1
|
Kanyi H, Kihoro RW, Chieng B, Araka S, Emisiko H, Ramos T, Nogaro S, Njenga SM. Evaluation of a modified quantitative polymerase chain reaction assay for genus Schistosoma detection using stool and urine samples from schistosomiasis endemic areas in Kenya. PLoS One 2024; 19:e0310118. [PMID: 39302938 DOI: 10.1371/journal.pone.0310118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/26/2024] [Indexed: 09/22/2024] Open
Abstract
INTRODUCTION The microscopy-based Kato-Katz and urine filtration techniques have traditionally faced challenges in the detection of schistosomiasis in areas with low infection levels. A modified singleplex Schistosoma genus-specific quantitative real-time polymerase chain reaction (qPCR) assay was therefore evaluated as a sensitive and confirmatory schistosomiasis diagnostic test. METHODOLOGY The qPCR assay utilized primers and probe targeting internal transcribed spacer- 2 (ITS2) sequence of S. mansoni, S. haematobium and S. intercalatum. A plasmid (pDMD801, 100pg/ul) was used as an internal amplification control and its qPCR assays were run in parallel to the Schistosoma assays. This assay utilized samples collected from 774 participants and microscopically examined for three consecutive days. A total of 699 day-one samples (urine and stools) from two schistosomiasis endemic sites were analyzed. Similarly, 75 persons from a non-endemic control site provided both urine and stool samples that were also analyzed. RESULTS Using microscopy, the proportion of positives in the two endemic regions altogether was 289/699 (41.3%). Using qPCR, 50.4% of the samples (352/699) were found to be positive for schistosome infection. The percentage of positive samples was slightly higher at 57.8% (203/351) in the S. mansoni endemic site compared with the S. haematobium site at 42.8% (149/348). Majority of the microscopy results were light infections at 26.8% (n = 94) and 26.1% (n = 91) while qPCR majority of the infections were high at 41.6% (n = 146) and 31.3% (n = 109) for the S. mansoni and S. haematobium sites, respectively. There were no positives detected by either microscopy or qPCR in the non-endemic site. Using Bayesian Latent Class Model, which does not use any technique as a gold standard, qPCR showed higher sensitivity (86.4% (PCI: 82.1-90.3)) compared to microscopy (75.6% (PCI: 71.1-80.0)). CONCLUSIONS This study documents a single day-one sample modified Schistosoma qPCR assay as a powerful improved molecular assay for the detection of schistosomiasis infection that utilize either stool or urine samples. The assay is therefore recommended for monitoring in areas with low infection levels to enable accurate determination of the disease's control endpoint.
Collapse
Affiliation(s)
- Henry Kanyi
- Eastern and Southern Africa Centre of International Parasite Control (ESACIPAC), Kenya Medical Research Institute (KEMRI), Nairobi, Kenya
| | - Richelle W Kihoro
- Eastern and Southern Africa Centre of International Parasite Control (ESACIPAC), Kenya Medical Research Institute (KEMRI), Nairobi, Kenya
| | - Benard Chieng
- Eastern and Southern Africa Centre of International Parasite Control (ESACIPAC), Kenya Medical Research Institute (KEMRI), Nairobi, Kenya
| | - Sylvie Araka
- Eastern and Southern Africa Centre of International Parasite Control (ESACIPAC), Kenya Medical Research Institute (KEMRI), Nairobi, Kenya
| | - Henry Emisiko
- Eastern and Southern Africa Centre of International Parasite Control (ESACIPAC), Kenya Medical Research Institute (KEMRI), Nairobi, Kenya
| | | | | | - Sammy M Njenga
- Eastern and Southern Africa Centre of International Parasite Control (ESACIPAC), Kenya Medical Research Institute (KEMRI), Nairobi, Kenya
| |
Collapse
|
2
|
Ally O, Kanoi BN, Ochola L, Nyanjom SG, Shiluli C, Misinzo G, Gitaka J. Schistosomiasis diagnosis: Challenges and opportunities for elimination. PLoS Negl Trop Dis 2024; 18:e0012282. [PMID: 38990839 PMCID: PMC11239039 DOI: 10.1371/journal.pntd.0012282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024] Open
Abstract
OVERVIEW The roadmap adopted by the World Health Organization (WHO) for eliminating neglected tropical diseases aims to eliminate schistosomiasis, as a public health concern, by 2030. While progress has been made towards reducing schistosomiasis morbidity control in several sub-Saharan African countries, there is still more that needs to be done. Proper surveillance using accurate diagnostics with acceptable sensitivity and specificity is essential for evaluating the success of all efforts against schistosomiasis. Microscopy, despite its low sensitivity, remains the gold standard approach for diagnosing the disease. Although many efforts have been made to develop new diagnostics based on circulating parasite proteins, genetic markers, schistosome egg morphology, and their paramagnetic properties, none has been robust enough to replace microscopy. This review highlights common diagnostic approaches for detecting schistosomiasis in field and clinical settings, major challenges, and provides new and novel opportunities and diagnosis pathways that will be critical in supporting elimination of schistosomiasis. METHODS We searched for relevant and reliable published literature from PubMed, Scopus, google scholar, and Web of science. The search strategies were primarily determined by subtopic, and hence the following words were used (schistosom*, diagnosis, Kato-Katz, antibody test, circulating antigen, POC-CCA, UCP-LF-CAA, molecular diagnostics, nucleic acid amplification test, microfluidics, lab-on a disk, lab-on chip, recombinase polymerase amplification (RPA), LAMP, portable sequencer, nanobody test, identical multi-repeat sequences, diagnostic TPPs, REASSURED, extraction free), and Boolean operators AND and/OR were used to refine the searching capacity. Due to the global public health nature of schistosomiasis, we also searched for reliable documents, reports, and research papers published by international health organizations, World Health Organization (WHO), and Center for Disease control and Elimination.
Collapse
Affiliation(s)
- Ombeni Ally
- Department of Molecular Biology and Biotechnology, Pan African University Institute for Basic Sciences, Technology and Innovation (PAUSTI), Nairobi, Kenya
- Department of Biology, College of Natural and Mathematical Sciences, University of Dodoma, Dodoma, Tanzania
| | - Bernard N Kanoi
- Centre for Research in Infectious Diseases, College of Graduate Studies and Research, Mount Kenya University, General Kago Rd, Thika, Kenya
| | - Lucy Ochola
- Department of Tropical and Infectious Diseases, Institute of Primate Research, Nairobi, Kenya
| | - Steven Ger Nyanjom
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Clement Shiluli
- Centre for Research in Infectious Diseases, College of Graduate Studies and Research, Mount Kenya University, General Kago Rd, Thika, Kenya
| | - Gerald Misinzo
- SACIDS Africa Center of Excellence for Infectious Diseases, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Jesse Gitaka
- Centre for Research in Infectious Diseases, College of Graduate Studies and Research, Mount Kenya University, General Kago Rd, Thika, Kenya
| |
Collapse
|
3
|
Bottieau E, Mbow M, Brosius I, Roucher C, Gueye CT, Mbodj OT, Faye BT, De Hondt A, Smekens B, Arango D, Burm C, Tsoumanis A, Paredis L, Van Herrewege Y, Potters I, Richter J, Rosanas-Urgell A, Cissé B, Mboup S, Polman K. Antimalarial artesunate-mefloquine versus praziquantel in African children with schistosomiasis: an open-label, randomized controlled trial. Nat Med 2024; 30:130-137. [PMID: 38177851 PMCID: PMC10803269 DOI: 10.1038/s41591-023-02719-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 11/14/2023] [Indexed: 01/06/2024]
Abstract
Schistosomiasis treatment entirely relies on a single drug, praziquantel, prompting research into alternative therapeutics. Here we evaluated the efficacy and safety of the antimalarial combination artesunate-mefloquine for the treatment of schistosomiasis in a proof-of-concept, pragmatic, open-label, randomized controlled trial in primary schools of six villages endemic for schistosomiasis in northern Senegal. Children (6-14 years) were eligible if Schistosoma eggs were detected by microscopy in urine and/or stool. In total, 726 children were randomized 1:1 to praziquantel (standard care: 40 mg kg-1 single dose; n = 364) or to artesunate-mefloquine (antimalarial dosage: artesunate 4 mg kg-1 and mefloquine 8 mg kg-1 daily for three consecutive days; n = 362). Eight children not meeting the inclusion criteria were excluded from efficacy analysis. Median age of the remaining 718 participants was 9 years; 399 (55.6%) were male, and 319 (44.4%) female; 99.3% were infected with Schistosoma haematobium and 15.2% with S. mansoni. Primary outcomes were cure rate, assessed by microscopy, and frequency of drug-related adverse effects of artesunate-mefloquine versus praziquantel at 4 weeks after treatment. Cure rate was 59.6% (208/349) in the artesunate-mefloquine arm versus 62.1% (211/340) in the praziquantel arm. The difference of -2.5% (95% confidence interval (CI) -9.8 to 4.8) met the predefined criteria of noninferiority (margin set at 10%). All drug-related adverse events were mild or moderate, and reported in 28/361 children receiving artesunate-mefloquine (7.8%; 95% CI 5.4 to 11.0) versus 8/363 (2.2%; 95% CI 1.1 to 4.3) receiving praziquantel (P < 0.001). Artesunate-mefloquine at antimalarial dosage was moderately safe and noninferior to standard-care praziquantel for the treatment of schistosomiasis, predominantly due to S. haematobium. Multicentric trials in different populations and epidemiological settings are needed to confirm these findings. ClinicalTrials.gov identifier: NCT03893097 .
Collapse
Affiliation(s)
- Emmanuel Bottieau
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium.
| | - Moustapha Mbow
- Institute for Health Research, Epidemiological Surveillance and Training (IRESSEF), Dakar, Senegal
- Department of Immunology, Cheikh Anta Diop University, Dakar, Senegal
| | - Isabel Brosius
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Clémentine Roucher
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Cheikh Tidiane Gueye
- Institute for Health Research, Epidemiological Surveillance and Training (IRESSEF), Dakar, Senegal
| | - Ousmane Thiam Mbodj
- Institute for Health Research, Epidemiological Surveillance and Training (IRESSEF), Dakar, Senegal
| | - Babacar Thiendella Faye
- Institute for Health Research, Epidemiological Surveillance and Training (IRESSEF), Dakar, Senegal
| | - Annelies De Hondt
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Bart Smekens
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Diana Arango
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Christophe Burm
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Achilleas Tsoumanis
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Linda Paredis
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Yven Van Herrewege
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Idzi Potters
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Joachim Richter
- Institute of Tropical Medicine and International Health, Charité Universitätsmedizin, Berlin, Germany
| | - Anna Rosanas-Urgell
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Badara Cissé
- Institute for Health Research, Epidemiological Surveillance and Training (IRESSEF), Dakar, Senegal
| | - Souleymane Mboup
- Institute for Health Research, Epidemiological Surveillance and Training (IRESSEF), Dakar, Senegal
| | - Katja Polman
- Department of Public Health, Institute of Tropical Medicine, Antwerp, Belgium
- Department of Health Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
4
|
Ulaganeethi R, Shettikothanuru Ramachandrappa VK, Rajkumari N, Dorairajan G, Saya GK. Performance of microscopy compared to conventional PCR in identification of soil-transmitted helminth infections among antenatal women in a low-prevalence setting. Indian J Med Microbiol 2023; 46:100427. [PMID: 37945120 DOI: 10.1016/j.ijmmb.2023.100427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/30/2023] [Accepted: 07/03/2023] [Indexed: 11/12/2023]
Abstract
PURPOSE Traditional microscopy-based methods may provide inaccurate estimates of Soil transmitted helminth (STH) infections in mild intensity of infection. Therefore, we aimed to determine the prevalence of STH infections using molecular diagnostic methods and compare the diagnostic performance of microscopy with polymerase chain reaction (PCR) in stool samples collected from pregnant women in primary care settings in Puducherry, India. METHODOLOGY A singleplex PCR assay was developed to detect three species of STHs, namely Ascaris lumbricoides, Necator americanus, and Ancylostoma duodenale, by targeting the internal transcribed spacer regions (ITS1 and ITS2) of 5.8S rRNA. The PCR generated 420, 662, and 515 base pairs of DNA for the respective organisms. In addition to singleplex PCR, wet and concentration microscopy techniques were used. The results were expressed as percentages with 95% confidence intervals, and the diagnostic performance of microscopy was compared with PCR in terms of sensitivity, specificity, and positive, negative predictive values and kappa statistics. RESULTS Among the 650 pregnant women included, 48.8% were aged 25 years or less, 59% were primigravida, and half were from rural areas. The overall prevalence of any STH infection was higher in PCR compared to microscopy (8.9% vs. 7.2%). The prevalence of Ascaris lumbricoides was higher by microscopy (5.4% vs 2.6%), while the prevalence of Necator americanus was higher by PCR (6.3%) than by microscopy (1.8%). No species of Ancylostoma duodenale was detected. The sensitivity, specificity, positive predictive value (PPV), and negative predictive value (NPV) of microscopy for detecting any STH infection was 22.4%, 94.3%, 27.7%, and 92.5%, respectively. The agreement between microscopy and PCR for the identification is as follows: for any STH infection, k = 0.12, Ascaris k = 0.16, and Necator k = 0.20, respectively. CONCLUSION The prevalence of any STH infection identified by PCR was higher than microscopy, and the agreement between the two methods was poor.
Collapse
Affiliation(s)
- Revathi Ulaganeethi
- Department of Preventive and Social Medicine, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| | | | - Nonika Rajkumari
- Department of Microbiology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), India.
| | - Gowri Dorairajan
- Department of Obstetrics and Gynaecology, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| | - Ganesh Kumar Saya
- Department of Preventive and Social Medicine, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, India
| |
Collapse
|
5
|
Koopman JPR, Houlder EL, Janse JJ, Casacuberta-Partal M, Lamers OAC, Sijtsma JC, de Dood C, Hilt ST, Ozir-Fazalalikhan A, Kuiper VP, Roozen GVT, de Bes-Roeleveld LM, Kruize YCM, Wammes LJ, Smits HH, van Lieshout L, van Dam GJ, van Amerongen-Westra IM, Meij P, Corstjens PLAM, Jochems SP, van Diepen A, Yazdanbakhsh M, Hokke CH, Roestenberg M. Safety and infectivity of female cercariae in Schistosoma-naïve, healthy participants: a controlled human Schistosoma mansoni infection study. EBioMedicine 2023; 97:104832. [PMID: 37837930 PMCID: PMC10585222 DOI: 10.1016/j.ebiom.2023.104832] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/16/2023] Open
Abstract
BACKGROUND A controlled human infection model for schistosomiasis (CHI-S) can speed up vaccine development and provides insight into early immune responses following schistosome exposure. Recently, we established CHI-S model using single-sex male-only Schistosoma mansoni (Sm) cercariae in Schistosoma-naïve individuals. Given important differences in antigenic profile and human immune responses to schistosomes of different sex, we pioneered a single-sex female-only CHI-S model for future use in vaccine development. METHODS We exposed 13 healthy, Schistosoma-naïve adult participants to 10 (n = 3) or 20 (n = 10) female cercariae and followed for 20 weeks, receiving treatment with praziquantel (PZQ) 60 mg/kg at week 8 and 12 after exposure. FINDINGS The majority (11/13) participants reported rash and/or itch at the site of exposure, 5/13 had transient symptoms of acute schistosomiasis. Exposure to 20 cercariae led to detectable infection, defined as serum circulating anodic antigen levels >1.0 pg/mL, in 6/10 participants. Despite two rounds of PZQ treatment, 4/13 participants showed signs of persistent infection. Additional one- or three-day PZQ treatment (1 × 60 mg/kg and 3 × 60 mg/kg) or artemether did not result in cure, but over time three participants self-cured. Antibody, cellular, and cytokine responses peaked at week 4 post infection, with a mixed Th1, Th2, and regulatory profile. Cellular responses were (most) discriminative for symptoms. INTERPRETATION Female-only infections exhibit similar clinical and immunological profiles as male-only infections but are more resistant to PZQ treatment. This limits future use of this model and may have important implications for disease control programs. FUNDING European Union's Horizon 2020 (grant no. 81564).
Collapse
Affiliation(s)
- Jan Pieter R Koopman
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Emma L Houlder
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Jacqueline J Janse
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Miriam Casacuberta-Partal
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Olivia A C Lamers
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Jeroen C Sijtsma
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Claudia de Dood
- Department of Cell and Chemical Biology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Stan T Hilt
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands; Department of Cell and Chemical Biology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Arifa Ozir-Fazalalikhan
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Vincent P Kuiper
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Geert V T Roozen
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Laura M de Bes-Roeleveld
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Yvonne C M Kruize
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Linda J Wammes
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Hermelijn H Smits
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Lisette van Lieshout
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Govert J van Dam
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Inge M van Amerongen-Westra
- Center for Cell and Gene Therapy, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Pauline Meij
- Center for Cell and Gene Therapy, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Paul L A M Corstjens
- Department of Cell and Chemical Biology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Simon P Jochems
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Angela van Diepen
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Maria Yazdanbakhsh
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Cornelis H Hokke
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands
| | - Meta Roestenberg
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands.
| |
Collapse
|
6
|
A review on innovative optical devices for the diagnosis of human soil-transmitted helminthiasis and schistosomiasis: from research and development to commercialization. Parasitology 2023; 150:137-149. [PMID: 36683384 PMCID: PMC10090604 DOI: 10.1017/s0031182022001664] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Diagnosis of soil-transmitted helminth (STH) and schistosome infections relies largely on conventional microscopy which has limited sensitivity, requires highly trained personnel and is error-prone. Rapid advances in miniaturization of optical systems, sensors and processors have enhanced research and development of digital and automated microscopes suitable for the detection of these diseases in resource-limited settings. While some studies have reported proof-of-principle results, others have evaluated the performance of working prototypes in field settings. The extensive commercialization of these innovative devices has, however, not yet been achieved. This review provides an overview of recent publications (2010–2022) on innovative field applicable optical devices which can be used for the diagnosis of STH and schistosome infections. Using an adapted technology readiness level (TRL) scale taking into account the WHO target product profile (TPP) for these diseases, the developmental stages of the devices were ranked to determine the readiness for practical applications in field settings. From the reviewed 18 articles, 19 innovative optical devices were identified and ranked. Almost all of the devices (85%) were ranked with a TRL score below 8 indicating that, most of the devices are not ready for commercialization and field use. The potential limitations of these innovative devices were discussed. We believe that the outcome of this review can guide the end-to-end development of automated digital microscopes aligned with the WHO TPP for the diagnosis of STH and schistosome infections in resource-limited settings.
Collapse
|
7
|
Ebersbach JC, Sato MO, de Araújo MP, Sato M, Becker SL, Sy I. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry for differential identification of adult Schistosoma worms. Parasit Vectors 2023; 16:20. [PMID: 36658630 PMCID: PMC9854196 DOI: 10.1186/s13071-022-05604-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/30/2022] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Schistosomiasis is a major neglected tropical disease that affects up to 250 million individuals worldwide. The diagnosis of human schistosomiasis is mainly based on the microscopic detection of the parasite's eggs in the feces (i.e., for Schistosoma mansoni or Schistosoma japonicum) or urine (i.e., for Schistosoma haematobium) samples. However, these techniques have limited sensitivity, and microscopic expertise is waning outside endemic areas. Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS) has become the gold standard diagnostic method for the identification of bacteria and fungi in many microbiological laboratories. Preliminary studies have recently shown promising results for parasite identification using this method. The aims of this study were to develop and validate a species-specific database for adult Schistosoma identification, and to evaluate the effects of different storage solutions (ethanol and RNAlater) on spectra profiles. METHODS Adult worms (males and females) of S. mansoni and S. japonicum were obtained from experimentally infected mice. Species identification was carried out morphologically and by cytochrome oxidase 1 gene sequencing. Reference protein spectra for the creation of an in-house MALDI-TOF MS database were generated, and the database evaluated using new samples. We employed unsupervised (principal component analysis) and supervised (support vector machine, k-nearest neighbor, Random Forest, and partial least squares discriminant analysis) machine learning algorithms for the identification and differentiation of the Schistosoma species. RESULTS All the spectra were correctly identified by internal validation. For external validation, 58 new Schistosoma samples were analyzed, of which 100% (58/58) were correctly identified to genus level (log score values ≥ 1.7) and 81% (47/58) were reliably identified to species level (log score values ≥ 2). The spectra profiles showed some differences depending on the storage solution used. All the machine learning algorithms classified the samples correctly. CONCLUSIONS MALDI-TOF MS can reliably distinguish adult S. mansoni from S. japonicum.
Collapse
Affiliation(s)
- Jurena Christiane Ebersbach
- grid.11749.3a0000 0001 2167 7588Institute of Medical Microbiology and Hygiene, Saarland University, Homburg, Germany
| | - Marcello Otake Sato
- grid.255137.70000 0001 0702 8004Laboratory of Tropical Medicine and Parasitology, Dokkyo Medical University, Mibu, Tochigi Japan
| | - Matheus Pereira de Araújo
- grid.255137.70000 0001 0702 8004Laboratory of Tropical Medicine and Parasitology, Dokkyo Medical University, Mibu, Tochigi Japan
| | - Megumi Sato
- grid.260975.f0000 0001 0671 5144Graduate School of Health Sciences, Niigata University, Niigata, Japan
| | - Sören L. Becker
- grid.11749.3a0000 0001 2167 7588Institute of Medical Microbiology and Hygiene, Saarland University, Homburg, Germany ,grid.416786.a0000 0004 0587 0574Swiss Tropical and Public Health Institute, Allschwil, Switzerland ,grid.6612.30000 0004 1937 0642University of Basel, Basel, Switzerland
| | - Issa Sy
- grid.11749.3a0000 0001 2167 7588Institute of Medical Microbiology and Hygiene, Saarland University, Homburg, Germany
| |
Collapse
|
8
|
Limited efficacy of repeated praziquantel treatment in Schistosoma mansoni infections as revealed by highly accurate diagnostics, PCR and UCP-LF CAA (RePST trial). PLoS Negl Trop Dis 2022; 16:e0011008. [PMID: 36548444 PMCID: PMC9822103 DOI: 10.1371/journal.pntd.0011008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 01/06/2023] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Most studies assessing praziquantel (PZQ) efficacy have used relatively insensitive diagnostic methods, thereby overestimating cure rate (CR) and intensity reduction rate (IRR). To determine accurately PZQ efficacy, we employed more sensitive DNA and circulating antigen detection methods. METHODOLOGY A sub-analysis was performed based on a previously published trial conducted in children from Côte d'Ivoire with a confirmed Schistosoma mansoni infection, who were randomly assigned to a standard (single dose of PZQ) or intense treatment group (4 repeated doses of PZQ at 2-week intervals). CR and IRR were estimated based on PCR detecting DNA in a single stool sample and the up-converting particle lateral flow (UCP-LF) test detecting circulating anodic antigen (CAA) in a single urine sample, and compared with traditional Kato-Katz (KK) and point-of-care circulating cathodic antigen (POC-CCA). PRINCIPAL FINDINGS Individuals positive by all diagnostic methods (i.e., KK, POC-CCA, PCR, and UCP-LF CAA) at baseline were included in the statistical analysis (n = 125). PCR showed a CR of 45% (95% confidence interval (CI) 32-59%) in the standard and 78% (95% CI 66-87%) in the intense treatment group, which is lower compared to the KK results (64%, 95% CI 52-75%) and 88%, 95% CI 78-93%). UCP-LF CAA showed a significantly lower CR in both groups, 16% (95% CI 11-24%) and 18% (95% CI 12-26%), even lower than observed by POC-CCA (31%, 95% CI 17-35% and 36%, 95% CI 26-47%). A substantial reduction in DNA and CAA-levels was observed after the first treatment, with no further decrease after additional treatment and no significant difference in IRR between treatment groups. CONCLUSION/SIGNIFICANCE The efficacy of (repeated) PZQ treatment was overestimated when using egg-based diagnostics (i.e. KK and PCR). Quantitative worm-based diagnostics (i.e. POC-CCA and UCP-LF CAA) revealed that active Schistosoma infections are still present despite multiple treatments. These results stress the need for using accurate diagnostic tools to monitor different PZQ treatment strategies, in particular when moving toward elimination of schistosomiasis. CLINICAL TRIAL REGISTRATION www.clinicaltrials.gov, NCT02868385.
Collapse
|
9
|
Mesquita SG, Lugli EB, Matera G, Fonseca CT, Caldeira RL, Webster B. Development of real-time and lateral flow recombinase polymerase amplification assays for rapid detection of Schistosoma mansoni. Front Microbiol 2022; 13:1043596. [PMID: 36466644 PMCID: PMC9716991 DOI: 10.3389/fmicb.2022.1043596] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/17/2022] [Indexed: 11/19/2022] Open
Abstract
Background Accurate diagnosis followed by timely treatment is an effective strategy for the prevention of complications together with reducing schistosomiasis transmission. Recombinase Polymerase Amplification (RPA) is a simple, rapid, sensitive, and specific isothermal method with low resource needs. This research aimed at the development and optimisation of a real-time (RT) and a lateral flow (LF) RPA assay for the detection of Schistosoma mansoni. Methodology Recombinase Polymerase Amplification reactions were performed at full- (as recommended) and half-volumes (to reduce costs), with RT or LF detection systems targeting the S. mansoni mitochondrial minisatellite region. The specificity was assessed using gDNA from other Schistosoma species, helminths co-endemic with S. mansoni, human stool, and urine, and Biomphalaria snail hosts. The analytical sensitivity was evaluated using serial dilutions of gDNA, synthetic copies of the target, and single eggs. The ability of both assays to detect the S. mansoni DNA in human urine and stool samples was also tested. The long-term stability of the RT-RPA reagents was evaluated by storing the reaction components in different temperature conditions for up to 3 weeks. Results The RT- and the LF-RPA (SmMIT- and SmMIT-LF-RPA, respectively) presented similar results when used full- and half-volumes, thus the latter was followed in all experiments. The SmMIT-RPA was 100% specific to S. mansoni, able to detect a single egg, with a limit of detection (LOD) of down to 1 fg of gDNA and one synthetic copy of the target. The assay was able to detect S. mansoni DNA from stool containing 1 egg/g and in spiked urine at a concentration of 10 fg/μl. SmMIT-RPA reagents were stable for up to 3 weeks when kept at 19°C, and 2 weeks when stored at 27°C. The SmMIT-LF-RPA cross-reacted with Clinostomidae, presented the LOD of 10 fg and one synthetic copy of the target, being able to detect a single egg and 1 egg/g in a stool sample. The LOD in spiked urine samples was 10 pg/μl. Conclusion The half-volume SmMIT-RPA is a promising method to be used in the field. It is specific, sensitive, robust, and tolerant to inhibitors, with a long-term stability of the reaction components and the real-time visualisation of results.
Collapse
Affiliation(s)
- Silvia Gonçalves Mesquita
- Grupo de Pesquisa em Helmintologia e Malacologia Médica, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil,Wolfson Wellcome Laboratories, Department of Science, Natural History Museum, London, United Kingdom
| | - Elena Birgitta Lugli
- Wolfson Wellcome Laboratories, Department of Science, Natural History Museum, London, United Kingdom
| | - Giovanni Matera
- Department of Health Sciences, Unit of Microbiology, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Cristina Toscano Fonseca
- Grupo de Pesquisa em Biologia e Imunologia Parasitária, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Roberta Lima Caldeira
- Grupo de Pesquisa em Helmintologia e Malacologia Médica, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil,*Correspondence: Bonnie Webster, ; Roberta Lima Caldeira,
| | - Bonnie Webster
- Wolfson Wellcome Laboratories, Department of Science, Natural History Museum, London, United Kingdom,*Correspondence: Bonnie Webster, ; Roberta Lima Caldeira,
| |
Collapse
|
10
|
Hoekstra PT, Madinga J, Lutumba P, van Grootveld R, Brienen EAT, Corstjens PLAM, van Dam GJ, Polman K, van Lieshout L. Diagnosis of Schistosomiasis without a Microscope: Evaluating Circulating Antigen (CCA, CAA) and DNA Detection Methods on Banked Samples of a Community-Based Survey from DR Congo. Trop Med Infect Dis 2022; 7:315. [PMID: 36288056 PMCID: PMC9608707 DOI: 10.3390/tropicalmed7100315] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022] Open
Abstract
Detection of Schistosoma eggs in stool or urine is known for its low sensitivity in diagnosing light infections. Alternative diagnostics with better sensitivity while remaining highly specific, such as real-time PCR and circulating antigen detection, are progressively used as complementary diagnostic procedures but have not yet replaced microscopy. This study evaluates these alternative methods for the detection of Schistosoma infections in the absence of microscopy. Schistosomiasis presence was determined retrospectively in 314 banked stool and urine samples, available from a previous survey on the prevalence of taeniasis in a community in the Democratic Republic of the Congo, using real-time PCR, the point-of-care circulating cathodic antigen (POC-CCA) test, as well as the up-converting particle lateral flow circulating anodic antigen (UCP-LF CAA) test. Schistosoma DNA was present in urine (3%) and stool (28%) samples, while CCA (28%) and CAA (69%) were detected in urine. Further analysis of the generated data indicated stool-based PCR and the POC-CCA test to be suitable diagnostics for screening of S. mansoni infections, even in the absence of microscopy. A substantial proportion (60%) of the 215 CAA-positive cases showed low antigen concentrations, suggesting that even PCR and POC-CCA underestimated the "true" number of schistosome positives.
Collapse
Affiliation(s)
- Pytsje T. Hoekstra
- Department of Parasitology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Joule Madinga
- Institute of Health and Society, Université Catholique de Louvain, 1348 Brussels, Belgium
- Department of Biomedical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium
| | - Pascal Lutumba
- Institut National de Recherche Biomédicale, Kinshasa 1197, Democratic Republic of the Congo
- Department of Tropical Medicine, University of Kinshasa, Kinshasa 7948, Democratic Republic of the Congo
| | - Rebecca van Grootveld
- Department of Clinical Microbiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Eric A. T. Brienen
- Department of Parasitology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Paul L. A. M. Corstjens
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Govert J. van Dam
- Department of Parasitology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Katja Polman
- Department of Biomedical Sciences, Institute of Tropical Medicine, 2000 Antwerp, Belgium
- Department of Health Sciences, VU University Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Lisette van Lieshout
- Department of Parasitology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
11
|
Performance of loop-mediated isothermal amplification (LAMP) for detection of Schistosoma mansoni infection compared with Kato–Katz and real-time PCR. J Helminthol 2022; 96:e28. [DOI: 10.1017/s0022149x22000153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Abstract
The performance of loop-mediated isothermal amplification (LAMP) for detection of Schistosoma mansoni DNA from stool and urine samples in comparison with Kato–Katz and real-time polymerase chain reaction (PCR) was studied. After obtaining informed consent, 50 children participated in the present study and agreed to submit stool and urine samples. Stool samples were examined by Kato–Katz. Both real-time PCR and LAMP techniques were applied on stool and urine samples. The overall prevalence of S. mansoni was 46% in stool and urine samples as detected by the employed techniques, and 90% of cases had light infection intensity. The highest percentage of infection was diagnosed by real-time PCR (44%), followed by Kato–Katz (42%) and LAMP in the stool (36%), while the lowest percentages of infection were diagnosed by real-time PCR and LAMP in urine samples (24% and 14%, respectively). Kato–Katz, real-time PCR and LAMP showed 100% specificity where the sensitivity was 91.3%, 95.7% and 78.3%, respectively, in stool samples. Real-time PCR and LAMP showed lower sensitivity in urine samples. The LAMP assay is a promising technique for S. mansoni diagnosis in endemic countries of moderate and high-intensity infection. Yet, it needs further optimization, particularly in urine samples.
Collapse
|
12
|
Chieng B, Okoyo C, Simiyu E, Gichuki P, Mwatele C, Kepha S, Njenga S, Mburu D. Comparison of quantitative polymerase chain reaction, Kato-Katz and circulating cathodic antigen rapid test for the diagnosis of Schistosoma mansoni infection: A cross-sectional study in Kirinyaga County, Kenya. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2022; 1:100029. [PMID: 35284880 PMCID: PMC8906081 DOI: 10.1016/j.crpvbd.2021.100029] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/11/2021] [Accepted: 05/14/2021] [Indexed: 01/11/2023]
Abstract
The current standard diagnostic tests for Schistosoma mansoni are the Kato-Katz and circulating cathodic antigen (CCA) techniques. However, these techniques have been documented to have several limitations that have a direct impact on schistosomiasis control programmes. Therefore, there is a need for more sensitive and specific tests for diagnosing schistosomiasis. This study compared the performance of quantitative polymerase chain reaction (qPCR), Kato-Katz, and point-of-care circulating cathodic antigen (POC-CCA) techniques in the diagnosis of S. mansoni infection in the Mwea irrigation scheme, Kirinyaga County in Central Kenya. We carried out a cross-sectional study on 357 individuals residing in four villages in the Mwea irrigation scheme. The participants provided urine and stool samples which were screened for S. mansoni infections using the three techniques. The prevalence of S. mansoni by each technique was calculated and 95% confidence intervals estimated using binomial regression model. Sensitivity and specificity were determined using 2 × 2 contingency tables and compared using the McNemar’s chi-square test. Positive and negative predictive values were also determined using the weighted generalized score chi-square test for paired data. The study showed that the prevalence of S. mansoni was 32.8%, 62.5% and 72.8% using Kato-Katz, POC-CCA and qPCR techniques, respectively. Further, when using Kato-Katz as a gold standard, POC-CCA sensitivity was 78.6% and specificity was 45.4%, while qPCR sensitivity was 97.4% and specificity was 39.2%. When using qPCR as the gold standard, Kato-Katz sensitivity was 43.8% and specificity was 96.9%, while POC-CCA sensitivity was 78.1% and specificity was 79.4%. Finally, when using the averaged results from the three techniques as the gold standard, the sensitivity was 41.6%, 79.4% and 92.5% for Kato-Katz, POC-CCA and qPCR, respectively, with a specificity of 100% for all techniques. Kato-Katz technique showed low sensitivity compared to the POC-CCA and qPCR despite it being the most commonly preferred method of choice to diagnose S. mansoni infections. qPCR showed superior sensitivity followed by POC-CCA, hence it can be used as an alternative or to confirm the results obtained by the Kato-Katz technique. Comparison of the performance of Kato-Katz, POC-CCA and qPCR for diagnosis of S. mansoni in Kirinyaga County, Kenya. A total of 357 urine and stool samples were tested for S. mansoni infection. qPCR estimated the highest prevalence followed by POC-CCA and Kato-Katz. qPCR showed a generally high sensitivity and specificity.
Collapse
Affiliation(s)
- Benard Chieng
- Eastern & Southern Africa Centre of International Parasite Control (ESACIPAC), Kenya Medical Research Institute (KEMRI), PO BOX 54840-00200, Nairobi, Kenya.,Department of Microbiology, Biotechnology and Biochemistry, Kenyatta University, Nairobi, Kenya
| | - Collins Okoyo
- Eastern & Southern Africa Centre of International Parasite Control (ESACIPAC), Kenya Medical Research Institute (KEMRI), PO BOX 54840-00200, Nairobi, Kenya
| | - Elses Simiyu
- Eastern & Southern Africa Centre of International Parasite Control (ESACIPAC), Kenya Medical Research Institute (KEMRI), PO BOX 54840-00200, Nairobi, Kenya
| | - Paul Gichuki
- Eastern & Southern Africa Centre of International Parasite Control (ESACIPAC), Kenya Medical Research Institute (KEMRI), PO BOX 54840-00200, Nairobi, Kenya
| | - Cassian Mwatele
- Eastern & Southern Africa Centre of International Parasite Control (ESACIPAC), Kenya Medical Research Institute (KEMRI), PO BOX 54840-00200, Nairobi, Kenya
| | - Stella Kepha
- Eastern & Southern Africa Centre of International Parasite Control (ESACIPAC), Kenya Medical Research Institute (KEMRI), PO BOX 54840-00200, Nairobi, Kenya
| | - Sammy Njenga
- Eastern & Southern Africa Centre of International Parasite Control (ESACIPAC), Kenya Medical Research Institute (KEMRI), PO BOX 54840-00200, Nairobi, Kenya
| | - David Mburu
- Department of Microbiology, Biotechnology and Biochemistry, Kenyatta University, Nairobi, Kenya
| |
Collapse
|
13
|
Rogers MJ, McManus DP, Muhi S, Gordon CA. Membrane Technology for Rapid Point-of-Care Diagnostics for Parasitic Neglected Tropical Diseases. Clin Microbiol Rev 2021; 34:e0032920. [PMID: 34378956 PMCID: PMC8404699 DOI: 10.1128/cmr.00329-20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Parasitic neglected tropical diseases (NTDs) affect over one billion people worldwide, with individuals from communities in low-socioeconomic areas being most at risk and suffering the most. Disease management programs are hindered by the lack of infrastructure and resources for clinical sample collection, storage, and transport and a dearth of sensitive diagnostic methods that are inexpensive as well as accurate. Many diagnostic tests and tools have been developed for the parasitic NTDs, but the collection and storage of clinical samples for molecular and immunological diagnosis can be expensive due to storage, transport, and reagent costs, making these procedures untenable in most areas of endemicity. The application of membrane technology, which involves the use of specific membranes for either sample collection and storage or diagnostic procedures, can streamline this process, allowing for long-term sample storage at room temperature. Membrane technology can be used in serology-based diagnostic assays and for nucleic acid purification prior to molecular analysis. This facilitates the development of relatively simple and rapid procedures, although some of these methods, mainly due to costs, lack accessibility in low-socioeconomic regions of endemicity. New immunological procedures and nucleic acid storage, purification, and diagnostics protocols that are simple, rapid, accurate, and cost-effective must be developed as countries progress control efforts toward the elimination of the parasitic NTDs.
Collapse
Affiliation(s)
- Madeleine J. Rogers
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Donald P. McManus
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Stephen Muhi
- Victorian Infectious Diseases Service, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Catherine A. Gordon
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| |
Collapse
|
14
|
Ndolo SM, Zachariah M, Molefi L, Phaladze N, Sichilongo KF. Mass spectrometry based metabolomics for small molecule metabolites mining and confirmation as potential biomarkers for schistosomiasis - case of the Okavango Delta communities in Botswana. Expert Rev Proteomics 2021; 19:61-71. [PMID: 34846232 DOI: 10.1080/14789450.2021.2012454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Metabolomics for identifying schistosomiasis biomarkers in noninvasive samples at various infection stages is being actively explored. The literature on the traditional detection of schistosomiasis in human specimens is well documented. However, state-of-the-art technologies based on mass spectrometry have simplified the use of biomarkers for diagnostics. This review examines methods currently in use for the metabolomics of small molecules using separation science and mass spectrometry. AREA COVERED This article highlights the evolution of traditional diagnostic methods for schistosomiasis based on inter alia microscopy, immunology, and polymerase chain reaction. An exhaustive literature search of metabolite mining, focusing on separation science and mass spectrometry, is presented. A comparative analysis of mass spectrometry methods was undertaken, including a projection for the future. EXPERT COMMENTARY Mass spectrometry metabolomics for schistosomiasis will lead to biomarker discovery for noninvasive human samples. These biomarkers, together with those from other neglected tropical diseases, such as malaria and sleeping sickness, could be incorporated as arrays on a single biosensor chip and inserted into smartphones, in order to improve surveillance, monitoring, and management.
Collapse
Affiliation(s)
- Sedireng M Ndolo
- College of Open Schooling, Botswana Open University, Gaborone Regional Campus, Gaborone, Botswana
| | - Matshediso Zachariah
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana
| | - Lebotse Molefi
- School of Allied Health Professions, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana
| | - Nthabiseng Phaladze
- School of Nursing, Faculty of Health Sciences, University of Botswana, Gaborone, Botswana
| | - Kwenga F Sichilongo
- Chemistry Department, Faculty of Science, University of Botswana, Gaborone, Botswana
| |
Collapse
|
15
|
Clinical Spectrum of Schistosomiasis: An Update. J Clin Med 2021; 10:jcm10235521. [PMID: 34884223 PMCID: PMC8672275 DOI: 10.3390/jcm10235521] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/17/2021] [Accepted: 11/25/2021] [Indexed: 11/18/2022] Open
Abstract
Schistosomiasis is a helminthic infection and one of the neglected tropical diseases (NTDs). It is caused by blood flukes of the genus Schistosoma. It is an important public health problem, particularly in poverty-stricken areas, especially those within the tropics and subtropics. It is estimated that at least 236 million people worldwide are infected, 90% of them in sub-Saharan Africa, and that this disease causes approximately 300,000 deaths annually. The clinical manifestations are varied and affect practically all organs. There are substantial differences in the clinical presentation, depending on the phase and clinical form of schistosomiasis in which it occurs. Schistosomiasis can remain undiagnosed for a long period of time, with secondary clinical lesion. Here, we review the clinical profile of schistosomiasis. This information may aid in the development of more efficacious treatments and improved disease prognosis.
Collapse
|
16
|
Excretion patterns of Schistosoma mansoni antigens CCA and CAA by adult male and female worms, using a mouse model and ex vivo parasite cultures. Parasitology 2021; 149:306-313. [PMID: 34736550 PMCID: PMC10097511 DOI: 10.1017/s0031182021001839] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Assays which enable the detection of schistosome gut-associated circulating anodic (CAA) and cathodic (CCA) antigen in serum or urine are increasingly used as a diagnostic tool for schistosome infection. However, little is known about the production and clearance of these circulating antigens in relation to the sex and reproductive maturity of the parasite. Here we describe CAA and CCA excretion patterns by exploring a mouse model after exposure to 36 male-only, female-only and mixed (male/female) Schistosoma mansoni cercariae. We found that serum and urine CAA levels, analysed at 3 weeks intervals, peaked at 6 weeks post-infection. Worms recovered after perfusion at 14 weeks were cultured ex vivo. Male parasites excreted more circulating antigens than females, in the mouse model as well as ex vivo. In mixed infections (supporting egg production), serum CAA levels correlated to the number of recovered worms, whereas faecal egg counts or Schistosoma DNA in stool did not. No viable eggs and no inflammation were seen in the livers from mice infected with female worms only. Ex vivo, CAA levels were higher than CCA levels. Our study confirms that CAA levels reflect worm burden and allows detection of low-level single-sex infections.
Collapse
|
17
|
Li HM, Qin ZQ, Bergquist R, Qian MB, Xia S, Lv S, Xiao N, Utzinger J, Zhou XN. Nucleic acid amplification techniques for the detection of Schistosoma mansoni infection in humans and the intermediate snail host: a structured review and meta-analysis of diagnostic accuracy. Int J Infect Dis 2021; 112:152-164. [PMID: 34474147 DOI: 10.1016/j.ijid.2021.08.061] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/18/2021] [Accepted: 08/25/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Schistosomiasis is a parasitic disease caused by hematodes of genus Schistosoma. This review evaluated the available nucleic acid amplification techniques for diagnosing S. mansoni infections in humans, intermediate host snails, and presumed rodent reservoirs. METHODS Sensitivity, specificity, diagnostic odds ratio (DOR), and 95% CI were calculated based on available literature. The potential of PCR, nPCR, PCR-ELISA, qPCR, and LAMP was compared for diagnosing S. mansoni infections. RESULTS A total of 546 published records were identified. Quality assessment by QUADAS-2 revealed an uncertain risk in most studies, and 21 references were included in the final. For human samples, the four nucleic acid amplification techniques showed an overall sensitivity of 89.79% (95% CI: 83.92%-93.67%), specificity of 87.70% (95% CI: 72.60%-95.05%), and DOR of 37.73 (95% CI: 21.79-65.33). LAMP showed the highest sensitivity, followed by PCR-ELISA, PCR, and qPCR, while this order was almost reversed for specificity; qPCR had the highest AUC. For rodent samples, qPCR showed modest sensitivity (68.75%, 95% CI: 43.32%-86.36%) and high specificity (92.45%, 95% CI: 19.94%-99.83%). For snail samples, PCR and nPCR assays showed high sensitivity of 90.06% (95% CI: 84.39%-93.82%) and specificity of 85.51% (95% CI: 54.39%-96.69%). CONCLUSION Nucleic acid amplification techniques had high diagnostic potential for identifying S. mansoni infections in humans.
Collapse
Affiliation(s)
- Hong-Mei Li
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai, People's Republic of China; NHC Key Laboratory of Parasite and Vector Biology, Shanghai, People's Republic of China; WHO Collaborating Centre for Tropical Diseases, Shanghai, People's Republic of China; National Center for International Research on Tropical Diseases, Shanghai, People's Republic of China
| | - Zhi-Qiang Qin
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai, People's Republic of China; NHC Key Laboratory of Parasite and Vector Biology, Shanghai, People's Republic of China; WHO Collaborating Centre for Tropical Diseases, Shanghai, People's Republic of China; National Center for International Research on Tropical Diseases, Shanghai, People's Republic of China
| | | | - Men-Bao Qian
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai, People's Republic of China; NHC Key Laboratory of Parasite and Vector Biology, Shanghai, People's Republic of China; WHO Collaborating Centre for Tropical Diseases, Shanghai, People's Republic of China; National Center for International Research on Tropical Diseases, Shanghai, People's Republic of China; School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Shang Xia
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai, People's Republic of China; NHC Key Laboratory of Parasite and Vector Biology, Shanghai, People's Republic of China; WHO Collaborating Centre for Tropical Diseases, Shanghai, People's Republic of China; National Center for International Research on Tropical Diseases, Shanghai, People's Republic of China; Ingerod, Brastad, Sweden (formerly with the UNICEF/UNDP/World Bank/WHO Special Programme for Research and Training in Tropical Diseases, World Health Organization, Geneva, Switzerland)
| | - Shan Lv
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai, People's Republic of China; NHC Key Laboratory of Parasite and Vector Biology, Shanghai, People's Republic of China; WHO Collaborating Centre for Tropical Diseases, Shanghai, People's Republic of China; National Center for International Research on Tropical Diseases, Shanghai, People's Republic of China; School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Ning Xiao
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai, People's Republic of China; NHC Key Laboratory of Parasite and Vector Biology, Shanghai, People's Republic of China; WHO Collaborating Centre for Tropical Diseases, Shanghai, People's Republic of China; National Center for International Research on Tropical Diseases, Shanghai, People's Republic of China; School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Jurg Utzinger
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Xiao-Nong Zhou
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), Shanghai, People's Republic of China; NHC Key Laboratory of Parasite and Vector Biology, Shanghai, People's Republic of China; WHO Collaborating Centre for Tropical Diseases, Shanghai, People's Republic of China; National Center for International Research on Tropical Diseases, Shanghai, People's Republic of China; School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.
| |
Collapse
|
18
|
Hoekstra PT, van Dam GJ, van Lieshout L. Context-Specific Procedures for the Diagnosis of Human Schistosomiasis – A Mini Review. FRONTIERS IN TROPICAL DISEASES 2021. [DOI: 10.3389/fitd.2021.722438] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Schistosomiasis is a parasitic disease caused by trematode blood flukes of the genus Schistosoma, affecting over 250 million people mainly in the tropics. Clinically, the disease can present itself with acute symptoms, a stage which is relatively more common in naive travellers originating from non-endemic regions. It can also develop into chronic disease, with the outcome depending on the Schistosoma species involved, the duration and intensity of infection and several host-related factors. A range of diagnostic tests is available to determine Schistosoma infection, including microscopy, antibody detection, antigen detection using the Point-Of-Care Circulating Cathodic Antigen (POC-CCA) test and the Up-Converting Particle Lateral Flow Circulating Anodic Antigen (UCP-LF CAA) test, as well as Nucleic Acid Amplification Tests (NAATs) such as real-time PCR. In this mini review, we discuss these different diagnostic procedures and explore their most appropriate use in context-specific settings. With regard to endemic settings, diagnostic approaches are described based on their suitability for individual diagnosis, monitoring control programs, determining elimination as a public health problem and eventual interruption of transmission. For non-endemic settings, we summarize the most suitable diagnostic approaches for imported cases, either acute or chronic. Additionally, diagnostic options for disease-specific clinical presentations such as genital schistosomiasis and neuro-schistosomiasis are included. Finally, the specific role of diagnostic tests within research settings is described, including a controlled human schistosomiasis infection model and several clinical studies. In conclusion, context-specific settings have different requirements for a diagnostic test, stressing the importance of a well-considered decision of the most suitable diagnostic procedure.
Collapse
|
19
|
Roucher C, Brosius I, Mbow M, Faye BT, De Hondt A, Smekens B, Arango D, Burm C, Tsoumanis A, Paredis L, van Herrewege Y, Potters I, Cisse B, Mboup S, Polman K, Bottieau E. Evaluation of Artesunate-mefloquine as a Novel Alternative Treatment for Schistosomiasis in African Children (SchistoSAM): protocol of a proof-of-concept, open-label, two-arm, individually-randomised controlled trial. BMJ Open 2021; 11:e047147. [PMID: 34168029 PMCID: PMC8231067 DOI: 10.1136/bmjopen-2020-047147] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
INTRODUCTION Alternative drugs and diagnostics are needed for the treatment and control of schistosomiasis. The exclusive use of praziquantel (PZQ) in mass drug administration programmes may result in the emergence of drug resistance. PZQ has little activity against Schistosoma larvae, thus reinfection remains a problem in high-risk communities. Furthermore, the insufficient sensitivity of conventional microscopy hinders therapeutic response assessment. Evaluation of artesunate-mefloquine (AM) as a Novel Alternative Treatment for Schistosomiasis in African Children (SchistoSAM) aims to evaluate the safety and efficacy of the antimalarial combination artesunate-mefloquine, re-purposed for the treatment of schistosomiasis, and to assess the performance of highly sensitive novel antigen-based and DNA-based assays as tools for monitoring treatment response. METHODS AND ANALYSIS The SchistoSAM study is an open-label, two-arm, individually randomised controlled non-inferiority trial, with a follow-up of 48 weeks. Primary school-aged children from the Richard Toll district in northern Senegal, an area endemic for Schistosoma mansoni and Schistosoma haematobium, are allocated to the AM intervention arm (3-day courses at 6-week intervals) or the PZQ control arm (single dose of 40 mg/kg). The trial's primary endpoints are the efficacy (cure rate (CR), assessed by microscopy) and safety (frequency and pattern of drug-related adverse events) of one AM course versus PZQ at 4 weeks after treatment. Secondary endpoints include (1) cumulative CR, egg reduction rate and safety after each additional course of AM, and at weeks 24 and 48, (2) prevalence and severity of schistosomiasis-related morbidity and (3) malaria prevalence, incidence and morbidity, both after 24 and 48 weeks. CRs and intensity reduction rates are also assessed by antigen-based and DNA-based diagnostic assays, for which performance for treatment monitoring is evaluated. ETHICS AND DISSEMINATION Ethics approval was obtained both in Belgium and Senegal. Oral assent from the children and signed informed consent from their legal representatives was obtained, prior to enrolment. The results will be disseminated in peer-reviewed journals and at international conferences. TRIAL REGISTRATION NUMBER NCT03893097; pre-results.
Collapse
Affiliation(s)
- Clémentine Roucher
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Isabel Brosius
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerpen, Belgium
| | - Moustapha Mbow
- Department of Immunology, Cheikh Anta Diop University, Dakar, Senegal
- Institute for Health Research, Epidemiological Surveillance and Training (IRESSEF), Dakar, Senegal
| | | | - Annelies De Hondt
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerpen, Belgium
| | - Bart Smekens
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerpen, Belgium
| | - Diana Arango
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerpen, Belgium
| | - Christophe Burm
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerpen, Belgium
| | - Achilleas Tsoumanis
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerpen, Belgium
| | - Linda Paredis
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Yven van Herrewege
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerpen, Belgium
| | - Idzi Potters
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerpen, Belgium
| | - Badara Cisse
- Institute for Health Research, Epidemiological Surveillance and Training (IRESSEF), Dakar, Senegal
| | - Souleymane Mboup
- Institute for Health Research, Epidemiological Surveillance and Training (IRESSEF), Dakar, Senegal
| | - Katja Polman
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
- Department of Health Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Emmanuel Bottieau
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerpen, Belgium
| |
Collapse
|
20
|
Siqueira LMV, Senra C, de Oliveira ÁA, Carneiro NFDF, Gomes LI, Rabello A, Coelho PMZ, Oliveira E. A Real-Time PCR Assay for the Diagnosis of Intestinal Schistosomiasis and Cure Assessment After the Treatment of Individuals With Low Parasite Burden. Front Immunol 2021; 11:620417. [PMID: 33815351 PMCID: PMC8010660 DOI: 10.3389/fimmu.2020.620417] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/24/2020] [Indexed: 01/02/2023] Open
Abstract
The laboratorial diagnosis of the intestinal schistosomiasis is always performed using Kato-Katz technique. However, this technique presents low sensitivity for diagnosis of individuals with low parasite burden, which constitutes the majority in low endemicity Brazilian locations for the disease. The objective of this study was developed and to validate a real-time PCR assay (qPCR) targeting 121 bp sequence to detect Schistosoma spp. DNA for the diagnosis of intestinal schistosomiasis and a sequence of the human β-actin gene as internal control. Firstly, the qPCR was standardized and next it was evaluated for diagnosis and cure assessment of intestinal schistosomiasis in the resident individuals in Tabuas and Estreito de Miralta, two locations in Brazil endemic for intestinal schistosomiasis. The qPCR assay results were compared with those of the Kato-Katz (KK) test, examining 2 or 24 slides, Saline Gradient (SG) and “reference test” (24 KK slides + SG). The cure assessment was measured by these diagnostic techniques at 30, 90, and 180 days post-treatment. In Tabuas, the positivity rates obtained by the qPCR was 30.4% (45/148) and by “reference test” was of 31.0% (46/148), with no statistical difference (p = 0.91). The presumed cure rates at 30, 90, and 180 days post-treatment were 100, 94.4, and 78.4% by the analysis of 24 KK slides, 100, 94.4, and 78.4% by the SG, and 100, 83.3, and 62.1% by the qPCR assay. In Estreito de Miralta, the positivity obtained by qPCR was 18.3% (26/142) and with “reference test” was 24.6% (35/142), with no statistical difference (p = 0.20). The presumed cure rates were 93.3, 96.9, and 96.5% by the KK, 93.3, 96.9, and 100% by the SG, and 93.3, 93.9, and 96.5% by the qPCR at 30, 90, and 180 days post-treatment, respectively. This study showed that the diagnostic techniques presented different performance in the populations from the two districts (Tabuas and Estreito de Miralta) and reinforces the need of combining techniques to improve diagnosis accuracy, increasing the detection of individuals with low parasite burden. This combination of techniques consists an important strategy for controlling the disease transmission.
Collapse
Affiliation(s)
- Liliane Maria Vidal Siqueira
- Diagnosis and Therapy of Infectious and Oncologic Diseases, Instituto René Rachou, Oswaldo Cruz Foundation, Belo Horizonte, Brazil
| | - Carolina Senra
- Clinical Research and Public Politics in Infectious and Parasitic Diseases, Instituto René Rachou, Oswaldo Cruz Foundation, Belo Horizonte, Brazil
| | - Áureo Almeida de Oliveira
- Diagnosis and Therapy of Infectious and Oncologic Diseases, Instituto René Rachou, Oswaldo Cruz Foundation, Belo Horizonte, Brazil
| | | | - Luciana Inácia Gomes
- Clinical Research and Public Politics in Infectious and Parasitic Diseases, Instituto René Rachou, Oswaldo Cruz Foundation, Belo Horizonte, Brazil
| | - Ana Rabello
- Clinical Research and Public Politics in Infectious and Parasitic Diseases, Instituto René Rachou, Oswaldo Cruz Foundation, Belo Horizonte, Brazil
| | - Paulo Marcos Zech Coelho
- Diagnosis and Therapy of Infectious and Oncologic Diseases, Instituto René Rachou, Oswaldo Cruz Foundation, Belo Horizonte, Brazil
| | - Edward Oliveira
- Clinical Research and Public Politics in Infectious and Parasitic Diseases, Instituto René Rachou, Oswaldo Cruz Foundation, Belo Horizonte, Brazil
| |
Collapse
|
21
|
Tamarozzi F, Ursini T, Hoekstra PT, Silva R, Costa C, Gobbi F, Monteiro GB, Motta L, van Dam GJ, Corstjens PL, van Lieshout L, Buonfrate D. Evaluation of microscopy, serology, circulating anodic antigen (CAA), and eosinophil counts for the follow-up of migrants with chronic schistosomiasis: a prospective cohort study. Parasit Vectors 2021; 14:149. [PMID: 33750443 PMCID: PMC7941883 DOI: 10.1186/s13071-021-04655-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 02/23/2021] [Indexed: 12/16/2022] Open
Abstract
Background An accurate test for the diagnosis and post-treatment follow-up of patients with schistosomiasis is needed. We assessed the performance of different laboratory parameters, including the up-converting reporter particle technology lateral flow assay to detect circulating anodic antigen (UCP-LF CAA), for the post-treatment follow-up of schistosomiasis in migrants attending a dedicated outpatient clinic in a non-endemic country. Methods Routine anti-Schistosoma serology results and eosinophil counts were obtained of patients with positive urine/stool microscopy and/or PCR (confirmed cases) or only positive serology (possible cases), and at least one follow-up visit at 6 (T6) or 12 (T12) months after praziquantel treatment. All sera samples were tested with the UCP-LF CAA assay. Results Forty-eight patients were included, 23 confirmed and 25 possible cases. The percentage seropositivity and median antibody titers did not change significantly during follow-up. UCP-LF CAA was positive in 86.9% of confirmed and 20% of possible cases. The percentage positivity and median CAA levels decreased significantly post-treatment, with only two patients having positive CAA levels at T12. Conclusions The UCP-LF CAA assay proved useful for the diagnosis of active infection with Schistosoma spp. and highly valuable for post-treatment monitoring in migrants, encouraging the development of a commercial test.![]()
Collapse
Affiliation(s)
- Francesca Tamarozzi
- Department of Infectious-Tropical Diseases and Microbiology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Sacro Cuore Don Calabria Hospital, Viale Luigi Rizzardi 4, 37024, Negrar di Valpolicella, Verona, Italy
| | - Tamara Ursini
- Department of Infectious-Tropical Diseases and Microbiology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Sacro Cuore Don Calabria Hospital, Viale Luigi Rizzardi 4, 37024, Negrar di Valpolicella, Verona, Italy
| | - Pytsje T Hoekstra
- Department of Parasitology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Ronaldo Silva
- Department of Infectious-Tropical Diseases and Microbiology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Sacro Cuore Don Calabria Hospital, Viale Luigi Rizzardi 4, 37024, Negrar di Valpolicella, Verona, Italy
| | - Cecilia Costa
- Dipartimento medico di malattie infettive, Ospedale Maggiore della Carità, Novara, Italy
| | - Federico Gobbi
- Department of Infectious-Tropical Diseases and Microbiology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Sacro Cuore Don Calabria Hospital, Viale Luigi Rizzardi 4, 37024, Negrar di Valpolicella, Verona, Italy
| | - Gerardo B Monteiro
- Department of Infectious-Tropical Diseases and Microbiology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Sacro Cuore Don Calabria Hospital, Viale Luigi Rizzardi 4, 37024, Negrar di Valpolicella, Verona, Italy
| | - Leonardo Motta
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Govert J van Dam
- Department of Parasitology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Paul L Corstjens
- Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Lisette van Lieshout
- Department of Parasitology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Dora Buonfrate
- Department of Infectious-Tropical Diseases and Microbiology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Sacro Cuore Don Calabria Hospital, Viale Luigi Rizzardi 4, 37024, Negrar di Valpolicella, Verona, Italy.
| |
Collapse
|
22
|
Mehta SD, Okal D, Otieno F, Green SJ, Nordgren RK, Huibner S, Bailey RC, Bhaumik DK, Landay A, Kaul R. Schistosomiasis is associated with rectal mucosal inflammation among Kenyan men who have sex with men. Int J STD AIDS 2021; 32:694-703. [PMID: 33533314 DOI: 10.1177/0956462420985973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Schistosoma mansoni infection is hyperendemic in Lake Victoria communities and associated with cervicovaginal immune alterations and HIV acquisition. We assessed the hypothesis that schistosomiasis correlates with greater rectal inflammation in men who have sex with men (MSM) in Kisumu, Kenya. Methods: In this cross-sectional study of 38 HIV-negative MSM aged 18-35 years, schistosomiasis was diagnosed by urine circulating cathodic antigen (CCA). Microbiome was assessed in rectal swabs by 16S rRNA gene amplicon sequencing, and rectal inflammation by quartile normalized summative score of inflammatory cytokines (IL-1α, IL-1β, IL-8, and TNF-α). Elastic net (EN) regression identified taxa associated with inflammation. Multivariable linear regression estimated the association between inflammation score and schistosomiasis and bacteria identified in EN. Results: Most men were CCA positive (24/38; 63%), and median rectal inflammation score was significantly higher in these participants (11 vs. 8, p = 0.04). In multivariable regression, CCA-positive men had 2.85-point greater inflammation score (p = 0.009). The relative abundance of Succinivibrio (coefficient = -1.13, p = 0.002) and Pseudomonas (coefficient = -1.04, p = 0.001) were negatively associated with inflammation. Discussion: CCA positivity was associated with rectal mucosal inflammation, controlling for rectal microbiome composition. Given its high prevalence and contribution to inflammation, schistosomiasis may have important implications for HIV transmission in this vulnerable population.
Collapse
Affiliation(s)
- Supriya D Mehta
- Division of Epidemiology & Biostatistics, 14681University of Illinois at Chicago School of Public Health, Chicago, USA
| | - Duncan Okal
- Nyanza Reproductive Health Society, Kisumu, Kenya
| | | | - Stefan J Green
- Sequencing Core, Research Resources Center, 14681University of Illinois at Chicago, Chicago, USA
| | - Rachel K Nordgren
- Division of Epidemiology & Biostatistics, 14681University of Illinois at Chicago School of Public Health, Chicago, USA
| | - Sanja Huibner
- Division of Infectious Diseases, University of Toronto School of Medicine, Toronto, Canada
| | - Robert C Bailey
- Division of Epidemiology & Biostatistics, 14681University of Illinois at Chicago School of Public Health, Chicago, USA
| | - Dulal K Bhaumik
- Division of Epidemiology & Biostatistics, 14681University of Illinois at Chicago School of Public Health, Chicago, USA
| | - Alan Landay
- Department of Internal Medicine, 2468Rush University, Chicago, USA
| | - Rupert Kaul
- Division of Infectious Diseases, University of Toronto School of Medicine, Toronto, Canada
| |
Collapse
|
23
|
Sibomana JP, Campeche A, Carvalho-Filho RJ, Correa RA, Duani H, Pacheco Guimaraes V, Hilton JF, Kassa B, Kumar R, Lee MH, Loureiro CMC, Mazimba S, Mickael C, Oliveira RKF, Ota-Arakaki JS, Rezende CF, Silva LCS, Sinkala E, Ahmed HY, Graham BB. Schistosomiasis Pulmonary Arterial Hypertension. Front Immunol 2020; 11:608883. [PMID: 33362796 PMCID: PMC7758287 DOI: 10.3389/fimmu.2020.608883] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/03/2020] [Indexed: 12/18/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a disease of the lung blood vessels that results in right heart failure. PAH is thought to occur in about 5% to 10% of patients with hepatosplenic schistosomiasis, particularly due to S. mansoni. The lung blood vessel injury may result from a combination of embolization of eggs through portocaval shunts into the lungs causing localized Type 2 inflammatory response and vessel remodeling, triggering of autonomous pathology that becomes independent of the antigen, and high cardiac output as seen in portopulmonary hypertension. The condition is likely underdiagnosed as there is little systematic screening, and risk factors for developing PAH are not known. Screening is done by echocardiography, and formal diagnosis requires invasive right heart catheterization. Patients with Schistosoma-associated PAH show reduced functional capacity and can be treated with pulmonary vasodilators, which improves symptoms and may improve survival. There are animal models of this disease that might help in understanding disease pathogenesis and identify novel targets to screen and treatment. Pathogenic mechanisms include Type 2 immunity and activation and signaling in the TGF-β pathway. There are still major uncertainties regarding Schistosoma-associated PAH development, course and treatment.
Collapse
Affiliation(s)
- Jean Pierre Sibomana
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Tikur Anbessa Specialized Hospital, College of Health Sciences, University of Addis Ababa, Addis Ababa, Ethiopia
- Department of Medicine, Butare University Teaching Hospital, College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda
| | - Aloma Campeche
- Division of Gastroenterology, Department of Medicine, Santa Casa Hospital, Salvador, Bahia, Brazil
| | - Roberto J. Carvalho-Filho
- Division of Gastroenterology, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Ricardo Amorim Correa
- Internal Medicine/Pulmonary Division, Medical School, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Helena Duani
- Internal Medicine/Infectious Diseases Division, Medical School, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Virginia Pacheco Guimaraes
- Pulmonary Department, Hospital Júlia Kubistchek, Fundação Hospitalar of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Joan F. Hilton
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, United States
| | - Biruk Kassa
- Department of Medicine, University of California San Francisco, San Francisco, CA, United States
- Department of Medicine, Zuckerberg San Francisco General Hospital, San Francisco, CA, United States
| | - Rahul Kumar
- Department of Medicine, University of California San Francisco, San Francisco, CA, United States
- Department of Medicine, Zuckerberg San Francisco General Hospital, San Francisco, CA, United States
| | - Michael H. Lee
- Department of Medicine, University of California San Francisco, San Francisco, CA, United States
- Department of Medicine, Zuckerberg San Francisco General Hospital, San Francisco, CA, United States
| | | | - Sula Mazimba
- Division of Cardiology, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Claudia Mickael
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Rudolf K. F. Oliveira
- Division of Respiratory Diseases, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Jaquelina S. Ota-Arakaki
- Division of Respiratory Diseases, Department of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Camila Farnese Rezende
- Pulmonary Medicine, Hospital das Clinicas, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Luciana C. S. Silva
- Internal Medicine Department, Medical School, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Edford Sinkala
- Hepatology Clinic, Department of Medicine, University of Zambia Teaching Hospital, Lusaka, Zambia
| | - Hanan Yusuf Ahmed
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Tikur Anbessa Specialized Hospital, College of Health Sciences, University of Addis Ababa, Addis Ababa, Ethiopia
| | - Brian B. Graham
- Department of Medicine, University of California San Francisco, San Francisco, CA, United States
- Department of Medicine, Zuckerberg San Francisco General Hospital, San Francisco, CA, United States
| |
Collapse
|
24
|
Hoekstra PT, Schwarz NG, Adegnika AA, Andrianarivelo MR, Corstjens PLAM, Rakotoarivelo RA, Rakotozandrindrainy R, Sicuri E, Kreidenweiss A, van Dam GJ. Fast and reliable easy-to-use diagnostics for eliminating bilharzia in young children and mothers: An introduction to the freeBILy project. Acta Trop 2020; 211:105631. [PMID: 32679109 DOI: 10.1016/j.actatropica.2020.105631] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 06/24/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023]
Abstract
Schistosoma antigen detection tests have a large potential for schistosomiasis control programs due to their ability to detect active and ongoing Schistosoma infections, their much higher sensitivity compared to microscopical methods, and the possibility to use non-invasive urine samples. Pregnant women and young children could especially benefit from affordable and easy-to-use antigen tests as inclusion of these vulnerable groups in mass drug administration campaigns will always require higher justification hurdles, especially in low to middle endemic regions with a higher proportion of individuals who are not infected and thus unnecessarily exposed to praziquantel. The overall objective of the 'fast and reliable easy-to-use diagnostics for eliminating bilharzia in young children and mothers' (freeBILy, www.freeBILy.eu) project is to thoroughly evaluate the point-of-care circulating cathodic antigen (POC-CCA) and the up-converting phosphor reporter particle, lateral flow circulating anodic antigen (UCP-LF CAA) urine strip tests to diagnose Schistosoma infections in pregnant women and young children and to assess their potential as a schistosomiasis control tool in test-and-treat strategies. The freeBILy project will generate valuable, evidence-based findings on improved tools and test-and-treat strategies to reduce the burden of schistosomiasis in pregnant women and young children.
Collapse
Affiliation(s)
- Pytsje T Hoekstra
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Norbert G Schwarz
- Bernhard-Nocht-Institut für Tropenmedizin, Hamburg, Germany; German Center for Infection Research, Germany
| | - Ayola A Adegnika
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands; German Center for Infection Research, Germany; Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon; Eberhard Karls Universität Tübingen, Tübingen, Germany
| | | | - Paul L A M Corstjens
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | - Elisa Sicuri
- ISGlobal, Hospital Clínic, Universitat de Barcelona, Barcelona, Spain; Health Economics Group, Department of Infectious Disease Epidemiology, School of Public Health, Imperial College London, London, UK
| | - Andrea Kreidenweiss
- German Center for Infection Research, Germany; Eberhard Karls Universität Tübingen, Tübingen, Germany
| | - Govert J van Dam
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
25
|
Keller L, Patel C, Welsche S, Schindler T, Hürlimann E, Keiser J. Performance of the Kato-Katz method and real time polymerase chain reaction for the diagnosis of soil-transmitted helminthiasis in the framework of a randomised controlled trial: treatment efficacy and day-to-day variation. Parasit Vectors 2020; 13:517. [PMID: 33059756 PMCID: PMC7558729 DOI: 10.1186/s13071-020-04401-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/09/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Accurate, scalable and sensitive diagnostic tools are crucial in determining prevalence of soil-transmitted helminths (STH), assessing infection intensities and monitoring treatment efficacy. However, assessments on treatment efficacy comparing traditional microscopic to newly emerging molecular approaches such as quantitative Polymerase Chain Reaction (qPCR) are scarce and hampered partly by lack of an established diagnostic gold standard. METHODS We compared the performance of the copromicroscopic Kato-Katz method to qPCR in the framework of a randomized controlled trial on Pemba Island, Tanzania, evaluating treatment efficacy based on cure rates of albendazole monotherapy versus ivermectin-albendazole against Trichuris trichiura and concomitant STH infections. Day-to-day variability of both diagnostic methods was assessed to elucidate reproducibility of test results by analysing two stool samples before and two stool samples after treatment of 160 T. trichiura Kato-Katz positive participants, partially co-infected with Ascaris lumbricoides and hookworm, per treatment arm (n = 320). As negative controls, two faecal samples of 180 Kato-Katz helminth negative participants were analysed. RESULTS Fair to moderate correlation between microscopic egg count and DNA copy number for the different STH species was observed at baseline and follow-up. Results indicated higher sensitivity of qPCR for all three STH species across all time points; however, we found lower test result reproducibility compared to Kato-Katz. When assessed with two samples from consecutive days by qPCR, cure rates were significantly lower for T. trichiura (23.2 vs 46.8%), A. lumbricoides (75.3 vs 100%) and hookworm (52.4 vs 78.3%) in the ivermectin-albendazole treatment arm, when compared to Kato-Katz. CONCLUSIONS qPCR diagnosis showed lower reproducibility of test results compared to Kato-Katz, hence multiple samples per participant should be analysed to achieve a reliable diagnosis of STH infection. Our study confirms that cure rates are overestimated using Kato-Katz alone. Our findings emphasize that standardized and accurate molecular diagnostic tools are urgently needed for future monitoring within STH control and/or elimination programmes.
Collapse
Affiliation(s)
- Ladina Keller
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 Basel, Switzerland
- University of Basel, Petersplatz 1, 4051 Basel, Switzerland
| | - Chandni Patel
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 Basel, Switzerland
- University of Basel, Petersplatz 1, 4051 Basel, Switzerland
| | - Sophie Welsche
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 Basel, Switzerland
- University of Basel, Petersplatz 1, 4051 Basel, Switzerland
| | - Tobias Schindler
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 Basel, Switzerland
- University of Basel, Petersplatz 1, 4051 Basel, Switzerland
| | - Eveline Hürlimann
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 Basel, Switzerland
- University of Basel, Petersplatz 1, 4051 Basel, Switzerland
| | - Jennifer Keiser
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4051 Basel, Switzerland
- University of Basel, Petersplatz 1, 4051 Basel, Switzerland
| |
Collapse
|
26
|
Barda B, Schindler C, Wampfler R, Ame S, Ali SM, Keiser J. Comparison of real-time PCR and the Kato-Katz method for the diagnosis of soil-transmitted helminthiasis and assessment of cure in a randomized controlled trial. BMC Microbiol 2020; 20:298. [PMID: 33008301 PMCID: PMC7531123 DOI: 10.1186/s12866-020-01963-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 09/01/2020] [Indexed: 02/05/2023] Open
Abstract
Background Diagnosis of soil-transmitted helminths (STHs) in developing countries is commonly based on microscopic detection of eggs in stool samples, using the Kato-Katz (KK) method, which has a poor sensitivity for detecting light intensity infections. We compared the performance of the KK method and real-time PCR in the framework of a randomized trial, which evaluated four novel treatments against Trichuris trichiura and concomitant STH infections. Results Two stool samples obtained from 320 participants were examined at baseline and follow-up with quadruplicate KK and PCR analyses of one of the two samples using “bead-beating” for DNA extraction. At follow-up, 80 samples were negative according to both PCR and KK and 173 were positive with both methods for any of the STHs. Relative to PCR, the calculated sensitivity of KK at follow-up was 83.6%, 43.0% and 53.8% for T. trichiura, for hookworm and for Ascaris lumbricoides, respectively. The sensitivity of PCR compared with KK at this time point was 89.1% for T. trichiura, 72.7% for hookworm and 87.5% for A. lumbricoides. Cure rates (CRs) for T. trichiura and A. lumbricoides were slightly lower with the PCR method. For hookworm CRs with KK were mostly significantly lower, namely 36.7%, 91.1%, 72.2% and 77.8% for moxidectin, moxidectin in combination with tribendimidine, moxidectin in combination with albendazole and albendazole in combination with oxantel pamoate, respectively, whereas with PCR the CRs were 8.3%, 82.6%, 37.1% and 57.1%, respectively. Conclusions In conclusion, a single real-time PCR is as sensitive as quadruplicate KK for T. trichiura and A. lumbricoides detection but more sensitive for hookworm, which has an influence on the estimated treatment efficacy. PCR method with DNA extraction using the “bead-beating protocol” should be further promoted in endemic areas and laboratories that can afford the needed equipment. The study is registered at ISRCTN (no. 20398469).
Collapse
Affiliation(s)
- Beatrice Barda
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Christian Schindler
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Rahel Wampfler
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Shaali Ame
- Laboratory Division, Public Health Laboratory-Ivo de Carneri, Chake-Chake, Tanzania
| | - Said M Ali
- Laboratory Division, Public Health Laboratory-Ivo de Carneri, Chake-Chake, Tanzania
| | - Jennifer Keiser
- Swiss Tropical and Public Health Institute, Socinstrasse 57, 4002, Basel, Switzerland. .,University of Basel, Basel, Switzerland.
| |
Collapse
|
27
|
Ketzis JK, Lejeune M, Branford I, Beierschmitt A, Willingham AL. Identification of Schistosoma mansoni Infection in a Nonhuman Primate from St. Kitts More than 50 Years after Interruption of Human Transmission. Am J Trop Med Hyg 2020; 103:2278-2281. [PMID: 32996451 PMCID: PMC7695088 DOI: 10.4269/ajtmh.20-0282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Transmission of Schistosoma mansoni was interrupted on St. Kitts, a Caribbean island, in the 1950s. With no reported cases since that time and most Biomphalaria spp. snail populations eliminated based on surveys in the 1970s, S. mansoni has been considered eliminated on St. Kitts. In 2019, S. mansoni eggs were found in an African green monkey (Chlorocebus aethiops sabaeus) that originated from St. Kitts. Nonhuman primate (NHP) infections have been considered incidental to human infections, with infections in NHPs resolving with the elimination of S. mansoni in the human population. An NHP with S. mansoni infection suggests that the NHP may be able to maintain a reservoir sylvatic cycle. Alternatively, S. mansoni transmission was not eliminated or S. mansoni has been reintroduced to St. Kitts. The occurrence of an infected NHP from St. Kitts supports the need for continuous monitoring in areas where S. mansoni is considered eliminated.
Collapse
Affiliation(s)
- Jennifer K Ketzis
- One Health Center for Zoonoses and Tropical Veterinary Medicine, Ross University School of Veterinary Medicine, Basseterre, St. Kitts and Nevis
| | - Manigandan Lejeune
- Department of Population Medicine and Diagnostic Sciences, Animal Health Diagnostic Center, College of Veterinary Medicine, Cornell University, Ithaca, New York
| | - Ian Branford
- One Health Center for Zoonoses and Tropical Veterinary Medicine, Ross University School of Veterinary Medicine, Basseterre, St. Kitts and Nevis
| | - Amy Beierschmitt
- Behavioural Science Foundation, Estridge Estate, St. Kitts and Nevis
| | - Arve Lee Willingham
- One Health Center for Zoonoses and Tropical Veterinary Medicine, Ross University School of Veterinary Medicine, Basseterre, St. Kitts and Nevis
| |
Collapse
|
28
|
Chen Y, Liu S, Shan X, Wang H, Li B, Yang J, Dai L, Liu J, Li G. Schistosoma japonicum-infected sentinel mice: Surveillance and spatial point pattern analysis in Hubei province, China, 2010-2018. Int J Infect Dis 2020; 99:179-185. [PMID: 32738482 DOI: 10.1016/j.ijid.2020.07.048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/22/2020] [Accepted: 07/25/2020] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVES Progress in national schistosomiasis control in China has successfully reduced disease transmission in many districts. However, a low transmission rate hinders conventional snail surveys in identifying areas at risk. In this study, Schistosoma japonicum-infected sentinel mice surveillance was conducted to identify high-risk areas of schistosomiasis transmission in Hubei province, China. METHODS The risk of schistosomiasis transmission was assessed using sentinel mice monitoring in Hubei province from 2010 to 2018. Field detections were undertaken in June and September, and the sentinel mice were kept for approximately 35 days in a laboratory. They were then dissected to determine whether schistosome infection was present. Ripley's K-function and kernel density estimation were applied to analyze the spatial distribution and positive point pattern of schistosomiasis transmission. RESULTS In total, 190 sentinel mice surveillance sites were selected to detect areas of schistosomiasis infection from 2010 to 2018, with 29 (15.26%) sites showing infected mice. Of 4723 dissected mice, 256 adult worms were detected in 112 infected mice. The infection rate was 2.37%, with an average of 2.28 worms detected per infected mouse. Significantly more infected mice were detected in the June samples than in the September samples (χ2=12.11, p<0.01). Ripley's L(d) index analysis showed that, when the distance was ≤34.52km, the sentinel mice infection pattern showed aggregation, with the strongest aggregation occurring at 7.86km. Three hotspots were detected using kernel density estimation: at the junction of Jingzhou District, Gong'an County, and Shashi District in Jingzhou City; in Wuhan City at the border of the Huangpi and Dongxihu Districts, and in the Hannan and Caidian Districts. CONCLUSION The results showed that sentinel mice surveillance is useful in identifying high-risk areas, and could provide valuable information for schistosomiasis prevention and control, especially concerning areas along the Yangtze River, such as the Fu-Lun, Dongjing-Tongshun, and Juzhang River basins.
Collapse
Affiliation(s)
- Yanyan Chen
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Si Liu
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Xiaowei Shan
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Hui Wang
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Bo Li
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Junjing Yang
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Lingfeng Dai
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Jianbing Liu
- Hubei Provincial Center for Disease Control and Prevention, Wuhan, China.
| | - Guo Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, China.
| |
Collapse
|
29
|
Molecular Markers for Detecting Schistosoma Species by Loop-Mediated Isothermal Amplification. DISEASE MARKERS 2020; 2020:8042705. [PMID: 32774514 PMCID: PMC7396120 DOI: 10.1155/2020/8042705] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 06/20/2020] [Accepted: 07/01/2020] [Indexed: 02/01/2023]
Abstract
Schistosomiasis is considered a neglected parasitic disease. Around 280,000 people die from it annually, and more than 779 million people are at risk of getting infected. The schistosome species which infect human beings are Schistosoma mansoni, Schistosoma haematobium, Schistosoma intercalatum, Schistosoma japonicum, Schistosoma guineensis, and Schistosoma mekongi. This disease is also of veterinary significance; the most important species being Schistosoma bovis since it causes the disease in around 160 million livestock in Africa and Asia. This work was aimed at designing and developing a genus-specific loop-mediated isothermal amplification (LAMP) method for detecting the most important schistosome species affecting humans and for the species-specific detection of S. bovis. Bioinformatics tools were used for primer design, and the LAMP method was standardised for detecting the ITS-1 region from S. intercalatum, S. haematobium, S. mansoni, S. japonicum, and S. bovis DNA (generic test) and the NADH 1 gene for specifically detecting S. bovis (at different DNA concentrations). Detection limits achieved were 1 pg DNA for S. mansoni, 0.1 pg for S. haematobium, 1 pg for S. intercalatum, and 10 pg for S. bovis. No amplification for S. japonicum DNA was obtained. The LAMP designed for the amplification of S. bovis NADH-1 worked specifically for this species, and no other DNA from other schistosome species included in the study was amplified. Two highly sensitive LAMP methods for detecting different Schistosoma species important for human and veterinary health were standardised. These methods could be very useful for the diagnosis and surveillance of schistosome infections.
Collapse
|
30
|
Casacuberta-Partal M, Janse JJ, van Schuijlenburg R, de Vries JJC, Erkens MAA, Suijk K, van Aalst M, Maas JJ, Grobusch MP, van Genderen PJJ, de Dood C, Corstjens PLAM, van Dam GJ, van Lieshout L, Roestenberg M. Antigen-based diagnosis of Schistosoma infection in travellers: a prospective study. J Travel Med 2020; 27:5822102. [PMID: 32307517 PMCID: PMC7359925 DOI: 10.1093/jtm/taaa055] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 01/04/2023]
Abstract
BACKGROUND Travellers infected with Schistosoma spp. might be pauci- or even asymptomatic on first presentation. Therefore, schistosomiasis may remain undiagnosed in this population. Active infection, as evidenced by the presence of the tissue-dwelling worm, can be demonstrated via the detection of adult worm-derived circulating anodic antigen (CAA) utilising a robust well-described lateral flow-(LF) based test applying background-free up-converting reporter particles (UCP). In this prospective study, we assessed the diagnostic value of serum and urine UCP-LF CAA test in comparison with two Schistosoma-specific serological assays detecting antibodies against adult worm antigen-immuno fluorescence assay (AWA-IFA) and against soluble egg antigen-enzyme-linked immunosorbent assay (SEA-ELISA) antigens in travellers. METHODS Samples were collected from 106 Dutch travellers who reported freshwater contact in sub-Saharan Africa and who were recruited up to 2 years after return. Subjects were asked to complete a detailed questionnaire on travel history, water contact, signs and symptoms compatible with schistosomiasis. RESULTS Two travellers were positive by serum CAA and an additional one by urine CAA. A total of 22/106 (21%) samples were antibody positive by AWA-IFA and 9/106 (9%) by SEA-ELISA. At follow-up 6 weeks and 6 months after praziquantel treatment, all seropositives remained antibody positive whereas CAA was cleared. Seropositivity could not be predicted by the type of fresh water-related activity, country visited or symptoms reported. CONCLUSION The low number of UCP-LF CAA positives suggests that in travellers, active infections often do not establish or have very low worm burden. Based on our high seroconversion rates, we conclude that the AWA-IFA assay is the most sensitive test to detect schistosome exposure. Given the lack of predictive symptoms or risk factors, we recommend schistosomiasis screening at least by serology in all travellers with reported freshwater contact in high-endemic areas.
Collapse
Affiliation(s)
- Miriam Casacuberta-Partal
- Department of Parasitology, Leiden University Medical Centre, L4-Q, PO Box 9600, 2333 ZA Leiden, The Netherlands
| | - Jacqueline J Janse
- Department of Parasitology, Leiden University Medical Centre, L4-Q, PO Box 9600, 2333 ZA Leiden, The Netherlands
| | - Roos van Schuijlenburg
- Department of Parasitology, Leiden University Medical Centre, L4-Q, PO Box 9600, 2333 ZA Leiden, The Netherlands
| | - Jutte J C de Vries
- Department of Medical Microbiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Marianne A A Erkens
- Department of Medical Microbiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Kitty Suijk
- Department of Infectious Diseases, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Mariëlle van Aalst
- Centre of Tropical Medicine and Travel Medicine, Amsterdam University Medical Centres, AMC, University of Amsterdam, 1100 DD Amsterdam, The Netherlands
| | - Jaap J Maas
- Occupational Health and Safety Service, Amsterdam University Medical Centres, AMC, University of Amsterdam, 1100 DD Amsterdam, The Netherlands
| | - Martin P Grobusch
- Centre of Tropical Medicine and Travel Medicine, Amsterdam University Medical Centres, AMC, University of Amsterdam, 1100 DD Amsterdam, The Netherlands
| | - Perry J J van Genderen
- Institute for Tropical Diseases, Erasmus University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands
| | - Claudia de Dood
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Paul L A M Corstjens
- Department of Cell and Chemical Biology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Govert J van Dam
- Department of Parasitology, Leiden University Medical Centre, L4-Q, PO Box 9600, 2333 ZA Leiden, The Netherlands
| | - Lisette van Lieshout
- Department of Parasitology, Leiden University Medical Centre, L4-Q, PO Box 9600, 2333 ZA Leiden, The Netherlands.,Department of Medical Microbiology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Meta Roestenberg
- Department of Parasitology, Leiden University Medical Centre, L4-Q, PO Box 9600, 2333 ZA Leiden, The Netherlands.,Department of Infectious Diseases, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| |
Collapse
|
31
|
Bergquist NR. Schistosomiasis Consortium for Operational Research and Evaluation: Mission Accomplished. Am J Trop Med Hyg 2020; 103:1-4. [PMID: 32400351 PMCID: PMC7351299 DOI: 10.4269/ajtmh.19-0838] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 11/10/2019] [Indexed: 11/30/2022] Open
Abstract
The Schistosomiasis Consortium for Operational Research and Evaluation (SCORE), a program focusing on schistosomiasis control in sub-Saharan Africa between 2008 and 2019, investigated ways to improve coverage and efficacy of ongoing chemotherapy programs and concluded that because of continued transmission, mass distribution of praziquantel cannot eliminate the disease without complementary control activities. Schistosomiasis Consortium for Operational Research and Evaluation's activities comprised large-scale, multicountry field studies comparing various mass drug administration strategies and some specific research avenues, such as assessment of high-sensitivity diagnostics, identification of hotspots, quantification of the role of the snail host, predictive modeling, and changes in schistosome population genetics under drug pressure. The discoveries made and the insights gained regarding cost-effective strategies for delivering preventive chemotherapy should assist policy makers to develop guidelines for the control and ultimate elimination of schistosomiasis.
Collapse
|
32
|
Accuracy of real-time polymerase chain reaction to detect Schistosoma mansoni - infected individuals from an endemic area with low parasite loads. Parasitology 2020; 147:1140-1148. [PMID: 32484122 DOI: 10.1017/s003118202000089x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Due to the efforts to control schistosomiasis transmission in tropical countries, a large proportion of individuals from endemic areas present low parasite loads, which hinders diagnosis of intestinal schistosomiasis by the Kato-Katz (KK) method. Therefore, the development of more sensitive diagnostic methods is essential for efficient control measures. The aim was to evaluate the accuracy of a real-time polymerase chain reaction (RT-PCR) to detect Schistosoma mansoni DNA in fecal samples of individuals with low parasite loads. A cross-sectional population-based study was conducted in a rural community (n = 257) in Brazil. POC-CCA® was performed in urine and feces were used for RT-PCR. In addition, fecal exams were completed by 18 KK slides, saline gradient and Helmintex techniques. The combined results of the three parasitological tests detected schistosome eggs in 118 participants (45.9%) and composed the consolidated reference standard (CRS). By RT-PCR, 117 out of 215 tested samples were positive, showing 91.4% sensitivity, 80.2% specificity and good concordance with the CRS (kappa = 0.71). RT-PCR identified 86.9% of the individuals eliminating less than 12 eggs/g of feces, demonstrating much better performance than POC-CCA® (50.8%). Our results showed that RT-PCR is a valuable alternative for the diagnosis of intestinal schistosomiasis in individuals with very low parasite loads.
Collapse
|
33
|
Zijlstra EE, van Hellemond JJ, Moes AD, de Boer C, Boeschoten SA, van Blijswijk CEM, van der Vuurst de Vries RM, Bailey PAB, Kampondeni S, van Lieshout L, Smits SL, Katchanov J, Mkandawire NM, Rothe C. Nontraumatic Myelopathy in Malawi: A Prospective Study in an Area with High HIV Prevalence. Am J Trop Med Hyg 2020; 102:451-457. [PMID: 31837130 DOI: 10.4269/ajtmh.19-0209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Nontraumatic myelopathy causes severe morbidity and is not uncommon in Africa. Clinically, patients often present with paraplegia, and extrinsic cord compression and transverse myelitis are most common causes. Data on exact pathogenesis are scanty because of limitations in diagnostic methods. In Queen Elizabeth Central Hospital, Blantyre, Malawi, we recorded consecutive patients presenting with nontraumatic paraplegia for maximally 6 months between January and July 2010 and from March to December 2011. The diagnostic workup included imaging and examining blood, stool, urine, sputum, and cerebrospinal fluid (CSF) samples for infection. After discharge, additional diagnostic tests, including screening for virus infections, borreliosis, syphilis, and schistosomiasis, were carried out in the Netherlands. The clinical diagnosis was, thus, revised in retrospect with a more accurate final differential diagnosis. Of 58 patients included, the mean age was 41 years (range, 12-83 years) and the median time between onset and presentation was 18 days (range, 0-121 days), and of 55 patients tested, 23 (42%) were HIV positive. Spinal tuberculosis (n = 24, 41%), tumors (n = 16, 28%), and transverse myelitis (n = 6, 10%) were most common; in six cases (10%), no diagnosis could be made. The additional tests yielded evidence for CSF infection with Schistosoma, Treponema pallidum, Epstein-Barr virus (EBV), HHV-6, HIV, as well as a novel cyclovirus. The diagnosis of the cause of paraplegia is complex and requires access to an magnetic resonance imaging (MRI) scan and other diagnostic (molecular) tools to demonstrate infection. The major challenge is to confirm the role of detected pathogens in the pathophysiology and to design an effective and affordable diagnostic approach.
Collapse
Affiliation(s)
| | - Jaap J van Hellemond
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Arthur D Moes
- Division of Nephrology, Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Christa de Boer
- Infectious Disease Control, Municipal Health Service Zuid-Holland Zuid, Dordrecht, The Netherlands
| | - Shelley A Boeschoten
- Erasmus University Medical Center - Sophia Children's Hospital, Rotterdam, The Netherlands
| | | | | | | | | | - Lisette van Lieshout
- Department of Parasitology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Saskia L Smits
- Viroclinics Biosciences BV, Rotterdam Science Tower, Rotterdam, The Netherlands
| | - Juri Katchanov
- Department of Hematology and Oncology, LMU University of Munich, Munich, Germany.,Department of Medicine, College of Medicine, Blantyre, Malawi
| | | | - Camilla Rothe
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich, Germany.,Department of Medicine, College of Medicine, Blantyre, Malawi
| |
Collapse
|
34
|
Amoah AS, Hoekstra PT, Casacuberta-Partal M, Coffeng LE, Corstjens PLAM, Greco B, van Lieshout L, Lim MD, Markwalter CF, Odiere MR, Reinhard-Rupp J, Roestenberg M, Stothard R, Tchuem Tchuenté LA, de Vlas SJ, van Dam GJ. Sensitive diagnostic tools and targeted drug administration strategies are needed to eliminate schistosomiasis. THE LANCET. INFECTIOUS DISEASES 2020; 20:e165-e172. [PMID: 32595046 DOI: 10.1016/s1473-3099(20)30254-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 03/03/2020] [Accepted: 03/23/2020] [Indexed: 11/29/2022]
Abstract
Although preventive chemotherapy has been instrumental in reducing schistosomiasis incidence worldwide, serious challenges remain. These problems include the omission of certain groups from campaigns of mass drug administration, the existence of persistent disease hotspots, and the risk of recrudescent infections. Central to these challenges is the fact that the diagnostic tools currently used to establish the burden of infection are not sensitive enough, especially in low-endemic settings, which results in underestimation of the true prevalence of active Schistosoma spp infections. This central issue necessitates that the current schistosomiasis control strategies recommended by WHO are re-evaluated and, possibly, adapted. More targeted interventions and novel approaches have been used to estimate the prevalence of schistosomiasis, such as establishing infection burden by use of precision mapping, which provides high resolution spatial information that delineates variations in prevalence within a defined geographical area. Such information is instrumental in guiding targeted intervention campaigns. However, the need for highly accurate diagnostic tools in such strategies is a crucial factor that is often neglected. The availability of highly sensitive diagnostic tests also opens up the possibility of applying strategies of sample pooling to reduce the cost of control programmes. To interrupt the transmission of, and eventually eliminate, schistosomiasis, better local targeting of preventive chemotherapy, in combination with highly sensitive diagnostic tools, is crucial.
Collapse
Affiliation(s)
- Abena S Amoah
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands; Department of Population Health, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK; Malawi Epidemiology and Intervention Research Unit, Chilumba, Malawi
| | - Pytsje T Hoekstra
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands.
| | | | - Luc E Coffeng
- Department of Public Health, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Paul L A M Corstjens
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Lisette van Lieshout
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Mark D Lim
- Global Health Division, The Bill & Melinda Gates Foundation, Seattle, WA, USA; Global Public Health Programs, American Society for Microbiology, Washington DC, USA
| | - Christine F Markwalter
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA; Duke Global Health Institute, Duke University, Durham, NC, USA
| | - Maurice R Odiere
- Neglected Tropical Diseases Unit, Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | | | - Meta Roestenberg
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands; Department of Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| | | | - Louis-Albert Tchuem Tchuenté
- Laboratory of Parasitology and Ecology, University of Yaoundé I, Yaoundé, Cameroon; Centre for Schistosomiasis and Parasitology, Yaoundé, Cameroon
| | - Sake J de Vlas
- Department of Public Health, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Govert J van Dam
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
35
|
Pillay P, Downs JA, Changalucha JM, Brienen EAT, Ramarokoto CE, Leutscher PDC, Vennervald BJ, Taylor M, Kjetland EF, Van Lieshout L. Detection of Schistosoma DNA in genital specimens and urine: A comparison between five female African study populations originating from S. haematobium and/or S. mansoni endemic areas. Acta Trop 2020; 204:105363. [PMID: 32035055 DOI: 10.1016/j.actatropica.2020.105363] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 01/16/2023]
Abstract
Female Genital Schistosomiasis (FGS) is a neglected disease affecting millions, however challenging to diagnose. This explorative descriptive study compares Schistosoma real-time PCR analysis of cervico-vaginal lavages (CVL) with corresponding urine and stool samples of 933 women from five different previously described study populations. Sampling included 310 women from an S. mansoni endemic region in Mwanza, Tanzania and 112 women from a nearby S. haematobium endemic region. Findings were compared with samples collected from S. haematobium endemic regions in South Africa from 394 women and from 117 women from Madagascar of which 79 were urine pre-selected microscopy positive cases from highly-endemic communities and 38 were urine microscopy negatives from a low-endemic community. As anticipated, urine and stool microscopy and gynecological investigations varied substantially between study populations; however, the same Schistosoma real-time PCR was performed in one reference laboratory. Schistosoma DNA was detected in 13% (120/933) of the CVL, ranging from 3% in the S. mansoni Tanzanian endemic region to 61% in the pre-selected Malagasy urine microscopy positive cases. Detectable Schistosoma DNA in CVL was associated with Schistosoma DNA in urine but not with microscopic detection of eggs in urine or by cytological examination. This study confirmed real-time PCR for the detection of Schistosoma DNA in gynecological samples to be a valuable diagnostic tool to study the distribution of FGS within schistosomiasis endemic areas.
Collapse
Affiliation(s)
- P Pillay
- Department of Biomedical and Clinical Technology, Durban University of Technology, South Africa; Discipline of Public Health Medicine, Nelson R Mandela School of Medicine, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.
| | - J A Downs
- Center for Global Health, Department of Medicine, Weill Cornell Medicine, New York, USA
| | - J M Changalucha
- Department of Medicine, Bugando Medical Centre, Mwanza, Tanzania
| | - E A T Brienen
- Department of Parasitology, Leiden University Medical Center, The Netherlands
| | - C E Ramarokoto
- Department of Epidemiology, Institut Pasteur de Madagascar, Antananarivo, Madagascar
| | - P D C Leutscher
- Centre for Clinical Research, North Denmark Regional Hospital, Denmark; Department of Clinical Medicine, Aalborg University, Denmark
| | - B J Vennervald
- Section for Parasitology and Aquatic Pathobiology, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - M Taylor
- Discipline of Public Health Medicine, Nelson R Mandela School of Medicine, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - E F Kjetland
- Discipline of Public Health Medicine, Nelson R Mandela School of Medicine, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa; Norwegian Centre for Imported and Tropical Diseases, Department of Infectious Diseases Ullevaal, Oslo University Hospital, Oslo Norway
| | - L Van Lieshout
- Department of Parasitology, Leiden University Medical Center, The Netherlands
| |
Collapse
|
36
|
Cnops L, Huyse T, Maniewski U, Soentjens P, Bottieau E, Van Esbroeck M, Clerinx J. Acute Schistosomiasis With a Schistosoma mattheei × Schistosoma haematobium Hybrid Species in a Cluster of 34 Travelers Infected in South Africa. Clin Infect Dis 2020; 72:1693-1698. [DOI: 10.1093/cid/ciaa312] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 03/25/2020] [Indexed: 12/19/2022] Open
Abstract
Abstract
Background
Diagnosis of schistosomiasis remains elusive soon after infection. We evaluated several diagnostic methods in a cluster of travelers with simultaneous freshwater exposure in South Africa.
Methods
Eosinophil count, schistosome antibody tests, stool and urine microscopy, and serum Dra1 PCR assays were performed at weeks 4–5 (early symptomatic phase), 7–8 (praziquantel treatment), and 13–14 (after treatment). Sequencing was done on serum samples from 3 patients to identify the species.
Results
Of the 34 travelers (16 adults and 18 children), 32 developed symptoms 2–6 weeks after exposure. A raised eosinophil count (>750/µL) was seen in 12 of 33 at weeks 4–5, and in 22 of 34 at weeks 7–8. Schistosoma antibodies were detected in 3 of 33 at weeks 4–5 and in 12 of 34 at weeks 7–8 and weeks 13–14. The Dra1 PCR result was positive in 24 of 33 travelers at weeks 4–5, in 31 of 34 at weeks 7–8, in 25 of 34 at weeks 13–14, and at least once in all. Ova were absent in all urine and stool samples obtained. Sequencing identified Schistosoma mattheei nuclear and Schistosoma haematobium mitochondrial DNA, indicative of a hybrid species.
Conclusions
The Dra1 PCR confirmed the diagnosis in all exposed travelers at a much earlier stage than conventional tests. The causative species is probably an S. mattheei × S. haematobium hybrid.
Collapse
Affiliation(s)
- Lieselotte Cnops
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| | - Tine Huyse
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
- Department of Biology, Royal Museum for Central Africa, Tervuren, Belgium
| | - Ula Maniewski
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| | - Patrick Soentjens
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| | - Emmanuel Bottieau
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| | - Marjan Van Esbroeck
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| | - Joannes Clerinx
- Department of Clinical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| |
Collapse
|
37
|
Hoekstra PT, Casacuberta-Partal M, van Lieshout L, Corstjens PLAM, Tsonaka R, Assaré RK, Silué KD, Meité A, N’Goran EK, N’Gbesso YK, Amoah AS, Roestenberg M, Knopp S, Utzinger J, Coulibaly JT, van Dam GJ. Efficacy of single versus four repeated doses of praziquantel against Schistosoma mansoni infection in school-aged children from Côte d'Ivoire based on Kato-Katz and POC-CCA: An open-label, randomised controlled trial (RePST). PLoS Negl Trop Dis 2020; 14:e0008189. [PMID: 32196506 PMCID: PMC7112237 DOI: 10.1371/journal.pntd.0008189] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 04/01/2020] [Accepted: 03/02/2020] [Indexed: 11/21/2022] Open
Abstract
Background Preventive chemotherapy with praziquantel (PZQ) is the cornerstone of schistosomiasis control. However, a single dose of PZQ (40 mg/kg) does not cure all infections. Repeated doses of PZQ at short intervals might increase efficacy in terms of cure rate (CR) and intensity reduction rate (IRR). Here, we determined the efficacy of a single versus four repeated treatments with PZQ on Schistosoma mansoni infection in school-aged children from Côte d’Ivoire, using two different diagnostic tests. Methods An open-label, randomized controlled trial was conducted from October 2018 to January 2019. School-aged children with a confirmed S. mansoni infection based on Kato-Katz (KK) and point-of-care circulating cathodic antigen (POC-CCA) urine cassette test were randomly assigned to receive either a single or four repeated doses of PZQ, administered at two-week intervals. The primary outcome was the difference in CR between the two treatment arms, measured by triplicate KK thick smears 10 weeks after the first treatment. Secondary outcomes included CR estimated by POC-CCA, IRR by KK and POC-CCA, and safety of repeated PZQ administration. Principal findings During baseline screening, 1,022 children were assessed for eligibility of whom 153 (15%) had a detectable S. mansoni infection, and hence, were randomized to the standard treatment group (N = 70) and the intense treatment group (N = 83). Based on KK, the CR was 42% (95% confidence interval (CI) 31–52%) in the standard treatment group and 86% (95% CI 75–92%) in the intense treatment group. Observed IRR was 72% (95% CI 55–83%) in the standard treatment group and 95% (95% CI 85–98%) in the intense treatment group. The CR estimated by POC-CCA was 18% (95% CI 11–27%) and 36% (95% CI 26–46%) in the standard and intense treatment group, respectively. Repeated PZQ treatment did not result in a higher number of adverse events. Conclusion/significance The observed CR using KK was significantly higher after four repeated treatments compared to a single treatment, without an increase in adverse events. Using POC-CCA, the observed CR was significantly lower than measured by KK, indicating that PZQ may be considerably less efficacious as concluded by KK. Our findings highlight the need for reliable and more accurate diagnostic tools, which are essential for monitoring treatment efficacy, identifying changes in transmission, and accurately quantifying the intensity of infection in distinct populations. In addition, the higher CR in the intense treatment group suggests that more focused and intense PZQ treatment can help to advance schistosomiasis control. Trial registration www.clinicaltrials.govNCT02868385. The previously established efficacy of the widely used drug praziquantel (PZQ) against schistosomiasis might have been overestimated due to the use of inaccurate diagnostic methods. Repeated PZQ treatment at short intervals in areas with ongoing transmission could more effectively target non-susceptible schistosomula as they will have matured into drug susceptible worms within a few weeks. In the current study, we aimed to determine the cure rate (CR) of repeated PZQ, measured by the Kato-Katz (KK) technique and the point-of-care circulating cathodic antigen (POC-CCA) test, respectively. An open-label, randomized controlled trial was conducted assigning 153 school-aged children with a confirmed Schistosoma mansoni infection to two groups, one receiving a single PZQ treatment, while the second group received four repeated PZQ treatments, given at two-week intervals. Based on the KK test, the CR was significantly higher after four repeated treatments compared to a single treatment. When using POC-CCA, a diagnostic method that has not been utilized before in studies assessing the efficacy of four repeated PZQ treatments, the CR was much lower, even after four repeated PZQ treatments. Our results indicate that worms are still present after multiple PZQ treatments and that PZQ might be less efficacious than previously published.
Collapse
Affiliation(s)
- Pytsje T. Hoekstra
- Department of Parasitology, Leiden University Medical Center, Leiden, the Netherlands
- * E-mail:
| | | | - Lisette van Lieshout
- Department of Parasitology, Leiden University Medical Center, Leiden, the Netherlands
| | - Paul L. A. M. Corstjens
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Roula Tsonaka
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, the Netherlands
| | - Rufin K. Assaré
- Centre Suisse de Recherches Scientifiques en Côte d’Ivoire, Abidjan, Côte d’Ivoire
- Unité de Formation et de Recherche Biosciences, Université Félix Houphouët-Boigny, Abidjan, Côte d’Ivoire
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Kigbafori D. Silué
- Centre Suisse de Recherches Scientifiques en Côte d’Ivoire, Abidjan, Côte d’Ivoire
- Unité de Formation et de Recherche Biosciences, Université Félix Houphouët-Boigny, Abidjan, Côte d’Ivoire
| | - Aboulaye Meité
- Programme National de Lutte contre les Maladies Tropicales Négligées à Chimiothérapie Préventive, Ministère de la Santé et de l’Hygiène Publique, Abidjan, Côte d’Ivoire
| | - Eliézer K. N’Goran
- Centre Suisse de Recherches Scientifiques en Côte d’Ivoire, Abidjan, Côte d’Ivoire
- Unité de Formation et de Recherche Biosciences, Université Félix Houphouët-Boigny, Abidjan, Côte d’Ivoire
| | - Yves K. N’Gbesso
- Département d’Agboville, Centre de Santé Urbain d’Azaguié, Azaguié, Côte d’Ivoire
| | - Abena S. Amoah
- Department of Parasitology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Population Health, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Malawi Epidemiology and Intervention Research Unit, Chilumba, Karonge District, Malawi
| | - Meta Roestenberg
- Department of Parasitology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, the Netherlands
| | - Stefanie Knopp
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Jürg Utzinger
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Jean T. Coulibaly
- Centre Suisse de Recherches Scientifiques en Côte d’Ivoire, Abidjan, Côte d’Ivoire
- Unité de Formation et de Recherche Biosciences, Université Félix Houphouët-Boigny, Abidjan, Côte d’Ivoire
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Govert J. van Dam
- Department of Parasitology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
38
|
Recent advances in nucleic acid-based methods for detection of helminth infections and the perspective of biosensors for future development. Parasitology 2019; 147:383-392. [PMID: 31840627 DOI: 10.1017/s0031182019001665] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Pathogenic helminth infections are responsible for severe health problems and economic losses worldwide. Timely and accurate diagnosis of helminth infections is critical for adopting suitable strategies for pathogen control. Here, we review recent advances in nucleic acid-based diagnostic methods, including polymerase chain reaction, quantitative qPCR, loop-mediated isothermal amplification and recombinase polymerase amplification, and discuss their advantages and disadvantages for diagnosing helminth infections. In addition, we highlight recent advances in biosensors for the detection of nucleic acid biomarkers that can potentially be used for the diagnosis of helminth infection.
Collapse
|
39
|
García-Bernalt Diego J, Fernández-Soto P, Crego-Vicente B, Alonso-Castrillejo S, Febrer-Sendra B, Gómez-Sánchez A, Vicente B, López-Abán J, Muro A. Progress in loop-mediated isothermal amplification assay for detection of Schistosoma mansoni DNA: towards a ready-to-use test. Sci Rep 2019; 9:14744. [PMID: 31611563 PMCID: PMC6791938 DOI: 10.1038/s41598-019-51342-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 09/27/2019] [Indexed: 12/30/2022] Open
Abstract
Schistosomiasis is one of the most prevalent Neglected Tropical Disease, affecting approximately 250 million people worldwide. Schistosoma mansoni is the most important species causing human intestinal schistosomiasis. Despite significant efforts in recent decades, the global disease burden of schistosomiasis remains extremely high. This could partly be attributed to the absence of accurate diagnostic tools, primarily in endemic areas. Loop-mediated isothermal amplification (LAMP) is increasingly used in molecular diagnostics as a field-friendly alternative to many other complex molecular methods and it has been proposed as an ideal candidate for revolutionizing point-of-care molecular diagnostics. In a previous work, a LAMP-based method to detect S. mansoni DNA (SmMIT-LAMP) was developed by our research group for early diagnosis of active schistosomiasis in an experimental infection murine model. The SmMIT-LAMP has been further successfully evaluated in both human stool and snail samples and, recently, in human urine samples. In this study, we developed an important improvement for SmMIT-LAMP molecular assay, transforming it into a cold maintenance dry format suitable for potentially manufacturing as kit for ready-to-use for schistosomiasis diagnosis. This procedure could be applied to create dry LAMP kits for a laboratory setting and for diagnostic applications for other neglected tropical diseases.
Collapse
Affiliation(s)
- J García-Bernalt Diego
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, Salamanca, Spain
| | - P Fernández-Soto
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, Salamanca, Spain.
| | - B Crego-Vicente
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, Salamanca, Spain
| | - S Alonso-Castrillejo
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, Salamanca, Spain
| | - B Febrer-Sendra
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, Salamanca, Spain
| | - A Gómez-Sánchez
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, Salamanca, Spain
| | - B Vicente
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, Salamanca, Spain
| | - J López-Abán
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, Salamanca, Spain
| | - A Muro
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, Salamanca, Spain.
| |
Collapse
|
40
|
Blanton RE. Population Structure and Dynamics of Helminthic Infection: Schistosomiasis. Microbiol Spectr 2019; 7:10.1128/microbiolspec.ame-0009-2019. [PMID: 31325285 PMCID: PMC6650164 DOI: 10.1128/microbiolspec.ame-0009-2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Indexed: 11/20/2022] Open
Abstract
While disease and outbreaks are mainly clonal for bacteria and other asexually reproducing organisms, sexual reproduction in schistosomes and other helminths usually results in unique individuals. For sexually reproducing organisms, the traits conserved in clones will instead be conserved in the group of organisms that tends to breed together, the population. While the same tools are applied to characterize DNA, how results are interpreted can be quite different at times (see another article in this collection, http://www.asmscience.org/content/journal/microbiolspec/10.1128/microbiolspec.AME-0002-2018). It is difficult to know what the real effect any control program has on the parasite population without assessing the health of this population, how they respond to the control measure, and how they recover, if they do. This review, part of the Microbiology Spectrum Curated Collection: Advances in Molecular Epidemiology of Infectious Diseases, concentrates on one approach using pooled samples to study schistosome populations and shows how this and other approaches have contributed to our understanding of this parasite family's biology and epidemiology. *This article is part of a curated collection.
Collapse
Affiliation(s)
- Ronald E Blanton
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University, Cleveland, OH 44120
| |
Collapse
|
41
|
Cavalcanti MG, Cunha AFA, Peralta JM. The Advances in Molecular and New Point-of-Care (POC) Diagnosis of Schistosomiasis Pre- and Post-praziquantel Use: In the Pursuit of More Reliable Approaches for Low Endemic and Non-endemic Areas. Front Immunol 2019; 10:858. [PMID: 31191512 PMCID: PMC6546849 DOI: 10.3389/fimmu.2019.00858] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 04/03/2019] [Indexed: 12/22/2022] Open
Abstract
Like soil-transmitted helminth infections, schistosomiasis is an important neglected tropical disease (NTD) related to poverty with a major impact on public health in developing countries. Diagnosis of active infection is crucial for surveillance of controlled or post-elimination schistosomiasis areas. In addition, the use of conventional diagnostic tools in non-exposed populations (such as travelers) results in misdiagnoses in the prepatent period of infection. Also, the accuracy of standard tests applied in low-endemicity areas (LEAs) decreases after several rounds of treatment. We aimed to determine whether it would be necessary to replace schistosomiasis conventional diagnostic tests such as parasitological methods in LEAs. Also, we evaluate the use of new tools in non-endemic areas. Reliable, cheap and easy-to-use diagnostic tools are needed to respond to the demands of a new era of elimination and eradication of schistosomiasis. To this end, molecular diagnosis-including nucleic acid-based assays (loop-mediated isothermal amplification, polymerase chain reaction) and circulating cathodic and anodic antigen detection tests have become promising strategies. In this review, we attempt to address the use of alternative diagnostic tests for active infection detection and drug-monitoring after specific schistosomiasis treatment.
Collapse
Affiliation(s)
- Marta G Cavalcanti
- Serviço de Doenças Infecciosas e Parasitárias, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Departmento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Aline Fernandes Araujo Cunha
- Departmento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - José Mauro Peralta
- Departmento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
42
|
Sousa MS, van Dam GJ, Pinheiro MCC, de Dood CJ, Peralta JM, Peralta RHS, Daher EDF, Corstjens PLAM, Bezerra FSM. Performance of an Ultra-Sensitive Assay Targeting the Circulating Anodic Antigen (CAA) for Detection of Schistosoma mansoni Infection in a Low Endemic Area in Brazil. Front Immunol 2019; 10:682. [PMID: 31019510 PMCID: PMC6458306 DOI: 10.3389/fimmu.2019.00682] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 03/13/2019] [Indexed: 12/03/2022] Open
Abstract
Techniques with high sensitivity and specificity are required for an accurate diagnosis in low-transmission settings, where the conventional parasitological methods are insensitive. We determined the accuracy of an up-converting phosphor-lateral flow circulating anodic antigen (UCP-LF CAA) assay in urine and serum for Schistosoma mansoni diagnosis in low-prevalence settings in Ceará, Brazil, before and after praziquantel treatment. Clinical samples of a total of 258 individuals were investigated by UCP-LF CAA, point-of-care-circulating cathodic antigen (POC-CCA), soluble worm antigen preparation (SWAP)-ELISA and Kato-Katz (KK); a selection of 128 stools by real-time PCR technique. Three and 6-weeks after treatment, samples were collected and evaluated by detection Schistosoma circulating antigens (CAA and CCA). The UCP-LF CAA assays detected 80 positives (31%) with urine and 82 positives (31.8%) with serum. The urine POC-CCA and serum SWAP-ELISA assays detected 30 (11.6%) and 107 (40.7%) positives, respectively. The Kato-Katz technique revealed only 4 positive stool samples (1.6%). Among the 128 individuals with complete data records, 19 cases were identified by PCR (14.8%); Sensitivities and specificities of the UCP-LF CAA assays, determined versus a combined reference standard based on CCA/KK/PCR positivity, ranged from 60-68% to 68-77%, respectively. In addition only for comparative purposes, sensitivities of the different assays were determined vs. a comparative reference based on CAA/KK/PCR positivity, showing the highest sensitivity for the urine CAA assay (80%), followed by the serum CAA (70.9%), SWAP-ELISA (43.6%), PCR (34.5%), POC-CCA (29.1%), whilst triplicate Kato-Katz thick smears had a very low sensitivity (3.6%). CAA concentrations were higher in serum than in urine and were significantly correlated. There was a significant decrease in urine and serum CAA levels 3 and 6-weeks after treatment. The UCP-LF CAA assays revealed 33 and 28 S. mansoni-infected patients at the 3- and 6-week post-treatment follow-up, respectively. The UCP-LF CAA assays show high sensitivity for the diagnosis of S. mansoni in low-endemicity settings. It detects a considerably higher number of infections than microscopy, POC-CCA or PCR. Also it shows to be very useful for evaluating cure rates after treatment. Hence, the UCP-LF CAA assay is a robust and promising diagnostic approach in low-transmission settings.
Collapse
Affiliation(s)
- Mariana Silva Sousa
- Medical Sciences Post Graduate Program, Department of Internal Medicine, School of Medicine, Federal University of Ceará, Fortaleza, Brazil
- Parasitology and Mollusks Biology Research Laboratory, Department of Clinical Analysis and Toxicology, Federal University of Ceará, Fortaleza, Brazil
| | - Govert J. van Dam
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Marta Cristhiany Cunha Pinheiro
- Parasitology and Mollusks Biology Research Laboratory, Department of Clinical Analysis and Toxicology, Federal University of Ceará, Fortaleza, Brazil
| | - Claudia J. de Dood
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Jose Mauro Peralta
- Department of Immunology, Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Elizabeth de Francesco Daher
- Medical Sciences Post Graduate Program, Department of Internal Medicine, School of Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - Paul L. A. M. Corstjens
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Fernando Schemelzer Moraes Bezerra
- Medical Sciences Post Graduate Program, Department of Internal Medicine, School of Medicine, Federal University of Ceará, Fortaleza, Brazil
- Parasitology and Mollusks Biology Research Laboratory, Department of Clinical Analysis and Toxicology, Federal University of Ceará, Fortaleza, Brazil
- Pathology Post Graduate Program, Department of Pathology and Legal Medicine, Federal University of Ceará, Fortaleza, Brazil
| |
Collapse
|
43
|
Silva-Moraes V, Shollenberger LM, Siqueira LMV, Castro-Borges W, Harn DA, Grenfell RFQE, Rabello ALT, Coelho PMZ. Diagnosis of Schistosoma mansoni infections: what are the choices in Brazilian low-endemic areas? Mem Inst Oswaldo Cruz 2019; 114:e180478. [PMID: 30942278 PMCID: PMC6440364 DOI: 10.1590/0074-02760180478] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 02/21/2019] [Indexed: 12/25/2022] Open
Abstract
The population of Brazil is currently characterised by many individuals harbouring low-intensity Schistosoma mansoni infections. The Kato-Katz technique is the diagnostic method recommended by the World Health Organization (WHO) to assess these infections, but this method is not sensitive enough in the context of low egg excretion. In this regard, potential alternatives are being employed to overcome the limits of the Kato-Katz technique. In the present review, we evaluated the performance of parasitological and immunological approaches adopted in Brazilian areas. Currently, the diagnostic choices involve a combination of strategies, including the utilisation of antibody methods to screen individuals and then subsequent confirmation of positive cases by intensive parasitological investigations.
Collapse
Affiliation(s)
- Vanessa Silva-Moraes
- Fundação Oswaldo Cruz-Fiocruz, Instituto René Rachou, Biologia do Schistosoma mansoni e sua interação com o hospedeiro, Belo Horizonte, MG, Brasil
- University of Georgia, College of Veterinary Medicine, Department of Infectious Diseases, Athens, GA, United States of America
| | - Lisa M Shollenberger
- Fundação Oswaldo Cruz-Fiocruz, Instituto René Rachou, Biologia do Schistosoma mansoni e sua interação com o hospedeiro, Belo Horizonte, MG, Brasil
- Old Dominion University, Department of Biological Sciences, Norfolk, VA, United States of America
| | - Liliane Maria Vidal Siqueira
- Fundação Oswaldo Cruz-Fiocruz, Instituto René Rachou, Biologia do Schistosoma mansoni e sua interação com o hospedeiro, Belo Horizonte, MG, Brasil
| | - William Castro-Borges
- Universidade Federal de Ouro Preto, Laboratório de Enzimologia e Proteômica, Ouro Preto, MG, Brasil
| | - Donald A Harn
- University of Georgia, College of Veterinary Medicine, Department of Infectious Diseases, Athens, GA, United States of America
| | - Rafaella Fortini Queiroz e Grenfell
- Fundação Oswaldo Cruz-Fiocruz, Instituto René Rachou, Biologia do Schistosoma mansoni e sua interação com o hospedeiro, Belo Horizonte, MG, Brasil
- University of Georgia, College of Veterinary Medicine, Department of Infectious Diseases, Athens, GA, United States of America
| | - Ana Lucia Teles Rabello
- Fundação Oswaldo Cruz-Fiocruz, Instituto René Rachou, Grupo de Pesquisas Clínicas e Políticas Públicas em Doenças Infecciosas e Parasitárias, Belo Horizonte, MG, Brasil
| | - Paulo Marcos Zech Coelho
- Fundação Oswaldo Cruz-Fiocruz, Instituto René Rachou, Biologia do Schistosoma mansoni e sua interação com o hospedeiro, Belo Horizonte, MG, Brasil
| |
Collapse
|
44
|
Fernández-Soto P, Gandasegui J, Carranza Rodríguez C, Pérez-Arellano JL, Crego-Vicente B, García-Bernalt Diego J, López-Abán J, Vicente B, Muro A. Detection of Schistosoma mansoni-derived DNA in human urine samples by loop-mediated isothermal amplification (LAMP). PLoS One 2019; 14:e0214125. [PMID: 30913249 PMCID: PMC6435178 DOI: 10.1371/journal.pone.0214125] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 03/07/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Schistosoma mansoni is the main species causing hepatic and intestinal schistosomiasis in Sub-Saharan Africa, and it is the only species in South America. Adult stages of the parasite reside in the mesenteric venous plexus of infected hosts, and eggs are shed in feces. Collecting patient stool samples for S. mansoni diagnostic purposes is difficult in large-scale field trials. Urine samples would be an alternative approach for molecular S. mansoni detection since they have several advantages over stool samples, including better handling, management and storage. Additionally, loop-mediated isothermal amplification (LAMP) technology is a powerful molecular diagnostic tool for infectious diseases, particularly under field conditions in developing countries. The present study aimed to assess the effectiveness of our previously developed LAMP assay (SmMIT-LAMP) for S. mansoni-specific detection in clinical urine samples. METHODOLOGY/PRINCIPAL FINDINGS The sensitivity of SmMIT-LAMP in urine was established in simulated fresh human urine samples artificially spiked with genomic DNA from S. mansoni. LAMP for 120 min instead of 60 min improved the sensitivity, reaching values of 0.01 fg/μL. A set of well-defined frozen stored human urine samples collected from Sub-Saharan immigrant patients was selected from a biobank to evaluate the diagnostic validity of SmMIT-LAMP. The set included urine samples from patients with microscopy-confirmed infections with S. mansoni, S. haematobium and other nonschistosome parasites, as well as urine samples from patients with microscopy-negative eosinophilia without a confirmed diagnosis. The SmMIT-LAMP was incubated for 60 and 120 min. A longer incubation time was shown to increase the LAMP-positive results in patient urine samples. We also tested urine samples from mice experimentally infected with S. mansoni, and LAMP-positive results were obtained from the third week after infection. A real-time LAMP assay was also performed with three individual urine samples. CONCLUSIONS/SIGNIFICANCE The SmMIT-LAMP could effectively detect S. mansoni DNA in mouse urine samples and produced promising results for human clinical samples. The detection of S. mansoni DNA in mouse urine samples from the third week after infection indicates that early diagnosis of active S. mansoni infection is possible using urine as a source of DNA. Further studies are still needed, but our method could be used as a promising molecular tool applicable to urine samples to diagnose human intestinal schistosomiasis caused by S. mansoni.
Collapse
Affiliation(s)
- Pedro Fernández-Soto
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, Salamanca, Spain
- * E-mail: (PFS); (AM)
| | - Javier Gandasegui
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, Salamanca, Spain
| | - Cristina Carranza Rodríguez
- Department of Medical and Surgical Sciences, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
- Unit of Infectious Diseases, Maternal and Child Insular University Hospital Complex, Las Palmas de Gran Canaria, Spain
| | - José Luis Pérez-Arellano
- Department of Medical and Surgical Sciences, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
- Unit of Infectious Diseases, Maternal and Child Insular University Hospital Complex, Las Palmas de Gran Canaria, Spain
| | - Beatriz Crego-Vicente
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, Salamanca, Spain
| | - Juan García-Bernalt Diego
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, Salamanca, Spain
| | - Julio López-Abán
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, Salamanca, Spain
| | - Belén Vicente
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, Salamanca, Spain
| | - Antonio Muro
- Infectious and Tropical Diseases Research Group (e-INTRO), Biomedical Research Institute of Salamanca-Research Centre for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, Salamanca, Spain
- * E-mail: (PFS); (AM)
| |
Collapse
|
45
|
Zhao X, Gu K, Zeng Q, Gao L, Cheng D. Diagnostic Value of SjR2 Gene in Colonic Tissue from Schistosoma Japonicum Infected Hosts. Med Sci Monit 2019; 25:427-435. [PMID: 30641544 PMCID: PMC6342060 DOI: 10.12659/msm.912997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The prevalence and intensity of schistosomiasis infection in China has decreased markedly in recent years. Therefore, more accurate methods are critically needed to ensure further control of low-intensity schistosomiasis infection. For chronic schistosomiasis patients, the detection of schistosome eggs in colorectal mucosa tissues is commonly used. This work aimed to explore differences in sensitivity of the Schistosoma japonicum (S. japonicum) retrotransposon (SjR2) gene in colon tissue from S. japonicum infected hosts and to develop an ideal method for genetic diagnosis of low-intensity schistosomiasis. MATERIAL AND METHODS Serum and colon samples were collected from mice at different time points, either post-infection (PI) or post-treatment (PT). Colorectal biopsy specimens from outpatients with schistosomiasis were collected. All samples from mice and patients, including serum as well as colon tissue containing eggs and tissue containing no eggs, were examined using the polymerase chain reaction technique. RESULTS The results showed that the SjR2 gene could be detected in all colon tissue containing at least one egg, except for when the egg was completely degraded. The positive rate of gene detection in serum was low. The results from egg-free colon tissue from around the eggs were more consistent with the actual parasitism in vivo. CONCLUSIONS The results indicate that detection of the gene in colon tissue located within a 0.5 cm distance from the eggs would be a practical and ideal method for genetic diagnosis of schistosomiasis. After the colorectal biopsy, this method can be a sensitive assisted examination to the clinical diagnosis of low-intensity schistosomiasis infection.
Collapse
Affiliation(s)
- Xu Zhao
- Department of Parasitology, Xiangya School of Medicine, Central South University (CSU), Changsha, Hunan, China (mainland)
| | - Kongzhen Gu
- Faculty of Laboratory Medicine, Xiangya School of Medicine, Central South University (CSU), Changsha, Hunan, China (mainland)
| | - Qingren Zeng
- Department of Parasitology, Xiangya School of Medicine, Central South University (CSU), Changsha, Hunan, China (mainland)
| | - Lu Gao
- Department of Parasitology, Xiangya School of Medicine, Central South University (CSU), Changsha, Hunan, China (mainland)
| | - Da Cheng
- Department of Parasitology, Xiangya School of Medicine, Central South University (CSU), Changsha, Hunan, China (mainland)
| |
Collapse
|
46
|
Mutombo PN, Man NWY, Nejsum P, Ricketson R, Gordon CA, Robertson G, Clements ACA, Chacón-Fonseca N, Nissapatorn V, Webster JP, McLaws ML. Diagnosis and drug resistance of human soil-transmitted helminth infections: A public health perspective. ADVANCES IN PARASITOLOGY 2019; 104:247-326. [PMID: 31030770 DOI: 10.1016/bs.apar.2019.02.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Soil-transmitted helminth (STH) infections represent a major public health problem globally, particularly among socio-economically disadvantaged populations. Detection of STH infections is often challenging, requiring a combination of diagnostic techniques to achieve acceptable sensitivity and specificity, particularly in low infection-intensity situations. The microscopy-based Kato-Katz remains the most widely used method but has low sensitivity in the detection of, for instance, Strongyloides spp. infections, among others. Antigen/antibody assays can be more sensitive but are parasite species-specific. Highly sensitive PCR methods have been developed to be multiplexed to allow multi-species detection. Novel diagnostic tests for all STH species are needed for effective monitoring, evaluation of chemotherapy programmes, and to assess the potential emergence of parasite resistance. This review discusses available diagnostic methods for the different stages of STH control programmes, which vary in sensitivity and spectrum of detection requirements, and tools to evaluate drug efficacy and resistance.
Collapse
Affiliation(s)
- Polydor Ngoy Mutombo
- School of Public Health and Community Medicine, UNSW Medicine, UNSW, Sydney, NSW, Australia; Centre for Biomedical Research, Burnet Institute, Melbourne, VIC, Australia.
| | - Nicola W Y Man
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Peter Nejsum
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Robert Ricketson
- Hale O'mana'o Biomedical Research, Division of Emerging Pathogens, Edmond, OK, United States
| | - Catherine A Gordon
- Molecular Parasitology Laboratory, Infectious Diseases Division, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Gemma Robertson
- Public and Environmental Health, Forensic and Scientific Services, Department of Health, Brisbane, QLD, Australia
| | | | - Nathalie Chacón-Fonseca
- Soil-Transmitted Helminths Section, Tropical Medicine Institute, Tropical Medicine Department, Faculty of Medicine, Central University of Venezuela, Caracas, Venezuela
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, Thailand; Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Nakhon Si Thammarat, Thailand
| | - Joanne P Webster
- Centre for Emerging, Endemic and Exotic Diseases (CEEED), Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, London, United Kingdom
| | - Mary-Louise McLaws
- School of Public Health and Community Medicine, UNSW Medicine, UNSW, Sydney, NSW, Australia.
| |
Collapse
|
47
|
Repeated doses of Praziquantel in Schistosomiasis Treatment (RePST) - single versus multiple praziquantel treatments in school-aged children in Côte d'Ivoire: a study protocol for an open-label, randomised controlled trial. BMC Infect Dis 2018; 18:662. [PMID: 30547750 PMCID: PMC6295059 DOI: 10.1186/s12879-018-3554-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 11/23/2018] [Indexed: 11/30/2022] Open
Abstract
Background Large scale administration of the anthelminthic drug praziquantel (PZQ) to at-risk populations is the cornerstone of schistosomiasis control, although persisting high prevalence of infections in some areas and growing concerns of PZQ resistance have revealed the limitations of this strategy. Most studies assessing PZQ efficacy have used relatively insensitive parasitological diagnostics, such as the Kato-Katz (KK) and urine-filtration methods, thereby overestimating cure rates (CRs). This study aims to determine the efficacy of repeated PZQ treatments against Schistosoma mansoni infection in school-aged children in Côte d’Ivoire using the traditional KK technique, as well as more sensitive antigen- and DNA-detection methods. Methods An open-label, randomised controlled trial will be conducted in school-aged children (5 to 18 years) from the region of Taabo, Côte d’Ivoire, an area endemic for S. mansoni. This 8-week trial includes four two-weekly standard doses of PZQ in the “intense treatment” intervention group and one standard dose of PZQ in the “standard treatment” control group. The efficacy of PZQ will be evaluated in stool samples using the KK technique and real-time PCR as well as in urine using the point-of-care circulating cathodic antigen test and the up-converting phosphor, lateral flow, circulating anodic antigen assay. The primary outcome of the study will be the difference in CR of intense versus standard treatment with PZQ on individuals with a confirmed S. mansoni infection measured by KK. Secondary outcomes include the difference in CR and intensity reduction rate between the intense and standard treatment groups as measured by the other diagnostic tests, as well as the accuracy of the different diagnostic tests, and the safety of PZQ. Discussion This study will provide data on the efficacy of repeated PZQ treatment on the clearance of S. mansoni as measured by several diagnostic techniques. These findings will inform future mass drug administration policy and shed light on position of novel diagnostic tools to evaluate schistosomiasis control strategies. Trial registration The study is registered at EudraCT (2016–003017-10, date of registration: 22 July 2016) and (NCT02868385, date of registration: 16 August 2016). Electronic supplementary material The online version of this article (10.1186/s12879-018-3554-2) contains supplementary material, which is available to authorized users.
Collapse
|
48
|
Evaluation of a new multiplex PCR assay (ParaGENIE G-Amoeba Real-Time PCR kit) targeting Giardia intestinalis, Entamoeba histolytica and Entamoeba dispar/Entamoeba moshkovskii from stool specimens: evidence for the limited performances of microscopy-based approach for amoeba species identification. Clin Microbiol Infect 2018; 24:1205-1209. [DOI: 10.1016/j.cmi.2018.02.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 02/04/2018] [Accepted: 02/06/2018] [Indexed: 11/19/2022]
|
49
|
Developing a real-time PCR assay based on multiplex high-resolution melt-curve analysis: a pilot study in detection and discrimination of soil-transmitted helminth and schistosome species. Parasitology 2018; 145:1733-1738. [PMID: 30152296 DOI: 10.1017/s0031182018001361] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
With the push towards control and elimination of soil-transmitted helminthiasis and schistosomiasis in low- and middle-income countries, there is a need to develop alternative diagnostic assays that complement the current in-country resources, preferably at a lower cost. Here, we describe a novel high-resolution melt (HRM) curve assay with six PCR primer pairs, designed to sub-regions of the nuclear ribosomal locus. Used within a single reaction and dye detection channel, they are able to discriminate Ancylostoma duodenale, Necator americanus, Strongyloides stercoralis, Ascaris lumbricoides, Trichuris trichiuria and Schistosoma spp. by HRM curve analysis. Here we describe the primers and the results of a pilot assessment whereby the HRM assay was tested against a selection of archived fecal samples from Ghanaian children as characterized by Kato-Katz and real-time PCR analysis with species-specific TaqMan hydrolysis probes. The resulting sensitivity and specificity of the HRM was 80 and 98.6% respectively. We judge the assay to be appropriate in modestly equipped and resourced laboratories. This method provides a potentially cheaper alternative to the TaqMan method for laboratories in lower resource settings. However, the assay requires a more extensive assessment as the samples used were not representative of all target organisms.
Collapse
|
50
|
Abstract
Schistosomiasis (bilharzia) is a neglected tropical disease caused by parasitic flatworms (blood flukes) of the genus Schistosoma, with considerable morbidity in parts of the Middle East, South America, Southeast Asia and, particularly, in sub-Saharan Africa. Infective larvae grow in an intermediate host (fresh-water snails) before penetrating the skin of the definitive human host. Mature adult worms reside in the mesenteric (Schistosoma mansoni and Schistosoma japonicum) or pelvic (Schistosoma haematobium) veins, where female worms lay eggs, which are secreted in stool or urine. Eggs trapped in the surrounding tissues and organs, such as the liver and bladder, cause inflammatory immune responses (including granulomas) that result in intestinal, hepato-splenic or urogenital disease. Diagnosis requires the detection of eggs in excreta or worm antigens in the serum, and sensitive, rapid, point-of-care tests for populations living in endemic areas are needed. The anti-schistosomal drug praziquantel is safe and efficacious against adult worms of all the six Schistosoma spp. infecting humans; however, it does not prevent reinfection and the emergence of drug resistance is a concern. Schistosomiasis elimination will require a multifaceted approach, including: treatment; snail control; information, education and communication; improved water, sanitation and hygiene; accurate diagnostics; and surveillance-response systems that are readily tailored to social-ecological settings.
Collapse
Affiliation(s)
- Donald P McManus
- Immunology Department, QIMR Berghofer Medical Research Institute, Herston, Brisbane, Queensland, Australia.
| | - David W Dunne
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Moussa Sacko
- Department of Diagnostic and Biomedical Research, Institut National de Recherche en Santé Publique, Bamako, Mali
| | - Jürg Utzinger
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Birgitte J Vennervald
- Department of Veterinary and Animal Science, University of Copenhagen, Copenhagen, Denmark
| | - Xiao-Nong Zhou
- National Institute of Parasitic Diseases, Shanghai, People's Republic of China
| |
Collapse
|