1
|
Kaur B, Karnwal A, Bansal A, Malik T. An Immunoinformatic-Based In Silico Identification on the Creation of a Multiepitope-Based Vaccination Against the Nipah Virus. BIOMED RESEARCH INTERNATIONAL 2024; 2024:4066641. [PMID: 38962403 PMCID: PMC11221950 DOI: 10.1155/2024/4066641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/30/2024] [Accepted: 06/01/2024] [Indexed: 07/05/2024]
Abstract
The zoonotic viruses pose significant threats to public health. Nipah virus (NiV) is an emerging virus transmitted from bats to humans. The NiV causes severe encephalitis and acute respiratory distress syndrome, leading to high mortality rates, with fatality rates ranging from 40% to 75%. The first emergence of the disease was found in Malaysia in 1998-1999 and later in Bangladesh, Cambodia, Timor-Leste, Indonesia, Singapore, Papua New Guinea, Vietnam, Thailand, India, and other South and Southeast Asian nations. Currently, no specific vaccines or antiviral drugs are available. The potential advantages of epitope-based vaccines include their ability to elicit specific immune responses while minimizing potential side effects. The epitopes have been identified from the conserved region of viral proteins obtained from the UniProt database. The selection of conserved epitopes involves analyzing the genetic sequences of various viral strains. The present study identified two B cell epitopes, seven cytotoxic T lymphocyte (CTL) epitopes, and seven helper T lymphocyte (HTL) epitope interactions from the NiV proteomic inventory. The antigenic and physiological properties of retrieved protein were analyzed using online servers ToxinPred, VaxiJen v2.0, and AllerTOP. The final vaccine candidate has a total combined coverage range of 80.53%. The tertiary structure of the constructed vaccine was optimized, and its stability was confirmed with the help of molecular simulation. Molecular docking was performed to check the binding affinity and binding energy of the constructed vaccine with TLR-3 and TLR-5. Codon optimization was performed in the constructed vaccine within the Escherichia coli K12 strain, to eliminate the danger of codon bias. However, these findings must require further validation to assess their effectiveness and safety. The development of vaccines and therapeutic approaches for virus infection is an ongoing area of research, and it may take time before effective interventions are available for clinical use.
Collapse
Affiliation(s)
- Beant Kaur
- School of Bioengineering and BiosciencesLovely Professional University, Phagwara, Punjab 144411, India
| | - Arun Karnwal
- School of Bioengineering and BiosciencesLovely Professional University, Phagwara, Punjab 144411, India
| | - Anu Bansal
- School of Bioengineering and BiosciencesLovely Professional University, Phagwara, Punjab 144411, India
| | - Tabarak Malik
- Department of Biomedical SciencesInstitute of HealthJimma University, Jimma, Ethiopia
| |
Collapse
|
2
|
Westcott MM, Blevins M, Wierzba TF, Morse AE, White KR, Sanders LA, Sanders JW. The Immunogenicity and Properties of a Whole-Cell ETEC Vaccine Inactivated with Psoralen and UVA Light in Comparison to Formalin. Microorganisms 2023; 11:2040. [PMID: 37630600 PMCID: PMC10458022 DOI: 10.3390/microorganisms11082040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/26/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Inactivated whole-cell vaccines present a full repertoire of antigens to the immune system. Formalin treatment, a standard method for microbial inactivation, can modify or destroy protein antigenic epitopes. We tested the hypothesis that photochemical inactivation with psoralen and UVA light (PUVA), which targets nucleic acid, would improve the immunogenicity of an Enterotoxigenic E. coli (ETEC) vaccine relative to a formalin-inactivated counterpart. Exposure of ETEC H10407 to PUVA using the psoralen drug 4'-Aminomethyltrioxsalen hydrochloride (AMT) yielded replication-incompetent bacteria that retained their metabolic activity. CFA/I-mediated mannose-resistant hemagglutination (MRHA) was equivalent for PUVA-inactivated and live ETEC, but was severely reduced for formalin-ETEC, indicating that PUVA preserved fimbrial protein functional integrity. The immunogenicity of PUVA-ETEC and formalin-ETEC was compared in mice ± double mutant heat-labile enterotoxin (dmLT) adjuvant. Two weeks after an intramuscular prime/boost, serum anti-ETEC IgG titers were similar for the two vaccines and were increased by dmLT. However, the IgG responses raised against several conserved ETEC proteins were greater after vaccination with PUVA-ETEC. In addition, PUVA-ETEC generated IgG specific for heat-labile toxin (LT) in the absence of dmLT, which was not a property of formalin-ETEC. These data are consistent with PUVA preserving ETEC protein antigens in their native-like form and justify the further testing of PUVA as a vaccine platform for ETEC using murine challenge models.
Collapse
Affiliation(s)
- Marlena M. Westcott
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, 575 Patterson Ave, Winston Salem, NC 27101, USA; (A.E.M.); (K.R.W.)
| | - Maria Blevins
- Infectious Diseases Section, Wake Forest University School of Medicine, Medical Center Blvd, Winston Salem, NC 27157, USA; (M.B.); (T.F.W.); (L.A.S.); (J.W.S.)
| | - Thomas F. Wierzba
- Infectious Diseases Section, Wake Forest University School of Medicine, Medical Center Blvd, Winston Salem, NC 27157, USA; (M.B.); (T.F.W.); (L.A.S.); (J.W.S.)
| | - Alexis E. Morse
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, 575 Patterson Ave, Winston Salem, NC 27101, USA; (A.E.M.); (K.R.W.)
| | - Kinnede R. White
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, 575 Patterson Ave, Winston Salem, NC 27101, USA; (A.E.M.); (K.R.W.)
| | - Leigh Ann Sanders
- Infectious Diseases Section, Wake Forest University School of Medicine, Medical Center Blvd, Winston Salem, NC 27157, USA; (M.B.); (T.F.W.); (L.A.S.); (J.W.S.)
| | - John W. Sanders
- Infectious Diseases Section, Wake Forest University School of Medicine, Medical Center Blvd, Winston Salem, NC 27157, USA; (M.B.); (T.F.W.); (L.A.S.); (J.W.S.)
| |
Collapse
|
3
|
Identification of Potent Vaccine Candidates Against Campylobacter jejuni Using Immunoinformatics Approach. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-019-09933-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
4
|
Joshi A, Kaushik V. In-Silico Proteomic Exploratory Quest: Crafting T-Cell Epitope Vaccine Against Whipple's Disease. Int J Pept Res Ther 2020; 27:169-179. [PMID: 32427224 PMCID: PMC7233679 DOI: 10.1007/s10989-020-10077-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2020] [Indexed: 12/11/2022]
Abstract
Whipple’s disease is one of the rare maladies in terms of spread but very fatal one as it is linked with many disorders (like Gastroenteritis, Endocarditis etc.). Also, current regimens include less effective drugs which require long duration follows up. This exploratory study was conducted to commence the investigation for crafting multi target epitope vaccine against its bacterial pathogen Tropheryma whipplei. The modern bioinformatics tools like VaxiJen, NETMHCII PAN 3.2, ALLERGEN-FP, PATCH-DOCK, TOXIC-PRED, MHCPRED and IEDB were deployed, which makes the study more intensive in analyzing proteome of T. whipplei as these methods are based on robust result generating statistical algorithms ANN, HMM, and ML. This Immuno-Informatics approach leads us in the prediction of two epitopes: VLMVSAFPL and IRYLAALHL interacting with 4 and 6 HLA DRB1 alleles of MHC Class II respectively. VLMVSAFPL epitope is a part of DNA-directed RNA polymerase subunit beta, and IRYLAALHL epitope is a part of membranous protein insertase YidC of this bacterium. Molecular-Docking and Molecular-Simulation analysis yields the perfect interaction based on Atomic contact energy, binding scores along with RMSD values (0 to 1.5 Ǻ) in selection zone. The IEDB (Immune epitope database) population coverage analysis exhibits satisfactory relevance with respect to world population.
Collapse
Affiliation(s)
- Amit Joshi
- Domain of Bioinformatics, School of Bio-Engineering and Bio-Sciences, Lovely Professional University, Punjab, India
| | - Vikas Kaushik
- Domain of Bioinformatics, School of Bio-Engineering and Bio-Sciences, Lovely Professional University, Punjab, India
| |
Collapse
|
5
|
Joshi A, Joshi BC, Mannan MAU, Kaushik V. Epitope based vaccine prediction for SARS-COV-2 by deploying immuno-informatics approach. INFORMATICS IN MEDICINE UNLOCKED 2020; 19:100338. [PMID: 32352026 PMCID: PMC7189872 DOI: 10.1016/j.imu.2020.100338] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/25/2020] [Accepted: 04/26/2020] [Indexed: 01/12/2023] Open
Abstract
A new virus termed SARS-COV-2 (causing COVID-19 disease) can exhibit a progressive, fatal impact on individuals. The World Health Organization (WHO) has declared the spread of the virus to be a global pandemic. Currently, there are over 1 million cases and over 100,000 confirmed deaths due to the virus. Hence, prophylactic and therapeutic strategies are promptly needed. In this study we report an epitope, ITLCFTLKR, which is biochemically fit to HLA allelic proteins. We propose that this could be used as a potential vaccine candidate against SARS-COV-2. A selected putative epitope and HLA-allelic complexes show not only better binding scores, but also RMSD values in the range of 0–1 Å. This epitope was found to have a 99.8% structural favorability as per Ramachandran-plot analysis. Similarly, a suitable range of IC50 values and population coverage was obtained to represent greater validation of T-cell epitope analysis. Stability analysis using MDWeb and half-life analysis using the ProtParam tool has confirmed that this epitope is well-selected. This new methodology of epitope-based vaccine prediction is fundamental and fast in application, ad can be economically beneficial and viable.
Collapse
Affiliation(s)
- Amit Joshi
- Domain of Bioinformatics, School of Bio-Engineering and Bio-Sciences, Lovely Professional University, Punjab, India
| | - Bhuwan Chandra Joshi
- Department of Biological Sciences and Biotechnology, Surajmal Agarwal Private Girls PG Degree College Kiccha, Kumaun University, Nainital, Uttarakhand, India
| | - M. Amin-ul Mannan
- Domain of Bioinformatics, School of Bio-Engineering and Bio-Sciences, Lovely Professional University, Punjab, India
| | - Vikas Kaushik
- Domain of Bioinformatics, School of Bio-Engineering and Bio-Sciences, Lovely Professional University, Punjab, India
- Corresponding author.
| |
Collapse
|
6
|
Medeiros PHQS, Bolick DT, Ledwaba SE, Kolling GL, Costa DVS, Oriá RB, Lima AÂM, Barry EM, Guerrant RL. A bivalent vaccine confers immunogenicity and protection against Shigella flexneri and enterotoxigenic Escherichia coli infections in mice. NPJ Vaccines 2020; 5:30. [PMID: 32257392 PMCID: PMC7101394 DOI: 10.1038/s41541-020-0180-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 03/06/2020] [Indexed: 12/12/2022] Open
Abstract
Vaccine studies for Shigella flexneri and enterotoxigenic Escherichia coli have been impaired by the lack of optimal animal models. We used two murine models to show that a S. flexneri 2a bivalent vaccine (CVD 1208S-122) expressing enterotoxigenic Escherichia coli colonization factor antigen-I (CFA/I) and the binding subunits A2 and B of heat labile-enterotoxin (LTb) is immunogenic and protects against weight loss and diarrhea. These findings document the immunogenicity and pre-clinical efficacy effects of CVD 1208S-122 vaccine and suggest that further work can help elucidate relevant immune responses and ultimately its clinical efficacy in humans.
Collapse
Affiliation(s)
- Pedro Henrique Q S Medeiros
- 1Center for Global Health and Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA USA.,2Institute of Biomedicine, Federal University of Ceará, Fortaleza, CE Brazil
| | - David T Bolick
- 1Center for Global Health and Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA USA
| | - Solanka E Ledwaba
- 1Center for Global Health and Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA USA.,3Department of Microbiology, University of Venda, Thohoyandou, Limpopo province South Africa
| | - Glynis L Kolling
- 1Center for Global Health and Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA USA
| | - Deiziane V S Costa
- 1Center for Global Health and Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA USA.,2Institute of Biomedicine, Federal University of Ceará, Fortaleza, CE Brazil
| | - Reinaldo B Oriá
- 1Center for Global Health and Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA USA.,2Institute of Biomedicine, Federal University of Ceará, Fortaleza, CE Brazil
| | - Aldo Ângelo M Lima
- 2Institute of Biomedicine, Federal University of Ceará, Fortaleza, CE Brazil
| | - Eileen M Barry
- 4Center for Vaccine Development and Global Health, University of Maryland, Baltimore, MD USA
| | - Richard L Guerrant
- 1Center for Global Health and Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, VA USA
| |
Collapse
|
7
|
Kaur D, Mukhopadhaya A. Outer membrane protein OmpV mediates Salmonella enterica serovar typhimurium adhesion to intestinal epithelial cells via fibronectin and α1β1 integrin. Cell Microbiol 2020; 22:e13172. [PMID: 32017350 DOI: 10.1111/cmi.13172] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 01/19/2020] [Accepted: 01/20/2020] [Indexed: 12/11/2022]
Abstract
Salmonella typhimurium is an invasive Gram-negative enteric bacterium, which causes salmonellosis, a type of gastroenteritis in humans and typhoid-like symptoms in mice. Upon entering through the contaminated food and water, S. typhimurium adheres, colonises, and invades intestinal epithelial cells (IECs) of the small intestine. In this study, we have shown that upon deletion of the outer membrane protein OmpV, there is a significant decrease in adherence of S. typhimurium to the IECs, indicating that OmpV is an important adhesin of S. typhimurium. Further, our study showed that OmpV binds to the extracellular matrix component fibronectin and signals through α1β1 integrin receptor on the IECs and OmpV-mediated activation of α1β1, resulting in the activation of focal adhesion kinase and F-actin modulation. Actin modulation is crucial for bacterial invasion. To the best of our knowledge, this is the first report of an adhesin mediated its effect through integrin in S. typhimurium. Further, we have observed a decrease in pathogenicity in terms of increased LD50 dose, lesser bacterial numbers in stool, and less colonisation of bacteria in different organs of mice infected with Δompv mutant compared with the wild-type bacteria, thus confirming the crucial role of OmpV in the pathogenesis of S. typhimurium.
Collapse
Affiliation(s)
- Deepinder Kaur
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sahibzada Ajit Singh Nagar, India
| | - Arunika Mukhopadhaya
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Sahibzada Ajit Singh Nagar, India
| |
Collapse
|
8
|
Studies on formulation of a combination heat killed immunogen from diarrheagenic Escherichia coli and Vibrio cholerae in RITARD model. Microbes Infect 2019; 21:368-376. [DOI: 10.1016/j.micinf.2019.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 02/20/2019] [Accepted: 02/22/2019] [Indexed: 01/30/2023]
|
9
|
|
10
|
Exploring Highly Antigenic Protein of Campylobacter jejuni for Designing Epitope Based Vaccine: Immunoinformatics Approach. Int J Pept Res Ther 2018. [DOI: 10.1007/s10989-018-9764-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
11
|
Critical Role of Zinc in a New Murine Model of Enterotoxigenic Escherichia coli Diarrhea. Infect Immun 2018; 86:IAI.00183-18. [PMID: 29661930 PMCID: PMC6013668 DOI: 10.1128/iai.00183-18] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 04/11/2018] [Indexed: 12/11/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is a major cause of traveler's diarrhea as well as of endemic diarrhea and stunting in children in developing areas. However, a small-mammal model has been badly needed to better understand and assess mechanisms, vaccines, and interventions. We report a murine model of ETEC diarrhea, weight loss, and enteropathy and investigate the role of zinc in the outcomes. ETEC strains producing heat-labile toxins (LT) and heat-stable toxins (ST) that were given to weaned C57BL/6 mice after antibiotic disruption of normal microbiota caused growth impairment, watery diarrhea, heavy stool shedding, and mild to moderate intestinal inflammation, the latter being worse with zinc deficiency. Zinc treatment promoted growth in zinc-deficient infected mice, and subinhibitory levels of zinc reduced expression of ETEC virulence genes cfa1, cexE, sta2, and degP but not of eltA in vitro Zinc supplementation increased shedding and the ileal burden of wild-type (WT) ETEC but decreased shedding and the tissue burden of LT knockout (LTKO) ETEC. LTKO ETEC-infected mice had delayed disease onset and also had less inflammation by fecal myeloperoxidase (MPO) assessment. These findings provide a new murine model of ETEC infection that can help elucidate mechanisms of growth, diarrhea, and inflammatory responses as well as potential vaccines and interventions.
Collapse
|
12
|
Hays MP, Houben D, Yang Y, Luirink J, Hardwidge PR. Immunization With Skp Delivered on Outer Membrane Vesicles Protects Mice Against Enterotoxigenic Escherichia coli Challenge. Front Cell Infect Microbiol 2018; 8:132. [PMID: 29765911 PMCID: PMC5938412 DOI: 10.3389/fcimb.2018.00132] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 04/13/2018] [Indexed: 11/13/2022] Open
Abstract
Outer membrane vesicles (OMVs) are promising vaccine components because they combine antigen and adjuvant in a single formulation. Detoxified Salmonella enterica strains that express penta-acylated lipid A retain OMV immunogenicity but with reduced reactogenicity. We have previously shown that a recombinant form of the enterotoxigenic Escherichia coli (ETEC) 17 kilodalton protein (Skp) protects mice in a pulmonary challenge model, when fused to the glutathione-S-transferase (GST) epitope and combined with cholera toxin. Here we compared directly the efficacy of expressing Skp in detoxified Salmonella OMVs to GST-Skp for their ability to protect mice against ETEC challenge. We observed that the display of Skp on OMVs, in the absence of exogenous adjuvant, protects the mice as well as the recombinant GST-Skp with adjuvant, showing that we can achieve protection when antigen and adjuvant are administered as a single formulation. Collectively, these data demonstrate the utility of using OMVs for the expression and display of antigens for use in vaccine development and validate previously published work demonstrating that immunization with Skp is efficacious in protecting mice against ETEC challenge.
Collapse
Affiliation(s)
- Michael P Hays
- Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Diane Houben
- Section Molecular Microbiology, Department of Molecular Cell Biology, Faculty of Earth and Life Sciences, VU University, Amsterdam, Netherlands
| | - Yang Yang
- Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Joen Luirink
- Section Molecular Microbiology, Department of Molecular Cell Biology, Faculty of Earth and Life Sciences, VU University, Amsterdam, Netherlands.,Abera Bioscience AB, Stockholm, Sweden
| | - Philip R Hardwidge
- Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
13
|
Khan F, Srivastava V, Kumar A. Computational Identification and Characterization of Potential T-Cell Epitope for the Utility of Vaccine Design Against Enterotoxigenic Escherichia coli. Int J Pept Res Ther 2018. [DOI: 10.1007/s10989-018-9671-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Abstract
Escherichia coli has a complex and versatile nature and continuously evolves from non-virulent isolates to highly pathogenic strains causing severe diseases and outbreaks. Broadly protective vaccines against pathogenic E. coli are not available and the rising in both, multi-drug resistant and hypervirulent isolates, raise concern for healthcare and require continuous efforts in epidemiologic surveillance and disease monitoring. The evolving knowledge on E. coli pathogenesis mechanisms and on the mediated immune response following infection or vaccination, together with advances in the "omics" technologies, is opening new perspectives toward the design and development of effective and innovative E. coli vaccines.
Collapse
|
15
|
Khan F, Srivastava V, Kumar A. Epitope Based Peptide Prediction from Proteome of Enterotoxigenic E.coli. Int J Pept Res Ther 2017. [DOI: 10.1007/s10989-017-9617-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
16
|
Abstract
Type II secretion (T2S) is one means by which Gram-negative pathogens secrete proteins into the extracellular milieu and/or host organisms. Based upon recent genome sequencing, it is clear that T2S is largely restricted to the Proteobacteria, occurring in many, but not all, genera in the Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, and Deltaproteobacteria classes. Prominent human and/or animal pathogens that express a T2S system(s) include Acinetobacter baumannii, Burkholderia pseudomallei, Chlamydia trachomatis, Escherichia coli, Klebsiella pneumoniae, Legionella pneumophila, Pseudomonas aeruginosa, Stenotrophomonas maltophilia, Vibrio cholerae, and Yersinia enterocolitica T2S-expressing plant pathogens include Dickeya dadantii, Erwinia amylovora, Pectobacterium carotovorum, Ralstonia solanacearum, Xanthomonas campestris, Xanthomonas oryzae, and Xylella fastidiosa T2S also occurs in nonpathogenic bacteria, facilitating symbioses, among other things. The output of a T2S system can range from only one to dozens of secreted proteins, encompassing a diverse array of toxins, degradative enzymes, and other effectors, including novel proteins. Pathogenic processes mediated by T2S include the death of host cells, degradation of tissue, suppression of innate immunity, adherence to host surfaces, biofilm formation, invasion into and growth within host cells, nutrient assimilation, and alterations in host ion flux. The reach of T2S is perhaps best illustrated by those bacteria that clearly use it for both environmental survival and virulence; e.g., L. pneumophila employs T2S for infection of amoebae, growth within lung cells, dampening of cytokines, and tissue destruction. This minireview provides an update on the types of bacteria that have T2S, the kinds of proteins that are secreted via T2S, and how T2S substrates promote infection.
Collapse
|
17
|
Hays MP, Kumar A, Martinez-Becerra FJ, Hardwidge PR. Immunization with the MipA, Skp, or ETEC_2479 Antigens Confers Protection against Enterotoxigenic E. coli Strains Expressing Different Colonization Factors in a Mouse Pulmonary Challenge Model. Front Cell Infect Microbiol 2016; 6:181. [PMID: 28018863 PMCID: PMC5149512 DOI: 10.3389/fcimb.2016.00181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 11/28/2016] [Indexed: 11/28/2022] Open
Abstract
Achieving cross-protective efficacy against multiple bacterial strains or serotypes is an important goal of vaccine design. Enterotoxigenic Escherichia coli (ETEC) is an important cause of diarrheal disease in underdeveloped nations. We have been interested in identifying and characterizing ETEC antigens that generate protective immune responses independent of ETEC colonization factor (CF) expression. Our previous studies used proteomics to identify the ETEC MipA, Skp, and ETEC_2479 proteins as effective in protecting mice from homologous challenge with ETEC H10407 using a pulmonary inoculation model. This model permits analysis of mouse survival, bacterial clearance, and the production of secretory IgA (sIgA) and has been employed previously for studies of enteric pathogens for which robust oral challenge models do not exist. MipA belongs to a family of proteins involved in remodeling peptidoglycan. Skp rescues misdirected outer membrane proteins. ETEC_2479 is predicted to function as an outer membrane porin. These proteins are conserved in pathogenic ETEC strains as well as in commensal Proteobacteria. Antibodies produced against the ETEC MipA, Skp, and ETEC_2479 proteins also reduced the adherence of multiple ETEC strains differing in CF type to intestinal epithelial cells. Here we characterized the ability of 10 heterologous ETEC strains that differ in CF type to cause clinical signs of illness in mice after pulmonary challenge. ETEC strains C350C1A, E24377A, E7476A, WS2173A, and PE360 caused variable degrees of lethality in this mouse model, while ETEC strains B7A, WS6866B, 2230, ARG-2, and 8786 did not. Subsequent challenge experiments in which mice were first vaccinated intranasally with MipA, Skp, or ETEC_2479, when combined with cholera toxin, showed both that each antigen was protective and that protection was strongly correlated with fecal IgA concentrations. We conclude that the MipA, Skp, or ETEC_2479 antigens generate protection in the mouse pulmonary challenge model against ETEC strains that express different CFs.
Collapse
Affiliation(s)
- Michael P Hays
- College of Veterinary Medicine, Kansas State University Manhattan, KS, USA
| | - Amit Kumar
- College of Veterinary Medicine, Kansas State University Manhattan, KS, USA
| | - Francisco J Martinez-Becerra
- Immunology Core Laboratory of the Kansas Vaccine Institute and Department of Pharmaceutical Chemistry, University of Kansas Lawrence, KS, USA
| | - Philip R Hardwidge
- College of Veterinary Medicine, Kansas State University Manhattan, KS, USA
| |
Collapse
|
18
|
Vaccinating with conserved Escherichia coli antigens does not alter the mouse intestinal microbiome. BMC Res Notes 2016; 9:401. [PMID: 27514618 PMCID: PMC4981990 DOI: 10.1186/s13104-016-2208-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 08/05/2016] [Indexed: 02/01/2023] Open
Abstract
Background Enterotoxigenic Escherichia coli (ETEC) causes diarrheal disease. Antigenic and structural heterogeneity among ETEC colonization factors has complicated vaccine development efforts. Identifying and characterizing conserved ETEC antigens that induce protective immunity is therefore of interest. We previously characterized three proteins (MipA, Skp, and ETEC_2479) that protected mice in an intranasal ETEC challenge model after vaccination. However, these proteins are conserved not only in multiple ETEC isolates, but also in commensal bacteria. While the impact of inactivated viral vaccines and live-attenuated bacterial vaccines on the host microbiota have been examined, the potential impact of using subunit vaccines consisting of antigens that are also encoded by commensal organisms has not been investigated. Findings We addressed this issue by characterizing changes to mouse intestinal microbiomes as a function of vaccination. We failed to observe significant changes to mouse health, to mouse weight gain as a function of time, or to the diversity or richness of mouse intestinal microbiomes, as measured by analyzing alpha- and beta-diversity, as well as overall community structure, before and after vaccination. Conclusions We conclude that despite the conservation of MipA, Skp, and ETEC_2479 among Gram-negative bacteria, vaccination with these antigens fails to alter significantly the host intestinal microbiome.
Collapse
|