1
|
Kalbskopf V, Aželytė J, Palinauskas V, Hellgren O. Genomic variation in Plasmodium relictum (lineage SGS1) and its implications for avian malaria infection outcomes: insights from experimental infections and genome-wide analysis. Malar J 2024; 23:260. [PMID: 39210339 PMCID: PMC11360878 DOI: 10.1186/s12936-024-05061-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/27/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND The globally transmitted avian malaria parasite Plasmodium relictum (lineage SGS1) has been found to infect hundreds of different bird species with differences in infection outcomes ranging from more or less latent to potentially mortal. However, to date basic knowledge about the links between genetic differentiation and variation in infection outcome within this single malaria parasite species is lacking. METHODS In this study, two different isolates of SGS1, obtained in the wild from two different host species, were used to investigate differences in their development in the blood and virulence in the experimentally infected canaries. Simultaneously, 258 kb of the parasite genome was screened for genetic differences using parasite mRNA and compared between experimental groups. RESULTS The two isolates showed differences in development and caused mortality as well as effects on the blood parameters of their hosts. Although previous studies using single genes have shown very limited within lineage genetic diversity in the European population of SGS1, 226 SNPs were found across 322 genes, which separated the two experimental groups with a total of 23 SNPs that were fixed in either of the experimental groups. Moreover, genetic variation was found within each experimental group, hinting that each avian malaria infection harbours standing genetic variation that might be selected during each individual infection episode. CONCLUSION These results highlight extensive genetic variation within the SGS1 population that is transferred into individual infections, thus adding to the complexity of the infection dynamics seen in these host-parasite interactions. Simultaneously, the results open up the possibility of understanding how genetic variation within the parasite populations is linked to the commonly observed differences in infection outcomes, both in experimental settings and in the wild.
Collapse
Affiliation(s)
- Victor Kalbskopf
- Evolutionary Ecology and Infection biology, Department of Biology, Lund University, Lund, Sweden
| | - Justė Aželytė
- Nature Research Centre, Akademijos 2, 08412, Vilnius, Lithuania
| | | | - Olof Hellgren
- Evolutionary Ecology and Infection biology, Department of Biology, Lund University, Lund, Sweden.
| |
Collapse
|
2
|
Das R, Vashisht K, Savargaonkar D, Mercy Aparna L, Nayak A, Pandey KC. Genetic diversity of the PvMSP-3α gene in Plasmodium vivax isolates circulating in the National Capital Region (NCR) of India. Parasite Epidemiol Control 2024; 26:e00362. [PMID: 38975253 PMCID: PMC11225027 DOI: 10.1016/j.parepi.2024.e00362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 05/03/2024] [Accepted: 06/08/2024] [Indexed: 07/09/2024] Open
Abstract
Malaria is still a public health problem in tropical countries like India; major malaria parasite species are Plasmodium falciparum and P. vivax. Of which, P. vivax is responsible for ∼40% of the malaria burden at least in the Indian scenario. Unfortunately, there is limited data on the population structure and genetic diversity of P. vivax parasites in India. In this study, we investigated the genetic diversity of P. vivax strains in the South-west district, Delhi and, Nuh district, Haryana [National Capital Region (NCR)], using a polymorphic marker- P. vivax merozoite surface protein-3α (PvMSP-3α) gene. Dried blood spots from microscopically confirmed P. vivax patients were used for investigation of the PvMSP-3α gene. PCR-RFLP was performed on the PvMSP-3α gene to investigate the genotypes and allelic variability with HhaI and AluI restriction enzymes. In total, 40 successfully PCR amplified PvMSP-3α gene segments were subjected to RFLP analysis. Amplified products showed three different base pair size variations viz. genotype A in 31(77.5%), genotype B in 4(10%) and genotype C in 5(12.5%) P. vivax specimens. RFLP with HhaI and AluI revealed 17 (H1-H17) and 25 (A1-A25) allelic variants, respectively. Interestingly, two similar sub-allelic variants, ie. H8 (with HhaI), and A4 (with AluI) clustered within the rural area of Nuh district, Haryana in two samples. With this study, we propose to commission such type of genetic diversity analysis of P. vivax to investigate the circulating genotypes of the parasites from distinct geographical locations across India, that can have significant implications in understanding the population structures of P. vivax.
Collapse
Affiliation(s)
- Ram Das
- ICMR–National Institute of Malaria Research, New Delhi, India
| | - Kapil Vashisht
- ICMR–National Institute of Malaria Research, New Delhi, India
| | | | | | - Ajay Nayak
- ICMR–National Institute of Malaria Research, New Delhi, India
| | | |
Collapse
|
3
|
Anstey NM, Tham WH, Shanks GD, Poespoprodjo JR, Russell BM, Kho S. The biology and pathogenesis of vivax malaria. Trends Parasitol 2024; 40:573-590. [PMID: 38749866 DOI: 10.1016/j.pt.2024.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/19/2024] [Accepted: 04/19/2024] [Indexed: 07/06/2024]
Abstract
Plasmodium vivax contributes significantly to global malaria morbidity. Key advances include the discovery of pathways facilitating invasion by P. vivax merozoites of nascent reticulocytes, crucial for vaccine development. Humanized mouse models and hepatocyte culture systems have enhanced understanding of hypnozoite biology. The spleen has emerged as a major reservoir for asexual vivax parasites, replicating in an endosplenic life cycle, and contributing to recurrent and chronic infections, systemic inflammation, and anemia. Splenic accumulation of uninfected red cells is the predominant cause of anemia. Recurring and chronic infections cause progressive anemia, malnutrition, and death in young children in high-transmission regions. Endothelial activation likely contributes to vivax-associated organ dysfunction. The many recent advances in vivax pathobiology should help guide new approaches to prevention and management.
Collapse
Affiliation(s)
- Nicholas M Anstey
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia.
| | - Wai-Hong Tham
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia; Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - G Dennis Shanks
- School of Public Health, University of Queensland, Brisbane, Queensland, Australia
| | - Jeanne R Poespoprodjo
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia; Centre for Child Health and Department of Child Health, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia; Timika Malaria Research Facility, Papuan Health and Community Development Foundation, Timika, Central Papua, Indonesia; Mimika District Hospital and District Health Authority, Timika, Central Papua, Indonesia
| | - Bruce M Russell
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Steven Kho
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia; Timika Malaria Research Facility, Papuan Health and Community Development Foundation, Timika, Central Papua, Indonesia
| |
Collapse
|
4
|
Lopez-Perez M, Jain A, Davies DH, Vásquez-Jiménez JM, Herrera SM, Oñate J, Felgner PL, Herrera S, Arévalo-Herrera M. Profiling the antibody response of humans protected by immunization with Plasmodium vivax radiation-attenuated sporozoites. Sci Rep 2024; 14:2790. [PMID: 38307966 PMCID: PMC10837454 DOI: 10.1038/s41598-024-53175-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 01/29/2024] [Indexed: 02/04/2024] Open
Abstract
Malaria sterile immunity has been reproducibly induced by immunization with Plasmodium radiation-attenuated sporozoites (RAS). Analyses of sera from RAS-immunized individuals allowed the identification of P. falciparum antigens, such as the circumsporozoite protein (CSP), the basis for the RTS, S and R21Matrix-M vaccines. Similar advances in P. vivax (Pv) vaccination have been elusive. We previously reported 42% (5/12) of sterile protection in malaria-unexposed, Duffy-positive (Fy +) volunteers immunized with PvRAS followed by a controlled human malaria infection (CHMI). Using a custom protein microarray displaying 515 Pv antigens, we found a significantly higher reactivity to PvCSP and one hypothetical protein (PVX_089630) in volunteers protected against P. vivax infection. In mock-vaccinated Fy + volunteers, a strong antibody response to CHMI was also observed. Although the Fy- volunteers immunized with non-irradiated Pv-infected mosquitoes (live sporozoites) did not develop malaria after CHMI, they recognized a high number of antigens, indicating the temporary presence of asexual parasites in peripheral blood. Together, our findings contribute to the understanding of the antibody response to P. vivax infection and allow the identification of novel parasite antigens as vaccine candidates.Trial registration: ClinicalTrials.gov number: NCT01082341.
Collapse
Affiliation(s)
- Mary Lopez-Perez
- Malaria Vaccine and Drug Development Center (MVDC), Cali, Colombia
| | - Aarti Jain
- Department Physiology & Biophysics, Vaccine R&D Center, University of California Irvine, Irvine, CA, USA
| | - D Huw Davies
- Department Physiology & Biophysics, Vaccine R&D Center, University of California Irvine, Irvine, CA, USA
| | | | | | | | - Philip L Felgner
- Department Physiology & Biophysics, Vaccine R&D Center, University of California Irvine, Irvine, CA, USA
| | - Sócrates Herrera
- Malaria Vaccine and Drug Development Center (MVDC), Cali, Colombia
- Caucaseco Scientific Research Center, Cali, Colombia
| | - Myriam Arévalo-Herrera
- Malaria Vaccine and Drug Development Center (MVDC), Cali, Colombia.
- Caucaseco Scientific Research Center, Cali, Colombia.
| |
Collapse
|
5
|
Kritsiriwuthinan K, Ngrenngarmlert W, Patrapuvich R, Phuagthong S, Choosang K. Distinct Allelic Diversity of Plasmodium vivax Merozoite Surface Protein 3-Alpha ( PvMSP-3α) Gene in Thailand Using PCR-RFLP. J Trop Med 2023; 2023:8855171. [PMID: 37599666 PMCID: PMC10438972 DOI: 10.1155/2023/8855171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/20/2023] [Accepted: 08/04/2023] [Indexed: 08/22/2023] Open
Abstract
Considering the importance of merozoite surface proteins (MSPs) as vaccine candidates, this study was conducted to investigate the polymorphism and genetic diversity of Plasmodium vivax merozoite surface protein 3-alpha (PvMSP-3α) in Thailand. To analyze genetic diversity, 118 blood samples containing P. vivax were collected from four malaria-endemic areas in western and southern Thailand. The DNA was extracted and amplified for the PvMSP-3α gene using nested PCR. The PCR products were genotyped by PCR-RFLP with Hha I and Alu I restriction enzymes. The combination patterns of Hha I and Alu I RFLP were used to identify allelic variants. Genetic evaluation and phylogenic analysis were performed on 13 sequences, including 10 sequences from our study and 3 sequences from GenBank. The results revealed three major types of PvMSP-3α, 91.5% allelic type A (∼1.8 kb), 5.1% allelic type B (∼1.5 kb), and 3.4% allelic type C (∼1.2 kb), were detected based on PCR product size with different frequencies. Among all PvMSP-3α, 19 allelic subtypes with Hha I RFLP patterns were distinguished and 6 allelic subtypes with Alu I RFLP patterns were identified. Of these samples, 73 (61%) and 42 (35.6%) samples were defined as monoallelic subtype infection by Hha I and Alu I PCR-RFLP, respectively, whereas 77 (65.3%) samples were determined to be mixed-allelic subtype infection by the combination patterns of Hha I and Alu I RFLP. These results strongly indicate that PvMSP-3α gene is highly polymorphic, particularly in blood samples collected from the Thai-Myanmar border area (the western part of Thailand). The combination patterns of Hha I and Alu I RFLP of the PvMSP-3α gene could be considered for use as molecular epidemiologic markers for genotyping P. vivax isolates in Thailand.
Collapse
Affiliation(s)
| | - Warunee Ngrenngarmlert
- Department of Community Medical Technology, Faculty of Medical Technology, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Rapatbhorn Patrapuvich
- Drug Research Unit for Malaria (DRUM), Center of Excellence in Malaria Research, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | | | - Kantima Choosang
- Faculty of Medical Technology, Rangsit University, Pathumthani 12000, Thailand
| |
Collapse
|
6
|
Dabiri H, Safarzadeh Kozani P, Habibi Anbouhi M, Mirzaee Godarzee M, Haddadi MH, Basiri M, Ziaei V, Sadeghizadeh M, Hajizadeh Saffar E. Site-specific transgene integration in chimeric antigen receptor (CAR) T cell therapies. Biomark Res 2023; 11:67. [PMID: 37403182 DOI: 10.1186/s40364-023-00509-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 06/09/2023] [Indexed: 07/06/2023] Open
Abstract
Chimeric antigen receptor (CAR) T cells and natural killer (NK) cells are genetically engineered immune cells that can detect target antigens on the surface of target cells and eliminate them following adoptive transfer. Recent progress in CAR-based therapies has led to outstanding clinical success in certain patients with leukemias and lymphomas and offered therapeutic benefits to those resistant to conventional therapies. The universal approach to stable CAR transgene delivery into the T/NK cells is the use of viral particles. Such approaches mediate semi-random transgene insertions spanning the entire genome with a high preference for integration into sites surrounding highly-expressed genes and active loci. Regardless of the variable CAR expression level based on the integration site of the CAR transgene, foreign integrated DNA fragments may affect the neighboring endogenous genes and chromatin structure and potentially change a transduced T/NK cell behavior and function or even favor cellular transformation. In contrast, site-specific integration of CAR constructs using recent genome-editing technologies could overcome the limitations and disadvantages of universal random gene integration. Herein, we explain random and site-specific integration of CAR transgenes in CAR-T/NK cell therapies. Also, we tend to summarize the methods for site-specific integration as well as the clinical outcomes of certain gene disruptions or enhancements due to CAR transgene integration. Also, the advantages and limitations of using site-specific integration methods are discussed in this review. Ultimately, we will introduce the genomic safe harbor (GSH) standards and suggest some appropriate safety prospects for CAR integration in CAR-T/NK cell therapies.
Collapse
Affiliation(s)
- Hamed Dabiri
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Pooria Safarzadeh Kozani
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Mohadeseh Mirzaee Godarzee
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | | | - Mohsen Basiri
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Vahab Ziaei
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran
| | - Majid Sadeghizadeh
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ensiyeh Hajizadeh Saffar
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
- Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
7
|
Dabiri H, Safarzadeh Kozani P, Habibi Anbouhi M, Mirzaee Godarzee M, Haddadi MH, Basiri M, Ziaei V, Sadeghizadeh M, Hajizadeh Saffar E. Site-specific transgene integration in chimeric antigen receptor (CAR) T cell therapies. Biomark Res 2023; 11:67. [DOI: https:/doi.org/10.1186/s40364-023-00509-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 06/09/2023] [Indexed: 09/15/2023] Open
Abstract
AbstractChimeric antigen receptor (CAR) T cells and natural killer (NK) cells are genetically engineered immune cells that can detect target antigens on the surface of target cells and eliminate them following adoptive transfer. Recent progress in CAR-based therapies has led to outstanding clinical success in certain patients with leukemias and lymphomas and offered therapeutic benefits to those resistant to conventional therapies. The universal approach to stable CAR transgene delivery into the T/NK cells is the use of viral particles. Such approaches mediate semi-random transgene insertions spanning the entire genome with a high preference for integration into sites surrounding highly-expressed genes and active loci. Regardless of the variable CAR expression level based on the integration site of the CAR transgene, foreign integrated DNA fragments may affect the neighboring endogenous genes and chromatin structure and potentially change a transduced T/NK cell behavior and function or even favor cellular transformation. In contrast, site-specific integration of CAR constructs using recent genome-editing technologies could overcome the limitations and disadvantages of universal random gene integration. Herein, we explain random and site-specific integration of CAR transgenes in CAR-T/NK cell therapies. Also, we tend to summarize the methods for site-specific integration as well as the clinical outcomes of certain gene disruptions or enhancements due to CAR transgene integration. Also, the advantages and limitations of using site-specific integration methods are discussed in this review. Ultimately, we will introduce the genomic safe harbor (GSH) standards and suggest some appropriate safety prospects for CAR integration in CAR-T/NK cell therapies.
Collapse
|
8
|
Plasmodium falciparum Merozoite Surface Proteins Polymorphisms and Treatment Outcomes among Patients with Uncomplicated Malaria in Mwanza, Tanzania. J Trop Med 2022; 2022:5089143. [DOI: 10.1155/2022/5089143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/26/2022] [Accepted: 10/20/2022] [Indexed: 11/25/2022] Open
Abstract
Background. The severity of malaria infection depends on the host, parasite and environmental factors. Merozoite surface protein (msp) diversity determines transmission dynamics, P. falciparum immunity evasion, and pathogenesis or virulence. There is limited updated information on P. falciparum msp polymorphisms and their impact on artemether-lumefantrine treatment outcomes in Tanzania. Therefore, this study is aimed at examining msp genetic diversity and multiplicity of infection (MOI) among P. falciparum malaria patients. The influence of MOI on peripheral parasite clearance and adequate clinical and parasitological response (ACPR) was also assessed. Methods. Parasite DNA was extracted from dried blood spots according to the manufacture’s protocol. Primary and nested PCR were performed. The PCR products for both the block 2 region of msp1 and the block 3 regions of msp2 genes and their specific allelic families were visualized on a 2.5% agarose gel. Results. The majority of the isolates, 58/102 (58.8%) for msp1 and 69/115 (60.1%) for msp2, harboured more than one parasite genotypes. For the msp1 gene, K1 was the predominant allele observed (75.64%), whereas RO33 occurred at the lowest frequency (43.6%). For the msp2 gene, the 3D7 allele was observed at a higher frequency (81.7%) than the FC27 allele (76.9%). The MOIs were 2.44 for msp1 and 2.27 for msp2 (
). A significant correlation between age and multiplicity of infection (MOI) for msp1 or MOI for msp2 was not established in this study (rho = 0.074,
and rho = −0.129,
, respectively). Similarly, there was no positive correlation between parasite density at day 1 and MOI for both msp1 (rho = 0.113,
) and msp2 (rho = 0.043,
). The association between MOI and ACPR was not observed for either msp1 or mps2 (
and 0.296, respectively). Conclusions. This study reports high polyclonal infections, MOI and allelic frequencies for both msp1 and msp2. There was a lack of correlation between MOI and ACPR. However, a borderline significant correlation was observed between day 2 parasitaemia and MOI.
Collapse
|
9
|
Schneider KA, Tsoungui Obama HCJ, Kamanga G, Kayanula L, Adil Mahmoud Yousif N. The many definitions of multiplicity of infection. FRONTIERS IN EPIDEMIOLOGY 2022; 2:961593. [PMID: 38455332 PMCID: PMC10910904 DOI: 10.3389/fepid.2022.961593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 09/06/2022] [Indexed: 03/09/2024]
Abstract
The presence of multiple genetically different pathogenic variants within the same individual host is common in infectious diseases. Although this is neglected in some diseases, it is well recognized in others like malaria, where it is typically referred to as multiplicity of infection (MOI) or complexity of infection (COI). In malaria, with the advent of molecular surveillance, data is increasingly being available with enough resolution to capture MOI and integrate it into molecular surveillance strategies. The distribution of MOI on the population level scales with transmission intensities, while MOI on the individual level is a confounding factor when monitoring haplotypes of particular interests, e.g., those associated with drug-resistance. Particularly, in high-transmission areas, MOI leads to a discrepancy between the likelihood of a haplotype being observed in an infection (prevalence) and its abundance in the pathogen population (frequency). Despite its importance, MOI is not universally defined. Competing definitions vary from verbal ones to those based on concise statistical frameworks. Heuristic approaches to MOI are popular, although they do not mine the full potential of available data and are typically biased, potentially leading to misinferences. We introduce a formal statistical framework and suggest a concise definition of MOI and its distribution on the host-population level. We show how it relates to alternative definitions such as the number of distinct haplotypes within an infection or the maximum number of alleles detectable across a set of genetic markers. It is shown how alternatives can be derived from the general framework. Different statistical methods to estimate the distribution of MOI and pathogenic variants at the population level are discussed. The estimates can be used as plug-ins to reconstruct the most probable MOI of an infection and set of infecting haplotypes in individual infections. Furthermore, the relation between prevalence of pathogenic variants and their frequency (relative abundance) in the pathogen population in the context of MOI is clarified, with particular regard to seasonality in transmission intensities. The framework introduced here helps to guide the correct interpretation of results emerging from different definitions of MOI. Especially, it excels comparisons between studies based on different analytical methods.
Collapse
|
10
|
Tsoungui Obama HCJ, Schneider KA. A maximum-likelihood method to estimate haplotype frequencies and prevalence alongside multiplicity of infection from SNP data. FRONTIERS IN EPIDEMIOLOGY 2022; 2:943625. [PMID: 38455338 PMCID: PMC10911023 DOI: 10.3389/fepid.2022.943625] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/26/2022] [Indexed: 03/09/2024]
Abstract
The introduction of genomic methods facilitated standardized molecular disease surveillance. For instance, SNP barcodes in Plasmodium vivax and Plasmodium falciparum malaria allows the characterization of haplotypes, their frequencies and prevalence to reveal temporal and spatial transmission patterns. A confounding factor is the presence of multiple genetically distinct pathogen variants within the same infection, known as multiplicity of infection (MOI). Disregarding ambiguous information, as usually done in ad-hoc approaches, leads to less confident and biased estimates. We introduce a statistical framework to obtain maximum-likelihood estimates (MLE) of haplotype frequencies and prevalence alongside MOI from malaria SNP data, i.e., multiple biallelic marker loci. The number of model parameters increases geometrically with the number of genetic markers considered and no closed-form solution exists for the MLE. Therefore, the MLE needs to be derived numerically. We use the Expectation-Maximization (EM) algorithm to derive the maximum-likelihood estimates, an efficient and easy-to-implement algorithm that yields a numerically stable solution. We also derive expressions for haplotype prevalence based on either all or just the unambiguous genetic information and compare both approaches. The latter corresponds to a biased ad-hoc estimate of prevalence. We assess the performance of our estimator by systematic numerical simulations assuming realistic sample sizes and various scenarios of transmission intensity. For reasonable sample sizes, and number of loci, the method has little bias. As an example, we apply the method to a dataset from Cameroon on sulfadoxine-pyrimethamine resistance in P. falciparum malaria. The method is not confined to malaria and can be applied to any infectious disease with similar transmission behavior. An easy-to-use implementation of the method as an R-script is provided.
Collapse
|
11
|
Carmona-Fonseca J, Olivera MJ, Yasnot-Acosta MF. A Retrospective Review on Severe Malaria in Colombia, 2007–2020. Pathogens 2022; 11:pathogens11080893. [PMID: 36015012 PMCID: PMC9416211 DOI: 10.3390/pathogens11080893] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/24/2022] [Accepted: 07/29/2022] [Indexed: 11/26/2022] Open
Abstract
Background: Knowledge of severe malaria (SM) or complicated malaria is insufficient in all its components. The least known type is the one associated with Plasmodium vivax, compared to that caused by P. falciparum. The aim of this study was to provide a general overview of epidemiological information about the burden of SM, obtained from the National Public Health Surveillance System (SIVIGILA) for the period 2007–2020 in Colombia. Methods: A descriptive, retrospective, and cross-sectional study of secondary information was performed via SIVIGILA. Results: There were 9881 SM cases among 1,060,950 total malaria cases in Colombia in 2007–2020: 9.31 SM cases per 1000 malaria cases. During this period, there were 7145 SM cases due to the following species: Plasmodium vivax, 57.6%; P. falciparum, 38.6%; severe mixed malaria, 3.2%; and P. malariae, 0.6%. The most compromised organ systems are the hematological system (54.9%), the liver (9.1%), the kidneys (4.2%), the lungs (1.9%) and the brain (1.6%). Conclusions: There has been a reduction in malaria incidence in Colombia in the last 10–15 years, but there has also been a strong increase in SM incidence. We suggest emphasizing the prevention of the onset of severe malaria, with the early and accurate diagnosis of plasmodial infection.
Collapse
Affiliation(s)
- Jaime Carmona-Fonseca
- Grupo Salud y Comunidad-Cesar Uribe Piedrahíta, Facultad de Medicina, Universidad de Antioquia, Medellín 050010, Colombia
| | | | - María F. Yasnot-Acosta
- Grupo de Investigaciones Microbiológicas y Biomédicas de Córdoba (GIMBIC), Facultad Ciencias de la Salud, Universidad de Córdoba, Montería 230002, Colombia
- Correspondence:
| |
Collapse
|
12
|
Arya A, Chaudhry S, Meena SS, Matlani M, Pande V, Singh V. Studying the disease severity in clinical isolates of Plasmodium vivax. Microb Pathog 2022; 166:105516. [DOI: 10.1016/j.micpath.2022.105516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/21/2022] [Accepted: 04/03/2022] [Indexed: 10/18/2022]
|
13
|
Hashemi M, Schneider KA. Bias-corrected maximum-likelihood estimation of multiplicity of infection and lineage frequencies. PLoS One 2021; 16:e0261889. [PMID: 34965279 PMCID: PMC8716058 DOI: 10.1371/journal.pone.0261889] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 12/13/2021] [Indexed: 11/19/2022] Open
Abstract
Background The UN’s Sustainable Development Goals are devoted to eradicate a range of infectious diseases to achieve global well-being. These efforts require monitoring disease transmission at a level that differentiates between pathogen variants at the genetic/molecular level. In fact, the advantages of genetic (molecular) measures like multiplicity of infection (MOI) over traditional metrics, e.g., R0, are being increasingly recognized. MOI refers to the presence of multiple pathogen variants within an infection due to multiple infective contacts. Maximum-likelihood (ML) methods have been proposed to derive MOI and pathogen-lineage frequencies from molecular data. However, these methods are biased. Methods and findings Based on a single molecular marker, we derive a bias-corrected ML estimator for MOI and pathogen-lineage frequencies. We further improve these estimators by heuristical adjustments that compensate shortcomings in the derivation of the bias correction, which implicitly assumes that data lies in the interior of the observational space. The finite sample properties of the different variants of the bias-corrected estimators are investigated by a systematic simulation study. In particular, we investigate the performance of the estimator in terms of bias, variance, and robustness against model violations. The corrections successfully remove bias except for extreme parameters that likely yield uninformative data, which cannot sustain accurate parameter estimation. Heuristic adjustments further improve the bias correction, particularly for small sample sizes. The bias corrections also reduce the estimators’ variances, which coincide with the Cramér-Rao lower bound. The estimators are reasonably robust against model violations. Conclusions Applying bias corrections can substantially improve the quality of MOI estimates, particularly in areas of low as well as areas of high transmission—in both cases estimates tend to be biased. The bias-corrected estimators are (almost) unbiased and their variance coincides with the Cramér-Rao lower bound, suggesting that no further improvements are possible unless additional information is provided. Additional information can be obtained by combining data from several molecular markers, or by including information that allows stratifying the data into heterogeneous groups.
Collapse
Affiliation(s)
- Meraj Hashemi
- Department of Applied Computer- and Biosciences, University of Applied Sciences Mittweida, Mittweida, Germany
- * E-mail:
| | - Kristan A. Schneider
- Department of Applied Computer- and Biosciences, University of Applied Sciences Mittweida, Mittweida, Germany
| |
Collapse
|
14
|
File T, Chekol T, Solomon G, Dinka H, Golassa L. Detection of high frequency of MAD20 allelic variants of Plasmodium falciparum merozoite surface protein 1 gene from Adama and its surroundings, Oromia, Ethiopia. Malar J 2021; 20:385. [PMID: 34579727 PMCID: PMC8477549 DOI: 10.1186/s12936-021-03914-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/09/2021] [Indexed: 11/20/2022] Open
Abstract
Background One of the major challenges in developing an effective vaccine against asexual stages of Plasmodium falciparum is genetic polymorphism within parasite population. Understanding the genetic polymorphism like block 2 region of merozoite surface protein-1 (msp-1) gene of P. falciparum enlighten mechanisms underlining disease pathology, identification of the parasite clone profile from the isolates, transmission intensity and potential deficiencies of the ongoing malaria control and elimination efforts in the locality. Detailed understanding of local genetic polymorphism is an input to pave the way for better management, control and elimination of malaria. The aim of this study was to detect the most frequent allelic variant of the msp-1 gene of P. falciparum clinical isolates from selected health facilities in Adama town and its surroundings, Oromia, Ethiopia. Methods One hundred thirty-nine clinical isolates were successfully amplified for msp-1 gene using specific primers. Nested PCR amplification was conducted targeting K1, MAD20, and R033 alleles followed by gel electrophoresis for fragment analysis. Based on the detection of a PCR fragment, infections were classified as monoclonal or multiple infections. Results 19 different size polymorphism of msp-1 gene were identified in the study, with 67(48%) MAD20, 18 (13%) K-1 and 18 (13%) RO33 allelic family. Whereas, the multiple infections were 21(15%), 8 (5.8%), 4(2.9%), 3(2.2%) for MAD20 + K-1, MAD20 + RO33, K-1 + RO33, and MAD20 + K-1, RO33, respectively. The overall Multiplicity of infection (MOI) was 1.3 and the expected heterozygosity (He) was 0.39 indicating slightly low falciparum malaria transmission. Conclusion The status of msp-1 allele size polymorphism, MOI and He observed in the study revealed the presence of slightly low genetic diversity of P. falciparum clinical isolates. However, highly frequent MAD20 allelic variant was detected from clinical isolates in the study area. Moreover, the driving force that led to high predominance of MAD20 allelic variant revealed in such malaria declining region demands further research. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-021-03914-9.
Collapse
Affiliation(s)
- Temesgen File
- Department of Applied Biology, Adama Science and Technology University, P.O.Box 1888, Adama, Ethiopia.
| | - Tsegaye Chekol
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, P.O.Box 1176, Addis Ababa, Ethiopia
| | - Gezahegn Solomon
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, P.O.Box 1176, Addis Ababa, Ethiopia
| | - Hunduma Dinka
- Department of Applied Biology, Adama Science and Technology University, P.O.Box 1888, Adama, Ethiopia
| | - Lemu Golassa
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, P.O.Box 1176, Addis Ababa, Ethiopia
| |
Collapse
|
15
|
Forero-Peña DA, Carrión-Nessi FS, Chavero M, Gamardo Á, Figuera L, Camejo-Ávila NA, Marcano MV, Hidalgo M, Arenas-Leal CJ, Villegas L, Grillet ME, Pacheco MA, Mora MSD, Escalante AA. The clinical-epidemiological profile of malaria patients from Southern Venezuela, a critical hotspot in Latin America. Malar J 2021; 20:375. [PMID: 34544438 PMCID: PMC8453994 DOI: 10.1186/s12936-021-03913-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/09/2021] [Indexed: 11/10/2022] Open
Abstract
Background Venezuela accounted for 55% of the cases and 73% of the malaria deaths in the Americas in 2019. Bolivar state, in the southeast, contributes > 60% of the country's Plasmodium vivax and Plasmodium falciparum cases every year. This study describes the clinical–epidemiological characteristics of clinical malaria patients in this high-transmission area. Methods A prospective study was conducted on patients seeking medical attention in three medical centres in the state capital, Ciudad Bolivar, between June and October 2018. Malaria diagnosis was carried out using microscopy following national standards. Malaria-positive patients were examined for clinical symptoms, and haematological tests were performed at the time of diagnosis. Patients were followed up by telephone to evaluate malaria recurrences. Results Out of 287 patients, 200 (69.7%) were positive for P. vivax, 69 (24%) for P. falciparum, and 18 (6.3%) had mixed (P. vivax/P. falciparum) infections. Patients' median age was 33 years (IQR 20), 168 (69%) were men, and 40% practiced gold mining as the main occupation. Fever (96.5%), chills (91.3%), and headaches (90.6%) were the most frequent symptoms. At least one symptom associated with severe malaria was observed in 69 out of 161 patients with complete clinical evaluation (42.9%). Plasmodium vivax infections were found in 42 out of 69 (60.9%) severe cases; by contrast, P. falciparum and mixed malaria caused 34.8% (24/69) and 4.4% (3/69) of infections, respectively. Two patients died of cerebral malaria. Mean hemoglobin was lower in the patients infected with P. falciparum than those infected with P. vivax. Regardless of the parasite causing the infection, patients presented high levels of total bilirubin, aminotransferases (AST, ALT), and lactate dehydrogenase (LDH). Out of the 142 patients followed up by phone for three months (49.5% of the 287 patients), 35 (24.7%) reported recurrences. Conclusions The high malaria prevalence among young male adults practicing gold mining suggests that this occupation is a significant risk factor. The unexpected high prevalence of P. vivax patients with at least one criteria of severe clinical disease is a matter of concern. Whether it is the result of a lack of timely diagnosis and effective treatment should be explored.
Collapse
Affiliation(s)
- David A Forero-Peña
- Biomedical Research and Therapeutic Vaccines Institute, Ciudad Bolivar, Venezuela. .,Department of Internal Medicine, "Ruiz Y Páez" University Hospital Complex, Ciudad Bolivar, Venezuela.
| | - Fhabián S Carrión-Nessi
- Biomedical Research and Therapeutic Vaccines Institute, Ciudad Bolivar, Venezuela.,"Dr. Francisco Battistini Casalta" Health Sciences School, University of Oriente - Bolivar Nucleus, Ciudad Bolivar, Venezuela
| | - Melynar Chavero
- Biomedical Research and Therapeutic Vaccines Institute, Ciudad Bolivar, Venezuela.,Department of Internal Medicine, "Ruiz Y Páez" University Hospital Complex, Ciudad Bolivar, Venezuela
| | - Ángel Gamardo
- Biomedical Research and Therapeutic Vaccines Institute, Ciudad Bolivar, Venezuela
| | - Luisamy Figuera
- Biomedical Research and Therapeutic Vaccines Institute, Ciudad Bolivar, Venezuela
| | | | - María V Marcano
- Biomedical Research and Therapeutic Vaccines Institute, Ciudad Bolivar, Venezuela
| | - Mariana Hidalgo
- Venezuelan Institute of Scientific Research (IVIC), Miranda, Venezuela
| | | | - Leopoldo Villegas
- Civil Association of Social Impact (ASOCIS), Tumeremo, Venezuela.,Global Development One (GDO), Maryland, USA
| | - María E Grillet
- Vector and Parasite Biology Laboratory, Tropical Ecology and Zoology Institute, Faculty of Sciences, Central University of Venezuela, Caracas, Venezuela
| | - M Andreína Pacheco
- Biology Department/Institute of Genomics and Evolutionary Medicine (iGEM), Temple University, Philadelphia, PA, 19122-1801, USA
| | - Marisol Sandoval-de Mora
- Department of Internal Medicine, "Ruiz Y Páez" University Hospital Complex, Ciudad Bolivar, Venezuela
| | - Ananías A Escalante
- Biology Department/Institute of Genomics and Evolutionary Medicine (iGEM), Temple University, Philadelphia, PA, 19122-1801, USA.
| |
Collapse
|
16
|
Dia A, Cheeseman IH. Single-cell genome sequencing of protozoan parasites. Trends Parasitol 2021; 37:803-814. [PMID: 34172399 PMCID: PMC8364489 DOI: 10.1016/j.pt.2021.05.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/21/2021] [Accepted: 05/26/2021] [Indexed: 12/27/2022]
Abstract
Despite considerable genetic variation within hosts, most parasite genome sequencing studies focus on bulk samples composed of millions of cells. Analysis of bulk samples is biased toward the dominant genotype, concealing cell-to-cell variation and rare variants. To tackle this, single-cell sequencing approaches have been developed and tailored to specific host-parasite systems. These are allowing the genetic diversity and kinship in complex parasite populations to be deciphered and for de novo genetic variation to be captured. Here, we outline the methodologies being used for single-cell sequencing of parasitic protozoans, such as Plasmodium and Leishmania spp., and how these tools are being applied to understand parasite biology.
Collapse
Affiliation(s)
- Aliou Dia
- Host-Pathogen Interaction Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Ian H Cheeseman
- Host-Pathogen Interaction Program, Texas Biomedical Research Institute, San Antonio, TX, USA.
| |
Collapse
|
17
|
Amoah LE, Abukari Z, Dawson-Amoah ME, Dieng CC, Lo E, Afrane YA. Population structure and diversity of Plasmodium falciparum in children with asymptomatic malaria living in different ecological zones of Ghana. BMC Infect Dis 2021; 21:439. [PMID: 33985447 PMCID: PMC8120845 DOI: 10.1186/s12879-021-06120-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 04/27/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Genetic diversity in Plasmodium falciparum populations can be used to describe the resilience and spatial distribution of the parasite in the midst of intensified intervention efforts. This study used microsatellite analysis to evaluate the genetic diversity and population dynamics of P. falciparum parasites circulating in three ecological zones of Ghana. METHODS A total of 1168 afebrile children aged between 3 to 13 years were recruited from five (5) Primary schools in 3 different ecological zones (Sahel (Tamale and Kumbungu), Forest (Konongo) and Coastal (Ada and Dodowa)) of Ghana. Asymptomatic malaria parasite carriage was determined using microscopy and PCR, whilst fragment analysis of 6 microsatellite loci was used to determine the diversity and population structure of P. falciparum parasites. RESULTS Out of the 1168 samples examined, 16.1 and 39.5% tested positive for P. falciparum by microscopy and nested PCR respectively. The genetic diversity of parasites in the 3 ecological zones was generally high, with an average heterozygosity (He) of 0.804, 0.787 and 0.608 the rainy (peak) season for the Sahel, Forest and Coastal zones respectively. The mean He for the dry (off-peak) season were 0.562, 0.693 and 0.610 for the Sahel, Forest and Coastal zones respectively. Parasites from the Forest zone were more closely related to those from the Sahel than from the Coastal zone, despite the Coastal zone being closer in physical distance to the Forest zone. The fixation indexes among study sites ranged from 0.049 to 0.112 during the rainy season and 0.112 to 0.348 during the dry season. CONCLUSION A large asymptomatic parasite reservoir was found in the school children during both rainy and dry seasons, especially those in the Forest and Sahel savannah zones where parasites were also found to be related compared to those from the Coastal zone. Further studies are recommended to understand why despite the roll out of several malaria interventions in Ghana, high transmission still persist.
Collapse
Affiliation(s)
- Linda Eva Amoah
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
- West Africa Center for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana
| | - Zakaria Abukari
- Department of Immunology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Maame Esi Dawson-Amoah
- Department of Medical Microbiology, University of Ghana Medical School, University of Ghana, Accra, Ghana
| | - Cheikh Cambel Dieng
- Department of Biological Sciences, University of North Carolina, Charlotte, NC 28223 USA
| | - Eugenia Lo
- Department of Biological Sciences, University of North Carolina, Charlotte, NC 28223 USA
| | - Yaw Asare Afrane
- Department of Medical Microbiology, University of Ghana Medical School, University of Ghana, Accra, Ghana
| |
Collapse
|
18
|
Cao C, He J, Mak L, Perera D, Kwok D, Wang J, Li M, Mourier T, Gavriliuc S, Greenberg M, Morrissy AS, Sycuro LK, Yang G, Jeffares DC, Long Q. Reconstruction of Microbial Haplotypes by Integration of Statistical and Physical Linkage in Scaffolding. Mol Biol Evol 2021; 38:2660-2672. [PMID: 33547786 PMCID: PMC8136496 DOI: 10.1093/molbev/msab037] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
DNA sequencing technologies provide unprecedented opportunities to analyze within-host evolution of microorganism populations. Often, within-host populations are analyzed via pooled sequencing of the population, which contains multiple individuals or "haplotypes." However, current next-generation sequencing instruments, in conjunction with single-molecule barcoded linked-reads, cannot distinguish long haplotypes directly. Computational reconstruction of haplotypes from pooled sequencing has been attempted in virology, bacterial genomics, metagenomics, and human genetics, using algorithms based on either cross-host genetic sharing or within-host genomic reads. Here, we describe PoolHapX, a flexible computational approach that integrates information from both genetic sharing and genomic sequencing. We demonstrated that PoolHapX outperforms state-of-the-art tools tailored to specific organismal systems, and is robust to within-host evolution. Importantly, together with barcoded linked-reads, PoolHapX can infer whole-chromosome-scale haplotypes from 50 pools each containing 12 different haplotypes. By analyzing real data, we uncovered dynamic variations in the evolutionary processes of within-patient HIV populations previously unobserved in single position-based analysis.
Collapse
Affiliation(s)
- Chen Cao
- Department of Biochemistry & Molecular Biology, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Jingni He
- Department of Biochemistry & Molecular Biology, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada,Department of Cardiology, Xiangya Hospital, Central South University, Changsha, China
| | - Lauren Mak
- Department of Biochemistry & Molecular Biology, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada,Present address: Tri-Institutional Computational Biology & Medicine Program, Weill Cornell Medicine of Cornell University, New York, NY, USA
| | - Deshan Perera
- Department of Biochemistry & Molecular Biology, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Devin Kwok
- Department of Mathematics & Statistics, University of Calgary, Calgary, AB, Canada
| | - Jia Wang
- Electrical and Computer Engineering, Illinois Institute of Technology, Chicago, IL, USA
| | - Minghao Li
- Department of Biochemistry & Molecular Biology, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Tobias Mourier
- Pathogen Genomics Laboratory, Biological and Environmental Sciences and Engineering (BESE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Stefan Gavriliuc
- Department of Biochemistry & Molecular Biology, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Matthew Greenberg
- Department of Mathematics & Statistics, University of Calgary, Calgary, AB, Canada
| | - A Sorana Morrissy
- Department of Biochemistry & Molecular Biology, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Laura K Sycuro
- Department of Biochemistry & Molecular Biology, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada,Department of Microbiology, Immunology, and Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - Guang Yang
- Department of Biochemistry & Molecular Biology, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada,Department of Medical Genetics, University of Calgary, Calgary, AB, Canada
| | - Daniel C Jeffares
- Department of Biology, York Biomedical Research Institute, University of York, York, United Kingdom
| | - Quan Long
- Department of Biochemistry & Molecular Biology, Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB, Canada,Department of Mathematics & Statistics, University of Calgary, Calgary, AB, Canada,Department of Medical Genetics, University of Calgary, Calgary, AB, Canada,Hotchkiss Brain Institute, O’Brien Institute for Public Health, University of Calgary, Calgary, AB, Canada,Corresponding author: E-mail:
| |
Collapse
|
19
|
Velasco-Velásquez S, Celis-Giraldo D, Botero Hincapié A, Alejandro Hincapie Erira D, Sofia Cordero López S, Marulanda Orozco N, Enrique Gómez-Marín J. Clinical, Socio-economic and Environmental Factors Related with Recurrences in Ocular Toxoplasmosis in Quindío, Colombia. Ophthalmic Epidemiol 2020; 28:258-264. [PMID: 33115293 DOI: 10.1080/09286586.2020.1839509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
PURPOSE To identify the sociodemographic, clinical, and environmental factors associated with recurrences in ocular toxoplasmosis (OT). METHODS Retrospective analysis of clinical records of patients who consulted in the Health Centre at Universidad del Quindío between 2004 and 2017. Patients with retinochoroiditis due to Toxoplasma gondii infection and follow up >12 months were included. Comparisons were made with a recurrence index adjusted for months of follow up. For the statistical analysis, the Kruskal-Wallis test and analysis of variance (ANOVA) tests were performed in Epi Info 7.2 and SPSS 14.0. A statistical significance is shown if p ≤ 0.05. RESULTS A total of 58 patients were included, with median age of 28 years (range 1-61) and 55.1% were women. The median of recurrences was 1.4 (range 0.6-16.6). High recurrence index was present in 43.1% of the patients. A higher size of lesions was observed in low socioeconomic groups (p = .016) and patients with congenital infection had more bilateral compromise (p = .002). Intake of boiled water was related to a lower recurrence index (p = .04). CONCLUSIONS Low socioeconomic level was associated with bigger lesions and congenital infection was related with higher frequency of bilateral OT. Finally, intake of boiled water is related to a lower recurrence index of OT.
Collapse
Affiliation(s)
- Stefany Velasco-Velásquez
- Group of Studies on Molecular Parasitology (GEPAMOL), Center of Biomedical Research, Faculty of Health Sciences, Universidad Del Quindío, Armenia, Colombia
| | - Daniel Celis-Giraldo
- Group of Studies on Molecular Parasitology (GEPAMOL), Center of Biomedical Research, Faculty of Health Sciences, Universidad Del Quindío, Armenia, Colombia
| | - Andrea Botero Hincapié
- Group of Studies on Molecular Parasitology (GEPAMOL), Center of Biomedical Research, Faculty of Health Sciences, Universidad Del Quindío, Armenia, Colombia
| | - Diego Alejandro Hincapie Erira
- Group of Studies on Molecular Parasitology (GEPAMOL), Center of Biomedical Research, Faculty of Health Sciences, Universidad Del Quindío, Armenia, Colombia
| | - Sara Sofia Cordero López
- Group of Studies on Molecular Parasitology (GEPAMOL), Center of Biomedical Research, Faculty of Health Sciences, Universidad Del Quindío, Armenia, Colombia
| | - Nathalia Marulanda Orozco
- Group of Studies on Molecular Parasitology (GEPAMOL), Center of Biomedical Research, Faculty of Health Sciences, Universidad Del Quindío, Armenia, Colombia
| | - Jorge Enrique Gómez-Marín
- Group of Studies on Molecular Parasitology (GEPAMOL), Center of Biomedical Research, Faculty of Health Sciences, Universidad Del Quindío, Armenia, Colombia
| |
Collapse
|
20
|
Upmanyu K, Matlani M, Yadav P, Rathi U, Mallick PK, Singh R. Allelic variation of msp-3α gene in Plasmodium vivax isolates and its correlation with the severity of disease in vivax malaria. INFECTION GENETICS AND EVOLUTION 2020; 85:104530. [PMID: 32896637 DOI: 10.1016/j.meegid.2020.104530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 08/14/2020] [Accepted: 08/31/2020] [Indexed: 11/17/2022]
Abstract
Malaria is a global socio-economic burden of which Plasmodium vivax contributes for about 70-80 million cases on an annual basis worldwide and 60-65% cases in India. Diversity observed in highly polymorphic Merozoite Surface Protein-3α (msp-3α) encoded by MSP-3 gene family, has been used efficiently for genotyping of P. vivax infection. This study aims to correlate the severity of clinical symptoms with parasite load, genotype of P. vivax and multiplicity of infection. Based on clinical symptoms classification, 31 (67.9%) out of 46 cases were found to be severe while 15 (32.6%) were non-severe and correlation of the severity of vivax infection with parasite load was not observed. Analysis of msp3-α allele genotype showed that out of 31 severe cases, 19 (61.2%) were single-clone infection cases whereas 12 (38.7%) were multi-clone infections. Similarly, out of 15 non-severe cases, 9 (60%) were single clone and 6 (40%) were multi-clone infections indicating the absence of a correlation between the multiplicity of infection and disease severity. Allele frequency observed was 65.9%, 23.4%, 23.4%, and 28.2% for allele A, B, C and D, respectively. An important finding was the greater distribution of allele D than alleles B and C, which has been reported as a rare allele otherwise. Further, of 13 cases with allele D, 76.9% (10/13) cases were severe. This study showed the absence of a correlation between the severity of clinical symptoms with parasite load and multiplicity of infection but at the same time drives a possibility of severe vivax malarial symptoms to have an association with the persistence of allele D in the population. This upon exploration can lead to the development of a target in detection of severe cases of malaria.
Collapse
Affiliation(s)
- Kirti Upmanyu
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, India
| | - Monika Matlani
- Department of Microbiology, VMMC, Safdarjung Hospital Campus, New Delhi, India
| | - Priya Yadav
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, India
| | - Utkarsh Rathi
- Department of Microbiology, VMMC, Safdarjung Hospital Campus, New Delhi, India
| | | | - Ruchi Singh
- ICMR-National Institute of Pathology, Safdarjung Hospital Campus, New Delhi, India.
| |
Collapse
|
21
|
Pacheco MA, Forero-Peña DA, Schneider KA, Chavero M, Gamardo A, Figuera L, Kadakia ER, Grillet ME, Oliveira-Ferreira J, Escalante AA. Malaria in Venezuela: changes in the complexity of infection reflects the increment in transmission intensity. Malar J 2020; 19:176. [PMID: 32380999 PMCID: PMC7206825 DOI: 10.1186/s12936-020-03247-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/26/2020] [Indexed: 01/07/2023] Open
Abstract
Background Malaria incidence has reached staggering numbers in Venezuela. Commonly, Bolívar State accounted for approximately 70% of the country cases every year. Most cases cluster in the Sifontes municipality, a region characterized by an extractive economy, including gold mining. An increase in migration to Sifontes, driven by gold mining, fueled a malaria spillover to the rest of the country and the region. Here samples collected in 2018 were compared with a previous study of 2003/2004 to describe changes in the parasites population structures and the frequency of point mutations linked to anti-malarial drugs. Methods A total of 88 Plasmodium falciparum and 94 Plasmodium vivax isolates were collected in 2018 and compared with samples from 2003/2004 (106 P. falciparum and 104 P. vivax). For P. falciparum, mutations linked to drug resistance (Pfdhfr, Pfdhps, and Pfcrt) and the Pfk13 gene associated with artemisinin delayed parasite clearance, were analysed. To estimate the multiplicity of infection (MOI), and perform P. falciparum and P. vivax population genetic analyses, the parasites were genotyped by using eight standardized microsatellite loci. Results The P. falciparum parasites are still harbouring drug-resistant mutations in Pfdhfr, Pfdhps, and Pfcrt. However, there was a decrease in the frequency of highly resistant Pfdhps alleles. Mutations associated with artemisinin delayed parasite clearance in the Pfk13 gene were not found. Consistent with the increase in transmission, polyclonal infections raised from 1.9% in 2003/2004 to 39% in 2018 in P. falciparum and from 16.3 to 68% in P. vivax. There is also a decrease in linkage disequilibrium. Bayesian clustering yields two populations linked to the time of sampling, showing that the parasite populations temporarily changed. However, the samples from 2003/2004 and 2018 have several alleles per locus in common without sharing multi-locus genotypes. Conclusions The frequency of mutations linked with drug resistance in P. falciparum shows only changes in Pfdhps. Observations presented here are consistent with an increase in transmission from the previously circulating parasites. Following populations longitudinally, using molecular surveillance, provides valuable information in cases such as Venezuela with a fluid malaria situation that is affecting the regional goals toward elimination.
Collapse
Affiliation(s)
- M Andreína Pacheco
- Biology Department/Institute of Genomics and Evolutionary Medicine (iGEM), Temple University, Philadelphia, PA, USA
| | - David A Forero-Peña
- Escuela de Ciencias de la Salud, Universidad de Oriente, Núcleo Bolívar, Ciudad Bolívar, Venezuela.,Departamento de Medicina Interna, Complejo Hospitalario Universitario "Ruíz y Páez", Ciudad Bolívar, Venezuela.,Biomedical Research and Therapeutic Vaccines Institute, Ciudad Bolívar, Venezuela
| | | | - Melynar Chavero
- Escuela de Ciencias de la Salud, Universidad de Oriente, Núcleo Bolívar, Ciudad Bolívar, Venezuela.,Departamento de Medicina Interna, Complejo Hospitalario Universitario "Ruíz y Páez", Ciudad Bolívar, Venezuela.,Biomedical Research and Therapeutic Vaccines Institute, Ciudad Bolívar, Venezuela
| | - Angel Gamardo
- Biomedical Research and Therapeutic Vaccines Institute, Ciudad Bolívar, Venezuela
| | - Luisamy Figuera
- Departamento de Medicina Interna, Complejo Hospitalario Universitario "Ruíz y Páez", Ciudad Bolívar, Venezuela.,Biomedical Research and Therapeutic Vaccines Institute, Ciudad Bolívar, Venezuela
| | - Esha R Kadakia
- Biology Department/Institute of Genomics and Evolutionary Medicine (iGEM), Temple University, Philadelphia, PA, USA
| | - María E Grillet
- Instituto de Zoología y Ecología Tropical, Universidad Central de Venezuela, Caracas, Venezuela
| | | | - Ananias A Escalante
- Biology Department/Institute of Genomics and Evolutionary Medicine (iGEM), Temple University, Philadelphia, PA, USA.
| |
Collapse
|
22
|
Alves-Junior ER, Gomes LT, Dombroski TCD, Nery AF, Vandresen-Filho S, Nakazato L, Fontes CJF, Rios-Santos F. New laboratory perspectives for evaluation of vivax malaria infected patients: a useful tool for infection monitoring. Braz J Infect Dis 2020; 24:120-129. [PMID: 32335079 PMCID: PMC9392044 DOI: 10.1016/j.bjid.2020.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 03/29/2020] [Accepted: 04/01/2020] [Indexed: 01/08/2023] Open
Abstract
In recent years, the number of cases with severe Plasmodium vivax malaria has shown an increasing trend. It is, therefore, important to identify routine laboratory markers that best characterize the acute disease phase and can serve as a tool for clinical follow-up of patients. In a cohort study, we followed 87 patients with acute P. vivax monoinfection acquired in an endemic region of the Brazilian Amazon. Forty-two different biochemical and hematological parameters frequently tested in clinical routine were evaluated at the acute phase and the convalescent phase. A total of 42 laboratory tests were performed: biochemical parameters measured were serum lipids levels, aminotransferases, bilirubin, amylase, glucose, urea, creatinine, albumin, globulin, uric acid, C-reactive protein, and alpha-1-acid glycoprotein. Hematological parameters included total and differential white blood cell and platelet counts, hemoglobin concentration, mean platelet volume, platelet width distribution, and plateletcrit. Our results show that several biochemical and hematological parameters were associated with acute phase P. vivax malaria and these parameters reverted to normal values in the convalescent phase. The use of these parameters during diagnosis and follow-up of the infection is a useful clinical tool to evaluate the clinical course and therapeutic response of patients with uncomplicated vivax malaria.
Collapse
Affiliation(s)
- Eduardo Rodrigues Alves-Junior
- Universidade Federal de Mato Grosso, Faculdade de Medicina, Cuiabá, MT, Brazil; Centro Universitário de Várzea Grande, Departamento de Ciencias da Saúde, Varzea Grande, MT, Brazil.
| | - Luciano Teixeira Gomes
- Universidade Federal de Mato Grosso, Faculdade de Medicina, Cuiabá, MT, Brazil; Hospital Universitário Julio Muller, Cuiabá, MT, Brazil
| | | | - Andréia Ferreira Nery
- Universidade Federal de Mato Grosso, Faculdade de Medicina, Cuiabá, MT, Brazil; Hospital Universitário Julio Muller, Cuiabá, MT, Brazil; Faculdade de Ciências Biomédicas, Cacoal, RO, Brazil
| | | | - Luciano Nakazato
- Universidade Federal de Mato Grosso, Hospital Veterinário e Laboratório de Microbiologia e Biologia Molecular Veterinária, Cuiabá, MT, Brazil
| | - Cor Jesus Fernandes Fontes
- Universidade Federal de Mato Grosso, Faculdade de Medicina, Cuiabá, MT, Brazil; Hospital Universitário Julio Muller, Cuiabá, MT, Brazil; Faculdade de Ciências Biomédicas, Cacoal, RO, Brazil
| | | |
Collapse
|
23
|
Abstract
Malaria is a vector-borne disease that involves multiple parasite species in a variety of ecological settings. However, the parasite species causing the disease, the prevalence of subclinical infections, the emergence of drug resistance, the scale-up of interventions, and the ecological factors affecting malaria transmission, among others, are aspects that vary across areas where malaria is endemic. Such complexities have propelled the study of parasite genetic diversity patterns in the context of epidemiologic investigations. Importantly, molecular studies indicate that the time and spatial distribution of malaria cases reflect epidemiologic processes that cannot be fully understood without characterizing the evolutionary forces shaping parasite population genetic patterns. Although broad in scope, this review in the Microbiology Spectrum Curated Collection: Advances in Molecular Epidemiology highlights the need for understanding population genetic concepts when interpreting parasite molecular data. First, we discuss malaria complexity in terms of the parasite species involved. Second, we describe how molecular data are changing our understanding of malaria incidence and infectiousness. Third, we compare different approaches to generate parasite genetic information in the context of epidemiologically relevant questions related to malaria control. Finally, we describe a few Plasmodium genomic studies as evidence of how these approaches will provide new insights into the malaria disease dynamics. *This article is part of a curated collection.
Collapse
|
24
|
Domagalska MA, Imamura H, Sanders M, Van den Broeck F, Bhattarai NR, Vanaerschot M, Maes I, D’Haenens E, Rai K, Rijal S, Berriman M, Cotton JA, Dujardin JC. Genomes of Leishmania parasites directly sequenced from patients with visceral leishmaniasis in the Indian subcontinent. PLoS Negl Trop Dis 2019; 13:e0007900. [PMID: 31830038 PMCID: PMC6932831 DOI: 10.1371/journal.pntd.0007900] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 12/26/2019] [Accepted: 11/01/2019] [Indexed: 12/02/2022] Open
Abstract
Whole genome sequencing (WGS) is increasingly used for molecular diagnosis and epidemiology of infectious diseases. Current Leishmania genomic studies rely on DNA extracted from cultured parasites, which might introduce sampling and biological biases into the subsequent analyses. Up to now, direct analysis of Leishmania genome in clinical samples is hampered by high levels of human DNA and large variation in parasite load in clinical samples. Here, we present a method, based on target enrichment of Leishmania donovani DNA with Agilent SureSelect technology, that allows the analysis of Leishmania genomes directly in clinical samples. We validated our protocol with a set of artificially mixed samples, followed by the analysis of 63 clinical samples (bone marrow or spleen aspirates) from visceral leishmaniasis patients in Nepal. We were able to identify genotypes using a set of diagnostic SNPs in almost all of these samples (97%) and access comprehensive genome-wide information in most (83%). This allowed us to perform phylogenomic analysis, assess chromosome copy number and identify large copy number variants (CNVs). Pairwise comparisons between the parasite genomes in clinical samples and derived in vitro cultured promastigotes showed a lower aneuploidy in amastigotes as well as genomic differences, suggesting polyclonal infections in patients. Altogether our results underline the need for sequencing parasite genomes directly in the host samples Visceral leishmaniasis (VL) is caused by parasitic protozoa of the Leishmania donovani complex and is lethal in the absence of treatment. Whole Genome Sequencing (WGS) of L. donovani clinical isolates revealed hitherto cryptic population structure in the Indian Sub-Continent and provided insights into the epidemiology and potential mechanisms of drug resistance. However, several biases are likely introduced during the culture step. We report here the development of a method that allows determination of parasite genomes directly in clinical samples, and validate it on bone marrow and splenic aspirates of VL patients in Nepal. Our study sheds a new light on the biology of Leishmania in the human host: we found that intracellular parasites of the patients had very low levels of aneuploidy, in sharp contrast to the situation in cultivated isolates. Moreover, the observed differences in genomes between intracellular amastigotes of the patient and the derived cultured parasites suggests polyclonality of infections, with different clones dominating in clinical samples and in culture, likely due to fitness differences. We believe this method is most suitable for clinical studies and for molecular tracking in the context of elimination programs.
Collapse
Affiliation(s)
- Malgorzata A. Domagalska
- Institute of Tropical Medicine Antwerp, Molecular Parasitology Unit, Antwerp, Belgium
- * E-mail: (MAD); (JAC); (JC-D)
| | - Hideo Imamura
- Institute of Tropical Medicine Antwerp, Molecular Parasitology Unit, Antwerp, Belgium
| | | | | | | | - Manu Vanaerschot
- Institute of Tropical Medicine Antwerp, Molecular Parasitology Unit, Antwerp, Belgium
| | - Ilse Maes
- Institute of Tropical Medicine Antwerp, Molecular Parasitology Unit, Antwerp, Belgium
| | - Erika D’Haenens
- Institute of Tropical Medicine Antwerp, Molecular Parasitology Unit, Antwerp, Belgium
| | - Keshav Rai
- BP Koirala Institute of Health Sciences, Dharan, Nepal
| | - Suman Rijal
- BP Koirala Institute of Health Sciences, Dharan, Nepal
| | | | - James A. Cotton
- Wellcome Sanger Institute, Hinxton, United Kingdom
- * E-mail: (MAD); (JAC); (JC-D)
| | - Jean-Claude Dujardin
- Institute of Tropical Medicine Antwerp, Molecular Parasitology Unit, Antwerp, Belgium
- University of Antwerp, Department of Biomedical Sciences, Antwerp, Belgium
- * E-mail: (MAD); (JAC); (JC-D)
| |
Collapse
|
25
|
Characterization of drug resistance and genetic diversity of Plasmodium falciparum parasites from Tripura, Northeast India. Sci Rep 2019; 9:13704. [PMID: 31548652 PMCID: PMC6757058 DOI: 10.1038/s41598-019-50152-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 09/06/2019] [Indexed: 01/23/2023] Open
Abstract
Monitoring of anti-malarial drug resistance is vital in Northeast India as this region shares its international border with Southeast Asia. Genetic diversity of Plasmodium parasites regulates transmission dynamics, disease severity and vaccine efficacy. P. falciparum chloroquine resistance transporter (Pfcrt), multidrug resistance-1 (Pfmdr-1) and kelch 13 propeller (PfK-13) genes which govern antimalarial drug resistance and three genetic diversity markers, merozoite surface protein 1 and 2 (Pfmsp-1, Pfmsp-2) and glutamate rich protein (Pfglurp) were evaluated from Tripura, Northeast India using molecular tools. In the Pfcrt gene, 87% isolates showed triple mutations at codons M74I, N75E and K76T. 12.5% isolates in Pfmdr-1 gene showed mutation at N86Y. No polymorphism in PfK-13 propeller was found. Polyclonal infections were observed in 53.85% isolates and more commonly in adults (p = 0.0494). In the Pfmsp-1 locus, the K1 allelic family was predominant (71.2%) followed by the 3D7/IC family (69.2%) in the Pfmsp-2 locus. RII region of Pfglurp exhibited nine alleles with expected heterozygosity of 0.85. The multiplicity of infection for Pfmsp-1, Pfmsp-2 and Pfglurp were 1.56, 1.31 and 1.06 respectively. Overall, the study demonstrated a high level of chloroquine resistance and extensive parasite diversity in the region, necessitating regular surveillance in this population group.
Collapse
|
26
|
Humoral immunity prevents clinical malaria during Plasmodium relapses without eliminating gametocytes. PLoS Pathog 2019; 15:e1007974. [PMID: 31536608 PMCID: PMC6752766 DOI: 10.1371/journal.ppat.1007974] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 07/10/2019] [Indexed: 12/19/2022] Open
Abstract
Plasmodium relapses are attributed to the activation of dormant liver-stage parasites and are responsible for a significant number of recurring malaria blood-stage infections. While characteristic of human infections caused by P. vivax and P. ovale, their relative contribution to malaria disease burden and transmission remains poorly understood. This is largely because it is difficult to identify ‘bona fide’ relapse infections due to ongoing transmission in most endemic areas. Here, we use the P. cynomolgi–rhesus macaque model of relapsing malaria to demonstrate that clinical immunity can form after a single sporozoite-initiated blood-stage infection and prevent illness during relapses and homologous reinfections. By integrating data from whole blood RNA-sequencing, flow cytometry, P. cynomolgi-specific ELISAs, and opsonic phagocytosis assays, we demonstrate that this immunity is associated with a rapid recall response by memory B cells that expand and produce anti-parasite IgG1 that can mediate parasite clearance of relapsing parasites. The reduction in parasitemia during relapses was mirrored by a reduction in the total number of circulating gametocytes, but importantly, the cumulative proportion of gametocytes increased during relapses. Overall, this study reveals that P. cynomolgi relapse infections can be clinically silent in macaques due to rapid memory B cell responses that help to clear asexual-stage parasites but still carry gametocytes. Plasmodium vivax contributes significantly to global malaria morbidity and remains a major obstacle for malaria elimination due to its ability to form dormant stages in the liver. These forms can become activated to cause relapsing blood-stage infections. Relapses remain poorly understood because it is difficult to verify whether P. vivax blood-stage infections in patients are due to new infections or relapses in most cases. Here, we use a nonhuman primate model of Plasmodium vivax malaria in concert with state-of-the-art immunological and molecular techniques to assess pathogenesis, host responses, and circulating gametocyte levels during relapses. We found that relapses were clinically silent compared to initial infections, and they were associated with a robust memory B cell response. This response resulted in the production of antibodies that were able to mediate clearance of asexual parasites. Despite this rapid immune protection, the sexual-stage gametocytes continued to circulate. Our study provides mechanistic insights into the host-parasite interface during Plasmodium relapse infections and demonstrates that clinically silent relapses can harbor gametocytes that may be infectious to mosquitoes.
Collapse
|
27
|
Earland D, Buchwald AG, Sixpence A, Chimenya M, Damson M, Seydel KB, Mathanga DP, Taylor TE, Laufer MK. Impact of Multiplicity of Plasmodium falciparum Infection on Clinical Disease in Malawi. Am J Trop Med Hyg 2019; 101:412-415. [PMID: 31219007 PMCID: PMC6685583 DOI: 10.4269/ajtmh.19-0093] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/22/2019] [Indexed: 11/07/2022] Open
Abstract
Multiplicity of infection (MOI), the number of unique Plasmodium falciparum parasite genotypes found in one infected individual, may contribute to the development of clinical malaria disease. However, the independent contribution of MOI and parasite density to clinical disease has not been well characterized. We conducted a two-year longitudinal cohort study of adults and children in a high-transmission setting in Malawi to test the hypothesis that increased MOI was independently associated with clinical disease, after accounting for parasite density. Of 1,062 episodes of infection, 477 (44.9%) were associated with symptoms. After controlling for repeated measures within an individual, key demographic factors, and parasite density, there was no association between MOI and clinical disease (OR = 1.02, 95% CI: 0.70-1.51). Although the limited ability to discern MOI in low-density asymptomatic infections may have impacted our results, we conclude that MOI is not an independent risk factor for clinical disease.
Collapse
Affiliation(s)
- Dominique Earland
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland
| | - Andrea G. Buchwald
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland
| | - Alick Sixpence
- Malaria Alert Centre, Communicable Disease Action Centre, University of Malawi College of Medicine, Blantyre, Malawi
| | - Mabvuto Chimenya
- Malaria Alert Centre, Communicable Disease Action Centre, University of Malawi College of Medicine, Blantyre, Malawi
| | - Milius Damson
- Malaria Alert Centre, Communicable Disease Action Centre, University of Malawi College of Medicine, Blantyre, Malawi
| | - Karl B. Seydel
- College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan
| | - Don P. Mathanga
- Malaria Alert Centre, Communicable Disease Action Centre, University of Malawi College of Medicine, Blantyre, Malawi
| | - Terrie E. Taylor
- College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan
| | - Miriam K. Laufer
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
28
|
Abukari Z, Okonu R, Nyarko SB, Lo AC, Dieng CC, Salifu SP, Gyan BA, Lo E, Amoah LE. The Diversity, Multiplicity of Infection and Population Structure of P. falciparum Parasites Circulating in Asymptomatic Carriers Living in High and Low Malaria Transmission Settings of Ghana. Genes (Basel) 2019; 10:genes10060434. [PMID: 31181699 PMCID: PMC6628376 DOI: 10.3390/genes10060434] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/31/2019] [Accepted: 06/03/2019] [Indexed: 11/24/2022] Open
Abstract
Background: Diversity in Plasmodium falciparum poses a major threat to malaria control and elimination interventions. This study utilized 12 polymorphic microsatellite (MS) markers and the Msp2 marker to examine diversity, multiplicity of infection (MOI) as well as the population structure of parasites circulating in two sites separated by about 92 km and with varying malaria transmission intensities within the Greater Accra Region of Ghana. Methods: The diversity and MOI of P. falciparum parasites in 160 non-symptomatic volunteers living in Obom (high malaria transmission intensity) and Asutsuare (low malaria transmission intensity) aged between 8 and 60 years was determined using Msp2 genotyping and microsatellite analysis. Results: The prevalence of asymptomatic P. falciparum carriers as well as the parasite density of infections was significantly higher in Obom than in Asutsuare. Samples from Asutsuare and Obom were 100% and 65% clonal, respectively, by Msp2 genotyping but decreased to 50% and 5%, respectively, when determined by MS analysis. The genetic composition of parasites from Obom and Asutsuare were highly distinct, with parasites from Obom being more diverse than those from Asutsuare. Conclusion: Plasmodium falciparum parasites circulating in Obom are genetically more diverse and distinct from those circulating in Asutsuare. The MOI in samples from both Obom and Asutsuare increased when assessed by MS analysis relative to MSP2 genotyping. The TA40 and TA87 loci are useful markers for estimating MOI in high and low parasite prevalence settings.
Collapse
Affiliation(s)
- Zakaria Abukari
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
- Immunology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana.
| | - Ruth Okonu
- Immunology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana.
| | - Samuel B Nyarko
- School of Medical Sciences, University of Cape Coast, Cape Coast, Ghana.
| | - Aminata C Lo
- Immunology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana.
- Department of Parasitology, University Cheikh Anta Diop, Dakar, Senegal.
| | - Cheikh C Dieng
- Department of Biological Sciences, University of North Carolina at Charlotte, NC 28223, USA.
| | - Samson P Salifu
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
| | - Ben A Gyan
- Immunology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana.
| | - Eugenia Lo
- Department of Biological Sciences, University of North Carolina at Charlotte, NC 28223, USA.
| | - Linda E Amoah
- Immunology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana.
- West Africa Center for Cell Biology of Infectious Pathogens, University of Ghana, Accra, Ghana.
| |
Collapse
|
29
|
Pacheco MA, Schneider KA, Céspedes N, Herrera S, Arévalo-Herrera M, Escalante AA. Limited differentiation among Plasmodium vivax populations from the northwest and to the south Pacific Coast of Colombia: A malaria corridor? PLoS Negl Trop Dis 2019; 13:e0007310. [PMID: 30921317 PMCID: PMC6456216 DOI: 10.1371/journal.pntd.0007310] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 04/09/2019] [Accepted: 03/16/2019] [Indexed: 01/06/2023] Open
Abstract
Background Malaria remains endemic in several countries of South America with low to moderate transmission intensity. Regional human migration through underserved endemic areas may be responsible for significant parasite dispersion making the disease resilient to interventions. Thus, the genetic characterization of malarial parasites is an important tool to assess how endemic areas may connect via the movement of infected individuals. Here, four sites in geographically separated areas reporting 80% of the malaria morbidity in Colombia were studied. The sites are located on an imaginary transect line of 1,500 km from the northwest to the south Pacific Coast of Colombia with a minimal distance of 500 km between populations that display noticeable ethnic, economic, epidemiological, and ecological differences. Methodology/Principal findings A total of 624 Plasmodium vivax samples from the four populations were genotyped by using eight microsatellite loci. Although a strong geographic structure was expected between these populations, only moderate evidence of genetic differentiation was observed using a suite of population genetic analyses. High genetic diversity, shared alleles, and low linkage disequilibrium were also found in these P. vivax populations providing no evidence for a bottleneck or clonal expansions as expected from recent reductions in the transmission that could have been the result of scaling up interventions or environmental changes. These patterns are consistent with a disease that is not only endemic in each site but also imply that there is gene flow among these populations across 1,500 km. Conclusion /Significance The observed patterns in P. vivax are consistent with a “corridor” where connected endemic areas can sustain a high level of genetic diversity locally and can restore parasite-subdivided populations via migration of infected individuals even after local interventions achieved a substantial reduction of clinical cases. The consequences of these findings in terms of control and elimination are discussed. The regional movements of infected individuals that connect suitable transmission areas make malaria resilient to control efforts. Those movements are expected to leave genetic signatures in the parasite populations that can be detected using analytical tools. In this study, the genetic makeups of Plasmodium vivax populations were characterized to assess whether the most endemic areas in Colombia were connected. Samples were collected from passive surveillance studies in four locations across an imaginary transect line of 1,500 km from the northwest to the south Pacific Coast of Colombia (South America). Considering the distance, and contrary to expectations, we found weak levels of genetic differentiation between these parasite populations with no evidence indicating that their genetic diversity has been eroded as expected whenever the prevalence of the disease is successfully reduced, e.g., through control programs or environmental changes. Although the sampling lacks the geographic and temporal detail to describe how the dispersion of parasite lineages occurred, the observed patterns are consistent with a series of infected populations that are connected in space by human movements allowing the parasite to diffuse across this 1,500 km transect. This malaria corridor needs to be characterized to achieve elimination.
Collapse
Affiliation(s)
- M. Andreína Pacheco
- Department of Biology/Institute for Genomics and Evolutionary Medicine (iGEM), Temple University, Philadelphia, Pennsylvania, United States of America
| | | | - Nora Céspedes
- Caucaseco Scientific Research Center and Malaria Vaccine and Drug Development Center, Cali, Colombia
| | - Sócrates Herrera
- Caucaseco Scientific Research Center and Malaria Vaccine and Drug Development Center, Cali, Colombia
| | - Myriam Arévalo-Herrera
- Caucaseco Scientific Research Center and Malaria Vaccine and Drug Development Center, Cali, Colombia
- Faculty of Health, Universidad del Valle, Cali, Colombia
| | - Ananias A. Escalante
- Department of Biology/Institute for Genomics and Evolutionary Medicine (iGEM), Temple University, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
30
|
Nkhoma SC, Banda RL, Khoswe S, Dzoole-Mwale TJ, Ward SA. Intra-host dynamics of co-infecting parasite genotypes in asymptomatic malaria patients. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2018; 65:414-424. [PMID: 30145390 PMCID: PMC6219893 DOI: 10.1016/j.meegid.2018.08.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 08/13/2018] [Accepted: 08/20/2018] [Indexed: 11/22/2022]
Abstract
Malaria-infected individuals often harbor mixtures of genetically distinct parasite genotypes. We studied intra-host dynamics of parasite genotypes co-infecting asymptomatic adults in an area of intense malaria transmission in Chikhwawa, Malawi. Serial blood samples (5 ml) were collected over seven consecutive days from 25 adults with asymptomatic Plasmodium falciparum malaria and analyzed to determine whether a single peripheral blood sample accurately captures within-host parasite diversity. Blood samples from three of the participants were also analyzed by limiting dilution cloning and SNP genotyping of the parasite clones isolated to examine both the number and relatedness of co-infecting parasite haplotypes. We observed rapid turnover of co-infecting parasite genotypes in 88% of the individuals sampled (n = 22) such that the genetic composition of parasites infecting these individuals changed dramatically over the course of seven days of follow up. Nineteen of the 25 individuals sampled (76%) carried multiple parasite genotypes at baseline. Analysis of serial blood samples from three of the individuals revealed that they harbored 6, 12 and 17 distinct parasite haplotypes respectively. Approximately 70% of parasite haplotypes recovered from the three extensively sampled individuals were unrelated (proportion of shared alleles <83.3%) and were deemed to have primarily arisen from superinfection (inoculation of unrelated parasite haplotypes through multiple mosquito bites). The rest were related at the half-sib level or greater and were deemed to have been inoculated into individual human hosts via parasite co-transmission from single mosquito bites. These findings add further to the growing weight of evidence indicating that a single blood sample poorly captures within-host parasite diversity and underscore the importance of repeated blood sampling to accurately capture within-host parasite ecology. Our data also demonstrate a more pronounced role for parasite co-transmission in generating within-host parasite diversity in high transmission settings than previously assumed. Taken together, these findings have important implications for understanding the evolution of drug resistance, malaria transmission, parasite virulence, allocation of gametocyte sex ratios and acquisition of malaria immunity.
Collapse
Affiliation(s)
- Standwell C Nkhoma
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi; Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK; Wellcome Trust-Liverpool-Glasgow Centre for Global Health Research, 70 Pembroke Place, Liverpool L69 3GF, UK.
| | - Rachel L Banda
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
| | - Stanley Khoswe
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
| | - Tamika J Dzoole-Mwale
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi College of Medicine, Blantyre, Malawi
| | - Stephen A Ward
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| |
Collapse
|
31
|
Evaluation of Plasmodium vivax isolates in Thailand using polymorphic markers Plasmodium merozoite surface protein (PvMSP) 1 and PvMSP3. Parasitol Res 2018; 117:3965-3978. [DOI: 10.1007/s00436-018-6106-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 10/01/2018] [Indexed: 12/27/2022]
|
32
|
Ventocilla JA, Nuñez J, Tapia LL, Lucas CM, Manock SR, Lescano AG, Edgel KA, Graf PCF. Genetic Variability of Plasmodium vivax in the North Coast of Peru and the Ecuadorian Amazon Basin. Am J Trop Med Hyg 2018; 99:27-32. [PMID: 29761758 DOI: 10.4269/ajtmh.17-0498] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In the Peruvian North Coast (PNC), the number of Plasmodium vivax malaria cases increased steadily from 2007 to 2010 despite a significant decline in the overall number of cases in Peru during the same period. To better understand the transmission dynamics of P. vivax populations in the PNC and the neighboring Ecuadorian Amazon Basin (EAB), we studied the genetic variability and population structure of P. vivax in these areas. One hundred and twenty P. vivax isolates (58 from Piura and 37 from Tumbes in the PNC collected from 2008 to 2010 and 25 from the EAB collected in Pastaza from 2001 to 2004) were assessed by five polymorphic microsatellite markers. Genetic variability was determined by expected heterozygosity (He) and population structure by Bayesian inference cluster analysis. We found very low genetic diversity in the PNC (He = 0-0.32) but high genetic diversity in the EAB (He = 0.43-0.70). Population structure analysis revealed three distinct populations in the three locations. Six of 37 (16%) isolates from Tumbes had an identical haplotype to that found in Piura, suggesting unidirectional flow from Piura to Tumbes. In addition, one haplotype from Tumbes showed similarity to a haplotype found in Pastaza, suggesting that this could be an imported case from EAB. These findings strongly suggest a minimal population flow and different levels of genetic variability between these two areas divided by the Andes Mountains. This work presents molecular markers that could be used to increase our understanding of regional malaria transmission dynamics, which has implications for the development of strategies for P. vivax control.
Collapse
Affiliation(s)
| | - Jorge Nuñez
- U.S. Naval Medical Research Unit 6 (NAMRU-6), Lima, Peru
| | - L Lorena Tapia
- U.S. Naval Medical Research Unit 6 (NAMRU-6), Lima, Peru
| | - Carmen M Lucas
- U.S. Naval Medical Research Unit 6 (NAMRU-6), Lima, Peru
| | | | - Andrés G Lescano
- Emerge, Emerging Diseases and Climate Change Research Unit, School of Public Health and Administration Universidad Peruana Cayetano Heredia, Lima, Peru.,U.S. Naval Medical Research Unit 6 (NAMRU-6), Lima, Peru
| | | | | |
Collapse
|
33
|
Zhong D, Lo E, Wang X, Yewhalaw D, Zhou G, Atieli HE, Githeko A, Hemming-Schroeder E, Lee MC, Afrane Y, Yan G. Multiplicity and molecular epidemiology of Plasmodium vivax and Plasmodium falciparum infections in East Africa. Malar J 2018; 17:185. [PMID: 29720181 PMCID: PMC5932820 DOI: 10.1186/s12936-018-2337-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 04/26/2018] [Indexed: 11/18/2022] Open
Abstract
Background Parasite genetic diversity and multiplicity of infection (MOI) affect clinical outcomes, response to drug treatment and naturally-acquired or vaccine-induced immunity. Traditional methods often underestimate the frequency and diversity of multiclonal infections due to technical sensitivity and specificity. Next-generation sequencing techniques provide a novel opportunity to study complexity of parasite populations and molecular epidemiology. Methods Symptomatic and asymptomatic Plasmodium vivax samples were collected from health centres/hospitals and schools, respectively, from 2011 to 2015 in Ethiopia. Similarly, both symptomatic and asymptomatic Plasmodium falciparum samples were collected, respectively, from hospitals and schools in 2005 and 2015 in Kenya. Finger-pricked blood samples were collected and dried on filter paper. Long amplicon (> 400 bp) deep sequencing of merozoite surface protein 1 (msp1) gene was conducted to determine multiplicity and molecular epidemiology of P. vivax and P. falciparum infections. The results were compared with those based on short amplicon (117 bp) deep sequencing. Results A total of 139 P. vivax and 222 P. falciparum samples were pyro-sequenced for pvmsp1 and pfmsp1, yielding a total of 21 P. vivax and 99 P. falciparum predominant haplotypes. The average MOI for P. vivax and P. falciparum were 2.16 and 2.68, respectively, which were significantly higher than that of microsatellite markers and short amplicon (117 bp) deep sequencing. Multiclonal infections were detected in 62.2% of the samples for P. vivax and 74.8% of the samples for P. falciparum. Four out of the five subjects with recurrent P. vivax malaria were found to be a relapse 44–65 days after clearance of parasites. No difference was observed in MOI among P. vivax patients of different symptoms, ages and genders. Similar patterns were also observed in P. falciparum except for one study site in Kenyan lowland areas with significantly higher MOI. Conclusions The study used a novel method to evaluate Plasmodium MOI and molecular epidemiological patterns by long amplicon ultra-deep sequencing. The complexity of infections were similar among age groups, symptoms, genders, transmission settings (spatial heterogeneity), as well as over years (pre- vs. post-scale-up interventions). This study demonstrated that long amplicon deep sequencing is a useful tool to investigate multiplicity and molecular epidemiology of Plasmodium parasite infections. Electronic supplementary material The online version of this article (10.1186/s12936-018-2337-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Daibin Zhong
- Program in Public Health, University of California at Irvine, Irvine, CA, 92617, USA.
| | - Eugenia Lo
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, 28223, USA
| | - Xiaoming Wang
- Program in Public Health, University of California at Irvine, Irvine, CA, 92617, USA
| | - Delenasaw Yewhalaw
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, Jimma University, Jimma, Ethiopia.,Tropical and Infectious Diseases Research Center, Jimma University, Jimma, Ethiopia
| | - Guofa Zhou
- Program in Public Health, University of California at Irvine, Irvine, CA, 92617, USA
| | - Harrysone E Atieli
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Andrew Githeko
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | | | - Ming-Chieh Lee
- Program in Public Health, University of California at Irvine, Irvine, CA, 92617, USA
| | - Yaw Afrane
- Department of Medical Microbiology, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Guiyun Yan
- Program in Public Health, University of California at Irvine, Irvine, CA, 92617, USA.
| |
Collapse
|
34
|
Zhong D, Koepfli C, Cui L, Yan G. Molecular approaches to determine the multiplicity of Plasmodium infections. Malar J 2018; 17:172. [PMID: 29685152 PMCID: PMC5914063 DOI: 10.1186/s12936-018-2322-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 04/18/2018] [Indexed: 12/26/2022] Open
Abstract
Multiplicity of infection (MOI), also termed complexity of infection (COI), is defined as the number of genetically distinct parasite strains co-infecting a single host, which is an important indicator of malaria epidemiology. PCR-based genotyping often underestimates MOI. Next generation sequencing technologies provide much more accurate and genome-wide characterization of polyclonal infections. However, complete haplotype characterization of multiclonal infections remains a challenge due to PCR artifacts and sequencing errors, and requires efficient computational tools. In this review, the advantages and limitations of current molecular approaches to determine multiplicity of malaria parasite infection are discussed.
Collapse
Affiliation(s)
- Daibin Zhong
- Program in Public Health, University of California, Irvine, CA, 92617, USA.
| | - Cristian Koepfli
- Program in Public Health, University of California, Irvine, CA, 92617, USA
| | - Liwang Cui
- Department of Entomology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Guiyun Yan
- Program in Public Health, University of California, Irvine, CA, 92617, USA.
| |
Collapse
|
35
|
Awad H, Al-Hamidhi S, El Hussein ARM, Yousif YMZ, Taha KM, Salih DA, Weir W, Babiker HA. Theileria lestoquardi in Sudan is highly diverse and genetically distinct from that in Oman. INFECTION GENETICS AND EVOLUTION 2018; 62:46-52. [PMID: 29660557 DOI: 10.1016/j.meegid.2018.04.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 04/09/2018] [Accepted: 04/10/2018] [Indexed: 11/17/2022]
Abstract
Malignant ovine theileriosis is a severe tick-borne protozoan disease of sheep and other small ruminants which is widespread in sub-Saharan Africa and the Middle East. The disease is of considerable economic importance in Sudan as the export of livestock provides a major contribution to the gross domestic product of this country. Molecular surveys have demonstrated a high prevalence of sub-clinical infections of Theileria lestoquardi, the causative agent, among small ruminants. No information is currently available on the extent of genetic diversity and genetic exchange among parasites in different areas of the country. The present study used a panel of T. lestoquardi specific micro- and mini-satellite genetic markers to assess diversity of parasites in Sudan (Africa) and compared it to that of the parasite population in Oman (Asia). A moderate level of genetic diversity was observed among parasites in Sudan, similar to that previously documented among parasites in Oman. However, a higher level of mixed-genotype infection was identified in Sudanese animals compared to Omani animals, consistent with a higher rate of tick transmission. In addition, the T. lestoquardi genotypes detected in these two countries form genetically distinct groups. The results of this work highlight the need for analysis of T. lestoquardi populations in other endemic areas in the region to inform on novel approaches for controlling malignant theileriosis.
Collapse
Affiliation(s)
- Hoyam Awad
- Department of Biochemistry, College of Medicine and Health Sciences, Sultan Qaboos University, P.O. Box 35, 123 Al-Khod, Oman
| | - Salama Al-Hamidhi
- Department of Biochemistry, College of Medicine and Health Sciences, Sultan Qaboos University, P.O. Box 35, 123 Al-Khod, Oman
| | | | | | - Khalid M Taha
- Animal Resources Research Corporation Khartoum, Sudan
| | - Dia A Salih
- Animal Resources Research Corporation Khartoum, Sudan
| | - William Weir
- School of Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Hamza A Babiker
- Department of Biochemistry, College of Medicine and Health Sciences, Sultan Qaboos University, P.O. Box 35, 123 Al-Khod, Oman; Institute of Immunology and Infection Research, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
36
|
Early AM, Lievens M, MacInnis BL, Ockenhouse CF, Volkman SK, Adjei S, Agbenyega T, Ansong D, Gondi S, Greenwood B, Hamel M, Odero C, Otieno K, Otieno W, Owusu-Agyei S, Asante KP, Sorgho H, Tina L, Tinto H, Valea I, Wirth DF, Neafsey DE. Host-mediated selection impacts the diversity of Plasmodium falciparum antigens within infections. Nat Commun 2018; 9:1381. [PMID: 29643376 PMCID: PMC5895824 DOI: 10.1038/s41467-018-03807-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 03/14/2018] [Indexed: 12/28/2022] Open
Abstract
Host immunity exerts strong selective pressure on pathogens. Population-level genetic analysis can identify signatures of this selection, but these signatures reflect the net selective effect of all hosts and vectors in a population. In contrast, analysis of pathogen diversity within hosts provides information on individual, host-specific selection pressures. Here, we combine these complementary approaches in an analysis of the malaria parasite Plasmodium falciparum using haplotype sequences from thousands of natural infections in sub-Saharan Africa. We find that parasite genotypes show preferential clustering within multi-strain infections in young children, and identify individual amino acid positions that may contribute to strain-specific immunity. Our results demonstrate that natural host defenses to P. falciparum act in an allele-specific manner to block specific parasite haplotypes from establishing blood-stage infections. This selection partially explains the extreme amino acid diversity of many parasite antigens and suggests that vaccines targeting such proteins should account for allele-specific immunity. Host immune responses exert selective pressure on Plasmodium falciparum. Here, the authors show that allele-specific immunity impacts the antigenic diversity of individual malaria infections. This process partially explains the extreme amino acid diversity of many parasite antigens and suggests that vaccines should account for allele-specific immunity.
Collapse
Affiliation(s)
- Angela M Early
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA. .,Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA.
| | | | - Bronwyn L MacInnis
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.,Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | | | - Sarah K Volkman
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.,Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA.,Simmons College, School of Nursing and Health Sciences, Boston, MA, 02115, USA
| | - Samuel Adjei
- School of Medical Sciences, Kwame Nkrumah University of Science and Technology, KNUST - Kumasi, Ghana
| | - Tsiri Agbenyega
- School of Medical Sciences, Kwame Nkrumah University of Science and Technology, KNUST - Kumasi, Ghana
| | - Daniel Ansong
- School of Medical Sciences, Kwame Nkrumah University of Science and Technology, KNUST - Kumasi, Ghana
| | - Stacey Gondi
- KEMRI-Walter Reed Project, Kombewa, 40102, Kenya
| | - Brian Greenwood
- London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Mary Hamel
- KEMRI/CDC Research and Public Health Collaboration, Kisumu, 40100, Kenya
| | - Chris Odero
- KEMRI/CDC Research and Public Health Collaboration, Kisumu, 40100, Kenya
| | - Kephas Otieno
- KEMRI/CDC Research and Public Health Collaboration, Kisumu, 40100, Kenya
| | | | - Seth Owusu-Agyei
- London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK.,Kintampo Health Research Centre, Kintampo, 200, Ghana.,University of Health and Allied Science, PMB 31, Ho, Volta Region, Ghana
| | | | - Hermann Sorgho
- Institut de Recherche en Sciences de la Santé, Nanoro, Burkina Faso/Institute of Tropical Medicine, 2000, Antwerp, Belgium
| | - Lucas Tina
- KEMRI-Walter Reed Project, Kombewa, 40102, Kenya
| | - Halidou Tinto
- Institut de Recherche en Sciences de la Santé, Nanoro, Burkina Faso/Institute of Tropical Medicine, 2000, Antwerp, Belgium
| | - Innocent Valea
- Institut de Recherche en Sciences de la Santé, Nanoro, Burkina Faso/Institute of Tropical Medicine, 2000, Antwerp, Belgium
| | - Dyann F Wirth
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.,Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA
| | - Daniel E Neafsey
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA. .,Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA.
| |
Collapse
|
37
|
Mita T, Hombhanje F, Takahashi N, Sekihara M, Yamauchi M, Tsukahara T, Kaneko A, Endo H, Ohashi J. Rapid selection of sulphadoxine-resistant Plasmodium falciparum and its effect on within-population genetic diversity in Papua New Guinea. Sci Rep 2018; 8:5565. [PMID: 29615786 PMCID: PMC5882878 DOI: 10.1038/s41598-018-23811-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 03/21/2018] [Indexed: 11/18/2022] Open
Abstract
The ability of the human malarial parasite Plasmodium falciparum to adapt to environmental changes depends considerably on its ability to maintain within-population genetic variation. Strong selection, consequent to widespread antimalarial drug usage, occasionally elicits a rapid expansion of drug-resistant isolates, which can act as founders. To investigate whether this phenomenon induces a loss of within-population genetic variation, we performed a population genetic analysis on 302 P. falciparum cases detected during two cross-sectional surveys in 2002/2003, just after the official introduction of sulphadoxine/pyrimethamine as a first-line treatment, and again in 2010/2011, in highly endemic areas in Papua New Guinea. We found that a single-origin sulphadoxine-resistant parasite isolate rapidly increased from 0% in 2002/2003 to 54% in 2010 and 84% in 2011. However, a considerable number of pairs exhibited random associations among 10 neutral microsatellite markers located in various chromosomes, suggesting that outcrossing effectively reduced non-random associations, albeit at a low average multiplicity of infection (1.35–1.52). Within-population genetic diversity was maintained throughout the study period. This indicates that the parasites maintained within-population variation, even after a clonal expansion of drug-resistant parasites. Outcrossing played a role in the preservation of within-population genetic diversity despite low levels of multiplicity of infection.
Collapse
Affiliation(s)
- Toshihiro Mita
- Department of Tropical Medicine and Parasitology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo, Tokyo, 113-8421, Japan.
| | - Francis Hombhanje
- Centre for Health Research & Diagnostics, Divine Word University, Nabasa Road, P.O. Box 483, Madang, Papua New Guinea
| | - Nobuyuki Takahashi
- Department of International Affairs and Tropical Medicine, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Makoto Sekihara
- Department of Tropical Medicine and Parasitology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo, Tokyo, 113-8421, Japan
| | - Masato Yamauchi
- Department of Tropical Medicine and Parasitology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo, Tokyo, 113-8421, Japan
| | - Takahiro Tsukahara
- Department of International Affairs and Tropical Medicine, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Akira Kaneko
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, SE-171 77, Stockholm, Sweden.,Department of Parasitology, Osaka City University Graduate School of Medicine, Asahi-cho 1-4-3, Abeno-ku, Osaka, 545-8585, Japan
| | - Hiroyoshi Endo
- Department of International Affairs and Tropical Medicine, Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo, 162-8666, Japan
| | - Jun Ohashi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
38
|
Funwei RI, Thomas BN, Falade CO, Ojurongbe O. Extensive diversity in the allelic frequency of Plasmodium falciparum merozoite surface proteins and glutamate-rich protein in rural and urban settings of southwestern Nigeria. Malar J 2018; 17:1. [PMID: 29291736 PMCID: PMC5749027 DOI: 10.1186/s12936-017-2149-5] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 12/19/2017] [Indexed: 01/23/2023] Open
Abstract
Background Nigeria carries a high burden of malaria which makes continuous surveillance for current information on genetic diversity imperative. In this study, the merozoite surface proteins (msp-1, msp-2) and glutamate-rich protein (glurp) of Plasmodium falciparum collected from two communities representing rural and urban settings in Ibadan, southwestern Nigeria were analysed. Methods A total of 511 febrile children, aged 3–59 months, whose parents/guardians provided informed consent, were recruited into the study. Capillary blood was obtained for malaria rapid diagnostic test, thick blood smears for parasite count and blood spots on filter paper for molecular analysis. Results Three-hundred and nine samples were successfully genotyped for msp-1, msp-2 and glurp genes. The allelic distribution of the three genes was not significantly different in the rural and urban communities. R033 and 3D7 were the most prevalent alleles in both rural and urban communities for msp-1 and msp-2, respectively. Eleven of glurp RII region genotypes, coded I–XII, with sizes ranging from 500 to 1100 base pairs were detected in the rural setting. Genotype XI (1000–1050 bp) had the highest prevalence of 41.5 and 38.5% in rural and urban settings, respectively. Overall, 82.1 and 70.0% of samples had multiclonal infection with msp-1 gene resulting in a mean multiplicity of infection (MOI) of 2.8 and 2.6 for rural and urban samples, respectively. Msp-1 and msp-2 genes displayed higher levels of diversity and higher MOI rates than the glurp gene. Conclusion Significant genetic diversity was observed between rural and urban parasite populations in Ibadan, southwestern Nigeria. The results of this study show that malaria transmission intensity in these regions is still high. No significant difference was observed between rural and urban settings, except for a completely different msp-1 allele, compared to previous reports, thereby confirming the changing face of malaria transmission in these communities. This study provides important baseline information required for monitoring the impact of malaria elimination efforts in this region and data points useful in revising current protocols.
Collapse
Affiliation(s)
- Roland I Funwei
- Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Nigeria.,Department of Pharmacy Technician Studies, Bayelsa State College of Health Technology, Yenagoa, Nigeria
| | - Bolaji N Thomas
- Department of Biomedical Sciences, College of Health Sciences and Technology, Rochester Institute of Technology, Rochester, NY, USA.,Tropical Disease Research Laboratory, College of Health Sciences, Ladoke Akintola University of Technology, Osogbo, Nigeria
| | - Catherine O Falade
- Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Nigeria.,Institute for Advanced Medical Research and Training, University of Ibadan, Ibadan, Nigeria
| | - Olusola Ojurongbe
- Tropical Disease Research Laboratory, College of Health Sciences, Ladoke Akintola University of Technology, Osogbo, Nigeria. .,Department of Medical Microbiology and Parasitology, Ladoke Akintola University of Technology, Osogbo, Nigeria.
| |
Collapse
|
39
|
Pava Z, Handayuni I, Trianty L, Utami RAS, Tirta YK, Puspitasari AM, Burdam F, Kenangalem E, Wirjanata G, Kho S, Trimarsanto H, Anstey N, Poespoprodjo JR, Noviyanti R, Price RN, Marfurt J, Auburn S. Passively versus Actively Detected Malaria: Similar Genetic Diversity but Different Complexity of Infection. Am J Trop Med Hyg 2017; 97:1788-1796. [PMID: 29016343 PMCID: PMC5790166 DOI: 10.4269/ajtmh.17-0364] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The surveillance of malaria is generally undertaken on the assumption that samples passively collected at health facilities are comparable to or representative of the broader Plasmodium reservoir circulating in the community. Further characterization and comparability of the hidden asymptomatic parasite reservoir are needed to inform on the potential impact of sampling bias. This study explores the impact of sampling strategy on molecular surveillance by comparing the genetic make-up of Plasmodium falciparum and Plasmodium vivax isolates collected by passive versus active case detection. Sympatric isolates of P. falciparum and P. vivax were collected from a large community survey and ongoing clinical surveillance studies undertaken in the hypomesoendemic setting of Mimika District (Papua, Indonesia). Plasmodium falciparum isolates were genotyped at nine microsatellite loci and P. vivax at eight loci. Measures of diversity and differentiation were used to compare different patient and parasitological sample groups. The results demonstrated that passively detected cases (symptomatic) had comparable population diversity to those circulating in the community (asymptomatic) in both species. In addition, asymptomatic patent infections were as diverse as subpatent infections. However, a significant difference in multiplicity of infection (MOI) and percentage of polyclonal infections was observed between actively and passively detected P. vivax cases (mean MOI: 1.7 ± 0.7 versus 1.4 ± 1.4, respectively; P = 0.001). The study findings infer that, in hypomesoendemic settings, passive sampling is appropriate for molecular parasite surveillance strategies using the predominant clone in any given infection; however, the findings suggest caution when analyzing complexity of infection. Further evaluation is required in other endemic settings.
Collapse
Affiliation(s)
- Zuleima Pava
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Irene Handayuni
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Leily Trianty
- Eijkman Institute for Molecular Biology, Jakarta, Indonesia
| | | | | | | | - Faustina Burdam
- Mimika District Health Authority, Timika, Papua, Indonesia;,Timika Malaria Research Programme, Papuan Health and Community Development Foundation, Timika, Papua, Indonesia;,Maternal and Child Health and Reproductive Health, Department of Public Health, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Enny Kenangalem
- Mimika District Health Authority, Timika, Papua, Indonesia;,Timika Malaria Research Programme, Papuan Health and Community Development Foundation, Timika, Papua, Indonesia
| | - Grennady Wirjanata
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Steven Kho
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| | | | - Nicholas Anstey
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Jeanne Rini Poespoprodjo
- Mimika District Health Authority, Timika, Papua, Indonesia;,Timika Malaria Research Programme, Papuan Health and Community Development Foundation, Timika, Papua, Indonesia;,Maternal and Child Health and Reproductive Health, Department of Public Health, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | | | - Ric N. Price
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia;,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
| | - Jutta Marfurt
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia
| | - Sarah Auburn
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia;,Address correspondence to Sarah Auburn, Menzies School of Health Research, PO Box 41096, Casuarina, Darwin, NT 0811, Australia. E-mail:
| |
Collapse
|
40
|
Characterizing the malaria rural-to-urban transmission interface: The importance of reactive case detection. PLoS Negl Trop Dis 2017; 11:e0005780. [PMID: 28715415 PMCID: PMC5531679 DOI: 10.1371/journal.pntd.0005780] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 07/27/2017] [Accepted: 07/05/2017] [Indexed: 11/19/2022] Open
Abstract
Background Reported urban malaria cases are increasing in Latin America, however, evidence of such trend remains insufficient. Here, we propose an integrated approach that allows characterizing malaria transmission at the rural-to-urban interface by combining epidemiological, entomological, and parasite genotyping methods. Methods/Principal findings A descriptive study that combines active (ACD), passive (PCD), and reactive (RCD) case detection was performed in urban and peri-urban neighborhoods of Quibdó, Colombia. Heads of households were interviewed and epidemiological surveys were conducted to assess malaria prevalence and identify potential risk factors. Sixteen primary cases, eight by ACD and eight by PCD were recruited for RCD. Using the RCD strategy, prevalence of 1% by microscopy (6/604) and 9% by quantitative polymerase chain reaction (qPCR) (52/604) were found. A total of 73 houses and 289 volunteers were screened leading to 41 secondary cases, all of them in peri-urban settings (14% prevalence). Most secondary cases were genetically distinct from primary cases indicating that there were independent occurrences. Plasmodium vivax was the predominant species (76.3%, 71/93), most of them being asymptomatic (46/71). Urban and peri-urban neighborhoods had significant sociodemographic differences. Twenty-four potential breeding sites were identified, all in peri-urban areas. The predominant vectors for 1,305 adults were Anopheles nuneztovari (56,2%) and An. Darlingi (42,5%). One An. nuneztovari specimen was confirmed naturally infected with P. falciparum by ELISA. Conclusions This study found no evidence supporting the existence of urban malaria transmission in Quibdó. RCD strategy was more efficient for identifying malaria cases than ACD alone in areas where malaria transmission is variable and unstable. Incorporating parasite genotyping allows discovering hidden patterns of malaria transmission that cannot be detected otherwise. We propose to use the term “focal case” for those primary cases that lead to discovery of secondary but genetically unrelated malaria cases indicating undetected malaria transmission. Malaria is a disease of rural areas in developing countries. Although a rise in urban malaria cases has been noted during the last decade, this trend could be an artifact due to lack of solid data. In order to better understand “urban” and “peri-urban” malaria, we developed a rigorous and systematic methodology that allows characterizing malaria risk in such settings. Our approach is based on cross-sectional studies using active and reactive case detection strategies, genotyping of parasite isolates in order to better understand transmission patterns, and the local assessment of the entomological factors that allow active transmission in urban and peri-urban neighborhoods. This approach was tested in Quibdó, Colombia. No evidence of malaria transmission in urban areas was found. However, we found solid evidence indicating transmission in peri-urban areas due to Plasmodium vivax (86%). This was supported by the identification of Anopheles mosquitoes and their breeding places. Our results show that reactive case detection is not only an effective strategy to identify cases in areas where transmission is variable and unstable, but also allows the detection of hidden transmission when combined with genotyping methods. Such patterns are undetected by traditional surveillance methods.
Collapse
|
41
|
Fola AA, Harrison GLA, Hazairin MH, Barnadas C, Hetzel MW, Iga J, Siba PM, Mueller I, Barry AE. Higher Complexity of Infection and Genetic Diversity of Plasmodium vivax Than Plasmodium falciparum Across All Malaria Transmission Zones of Papua New Guinea. Am J Trop Med Hyg 2017; 96:630-641. [PMID: 28070005 DOI: 10.4269/ajtmh.16-0716] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Plasmodium falciparum and Plasmodium vivax have varying transmission dynamics that are informed by molecular epidemiology. This study aimed to determine the complexity of infection and genetic diversity of P. vivax and P. falciparum throughout Papua New Guinea (PNG) to evaluate transmission dynamics across the country. In 2008-2009, a nationwide malaria indicator survey collected 8,936 samples from all 16 endemic provinces of PNG. Of these, 892 positive P. vivax samples were genotyped at PvMS16 and PvmspF3, and 758 positive P. falciparum samples were genotyped at Pfmsp2. The data were analyzed for multiplicity of infection (MOI) and genetic diversity. Overall, P. vivax had higher polyclonality (71%) and mean MOI (2.32) than P. falciparum (20%, 1.39). These measures were significantly associated with prevalence for P. falciparum but not for P. vivax. The genetic diversity of P. vivax (PvMS16: expected heterozygosity = 0.95, 0.85-0.98; PvMsp1F3: 0.78, 0.66-0.89) was higher and less variable than that of P. falciparum (Pfmsp2: 0.89, 0.65-0.97). Significant associations of MOI with allelic richness (rho = 0.69, P = 0.009) and expected heterozygosity (rho = 0.87, P < 0.001) were observed for P. falciparum. Conversely, genetic diversity was not correlated with polyclonality nor mean MOI for P. vivax. The results demonstrate higher complexity of infection and genetic diversity of P. vivax across the country. Although P. falciparum shows a strong association of these parameters with prevalence, a lack of association was observed for P. vivax and is consistent with higher potential for outcrossing of this species.
Collapse
Affiliation(s)
- Abebe A Fola
- Department of Medical Biology, University of Melbourne, Parkville, Australia.,Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - G L Abby Harrison
- Department of Medical Biology, University of Melbourne, Parkville, Australia.,Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Mita Hapsari Hazairin
- Department of Epidemiology and Preventative Medicine, Monash University, Clayton, Australia.,Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Céline Barnadas
- Statens Serum Institut, Copenhagen, Denmark.,European Public Health Microbiology (EUPHEM) Training Programme, European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden.,Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Manuel W Hetzel
- University of Basel, Basel, Switzerland.,Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Jonah Iga
- Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
| | - Peter M Siba
- Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
| | - Ivo Mueller
- Institut Pasteur, Paris, France.,Department of Medical Biology, University of Melbourne, Parkville, Australia.,Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Alyssa E Barry
- Department of Medical Biology, University of Melbourne, Parkville, Australia.,Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| |
Collapse
|
42
|
Prospective Study of Plasmodium vivax Malaria Recurrence after Radical Treatment with a Chloroquine-Primaquine Standard Regimen in Turbo, Colombia. Antimicrob Agents Chemother 2016; 60:4610-9. [PMID: 27185794 DOI: 10.1128/aac.00186-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 05/09/2016] [Indexed: 01/15/2023] Open
Abstract
Plasmodium vivax recurrences help maintain malaria transmission. They are caused by recrudescence, reinfection, or relapse, which are not easily differentiated. A longitudinal observational study took place in Turbo municipality, Colombia. Participants with uncomplicated P. vivax infection received supervised treatment concomitantly with 25 mg/kg chloroquine and 0.25 mg/kg/day primaquine for 14 days. Incidence of recurrence was assessed over 180 days. Samples were genotyped, and origins of recurrences were established. A total of 134 participants were enrolled between February 2012 and July 2013, and 87 were followed for 180 days, during which 29 recurrences were detected. The cumulative incidence of first recurrence was 24.1% (21/87) (95% confidence interval [CI], 14.6 to 33.7%), and 86% (18/21) of these events occurred between days 51 and 110. High genetic diversity of P. vivax strains was found, and 12.5% (16/128) of the infections were polyclonal. Among detected recurrences, 93.1% (27/29) of strains were genotyped as genetically identical to the strain from the previous infection episode, and 65.5% (19/29) of infections were classified as relapses. Our results indicate that there is a high incidence of P. vivax malaria recurrence after treatment in Turbo municipality, Colombia, and that a large majority of these episodes are likely relapses from the previous infection. We attribute this to the primaquine regimen currently used in Colombia, which may be insufficient to eliminate hypnozoites.
Collapse
|
43
|
Genetic Polymorphism of msp1 and msp2 in Plasmodium falciparum Isolates from Côte d'Ivoire versus Gabon. J Parasitol Res 2016; 2016:3074803. [PMID: 27110390 PMCID: PMC4823507 DOI: 10.1155/2016/3074803] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 03/01/2016] [Accepted: 03/07/2016] [Indexed: 11/30/2022] Open
Abstract
Introduction. The characterization of genetic profile of Plasmodium isolates from different areas could help in better strategies for malaria elimination. This study aimed to compare P. falciparum diversity in two African countries. Methods. Isolates collected from 100 and 73 falciparum malaria infections in sites of Côte d'Ivoire (West Africa) and Gabon (Central Africa), respectively, were analyzed by a nested PCR amplification of msp1 and msp2 genes. Results. The K1 allelic family was widespread in Côte d'Ivoire (64.6%) and in Gabon (56.6%). For msp2, the 3D7 alleles were more prevalent (>70% in both countries) compared to FC27 alleles. In Côte d'Ivoire, the frequencies of multiple infections with msp1 (45.1%) and msp2 (40.3%) were higher than those found for isolates from Gabon, that is, 30.2% with msp1 and 31.4% with msp2. The overall complexity of infection was 1.66 (SD = 0.79) in Côte d'Ivoire and 1.58 (SD = 0.83) in Gabon. It decreased with age in Côte d'Ivoire in contrast to Gabon. Conclusion. Differences observed in some allelic families and in complexity profile may suggest an impact of epidemiological facies as well as immunological response on genetic variability of P. falciparum.
Collapse
|
44
|
Lopez-Perez M, Pacheco MA, Buriticá L, Escalante AA, Herrera S, Arévalo-Herrera M. Malaria in pregnancy: a passive surveillance study of pregnant women in low transmission areas of Colombia, Latin America. Malar J 2016; 15:66. [PMID: 26850108 PMCID: PMC4743125 DOI: 10.1186/s12936-016-1125-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Accepted: 01/22/2016] [Indexed: 01/11/2023] Open
Abstract
Background Malaria causes a significant burden in highly endemic areas where children and pregnant women are more susceptible to severe disease and death, however, in low transmission settings malaria in pregnant women is less frequent. The aim of this study was to provide information of clinical profile, anti-parasite host immune responses and parasite genotyping of pregnant women with malaria in low endemic areas of Colombia. Methods This was a descriptive study conducted through passive surveillance in 1328 individuals from three endemic areas of Córdoba, Nariño and Chocó departments between 2011 and 2013. Trained physicians confirmed the pregnancy status and recorded clinical and epidemiological information. Haematological parameters, as well as hepatic and renal function, anti-malarial antibodies and parasite genotypes were evaluated. Results A total of 582 women presented with malaria infection, 34 of whom were pregnant (5.8 %), and most were infected by Plasmodium falciparum (n = 24). In 44 % (n = 15) of the women, the infection occurred during the first half of pregnancy. Although uncomplicated disease and parasitaemia ≤20,000 parasites/µL were common (n = 31), three women (8.8 %) infected by P. falciparum were classified as severe cases. Mild to moderate anaemia (68 %) and mild thrombocytopaenia (41 %) were the most frequent blood alterations and in four women acute renal failure was observed. Six women presented a second malaria episode during pregnancy mainly caused by P. vivax (n = 5), although no direct evidence of relapse was found by genotyping. Two out of the six women presenting a second malaria episode had severe malaria. A low prevalence of specific anti-parasite antibodies was found. Microsatellites indicated that all P. vivax infections involved multiple lineages whereas all but one P. falciparum infections harboured single genotypes. Conclusions Most malaria infected pregnant women displayed uncomplicated malaria, although a few of them with a second malaria episode presented an increased risk of severe malaria which appeared to be associated with malaria transmission intensity and not with levels of anti-parasite antibodies. The effects of severe malaria in both mother and fetus warrant future studies in low transmission settings. Electronic supplementary material The online version of this article (doi:10.1186/s12936-016-1125-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - M Andreína Pacheco
- Institute for Genomics and Evolutionary Medicine (igem), Temple University, Philadelphia, PA, USA.
| | | | - Ananias A Escalante
- Institute for Genomics and Evolutionary Medicine (igem), Temple University, Philadelphia, PA, USA. .,Department of Biology, Temple University, Philadelphia, PA, USA.
| | | | - Myriam Arévalo-Herrera
- Caucaseco Scientific Research Center, Cali, Colombia. .,Faculty of Health, Universidad del Valle, Cali, Colombia.
| |
Collapse
|