1
|
Spiliopoulos O, Solomos Z, Puchner KP. Buruli ulcer, tuberculosis and leprosy: Exploring the One Health dimensions of three most prevalent mycobacterial diseases: A narrative review. Trop Med Int Health 2024; 29:657-667. [PMID: 38994702 DOI: 10.1111/tmi.14024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
ΟBJECTIVES: Although Buruli ulcer, tuberculosis, and leprosy are the three most common mycobacterial diseases, One Health dimensions of these infections remain poorly understood. This narrative review aims at exploring the scientific literature with respect to the presence of animal reservoir(s) and other environmental sources for the pathogens of these infections, their role in transmission to humans and the research on/practical implementation of One Health relevant control efforts. METHODS The literature review was conducted using the online databases PubMed, Scopus, ProQuest and Google Scholar, reviewing articles that were written in English in the last 15 years. Grey literature, published by intergovernmental agencies, was also reviewed. RESULTS For the pathogen of Buruli ulcer, evidence suggests possums as a possible animal reservoir and thus having an active role in disease transmission to humans. Cattle and some wildlife species are deemed as established animal reservoirs for tuberculosis pathogens, with a non-negligible proportion of infections in humans being of zoonotic origin. Armadillos constitute an established animal reservoir for leprosy pathogens with the transmission of the disease from armadillos to humans being deemed possible. Lentic environments, soil and other aquatic sources may represent further abiotic reservoirs for viable Buruli ulcer and leprosy pathogens infecting humans. Ongoing investigation and implementation of public health measures, targeting (sapro)zoonotic transmission can be found in all three diseases. CONCLUSION Buruli ulcer, tuberculosis and leprosy exhibit important yet still poorly understood One Health aspects. Despite the microbiological affinity of the respective causative mycobacteria, considerable differences in their animal reservoirs, potential environmental sources and modes of zoonotic transmission are being observed. Whether these differences reflect actual variations between these diseases or rather knowledge gaps remains unclear. For improved disease control, further investigation of zoonotic aspects of all three diseases and formulation of One Health relevant interventions is urgently needed.
Collapse
Affiliation(s)
- Orestis Spiliopoulos
- School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Zisimangelos Solomos
- School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Karl Philipp Puchner
- Laboratory of Primary Health Care, General Medicine and Health Services Research, Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
2
|
Tchatchouang S, Andre Mbongue Mikangue C, Kenmoe S, Bowo-Ngandji A, Mahamat G, Thierry Ebogo-Belobo J, Serge Mbaga D, Rodrigue Foe-Essomba J, Numfor H, Irma Kame-Ngasse G, Nyebe I, Bosco Taya-Fokou J, Zemnou-Tepap C, Félicité Yéngué J, Nina Magoudjou-Pekam J, Gertrude Djukouo L, Antoinette Kenmegne Noumbissi M, Kenfack-Momo R, Aimee Touangnou-Chamda S, Flore Feudjio A, Gael Oyono M, Paola Demeni Emoh C, Raoul Tazokong H, Zeukeng F, Kengne-Ndé C, Njouom R, Flore Donkeng Donfack V, Eyangoh S. Systematic review: Global host range, case fatality and detection rates of Mycobacterium ulcerans in humans and potential environmental sources. J Clin Tuberc Other Mycobact Dis 2024; 36:100457. [PMID: 39026996 PMCID: PMC11254744 DOI: 10.1016/j.jctube.2024.100457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024] Open
Abstract
Fundamental aspects of the epidemiology and ecology of Mycobacterium ulcerans (MU) infections including disease burden, host range, reservoir, intermediate hosts, vector and mode of transmission are poorly understood. Understanding the global distribution and burden of MU infections is a paramount to fight against Buruli ulcer (BU). Four databases were queried from inception through December 2023. After critical review of published resources on BU, 155 articles (645 records) published between 1987 and 2023 from 16 countries were selected for this review. Investigating BU in from old endemic and new emerging foci has allowed detection of MU in humans, animals, plants and various environmental samples with prevalence from 0 % up to 100 % depending of the study design. A case fatality rate between 0.0 % and 50 % was described from BU patients and deaths occurred in Central African Republic, Gabon, Democratic Republic of the Congo, Burkina Faso and Australia. The prevalence of MU in humans was higher in Africa. Nucleic Acid Amplification Tests (NAAT) and non-NAAT were performed in > 38 animal species. MU has been recovered in culture from possum faeces, aquatic bugs and koala. More than 7 plant species and several environmental samples have been tested positive for MU. This review provided a comprehensive set of data on the updates of geographic distribution, the burden of MU infections in humans, and the host range of MU in non-human organisms. Although MU have been found in a wide range of environmental samples, only few of these have revealed the viability of the mycobacterium and the replicative non-human reservoirs of MU remain to be explored. These findings should serve as a foundation for further research on the reservoirs, intermediate hosts and transmission routes of MU.
Collapse
Affiliation(s)
| | | | - Sebastien Kenmoe
- Virology Department, Centre Pasteur du Cameroun, Yaoundé, Cameroon
- Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
| | - Arnol Bowo-Ngandji
- Department of Microbiology, The University of Yaounde I, Yaoundé, Cameroon
| | - Gadji Mahamat
- Department of Microbiology, The University of Yaounde I, Yaoundé, Cameroon
| | - Jean Thierry Ebogo-Belobo
- Medical Research Centre, Institute of Medical Research and Medicinal Plants Studies, Yaoundé, Cameroon
| | | | | | - Hycenth Numfor
- Scientific Direction, Centre Pasteur du Cameroun, Yaoundé, Cameroon
- Department of Mycobacteriology, Centre Pasteur du Cameroun, Yaounde, Cameroon
| | - Ginette Irma Kame-Ngasse
- Medical Research Centre, Institute of Medical Research and Medicinal Plants Studies, Yaoundé, Cameroon
| | - Inès Nyebe
- Department of Microbiology, The University of Yaounde I, Yaoundé, Cameroon
| | | | | | | | | | | | | | - Raoul Kenfack-Momo
- Department of Biochemistry, The University of Yaounde I, Yaoundé, Cameroon
| | | | | | - Martin Gael Oyono
- Department of Animals Biology and Physiology, The University of Yaounde I, Yaoundé, Cameroon
| | | | | | - Francis Zeukeng
- Department Biochemistry and Molecular Biology, University of Buea, Buea, Cameroon
| | - Cyprien Kengne-Ndé
- Research Monitoring and Planning Unit, National Aids Control Committee, Douala, Cameroon
| | - Richard Njouom
- Virology Department, Centre Pasteur du Cameroun, Yaoundé, Cameroon
| | | | - Sara Eyangoh
- Scientific Direction, Centre Pasteur du Cameroun, Yaoundé, Cameroon
- Department of Mycobacteriology, Centre Pasteur du Cameroun, Yaounde, Cameroon
| |
Collapse
|
3
|
Osei-Owusu J, Aidoo OF, Eshun F, Gaikpa DS, Dofuor AK, Vigbedor BY, Turkson BK, Ochar K, Opata J, Opoku MJ, Ninsin KD, Borgemeister C. Buruli ulcer in Africa: Geographical distribution, ecology, risk factors, diagnosis, and indigenous plant treatment options - A comprehensive review. Heliyon 2023; 9:e22018. [PMID: 38034712 PMCID: PMC10686891 DOI: 10.1016/j.heliyon.2023.e22018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/09/2023] [Accepted: 11/02/2023] [Indexed: 12/02/2023] Open
Abstract
Buruli ulcer (BU), a neglected tropical disease (NTD), is an infection of the skin and subcutaneous tissue caused by Mycobacterium ulcerans. The disease has been documented in many South American, Asian, and Western Pacific countries and is widespread throughout much of Africa, especially in West and Central Africa. In rural areas with scarce medical care, BU is a devastating disease that can leave patients permanently disabled and socially stigmatized. Mycobacterium ulcerans is thought to produce a mycolactone toxin, which results in necrosis of the afflicted tissue and may be involved in the etiology of BU. Initially, patients may notice a painless nodule or plaque on their skin; as the disease progresses, however, it may spread to other parts of the body, including the muscles and bones. Clinical signs, microbial culture, and histological analysis of afflicted tissue all contribute to a diagnosis of BU. Though antibiotic treatment and surgical removal of infected tissue are necessary for BU management, plant-derived medicine could be an alternative in areas with limited access to conventional medicine. Herein we reviewed the geographical distribution, socioeconomic, risk factors, diagnosis, biology and ecology of the pathogen. Complex environmental, socioeconomic, and genetic factors that influence BU are discussed. Further, our review highlights future research areas needed to develop strategies to manage the disease through the use of indigenous African plants.
Collapse
Affiliation(s)
- Jonathan Osei-Owusu
- Department of Physical and Mathematical Sciences, University of Environment and Sustainable Development, Somanya, Ghana
| | - Owusu Fordjour Aidoo
- Department of Biological Sciences, University of Environment and Sustainable Development, Somanya, Ghana
| | - Fatima Eshun
- Department of Geography and Earth Sciences, University of Environment and Sustainable Development, Somanya, Ghana
| | - David Sewordor Gaikpa
- Department of Biological Sciences, University of Environment and Sustainable Development, Somanya, Ghana
| | - Aboagye Kwarteng Dofuor
- Department of Biological Sciences, University of Environment and Sustainable Development, Somanya, Ghana
| | - Bright Yaw Vigbedor
- Department of Basic Sciences, University of Health and Allied Sciences, Ho, Ghana
| | - Bernard Kofi Turkson
- Department of Herbal Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Kingsley Ochar
- Council for Scientific and Industrial Research, Plant Genetic Resources Research Institute, Bunso, Ghana
| | - John Opata
- Department of Biological Sciences, University of Environment and Sustainable Development, Somanya, Ghana
| | - Maxwell Jnr. Opoku
- Department of Biological Sciences, University of Environment and Sustainable Development, Somanya, Ghana
| | - Kodwo Dadzie Ninsin
- Department of Biological Sciences, University of Environment and Sustainable Development, Somanya, Ghana
| | - Christian Borgemeister
- Centre for Development Research (ZEF), University of Bonn, Genscherallee 3, 53113 Bonn, Germany
| |
Collapse
|
4
|
Receveur JP, Bauer A, Pechal JL, Picq S, Dogbe M, Jordan HR, Rakestraw AW, Fast K, Sandel M, Chevillon C, Guégan JF, Wallace JR, Benbow ME. A need for null models in understanding disease transmission: the example of Mycobacterium ulcerans (Buruli ulcer disease). FEMS Microbiol Rev 2022; 46:fuab045. [PMID: 34468735 PMCID: PMC8767449 DOI: 10.1093/femsre/fuab045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/12/2021] [Indexed: 01/19/2023] Open
Abstract
Understanding the interactions of ecosystems, humans and pathogens is important for disease risk estimation. This is particularly true for neglected and newly emerging diseases where modes and efficiencies of transmission leading to epidemics are not well understood. Using a model for other emerging diseases, the neglected tropical skin disease Buruli ulcer (BU), we systematically review the literature on transmission of the etiologic agent, Mycobacterium ulcerans (MU), within a One Health/EcoHealth framework and against Hill's nine criteria and Koch's postulates for making strong inference in disease systems. Using this strong inference approach, we advocate a null hypothesis for MU transmission and other understudied disease systems. The null should be tested against alternative vector or host roles in pathogen transmission to better inform disease management. We propose a re-evaluation of what is necessary to identify and confirm hosts, reservoirs and vectors associated with environmental pathogen replication, dispersal and transmission; critically review alternative environmental sources of MU that may be important for transmission, including invertebrate and vertebrate species, plants and biofilms on aquatic substrates; and conclude with placing BU within the context of other neglected and emerging infectious diseases with intricate ecological relationships that lead to disease in humans, wildlife and domestic animals.
Collapse
Affiliation(s)
- Joseph P Receveur
- Department of Entomology, Michigan State University, East Lansing, MI 48824, USA
| | - Alexandra Bauer
- Department of Entomology, Michigan State University, East Lansing, MI 48824, USA
| | - Jennifer L Pechal
- Department of Entomology, Michigan State University, East Lansing, MI 48824, USA
| | - Sophie Picq
- Department of Entomology, Michigan State University, East Lansing, MI 48824, USA
| | - Magdalene Dogbe
- Department of Biological Sciences, Mississippi State University, Starkville, MS, USA
| | - Heather R Jordan
- Department of Biological Sciences, Mississippi State University, Starkville, MS, USA
| | - Alex W Rakestraw
- Department of Biological and Environmental Sciences, The University of West Alabama, Livingston, AL, USA
| | - Kayla Fast
- Department of Biological and Environmental Sciences, The University of West Alabama, Livingston, AL, USA
| | - Michael Sandel
- Department of Biological and Environmental Sciences, The University of West Alabama, Livingston, AL, USA
| | - Christine Chevillon
- Maladies Infectieuses et Vecteurs : Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), Université de Montpellier (UM), Centre National de la Recherche Scientifique (CNRS), Institut pour la Recherche et le Développement, Montpellier, France
| | - Jean-François Guégan
- Maladies Infectieuses et Vecteurs : Ecologie, Génétique, Evolution et Contrôle (MIVEGEC), Université de Montpellier (UM), Centre National de la Recherche Scientifique (CNRS), Institut pour la Recherche et le Développement, Montpellier, France
- UMR Animal, santé, territoires, risques et écosystèmes, Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Centre de coopération internationale en recherche agronomique pour le développement (Cirad), Université de Montpellier (UM), Montpellier, France
| | - John R Wallace
- Department of Biology, Millersville University, Millersville, PA, USA
| | - M Eric Benbow
- Department of Entomology, Michigan State University, East Lansing, MI 48824, USA
- Ecology, Evolution and Behavior Program, Michigan State University, East Lansing, MI, USA
- AgBioResearch, Michigan State University, East Lansing, MI, USA
- Department of Osteopathic Medical Specialties, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
5
|
Boccarossa A, Degnonvi H, Brou TY, Robbe-Saule M, Esnault L, Boucaud Y, Eveillard M, Gnimavo R, Hounsou S, Djenontin A, Johnson CR, Fleuret S, Marion E. A combined field study of Buruli ulcer disease in southeast Benin proposing preventive strategies based on epidemiological, geographic, behavioural and environmental analyses. PLOS GLOBAL PUBLIC HEALTH 2022; 2:e0000095. [PMID: 36962132 PMCID: PMC10021984 DOI: 10.1371/journal.pgph.0000095] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 11/08/2021] [Indexed: 06/18/2023]
Abstract
Buruli ulcer is a neglected tropical disease caused by M. ulcerans, an environmental mycobacterium. This cutaneous infectious disease affects populations with poor access to sanitation, safe water and healthcare living in rural areas of West and Central Africa. Stagnant open bodies of surface water and slow-running streams are the only risk factor identified in Africa, and there is no human-to-human transmission. Appropriate and effective prevention strategies are required for populations living in endemic areas. Based on a multidisciplinary approach in an area in which Buruli ulcer is endemic in South Benin, we investigated the link between all human-environment interactions relating to unprotected water and behaviors associated with Buruli ulcer risk likely to affect incidence rates. We characterised the sources of water as well as water bodies and streams used by communities, by conducting a prospective case-control study directly coupled with geographic field observations, spatial analysis, and the detection of M. ulcerans in the environment. A full list of the free surface waters used for domestic activities was generated for a set of 34 villages, and several types of human behaviour associated with a higher risk of transmission were identified: (i) prolonged walking in water to reach cultivated fields, (ii) collecting water, (iii) and swimming. Combining the results of the different analyses identified the risk factor most strongly associated with Buruli ulcer was the frequency of contact with unprotected and natural water, particularly in regularly flooded or irrigated lowlands. We confirm that the use of clean water from drilled wells confers protection against Buruli ulcer. These specific and refined results provide a broader scope for the design of an appropriate preventive strategy including certain practices or infrastructures observed during our field investigations. This strategy could be improved by the addition of knowledge about irrigation practices and agricultural work in low-lying areas.
Collapse
Affiliation(s)
- Alexandra Boccarossa
- Univ Angers, Inserm, CRCINA, Angers, France
- Univ Angers, CNRS, ESO, Angers, France
| | - Horace Degnonvi
- Univ Angers, Inserm, CRCINA, Angers, France
- University Abomey Calavi, Cifred, Benin
| | | | | | | | | | | | | | - Saturnin Hounsou
- University Abomey Calavi, Cifred, Benin
- Faculté des Sciences et Techniques, University of Abomey-Calavi, Abomey Calavi, Benin
| | - Armel Djenontin
- Faculté des Sciences et Techniques, University of Abomey-Calavi, Abomey Calavi, Benin
| | | | | | | |
Collapse
|
6
|
Linking the Mycobacterium ulcerans environment to Buruli ulcer disease: Progress and challenges. One Health 2021; 13:100311. [PMID: 34485670 PMCID: PMC8403752 DOI: 10.1016/j.onehlt.2021.100311] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 11/21/2022] Open
Abstract
Buruli ulcer (BU), the second most common mycobacterial disease in West Africa, is a necrotizing skin disease that can lead to high morbidity in affected patients. The disease is caused by Mycobacterium ulcerans (MU), whose major virulence factor is mycolactone. Although early infection can be treated with antibiotics, an effective preventative strategy is challenging due to unknown reservoir(s) and unresolved mode(s) of transmission. Further, disease occurrence in remote locations with limited access to health facilities further complicates disease burden and associated costs. We discuss here MU transmission hypotheses and investigations into environmental reservoirs and discuss successes and challenges of studying MU and Buruli ulcer across human, animal, and environmental interfaces. We argue that a One Health approach is needed to advance the understanding of MU transmission and designing management scenarios that prevent and respond to epidemics. Although previous work has provided significant insights into risk factors, epidemiology and clinical perspectives of disease, understanding the bacterial ecology, environmental niches and role of mycolactone in natural environments and during infection of the human host remains equally important to better understanding and preventing this mysterious disease.
Collapse
|
7
|
Muleta AJ, Lappan R, Stinear TP, Greening C. Understanding the transmission of Mycobacterium ulcerans: A step towards controlling Buruli ulcer. PLoS Negl Trop Dis 2021; 15:e0009678. [PMID: 34437549 PMCID: PMC8389476 DOI: 10.1371/journal.pntd.0009678] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Mycobacterium ulcerans is the causative agent of Buruli ulcer, a rare but chronic debilitating skin and soft tissue disease found predominantly in West Africa and Southeast Australia. While a moderate body of research has examined the distribution of M. ulcerans, the specific route(s) of transmission of this bacterium remain unknown, hindering control efforts. M. ulcerans is considered an environmental pathogen given it is associated with lentic ecosystems and human-to-human spread is negligible. However, the pathogen is also carried by various mammals and invertebrates, which may serve as key reservoirs and mechanical vectors, respectively. Here, we examine and review recent evidence from these endemic regions on potential transmission pathways, noting differences in findings between Africa and Australia, and summarising the risk and protective factors associated with Buruli ulcer transmission. We also discuss evidence suggesting that environmental disturbance and human population changes precede outbreaks. We note five key research priorities, including adoption of One Health frameworks, to resolve transmission pathways and inform control strategies to reduce the spread of Buruli ulcer. Buruli ulcer is a debilitating skin and soft tissue disease characterised by large ulcerative wounds that are treated with antibiotics or with adjunctive surgery for advanced cases. Found predominantly in West Africa and Southeast Australia, the causative agent is the environmental bacterial pathogen Mycobacterium ulcerans. Lack of understanding of transmission pathways, combined with the absence of a vaccine, has hindered efforts to control the spread of M. ulcerans. Here, in order to identify probable transmission pathways and inform future studies, we review literature linking M. ulcerans to environmental reservoirs, mammalian hosts, and potential invertebrate vectors. We also summarise factors and behaviours that reduce the risk of developing Buruli ulcer, to inform effective prevention strategies and further shed light on transmission pathways.
Collapse
Affiliation(s)
- Anthony J. Muleta
- Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Rachael Lappan
- Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Timothy P. Stinear
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Chris Greening
- Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia
- Centre to Impact AMR, Monash University, Melbourne, Australia
- * E-mail:
| |
Collapse
|
8
|
Zeukeng F, Ablordey A, Kakou-Ngazoa SE, Ghogomu SM, N'golo Coulibaly D, Nsoga MTN, Mbacham WF, Bigoga JD, Djouaka R. Community-based geographical distribution of Mycobacterium ulcerans VNTR-genotypes from the environment and humans in the Nyong valley, Cameroon. Trop Med Health 2021; 49:41. [PMID: 34020717 PMCID: PMC8139057 DOI: 10.1186/s41182-021-00330-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 05/04/2021] [Indexed: 11/29/2022] Open
Abstract
Background Genotyping is a powerful tool for investigating outbreaks of infectious diseases and it can provide useful information such as identifying the source and route of transmission, and circulating strains involved in the outbreak. Genotyping techniques based on variable number of tandem repeats (VNTR) are instrumental in detecting heterogeneity in Mycobacterium ulcerans (MU) and also for discriminating MU from other mycobacteria species. Here, we describe and map the distribution of MU genotypes in Buruli ulcer (BU) endemic communities of the Nyong valley in Cameroon. We also tested the hypothesis of whether the suspected animal reservoirs of BU that share the human microhabitat are shedding contaminated fecal matters and saliva into their surrounding environments. Methods Environmental samples from suspected MU-risk factors and lesion swabs from human patients were sampled in BU-endemic communities and tested for the presence of MU by qPCR targeting three independent sequences (IS2404, IS2606, KR-B). Positive samples to MU were further genotyped by VNTR with confirmation by sequencing of four loci (MIRU1, Locus 6, ST1, Locus 19). Results MU was detected in environmental samples including water bodies (23%), biofilms (14%), detritus (10%), and in human patients (73%). MU genotypes D, W, and C were found both in environmental and human samples. The micro geo-distribution of MU genotypes from communities showed that genotype D is found both in environmental and human samples, while genotypes W and C are specific to environmental samples and human lesions, respectively. No obvious focal grouping of MU genotypes was observed at the community scale. An additional survey in the human microhabitat suggests that domestic and wild animals do not shed MU in their saliva and feces in sampled communities. Conclusions VNTR typing uncovered different MU genotypes circulating in the endemic communities of the Akonolinga district. A MU environmental genotype was found in patients, yet the mechanism of contamination remains to be investigated; and recovering MU in culture from the environment remains key priority to enable a better understanding of the mode of transmission of BU. We also conclude that excretions from suspected animals are unlikely to be major sources of MU in the Nyong Valley in Cameroon. Supplementary Information The online version contains supplementary material available at 10.1186/s41182-021-00330-2.
Collapse
Affiliation(s)
- Francis Zeukeng
- The Biotechnology Centre (BTC), University of Yaoundé I, P.O. Box, 17673, Yaoundé, Cameroon. .,Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, P.O. Box., 63, Buea, Cameroon.
| | - Anthony Ablordey
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, P.O. Box., 581, Legon, Accra, Ghana.
| | - Solange E Kakou-Ngazoa
- Department of Technics and Technology, Platform of Molecular Biology, Pasteur Institute Abidjan, P.O. Box., 490, Abidjan 01, Abidjan, Côte d'Ivoire
| | - Stephen Mbigha Ghogomu
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, P.O. Box., 63, Buea, Cameroon
| | - David N'golo Coulibaly
- Department of Technics and Technology, Platform of Molecular Biology, Pasteur Institute Abidjan, P.O. Box., 490, Abidjan 01, Abidjan, Côte d'Ivoire
| | | | - Wilfred Fon Mbacham
- The Biotechnology Centre (BTC), University of Yaoundé I, P.O. Box, 17673, Yaoundé, Cameroon
| | - Jude Daiga Bigoga
- The Biotechnology Centre (BTC), University of Yaoundé I, P.O. Box, 17673, Yaoundé, Cameroon
| | - Rousseau Djouaka
- The AgroEcoHealth Platform, International Institute of Tropical Agriculture (IITA), 08 P.O. Box. 0932, Tri-Postal Cotonou, Cotonou, Bénin
| |
Collapse
|
9
|
Tetro JA. From hidden outbreaks to epidemic emergencies: the threat associated with neglecting emerging pathogens. Microbes Infect 2019; 21:4-9. [PMID: 29959095 PMCID: PMC7110498 DOI: 10.1016/j.micinf.2018.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 06/20/2018] [Indexed: 12/11/2022]
Abstract
Not all infectious disease outbreaks undergo full epidemiological investigations. In certain situations, the resultant lack of knowledge has led to the development of epidemics and public health emergencies. This review will examine six emerging pathogens including their history, present status, and potential to expand to epidemics. Recommendations to improve our understanding of these hidden outbreaks and others also will be provided in the context of health systems policy.
Collapse
Affiliation(s)
- Jason A Tetro
- College of Biological Sciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| |
Collapse
|
10
|
Cano J, Rodríguez A, Simpson H, Tabah EN, Gómez JF, Pullan RL. Modelling the spatial distribution of aquatic insects (Order Hemiptera) potentially involved in the transmission of Mycobacterium ulcerans in Africa. Parasit Vectors 2018; 11:501. [PMID: 30189883 PMCID: PMC6127916 DOI: 10.1186/s13071-018-3066-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 08/17/2018] [Indexed: 11/10/2022] Open
Abstract
Background Biting aquatic insects belonging to the order Hemiptera have been suggested as potential vectors of Mycobacterium ulcerans in endemic areas for Buruli ulcer (BU). If this is the case, these insects would be expected to co-exist with M. ulcerans in the same geographical areas. Here, we studied the geographical distribution of six aquatic Hemiptera families that are thought to be vectors of M. ulcerans and explored their potential geographical overlapping with communities reporting BU cases in endemic countries. Methods We have developed ensemble ecological models of predicted distribution for six families of the Hemiptera (Naucoridae, Belostomatidae, Notonectidae, Nepidae, Corixidae and Gerridae) applying a robust modelling framework over a collection of recorded presences and a suite of environmental and topographical factors. Ecological niche factor analysis (ENFA) was first used to identify factors that best described the ecological niches for each hemipteran family. Finally, we explored the potential geographical co-occurrence of these insects and BU in two endemic countries, Cameroon and Ghana. Results Species of the families Naucoridae and Belostomatidae, according to our models, are widely distributed across Africa, although absent from drier and hotter areas. The other two families of biting Hemiptera, the Notonectidae and Nepidae, would have a more restricted distribution, being more predominant in western and southern Africa. All these four families of biting water bugs are widely distributed across coastal areas of West Africa. They would thrive in areas where annual mean temperature varies between 15–22 °C, with moderate annual precipitation (i.e. 350–1000 mm/annual) and near to water courses. Species of all hemipteran families show preference for human-made environments such as agricultural landscapes and urbanized areas. Finally, our analysis suggests that M. ulcerans and species of these aquatic insects might coexist in the same ecological niches, although there would be variation in species diversity between BU endemic areas. Conclusions Our findings predict the geographical co-existence of some species of aquatic hemipteran families and BU. Considering the existing biological evidence that points to some of these aquatic insects as potential phoretic vectors of M. ulcerans, its presence in BU endemic areas should be considered a risk factor. The ecological models here presented may be helpful to inform future environmental based models intended to delineate the potential geographical distribution of BU in the African region. Electronic supplementary material The online version of this article (10.1186/s13071-018-3066-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jorge Cano
- Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK.
| | - Antonio Rodríguez
- Department of Horticulture, Botany and Landscaping, School of Agriculture, Food and Forestry Science and Engineering, University of Lleida, Lleida, Spain
| | - Hope Simpson
- Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Earnest N Tabah
- National Yaws, Leishmaniasis, Leprosy and Buruli ulcer Control Programme, Ministry of Public Health, Yaounde, Cameroon
| | - Jose F Gómez
- Department of Biodiversity, Ecology & Evolution, Complutense University, Madrid, Spain
| | - Rachel L Pullan
- Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
11
|
A protocol for culturing environmental strains of the Buruli ulcer agent, Mycobacterium ulcerans. Sci Rep 2018; 8:6778. [PMID: 29712992 PMCID: PMC5928104 DOI: 10.1038/s41598-018-25278-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 04/13/2018] [Indexed: 11/08/2022] Open
Abstract
Contaminations and fastidiousness of M. ulcerans may have both hamper isolation of strains from environmental sources. We aimed to optimize decontamination and culture of environmental samples to circumvent both limitations. Three strains of M. ulcerans cultured onto Middlebrook 7H10 at 30 °C for 20 days yielded a significantly higher number of colonies in micro-aerophilic atmosphere compared to ambient atmosphere, 5% CO2 and anaerobic atmosphere. In a second step, we observed that M. ulcerans genome uniquely encoded chitinase, fucosidase and A-D-GlcNAc-diphosphoryl polyprenol A-3-L-rhamnosyl transferase giving M. ulcerans the potential to metabolize chitine, fucose and N-acetyl galactosamine (NAG), respectively. A significant growth-promoting effect of 0.2 mg/mL chitin (p < 0.05), 0.01 mg/mL N-acetyl galactosamine (p < 0.05), 0.01 mg/mL fucose (p < 0.05) was observed with M. ulcerans indicating that NAG alone or combined with fucose and chitin could complement Middlebrook 7H10. Finally, the protocol combining 1% chlorhexidine decontamination with micro-aerophilic incubation on Middlebrook 7H10 medium containing chitin (0.2%), NAG (0.01%) and fucose (0.01%) medium and auto-fluorescence detection of colonies allowed for the isolation of one mycolactone-encoding strain from Thryonomys swinderianus (aulacode) feces specimens collected near the Kossou Dam, Côte d'Ivoire. We propose that incubation of chlorhexidine-decontaminated environmental specimens on Middlebrook 7H10-enriched medium under micro-aerophilic atmosphere at 30 °C may be used for the tentative isolation of M. ulcerans strains from potential environmental sources.
Collapse
|
12
|
Abstract
Background Nigeria is one of the countries endemic for Buruli ulcer (BU) in West Africa but did not have a control programme until recently. As a result, BU patients often access treatment services in neighbouring Benin where dedicated health facilities have been established to provide treatment free of charge for BU patients. This study aimed to describe the epidemiological, clinical, biological and therapeutic characteristics of cases from Nigeria treated in three of the four treatment centers in Benin. Methodology/Principal findings A series of 82 BU cases from Nigeria were treated in three centres in Benin during 2006–2016 and are retrospectively described. The majority of these patients came from Ogun and Lagos States which border Benin. Most of the cases were diagnosed with ulcerative lesions (80.5%) and WHO category III lesions (82.9%); 97.5% were healed after a median hospital stay of 46 days (interquartile range [IQR]: 32–176 days). Conclusions/Significance This report adds to the epidemiological understanding of BU in Nigeria in the hope that the programme will intensify efforts aimed at early case detection and treatment. Buruli ulcer (BU) is a neglected tropical disease that mainly affects the skin. The disease results from infection with Mycobacterium ulcerans, an environmental bacterium. In Benin, the BU treatment centres usually receive patients from Nigeria. In 2014, a study from one of the treatment centres (CDTUB, Pobe) which borders south-western Nigeria reported on a cohort of 127 PCR-confirmed cases between 2005 and 2013. We describe the epidemiological, clinical, biological and therapeutic characteristics of BU cases from Nigeria treated in the three other CDTUBs.
Collapse
|
13
|
Maman I, Tchacondo T, Kere AB, Piten E, Beissner M, Kobara Y, Kossi K, Badziklou K, Wiedemann FX, Amekuse K, Bretzel G, Karou DS. Risk factors for Mycobacterium ulcerans infection (Buruli Ulcer) in Togo ─ a case-control study in Zio and Yoto districts of the maritime region. BMC Infect Dis 2018; 18:48. [PMID: 29351741 PMCID: PMC5775556 DOI: 10.1186/s12879-018-2958-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 01/11/2018] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Buruli ulcer (BU) is a neglected mycobacterial skin infection caused by Mycobacterium ulcerans. This disease mostly affects poor rural populations, especially in areas with low hygiene standards and sanitation coverage. The objective of this study was to identify these risk factors in the districts of Zio and Yoto of the Maritime Region in Togo. METHODS We conducted a case-control study in Zio and Yoto, two districts proved BU endemic from November 2014 to May 2015. BU cases were diagnosed according to the WHO clinical case definition at the Centre Hospitalier Régional de Tsévié (CHR Tsévié) and confirmed by Ziehl-Neelsen (ZN) microscopy and IS2404 polymerase chain reaction (PCR). For each case, up to two controls matched by sex and place of residence were recruited. Socio-demographic, environmental or behavioral data were collected and conditional logistic regression analysis was used to identify and compare risk factors between BU cases and controls. RESULTS A total of 83 cases and 128 controls were enrolled. The median age was 15 years (range 3-65 years). Multivariate conditional logistic regression analysis after adjustment for potential confounders identified age (< 10 years (OR =11.48, 95% CI = 3.72-35.43) and 10-14 years (OR = 3.63, 95% CI = 1.22-10.83)), receiving insect bites near a river (OR = 7.8, 95% CI = 1.48-41.21) and bathing with water from open borehole (OR = 5.77, (1.11-29.27)) as independent predictors of acquiring BU infection. CONCLUSIONS This study identified age, bathing with water from open borehole and receiving insect bites near a river as potential risk of acquiring BU infection in Zio and Yoto districts of the Maritime Region in south Togo.
Collapse
Affiliation(s)
- Issaka Maman
- Institut National d’Hygiène (INH), National Reference Laboratory for Buruli ulcer disease in Togo, 26 QAD Rue Nangbeto, 1BP, 1396 Lomé, Togo
- Ecole Supérieure des Techniques Biologiques et Alimentaires (ESTBA), Laboratoire des Sciences Biologiques et des Substances Bioactives, Université de Lomé, Lomé, Togo
| | - Tchadjobo Tchacondo
- Ecole Supérieure des Techniques Biologiques et Alimentaires (ESTBA), Laboratoire des Sciences Biologiques et des Substances Bioactives, Université de Lomé, Lomé, Togo
| | - Abiba Banla Kere
- Institut National d’Hygiène (INH), National Reference Laboratory for Buruli ulcer disease in Togo, 26 QAD Rue Nangbeto, 1BP, 1396 Lomé, Togo
| | - Ebekalisai Piten
- Centre National de Référence pour le Traitement de l’Ulcère de Buruli (CNRT-UB), Centre Hospitalier Régional (CHR) de Tsévié, Lomé, Togo
| | - Marcus Beissner
- Department for Infectious Diseases and Tropical Medicine (DITM), Medical Center of the University of Munich (LMU), Munich, Germany
| | - Yiragnima Kobara
- Programme National de Lutte Contre l’Ulcère de Buruli, la Lèpre et le Pian (PNLUB-LP), Lomé, Togo
| | - Komlan Kossi
- Institut National d’Hygiène (INH), National Reference Laboratory for Buruli ulcer disease in Togo, 26 QAD Rue Nangbeto, 1BP, 1396 Lomé, Togo
| | - Kossi Badziklou
- Institut National d’Hygiène (INH), National Reference Laboratory for Buruli ulcer disease in Togo, 26 QAD Rue Nangbeto, 1BP, 1396 Lomé, Togo
| | - Franz Xaver Wiedemann
- German Leprosy and Tuberculosis Relief Association (DAHW-T), Togo office, Lomé, Togo
| | - Komi Amekuse
- German Leprosy and Tuberculosis Relief Association (DAHW-T), Togo office, Lomé, Togo
| | - Gisela Bretzel
- Department for Infectious Diseases and Tropical Medicine (DITM), Medical Center of the University of Munich (LMU), Munich, Germany
| | - Damintoti Simplice Karou
- Ecole Supérieure des Techniques Biologiques et Alimentaires (ESTBA), Laboratoire des Sciences Biologiques et des Substances Bioactives, Université de Lomé, Lomé, Togo
| |
Collapse
|
14
|
Yotsu RR, Suzuki K, Simmonds RE, Bedimo R, Ablordey A, Yeboah-Manu D, Phillips R, Asiedu K. Buruli Ulcer: a Review of the Current Knowledge. CURRENT TROPICAL MEDICINE REPORTS 2018; 5:247-256. [PMID: 30460172 PMCID: PMC6223704 DOI: 10.1007/s40475-018-0166-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PURPOSE OF THE REVIEW Buruli ulcer (BU) is a necrotizing and disabling cutaneous disease caused by Mycobacterium ulcerans, one of the skin-related neglected tropical diseases (skin NTDs). This article aims to review the current knowledge of this disease and challenges ahead. RECENT FINDINGS Around 60,000 cases of BU have been reported from over 33 countries between 2002 and 2017. Encouraging findings for development of point-of-care tests for BU are being made, and its treatment is currently in the transition period from rifampicin plus streptomycin (injection) to all-oral regimen. A major recent advance in our understanding of its pathogenesis has been agreement on the mechanism of action of the major virulence toxin mycolactone in host cells, targeting the Sec61 translocon during a major step in protein biogenesis. SUMMARY BU is distributed mainly in West Africa, but cases are also found in other parts of the world. We may be underestimating its true disease burden, due to the limited awareness of this disease. More awareness and more understanding of BU will surely contribute in enhancing our fight against this skin NTD.
Collapse
Affiliation(s)
- Rie R. Yotsu
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
- Department of Dermatology, National Center for Global Health and Medicine, Tokyo, Japan
- Department of Dermatology, National Suruga Sanatorium, Shizuoka, Japan
| | - Koichi Suzuki
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
| | - Rachel E. Simmonds
- Department of Microbial Sciences, School of Bioscience and Medicine, University of Surrey, Surrey, UK
| | - Roger Bedimo
- Department of Medicine, VA North Texas Healthcare System, Dallas, TX USA
- Division of Infectious Diseases, University of Texas Dallas Southwestern, Dallas, TX USA
| | - Anthony Ablordey
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Dorothy Yeboah-Manu
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Richard Phillips
- Kumansi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Kingsley Asiedu
- Department of Control of Neglected Tropical Diseases, World Health Organization, Geneva, Switzerland
| |
Collapse
|
15
|
Buruli Ulcer, a Prototype for Ecosystem-Related Infection, Caused by Mycobacterium ulcerans. Clin Microbiol Rev 2017; 31:31/1/e00045-17. [PMID: 29237707 DOI: 10.1128/cmr.00045-17] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Buruli ulcer is a noncontagious disabling cutaneous and subcutaneous mycobacteriosis reported by 33 countries in Africa, Asia, Oceania, and South America. The causative agent, Mycobacterium ulcerans, derives from Mycobacterium marinum by genomic reduction and acquisition of a plasmid-borne, nonribosomal cytotoxin mycolactone, the major virulence factor. M. ulcerans-specific sequences have been readily detected in aquatic environments in food chains involving small mammals. Skin contamination combined with any type of puncture, including insect bites, is the most plausible route of transmission, and skin temperature of <30°C significantly correlates with the topography of lesions. After 30 years of emergence and increasing prevalence between 1970 and 2010, mainly in Africa, factors related to ongoing decreasing prevalence in the same countries remain unexplained. Rapid diagnosis, including laboratory confirmation at the point of care, is mandatory in order to reduce delays in effective treatment. Parenteral and potentially toxic streptomycin-rifampin is to be replaced by oral clarithromycin or fluoroquinolone combined with rifampin. In the absence of proven effective primary prevention, avoiding skin contamination by means of clothing can be implemented in areas of endemicity. Buruli ulcer is a prototype of ecosystem pathology, illustrating the impact of human activities on the environment as a source for emerging tropical infectious diseases.
Collapse
|
16
|
N’krumah RT, Koné B, Cissé G, Tanner M, Utzinger J, Pluschke G, Tiembré I. Characteristics and epidemiological profile of Buruli ulcer in the district of Tiassalé, south Côte d'Ivoire. Acta Trop 2017; 175:138-144. [PMID: 28034768 DOI: 10.1016/j.actatropica.2016.12.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/17/2016] [Accepted: 12/17/2016] [Indexed: 01/30/2023]
Abstract
Buruli ulcer (BU) is a cutaneous infectious disease caused by Mycobacterium ulcerans. It is the third most common mycobacterial disease in the world in the immunocompetent patient and second in Côte d'Ivoire after tuberculosis. This study aimed to assess the characteristics and epidemiological profile of BU in the district of Tiassalé, an important focus of the disease in south Côte d'Ivoire, in order to better direct actions for prevention and control. Retrospective clinical data of BU cases in the period 2005-2010 from all 19 district health centres were collected and linked with geographical and environmental survey data. A total of 1145 cases of BU were recorded between 2005 and 2010 in the district of Tiassalé. Children under the age of 15 years were the most affected (53.0%) with a higher prevalence among males compared to females (54.7% versus 45.3%). Among individuals aged 15-49 years, females had a higher prevalence than males (54.2% versus 45.8%). The villages of Ahondo, Léléblé and Taabo, located in close proximity to the man-made Lake Taabo that was constructed in the late 1970s by damming the Bandama River, and the village of Sokrogbo located downstream of the dam, showed the highest BU rates in the sub-prefecture of Taabo. In the sub-prefecture of Tiassalé, the villages of Affikro, Morokro and N'Zianouan, located near N'Zi River, a tributary of the Bandama River, were the most affected. The distribution of BU is associated with environmental patterns (i.e. distance between village and Lake Taabo or Bandama River and its tributary N'Zi River). Awareness campaigns, coupled with early diagnosis and improved clinical management of BU, have been implemented in the district of Tiassalé and the incidence of BU has declined.
Collapse
|
17
|
Evidences of the Low Implication of Mosquitoes in the Transmission of Mycobacterium ulcerans, the Causative Agent of Buruli Ulcer. CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY 2017; 2017:1324310. [PMID: 28932250 PMCID: PMC5592421 DOI: 10.1155/2017/1324310] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 07/08/2017] [Accepted: 07/17/2017] [Indexed: 11/18/2022]
Abstract
Background Buruli ulcer (BU) continues to be a serious public health threat in wet tropical regions and the mode of transmission of its etiological agent, Mycobacterium ulcerans (MU), remains poorly understood. In this study, mosquito species collected in endemic villages in Benin were screened for the presence of MU. In addition, the ability of mosquitoes larvae to pick up MU from their environment and remain colonized through the larval developmental stages to the adult stage was investigated. Methods 7,218 adults and larvae mosquitoes were sampled from endemic and nonendemic villages and screened for MU DNA targets (IS2404, IS2606, and KR-B) using qPCR. Results. MU was not detected in any of the field collected samples. Additional studies of artificially infected larvae of Anopheles kisumu with MU strains revealed that mosquitoes larvae are able to ingest and host MU during L1, L2, L3, and L4 developmental stages. However, we noticed an absence of these bacteria at both pupae and adult stages, certainly revealing the low ability of infected or colonized mosquitoes to vertically transmit MU to their offspring. Conclusion The overall findings highlight the low implication of mosquitoes as biological vectors in the transmission cycle of MU from the risk environments to humans.
Collapse
|
18
|
The location of Australian Buruli ulcer lesions-Implications for unravelling disease transmission. PLoS Negl Trop Dis 2017; 11:e0005800. [PMID: 28821017 PMCID: PMC5584971 DOI: 10.1371/journal.pntd.0005800] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 09/05/2017] [Accepted: 07/12/2017] [Indexed: 11/28/2022] Open
Abstract
Background Buruli ulcer (BU), caused by Mycobacterium ulcerans, is increasing in incidence in Victoria, Australia. To improve understanding of disease transmission, we aimed to map the location of BU lesions on the human body. Methods Using notification data and clinical records review, we conducted a retrospective observational study of patients diagnosed with BU in Victoria from 1998–2015. We created electronic density maps of lesion locations using spatial analysis software and compared lesion distribution by age, gender, presence of multiple lesions and month of infection. Findings We examined 579 patients with 649 lesions; 32 (5.5%) patients had multiple lesions. Lesions were predominantly located on lower (70.0%) and upper (27.1%) limbs, and showed a non-random distribution with strong predilection for the ankles, elbows and calves. When stratified by gender, upper limb lesions were more common (OR 1·97, 95% CI 1·38–2·82, p<0·001) while lower limb lesions were less common in men than in women (OR 0·48, 95% CI 0·34–0·68, p<0·001). Patients aged ≥ 65 years (OR 3·13, 95% CI 1·52–6·43, p = 0·001) and those with a lesion on the ankle (OR 2·49, 95% CI 1·14–5·43, p = 0·02) were more likely to have multiple lesions. Most infections (71.3%) were likely acquired in the warmer 6 months of the year. Interpretation Comparison with published work in Cameroon, Africa, showed similar lesion distribution and suggests the mode of M. ulcerans transmission may be the same across the globe. Our findings also aid clinical diagnosis and provide quantitative background information for further research investigating disease transmission. Buruli ulcer is an emerging tropical disease that is also increasingly common in the temperate Australian state of Victoria. The mode of transmission of this geographically restricted infection remains elusive. We have accurately mapped the location of 649 PCR-confirmed Buruli lesions affecting 579 patients and displayed their position on front and back human body diagrams. Lesion distribution density was assessed with computer-generated heat-maps. Buruli lesion distribution was most common on exposed parts of the body (distal limbs). However, even on exposed areas, lesion distribution was highly unevenly distributed and focused towards ankles, backs of calves and elbows. The palmar and plantar surfaces of hands and feet were rarely affected. We propose that targeting behavior by biting insects rather than direct contact with a contaminated environment best explains the lesion distribution we observed.
Collapse
|
19
|
Combe M, Velvin CJ, Morris A, Garchitorena A, Carolan K, Sanhueza D, Roche B, Couppié P, Guégan JF, Gozlan RE. Global and local environmental changes as drivers of Buruli ulcer emergence. Emerg Microbes Infect 2017; 6:e21. [PMID: 28442755 PMCID: PMC5457673 DOI: 10.1038/emi.2017.7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 01/05/2017] [Accepted: 01/09/2017] [Indexed: 11/21/2022]
Abstract
Many emerging infectious diseases are caused by generalist pathogens that infect and transmit via multiple host species with multiple dissemination routes, thus confounding the understanding of pathogen transmission pathways from wildlife reservoirs to humans. The emergence of these pathogens in human populations has frequently been associated with global changes, such as socio-economic, climate or biodiversity modifications, by allowing generalist pathogens to invade and persist in new ecological niches, infect new host species, and thus change the nature of transmission pathways. Using the case of Buruli ulcer disease, we review how land-use changes, climatic patterns and biodiversity alterations contribute to disease emergence in many parts of the world. Here we clearly show that Mycobacterium ulcerans is an environmental pathogen characterized by multi-host transmission dynamics and that its infectious pathways to humans rely on the local effects of global environmental changes. We show that the interplay between habitat changes (for example, deforestation and agricultural land-use changes) and climatic patterns (for example, rainfall events), applied in a local context, can lead to abiotic environmental changes and functional changes in local biodiversity that favor the pathogen's prevalence in the environment and may explain disease emergence.
Collapse
Affiliation(s)
- Marine Combe
- Centre IRD de Montpellier, Département Santé, UMR MIVEGEC IRD-CNRS-Université de Montpellier, 34394 Montpellier, France
| | - Camilla Jensen Velvin
- Centre IRD de Montpellier, Département Santé, UMR MIVEGEC IRD-CNRS-Université de Montpellier, 34394 Montpellier, France
| | - Aaron Morris
- The Royal Veterinary College, Department of Production and Population Health, The Royal Veterinary College, Hawkshead Lane North Mymms, Hatfield, Hertfordshire AL9 7TA, UK
| | - Andres Garchitorena
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, MA 02115, USA
- PIVOT, Division of Global Health Equity, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Kevin Carolan
- Computational & Systems Biology, Rothamsted Research, Harpenden AL5 2JQ, UK
| | - Daniel Sanhueza
- Centre IRD de Montpellier, Département Santé, UMR MIVEGEC IRD-CNRS-Université de Montpellier, 34394 Montpellier, France
| | - Benjamin Roche
- UMMISCO, Département Sociétés et Mondialisation, UMI IRD-UPMC 209, 93143 Bondy, France
| | - Pierre Couppié
- Université de Guyane, EA3593 Epidémiologie des Parasitoses Tropicales, 97306 Cayenne, French Guiana, France
- Service de Dermatologie, Cayenne Hospital, rue des Flamboyant, BP 6006, 97306 Cayenne, French Guiana, France
| | - Jean-François Guégan
- Centre IRD de Montpellier, Département Santé, UMR MIVEGEC IRD-CNRS-Université de Montpellier, 34394 Montpellier, France
- Future Earth International Programme, OneHealth Global Research Project, Future Earth Montréal Hub, Montréal, QC H3H 2L3, Canada
| | - Rodolphe Elie Gozlan
- Institut de Recherche pour le Développement, Département Ecologie, Biodiversité et Fonctionnement des Ecosystemes Continentaux, UMR BOREA IRD 207, CNRS 7208, MNHN, UPMC, Muséum National d'Histoire Naturelle, 75231 Paris, France
| |
Collapse
|
20
|
Wallace JR, Mangas KM, Porter JL, Marcsisin R, Pidot SJ, Howden B, Omansen TF, Zeng W, Axford JK, Johnson PDR, Stinear TP. Mycobacterium ulcerans low infectious dose and mechanical transmission support insect bites and puncturing injuries in the spread of Buruli ulcer. PLoS Negl Trop Dis 2017; 11:e0005553. [PMID: 28410412 PMCID: PMC5406025 DOI: 10.1371/journal.pntd.0005553] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 04/26/2017] [Accepted: 04/04/2017] [Indexed: 11/18/2022] Open
Abstract
Addressing the transmission enigma of the neglected disease Buruli ulcer (BU) is a World Health Organization priority. In Australia, we have observed an association between mosquitoes harboring the causative agent, Mycobacterium ulcerans, and BU. Here we tested a contaminated skin model of BU transmission by dipping the tails from healthy mice in cultures of the causative agent, Mycobacterium ulcerans. Tails were exposed to mosquito (Aedes notoscriptus and Aedes aegypti) blood feeding or punctured with sterile needles. Two of 12 of mice with M. ulcerans contaminated tails exposed to feeding A. notoscriptus mosquitoes developed BU. There were no mice exposed to A. aegypti that developed BU. Eighty-eight percent of mice (21/24) subjected to contaminated tail needle puncture developed BU. Mouse tails coated only in bacteria did not develop disease. A median incubation time of 12 weeks, consistent with data from human infections, was noted. We then specifically tested the M. ulcerans infectious dose-50 (ID50) in this contaminated skin surface infection model with needle puncture and observed an ID50 of 2.6 colony-forming units. We have uncovered a biologically plausible mechanical transmission mode of BU via natural or anthropogenic skin punctures.
Collapse
Affiliation(s)
- John R. Wallace
- Department of Biology, Millersville University, Millersville, PA, United States of America
| | - Kirstie M. Mangas
- Department of Microbiology and Immunology, at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Jessica L. Porter
- Department of Microbiology and Immunology, at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Renee Marcsisin
- Department of Microbiology and Immunology, at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Sacha J. Pidot
- Department of Microbiology and Immunology, at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Brian Howden
- Department of Microbiology and Immunology, at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Till F. Omansen
- Department of Microbiology and Immunology, at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
- Department of Internal Medicine, University of Groningen, Groningen, RB, The Netherlands
| | - Weiguang Zeng
- Department of Microbiology and Immunology, at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| | - Jason K. Axford
- Pest and Environmental Adaptation Research Group, Bio21 Institute and School of BioSciences, University of Melbourne, Parkville, Vic, Australia
| | - Paul D. R. Johnson
- Department of Infectious Diseases, Austin Health, Heidelberg, Victoria, Australia
| | - Timothy P. Stinear
- Department of Microbiology and Immunology, at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
| |
Collapse
|
21
|
Robbe-Saule M, Babonneau J, Sismeiro O, Marsollier L, Marion E. An Optimized Method for Extracting Bacterial RNA from Mouse Skin Tissue Colonized by Mycobacterium ulcerans. Front Microbiol 2017; 8:512. [PMID: 28392785 PMCID: PMC5364165 DOI: 10.3389/fmicb.2017.00512] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 03/13/2017] [Indexed: 11/13/2022] Open
Abstract
Bacterial transcriptome analyses during host colonization are essential to decipher the complexity of the relationship between the bacterium and its host. RNA sequencing (RNA-seq) is a promising approach providing valuable information about bacterial adaptation, the host response and, in some cases, mutual tolerance underlying crosstalk, as recently observed in the context of Mycobacterium ulcerans infection. Buruli ulcer is caused by M. ulcerans. This neglected disease is the third most common mycobacterial disease worldwide. Without treatment, M. ulcerans provokes massive skin ulcers. A healing process may be observed in 5% of Buruli ulcer patients several months after the initiation of disease. This spontaneous healing process suggests that some hosts can counteract the development of the lesions caused by M. ulcerans. Deciphering the mechanisms involved in this process should open up new treatment possibilities. To this end, we recently developed the first mouse model for studies of the spontaneous healing process. We have shown that the healing process is based on mutual tolerance between the bacterium and its host. In this context, RNA-seq seems to be the most appropriate method for deciphering bacterial adaptation. However, due to the low bacterial load in host tissues, the isolation of mycobacterial RNA from skin tissue for RNA-seq analysis remains challenging. We developed a method for extracting and purifying mycobacterial RNA whilst minimizing the amount of host RNA in the sample. This approach was based on the extraction of bacterial RNA by a differential lysis method. The challenge in the development of this method was the choice of a lysis system favoring the removal of host RNA without damage to the bacterial cells. We made use of the thick, resistant cell wall of M. ulcerans to achieve this end.
Collapse
Affiliation(s)
- Marie Robbe-Saule
- Center for Research in Cancerology and Immunology Nantes-Angers, Institut National de la Santé et de la Recherche Médicale, Université de Nantes, Université d'AngersAngers, France; Equipe Atip-Avenir, Center for Research in Cancerology and Immunology Nantes-Angers, Institut National de la Santé et de la Recherche Médicale, Centre Hospitalier Universitaire et Université d'AngersAngers, France
| | - Jérémie Babonneau
- Center for Research in Cancerology and Immunology Nantes-Angers, Institut National de la Santé et de la Recherche Médicale, Université de Nantes, Université d'AngersAngers, France; Equipe Atip-Avenir, Center for Research in Cancerology and Immunology Nantes-Angers, Institut National de la Santé et de la Recherche Médicale, Centre Hospitalier Universitaire et Université d'AngersAngers, France
| | - Odile Sismeiro
- Transcriptome and Epigenome Platform, Biomics, Center for Innovation and Technological Research, Institut Pasteur Paris, France
| | - Laurent Marsollier
- Center for Research in Cancerology and Immunology Nantes-Angers, Institut National de la Santé et de la Recherche Médicale, Université de Nantes, Université d'AngersAngers, France; Equipe Atip-Avenir, Center for Research in Cancerology and Immunology Nantes-Angers, Institut National de la Santé et de la Recherche Médicale, Centre Hospitalier Universitaire et Université d'AngersAngers, France
| | - Estelle Marion
- Center for Research in Cancerology and Immunology Nantes-Angers, Institut National de la Santé et de la Recherche Médicale, Université de Nantes, Université d'AngersAngers, France; Equipe Atip-Avenir, Center for Research in Cancerology and Immunology Nantes-Angers, Institut National de la Santé et de la Recherche Médicale, Centre Hospitalier Universitaire et Université d'AngersAngers, France
| |
Collapse
|
22
|
Zingue D, Bouam A, Militello M, Drancourt M. High-Throughput Carbon Substrate Profiling of Mycobacterium ulcerans Suggests Potential Environmental Reservoirs. PLoS Negl Trop Dis 2017; 11:e0005303. [PMID: 28095422 PMCID: PMC5271411 DOI: 10.1371/journal.pntd.0005303] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 01/27/2017] [Accepted: 01/04/2017] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Mycobacterium ulcerans is a close derivative of Mycobacterium marinum and the agent of Buruli ulcer in some tropical countries. Epidemiological and environmental studies pointed towards stagnant water ecosystems as potential sources of M. ulcerans, yet the ultimate reservoirs remain elusive. We hypothesized that carbon substrate determination may help elucidating the spectrum of potential reservoirs. METHODOLOGY/PRINCIPAL FINDINGS In a first step, high-throughput phenotype microarray Biolog was used to profile carbon substrates in one M. marinum and five M. ulcerans strains. A total of 131/190 (69%) carbon substrates were metabolized by at least one M. ulcerans strain, including 28/190 (15%) carbon substrates metabolized by all five M. ulcerans strains of which 21 substrates were also metabolized by M. marinum. In a second step, 131 carbon substrates were investigated, through a bibliographical search, for their known environmental sources including plants, fruits and vegetables, bacteria, algae, fungi, nematodes, mollusks, mammals, insects and the inanimate environment. This analysis yielded significant association of M. ulcerans with bacteria (p = 0.000), fungi (p = 0.001), algae (p = 0.003) and mollusks (p = 0.007). In a third step, the Medline database was cross-searched for bacteria, fungi, mollusks and algae as potential sources of carbon substrates metabolized by all tested M. ulcerans; it indicated that 57% of M. ulcerans substrates were associated with bacteria, 18% with alga, 11% with mollusks and 7% with fungi. CONCLUSIONS This first report of high-throughput carbon substrate utilization by M. ulcerans would help designing media to isolate and grow this pathogen. Furthermore, the presented data suggest that potential M. ulcerans environmental reservoirs might be related to micro-habitats where bacteria, fungi, algae and mollusks are abundant. This should be followed by targeted investigations in Buruli ulcer endemic regions.
Collapse
Affiliation(s)
- Dezemon Zingue
- Aix Marseille Univ, INSERM, CNRS, IRD, URMITE, Marseille, France
| | - Amar Bouam
- Aix Marseille Univ, INSERM, CNRS, IRD, URMITE, Marseille, France
| | - Muriel Militello
- Aix Marseille Univ, INSERM, CNRS, IRD, URMITE, Marseille, France
| | - Michel Drancourt
- Aix Marseille Univ, INSERM, CNRS, IRD, URMITE, Marseille, France
| |
Collapse
|
23
|
Tobias NJ, Ammisah NA, Ahortor EK, Wallace JR, Ablordey A, Stinear TP. Snapshot fecal survey of domestic animals in rural Ghana for Mycobacterium ulcerans. PeerJ 2016; 4:e2065. [PMID: 27280071 PMCID: PMC4893338 DOI: 10.7717/peerj.2065] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 05/02/2016] [Indexed: 11/20/2022] Open
Abstract
Identifying the source reservoirs of Mycobacterium ulcerans is key to understanding the mode of transmission of this pathogen and controlling the spread of Buruli ulcer (BU). In Australia, the native possum can harbor M. ulcerans in its gastrointestinal tract and shed high concentrations of the bacteria in its feces. To date, an analogous animal reservoir in Africa has not been identified. Here we tested the hypothesis that common domestic animals in BU endemic villages of Ghana are reservoir species analogous to the Australian possum. Using linear-transects at 10-meter intervals, we performed systematic fecal surveys across four BU endemic villages and one non-endemic village in the Asante Akim North District of Ghana. One hundred and eighty fecal specimens from a single survey event were collected and analyzed by qPCR for the M. ulcerans diagnostic DNA targets IS2404 and KR-B. Positive and negative controls performed as expected but all 180 test samples were negative. This structured snapshot survey suggests that common domestic animals living in and around humans do not shed M. ulcerans in their feces. We conclude that, unlike the Australian native possum, domestic animals in rural Ghana are unlikely to be major reservoirs of M. ulcerans.
Collapse
Affiliation(s)
- Nicholas J Tobias
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity , Melbourne , Australia
| | - Nana Ama Ammisah
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana , Legon , Ghana
| | - Evans K Ahortor
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana; School of Pharmacy & Pharmaceutical Science, Cardiff University, Cardiff, United Kingdom
| | - John R Wallace
- Department of Biology, Millersville University of Pennsylvania , Millersville, PA , United States
| | - Anthony Ablordey
- Department of Bacteriology, Noguchi Memorial Institute for Medical Research, University of Ghana , Legon , Ghana
| | - Timothy P Stinear
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity , Melbourne , Australia
| |
Collapse
|
24
|
N’krumah RTAS, Koné B, Tiembre I, Cissé G, Pluschke G, Tanner M, Utzinger J. Socio-Environmental Factors Associated with the Risk of Contracting Buruli Ulcer in Tiassalé, South Côte d'Ivoire: A Case-Control Study. PLoS Negl Trop Dis 2016; 10:e0004327. [PMID: 26745723 PMCID: PMC4712845 DOI: 10.1371/journal.pntd.0004327] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 12/04/2015] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Buruli ulcer (BU) is a cutaneous infectious disease caused by Mycobacterium ulcerans. The exact mode of transmission remains elusive; yet, some studies identified environmental, socio-sanitary, and behavioral risk factors. The purpose of this study was to assess the association of such factors to contracting BU in Tiassalé, south Côte d'Ivoire. METHODOLOGY A case-control study was conducted in 2012. Cases were BU patients diagnosed according to clinical definition put forth by the World Health Organization, readily confirmed by IS2404 polymerase chain reaction (PCR) analysis prior to our study and recruited at one of the health centers of the district. Two controls were matched for each control, by age group (to the nearest 5 years), sex, and living community. Participants were interviewed after providing oral witnessed consent, assessing behavioral, environmental, and socio-sanitary factors. PRINCIPAL FINDINGS A total of 51 incident and prevalent cases and 102 controls were enrolled. Sex ratio (male:female) was 0.9. Median age was 25 years (range: 5-70 years). Regular contact with unprotected surface water (adjusted odds ratio (aOR) = 6.5; 95% confidence interval (CI) = 2.1-19.7) and absence of protective equipment during agricultural activities (aOR = 18.5, 95% CI = 5.2-66.7) were identified as the main factors associated with the risk of contracting BU. Etiologic fractions among exposed to both factors were 84.9% and 94.6%, respectively. Good knowledge about the risks that may result in BU (aOR = 0.3, 95% CI = 0.1-0.8) and perception about the disease causes (aOR = 0.1, 95% CI = 0.02-0.3) showed protection against BU with a respective preventive fraction of 70% and 90%. CONCLUSIONS/SIGNIFICANCE Main risk factors identified in this study were the contact with unprotected water bodies through daily activities and the absence of protective equipment during agricultural activities. An effective strategy to reduce the incidence of BU should involve compliance with protective equipment during agricultural activities and avoidance of contact with surface water and community capacity building through training and sensitization.
Collapse
Affiliation(s)
- Raymond T. A. S. N’krumah
- Département Recherche et Développement, Centre Suisse de Recherches Scientifiques en Côte d’Ivoire, Abidjan, Côte d’Ivoire
- Unité de Formation et de Recherche des Sciences Médicales, Université Félix Houphouët-Boigny, Abidjan, Côte d’Ivoire
| | - Brama Koné
- Département Recherche et Développement, Centre Suisse de Recherches Scientifiques en Côte d’Ivoire, Abidjan, Côte d’Ivoire
- Institut de Gestion Agropastorale, Université Péléforo Gon Coulibaly, Korhogo, Côte d’Ivoire
- * E-mail:
| | - Issaka Tiembre
- Unité de Formation et de Recherche des Sciences Médicales, Université Félix Houphouët-Boigny, Abidjan, Côte d’Ivoire
| | - Guéladio Cissé
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Gerd Pluschke
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Marcel Tanner
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Jürg Utzinger
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|