetzel MW, Iga J, Siba PM, Mueller I, Barry AE. Higher Complexity of Infection and Genetic Diversity of Plasmodium vivax Than Plasmodium falciparum Across All Malaria Transmission Zones of Papua New Guinea. Am J Trop Med Hyg 2017; 96:630-641. [PMID: 28070005 DOI: 10.4269/ajtmh.16-0716] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Plasmodium falciparum and Plasmodium vivax have varying transmission dynamics that are informed by molecular epidemiology. This study aimed to determine the complexity of infection and genetic diversity of P. vivax and P. falciparum throughout Papua New Guinea (PNG) to evaluate transmission dynamics across the country. In 2008-2009, a nationwide malaria indicator survey collected 8,936 samples from all 16 endemic provinces of PNG. Of these, 892 positive P. vivax samples were genotyped at PvMS16 and PvmspF3, and 758 positive P. falciparum samples were genotyped at Pfmsp2. The data were analyzed for multiplicity of infection (MOI) and genetic diversity. Overall, P. vivax had higher polyclonality (71%) and mean MOI (2.32) than P. falciparum (20%, 1.39). These measures were significantly associated with prevalence for P. falciparum but not for P. vivax. The genetic diversity of P. vivax (PvMS16: expected heterozygosity = 0.95, 0.85-0.98; PvMsp1F3: 0.78, 0.66-0.89) was higher and less variable than that of P. falciparum (Pfmsp2: 0.89, 0.65-0.97). Significant associations of MOI with allelic richness (rho = 0.69, P = 0.009) and expected heterozygosity (rho = 0.87, P < 0.001) were observed for P. falciparum. Conversely, genetic diversity was not correlated with polyclonality nor mean MOI for P. vivax. The results demonstrate higher complexity of infection and genetic diversity of P. vivax across the country. Although P. falciparum shows a strong association of these parameters with prevalence, a lack of association was observed for P. vivax and is consistent with higher potential for outcrossing of this species.
Collapse
Affiliation(s)
- Abebe A Fola
- Department of Medical Biology, University of Melbourne, Parkville, Australia.,Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - G L Abby Harrison
- Department of Medical Biology, University of Melbourne, Parkville, Australia.,Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Mita Hapsari Hazairin
- Department of Epidemiology and Preventative Medicine, Monash University, Clayton, Australia.,Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Céline Barnadas
- Statens Serum Institut, Copenhagen, Denmark.,European Public Health Microbiology (EUPHEM) Training Programme, European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden.,Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Manuel W Hetzel
- University of Basel, Basel, Switzerland.,Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Jonah Iga
- Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
| | - Peter M Siba
- Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
| | - Ivo Mueller
- Institut Pasteur, Paris, France.,Department of Medical Biology, University of Melbourne, Parkville, Australia.,Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Alyssa E Barry
- Department of Medical Biology, University of Melbourne, Parkville, Australia.,Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| |
Collapse
|
39
|
VivaxGEN: An open access platform for comparative analysis of short tandem repeat genotyping data in Plasmodium vivax populations. PLoS Negl Trop Dis 2017; 11:e0005465. [PMID: 28362818 PMCID: PMC5389845 DOI: 10.1371/journal.pntd.0005465] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 04/12/2017] [Accepted: 03/07/2017] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The control and elimination of Plasmodium vivax will require a better understanding of its transmission dynamics, through the application of genotyping and population genetics analyses. This paper describes VivaxGEN (http://vivaxgen.menzies.edu.au), a web-based platform that has been developed to support P. vivax short tandem repeat data sharing and comparative analyses. RESULTS The VivaxGEN platform provides a repository for raw data generated by capillary electrophoresis (FSA files), with fragment analysis and standardized allele calling tools. The query system of the platform enables users to filter, select and differentiate samples and alleles based on their specified criteria. Key population genetic analyses are supported including measures of population differentiation (FST), expected heterozygosity (HE), linkage disequilibrium (IAS), neighbor-joining analysis and Principal Coordinate Analysis. Datasets can also be formatted and exported for application in commonly used population genetic software including GENEPOP, Arlequin and STRUCTURE. To date, data from 10 countries, including 5 publicly available data sets have been shared with VivaxGEN. CONCLUSIONS VivaxGEN is well placed to facilitate regional overviews of P. vivax transmission dynamics in different endemic settings and capable to be adapted for similar genetic studies of P. falciparum and other organisms.
Collapse
|
40
|
Selective sweep suggests transcriptional regulation may underlie Plasmodium vivax resilience to malaria control measures in Cambodia. Proc Natl Acad Sci U S A 2016; 113:E8096-E8105. [PMID: 27911780 DOI: 10.1073/pnas.1608828113] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Cambodia, in which both Plasmodium vivax and Plasmodium falciparum are endemic, has been the focus of numerous malaria-control interventions, resulting in a marked decline in overall malaria incidence. Despite this decline, the number of P vivax cases has actually increased. To understand better the factors underlying this resilience, we compared the genetic responses of the two species to recent selective pressures. We sequenced and studied the genomes of 70 P vivax and 80 P falciparum isolates collected between 2009 and 2013. We found that although P falciparum has undergone population fracturing, the coendemic P vivax population has grown undisrupted, resulting in a larger effective population size, no discernable population structure, and frequent multiclonal infections. Signatures of selection suggest recent, species-specific evolutionary differences. Particularly, in contrast to P falciparum, P vivax transcription factors, chromatin modifiers, and histone deacetylases have undergone strong directional selection, including a particularly strong selective sweep at an AP2 transcription factor. Together, our findings point to different population-level adaptive mechanisms used by P vivax and P falciparum parasites. Although population substructuring in P falciparum has resulted in clonal outgrowths of resistant parasites, P vivax may use a nuanced transcriptional regulatory approach to population maintenance, enabling it to preserve a larger, more diverse population better suited to facing selective threats. We conclude that transcriptional control may underlie P vivax's resilience to malaria control measures. Novel strategies to target such processes are likely required to eradicate P vivax and achieve malaria elimination.
Collapse
|
41
|
Hamedi Y, Sharifi-Sarasiabi K, Dehghan F, Safari R, To S, Handayuni I, Trimarsanto H, Price RN, Auburn S. Molecular Epidemiology of P. vivax in Iran: High Diversity and Complex Sub-Structure Using Neutral Markers, but No Evidence of Y976F Mutation at pvmdr1. PLoS One 2016; 11:e0166124. [PMID: 27829067 PMCID: PMC5102416 DOI: 10.1371/journal.pone.0166124] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 10/24/2016] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Malaria remains endemic at low levels in the south-eastern provinces of Iran bordering Afghanistan and Pakistan, with the majority of cases attributable to P. vivax. The national guidelines recommend chloroquine (CQ) as blood-stage treatment for uncomplicated P. vivax, but the large influx of imported cases enhances the risk of introducing CQ resistance (CQR). METHODOLOGY AND PRINCIPAL FINDINGS The genetic diversity at pvmdr1, a putative modulator of CQR, and across nine putatively neutral short tandem repeat (STR) markers were assessed in P. vivax clinical isolates collected between April 2007 and January 2013 in Hormozgan Province, south-eastern Iran. One hundred blood samples were collected from patients with microscopy-confirmed P. vivax enrolled at one of five district clinics. In total 73 (73%) were autochthonous cases, 23 (23%) imported cases from Afghanistan or Pakistan, and 4 (4%) with unknown origin. 97% (97/100) isolates carried the F1076L mutation, but none carried the Y976F mutation. STR genotyping was successful in 71 (71%) isolates, including 57(57%) autochthonous and 11 (11%) imported cases. Analysis of population structure revealed 2 major sub-populations, K1 and K2, with further sub-structure within K2. The K1 sub-population had markedly lower diversity than K2 (HE = 0.06 vs HE = 0.82) suggesting that the sub-populations were sustained by distinct reservoirs with differing transmission dynamics, possibly reflecting local versus imported/introduced populations. No notable separation was observed between the local and imported cases although the sample size was limited. CONCLUSIONS The contrasting low versus high diversity in the two sub-populations (K1 and K2) infers that a combination of local transmission and cross-border malaria from higher transmission regions shape the genetic make-up of the P. vivax population in south-eastern Iran. There was no molecular evidence of CQR amongst the local or imported cases, but ongoing clinical surveillance is warranted.
Collapse
Affiliation(s)
- Yaghoob Hamedi
- Infectious and Tropical Diseases Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Hormozgan Province, Iran
| | - Khojasteh Sharifi-Sarasiabi
- Infectious and Tropical Diseases Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Hormozgan Province, Iran
| | - Farzaneh Dehghan
- Molecular Medicine Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Hormozgan Province, Iran
| | - Reza Safari
- Hormozgan University of Medical Sciences, Bandar Abbas, Hormozgan Province, Iran
| | - Sheren To
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
| | - Irene Handayuni
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
| | - Hidayat Trimarsanto
- Bioinformatics Laboratory, Eijkman Institute for Molecular Biology, Jakarta, Indonesia
- The Ministry of Research and Technology (RISTEK), Jakarta, Indonesia
- Agency for Assessment and Application of Technology, Jakarta, Indonesia
| | - Ric N. Price
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Sarah Auburn
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Northern Territory, Australia
| |
Collapse
|
42
|
Auburn S, Barry AE. Dissecting malaria biology and epidemiology using population genetics and genomics. Int J Parasitol 2016; 47:77-85. [PMID: 27825828 DOI: 10.1016/j.ijpara.2016.08.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 08/09/2016] [Accepted: 08/25/2016] [Indexed: 10/20/2022]
Abstract
Molecular approaches have an increasingly recognized utility in surveillance of malaria parasite populations, not only in defining prevalence and incidence with higher sensitivity than traditional methods, but also in monitoring local and regional parasite transmission patterns. In this review, we provide an overview of population genetic and genomic studies of human-infecting Plasmodium species, highlighting recent advances in the field. In accordance with the renewed impetus for malaria eradication, many studies are now using genetic and genomic epidemiology to support local evidence-based intervention strategies. Microsatellite genotyping remains a popular approach for both Plasmodium falciparum and Plasmodium vivax. However, with the increasing availability of whole genome sequencing data enabling effective single nucleotide polymorphism-based panels tailored to a given study question and setting, this approach is gaining popularity. The availability of new reference genomes for Plasmodium malariae and Plasmodium ovale should see a surge in similar molecular studies on these currently neglected species. Genomic studies are revealing new insights into important adaptive mechanisms of the parasite including antimalarial drug resistance. The advent of new methodologies such as selective whole genome amplification for dealing with extensive human DNA in low density field isolates should see genome-wide approaches becoming routine for parasite surveillance once the economic costs outweigh the current cost benefits of targeted approaches.
Collapse
Affiliation(s)
- Sarah Auburn
- Global and Tropical Health Division, Menzies School of Health Research, Darwin, Australia
| | - Alyssa E Barry
- Division of Population Health and Immunity, Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia; Department of Medical Biology, University of Melbourne, Melbourne, Australia.
| |
Collapse
|
43
|
Olliaro PL, Barnwell JW, Barry A, Mendis K, Mueller I, Reeder JC, Shanks GD, Snounou G, Wongsrichanalai C. Implications of Plasmodium vivax Biology for Control, Elimination, and Research. Am J Trop Med Hyg 2016; 95:4-14. [PMID: 27799636 PMCID: PMC5201222 DOI: 10.4269/ajtmh.16-0160] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 09/29/2016] [Indexed: 12/03/2022] Open
Abstract
This paper summarizes our current understanding of the biology of Plasmodium vivax, how it differs from Plasmodium falciparum, and how these differences explain the need for P. vivax-tailored interventions. The article further pinpoints knowledge gaps where investments in research are needed to help identify and develop such specific interventions. The principal obstacles to reduce and eventually eliminate P. vivax reside in 1) its higher vectorial capacity compared with P. falciparum due to its ability to develop at lower temperature and over a shorter sporogonic cycle in the vector, allowing transmission in temperate zones and making it less sensitive to vector control measures that are otherwise effective on P. falciparum; 2) the presence of dormant liver forms (hypnozoites), sustaining multiple relapsing episodes from a single infectious bite that cannot be diagnosed and are not susceptible to any available antimalarial except primaquine, with routine deployment restricted by toxicity; 3) low parasite densities, which are difficult to detect with current diagnostics leading to missed diagnoses and delayed treatments (and protracted transmission), coupled with 4) transmission stages (gametocytes) occurring early in acute infections, before infection is diagnosed.
Collapse
Affiliation(s)
- Piero L Olliaro
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.,UNICEF/UNDP/World Bank/WHO Special Programme on Research and Training in Tropical Diseases (TDR), World Health Organization, Geneva, Switzerland
| | - John W Barnwell
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Alyssa Barry
- Department of Medical Biology, University of Melbourne, Melbourne, Australia.,Division of Population Health and Immunity, Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | | | - Ivo Mueller
- Institute of Global Health (ISGLOBAL), Barcelona, Spain.,Division of Population Health and Immunity, Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - John C Reeder
- UNICEF/UNDP/World Bank/WHO Special Programme on Research and Training in Tropical Diseases (TDR), World Health Organization, Geneva, Switzerland
| | - G Dennis Shanks
- School of Population Health, University of Queensland, Brisbane, Australia
| | - Georges Snounou
- Centre d'Immunologie et de Maladies Infectieuses (CIMI)-Paris, Institut National de la Santé et de la Recherche Médicale (INSERM) U1135-Centre National de la Recherche Scientifique (CNRS) ERL 8255, Paris, France.,Sorbonne Universités, UPMC Univ Paris 06, UPMC UMRS CR7, Paris, France
| | | |
Collapse
|
44
|
Auburn S, Serre D, Pearson RD, Amato R, Sriprawat K, To S, Handayuni I, Suwanarusk R, Russell B, Drury E, Stalker J, Miotto O, Kwiatkowski DP, Nosten F, Price RN. Genomic Analysis Reveals a Common Breakpoint in Amplifications of the Plasmodium vivax Multidrug Resistance 1 Locus in Thailand. J Infect Dis 2016; 214:1235-42. [PMID: 27456706 PMCID: PMC5034950 DOI: 10.1093/infdis/jiw323] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 07/20/2016] [Indexed: 01/13/2023] Open
Abstract
In regions of coendemicity for Plasmodium falciparum and Plasmodium vivax where mefloquine is used to treat P. falciparum infection, drug pressure mediated by increased copy numbers of the multidrug resistance 1 gene (pvmdr1) may select for mefloquine-resistant P. vivax Surveillance is not undertaken routinely owing in part to methodological challenges in detection of gene amplification. Using genomic data on 88 P. vivax samples from western Thailand, we identified pvmdr1 amplification in 17 isolates, all exhibiting tandem copies of a 37.6-kilobase pair region with identical breakpoints. A novel breakpoint-specific polymerase chain reaction assay was designed to detect the amplification. The assay demonstrated high sensitivity, identifying amplifications in 13 additional, polyclonal infections. Application to 132 further samples identified the common breakpoint in all years tested (2003-2015), with a decline in prevalence after 2012 corresponding to local discontinuation of mefloquine regimens. Assessment of the structure of pvmdr1 amplification in other geographic regions will yield information about the population-specificity of the breakpoints and underlying amplification mechanisms.
Collapse
Affiliation(s)
- Sarah Auburn
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Australia
| | - David Serre
- Genomic Medicine Institute, Cleveland Clinic Lerner Research institute, Ohio
| | - Richard D. Pearson
- Wellcome Trust Sanger Institute, Hinxton,Wellcome Trust Centre for Human Genetics
| | - Roberto Amato
- Wellcome Trust Sanger Institute, Hinxton,Wellcome Trust Centre for Human Genetics
| | - Kanlaya Sriprawat
- Shoklo Malaria Research Unit, Faculty of Tropical Medicine, Mahidol University, Tak
| | - Sheren To
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Australia
| | - Irene Handayuni
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Australia
| | - Rossarin Suwanarusk
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand,Singapore Immunology Network, Agency for Science, Technology and Research, Singapore
| | - Bruce Russell
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | | | | | - Olivo Miotto
- Wellcome Trust Sanger Institute, Hinxton,Medical Research Council Centre for Genomics and Global Health,Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Dominic P. Kwiatkowski
- Wellcome Trust Sanger Institute, Hinxton,Wellcome Trust Centre for Human Genetics,Medical Research Council Centre for Genomics and Global Health
| | - Francois Nosten
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford University, United Kingdom,Shoklo Malaria Research Unit, Faculty of Tropical Medicine, Mahidol University, Tak
| | - Ric N. Price
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Australia,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, Oxford University, United Kingdom
| |
Collapse
|
45
|
White NJ. Why Do Some Primate Malarias Relapse? Trends Parasitol 2016; 32:918-920. [PMID: 27743866 PMCID: PMC5134685 DOI: 10.1016/j.pt.2016.08.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 08/27/2016] [Accepted: 08/31/2016] [Indexed: 11/19/2022]
Abstract
Relapse may have evolved in malaria as a mechanism to avoid suppression by more virulent species in mixed infections, thereby increasing transmission opportunities. Later evolution of long latency in Plasmodium vivax was a necessary adaptation as early hominins moved to colder areas with shorter mosquito breeding seasons. Genetic diversity was maintained through heterologous hypnozoite activation.
Collapse
Affiliation(s)
- Nicholas J White
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, Churchill Hospital, Oxford, OX3 7LJ, United Kingdom.
| |
Collapse
|
46
|
Wangchuk S, Drukpa T, Penjor K, Peldon T, Dorjey Y, Dorji K, Chhetri V, Trimarsanto H, To S, Murphy A, von Seidlein L, Price RN, Thriemer K, Auburn S. Where chloroquine still works: the genetic make-up and susceptibility of Plasmodium vivax to chloroquine plus primaquine in Bhutan. Malar J 2016; 15:277. [PMID: 27176722 PMCID: PMC4866075 DOI: 10.1186/s12936-016-1320-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 04/30/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Bhutan has made substantial progress in reducing malaria incidence. The national guidelines recommend chloroquine (CQ) and primaquine (PQ) for radical cure of uncomplicated Plasmodium vivax, but the local efficacy has not been assessed. The impact of cases imported from India on the genetic make-up of the local vivax populations is currently unknown. METHODS Patients over 4 years of age with uncomplicated P. vivax mono-infection were enrolled into a clinical efficacy study and molecular survey. Study participants received a standard dose of CQ (25 mg/kg over 3 days) followed by weekly review until day 28. On day 28 a 14-day regimen of PQ (0.25 mg/kg/day) was commenced under direct observation. After day 42, patients were followed up monthly for a year. The primary and secondary endpoints were risk of treatment failure at day 28 and at 1 year. Parasite genotyping was undertaken at nine tandem repeat markers, and standard population genetic metrics were applied to examine population diversity and structure in infections thought to be acquired inside or outside of Bhutan. RESULTS A total of 24 patients were enrolled in the clinical study between April 2013 and October 2015. Eight patients (33.3 %) were lost to follow-up in the first 6 months and another eight patients lost between 6 and 12 months. No (0/24) treatment failures occurred by day 28 and no (0/8) parasitaemia was detected following PQ treatment. Some 95.8 % (23/24) of patients were aparasitaemic by day 2. There were no haemolytic or serious events. Genotyping was undertaken on parasites from 12 autochthonous cases and 16 suspected imported cases. Diversity was high (H E 0.87 and 0.90) in both populations. There was no notable differentiation between the autochthonous and imported populations. CONCLUSIONS CQ and PQ remains effective for radical cure of P. vivax in Bhutan. The genetic analyses indicate that imported infections are sustaining the local vivax population, with concomitant risk of introducing drug-resistant strains.
Collapse
Affiliation(s)
- Sonam Wangchuk
- Public Health Laboratory, Department of Public Health, Ministry of Health, Thimphu, Bhutan
| | - Tobgyel Drukpa
- Vector Borne Disease Control Programme in Gelephu, Communicable Disease Division, Department of Public Health, Ministry of Health, Thimphu, Bhutan
| | - Kinley Penjor
- Sarpang District Hospital, Ministry of Health, Sarpang District, Bhutan
| | - Tashi Peldon
- Gelephu Regional Referral Hospital, Ministry of Health, Gelephu, Bhutan
| | - Yeshey Dorjey
- Yebilaptsa Hospital, Ministry of Health, Zhemgang District, Bhutan
| | - Kunzang Dorji
- Public Health Laboratory, Department of Public Health, Ministry of Health, Thimphu, Bhutan
| | - Vishal Chhetri
- Gelephu Regional Referral Hospital, Ministry of Health, Gelephu, Bhutan
| | - Hidayat Trimarsanto
- Eijkman Institute for Molecular Biology, Jl. Diponegoro 69, Jakarta Pusat, 10430, Indonesia.,The Ministry of Research and Technology (RISTEK), Jakarta, Indonesia.,Agency for Assessment and Application of Technology, Jl. MH Thamrin 8, Jakarta, 10340, Indonesia
| | - Sheren To
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, 0810, Australia
| | - Amanda Murphy
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, 0810, Australia.,Faculty of Medicine and Biomedical Sciences, School of Population Health, The University of Queensland, Brisbane, Australia
| | - Lorenz von Seidlein
- Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine Research Building, University of Oxford Old Road Campus, Oxford, UK
| | - Ric N Price
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, 0810, Australia.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine Research Building, University of Oxford Old Road Campus, Oxford, UK
| | - Kamala Thriemer
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, 0810, Australia.
| | - Sarah Auburn
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT, 0810, Australia.
| |
Collapse
|
47
|
BROCK PM, FORNACE KM, PARMITER M, COX J, DRAKELEY CJ, FERGUSON HM, KAO RR. Plasmodium knowlesi transmission: integrating quantitative approaches from epidemiology and ecology to understand malaria as a zoonosis. Parasitology 2016; 143:389-400. [PMID: 26817785 PMCID: PMC4800714 DOI: 10.1017/s0031182015001821] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/01/2015] [Accepted: 12/02/2015] [Indexed: 12/12/2022]
Abstract
The public health threat posed by zoonotic Plasmodium knowlesi appears to be growing: it is increasingly reported across South East Asia, and is the leading cause of malaria in Malaysian Borneo. Plasmodium knowlesi threatens progress towards malaria elimination as aspects of its transmission, such as spillover from wildlife reservoirs and reliance on outdoor-biting vectors, may limit the effectiveness of conventional methods of malaria control. The development of new quantitative approaches that address the ecological complexity of P. knowlesi, particularly through a focus on its primary reservoir hosts, will be required to control it. Here, we review what is known about P. knowlesi transmission, identify key knowledge gaps in the context of current approaches to transmission modelling, and discuss the integration of these approaches with clinical parasitology and geostatistical analysis. We highlight the need to incorporate the influences of fine-scale spatial variation, rapid changes to the landscape, and reservoir population and transmission dynamics. The proposed integrated approach would address the unique challenges posed by malaria as a zoonosis, aid the identification of transmission hotspots, provide insight into the mechanistic links between incidence and land use change and support the design of appropriate interventions.
Collapse
Affiliation(s)
- P. M. BROCK
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - K. M. FORNACE
- London School of Hygiene and Tropical Medicine, London, UK
| | - M. PARMITER
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - J. COX
- London School of Hygiene and Tropical Medicine, London, UK
| | - C. J. DRAKELEY
- London School of Hygiene and Tropical Medicine, London, UK
| | - H. M. FERGUSON
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - R. R. KAO
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
48
|
Mohd Abd Razak MR, Sastu UR, Norahmad NA, Abdul-Karim A, Muhammad A, Muniandy PK, Jelip J, Rundi C, Imwong M, Mudin RN, Abdullah NR. Genetic Diversity of Plasmodium falciparum Populations in Malaria Declining Areas of Sabah, East Malaysia. PLoS One 2016; 11:e0152415. [PMID: 27023787 PMCID: PMC4811561 DOI: 10.1371/journal.pone.0152415] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 03/14/2016] [Indexed: 11/19/2022] Open
Abstract
Malaysia has a national goal to eliminate malaria by 2020. Understanding the genetic diversity of malaria parasites in residual transmission foci can provide invaluable information which may inform the intervention strategies used to reach elimination targets. This study was conducted to determine the genetic diversity level of P. falciparum isolates in malaria residual foci areas of Sabah. Malaria active case detection was conducted in Kalabakan and Kota Marudu. All individuals in the study sites were screened for malaria infection by rapid diagnostic test. Blood from P. falciparum-infected individuals were collected on filter paper prior to DNA extraction. Genotyping was performed using merozoite surface protein-1 (MSP-1), merozoite surface protein-2 (MSP-2), glutamate rich protein (GLURP) and 10 neutral microsatellite loci markers. The size of alleles, multiplicity of infection (MOI), mean number of alleles (Na), expected heterozygosity (He), linkage disequilibrium (LD) and genetic differentiation (FST) were determined. In Kalabakan, the MSP-1 and MSP-2 alleles were predominantly K1 and FC27 family types, respectively. The GLURP genotype VI (751-800 bp) was predominant. The MOI for MSP-1 and MSP-2 were 1.65 and 1.20, respectively. The Na per microsatellite locus was 1.70. The He values for MSP-1, MSP-2, GLURP and neutral microsatellites were 0.17, 0.37, 0.70 and 0.33, respectively. In Kota Marudu, the MSP-1 and MSP-2 alleles were predominantly MAD20 and 3D7 family types, respectively. The GLURP genotype IV (651-700 bp) was predominant. The MOI for both MSP-1 and MSP-2 was 1.05. The Na per microsatellite locus was 3.60. The He values for MSP-1, MSP-2, GLURP and neutral microsatellites were 0.24, 0.25, 0.69 and 0.30, respectively. A significant LD was observed in Kalabakan (0.495, p<0.01) and Kota Marudu P. falciparum populations (0.601, p<0.01). High genetic differentiation between Kalabakan and Kota Marudu P. falciparum populations was observed (FST = 0.532). The genetic data from the present study highlighted the limited diversity and contrasting genetic pattern of P. falciparum populations in the malaria declining areas of Sabah.
Collapse
Affiliation(s)
| | - Umi Rubiah Sastu
- Herbal Medicine Research Center, Institute for Medical Research, Kuala Lumpur, Malaysia
| | - Nor Azrina Norahmad
- Herbal Medicine Research Center, Institute for Medical Research, Kuala Lumpur, Malaysia
| | - Abass Abdul-Karim
- Zonal Public Health Laboratory, Tamale Teaching Hospital, Tamale, Northern Region, Ghana, West Africa
| | - Amirrudin Muhammad
- Herbal Medicine Research Center, Institute for Medical Research, Kuala Lumpur, Malaysia
| | - Prem Kumar Muniandy
- Herbal Medicine Research Center, Institute for Medical Research, Kuala Lumpur, Malaysia
| | - Jenarun Jelip
- Sabah State Health Department, Rumah Persekutuan, Kota Kinabalu, Sabah, Malaysia
| | - Christina Rundi
- Sabah State Health Department, Rumah Persekutuan, Kota Kinabalu, Sabah, Malaysia
| | - Mallika Imwong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Rose Nani Mudin
- Vector Borne Disease Sector, Disease Control Division, Ministry of Health, Federal Government Administrative Centre, Putrajaya, Malaysia
| | - Noor Rain Abdullah
- Herbal Medicine Research Center, Institute for Medical Research, Kuala Lumpur, Malaysia
| |
Collapse
|
49
|
Microsatellite Genotyping of Plasmodium vivax Isolates from Pregnant Women in Four Malaria Endemic Countries. PLoS One 2016; 11:e0152447. [PMID: 27011010 PMCID: PMC4807005 DOI: 10.1371/journal.pone.0152447] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 03/14/2016] [Indexed: 11/19/2022] Open
Abstract
Plasmodium vivax is the most widely distributed human parasite and the main cause of human malaria outside the African continent. However, the knowledge about the genetic variability of P. vivax is limited when compared to the information available for P. falciparum. We present the results of a study aimed at characterizing the genetic structure of P. vivax populations obtained from pregnant women from different malaria endemic settings. Between June 2008 and October 2011 nearly 2000 pregnant women were recruited during routine antenatal care at each site and followed up until delivery. A capillary blood sample from the study participants was collected for genotyping at different time points. Seven P. vivax microsatellite markers were used for genotypic characterization on a total of 229 P. vivax isolates obtained from Brazil, Colombia, India and Papua New Guinea. In each population, the number of alleles per locus, the expected heterozygosity and the levels of multilocus linkage disequilibrium were assessed. The extent of genetic differentiation among populations was also estimated. Six microsatellite loci on 137 P. falciparum isolates from three countries were screened for comparison. The mean value of expected heterozygosity per country ranged from 0.839 to 0.874 for P. vivax and from 0.578 to 0.758 for P. falciparum. P. vivax populations were more diverse than those of P. falciparum. In some of the studied countries, the diversity of P. vivax population was very high compared to the respective level of endemicity. The level of inter-population differentiation was moderate to high in all P. vivax and P. falciparum populations studied.
Collapse
|
50
|
Kim JY, Goo YK, Zo YG, Ji SY, Trimarsanto H, To S, Clark TG, Price RN, Auburn S. Further Evidence of Increasing Diversity of Plasmodium vivax in the Republic of Korea in Recent Years. PLoS One 2016; 11:e0151514. [PMID: 26990869 PMCID: PMC4798397 DOI: 10.1371/journal.pone.0151514] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 02/29/2016] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Vivax malaria was successfully eliminated from the Republic of Korea (ROK) in the late 1970s but re-emerged in 1993. Two decades later as the ROK enters the final stages of malaria elimination, dedicated surveillance of the local P. vivax population is critical. We apply a population genetic approach to gauge P. vivax transmission dynamics in the ROK between 2010 and 2012. METHODOLOGY/PRINCIPAL FINDINGS P. vivax positive blood samples from 98 autochthonous cases were collected from patients attending health centers in the ROK in 2010 (n = 27), 2011 (n = 48) and 2012 (n = 23). Parasite genotyping was undertaken at 9 tandem repeat markers. Although not reaching significance, a trend of increasing population diversity was observed from 2010 (HE = 0.50 ± 0.11) to 2011 (HE = 0.56 ± 0.08) and 2012 (HE = 0.60 ± 0.06). Conversely, linkage disequilibrium declined during the same period: IAS = 0.15 in 2010 (P = 0.010), 0.09 in 2011 (P = 0.010) and 0.05 in 2012 (P = 0.010). In combination with data from other ROK studies undertaken between 1994 and 2007, our results are consistent with increasing parasite divergence since re-emergence. Polyclonal infections were rare (3% infections) suggesting that local out-crossing alone was unlikely to explain the increased divergence. Cases introduced from an external reservoir may therefore have contributed to the increased diversity. Aside from one isolate, all infections carried a short MS20 allele (142 or 149 bp), not observed in other studies in tropical endemic countries despite high diversity, inferring that these regions are unlikely reservoirs. CONCLUSIONS Whilst a number of factors may explain the observed population genetic trends, the available evidence suggests that an external geographic reservoir with moderate diversity sustains the majority of P. vivax infection in the ROK, with important implications for malaria elimination.
Collapse
Affiliation(s)
- Jung-Yeon Kim
- Division of Malaria and Parasitic Diseases, National Institute of Health, Korea CDC, Osong Saeng-myeong, 2 ro, Osong Health Technology Administration, Osong, Republic of Korea
| | - Youn-Kyoung Goo
- Division of Malaria and Parasitic Diseases, National Institute of Health, Korea CDC, Osong Saeng-myeong, 2 ro, Osong Health Technology Administration, Osong, Republic of Korea
- Department of Parasitology and Tropical Medicine, Kyungpook National University School of Medicine, Daegu, 700–422, Republic of Korea
| | - Young-Gun Zo
- Department of Molecular Parasitology, Sungkyunkwan University School of Medicine and Center for Molecular Medicine, Samsung Biomedical Research Institute, Suwon, Gyeonggi-do 440–746, Republic of Korea
| | - So-Young Ji
- Division of Malaria and Parasitic Diseases, National Institute of Health, Korea CDC, Osong Saeng-myeong, 2 ro, Osong Health Technology Administration, Osong, Republic of Korea
| | - Hidayat Trimarsanto
- Eijkman Institute for Molecular Biology, Jl. Diponegoro 69, Jakarta Pusat, 10430, Indonesia
- Agency for Assessment and Application of Technology, Jl. MH Thamrin 8, Jakarta, 10340, Indonesia
| | - Sheren To
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT 0810, Australia
| | - Taane G. Clark
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, United Kingdom
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, United Kingdom
| | - Ric N. Price
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT 0810, Australia
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Sarah Auburn
- Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT 0810, Australia
| |
Collapse
|