1
|
Shen Z, Luo H. The impact of schistosomiasis on the Global Disease Burden: a systematic analysis based on the 2021 Global Burden of Disease study. Parasite 2025; 32:12. [PMID: 39981999 PMCID: PMC11843987 DOI: 10.1051/parasite/2025005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/27/2025] [Indexed: 02/22/2025] Open
Abstract
Schistosomiasis is a neglected tropical disease that causes a significant global burden. The aim of this study was to report the latest estimates of the global, regional, and national schistosomiasis disease burden and forecast changes in schistosomiasis-related disease burden. This work was based on the 2021 Global Burden of Disease (GBD) study. We analyzed the schistosomiasis data by sex, age in years, and Socio-Demographic Index (SDI) region and country, using Age-Standardized Rates (ASR) for comparisons among different groups. The Estimated Annual Percent Changes (EAPC) analysis was used to evaluate the temporal trend of the disease burden, and the Differential Autoregressive Integrated Moving Average (ARIMA) and Exponential Smoothing (ES) models were used to predict the disease burden from 2022 to 2046. In the GBD 2021 study, it was reported that compared to 1990, the number of deaths has decreased by 74,350, the prevalence number has increased by 1,482,260, and Disability-Adjusted Life Years (DALYs) have decreased by 1,770,436. Additionally, the age-standardized mortality rate (ASMR) has decreased by 0.31 per 100,000 people, with an EAPC of -0.353 (95% CI: -0.361 to -0.344). Similarly, the age-standardized DALYs rate (ASDR) has decreased by 15.45 per 100,000 people (EAPC: -1.56, 95% CI: -1.78 to -1.34), and the age-standardized prevalence rate (ASPR) has decreased by 559.64 per 100,000 people (EAPC: -0.63, 95% CI: -0.95 to -0.31). The regions and countries with the highest disease burden are mostly concentrated in Africa. Despite a general decline in global schistosomiasis burden indicators, the burden of disease has actually increased in high SDI areas. The ARIMA and ES models forecast results show that female mortality and ASMR will decline in the next 25 years, while male mortality and ASMR will remain stable, and other disease indicators will continue to decline. The global schistosomiasis burden has significantly decreased over the past 30 years, but it remains high in African regions and countries, as well as low-SDI areas. Effective cooperation among countries should be strengthened to improve the disease burden in high-burden areas and countries.
Collapse
Affiliation(s)
- Zhangzhou Shen
- Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, Hubei Polytechnic University, Medical School Huangshi 435003 Hubei China
| | - Houqiang Luo
- College of Animal Science, Wenzhou Vocational College of Science and Technology Wenzhou 325006 Zhejiang China
| |
Collapse
|
2
|
Odeniran PO, Paul-Odeniran KF, Ademola IO. The comprehensive epidemiological status of human African trypanosomiasis in Nigeria: meta-analysis and systematic review of the full story (1962-2022). Parasitol Res 2024; 123:291. [PMID: 39102014 DOI: 10.1007/s00436-024-08312-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/29/2024] [Indexed: 08/06/2024]
Abstract
Human African trypanosomiasis (HAT) in Nigeria is caused primarily by Trypanosoma brucei gambiense (gHAT), which has historically been a major human and animal health problem. This study aims to examine the status of gHAT in Nigeria over the past 60 years. The World Health Organization (WHO) set two targets to eliminate HAT as a public health concern by 2020 and terminate its global transmission by 2030. The former target has been achieved, but accurate monitoring and surveillance are important for maintaining this success and delivering the second target. Although recent cases in Nigeria are rare, accurately estimating the national seroprevalence and actual prevalence of gHATs remains challenging. To address this, a meta-analysis reviewed studies on gHATs in Nigeria from databases such as Embase, Global Health, Ovid Medline, Web of Science, and Google Scholar. Ten studies were included, ranging between 1962 and 2016, covering 52 clusters and 5,671,877 individuals, even though databases were scrutinized up to 2022. The seroprevalence ranged from 1.75 to 17.07%, with an overall estimate of 5.01% (95% CI 1.72-9.93). The actual gHAT prevalence detected by parasitological or PCR methods was 0.001 (95% CI 0.000-0.002), indicating a prevalence of 0.1%. Notably, the seroprevalence was greater in southern Nigeria than in northern Nigeria. These findings suggest that the disease might be spreading unnoticed due to the increased movement of people from endemic areas. This study highlights the paucity of studies in Nigeria over the last 60 years and emphasizes the need for further research, systematic surveillance, and proper reporting methods throughout the country.
Collapse
Affiliation(s)
- Paul Olalekan Odeniran
- Department of Veterinary Parasitology and Entomology, University of Ibadan, Ibadan, 200001, Nigeria.
| | | | - Isaiah Oluwafemi Ademola
- Department of Veterinary Parasitology and Entomology, University of Ibadan, Ibadan, 200001, Nigeria
| |
Collapse
|
3
|
Seetsi A, N'da DD, Molefe-Nyembe N, Suganuma K, Ramatla T, Thekisoe O. In vitro anti-trypanosomal activity of synthetic nitrofurantoin-triazole hybrids against Trypanosoma species causing human African trypanosomosis. Fundam Clin Pharmacol 2024; 38:72-83. [PMID: 37479675 DOI: 10.1111/fcp.12940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/21/2023] [Accepted: 06/28/2023] [Indexed: 07/23/2023]
Abstract
Human African trypanosomosis (HAT) which is also known as sleeping sickness is caused by Trypanosoma brucei gambiense that is endemic in western and central Africa and T. b. rhodesiense that is endemic in eastern and southern Africa. Drugs used for treatment against HAT first stage have limited effectiveness, and the second stage drugs have been reported to be toxic, expensive, and have time-consuming administration, and parasitic resistance has developed against these drugs. The aim of this study was to evaluate the anti-trypanosomal activity of nitrofurantoin-triazole hybrids against T. b. gambiense and T. b. rhodesiense parasites in vitro. This study screened 19 synthesized nitrofurantoin-triazole (NFT) hybrids on two strains of human trypanosomes, and cytotoxicity was evaluated on Madin-Darby bovine kidney (MDBK) cells. The findings in this study showed that an increase in the chain length and the number of carbon atoms in some n-alkyl hybrids influenced the increase in anti-trypanosomal activity against T. b. gambiense and T. b. rhodesiense. The short-chain n-alkyl hybrids showed decreased activity compared to the long-chain n-alkyl hybrids, with increased activity against both T. b. gambiense and T. b. rhodesiense. Incorporation of additional electron-donating substituents in some NFT hybrids showed increased anti-trypanosomal activity than to electron-withdrawing substituents in NFT hybrids. All 19 NFT hybrids tested displayed better anti-trypanosomal activity against T. b. gambiense than T. b. rhodesiense. The NFT hybrid no. 16 was among the best performing hybrids against both T. b. gambiense (0.08 ± 0.04 μM) and T. b.rhodesiense (0.11 ± 0.06 μM), and its activity might be influenced by the introduction of fluorine in the para-position on the benzyl ring. Remarkably, the NFT hybrids in this study displayed weak to moderate cytotoxicity on MDBK cells. All of the NFT hybrids in this study had selectivity index values ranging from 18 to greater than 915, meaning that they were up to 10-100 times fold selective in their anti-trypanosomal activity. The synthesized NFT hybrids showed strong selectivity >10 to T. b. gambiense and T. b. rhodesiense, which indicates that they qualify from the initial selection criteria for potential hit drugs.
Collapse
Affiliation(s)
- Anna Seetsi
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - David D N'da
- Centre of Excellence for Pharmaceutical Sciences (PHARMACEN), North-West University, Potchefstroom, South Africa
| | - Nthatisi Molefe-Nyembe
- Department of Zoology and Entomology, University of the Free State, Phuthaditjhaba, South Africa
| | - Keisuke Suganuma
- OIE Reference Laboratory for Surra, National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido, Japan
| | - Tsepo Ramatla
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Oriel Thekisoe
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| |
Collapse
|
4
|
Antillon M, Huang CI, Sutherland SA, Crump RE, Bessell PR, Shaw APM, Tirados I, Picado A, Biéler S, Brown PE, Solano P, Mbainda S, Darnas J, Wang-Steverding X, Crowley EH, Peka M, Tediosi F, Rock KS. Health economic evaluation of strategies to eliminate gambiense human African trypanosomiasis in the Mandoul disease focus of Chad. PLoS Negl Trop Dis 2023; 17:e0011396. [PMID: 37498938 PMCID: PMC10409297 DOI: 10.1371/journal.pntd.0011396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/08/2023] [Accepted: 05/22/2023] [Indexed: 07/29/2023] Open
Abstract
Human African trypanosomiasis, caused by the gambiense subspecies of Trypanosoma brucei (gHAT), is a deadly parasitic disease transmitted by tsetse. Partners worldwide have stepped up efforts to eliminate the disease, and the Chadian government has focused on the previously high-prevalence setting of Mandoul. In this study, we evaluate the economic efficiency of the intensified strategy that was put in place in 2014 aimed at interrupting the transmission of gHAT, and we make recommendations on the best way forward based on both epidemiological projections and cost-effectiveness. In our analysis, we use a dynamic transmission model fit to epidemiological data from Mandoul to evaluate the cost-effectiveness of combinations of active screening, improved passive screening (defined as an expansion of the number of health posts capable of screening for gHAT), and vector control activities (the deployment of Tiny Targets to control the tsetse vector). For cost-effectiveness analyses, our primary outcome is disease burden, denominated in disability-adjusted life-years (DALYs), and costs, denominated in 2020 US$. Although active and passive screening have enabled more rapid diagnosis and accessible treatment in Mandoul, the addition of vector control provided good value-for-money (at less than $750/DALY averted) which substantially increased the probability of reaching the 2030 elimination target for gHAT as set by the World Health Organization. Our transmission modelling and economic evaluation suggest that the gains that have been made could be maintained by passive screening. Our analysis speaks to comparative efficiency, and it does not take into account all possible considerations; for instance, any cessation of ongoing active screening should first consider that substantial surveillance activities will be critical to verify the elimination of transmission and to protect against the possible importation of infection from neighbouring endemic foci.
Collapse
Affiliation(s)
- Marina Antillon
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Ching-I Huang
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, The University of Warwick, Coventry, United Kingdom
- Mathematics Institute, The University of Warwick, Coventry, United Kingdom
| | - Samuel A. Sutherland
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, The University of Warwick, Coventry, United Kingdom
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Ronald E. Crump
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, The University of Warwick, Coventry, United Kingdom
- Mathematics Institute, The University of Warwick, Coventry, United Kingdom
| | | | - Alexandra P. M. Shaw
- Infection Medicine, Deanery of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, United Kingdom
- AP Consultants, Walworth Enterprise Centre, Andover, United Kingdom
| | - Iñaki Tirados
- Department of Vector Biology, Liverpool School of Tropical Medicine, United Kingdom
| | - Albert Picado
- Foundation for Innovative New Diagnostics (FIND), Geneva, Switzerland
| | - Sylvain Biéler
- Foundation for Innovative New Diagnostics (FIND), Geneva, Switzerland
| | - Paul E. Brown
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, The University of Warwick, Coventry, United Kingdom
- Mathematics Institute, The University of Warwick, Coventry, United Kingdom
| | - Philippe Solano
- Institut de Recherche pour le Développement, UMR INTERTRYP IRD-CIRAD, Université de Montpellier, Montpellier, France
| | - Severin Mbainda
- Programme National de Lutte contre la Trypanosomiase Humaine Africaine (PNLTHA), Moundou, Chad
| | - Justin Darnas
- Programme National de Lutte contre la Trypanosomiase Humaine Africaine (PNLTHA), Moundou, Chad
| | - Xia Wang-Steverding
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, The University of Warwick, Coventry, United Kingdom
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Emily H. Crowley
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, The University of Warwick, Coventry, United Kingdom
- Mathematics Institute, The University of Warwick, Coventry, United Kingdom
| | - Mallaye Peka
- Programme National de Lutte contre la Trypanosomiase Humaine Africaine (PNLTHA), Moundou, Chad
| | - Fabrizio Tediosi
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Kat S. Rock
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, The University of Warwick, Coventry, United Kingdom
- Mathematics Institute, The University of Warwick, Coventry, United Kingdom
| |
Collapse
|
5
|
Mewamba EM, Magang EMK, Tiofack AAZ, Woguia GF, Bouaka CUT, Kamga RMN, Farikou O, Fogue PS, Tume C, Ravel S, Simo G. Trypanosome infections in animals from tsetse infected areas of Cameroon and their sensitivity and resistance molecular profiles for diminazene aceturate and isometamidium chloride. Vet Parasitol Reg Stud Reports 2023; 41:100868. [PMID: 37208078 DOI: 10.1016/j.vprsr.2023.100868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 03/28/2023] [Accepted: 04/03/2023] [Indexed: 05/21/2023]
Abstract
Monitoring and assessment of control strategies for African trypanosomoses' elimination require not only updating data on trypanosome infections, but also to have an overview on the molecular profiles of trypanocides resistance in different epidemiological settings. This study was designed to determine, in animals from six tsetse-infested areas of Cameroon, the prevalence of trypanosome infections as well as the diminazene aceturate (DA) and isometamidium chloride (ISM) sensitivity/resistance molecular profiles of these trypanosomes. From 2016 to 2019, blood was collected in pigs, dogs, sheep, goats and cattle from six tsetse infested areas of Cameroon. DNA was extracted from blood and trypanosome species were identified by PCR. The sensitivity/resistance molecular profiles of trypanosomes to DA and ISM were investigated using PCR-RFLP. From 1343 blood samples collected, Trypanosoma vivax, Trypanosoma congolense forest and savannah, Trypanosoma theileri and trypanosomes of the sub-genus Trypanozoon were identified. The overall prevalence of trypanosome infections was 18.7%. These prevalence vary between trypanosome species, animal taxa, within and between sampling sites. Trypanosoma theileri was the predominant species with an infection rate of 12.1%. Trypanosomes showing resistant molecular profiles for ISM and DA were identified in animals from Tibati (2.7% for ISM and 65.6% for DA) and Kontcha (0.3% for ISM and 6.2% for DA). No trypanosome carrying resistant molecular profile for any of the two trypanocides was detected in animals from Fontem, Campo, Bipindi and Touboro. Mixed molecular profiles of sensitive/resistant trypanosomes were detected in animals from Tibati and Kontcha. Results of this study highlighted the presence of various trypanosome species as well as parasites carrying sensitive/resistant molecular profiles for DA and ISM in animals of tsetse infested areas of Cameroon. They indicate that the control strategies must be adapted according to epidemiological settings. The diversity of trypanosomes indicates that AAT remains a serious threat for animal breeding and animal health in these tsetse infested areas.
Collapse
Affiliation(s)
- Estelle Mezajou Mewamba
- Molecular Parasitology and Entomology Unit, Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Eugenie Melaine Kemta Magang
- Molecular Parasitology and Entomology Unit, Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Arnol Auvaker Zebaze Tiofack
- Molecular Parasitology and Entomology Unit, Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Gilles-Fils Woguia
- Department of Public Health, Faculty of Medicine and Biomedical Sciences, University of Yaoundé 1, Yaoundé, Cameroon
| | - Calmes Ursain Tsakeng Bouaka
- Department of Biochemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon; Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
| | - Rolin Mitterran Ndeffo Kamga
- Molecular Parasitology and Entomology Unit, Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Oumarou Farikou
- Special Mission for Eradication of Tsetse flies, Regional tsetse Division of Adamawa, MINEPIA, Ngaoundere, Cameroon; Department of Biological Sciences, Faculty of Science, University of Bamenda, Bamenda, Cameroon
| | - Pythagore Sobgwi Fogue
- Molecular Parasitology and Entomology Unit, Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Christopher Tume
- Molecular Parasitology and Entomology Unit, Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon; Department of Biochemistry, Faculty of Science, University of Bamenda, Bamenda, Cameroon
| | - Sophie Ravel
- IRD INTERTRYP, CIRAD, University of Montpellier, Montpellier, France
| | - Gustave Simo
- Molecular Parasitology and Entomology Unit, Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon.
| |
Collapse
|
6
|
Solano P, Courtin F, Kaba D, Camara, Kagbadouno M, Rayaisse JB, Jamonneau V, Bucheton B, Bart JM, Thevenon S, Lejon V. [Towards elimination of human African trypanosomiasis]. MEDECINE TROPICALE ET SANTE INTERNATIONALE 2023; 3:mtsi.v3i1.2023.317. [PMID: 37525637 PMCID: PMC10387296 DOI: 10.48327/mtsi.v3i1.2023.317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 12/15/2022] [Indexed: 08/02/2023]
Abstract
Human African Trypanosomiasis (HAT) is caused by Trypanosoma brucei which is transmitted by the tsetse fly insect vector (Glossina spp). It is one of the 20 Neglected Tropical Diseases (NTD) listed by the WHO. These diseases affect the poorest and most vulnerable communities, for which the WHO has established a dedicated 2021-2030 roadmap. At the time of Alphonse Laveran, HAT devastated the African continent. In the 1960s, the disease was nearly under control, but it strongly re-emerged in the 1990s. A coordinated effort of all stakeholders, with national control programs as the main actors, a strong contribution of research and important donations by the private sector, allowed to decrease the HAT burden significantly. Since 2018, less than 1000 cases are detected annually. We here review new diagnostics, treatments and vector control tools that have been implemented jointly and successfully in several endemic countries.The next key challenge will be to sustain the gains. Newly emerging research questions include long-term carriage of trypanosomes and adaptation of tools to low prevalence contexts. Challenges out of the research area comprise the continued need of funding, maintenance of dedicated human resources, and the key question of access. Sustainable elimination as "interruption of transmission", which is the 2030 NTD roadmap target, can be reached, if these challenges are solved. We stress the importance of continuing to combine the efforts in the fight against the disease, because sustainable elimination of HAT is the best long-term prevention strategy against re-emergence. As such, HAT elimination can serve as an example for other infectious diseases.
Collapse
Affiliation(s)
- Philippe Solano
- Université Montpellier, Institut de recherche pour le développement (IRD), Centre de coopération internationale en recherche agronomique pour le développement (CIRAD), UMR Intertryp Montpellier, France
| | | | - Dramane Kaba
- Institut Pierre Richet Bouaké, Institut national de santé publique, Côte d'Ivoire
| | - Camara
- Programme national de lutte contre les maladies tropicales négligées – Prise en charge des cas (PNLMTN-PCC), Ministère de la Santé, Conakry, Guinée
| | - Moïse Kagbadouno
- Programme national de lutte contre les maladies tropicales négligées – Prise en charge des cas (PNLMTN-PCC), Ministère de la Santé, Conakry, Guinée
| | - Jean-Baptiste Rayaisse
- Centre international de recherche-développement sur l’élevage (CIRDES), Bobo-Dioulasso, Burkina Faso
| | - Vincent Jamonneau
- Université Montpellier, Institut de recherche pour le développement (IRD), Centre de coopération internationale en recherche agronomique pour le développement (CIRAD), UMR Intertryp Montpellier, France
- Institut Pierre Richet Bouaké, Institut national de santé publique, Côte d'Ivoire
| | - Bruno Bucheton
- Université Montpellier, Institut de recherche pour le développement (IRD), Centre de coopération internationale en recherche agronomique pour le développement (CIRAD), UMR Intertryp Montpellier, France
- Programme national de lutte contre les maladies tropicales négligées – Prise en charge des cas (PNLMTN-PCC), Ministère de la Santé, Conakry, Guinée
| | - Jean-Mathieu Bart
- Université Montpellier, Institut de recherche pour le développement (IRD), Centre de coopération internationale en recherche agronomique pour le développement (CIRAD), UMR Intertryp Montpellier, France
- Programme national de lutte contre les maladies tropicales négligées – Prise en charge des cas (PNLMTN-PCC), Ministère de la Santé, Conakry, Guinée
| | - Sophie Thevenon
- Université Montpellier, Institut de recherche pour le développement (IRD), Centre de coopération internationale en recherche agronomique pour le développement (CIRAD), UMR Intertryp Montpellier, France
| | - Veerle Lejon
- Université Montpellier, Institut de recherche pour le développement (IRD), Centre de coopération internationale en recherche agronomique pour le développement (CIRAD), UMR Intertryp Montpellier, France
| |
Collapse
|
7
|
Bemba I, Bamou R, Lenga A, Okoko A, Awono-Ambene P, Antonio-Nkondjio C. Review of the Situation of Human African Trypanosomiasis in the Republic of Congo From the 1950s to 2020. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:421-429. [PMID: 35137146 PMCID: PMC8924973 DOI: 10.1093/jme/tjab225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Indexed: 06/14/2023]
Abstract
Human African trypanosomiasis (HAT), despite considerable progress in the control, is still occurring in many countries in both west and central African regions. The HAT situation in the Republic of Congo has always been overshadowed by its neighbor the Democratic Republic of Congo where over 60% of all HAT cases occur. In the Republic of Congo, HAT cases have been significantly reduced to about 20 reported cases yearly and the disease is still prevalent in few foci across the country. Although continuous assessment of HAT situation in Congo is been led by the National Control Program for HAT, research on the vector, parasite, and vector control has received little attention. Because there have not been enough reviews summarizing key findings from studies conducted so far, there is still a poor understanding of the global situation of HAT in Congo. In order to achieve sustainable elimination of HAT in Congo a deep appraisal of HAT situation is required. The present study provides a review of studies conducted on HAT in the republic of Congo since the 1950s to date in order to identify gaps in knowledge and help consolidate the gains and progress towards the elimination of sleeping sickness.
Collapse
Affiliation(s)
- Irina Bemba
- Marien Ngouabi University, B.P. 69, Brazzaville, Republic of Congo
- Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), B.P. 288, Yaoundé, Cameroun
| | - Roland Bamou
- Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), B.P. 288, Yaoundé, Cameroun
- Vector Borne Diseases Laboratory of the Applied Biology and Ecology Research Unit (VBID-URBEA), Department of Animal Biology, Faculty of Science of the University of Dschang, P.O. Box 067, Cameroon
| | - Arsene Lenga
- Marien Ngouabi University, B.P. 69, Brazzaville, Republic of Congo
| | - Aline Okoko
- Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), B.P. 288, Yaoundé, Cameroun
| | - Parfait Awono-Ambene
- Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), B.P. 288, Yaoundé, Cameroun
| | - Christophe Antonio-Nkondjio
- Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), B.P. 288, Yaoundé, Cameroun
- Vector Biology Liverpool School of Tropical medicine Pembroke Place, Liverpool, UK
| |
Collapse
|
8
|
Maxamhud S, Lindahl JF, Mugenyi A, Echodu R, Waiswa C, Roesel K. Seasonal Monitoring of Glossina Species Occurrence, Infection Rates, and Trypanosoma Species Infections in Pigs in West Nile Region, Uganda. Vector Borne Zoonotic Dis 2022; 22:101-107. [PMID: 35175139 DOI: 10.1089/vbz.2020.2744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Introduction: Trypanosomiasis is a parasitic infection caused by the protozoa Trypanosoma. It is exclusively associated with Glossina species habitats and, therefore, restricted to specific geographical settings. It affects a wide range of hosts, including humans. Animals may carry different Trypanosoma spp. while being asymptomatic. They are, therefore, potentially important in unpremeditated disease transmission. Aim: The aim of this study was to study the potential impact of the government tsetse fly control program, and to elucidate the role of pigs in the Trypanosoma epidemiology in the West Nile region in Uganda. Methods: A historically important human African trypanosomiasis (HAT) hotspot was selected, with sampling in sites with and without a government tsetse fly control program. Pigs were screened for infection with Trypanosoma and tsetse traps were deployed to monitor vector occurrence, followed by tsetse fly dissection and microscopy to establish infection rates with Trypanosoma. Pig blood samples were further analyzed to identify possible Trypanosoma infections using internal transcribed spacer (ITS)-PCR. Results: Using microscopy, Trypanosoma was detected in 0.56% (7/1262) of the sampled pigs. Using ITS-PCR, 114 of 341 (33.4%) pig samples were shown to be Trypanosoma vivax positive. Of the 360 dissected tsetse flies, 13 (3.8%) were positive for Trypanosoma under the microscope. The difference in captured tsetse flies in the government intervention sites in comparison with the control sites was significant (p < 0.05). Seasonality did not play a substantial role in the tsetse fly density (p > 0.05). Conclusion: This study illustrated the impact of a government control program with low vector abundance in a historical HAT hotspot in Uganda. The study could not verify that pigs in the area were carriers for the causative agent for HAT, but showed a high prevalence of the animal infectious agent T. vivax.
Collapse
Affiliation(s)
- Sadiya Maxamhud
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Johanna F Lindahl
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.,Department of Biosciences, International Livestock Research Institute, Nairobi, Kenya.,Department of Clinical Sciences, Swedish University of Agricultural Science, Uppsala, Sweden
| | - Albert Mugenyi
- Coordinating Office for Control of Trypanosomiasis in Uganda, Ministry of Agriculture, Animal Industry and Fisheries, Makerere, Uganda
| | - Richard Echodu
- Department of Biology, Faculty of Science, Gulu University, Gulu, Uganda
| | - Charles Waiswa
- Coordinating Office for Control of Trypanosomiasis in Uganda, Ministry of Agriculture, Animal Industry and Fisheries, Makerere, Uganda.,Department of Pharmacy, Clinical and Comparative Studies, School of Veterinary Medicine and Animal Resources, Makerere University, Kampala, Uganda
| | - Kristina Roesel
- Department of Biosciences, International Livestock Research Institute, Nairobi, Kenya.,Department of Veterinary Medicine, Institute for Parasitology and Tropical Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
9
|
Courtin F, Kaba D, Rayaisse JB, Solano P, Torr SJ, Shaw APM. The cost of tsetse control using 'Tiny Targets' in the sleeping sickness endemic forest area of Bonon in Côte d'Ivoire: Implications for comparing costs across different settings. PLoS Negl Trop Dis 2022; 16:e0010033. [PMID: 34986176 PMCID: PMC8730416 DOI: 10.1371/journal.pntd.0010033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 11/25/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Work to control the gambiense form of human African trypanosomiasis (gHAT), or sleeping sickness, is now directed towards ending transmission of the parasite by 2030. In order to supplement gHAT case-finding and treatment, since 2011 tsetse control has been implemented using Tiny Targets in a number of gHAT foci. As this intervention is extended to new foci, it is vital to understand the costs involved. Costs have already been analysed for the foci of Arua in Uganda and Mandoul in Chad. This paper examines the costs of controlling Glossina palpalis palpalis in the focus of Bonon in Côte d'Ivoire from 2016 to 2017. METHODOLOGY/PRINCIPAL FINDINGS Some 2000 targets were placed throughout the main gHAT transmission area of 130 km2 at a density of 14.9 per km2. The average annual cost was USD 0.5 per person protected, USD 31.6 per target deployed of which 12% was the cost of the target itself, or USD 471.2 per km2 protected. Broken down by activity, 54% was for deployment and maintenance of targets, 34% for tsetse surveys/monitoring and 12% for sensitising populations. CONCLUSIONS/SIGNIFICANCE The cost of tsetse control per km2 of the gHAT focus protected in Bonon was more expensive than in Chad or Uganda, while the cost per km2 treated, that is the area where the targets were actually deployed, was cheaper. Per person protected, the Bonon cost fell between the two, with Uganda cheaper and Chad more expensive. In Bonon, targets were deployed throughout the protected area, because G. p. palpalis was present everywhere, whereas in Chad and Uganda G. fuscipes fuscipes was found only the riverine fringing vegetation. Thus, differences between gHAT foci, in terms of tsetse ecology and human geography, impact on the cost-effectiveness of tsetse control. It also demonstrates the need to take into account both the area treated and protected alongside other impact indicators, such as the cost per person protected.
Collapse
Affiliation(s)
- Fabrice Courtin
- Institut Pierre Richet (IPR), Institut National de Santé Publique (INSP), Laboratoire Mixte International sur les Maladies à Vecteurs, Bouaké, Côte d’Ivoire
- Institut de Recherche pour le Développement (IRD) UMR 177 Intertryp IRD-CIRAD, Université Montpellier, Montpellier, France
| | - Dramane Kaba
- Institut Pierre Richet (IPR), Institut National de Santé Publique (INSP), Laboratoire Mixte International sur les Maladies à Vecteurs, Bouaké, Côte d’Ivoire
| | - Jean-Baptiste Rayaisse
- Institut de Recherche pour le Développement (IRD) UMR 177 Intertryp IRD-CIRAD, Université Montpellier, Montpellier, France
- Centre International de Recherche-Développement sur l’Elevage en zone Subhumide (CIRDES), Bobo-Dioulasso, Burkina Faso
| | - Philippe Solano
- Institut de Recherche pour le Développement (IRD) UMR 177 Intertryp IRD-CIRAD, Université Montpellier, Montpellier, France
| | - Steve J. Torr
- Liverpool School of Tropical Medicine (LSTM), Liverpool, Merseyside, United Kingdom
| | - Alexandra P. M. Shaw
- Division of Infection and Pathway Medicine, Deanery of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, United Kingdom
- AP Consultants, Walworth Enterprise Centre, Andover, United Kingdom
| |
Collapse
|
10
|
Bessell PR, Esterhuizen J, Lehane MJ, Longbottom J, Mugenyi A, Selby R, Tirados I, Torr SJ, Waiswa C, Wamboga C, Hope A. Estimating the impact of Tiny Targets in reducing the incidence of Gambian sleeping sickness in the North-west Uganda focus. Parasit Vectors 2021; 14:410. [PMID: 34407867 PMCID: PMC8371857 DOI: 10.1186/s13071-021-04889-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 07/22/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Riverine species of tsetse (Glossina) transmit Trypanosoma brucei gambiense, which causes Gambian human African trypanosomiasis (gHAT), a neglected tropical disease. Uganda aims to eliminate gHAT as a public health problem through detection and treatment of human cases and vector control. The latter is being achieved through the deployment of 'Tiny Targets', insecticide-impregnated panels of material which attract and kill tsetse. We analysed the spatial and temporal distribution of cases of gHAT in Uganda during the period 2010-2019 to assess whether Tiny Targets have had an impact on disease incidence. METHODS To quantify the deployment of Tiny Targets, we mapped the rivers and their associated watersheds in the intervention area. We then categorised each of these on a scale of 0-3 according to whether Tiny Targets were absent (0), present only in neighbouring watersheds (1), present in the watersheds but not all neighbours (2), or present in the watershed and all neighbours (3). We overlaid all cases that were diagnosed between 2000 and 2020 and assessed whether the probability of finding cases in a watershed changed following the deployment of targets. We also estimated the number of cases averted through tsetse control. RESULTS We found that following the deployment of Tiny Targets in a watershed, there were fewer cases of HAT, with a sampled error probability of 0.007. We estimate that during the intervention period 2012-2019 we should have expected 48 cases (95% confidence intervals = 40-57) compared to the 36 cases observed. The results are robust to a range of sensitivity analyses. CONCLUSIONS Tiny Targets have reduced the incidence of gHAT by 25% in north-western Uganda.
Collapse
Affiliation(s)
| | - Johan Esterhuizen
- Liverpool School of Tropical Medicine (LSTM), Pembroke Place, Liverpool, UK
| | - Michael J. Lehane
- Liverpool School of Tropical Medicine (LSTM), Pembroke Place, Liverpool, UK
| | - Joshua Longbottom
- Liverpool School of Tropical Medicine (LSTM), Pembroke Place, Liverpool, UK
| | - Albert Mugenyi
- Coordinating Office for Control of Trypanosomiasis in Uganda (COCTU), Kampala, Uganda
| | - Richard Selby
- Liverpool School of Tropical Medicine (LSTM), Pembroke Place, Liverpool, UK
| | - Inaki Tirados
- Liverpool School of Tropical Medicine (LSTM), Pembroke Place, Liverpool, UK
| | - Steve J. Torr
- Liverpool School of Tropical Medicine (LSTM), Pembroke Place, Liverpool, UK
| | - Charles Waiswa
- Coordinating Office for Control of Trypanosomiasis in Uganda (COCTU), Kampala, Uganda
| | | | - Andrew Hope
- Liverpool School of Tropical Medicine (LSTM), Pembroke Place, Liverpool, UK
| |
Collapse
|
11
|
Salivarian Trypanosomes Have Adopted Intricate Host-Pathogen Interaction Mechanisms That Ensure Survival in Plain Sight of the Adaptive Immune System. Pathogens 2021; 10:pathogens10060679. [PMID: 34072674 PMCID: PMC8229994 DOI: 10.3390/pathogens10060679] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/24/2021] [Accepted: 05/28/2021] [Indexed: 12/21/2022] Open
Abstract
Salivarian trypanosomes are extracellular parasites affecting humans, livestock and game animals. Trypanosoma brucei rhodesiense and Trypanosoma brucei gambiense are human infective sub-species of T. brucei causing human African trypanosomiasis (HAT—sleeping sickness). The related T. b. brucei parasite lacks the resistance to survive in human serum, and only inflicts animal infections. Animal trypanosomiasis (AT) is not restricted to Africa, but is present on all continents. T. congolense and T. vivax are the most widespread pathogenic trypanosomes in sub-Saharan Africa. Through mechanical transmission, T. vivax has also been introduced into South America. T. evansi is a unique animal trypanosome that is found in vast territories around the world and can cause atypical human trypanosomiasis (aHT). All salivarian trypanosomes are well adapted to survival inside the host’s immune system. This is not a hostile environment for these parasites, but the place where they thrive. Here we provide an overview of the latest insights into the host-parasite interaction and the unique survival strategies that allow trypanosomes to outsmart the immune system. In addition, we review new developments in treatment and diagnosis as well as the issues that have hampered the development of field-applicable anti-trypanosome vaccines for the implementation of sustainable disease control.
Collapse
|
12
|
Carruthers LV, Munday JC, Ebiloma GU, Steketee P, Jayaraman S, Campagnaro GD, Ungogo MA, Lemgruber L, Donachie AM, Rowan TG, Peter R, Morrison LJ, Barrett MP, De Koning HP. Diminazene resistance in Trypanosoma congolense is not caused by reduced transport capacity but associated with reduced mitochondrial membrane potential. Mol Microbiol 2021; 116:564-588. [PMID: 33932053 DOI: 10.1111/mmi.14733] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 04/14/2021] [Accepted: 04/27/2021] [Indexed: 01/27/2023]
Abstract
Trypanosoma congolense is a principal agent causing livestock trypanosomiasis in Africa, costing developing economies billions of dollars and undermining food security. Only the diamidine diminazene and the phenanthridine isometamidium are regularly used, and resistance is widespread but poorly understood. We induced stable diminazene resistance in T. congolense strain IL3000 in vitro. There was no cross-resistance with the phenanthridine drugs, melaminophenyl arsenicals, oxaborole trypanocides, or with diamidine trypanocides, except the close analogs DB829 and DB75. Fluorescence microscopy showed that accumulation of DB75 was inhibited by folate. Uptake of [3 H]-diminazene was slow with low affinity and partly but reciprocally inhibited by folate and by competing diamidines. Expression of T. congolense folate transporters in diminazene-resistant Trypanosoma brucei brucei significantly sensitized the cells to diminazene and DB829, but not to oxaborole AN7973. However, [3 H]-diminazene transport studies, whole-genome sequencing, and RNA-seq found no major changes in diminazene uptake, folate transporter sequence, or expression. Instead, all resistant clones displayed a moderate reduction in the mitochondrial membrane potential Ψm. We conclude that diminazene uptake in T. congolense proceed via multiple low affinity mechanisms including folate transporters; while resistance is associated with a reduction in Ψm it is unclear whether this is the primary cause of the resistance.
Collapse
Affiliation(s)
- Lauren V Carruthers
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Jane C Munday
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Godwin U Ebiloma
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.,School of Health and Life Sciences, Teesside University, Middlesbrough, UK
| | - Pieter Steketee
- Roslin Institute, Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Edinburgh, UK
| | - Siddharth Jayaraman
- Roslin Institute, Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Edinburgh, UK
| | - Gustavo D Campagnaro
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Marzuq A Ungogo
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Leandro Lemgruber
- Glasgow Imaging Facility, Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Anne-Marie Donachie
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Tim G Rowan
- Global Alliance for Livestock Veterinary Medicine, Pentlands Science Park, Edinburgh, UK
| | - Rose Peter
- Global Alliance for Livestock Veterinary Medicine, Pentlands Science Park, Edinburgh, UK
| | - Liam J Morrison
- Roslin Institute, Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Edinburgh, UK
| | - Michael P Barrett
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.,Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK
| | - Harry P De Koning
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
13
|
Longbottom J, Caminade C, Gibson HS, Weiss DJ, Torr S, Lord JS. Modelling the impact of climate change on the distribution and abundance of tsetse in Northern Zimbabwe. Parasit Vectors 2020; 13:526. [PMID: 33076987 PMCID: PMC7574501 DOI: 10.1186/s13071-020-04398-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/07/2020] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Climate change is predicted to impact the transmission dynamics of vector-borne diseases. Tsetse flies (Glossina) transmit species of Trypanosoma that cause human and animal African trypanosomiasis. A previous modelling study showed that temperature increases between 1990 and 2017 can explain the observed decline in abundance of tsetse at a single site in the Mana Pools National Park of Zimbabwe. Here, we apply a mechanistic model of tsetse population dynamics to predict how increases in temperature may have changed the distribution and relative abundance of Glossina pallidipes across northern Zimbabwe. METHODS Local weather station temperature measurements were previously used to fit the mechanistic model to longitudinal G. pallidipes catch data. To extend the use of the model, we converted MODIS land surface temperature to air temperature, compared the converted temperatures with available weather station data to confirm they aligned, and then re-fitted the mechanistic model using G. pallidipes catch data and air temperature estimates. We projected this fitted model across northern Zimbabwe, using simulations at a 1 km × 1 km spatial resolution, between 2000 to 2016. RESULTS We produced estimates of relative changes in G. pallidipes mortality, larviposition, emergence rates and abundance, for northern Zimbabwe. Our model predicts decreasing tsetse populations within low elevation areas in response to increasing temperature trends during 2000-2016. Conversely, we show that high elevation areas (> 1000 m above sea level), previously considered too cold to sustain tsetse, may now be climatically suitable. CONCLUSIONS To our knowledge, the results of this research represent the first regional-scale assessment of temperature related tsetse population dynamics, and the first high spatial-resolution estimates of this metric for northern Zimbabwe. Our results suggest that tsetse abundance may have declined across much of the Zambezi Valley in response to changing climatic conditions during the study period. Future research including empirical studies is planned to improve model accuracy and validate predictions for other field sites in Zimbabwe.
Collapse
Affiliation(s)
- Joshua Longbottom
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK.
- Centre for Health Informatics, Computing and Statistics, Lancaster Medical School, Lancaster University, Lancaster, UK.
| | - Cyril Caminade
- Department of Livestock and One Health, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Harry S Gibson
- Malaria Atlas Project, Big Data Institute, University of Oxford, Oxford, UK
| | - Daniel J Weiss
- Malaria Atlas Project, Big Data Institute, University of Oxford, Oxford, UK
| | - Steve Torr
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Jennifer S Lord
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| |
Collapse
|
14
|
Waiswa C, Azuba R, Makeba J, Waiswa IC, Wangoola RM. Experiences of the one-health approach by the Uganda Trypanosomiasis Control Council and its secretariat in the control of zoonotic sleeping sickness in Uganda. Parasite Epidemiol Control 2020; 11:e00185. [PMID: 33015381 PMCID: PMC7518742 DOI: 10.1016/j.parepi.2020.e00185] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/28/2020] [Accepted: 09/20/2020] [Indexed: 11/30/2022] Open
Abstract
Elimination of sleeping sickness from endemic countries like Uganda is key if the affected communities are to exploit the potential of the available human and livestock resources (production and productivity). Trypanosoma brucei rhodesiense, the parasite that causes acute sleeping sickness in humans, is transmitted by tsetse flies and co-exists in non-human animal reservoirs. Uganda by Act of Parliament in 1992 decided to handle the complex approach to control of sleeping sickness and animal trypanosomiasis by establishing the Uganda Trypanosomiasis Control Council (UTCC) and its secretariat the Coordinating Office for the Control of Trypanosomiasis in Uganda (COCTU). The Institutional arrangement aimed to promote engagement with key stakeholders across nine key ministries and the community, all vital for control of zoonotic sleeping sickness, creating a One Health platform, long before such practice was common. From 2006, approaches by the Public Private Partnership, Stamp Out Sleeping Sickness (SOS) have required involvement of stakeholders in the promotion of insecticide treated cattle as live tsetse baits, targeting elimination of zoonotic sleeping sickness. Experiences in promoting sustainability of these interventions have been captured in this study as part of the Tackling Infections to Benefit Africa (TIBA) partnership. Meeting transcripts, focus group discussions and questionnaires were used to collect data from the different stakeholders involved in a rapid impact live bait study over 12 months from Dec 2017. The study provides unprecedented insights into the stakeholders involved in the application of a One health approach for control of zoonotic sleeping sickness across the most important active human African trypanosomiasis focus in East Africa. This unique study is fundamental in guiding multi-stakeholder engagement if the goal to eliminate zoonotic sleeping sickness is to be realised. A major challenge is timely feedback to the community as regards human and animal disease status; rapid diagnostic services that can be delivered from facilities established in close proximity to the affected communities and well equipped in-country reference laboratories are key to delivering effective control and best One Health Approach.
Collapse
Affiliation(s)
- C Waiswa
- Coordinating Office for the Control of Trypanosomiasis in Uganda (COCTU), P.O Box 16345, Wandegeya, Kampala, Uganda.,School of Veterinary Medicine, Makerere University, P.O Box 7062, Kampala, Uganda
| | - R Azuba
- School of Veterinary Medicine, Makerere University, P.O Box 7062, Kampala, Uganda
| | - J Makeba
- High Heights Services Limited, P.O Box 21828, Kampala, Uganda
| | - I C Waiswa
- Student Support and Philanthropy Program, P.O. Box 21828, Kampala, Uganda
| | - R M Wangoola
- Coordinating Office for the Control of Trypanosomiasis in Uganda (COCTU), P.O Box 16345, Wandegeya, Kampala, Uganda
| |
Collapse
|
15
|
Egbe-Nwiyi TN, Abalaka SE, Sani NA, Tenuche OZ, Idoko IS. Individual and combined anti-trypanosomal effects of arteether and diminazene aceturate in the treatment of experimental Trypanosoma brucei brucei infection in rats. Vet World 2020; 13:1858-1862. [PMID: 33132597 PMCID: PMC7566267 DOI: 10.14202/vetworld.2020.1858-1862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/20/2020] [Indexed: 12/05/2022] Open
Abstract
AIM Trypanosomosis is a vital protozoan disease of man and animals with devastating consequences in the tropical parts of the world, necessitating the investigation of the effects of diminazene aceturate (DA) and arteether (AR) on Trypanosoma brucei brucei experimental infection in rats. MATERIALS AND METHODS We used a total of 98 rats, which were divided into 14 groups (A-N) of seven rats each over 36 days after acclimatizing them. We administered 1×106 trypanosomes to the infected groups (B-N) with Group A as the unexposed control rats. Groups C-F became the infected and treated rats with 3.5 mg/kg, 7.0 mg/kg, 10.5 mg/kg, and 14.0 mg/kg of DA while Groups G-J became the infected and treated rats with 0.01 ml/kg, 0.02 ml/kg, 0.03 ml/kg, and 0.04 ml/kg of AR. Groups K-N became infected and treated rats with DA and AR combinations at similar doses. RESULTS Parasitemia suppression occurred in Groups G-J only but became cleared in Groups C-F and K-N. Survival time varied significantly (p<0.05) between Group B and the other infected groups. We recorded anemia in all the infected rats while significant (p<0.05) splenomegaly and hepatomegaly occurred in Groups G-J only compared to the other groups. CONCLUSION AR did not inhibit or potentiate the anti-trypanosomal efficacy of DA, and therefore, it is comparatively less effective in combating T. brucei infection at the present doses and treatment regimen.
Collapse
Affiliation(s)
- Tobias Nnia Egbe-Nwiyi
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, University of Abuja, Abuja, Nigeria
| | - Samson Eneojo Abalaka
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, University of Abuja, Abuja, Nigeria
| | - Nuhu Abdulazeez Sani
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, University of Abuja, Abuja, Nigeria
| | - Oremeyi Zainab Tenuche
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, University of Abuja, Abuja, Nigeria
| | - Idoko Sunday Idoko
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, University of Abuja, Abuja, Nigeria
| |
Collapse
|
16
|
Sharif S, Liénard E, Duvallet G, Etienne L, Mongellaz C, Grisez C, Franc M, Bouhsira E, Jacquiet P. Attractiveness and Specificity of Different Polyethylene Blue Screens on Stomoxys calcitrans (Diptera: Muscidae). INSECTS 2020; 11:E575. [PMID: 32867238 PMCID: PMC7563190 DOI: 10.3390/insects11090575] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 11/16/2022]
Abstract
Stomoxys calcitrans is considered as a major pest of livestock worldwide. Insecticides have been extensively used to control this pest but resistance to these chemical compounds is now reported in many countries. Therefore, a more sustainable and efficient control is needed. Seven different types of blue screens, with reflectances around 460 nm, were tested during summer 2016 in southwestern France to evaluate their attractiveness and their specificity for stable flies. Height of the screen and orientation (east or west) of a blue screen were also considered. High levels of S. calcitrans captures were recorded during this study (from 141 to 7301 individuals per blue screen and per day) whereas the numbers of tabanids and pollinator insects remained extremely low (less than 10 individuals per screen and per day). No significant difference in attractiveness has been shown between the different types of blue screens. The lower half of the blue screens caught significantly more stable flies (70%) than the higher half (30%). The "east" side of the screen attracted 60% of stable flies but this was not significantly different from the west side. These results are highlighting the interest in these blue polyethylene screens for controlling stable flies in cattle farms, in comparison with more expensive blue fabrics.
Collapse
Affiliation(s)
- Shukri Sharif
- UMR INRAE ENVT 1225, Interactions Hôtes Agents Pathogènes, Université de Toulouse, 31076 Toulouse, France; (S.S.); (E.L.); (C.M.); (C.G.); (E.B.)
| | - Emmanuel Liénard
- UMR INRAE ENVT 1225, Interactions Hôtes Agents Pathogènes, Université de Toulouse, 31076 Toulouse, France; (S.S.); (E.L.); (C.M.); (C.G.); (E.B.)
| | - Gérard Duvallet
- CEFE, Université de Montpellier, CNRS, EPHE, IRD, Université Paul Valéry Montpellier 3, 34000 Montpellier, France; (G.D.); (L.E.)
| | - Lucas Etienne
- CEFE, Université de Montpellier, CNRS, EPHE, IRD, Université Paul Valéry Montpellier 3, 34000 Montpellier, France; (G.D.); (L.E.)
| | - Clément Mongellaz
- UMR INRAE ENVT 1225, Interactions Hôtes Agents Pathogènes, Université de Toulouse, 31076 Toulouse, France; (S.S.); (E.L.); (C.M.); (C.G.); (E.B.)
| | - Christelle Grisez
- UMR INRAE ENVT 1225, Interactions Hôtes Agents Pathogènes, Université de Toulouse, 31076 Toulouse, France; (S.S.); (E.L.); (C.M.); (C.G.); (E.B.)
| | - Michel Franc
- Laboratoire de Parasitologie, École Nationale Vétérinaire de Toulouse, 31076 Toulouse, France;
| | - Emilie Bouhsira
- UMR INRAE ENVT 1225, Interactions Hôtes Agents Pathogènes, Université de Toulouse, 31076 Toulouse, France; (S.S.); (E.L.); (C.M.); (C.G.); (E.B.)
| | - Philippe Jacquiet
- UMR INRAE ENVT 1225, Interactions Hôtes Agents Pathogènes, Université de Toulouse, 31076 Toulouse, France; (S.S.); (E.L.); (C.M.); (C.G.); (E.B.)
| |
Collapse
|
17
|
Franco JR, Cecchi G, Priotto G, Paone M, Diarra A, Grout L, Simarro PP, Zhao W, Argaw D. Monitoring the elimination of human African trypanosomiasis at continental and country level: Update to 2018. PLoS Negl Trop Dis 2020; 14:e0008261. [PMID: 32437391 PMCID: PMC7241700 DOI: 10.1371/journal.pntd.0008261] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 03/30/2020] [Indexed: 11/18/2022] Open
Abstract
Background In 2012 human African trypanosomiasis (HAT), also known as sleeping sickness, was targeted for elimination as a public health problem, set to be achieved by 2020. The World Health Organization (WHO) provides here the 2018 update on the progress made toward that objective. Global indicators are reviewed, in particular the number of reported cases and the areas at risk. Recently developed indicators for the validation of HAT elimination at the national level are also presented. Methodology/Principal Findings With 977 cases reported in 2018, down from 2,164 in 2016, the main global indicator of elimination is already well within the 2020 target (i.e. 2,000 cases). Areas at moderate or higher risk (i.e. ≥ 1 case/10,000 people/year) are also steadily shrinking (less than 200,000 km2 in the period 2014–2018), thus nearing the 2020 target [i.e. 90% reduction (638,000 km2) from the 2000–2004 baseline (709,000 km2)]. Health facilities providing diagnosis and treatment of gambiense HAT continued to increase (+7% since the previous survey), with a better coverage of at-risk populations. By contrast, rhodesiense HAT health facilities decreased in number (-10.5%) and coverage. At the national level, eight countries meet the requirements to request validation of gambiense HAT elimination as a public health problem (i.e. Benin, Burkina Faso, Cameroon, Côte d’Ivoire, Ghana, Mali, Rwanda, and Togo), while for other endemic countries more efforts are needed in surveillance, control, or both. Conclusions/Significance The 2020 goal of HAT elimination as a public health problem is within grasp, and eligible countries are encouraged to request validation of their elimination status. Beyond 2020, the HAT community must gear up for the elimination of gambiense HAT transmission (2030 goal), by preparing for both the expected challenges (e.g. funding, coordination, integration of HAT control into regular health systems, development of more adapted tools, cryptic trypanosome reservoirs, etc.) and the unexpected ones. Human African trypanosomiasis (HAT), a lethal disease transmitted by tsetse flies, wreaked havoc in Africa at different times in the 20th century. Over the past twenty years, huge efforts made by a broad coalition of stakeholders curbed the last epidemic and brought the disease to the brink of elimination. In this paper, the latest figures on disease occurrence, geographical distribution and control activities are presented. Strong evidence indicates that the elimination of sleeping sickness ‘as a public health problem’ by 2020 is well within reach. In particular, fewer than one thousand new cases were reported in 2018, and the area where the risk of infection is estimated as moderate, high or very high has shrunk to less than 200,000 km2. More than half of this area is in the Democratic Republic of the Congo. The interruption of transmission of the gambiense form, targeted by the World Health Organization (WHO) for 2030, will require renewed efforts to tackle a range of expected and unexpected challenges. The rhodesiense form of the disease represents a small part of the overall HAT burden. For this form, the problem of under detection is on the rise and, because of an important animal reservoir, the elimination of disease transmission is not envisioned at this stage.
Collapse
Affiliation(s)
- José R. Franco
- World Health Organization, Control of Neglected Tropical Diseases, Geneva, Switzerland
- * E-mail:
| | - Giuliano Cecchi
- Food and Agriculture Organization of the United Nations, Animal Production and Health Division, Rome, Italy
| | - Gerardo Priotto
- World Health Organization, Control of Neglected Tropical Diseases, Geneva, Switzerland
| | - Massimo Paone
- Food and Agriculture Organization of the United Nations, Animal Production and Health Division, Rome, Italy
| | - Abdoulaye Diarra
- World Health Organization, Regional Office for Africa, Communicable Disease Unit, Brazzaville, Congo
| | - Lise Grout
- World Health Organization, Control of Neglected Tropical Diseases, Geneva, Switzerland
| | - Pere P. Simarro
- Consultant World Health Organization, Control of Neglected Tropical Diseases, Geneva, Switzerland
| | - Weining Zhao
- Food and Agriculture Organization of the United Nations, Animal Production and Health Division, Rome, Italy
| | - Daniel Argaw
- World Health Organization, Control of Neglected Tropical Diseases, Geneva, Switzerland
| |
Collapse
|
18
|
Uncertainty and sensitivity analyses of extinction probabilities suggest that adult female mortality is the weakest link for populations of tsetse (Glossina spp). PLoS Negl Trop Dis 2020; 14:e0007854. [PMID: 32392220 PMCID: PMC7241813 DOI: 10.1371/journal.pntd.0007854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 05/21/2020] [Accepted: 04/17/2020] [Indexed: 11/23/2022] Open
Abstract
Background A relatively simple life history allows us to derive an expression for the extinction probability of populations of tsetse, vectors of African sleeping sickness. We present the uncertainty and sensitivity analysis of the extinction probability, to offer key insights into factors affecting the control or eradication of tsetse populations. Methods We represent tsetse population growth as a branching process, and derive closed form estimates of population extinction from that model. Statistical and mathematical techniques are used to analyse the uncertainties in estimating extinction probability, and the sensitivity of the extinction probability to changes in input parameters representing the natural life history and vital dynamics of tsetse populations. Results For fixed values of input parameters, the sensitivity of extinction probability depends on the baseline parameter values. Extinction probability is most sensitive to the probability that a female is inseminated by a fertile male when daily pupal mortality is low, whereas the extinction probability is most sensitive to daily mortality rate for adult females when daily pupal mortality, and extinction probabilities, are high. Global uncertainty and sensitivity analysis show that daily mortality rate for adult females has the highest impact on the extinction probability. Conclusions The high correlation between extinction probability and daily female adult mortality gives a strong argument that control techniques which increase daily female adult mortality may be the single most effective means of ensuring eradication of tsetse population. Tsetse flies (Glossina spp.) are vectors of African trypanosomiasis, a deadly disease commonly called sleeping sickness in humans and nagana in livestock. The relatively simple life history of tsetse enabled us to model its population growth as a stochastic branching process. We derived a closed-form expression for the probability that a population of tsetse goes extinct, as a function of death, birth, development and insemination rates in female tsetse. We analyzed the sensitivity of the extinction probability to the different input parameters, in a bid to identify parameters with the highest impact on extinction probability. This information can, potentially, inform policy direction for tsetse control/elimination. In all the scenarios we considered for the global sensitivity analysis, the daily mortality rate for adult females had the greatest impact on the magnitude of extinction probability. Our findings suggest that the mortality rate in the adult females is the weakest link in tsetse life history, and this fact should be exploited in achieving tsetse population control, or even eradication.
Collapse
|
19
|
Longbottom J, Krause A, Torr SJ, Stanton MC. Quantifying geographic accessibility to improve efficiency of entomological monitoring. PLoS Negl Trop Dis 2020; 14:e0008096. [PMID: 32203517 PMCID: PMC7117774 DOI: 10.1371/journal.pntd.0008096] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 04/02/2020] [Accepted: 01/28/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Vector-borne diseases are important causes of mortality and morbidity in humans and livestock, particularly for poorer communities and countries in the tropics. Large-scale programs against these diseases, for example malaria, dengue and African trypanosomiasis, include vector control, and assessing the impact of this intervention requires frequent and extensive monitoring of disease vector abundance. Such monitoring can be expensive, especially in the later stages of a successful program where numbers of vectors and cases are low. METHODOLOGY/PRINCIPAL FINDINGS We developed a system that allows the identification of monitoring sites where pre-intervention densities of vectors are predicted to be high, and travel cost to sites is low, highlighting the most efficient locations for longitudinal monitoring. Using remotely sensed imagery and an image classification algorithm, we mapped landscape resistance associated with on- and off-road travel for every gridded location (3m and 0.5m grid cells) within Koboko district, Uganda. We combine the accessibility surface with pre-existing estimates of tsetse abundance and propose a stratified sampling approach to determine the most efficient locations for longitudinal data collection. Our modelled predictions were validated against empirical measurements of travel-time and existing maps of road networks. We applied this approach in northern Uganda where a large-scale vector control program is being implemented to control human African trypanosomiasis, a neglected tropical disease (NTD) caused by trypanosomes transmitted by tsetse flies. Our accessibility surfaces indicate a high performance when compared to empirical data, with remote sensing identifying a further ~70% of roads than existing networks. CONCLUSIONS/SIGNIFICANCE By integrating such estimates with predictions of tsetse abundance, we propose a methodology to determine the optimal placement of sentinel monitoring sites for evaluating control programme efficacy, moving from a nuanced, ad-hoc approach incorporating intuition, knowledge of vector ecology and local knowledge of geographic accessibility, to a reproducible, quantifiable one.
Collapse
Affiliation(s)
- Joshua Longbottom
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Centre for Health Informatics, Computing and Statistics, Lancaster Medical School, Lancaster University, Lancaster, United Kingdom
| | - Ana Krause
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Stephen J. Torr
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Michelle C. Stanton
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Centre for Health Informatics, Computing and Statistics, Lancaster Medical School, Lancaster University, Lancaster, United Kingdom
| |
Collapse
|
20
|
Castaño MS, Ndeffo-Mbah ML, Rock KS, Palmer C, Knock E, Mwamba Miaka E, Ndung’u JM, Torr S, Verlé P, Spencer SEF, Galvani A, Bever C, Keeling MJ, Chitnis N. Assessing the impact of aggregating disease stage data in model predictions of human African trypanosomiasis transmission and control activities in Bandundu province (DRC). PLoS Negl Trop Dis 2020; 14:e0007976. [PMID: 31961872 PMCID: PMC6994134 DOI: 10.1371/journal.pntd.0007976] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 01/31/2020] [Accepted: 12/06/2019] [Indexed: 11/19/2022] Open
Abstract
Since the turn of the century, the global community has made great progress towards the elimination of gambiense human African trypanosomiasis (HAT). Elimination programs, primarily relying on screening and treatment campaigns, have also created a rich database of HAT epidemiology. Mathematical models calibrated with these data can help to fill remaining gaps in our understanding of HAT transmission dynamics, including key operational research questions such as whether integrating vector control with current intervention strategies is needed to achieve HAT elimination. Here we explore, via an ensemble of models and simulation studies, how including or not disease stage data, or using more updated data sets affect model predictions of future control strategies.
Collapse
Affiliation(s)
- María Soledad Castaño
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- * E-mail:
| | - Martial L. Ndeffo-Mbah
- School of Public Health, Yale University, New Haven, Connecticut, United States of America
- College of Veterinary Medicine and Biosciences, Texas A&M University, College Station, Texas, United States of America
| | - Kat S. Rock
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, University of Warwick, Coventry, United Kingdom
- Mathematics Institute, University of Warwick, Coventry, United Kingdom
| | - Cody Palmer
- Institute of Disease Modeling, Seattle, Washington, United States of America
| | - Edward Knock
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, University of Warwick, Coventry, United Kingdom
- Department of Statistics, University of Warwick, Coventry, United Kingdom
| | - Erick Mwamba Miaka
- Programme National de Lutte contre la Trypanosomiase Humaine Africaine, Kinshasa, the Democratic Republic of the Congo
| | | | - Steve Torr
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Paul Verlé
- Department of Public Health, Institute of Tropical Medicine, Antwerp, Belgium
| | - Simon E. F. Spencer
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, University of Warwick, Coventry, United Kingdom
- Department of Statistics, University of Warwick, Coventry, United Kingdom
| | - Alison Galvani
- School of Public Health, Yale University, New Haven, Connecticut, United States of America
| | - Caitlin Bever
- Institute of Disease Modeling, Seattle, Washington, United States of America
| | - Matt J. Keeling
- Zeeman Institute for Systems Biology and Infectious Disease Epidemiology Research, University of Warwick, Coventry, United Kingdom
- Mathematics Institute, University of Warwick, Coventry, United Kingdom
| | - Nakul Chitnis
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
21
|
Ndeffo-Mbah ML, Pandey A, Atkins KE, Aksoy S, Galvani AP. The impact of vector migration on the effectiveness of strategies to control gambiense human African trypanosomiasis. PLoS Negl Trop Dis 2019; 13:e0007903. [PMID: 31805051 PMCID: PMC6894748 DOI: 10.1371/journal.pntd.0007903] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 11/04/2019] [Indexed: 02/06/2023] Open
Abstract
Background Several modeling studies have been undertaken to assess the feasibility of the WHO goal of eliminating gambiense human African trypanosomiasis (g-HAT) by 2030. However, these studies have generally overlooked the effect of vector migration on disease transmission and control. Here, we evaluated the impact of vector migration on the feasibility of interrupting transmission in different g-HAT foci. Methods We developed a g-HAT transmission model of a single tsetse population cluster that accounts for migration of tsetse fly into this population. We used a model calibration approach to constrain g-HAT incidence to ranges expected for high, moderate and low transmission settings, respectively. We used the model to evaluate the effectiveness of current intervention measures, including medical intervention through enhanced screening and treatment, and vector control, for interrupting g-HAT transmission in disease foci under each transmission setting. Results We showed that, in low transmission settings, under enhanced medical intervention alone, at least 70% treatment coverage is needed to interrupt g-HAT transmission within 10 years. In moderate transmission settings, a combination of medical intervention and a vector control measure with a daily tsetse mortality greater than 0.03 is required to achieve interruption of disease transmission within 10 years. In high transmission settings, interruption of disease transmission within 10 years requires a combination of at least 70% medical intervention coverage and at least 0.05 tsetse daily mortality rate from vector control. However, the probability of achieving elimination in high transmission settings decreases with an increased tsetse migration rate. Conclusion Our results suggest that the WHO 2030 goal of G-HAT elimination is, at least in theory, achievable. But the presence of tsetse migration may reduce the probability of interrupting g-HAT transmission in moderate and high transmission foci. Therefore, optimal vector control programs should incorporate monitoring and controlling of vector density in buffer areas around foci of g-HAT control efforts. Gambian human African trypanosomiasis (g-HAT), also known as sleeping sickness, is a vector-borne parasitic disease transmitted by tsetse flies. If untreated, g-HAT infection will usually result in death. Recently, the World Health Organization (WHO) has targeted g-HAT for elimination through achieving interruption of transmission by 2030. To help inform elimination efforts, mathematical models have been used to evaluate the feasibility of the WHO goals in different g-HAT transmission foci. However, these mathematical models have generally ignored the role that tsetse migration may have in the spread and reemergence of g-HAT. Using a mathematical model, we evaluate the impact of tsetse migration on the effectiveness of current intervention measures for achieving interruption of g-HAT transmission in different transmission foci. We consider different interventions such as enhanced screening and treatment and vector control. We show that vector control has a great potential for reducing transmission. Still, the presence and intensity of tsetse migration can undermine its effectiveness for interrupting disease transmission, especially in high transmission foci. Our results indicate the need of accounting for tsetse surveillance and migration data in designing vector control efforts for g-HAT elimination.
Collapse
Affiliation(s)
- Martial L. Ndeffo-Mbah
- Department of Veterinary Integrative Biosciences, Texas A&M College of Veterinary Medicine and Biomedical Sciences, College Station, TX, United States of America
- Department of Epidemiology and Biostatistics, Texas A&M School of Public Health, College Station, TX, United States of America
- * E-mail:
| | - Abhishek Pandey
- Center for Infectious Disease Modeling and Analysis, Yale School of Public Health, New Haven, CT, United States of America
- Department of Epidemiology and Microbial Diseases, Yale School of Public Health, New Haven, CT, United States of America
| | - Katherine E. Atkins
- Department of Infectious Disease Epidemiology, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Centre for Global Health, The Usher Institute for Population Health Sciences and Informatics, Edinburgh Medical School, The University of Edinburgh, Edinburgh, United Kingdom
| | - Serap Aksoy
- Department of Epidemiology and Microbial Diseases, Yale School of Public Health, New Haven, CT, United States of America
| | - Alison P. Galvani
- Center for Infectious Disease Modeling and Analysis, Yale School of Public Health, New Haven, CT, United States of America
- Department of Epidemiology and Microbial Diseases, Yale School of Public Health, New Haven, CT, United States of America
| |
Collapse
|
22
|
Mulenga P, Chenge F, Boelaert M, Mukalay A, Lutumba P, Lumbala C, Luboya O, Coppieters Y. Integration of Human African Trypanosomiasis Control Activities into Primary Healthcare Services: A Scoping Review. Am J Trop Med Hyg 2019; 101:1114-1125. [PMID: 31482788 PMCID: PMC6838596 DOI: 10.4269/ajtmh.19-0232] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 07/11/2019] [Indexed: 11/07/2022] Open
Abstract
Human African trypanosomiasis (HAT) also known as sleeping sickness is targeted for elimination as a public health problem by 2020 and elimination of infection by 2030. Although the number of reported cases is decreasing globally, integration of HAT control activities into primary healthcare services is endorsed to expand surveillance and control. However, this integration process faces several challenges in the field. This literature review analyzes what is known about integrated HAT control to guide the integration process in an era of HAT elimination. We carried out a scoping review by searching PubMed and Google Scholar data bases as well as gray literature documents resulting in 25 documents included for analysis. The main reasons in favor to integrate HAT control were related to coverage, cost, quality of service, or sustainability. There were three categories of factors influencing the integration process: 1) the clinical evolution of HAT, 2) the organization of health services, and 3) the diagnostic and therapeutic tools. There is a consensus that both active and passive approaches to HAT case detection and surveillance need to be combined, in a context-sensitive way. However, apart from some documentation about the constraints faced by local health services, there is little evidence on how this synergy is best achieved.
Collapse
Affiliation(s)
- Philippe Mulenga
- Faculty of Medicine and School of Public Health, University of Lubumbashi, Lubumbashi, Democratic Republic of the Congo
- Department of Public Health, Institute of Tropical Medicine, Antwerp, Belgium
- School of Public Health, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Faustin Chenge
- Faculty of Medicine and School of Public Health, University of Lubumbashi, Lubumbashi, Democratic Republic of the Congo
- Centre de Connaissances en Santé en République Démocratique du Congo, Kinshasa, Democratic Republic of the Congo
| | - Marleen Boelaert
- Department of Public Health, Institute of Tropical Medicine, Antwerp, Belgium
| | - Abdon Mukalay
- Faculty of Medicine and School of Public Health, University of Lubumbashi, Lubumbashi, Democratic Republic of the Congo
| | - Pascal Lutumba
- Department of Tropical Medicine, Faculty of Medicine, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Crispin Lumbala
- National Program for the Control of Human African Trypanosomiasis, Kinshasa, Democratic Republic of the Congo
| | - Oscar Luboya
- Faculty of Medicine and School of Public Health, University of Lubumbashi, Lubumbashi, Democratic Republic of the Congo
| | - Yves Coppieters
- School of Public Health, Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
23
|
Aksoy S. Tsetse peritrophic matrix influences for trypanosome transmission. JOURNAL OF INSECT PHYSIOLOGY 2019; 118:103919. [PMID: 31425686 PMCID: PMC6853167 DOI: 10.1016/j.jinsphys.2019.103919] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 08/09/2019] [Accepted: 08/09/2019] [Indexed: 06/10/2023]
Abstract
Tsetse flies are important vectors of parasitic African trypanosomes, agents of human and animal trypanosomiasis. Easily administrable and effective tools for disease control in the mammalian host are still lacking but reduction of the tsetse vector populations can reduce disease. An alternative approach is to reduce the transmission of trypanosomes in the tsetse vector. The gut peritrophic matrix (PM) has emerged as an important regulator of parasite transmission success in tsetse. Tsetse has a Type II PM that is constitutively produced by cells in the cardia organ. Tsetse PM lines the entire gut and functions as an immunological barrier to prevent the gut epithelia from responding to commensal environmental microbes present in the gut lumen. Tsetse PM also functions as a physical barrier to trypanosome infections that enter into the gut lumen in an infective blood meal. For persistence in the gut, African trypanosomes have developed an adaptive manipulative process to transiently reduce PM efficacy. The process is mediated by mammalian trypanosome surface coat proteins, Variant Surface Glycoproteins (VSGs) which are shed in the gut lumen and taken up by cardia cells. The mechanism of PM reduction involves a tsetse microRNA (miR-275) which acts thru the Wnt signaling pathway. The PM efficacy is once again reduced later in the infection process to enable the gut established parasites to reenter into the gut lumen to colonize the salivary glands, an essential process for transmission. The ability to modulate PM integrity can lead to innovative approaches to reduce disease transmission.
Collapse
Affiliation(s)
- Serap Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, 60 College St, LEPH 624, New Haven, CT 06520, United States.
| |
Collapse
|
24
|
Attardo GM, Abd-Alla AMM, Acosta-Serrano A, Allen JE, Bateta R, Benoit JB, Bourtzis K, Caers J, Caljon G, Christensen MB, Farrow DW, Friedrich M, Hua-Van A, Jennings EC, Larkin DM, Lawson D, Lehane MJ, Lenis VP, Lowy-Gallego E, Macharia RW, Malacrida AR, Marco HG, Masiga D, Maslen GL, Matetovici I, Meisel RP, Meki I, Michalkova V, Miller WJ, Minx P, Mireji PO, Ometto L, Parker AG, Rio R, Rose C, Rosendale AJ, Rota-Stabelli O, Savini G, Schoofs L, Scolari F, Swain MT, Takáč P, Tomlinson C, Tsiamis G, Van Den Abbeele J, Vigneron A, Wang J, Warren WC, Waterhouse RM, Weirauch MT, Weiss BL, Wilson RK, Zhao X, Aksoy S. Comparative genomic analysis of six Glossina genomes, vectors of African trypanosomes. Genome Biol 2019; 20:187. [PMID: 31477173 PMCID: PMC6721284 DOI: 10.1186/s13059-019-1768-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 07/22/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Tsetse flies (Glossina sp.) are the vectors of human and animal trypanosomiasis throughout sub-Saharan Africa. Tsetse flies are distinguished from other Diptera by unique adaptations, including lactation and the birthing of live young (obligate viviparity), a vertebrate blood-specific diet by both sexes, and obligate bacterial symbiosis. This work describes the comparative analysis of six Glossina genomes representing three sub-genera: Morsitans (G. morsitans morsitans, G. pallidipes, G. austeni), Palpalis (G. palpalis, G. fuscipes), and Fusca (G. brevipalpis) which represent different habitats, host preferences, and vectorial capacity. RESULTS Genomic analyses validate established evolutionary relationships and sub-genera. Syntenic analysis of Glossina relative to Drosophila melanogaster shows reduced structural conservation across the sex-linked X chromosome. Sex-linked scaffolds show increased rates of female-specific gene expression and lower evolutionary rates relative to autosome associated genes. Tsetse-specific genes are enriched in protease, odorant-binding, and helicase activities. Lactation-associated genes are conserved across all Glossina species while male seminal proteins are rapidly evolving. Olfactory and gustatory genes are reduced across the genus relative to other insects. Vision-associated Rhodopsin genes show conservation of motion detection/tracking functions and variance in the Rhodopsin detecting colors in the blue wavelength ranges. CONCLUSIONS Expanded genomic discoveries reveal the genetics underlying Glossina biology and provide a rich body of knowledge for basic science and disease control. They also provide insight into the evolutionary biology underlying novel adaptations and are relevant to applied aspects of vector control such as trap design and discovery of novel pest and disease control strategies.
Collapse
Affiliation(s)
- Geoffrey M Attardo
- Department of Entomology and Nematology, University of California, Davis, Davis, CA, USA.
| | - Adly M M Abd-Alla
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food & Agriculture, Vienna, Vienna, Austria
| | - Alvaro Acosta-Serrano
- Department of Vector Biology, Liverpool School of Tropical Medicine, Merseyside, Liverpool, UK
| | - James E Allen
- VectorBase, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, Cambridgeshire, UK
| | - Rosemary Bateta
- Department of Biochemistry, Biotechnology Research Institute - Kenya Agricultural and Livestock Research Organization, Kikuyu, Kenya
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Kostas Bourtzis
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food & Agriculture, Vienna, Vienna, Austria
| | - Jelle Caers
- Department of Biology - Functional Genomics and Proteomics Group, KU Leuven, Leuven, Belgium
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, Antwerp, Belgium
| | - Mikkel B Christensen
- VectorBase, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, Cambridgeshire, UK
| | - David W Farrow
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Markus Friedrich
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA
| | - Aurélie Hua-Van
- Laboratoire Evolution, Genomes, Comportement, Ecologie, CNRS, IRD, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Emily C Jennings
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Denis M Larkin
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Daniel Lawson
- Department of Life Sciences, Imperial College London, London, UK
| | - Michael J Lehane
- Department of Vector Biology, Liverpool School of Tropical Medicine, Merseyside, Liverpool, UK
| | - Vasileios P Lenis
- Schools of Medicine and Dentistry, University of Plymouth, Plymouth, UK
| | - Ernesto Lowy-Gallego
- VectorBase, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, Cambridgeshire, UK
| | - Rosaline W Macharia
- Molecular Biology and Bioinformatics Unit, International Center for Insect Physiology and Ecology, Nairobi, Kenya.,Centre for Biotechnology and Bioinformatics, University of Nairobi, Nairobi, Kenya
| | - Anna R Malacrida
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Heather G Marco
- Department of Biological Sciences, University of Cape Town, Rondebosch, South Africa
| | - Daniel Masiga
- Molecular Biology and Bioinformatics Unit, International Center for Insect Physiology and Ecology, Nairobi, Kenya
| | - Gareth L Maslen
- VectorBase, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, Cambridgeshire, UK
| | - Irina Matetovici
- Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Richard P Meisel
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Irene Meki
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food & Agriculture, Vienna, Vienna, Austria
| | - Veronika Michalkova
- Department of Biological Sciences, Florida International University, Miami, Florida, USA.,Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Wolfgang J Miller
- Department of Cell and Developmental Biology, Medical University of Vienna, Vienna, Austria
| | - Patrick Minx
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Paul O Mireji
- Department of Biochemistry, Biotechnology Research Institute - Kenya Agricultural and Livestock Research Organization, Kikuyu, Kenya.,Centre for Geographic Medicine Research Coast, Kenya Medical Research Institute, Kilifi, Kenya
| | - Lino Ometto
- Department of Sustainable Ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, TN, Italy.,Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Andrew G Parker
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food & Agriculture, Vienna, Vienna, Austria
| | - Rita Rio
- Department of Biology, West Virginia University, Morgantown, WV, USA
| | - Clair Rose
- Department of Vector Biology, Liverpool School of Tropical Medicine, Merseyside, Liverpool, UK
| | - Andrew J Rosendale
- Department of Biology, Mount St. Joseph University, Cincinnati, OH, USA.,Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Omar Rota-Stabelli
- Department of Sustainable Ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, TN, Italy
| | - Grazia Savini
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Liliane Schoofs
- Department of Biology - Functional Genomics and Proteomics Group, KU Leuven, Leuven, Belgium
| | - Francesca Scolari
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Martin T Swain
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Ceredigion, UK
| | - Peter Takáč
- Department of Animal Systematics, Ústav zoológie SAV; Scientica, Ltd, Bratislava, Slovakia
| | - Chad Tomlinson
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - George Tsiamis
- Department of Environmental and Natural Resources Management, University of Patras, Agrinio, Etoloakarnania, Greece
| | | | - Aurelien Vigneron
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Jingwen Wang
- School of Life Sciences, Fudan University, Shanghai, China
| | - Wesley C Warren
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA.,Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Robert M Waterhouse
- Department of Ecology & Evolution, Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology and Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Brian L Weiss
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Richard K Wilson
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Xin Zhao
- CAS Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing, China
| | - Serap Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA.
| |
Collapse
|
25
|
Attardo GM, Abd-Alla AMM, Acosta-Serrano A, Allen JE, Bateta R, Benoit JB, Bourtzis K, Caers J, Caljon G, Christensen MB, Farrow DW, Friedrich M, Hua-Van A, Jennings EC, Larkin DM, Lawson D, Lehane MJ, Lenis VP, Lowy-Gallego E, Macharia RW, Malacrida AR, Marco HG, Masiga D, Maslen GL, Matetovici I, Meisel RP, Meki I, Michalkova V, Miller WJ, Minx P, Mireji PO, Ometto L, Parker AG, Rio R, Rose C, Rosendale AJ, Rota-Stabelli O, Savini G, Schoofs L, Scolari F, Swain MT, Takáč P, Tomlinson C, Tsiamis G, Van Den Abbeele J, Vigneron A, Wang J, Warren WC, Waterhouse RM, Weirauch MT, Weiss BL, Wilson RK, Zhao X, Aksoy S. Comparative genomic analysis of six Glossina genomes, vectors of African trypanosomes. Genome Biol 2019; 20:187. [PMID: 31477173 DOI: 10.1101/531749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 07/22/2019] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND Tsetse flies (Glossina sp.) are the vectors of human and animal trypanosomiasis throughout sub-Saharan Africa. Tsetse flies are distinguished from other Diptera by unique adaptations, including lactation and the birthing of live young (obligate viviparity), a vertebrate blood-specific diet by both sexes, and obligate bacterial symbiosis. This work describes the comparative analysis of six Glossina genomes representing three sub-genera: Morsitans (G. morsitans morsitans, G. pallidipes, G. austeni), Palpalis (G. palpalis, G. fuscipes), and Fusca (G. brevipalpis) which represent different habitats, host preferences, and vectorial capacity. RESULTS Genomic analyses validate established evolutionary relationships and sub-genera. Syntenic analysis of Glossina relative to Drosophila melanogaster shows reduced structural conservation across the sex-linked X chromosome. Sex-linked scaffolds show increased rates of female-specific gene expression and lower evolutionary rates relative to autosome associated genes. Tsetse-specific genes are enriched in protease, odorant-binding, and helicase activities. Lactation-associated genes are conserved across all Glossina species while male seminal proteins are rapidly evolving. Olfactory and gustatory genes are reduced across the genus relative to other insects. Vision-associated Rhodopsin genes show conservation of motion detection/tracking functions and variance in the Rhodopsin detecting colors in the blue wavelength ranges. CONCLUSIONS Expanded genomic discoveries reveal the genetics underlying Glossina biology and provide a rich body of knowledge for basic science and disease control. They also provide insight into the evolutionary biology underlying novel adaptations and are relevant to applied aspects of vector control such as trap design and discovery of novel pest and disease control strategies.
Collapse
Affiliation(s)
- Geoffrey M Attardo
- Department of Entomology and Nematology, University of California, Davis, Davis, CA, USA.
| | - Adly M M Abd-Alla
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food & Agriculture, Vienna, Vienna, Austria
| | - Alvaro Acosta-Serrano
- Department of Vector Biology, Liverpool School of Tropical Medicine, Merseyside, Liverpool, UK
| | - James E Allen
- VectorBase, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, Cambridgeshire, UK
| | - Rosemary Bateta
- Department of Biochemistry, Biotechnology Research Institute - Kenya Agricultural and Livestock Research Organization, Kikuyu, Kenya
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Kostas Bourtzis
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food & Agriculture, Vienna, Vienna, Austria
| | - Jelle Caers
- Department of Biology - Functional Genomics and Proteomics Group, KU Leuven, Leuven, Belgium
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, Antwerp, Belgium
| | - Mikkel B Christensen
- VectorBase, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, Cambridgeshire, UK
| | - David W Farrow
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Markus Friedrich
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA
| | - Aurélie Hua-Van
- Laboratoire Evolution, Genomes, Comportement, Ecologie, CNRS, IRD, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Emily C Jennings
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Denis M Larkin
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Daniel Lawson
- Department of Life Sciences, Imperial College London, London, UK
| | - Michael J Lehane
- Department of Vector Biology, Liverpool School of Tropical Medicine, Merseyside, Liverpool, UK
| | - Vasileios P Lenis
- Schools of Medicine and Dentistry, University of Plymouth, Plymouth, UK
| | - Ernesto Lowy-Gallego
- VectorBase, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, Cambridgeshire, UK
| | - Rosaline W Macharia
- Molecular Biology and Bioinformatics Unit, International Center for Insect Physiology and Ecology, Nairobi, Kenya
- Centre for Biotechnology and Bioinformatics, University of Nairobi, Nairobi, Kenya
| | - Anna R Malacrida
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Heather G Marco
- Department of Biological Sciences, University of Cape Town, Rondebosch, South Africa
| | - Daniel Masiga
- Molecular Biology and Bioinformatics Unit, International Center for Insect Physiology and Ecology, Nairobi, Kenya
| | - Gareth L Maslen
- VectorBase, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, Cambridgeshire, UK
| | - Irina Matetovici
- Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Richard P Meisel
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Irene Meki
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food & Agriculture, Vienna, Vienna, Austria
| | - Veronika Michalkova
- Department of Biological Sciences, Florida International University, Miami, Florida, USA
- Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Wolfgang J Miller
- Department of Cell and Developmental Biology, Medical University of Vienna, Vienna, Austria
| | - Patrick Minx
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Paul O Mireji
- Department of Biochemistry, Biotechnology Research Institute - Kenya Agricultural and Livestock Research Organization, Kikuyu, Kenya
- Centre for Geographic Medicine Research Coast, Kenya Medical Research Institute, Kilifi, Kenya
| | - Lino Ometto
- Department of Sustainable Ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, TN, Italy
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Andrew G Parker
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food & Agriculture, Vienna, Vienna, Austria
| | - Rita Rio
- Department of Biology, West Virginia University, Morgantown, WV, USA
| | - Clair Rose
- Department of Vector Biology, Liverpool School of Tropical Medicine, Merseyside, Liverpool, UK
| | - Andrew J Rosendale
- Department of Biology, Mount St. Joseph University, Cincinnati, OH, USA
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Omar Rota-Stabelli
- Department of Sustainable Ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, TN, Italy
| | - Grazia Savini
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Liliane Schoofs
- Department of Biology - Functional Genomics and Proteomics Group, KU Leuven, Leuven, Belgium
| | - Francesca Scolari
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Martin T Swain
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Ceredigion, UK
| | - Peter Takáč
- Department of Animal Systematics, Ústav zoológie SAV; Scientica, Ltd, Bratislava, Slovakia
| | - Chad Tomlinson
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - George Tsiamis
- Department of Environmental and Natural Resources Management, University of Patras, Agrinio, Etoloakarnania, Greece
| | | | - Aurelien Vigneron
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Jingwen Wang
- School of Life Sciences, Fudan University, Shanghai, China
| | - Wesley C Warren
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Robert M Waterhouse
- Department of Ecology & Evolution, Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology and Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Brian L Weiss
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Richard K Wilson
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Xin Zhao
- CAS Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing, China
| | - Serap Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA.
| |
Collapse
|
26
|
Selby R, Wamboga C, Erphas O, Mugenyi A, Jamonneau V, Waiswa C, Torr SJ, Lehane M. Gambian human African trypanosomiasis in North West Uganda. Are we on course for the 2020 target? PLoS Negl Trop Dis 2019; 13:e0007550. [PMID: 31412035 PMCID: PMC6693741 DOI: 10.1371/journal.pntd.0007550] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 06/13/2019] [Indexed: 01/28/2023] Open
Abstract
In 1994, combined active and passive screening reported 1469 cases from the historic Gambian Human African Trypanosomiasis (gHAT) foci of West Nile, Uganda. Since 2011 systematic active screening has stopped and there has been reliance on passive screening. During 2014, passive screening alone detected just nine cases. In the same year a tsetse control intervention was expanded to cover the main gHAT foci in West Nile to curtail transmission of gHAT contributing to the elimination of gHAT as a public health problem in the area. It is known that sole reliance on passive screening is slow to detect cases and can underestimate the actual true number. We therefore undertook an active screening programme designed to test the efficacy of these interventions against gHAT transmission and clarify disease status. Screening was conducted in 28 randomly selected villages throughout the study area, aiming to sample all residents. Whole blood from 10,963 participants was analysed using CATT and 97 CATT suspects (0.9%) were evaluated with microscopy and trypanolysis. No confirmed cases were found providing evidence that the gHAT prevention programmes in West Nile have been effective. Results confirm gHAT prevalence in the study area of West Nile is below the elimination threshold (1 new case / 10,000 population), making elimination on course across this study area if status is maintained. The findings of this study can be used to guide future HAT and tsetse management in other gHAT foci, where reduced caseloads necessitate a shift from active to passive screening. The number of gHAT cases across West Nile, Uganda has declined in the last 20 years. This decline is due to the impact of programmes of active and passive case detection and treatment which have recently been combined with tsetse control operations (post 2011). We carried out an active survey of gHAT to evaluate the prevalence in areas where vector control has been introduced. Our results confirm that the overall prevalence of gHAT is below 1 case per 10,000 people at risk in the historical foci and shows that results from passive screening are providing an accurate picture of gHAT prevalence in the area.
Collapse
Affiliation(s)
- Richard Selby
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
- * E-mail:
| | - Charles Wamboga
- Vector Control Division, Ministry of Health, Wandegeya, Kampala, Uganda
| | - Olema Erphas
- Vector Control Division, Ministry of Health, Wandegeya, Kampala, Uganda
| | - Albert Mugenyi
- Co-ordinating Office for Control of Trypanosomiasis Uganda, Wandegeya, Kampala, Uganda
| | - Vincent Jamonneau
- UMR 177 Intertryp, Institut de Recherche pour le Développement (IRD), Montpellier, France
| | - Charles Waiswa
- Co-ordinating Office for Control of Trypanosomiasis Uganda, Wandegeya, Kampala, Uganda
| | - Steve J. Torr
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Michael Lehane
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| |
Collapse
|
27
|
Schneider DI, Saarman N, Onyango MG, Hyseni C, Opiro R, Echodu R, O’Neill M, Bloch D, Vigneron A, Johnson TJ, Dion K, Weiss BL, Opiyo E, Caccone A, Aksoy S. Spatio-temporal distribution of Spiroplasma infections in the tsetse fly (Glossina fuscipes fuscipes) in northern Uganda. PLoS Negl Trop Dis 2019; 13:e0007340. [PMID: 31369548 PMCID: PMC6692048 DOI: 10.1371/journal.pntd.0007340] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 08/13/2019] [Accepted: 07/13/2019] [Indexed: 12/13/2022] Open
Abstract
Tsetse flies (Glossina spp.) are vectors of parasitic trypanosomes, which cause human (HAT) and animal African trypanosomiasis (AAT) in sub-Saharan Africa. In Uganda, Glossina fuscipes fuscipes (Gff) is the main vector of HAT, where it transmits Gambiense disease in the northwest and Rhodesiense disease in central, southeast and western regions. Endosymbionts can influence transmission efficiency of parasites through their insect vectors via conferring a protective effect against the parasite. It is known that the bacterium Spiroplasma is capable of protecting its Drosophila host from infection with a parasitic nematode. This endosymbiont can also impact its host's population structure via altering host reproductive traits. Here, we used field collections across 26 different Gff sampling sites in northern and western Uganda to investigate the association of Spiroplasma with geographic origin, seasonal conditions, Gff genetic background and sex, and trypanosome infection status. We also investigated the influence of Spiroplasma on Gff vector competence to trypanosome infections under laboratory conditions. Generalized linear models (GLM) showed that Spiroplasma probability was correlated with the geographic origin of Gff host and with the season of collection, with higher prevalence found in flies within the Albert Nile (0.42 vs 0.16) and Achwa River (0.36 vs 0.08) watersheds and with higher prevalence detected in flies collected in the intermediate than wet season. In contrast, there was no significant correlation of Spiroplasma prevalence with Gff host genetic background or sex once geographic origin was accounted for in generalized linear models. Additionally, we found a potential negative correlation of Spiroplasma with trypanosome infection, with only 2% of Spiroplasma infected flies harboring trypanosome co-infections. We also found that in a laboratory line of Gff, parasitic trypanosomes are less likely to colonize the midgut in individuals that harbor Spiroplasma infection. These results indicate that Spiroplasma infections in tsetse may be maintained by not only maternal but also via horizontal transmission routes, and Spiroplasma infections may also have important effects on trypanosome transmission efficiency of the host tsetse. Potential functional effects of Spiroplasma infection in Gff could have impacts on vector control approaches to reduce trypanosome infections.
Collapse
Affiliation(s)
- Daniela I. Schneider
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, United States of America
- * E-mail:
| | - Norah Saarman
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, United States of America
| | - Maria G. Onyango
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, United States of America
| | - Chaz Hyseni
- Department of Biology, University of Mississippi, University, MS, United States of America
| | - Robert Opiro
- Department of Biology, Faculty of Science, Gulu University, Uganda
| | - Richard Echodu
- Department of Biology, Faculty of Science, Gulu University, Uganda
| | - Michelle O’Neill
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, United States of America
| | - Danielle Bloch
- Department of Health and Mental Hygiene, New York City, NY, United States of America
| | - Aurélien Vigneron
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, United States of America
| | - T. J. Johnson
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, United States of America
| | - Kirstin Dion
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, United States of America
| | - Brian L. Weiss
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, United States of America
| | - Elizabeth Opiyo
- Department of Biology, University of Mississippi, University, MS, United States of America
| | - Adalgisa Caccone
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, United States of America
| | - Serap Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, United States of America
| |
Collapse
|
28
|
Improved estimates for extinction probabilities and times to extinction for populations of tsetse (Glossina spp). PLoS Negl Trop Dis 2019; 13:e0006973. [PMID: 30964873 PMCID: PMC6474634 DOI: 10.1371/journal.pntd.0006973] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 04/19/2019] [Accepted: 02/04/2019] [Indexed: 11/19/2022] Open
Abstract
A published study used a stochastic branching process to derive equations for the mean and variance of the probability of, and time to, extinction in population of tsetse flies (Glossina spp) as a function of adult and pupal mortality, and the probabilities that a female is inseminated by a fertile male. The original derivation was partially heuristic and provided no proofs for inductive results. We provide these proofs, together with a more compact way of reaching the same results. We also show that, while the published equations hold good for the case where tsetse produce male and female offspring in equal proportion, a different solution is required for the more general case where the probability (β) that an offspring is female lies anywhere in the interval (0, 1). We confirm previous results obtained for the special case where β = 0.5 and show that extinction probability is at a minimum for β > 0.5 by an amount that increases with increasing adult female mortality. Sensitivity analysis showed that the extinction probability was affected most by changes in adult female mortality, followed by the rate of production of pupae. Because females only produce a single offspring approximately every 10 days, imposing a death rate of greater than about 3.5% per day will ensure the eradication of any tsetse population. These mortality levels can be achieved for some species using insecticide-treated targets or cattle—providing thereby a simple, effective and cost-effective method of controlling and eradicating tsetse, and also human and animal trypanosomiasis. Our results are of further interest in the modern situation where increases in temperature are seeing the real possibility that tsetse will go extinct in some areas, without the need for intervention, but have an increased chance of surviving in other areas where they were previously unsustainable due to low temperatures. We derive equations for the mean and variance of the probability of, and time to, extinction in population of tsetse flies (Glossina spp), the vectors of trypanosomiasis in sub-Saharan Africa. In so doing we provide the complete proofs for all results, which were not provided in a previously published study. We also generalise the derivation to allow for the probability that an offspring is female to lie anywhere in the interval (0, 1). The probability of extinction was most sensitive to changes in adult female mortality. The unusual tsetse life cycle, with very low reproductive rates, means that populations can be eradicated as long as adult female mortality is raised to levels greater than about 3.5% per day. Simple bait methods of tsetse control, such as insecticide-treated targets and cattle, can therefore provide simple, affordable and effective means of eradicating tsetse populations. The results are of further interest in the modern situation where increases in temperature are seeing the real possibility that tsetse will go extinct in some areas, but have an increased chance of surviving in others where they were previously unsustainable due to low temperatures.
Collapse
|
29
|
Badia-Rius X, Betts H, Molyneux DH, Kelly-Hope LA. Environmental factors associated with the distribution of Loa loa vectors Chrysops spp. in Central and West Africa: seeing the forest for the trees. Parasit Vectors 2019; 12:72. [PMID: 30728063 PMCID: PMC6366063 DOI: 10.1186/s13071-019-3327-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 01/29/2019] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Loiasis is caused by the filarial parasite Loa loa, which is widespread through Central and West Africa and largely confined the tropical equatorial rainforests. The tabanid flies Chrysops silacea and Chrysops dimidiata are the main vectors driving transmission. This study aimed to better define the spatial distribution and ecological niche of the two vectors to help define spatial-temporal risk and target appropriate, timely intervention strategies for filariasis control and elimination programmes. METHODS Chrysops spp. distributions were determined by collating information from the published literature into a database, detailing the year, country, locality, latitude/longitude and species collected. Environmental factors including climate, elevation and tree canopy characteristics were summarised for each vector from data obtained from satellite modelled data or imagery, which were also used to identify areas with overt landcover changes. The presence of each Chrysops vector was predicted using a maximum entropy species distribution modelling (MaxEnt) method. RESULTS A total of 313 location-specific data points from 59 published articles were identified across seven loiasis endemic countries. Of these, 186 sites were included in the climate and elevation analysis, and due to overt landcover changes, 83 sites included in tree canopy analysis and MaxEnt model. Overall, C. silacea and C. dimidiata were found to have similar ranges; annual mean temperature (24.6 °C and 24.1 °C, respectively), annual precipitation (1848.6 mm and 1868.8 mm), elevation (368.8 m and 400.6 m), tree canopy cover (61.4% and 66.9%) and tree canopy height (22.4 m and 25.1 m). MaxEnt models found tree canopy coverage was a significant environmental variable for both vectors. CONCLUSIONS The Chrysops spp. database and large-scale environmental analysis provides insights into the spatial and ecological parameters of the L. loa vectors driving transmission. These may be used to further delineate loiasis risk, which will be important for implementing filariasis control and elimination programmes in the equatorial rainforest region of Central and West Africa.
Collapse
Affiliation(s)
- Xavier Badia-Rius
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Hannah Betts
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - David H. Molyneux
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Louise A. Kelly-Hope
- Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| |
Collapse
|
30
|
Barrett MP. The elimination of human African trypanosomiasis is in sight: Report from the third WHO stakeholders meeting on elimination of gambiense human African trypanosomiasis. PLoS Negl Trop Dis 2018; 12:e0006925. [PMID: 30521522 PMCID: PMC6283460 DOI: 10.1371/journal.pntd.0006925] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Affiliation(s)
- Michael P. Barrett
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
- * E-mail:
| |
Collapse
|
31
|
Stanton MC, Esterhuizen J, Tirados I, Betts H, Torr SJ. The development of high resolution maps of tsetse abundance to guide interventions against human African trypanosomiasis in northern Uganda. Parasit Vectors 2018; 11:340. [PMID: 29884213 PMCID: PMC5994020 DOI: 10.1186/s13071-018-2922-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 05/28/2018] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Vector control is emerging as an important component of global efforts to control Gambian sleeping sickness (human African trypanosomiasis, HAT). The deployment of insecticide-treated targets ("Tiny Targets") to attract and kill riverine tsetse, the vectors of Trypanosoma brucei gambiense, has been shown to be particularly cost-effective. As this method of vector control continues to be implemented across larger areas, knowledge of the abundance of tsetse to guide the deployment of "Tiny Targets" will be of increasing value. In this paper, we use a geostatistical modelling framework to produce maps of estimated tsetse abundance under two scenarios: (i) when accurate data on the local river network are available; and (ii) when river information is sparse. METHODS Tsetse abundance data were obtained from a pre-intervention survey conducted in northern Uganda in 2010. River network data obtained from either digitised maps or derived from 30 m resolution digital elevation model (DEM) data as a proxy for ground truth data. Other environmental variables were derived from publicly-available resolution remotely sensed data (e.g. Landsat, 30 m resolution). Zero-inflated negative binomial geostatistical models were fitted to the abundance data using an integrated nested Laplace approximation approach, and maps of estimated tsetse abundance were produced. RESULTS Restricting the analysis to traps located within 100 m of any river, positive associations were identified between the length of river and the minimum soil/vegetation moisture content of the surrounding area and daily fly catches, whereas negative associations were identified with elevation and distance to the river. The resulting models could accurately distinguish between traps with high and low fly catches (e.g. < 5 or > 5 flies/day), with a ROC-AUC (receiver-operating characteristic - area under the curve) greater than 0.9. Whilst the precise course of the river was not well approximated using the DEM data, the models fitted using DEM-derived river data performed similarly to those that incorporated the more accurate local river information. CONCLUSIONS These models can now be used to assist in the design, implementation and monitoring of tsetse control operations in northern Uganda and further can be used as a framework by which to undertake similar studies in other areas where Glossina fuscipes fuscipes spreads Gambian sleeping sickness.
Collapse
Affiliation(s)
| | - Johan Esterhuizen
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Inaki Tirados
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Hannah Betts
- Parasitology Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Steve J. Torr
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, UK
| |
Collapse
|
32
|
Saarman N, Burak M, Opiro R, Hyseni C, Echodu R, Dion K, Opiyo EA, Dunn AW, Amatulli G, Aksoy S, Caccone A. A spatial genetics approach to inform vector control of tsetse flies ( Glossina fuscipes fuscipes) in Northern Uganda. Ecol Evol 2018; 8:5336-5354. [PMID: 29938057 PMCID: PMC6010828 DOI: 10.1002/ece3.4050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 02/22/2018] [Accepted: 02/23/2018] [Indexed: 11/09/2022] Open
Abstract
Tsetse flies (genus Glossina) are the only vector for the parasitic trypanosomes responsible for sleeping sickness and nagana across sub-Saharan Africa. In Uganda, the tsetse fly Glossina fuscipes fuscipes is responsible for transmission of the parasite in 90% of sleeping sickness cases, and co-occurrence of both forms of human-infective trypanosomes makes vector control a priority. We use population genetic data from 38 samples from northern Uganda in a novel methodological pipeline that integrates genetic data, remotely sensed environmental data, and hundreds of field-survey observations. This methodological pipeline identifies isolated habitat by first identifying environmental parameters correlated with genetic differentiation, second, predicting spatial connectivity using field-survey observations and the most predictive environmental parameter(s), and third, overlaying the connectivity surface onto a habitat suitability map. Results from this pipeline indicated that net photosynthesis was the strongest predictor of genetic differentiation in G. f. fuscipes in northern Uganda. The resulting connectivity surface identified a large area of well-connected habitat in northwestern Uganda, and twenty-four isolated patches on the northeastern margin of the G. f. fuscipes distribution. We tested this novel methodological pipeline by completing an ad hoc sample and genetic screen of G. f. fuscipes samples from a model-predicted isolated patch, and evaluated whether the ad hoc sample was in fact as genetically isolated as predicted. Results indicated that genetic isolation of the ad hoc sample was as genetically isolated as predicted, with differentiation well above estimates made in samples from within well-connected habitat separated by similar geographic distances. This work has important practical implications for the control of tsetse and other disease vectors, because it provides a way to identify isolated populations where it will be safer and easier to implement vector control and that should be prioritized as study sites during the development and improvement of vector control methods.
Collapse
Affiliation(s)
- Norah Saarman
- Department of Ecology and Evolutionary BiologyYale UniversityNew HavenConnecticut
| | - Mary Burak
- Department of Ecology and Evolutionary BiologyYale UniversityNew HavenConnecticut
| | - Robert Opiro
- Department of BiologyFaculty of ScienceGulu UniversityGuluLaroo DivisionUganda
| | - Chaz Hyseni
- Department of BiologyUniversity of MississippiOxfordMassachusetts
| | - Richard Echodu
- Department of BiologyFaculty of ScienceGulu UniversityGuluLaroo DivisionUganda
| | - Kirstin Dion
- Department of Ecology and Evolutionary BiologyYale UniversityNew HavenConnecticut
| | - Elizabeth A. Opiyo
- Department of BiologyFaculty of ScienceGulu UniversityGuluLaroo DivisionUganda
| | - Augustine W. Dunn
- Division of Genetics and GenomicsBoston Children's HospitalBostonMassachusetts
| | - Giuseppe Amatulli
- Department of GeoComputation and Spatial ScienceYale School of Forestry and Environmental StudiesNew HavenConnecticut
| | - Serap Aksoy
- Department of Epidemiology of Microbial DiseasesYale School of Public HealthNew HavenConnecticut
| | - Adalgisa Caccone
- Department of Ecology and Evolutionary BiologyYale UniversityNew HavenConnecticut
| |
Collapse
|
33
|
Stijlemans B, De Baetselier P, Magez S, Van Ginderachter JA, De Trez C. African Trypanosomiasis-Associated Anemia: The Contribution of the Interplay between Parasites and the Mononuclear Phagocyte System. Front Immunol 2018; 9:218. [PMID: 29497418 PMCID: PMC5818406 DOI: 10.3389/fimmu.2018.00218] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 01/25/2018] [Indexed: 12/16/2022] Open
Abstract
African trypanosomosis (AT) is a chronically debilitating parasitic disease of medical and economic importance for the development of sub-Saharan Africa. The trypanosomes that cause this disease are extracellular protozoan parasites that have developed efficient immune escape mechanisms to manipulate the entire host immune response to allow parasite survival and transmission. During the early stage of infection, a profound pro-inflammatory type 1 activation of the mononuclear phagocyte system (MPS), involving classically activated macrophages (i.e., M1), is required for initial parasite control. Yet, the persistence of this M1-type MPS activation in trypanosusceptible animals causes immunopathology with anemia as the most prominent pathological feature. By contrast, in trypanotolerant animals, there is an induction of IL-10 that promotes the induction of alternatively activated macrophages (M2) and collectively dampens tissue damage. A comparative gene expression analysis between M1 and M2 cells identified galectin-3 (Gal-3) and macrophage migration inhibitory factor (MIF) as novel M1-promoting factors, possibly acting synergistically and in concert with TNF-α during anemia development. While Gal-3 enhances erythrophagocytosis, MIF promotes both myeloid cell recruitment and iron retention within the MPS, thereby depriving iron for erythropoiesis. Hence, the enhanced erythrophagocytosis and suppressed erythropoiesis lead to anemia. Moreover, a thorough investigation using MIF-deficient mice revealed that the underlying mechanisms in AT-associated anemia development in trypanosusceptible and tolerant animals are quite distinct. In trypanosusceptible animals, anemia resembles anemia of inflammation, while in trypanotolerant animals’ hemodilution, mainly caused by hepatosplenomegaly, is an additional factor contributing to anemia. In this review, we give an overview of how trypanosome- and host-derived factors can contribute to trypanosomosis-associated anemia development with a focus on the MPS system. Finally, we will discuss potential intervention strategies to alleviate AT-associated anemia that might also have therapeutic potential.
Collapse
Affiliation(s)
- Benoit Stijlemans
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium
| | - Patrick De Baetselier
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium
| | - Stefan Magez
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Laboratory for Biomedical Research, Ghent University Global Campus, Incheon, South Korea
| | - Jo A Van Ginderachter
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium.,Myeloid Cell Immunology Laboratory, VIB Center for Inflammation Research, Brussels, Belgium
| | - Carl De Trez
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| |
Collapse
|
34
|
N’Djetchi MK, Ilboudo H, Koffi M, Kaboré J, Kaboré JW, Kaba D, Courtin F, Coulibaly B, Fauret P, Kouakou L, Ravel S, Deborggraeve S, Solano P, De Meeûs T, Bucheton B, Jamonneau V. The study of trypanosome species circulating in domestic animals in two human African trypanosomiasis foci of Côte d'Ivoire identifies pigs and cattle as potential reservoirs of Trypanosoma brucei gambiense. PLoS Negl Trop Dis 2017; 11:e0005993. [PMID: 29045405 PMCID: PMC5662240 DOI: 10.1371/journal.pntd.0005993] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 10/30/2017] [Accepted: 09/25/2017] [Indexed: 01/14/2023] Open
Abstract
Background Important control efforts have led to a significant reduction of the prevalence of human African trypanosomiasis (HAT) in Côte d’Ivoire, but the disease is still present in several foci. The existence of an animal reservoir of Trypanosoma brucei gambiense may explain disease persistence in these foci where animal breeding is an important source of income but where the prevalence of animal African trypanosomiasis (AAT) is unknown. The aim of this study was to identify the trypanosome species circulating in domestic animals in both Bonon and Sinfra HAT endemic foci. Methodology/Principal findings 552 domestic animals (goats, pigs, cattle and sheep) were included. Blood samples were tested for trypanosomes by microscopic observation, species-specific PCR for T. brucei sl, T. congolense, T. vivax and subspecies-specific PCR for T. b. gambiense and T. b. gambiense immune trypanolysis (TL). Infection rates varied significantly between animal species and were by far the highest in pigs (30%). T. brucei s.l was the most prevalent trypanosome species (13.7%) followed by T. congolense. No T. b. gambiense was identified by PCR while high TL positivity rates were observed using T. b. gambiense specific variants (up to 27.6% for pigs in the Bonon focus). Conclusion This study shows that domestic animals are highly infected by trypanosomes in the studied foci. This was particularly true for pigs, possibly due to a higher exposure of these animals to tsetse flies. Whereas T. brucei s.l. was the most prevalent species, discordant results were obtained between PCR and TL regarding T. b. gambiense identification. It is therefore crucial to develop better tools to study the epidemiological role of potential animal reservoir for T. b. gambiense. Our study illustrates the importance of “one health” approaches to reach HAT elimination and contribute to AAT control in the studied foci. In Africa, significant efforts to control human African trypanosomiasis (HAT) over the past three decades have drastically reduced the prevalence of the disease and elimination seems today an achievable goal. However, potential animal reservoirs of Trypanosoma brucei gambiense may compromise this ambitious objective. In the Bonon and Sinfra HAT endemic foci in Côte d’Ivoire, no recent data are available about the prevalence of animal African trypanosomiasis (AAT). The aim of this study was to identify trypanosomes circulating in domestic animals in these two HAT foci using serological, parasitological and molecular tools. We showed that T. brucei s.l. and T. congolense were the most prevalent trypanosome species and that pigs and cattle were the most infected animals. Discordant results were observed between the T. b. gambiense specific molecular and serological tools and the presence of an animal reservoir for T. b. gambiense remains unclear. Nevertheless, improved control strategies can be proposed based on this study to reach HAT elimination and contribute to AAT control in the study areas.
Collapse
Affiliation(s)
- Martial Kassi N’Djetchi
- Laboratoire des Interactions Hôte-Microorganisme-Environnement et Evolution, Unité de Formation et de Recherche Environnement, Université Jean Lorougnon Guédé, Daloa, Côte d’Ivoire
| | - Hamidou Ilboudo
- Unité de recherches sur les bases biologiques de la lutte intégrée, Centre International de Recherche-Développement sur l’Elevage en zone Subhumide, Bobo-Dioulasso, Burkina Faso
| | - Mathurin Koffi
- Laboratoire des Interactions Hôte-Microorganisme-Environnement et Evolution, Unité de Formation et de Recherche Environnement, Université Jean Lorougnon Guédé, Daloa, Côte d’Ivoire
| | - Jacques Kaboré
- Unité de recherches sur les bases biologiques de la lutte intégrée, Centre International de Recherche-Développement sur l’Elevage en zone Subhumide, Bobo-Dioulasso, Burkina Faso
- Unité de Formation et de Recherche Sciences et Techniques, Université Nazi Boni, Bobo-Dioulasso, Burkina-Faso
| | - Justin Windingoudi Kaboré
- Unité de recherches sur les bases biologiques de la lutte intégrée, Centre International de Recherche-Développement sur l’Elevage en zone Subhumide, Bobo-Dioulasso, Burkina Faso
| | - Dramane Kaba
- Unité de Recherche « Trypanosomoses », Institut Pierre Richet, Bouaké, Côte d’Ivoire
| | - Fabrice Courtin
- Unité de Recherche « Trypanosomoses », Institut Pierre Richet, Bouaké, Côte d’Ivoire
- Unité Mixte de Recherche IRD-CIRAD 177, INTERTRYP, Institut de Recherche pour le Développement (IRD), Montpellier, France
| | - Bamoro Coulibaly
- Unité de Recherche « Trypanosomoses », Institut Pierre Richet, Bouaké, Côte d’Ivoire
| | - Pierre Fauret
- Unité de Recherche « Trypanosomoses », Institut Pierre Richet, Bouaké, Côte d’Ivoire
- Unité Mixte de Recherche IRD-CIRAD 177, INTERTRYP, Institut de Recherche pour le Développement (IRD), Montpellier, France
| | - Lingué Kouakou
- Programme National d’Elimination de la Trypanosomose Humaine Africaine, Ministère de la Santé et de l’Hygiène Publique, Abidjan, Côte d’Ivoire
| | - Sophie Ravel
- Unité Mixte de Recherche IRD-CIRAD 177, INTERTRYP, Institut de Recherche pour le Développement (IRD), Montpellier, France
| | - Stijn Deborggraeve
- Biomedical Sciences Department, Institute of Tropical Medicine, Antwerp, Belgium
| | - Philippe Solano
- Unité Mixte de Recherche IRD-CIRAD 177, INTERTRYP, Institut de Recherche pour le Développement (IRD), Montpellier, France
| | - Thierry De Meeûs
- Unité Mixte de Recherche IRD-CIRAD 177, INTERTRYP, Institut de Recherche pour le Développement (IRD), Montpellier, France
| | - Bruno Bucheton
- Unité Mixte de Recherche IRD-CIRAD 177, INTERTRYP, Institut de Recherche pour le Développement (IRD), Montpellier, France
| | - Vincent Jamonneau
- Unité de Recherche « Trypanosomoses », Institut Pierre Richet, Bouaké, Côte d’Ivoire
- Unité Mixte de Recherche IRD-CIRAD 177, INTERTRYP, Institut de Recherche pour le Développement (IRD), Montpellier, France
- * E-mail:
| |
Collapse
|
35
|
Hotez P, Aksoy S. PLOS Neglected Tropical Diseases: Ten years of progress in neglected tropical disease control and elimination … More or less. PLoS Negl Trop Dis 2017; 11:e0005355. [PMID: 28426662 PMCID: PMC5398476 DOI: 10.1371/journal.pntd.0005355] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
This year PLOS Neglected Tropical Diseases (PLOS NTDs) celebrates its tenth anniversary following the publication of the first issue in 2007 [1]. When PLOS NTDs was founded, the framework of the neglected tropical diseases (NTDs) as an alternative to “other diseases” (as they were then referred to in the Millennium Development Goals) was just getting started—especially for Africa [2, 3]. In the decade since, PLOS NTDs has overseen enormous successes in NTD control and elimination. Here, we want to briefly review the ten year progress made towards the control or elimination of the diseases now identified by the WHO as NTDs. Many of the details are highlighted in PLOS NTDs papers cited here, but the summary information is based on the recently released Global Burden of Disease (GBD) Study 2015 (also launched with Gates Foundation support) that summarized past-decade changes in disease prevalence, mortality, or disability rates (from the years 2005 to 2015) [4–6], as well as the GBD Study 2013 that summarizes disease prevalence changes over a longer time horizon from 1990 to 2013 [7].
Collapse
Affiliation(s)
- Peter Hotez
- Texas Children’s Hospital Center for Vaccine Development, National School of Tropical Medicine at Baylor College of Medicine, Houston, Texas, United States of America
- Department of Biology, Baylor University, Waco, Texas, United States of America
- Center for Health and Biosciences, James A. Baker III Institute for Public Policy, Rice University, Houston, Texas, United States of America
- Scowcroft Institute of International Affairs, Bush School of Government and Public Service, College Station, Texas, United States of America
- * E-mail: (PH); (SA)
| | - Serap Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, Connecticut, United States of America
- * E-mail: (PH); (SA)
| |
Collapse
|
36
|
Aksoy S, Buscher P, Lehane M, Solano P, Van Den Abbeele J. Human African trypanosomiasis control: Achievements and challenges. PLoS Negl Trop Dis 2017; 11:e0005454. [PMID: 28426685 PMCID: PMC5398477 DOI: 10.1371/journal.pntd.0005454] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Sleeping sickness, also known as human African trypanosomiasis (HAT), is a neglected disease that impacts 70 million people living in 1.55 million km2 in sub-Saharan Africa. Since the beginning of the 20th century, there have been multiple HAT epidemics in sub-Saharan Africa, with the most recent epidemic in the 1990s resulting in about half a million HAT cases reported between 1990 and 2015. Here we review the status of HAT disease at the current time and the toolbox available for its control. We also highlight future opportunities under development towards novel or improved interventions.
Collapse
Affiliation(s)
- Serap Aksoy
- Department of Epidemiology of Microbial Diseases, School of Public Health, Yale University, New Haven, Connecticut, United States of America
- * E-mail:
| | - Phillipe Buscher
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Mike Lehane
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Philippe Solano
- Institut de Recherche pour le Développement (IRD), Montpellier, France
| | - Jan Van Den Abbeele
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| |
Collapse
|
37
|
Kelly-Hope L, Paulo R, Thomas B, Brito M, Unnasch TR, Molyneux D. Loa loa vectors Chrysops spp.: perspectives on research, distribution, bionomics, and implications for elimination of lymphatic filariasis and onchocerciasis. Parasit Vectors 2017; 10:172. [PMID: 28381279 PMCID: PMC5382514 DOI: 10.1186/s13071-017-2103-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 03/23/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Loiasis is a filarial disease caused Loa loa. The main vectors are Chrysops silacea and C. dimidiata which are confined to the tropical rainforests of Central and West Africa. Loiasis is a mild disease, but individuals with high microfilaria loads may suffer from severe adverse events if treated with ivermectin during mass drug administration campaigns for the elimination of lymphatic filariasis and onchocerciasis. This poses significant challenges for elimination programmes and alternative interventions are required in L. loa co-endemic areas. The control of Chrysops has not been considered as a viable cost-effective intervention; we reviewed the current knowledge of Chrysops vectors to assess the potential for control as well as identified areas for future research. RESULTS We identified 89 primary published documents on the two main L. loa vectors C. silacea and C dimidiata. These were collated into a database summarising the publication, field and laboratory procedures, species distributions, ecology, habitats and methods of vector control. The majority of articles were from the 1950-1960s. Field studies conducted in Cameroon, Democratic Republic of Congo, Equatorial Guinea, Nigeria and Sudan highlighted that C. silacea is the most important and widespread vector. This species breeds in muddy streams or swampy areas of forests or plantations, descends from forest canopies to feed on humans during the day, is more readily adapted to human dwellings and attracted to wood fires. Main vector targeted measures proposed to impact on L. loa transmission included personal repellents, household screening, indoor residual spraying, community-based environmental management, adulticiding and larviciding. CONCLUSIONS This is the first comprehensive review of the major L. loa vectors for several decades. It highlights key vector transmission characteristics that may be targeted for vector control providing insights into the potential for integrated vector management, with multiple diseases being targeted simultaneously, with shared human and financial resources and multiple impact. Integrated vector management programmes for filarial infections, especially in low transmission areas of onchocerciasis, require innovative approaches and alternative strategies if the elimination targets established by the World Health Organization are to be achieved.
Collapse
Affiliation(s)
- Louise Kelly-Hope
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, UK.
| | - Rossely Paulo
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, UK.,CISA, Health Research Centre of Angola, Caxito, Angola
| | - Brent Thomas
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Miguel Brito
- CISA, Health Research Centre of Angola, Caxito, Angola.,Lisbon School of Health Technology, Lisbon, Portugal
| | - Thomas R Unnasch
- College of Public Health, Department of Global Health, University of South Florida, Tampa, USA
| | - David Molyneux
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, UK
| |
Collapse
|
38
|
Santer RD. Developing photoreceptor-based models of visual attraction in riverine tsetse, for use in the engineering of more-attractive polyester fabrics for control devices. PLoS Negl Trop Dis 2017; 11:e0005448. [PMID: 28306721 PMCID: PMC5371378 DOI: 10.1371/journal.pntd.0005448] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 03/29/2017] [Accepted: 03/01/2017] [Indexed: 11/19/2022] Open
Abstract
Riverine tsetse transmit the parasites that cause the most prevalent form of human African trypanosomiasis, Gambian HAT. In response to the imperative for cheap and efficient tsetse control, insecticide-treated 'tiny targets' have been developed through refinement of tsetse attractants based on blue fabric panels. However, modern blue polyesters used for this purpose attract many less tsetse than traditional phthalogen blue cottons. Therefore, colour engineering polyesters for improved attractiveness has great potential for tiny target development. Because flies have markedly different photoreceptor spectral sensitivities from humans, and the responses of these photoreceptors provide the inputs to their visually guided behaviours, it is essential that polyester colour engineering be guided by fly photoreceptor-based explanations of tsetse attraction. To this end, tsetse attraction to differently coloured fabrics was recently modelled using the calculated excitations elicited in a generic set of fly photoreceptors as predictors. However, electrophysiological data from tsetse indicate the potential for modified spectral sensitivities versus the generic pattern, and processing of fly photoreceptor responses within segregated achromatic and chromatic channels has long been hypothesised. Thus, I constructed photoreceptor-based models explaining the attraction of G. f. fuscipes to differently coloured tiny targets recorded in a previously published investigation, under differing assumptions about tsetse spectral sensitivities and organisation of visual processing. Models separating photoreceptor responses into achromatic and chromatic channels explained attraction better than earlier models combining weighted photoreceptor responses in a single mechanism, regardless of the spectral sensitivities assumed. However, common principles for fabric colour engineering were evident across the complete set of models examined, and were consistent with earlier work. Tools for the calculation of fly photoreceptor excitations are available with this paper, and the ways in which these and photoreceptor-based models of attraction can provide colorimetric values for the engineering of more-attractively coloured polyester fabrics are discussed.
Collapse
Affiliation(s)
- Roger D. Santer
- Institute of Biological, Environmental, and Rural Sciences, Aberystwyth University, Aberystwyth, Ceredigion, SY23 3FG United Kingdom
| |
Collapse
|
39
|
Abstract
Trypanosome parasites are hiding in human skin, a discovery that may undermine efforts to eliminate sleeping sickness by 2020.
Collapse
Affiliation(s)
- Aitor Casas-Sánchez
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Álvaro Acosta-Serrano
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom.,Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|