1
|
Debrah LB, Gyasi C, Ahiadorme M, Rahamani AA, Opoku VS, Obeng P, Osei-Mensah J, Obeng MA, Mensah DA, Debrah AY. Association of haemato-biochemical indices and blood composite ratios with microfilaridermia in Onchocerciasis patients. BMC Infect Dis 2024; 24:384. [PMID: 38589790 PMCID: PMC11003075 DOI: 10.1186/s12879-024-09278-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 04/01/2024] [Indexed: 04/10/2024] Open
Abstract
BACKGROUND Onchocerciasis causes chronic systemic inflammation. Several studies have used markers such as haemato-biochemical indices to predict the occurrence of systemic inflammation. This study assessed the variability and predictability of haemato-biochemical indices and blood composite ratios (BCRs) in microfilariae positive (MF+) and microfilariae negative (MF-) subgroups of onchocercomata participants. METHODS One hundred and five (105) MF + and 34 MF- participants were retrospectively recruited into the study. Screening for the presence of O. volvulus microfilariae was done from skin snips taken from the left and right iliac crests of participants using established and approved protocols. Haematological and biochemical indices were measured using standard laboratory automated analyzers. Blood composite ratios (BCRs) were calculated as ratios of the absolute parameters involved. RESULTS A significantly increased total WBC, absolute eosinophil, eosinophil percent and absolute basophil were observed in the MF + participants compared to MF- participants. Reduced gamma-glutamyl transferase (GGT) with increased estimated glomerular filtration rate (eGFR) was significantly associated with MF + participants compared to MF- participants. BCRs were significantly higher for eosinophil-to-neutrophil ratio (ENR), eosinophil-to-monocyte ratio (EMR), eosinophil-to-basophil ratio (EBR) and eosinophil-to-lymphocyte ratio (ELR) in MF + participants compared to MF- participants. After multivariate adjustment, onchocercomata participants with increased eosinophil counts (aOR = 13.86, 95% CI [2.07-92.90], p = 0.007), ENR x10 (aOR = 1.42, 95% CI [1.05-1.93], p = 0.025), EMR (aOR = 2.64, 95% CI [1.25-5.60], p = 0.011), EBR (aOR = 1.07, 95% CI [1.01-1.10], p = 0.020) and ELR x10 (aOR = 1.69, 95% CI [1.14-2.51], p = 0.009) were more likely to have microfilaridermia. CONCLUSIONS Elevated eosinophil counts with higher ENR, EMR, EBR and ELR levels are significantly associated with microfilaridermia in onchocercomata participants. Combining BCRs with eosinophil count significantly led to an improvement in the conventional model for predicting microfilaridermia.
Collapse
Affiliation(s)
- Linda Batsa Debrah
- Department of Clinical Microbiology, School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Charles Gyasi
- Department of Clinical Microbiology, School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Monica Ahiadorme
- Department of Clinical Microbiology, School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Abu Abudu Rahamani
- Department of Clinical Microbiology, School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Vera Serwaa Opoku
- Department of Clinical Microbiology, School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Prince Obeng
- Department of Clinical Microbiology, School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Jubin Osei-Mensah
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Department of Pathobiology, School of Veterinary Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Michael Agyemang Obeng
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Derrick Adu Mensah
- Department of Clinical Microbiology, School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Alexander Yaw Debrah
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
- Department of Medical Diagnostics, Faculty of Allied Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
| |
Collapse
|
2
|
Scheunemann JF, Risch F, Reichwald JJ, Lenz B, Neumann AL, Garbe S, Frohberger SJ, Koschel M, Ajendra J, Rothe M, Latz E, Coch C, Hartmann G, Schumak B, Hoerauf A, Hübner MP. Potential of Nucleic Acid Receptor Ligands to Improve Vaccination Efficacy against the Filarial Nematode Litomosoides sigmodontis. Vaccines (Basel) 2023; 11:vaccines11050966. [PMID: 37243070 DOI: 10.3390/vaccines11050966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
More than two-hundred-million people are infected with filariae worldwide. However, there is no vaccine available that confers long-lasting protection against filarial infections. Previous studies indicated that vaccination with irradiated infective L3 larvae reduces the worm load. This present study investigated whether the additional activation of cytosolic nucleic acid receptors as an adjuvant improves the efficacy of vaccination with irradiated L3 larvae of the rodent filaria Litomosoides sigmodontis with the aim of identifying novel vaccination strategies for filarial infections. Subcutaneous injection of irradiated L3 larvae in combination with poly(I:C) or 3pRNA resulted in neutrophil recruitment to the skin, accompanied by higher IP-10/CXCL10 and IFN-β RNA levels. To investigate the impact on parasite clearance, BALB/c mice received three subcutaneous injections in 2-week intervals with irradiated L3 larvae in combination with poly(I:C) or 3pRNA prior to the challenge infection. Vaccination with irradiated L3 larvae in combination with poly(I:C) or 3pRNA led to a markedly greater reduction in adult-worm counts by 73% and 57%, respectively, compared to the immunization with irradiated L3 larvae alone (45%). In conclusion, activation of nucleic acid-sensing immune receptors boosts the protective immune response against L. sigmodontis and nucleic acid-receptor agonists as vaccine adjuvants represent a promising novel strategy to improve the efficacy of vaccines against filariae and potentially other helminths.
Collapse
Affiliation(s)
- Johanna F Scheunemann
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, 53127 Bonn, Germany
| | - Frederic Risch
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, 53127 Bonn, Germany
| | - Julia J Reichwald
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, 53127 Bonn, Germany
| | - Benjamin Lenz
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, 53127 Bonn, Germany
| | - Anna-Lena Neumann
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, 53127 Bonn, Germany
| | - Stephan Garbe
- Clinic for Radiotherapy and Radiation Oncology, University Hospital Bonn, 53127 Bonn, Germany
| | - Stefan J Frohberger
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, 53127 Bonn, Germany
| | - Marianne Koschel
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, 53127 Bonn, Germany
| | - Jesuthas Ajendra
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, 53127 Bonn, Germany
| | - Maximilian Rothe
- Institute for Innate Immunity, University Hospital Bonn, 53127 Bonn, Germany
| | - Eicke Latz
- Institute for Innate Immunity, University Hospital Bonn, 53127 Bonn, Germany
| | - Christoph Coch
- Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127 Bonn, Germany
- Nextevidence GmbH, 81541 Munich, Germany
| | - Gunther Hartmann
- Institute for Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127 Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 53127 Bonn, Germany
| | - Beatrix Schumak
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, 53127 Bonn, Germany
| | - Achim Hoerauf
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, 53127 Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 53127 Bonn, Germany
| | - Marc P Hübner
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, 53127 Bonn, Germany
- German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, 53127 Bonn, Germany
| |
Collapse
|
3
|
Karunakaran I, Ritter M, Pfarr K, Klarmann-Schulz U, Debrah AY, Debrah LB, Katawa G, Wanji S, Specht S, Adjobimey T, Hübner MP, Hoerauf A. Filariasis research - from basic research to drug development and novel diagnostics, over a decade of research at the Institute for Medical Microbiology, Immunology and Parasitology, Bonn, Germany. FRONTIERS IN TROPICAL DISEASES 2023; 4:1126173. [PMID: 38655130 PMCID: PMC7615856 DOI: 10.3389/fitd.2023.1126173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024] Open
Abstract
Filariae are vector borne parasitic nematodes, endemic in tropical and subtropical regions causing avoidable infections ranging from asymptomatic to stigmatizing and disfiguring disease. The filarial species that are the major focus of our institution's research are Onchocerca volvulus causing onchocerciasis (river blindness), Wuchereria bancrofti and Brugia spp. causing lymphatic filariasis (elephantiasis), Loa loa causing loiasis (African eye worm), and Mansonella spp causing mansonellosis. This paper aims to showcase the contribution of our institution and our collaborating partners to filarial research and covers decades of long research spanning basic research using the Litomosoides sigmodontis animal model to development of drugs and novel diagnostics. Research with the L. sigmodontis model has been extensively useful in elucidating protective immune responses against filariae as well as in identifying the mechanisms of filarial immunomodulation during metabolic, autoimmune and infectious diseases. The institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany has also been actively involved in translational research in contributing to the identification of new drug targets and pre-clinical drug research with successful and ongoing partnership with sub-Saharan Africa, mainly Ghana (the Kumasi Centre for Collaborative Research (KCCR)), Cameroon (University of Buea (UB)) and Togo (Laboratoire de Microbiologie et de Contrôle de Qualité des Denrées Alimentaires (LAMICODA)), Asia and industry partners. Further, in the direction of developing novel diagnostics that are sensitive, time, and labour saving, we have developed sensitive qPCRs as well as LAMP assays and are currently working on artificial intelligence based histology analysis for onchocerciasis. The article also highlights our ongoing research and the need for novel animal models and new drug targets.
Collapse
Affiliation(s)
- Indulekha Karunakaran
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany
| | - Manuel Ritter
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany
| | - Kenneth Pfarr
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
| | - Ute Klarmann-Schulz
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
| | - Alexander Yaw Debrah
- Faculty of Allied Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Kumasi Center for Collaborative Research (KCCR), Kumasi, Ghana
| | - Linda Batsa Debrah
- Kumasi Center for Collaborative Research (KCCR), Kumasi, Ghana
- Department of Clinical Microbiology, School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Gnatoulma Katawa
- Unité de Recherche en Immunologie et Immunomodulation (UR2IM)/Laboratoire de Microbiologie et de Contrôle de Qualité des Denrées Alimentaires (LAMICODA), Ecole Supérieure des Techniques Biologiques et Alimentaires, Université de Lomé, Lomé, Togo
| | - Samuel Wanji
- Parasites and Vector Research Unit (PAVRU), Department of Microbiology and Parasitology, University of Buea, Buea, Cameroon
- Research Foundation in Tropical Diseases and Environment (REFOTDE), Buea, Cameroon
| | - Sabine Specht
- Drugs for Neglected Diseases initiative, Geneva, Switzerland
| | - Tomabu Adjobimey
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany
| | - Marc P Hübner
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
| | - Achim Hoerauf
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn (UKB), Bonn, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
| |
Collapse
|
4
|
Ajendra J, Allen JE. Neutrophils: Friend or Foe in Filariasis? Parasite Immunol 2022; 44:e12918. [DOI: 10.1111/pim.12918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 12/01/2022]
Affiliation(s)
- Jesuthas Ajendra
- Institute for Medical Microbiology, Immunology and Parasitology University Hospital of Bonn Bonn Germany
| | - Judith E. Allen
- Lydia Becker Institute for Immunology & Infection, Faculty of Biology, Medicine and Health, Wellcome Centre for Cell‐Matrix Research, Manchester Academic Health Science Center University of Manchester Manchester UK
| |
Collapse
|
5
|
Pionnier N, Furlong-Silva J, Colombo SAP, Marriott AE, Chunda VC, Ndzeshang BL, Sjoberg H, Archer J, Steven A, Wanji S, Taylor MJ, Turner JD. NKp46 + natural killer cells develop an activated/memory-like phenotype and contribute to innate immunity against experimental filarial infection. Front Immunol 2022; 13:969340. [PMID: 36238293 PMCID: PMC9551455 DOI: 10.3389/fimmu.2022.969340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
Lymphatic filariasis and onchocerciasis are major neglected tropical diseases affecting over 90 million people worldwide with painful and profoundly disfiguring pathologies (such as lymphoedema or blindness). Type 2 inflammation is a hallmark of filarial nematode tissue infection and is implicated both in eosinophil dependent immunity and lymphatic or ocular immunopathologies. Type-2 innate lymphoid cells (ILC2) are known to play an important role in the initiation of type 2 inflammation in helminth infection. We therefore tracked comparative IL-12Rβ2+ ILC1, ST2+ ILC2 and NKp46+ natural killer (NK) innate lymphoid cell population expansions during Brugia malayi experimental peritoneal filarial infections using either immunocompetent or immunodeficient mice. In immunocompetent BALB/c animals, NKp46+ NK cells rapidly expanded representing over 90% of the ILC population in the first week of infection, whereas, surprisingly, ST2+ ILC2 failed to expand. NKp46+ NK cell expansions were confirmed in RAG2 deficient mice lacking adaptive immunity. Ablation of the NKp46+ NK cell compartment in RAG2 common gamma chain (gc) mice led to increased susceptibility to chronic adult B. malayi infection. This data was recapitulated using an Onchocerca ochengi male worm peritoneal implant model. When NKp46+ NK cells were depleted in RAG2 deficient mice using anti-NKp46 or asialo GM1 antibody injections over the first five weeks of B. malayi infection, susceptibility to adult B. malayi infection was significantly increased by 2-3 fold with concomitant impairment in eosinophil or neutrophil recruitments. Finally, we demonstrate that in RAG2 deficient mice, drug clearance of a primary adult B. malayi infection followed by challenge infection leads to resistance against early larval B. malayi establishment. This innate resistance is associated with bolstered NK and eosinophils whereby NKp46+ NK cells express markers of memory-like/enhanced activation (increased expression of interferon gamma and Ly6C). Our data promotes a novel functional role for NKp46+ NK cells in immunoprotection against experimental primary and secondary filarial infection which can proceed in the absence of adaptive immune regulation.
Collapse
Affiliation(s)
- Nicolas Pionnier
- Centre for Drugs and Diagnostics, Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom.,Centre for Bioscience, John Dalton Building, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom
| | - Julio Furlong-Silva
- Centre for Drugs and Diagnostics, Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Stefano A P Colombo
- Centre for Drugs and Diagnostics, Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Amy E Marriott
- Centre for Drugs and Diagnostics, Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Valerine C Chunda
- Parasite and Vector Biology Research Unit, Department of Microbiology and Parasitology, Faculty of Science, University of Buea, Buea, Cameroon.,Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Bertrand L Ndzeshang
- Parasite and Vector Biology Research Unit, Department of Microbiology and Parasitology, Faculty of Science, University of Buea, Buea, Cameroon.,Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Hanna Sjoberg
- Centre for Drugs and Diagnostics, Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - John Archer
- Centre for Drugs and Diagnostics, Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Andrew Steven
- Centre for Drugs and Diagnostics, Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Samuel Wanji
- Parasite and Vector Biology Research Unit, Department of Microbiology and Parasitology, Faculty of Science, University of Buea, Buea, Cameroon.,Research Foundation for Tropical Diseases and the Environment (REFOTDE), Buea, Cameroon
| | - Mark J Taylor
- Centre for Drugs and Diagnostics, Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Joseph D Turner
- Centre for Drugs and Diagnostics, Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
6
|
Risch F, Ritter M, Hoerauf A, Hübner MP. Human filariasis-contributions of the Litomosoides sigmodontis and Acanthocheilonema viteae animal model. Parasitol Res 2021; 120:4125-4143. [PMID: 33547508 PMCID: PMC8599372 DOI: 10.1007/s00436-020-07026-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/20/2020] [Indexed: 12/16/2022]
Abstract
Filariae are vector-borne parasitic nematodes that are endemic worldwide, in tropical and subtropical regions. Important human filariae spp. include Onchocerca volvulus, Wuchereria bancrofti and Brugia spp., and Loa loa and Mansonella spp. causing onchocerciasis (river blindness), lymphatic filariasis (lymphedema and hydrocele), loiasis (eye worm), and mansonelliasis, respectively. It is estimated that over 1 billion individuals live in endemic regions where filarial diseases are a public health concern contributing to significant disability adjusted life years (DALYs). Thus, efforts to control and eliminate filarial diseases were already launched by the WHO in the 1970s, especially against lymphatic filariasis and onchocerciasis, and are mainly based on mass drug administration (MDA) of microfilaricidal drugs (ivermectin, diethylcarbamazine, albendazole) to filarial endemic areas accompanied with vector control strategies with the goal to reduce the transmission. With the United Nations Sustainable Development Goals (SDGs), it was decided to eliminate transmission of onchocerciasis and stop lymphatic filariasis as a public health problem by 2030. It was also requested that novel drugs and treatment strategies be developed. Mouse models provide an important platform for anti-filarial drug research in a preclinical setting. This review presents an overview about the Litomosoides sigmodontis and Acanthocheilonema viteae filarial mouse models and their role in immunological research as well as preclinical studies about novel anti-filarial drugs and treatment strategies.
Collapse
Affiliation(s)
- Frederic Risch
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn, Bonn, Germany
| | - Manuel Ritter
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn, Bonn, Germany
| | - Achim Hoerauf
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
| | - Marc P Hübner
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn, Bonn, Germany.
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany.
| |
Collapse
|
7
|
Ajendra J. Lessons in type 2 immunity: Neutrophils in Helminth infections. Semin Immunol 2021; 53:101531. [PMID: 34836773 DOI: 10.1016/j.smim.2021.101531] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 12/20/2022]
Abstract
Neutrophils constitute the body's first line of defense against invading pathogens. Equipped with a large array of tools, these immune cells are highly efficient in eliminating bacterial and viral infections, yet their activity can at the same time be detrimental to the host itself - this is the broad consensus on these granulocytes. However, the last decade has proven that neutrophils are a much more sophisticated cell type with unexpected and underappreciated functions in health and disease. In this review, we look at the latest discoveries in neutrophil biology with a focus on their role during the hallmark setting of type 2 immunity - helminth infection. We discuss the involvement of neutrophils in various helminth infection models and summarize the latest findings regarding neutrophil regulation and effector function. We will show that neutrophils have much more to offer than previously thought and while studies of neutrophils in helminth infections are still in its infancy, recent discoveries highlight more than ever that these cells are a key cog of the immune system, even during type 2 responses.
Collapse
Affiliation(s)
- Jesuthas Ajendra
- Lydia Becker Institute for Immunology & Infection, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK; Wellcome Centre for Cell-Matrix Research, Manchester, M13 9PT, UK.
| |
Collapse
|
8
|
CXCR4 signaling controls dendritic cell location and activation at steady state and in inflammation. Blood 2021; 137:2770-2784. [PMID: 33512478 DOI: 10.1182/blood.2020006675] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 12/20/2020] [Indexed: 12/12/2022] Open
Abstract
Dendritic cells (DCs) encompass several cell subsets that collaborate to initiate and regulate immune responses. Proper DC localization determines their function and requires the tightly controlled action of chemokine receptors. All DC subsets express CXCR4, but the genuine contribution of this receptor to their biology has been overlooked. We addressed this question using natural CXCR4 mutants resistant to CXCL12-induced desensitization and harboring a gain of function that cause the warts, hypogammaglobulinemia, infections, and myelokathexis (WHIM) syndrome (WS), a rare immunodeficiency associated with high susceptibility to the pathogenesis of human papillomavirus (HPV). We report a reduction in the number of circulating plasmacytoid DCs (pDCs) in WHIM patients, whereas that of conventional DCs is preserved. This pattern was reproduced in an original mouse model of WS, enabling us to show that the circulating pDC defect can be corrected upon CXCR4 blockade and that pDC differentiation and function are preserved, despite CXCR4 dysfunction. We further identified proper CXCR4 signaling as a critical checkpoint for Langerhans cell and DC migration from the skin to lymph nodes, with corollary alterations of their activation state and tissue inflammation in a model of HPV-induced dysplasia. Beyond providing new hypotheses to explain the susceptibility of WHIM patients to HPV pathogenesis, this study shows that proper CXCR4 signaling establishes a migration threshold that controls DC egress from CXCL12-containing environments and highlights the critical and subset-specific contribution of CXCR4 signal termination to DC biology.
Collapse
|
9
|
Ehrens A, Lenz B, Neumann AL, Giarrizzo S, Reichwald JJ, Frohberger SJ, Stamminger W, Buerfent BC, Fercoq F, Martin C, Kulke D, Hoerauf A, Hübner MP. Microfilariae Trigger Eosinophil Extracellular DNA Traps in a Dectin-1-Dependent Manner. Cell Rep 2021; 34:108621. [PMID: 33440150 DOI: 10.1016/j.celrep.2020.108621] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 08/03/2020] [Accepted: 12/18/2020] [Indexed: 12/30/2022] Open
Abstract
Eosinophils mediate protection against filarial nematodes. Our results demonstrate that eosinophil extracellular traps (EETosis) are induced by microfilariae and infective L3 larvae of Litomosoides sigmodontis. These extracellular DNA traps inhibit microfilariae motility in a DNA- and contact-dependent manner in vitro. Accordingly, microfilariae-injection triggers DNA release in an eosinophil-dependent manner in vivo and microfilariae covered with DNA traps are cleared more rapidly. Using dectin-1, we identify the required receptor for the microfilariae-induced EETosis, whereas signaling via other C-type lectin receptors, prior priming of eosinophils, and presence of antibodies are not required. The DNA released upon microfilariae-induced EETosis is mainly of mitochondrial origin, but acetylated and citrullinated histones are found within the traps. We further demonstrate that the presented DNA-dependent inhibition of microfilariae motility by eosinophils represents a conserved mechanism, as microfilariae from L. sigmodontis and the canine heartworm Dirofilaria immitis induce ETosis in murine and human eosinophils.
Collapse
Affiliation(s)
- Alexandra Ehrens
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn 53127, Germany
| | - Benjamin Lenz
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn 53127, Germany
| | - Anna-Lena Neumann
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn 53127, Germany
| | - Samuela Giarrizzo
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn 53127, Germany
| | - Julia Jennifer Reichwald
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn 53127, Germany
| | - Stefan Julian Frohberger
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn 53127, Germany
| | - Wiebke Stamminger
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn 53127, Germany
| | - Benedikt Christian Buerfent
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn 53127, Germany
| | - Frédéric Fercoq
- UMR7245 MCAM Museum National d'Histoire Naturelle, CNRS, Paris, France
| | - Coralie Martin
- UMR7245 MCAM Museum National d'Histoire Naturelle, CNRS, Paris, France
| | - Daniel Kulke
- Elanco Animal Health - Research and Exploratory Development, Monheim 40789, Germany
| | - Achim Hoerauf
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn 53127, Germany; German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
| | - Marc Peter Hübner
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn 53127, Germany; German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany.
| |
Collapse
|
10
|
Bouchery T, Moyat M, Sotillo J, Silverstein S, Volpe B, Coakley G, Tsourouktsoglou TD, Becker L, Shah K, Kulagin M, Guiet R, Camberis M, Schmidt A, Seitz A, Giacomin P, Le Gros G, Papayannopoulos V, Loukas A, Harris NL. Hookworms Evade Host Immunity by Secreting a Deoxyribonuclease to Degrade Neutrophil Extracellular Traps. Cell Host Microbe 2020; 27:277-289.e6. [PMID: 32053791 DOI: 10.1016/j.chom.2020.01.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/15/2019] [Accepted: 01/17/2020] [Indexed: 12/11/2022]
Abstract
Hookworms cause a major neglected tropical disease, occurring after larvae penetrate the host skin. Neutrophils are phagocytes that kill large pathogens by releasing neutrophil extracellular traps (NETs), but whether they target hookworms during skin infection is unknown. Using a murine hookworm, Nippostrongylus brasiliensis, we observed neutrophils being rapidly recruited and deploying NETs around skin-penetrating larvae. Neutrophils depletion or NET inhibition altered larvae behavior and enhanced the number of adult worms following murine infection. Nevertheless, larvae were able to mitigate the effect of NETs by secreting a deoxyribonuclease (Nb-DNase II) to degrade the DNA backbone. Critically, neutrophils were able to kill larvae in vitro, which was enhanced by neutralizing Nb-DNase II. Homologs of Nb-DNase II are present in other nematodes, including the human hookworm, Necator americanus, which also evaded NETs in vitro. These findings highlight the importance of neutrophils in hookworm infection and a potential conserved mechanism of immune evasion.
Collapse
Affiliation(s)
- Tiffany Bouchery
- Laboratory of Intestinal Immunology, Department of Immunology and Pathology, Monash University, Melbourne, VIC 3004, Australia; Laboratory of Intestinal Immunology, SV, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne CH-1015 Switzerland
| | - Mati Moyat
- Laboratory of Intestinal Immunology, Department of Immunology and Pathology, Monash University, Melbourne, VIC 3004, Australia; Laboratory of Intestinal Immunology, SV, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne CH-1015 Switzerland
| | - Javier Sotillo
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4814, Australia; Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Madrid 28222, Spain
| | - Solomon Silverstein
- Laboratory of Intestinal Immunology, Department of Immunology and Pathology, Monash University, Melbourne, VIC 3004, Australia
| | - Beatrice Volpe
- Laboratory of Intestinal Immunology, SV, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne CH-1015 Switzerland
| | - Gillian Coakley
- Laboratory of Intestinal Immunology, Department of Immunology and Pathology, Monash University, Melbourne, VIC 3004, Australia
| | | | - Luke Becker
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4814, Australia
| | - Kathleen Shah
- Laboratory of Intestinal Immunology, SV, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne CH-1015 Switzerland
| | - Manuel Kulagin
- Laboratory of Intestinal Immunology, SV, Ecole Polytechnique Federale de Lausanne (EPFL), Lausanne CH-1015 Switzerland
| | - Romain Guiet
- Bioimaging and Optics Core Facility, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Mali Camberis
- Malaghan Institute of Medical Research, Wellington 6242, New Zealand
| | - Alfonso Schmidt
- Hugh Green Cytometry Centre, Malaghan Institute of Medical Research, Wellington 6242, New Zealand
| | - Arne Seitz
- Bioimaging and Optics Core Facility, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Paul Giacomin
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4814, Australia
| | - Graham Le Gros
- Malaghan Institute of Medical Research, Wellington 6242, New Zealand
| | | | - Alex Loukas
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, QLD 4814, Australia
| | - Nicola L Harris
- Laboratory of Intestinal Immunology, Department of Immunology and Pathology, Monash University, Melbourne, VIC 3004, Australia.
| |
Collapse
|
11
|
Finlay CM, Allen JE. The immune response of inbred laboratory mice to Litomosoides sigmodontis: A route to discovery in myeloid cell biology. Parasite Immunol 2020; 42:e12708. [PMID: 32145033 PMCID: PMC7317388 DOI: 10.1111/pim.12708] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/12/2020] [Accepted: 02/24/2020] [Indexed: 12/11/2022]
Abstract
Litomosoides sigmodontis is the only filarial nematode where the full life cycle, from larval delivery to the skin through to circulating microfilaria, can be completed in immunocompetent laboratory mice. It is thus an invaluable tool for the study of filariasis. It has been used for the study of novel anti-helminthic therapeutics, the development of vaccines against filariasis, the development of immunomodulatory drugs for the treatment of inflammatory disease and the study of basic immune responses to filarial nematodes. This review will focus on the latter and aims to summarize how the L sigmodontis model has advanced our basic understanding of immune responses to helminths, led to major discoveries in macrophage biology and provided new insights into the immunological functions of the pleural cavity. Finally, and most importantly L sigmodontis represents a suitable platform to study how host genotype affects immune responses, with the potential for further discovery in myeloid cell biology and beyond.
Collapse
Affiliation(s)
- Conor M Finlay
- Lydia Becker Institute for Immunology & Infection, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Judith E Allen
- Lydia Becker Institute for Immunology & Infection, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| |
Collapse
|
12
|
Pionnier N, Sjoberg H, Furlong-Silva J, Marriott A, Halliday A, Archer J, Steven A, Taylor MJ, Turner JD. Eosinophil-Mediated Immune Control of Adult Filarial Nematode Infection Can Proceed in the Absence of IL-4 Receptor Signaling. THE JOURNAL OF IMMUNOLOGY 2020; 205:731-740. [PMID: 32571840 PMCID: PMC7372315 DOI: 10.4049/jimmunol.1901244] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 05/17/2020] [Indexed: 12/19/2022]
Abstract
Immunity to chronic filarial worm infection is apparent in IL-4Rα–deficient mice. Delayed immunity in IL-4Rα−/− mice is due to suboptimal tissue eosinophilia. Eosinophil recruitment in the absence of IL-4R signaling requires CCR3 and IL-5.
Helminth infections are accompanied by eosinophilia in parasitized tissues. Eosinophils are effectors of immunity to tissue helminths. We previously reported that in the context of experimental filarial nematode infection, optimum tissue eosinophil recruitment was coordinated by local macrophage populations following IL-4R–dependent in situ proliferation and alternative activation. However, in the current study, we identify that control of chronic adult filarial worm infection is evident in IL-4Rα–deficient (IL-4Rα−/−) mice, whereby the majority of infections do not achieve patency. An associated residual eosinophilia was apparent in infected IL-4Rα−/− mice. By treating IL-4Rα−/− mice serially with anti-CCR3 Ab or introducing a compound deficiency in CCR3 within IL-4Rα−/− mice, residual eosinophilia was ablated, and susceptibility to chronic adult Brugia malayi infection was established, promoting a functional role for CCR3-dependent eosinophil influx in immune control in the absence of IL-4/IL-13–dependent immune mechanisms. We investigated additional cytokine signals involved in residual eosinophilia in the absence IL-4Rα signaling and defined that IL-4Rα−/−/IL-5−/− double-knockout mice displayed significant eosinophil deficiency compared with IL-4Rα−/− mice and were susceptible to chronic fecund adult filarial infections. Contrastingly, there was no evidence that either IL-4R–dependent or IL-4R–independent/CCR3/IL-5–dependent immunity influenced B. malayi microfilarial loads in the blood. Our data demonstrate multiplicity of Th2-cytokine control of eosinophil tissue recruitment during chronic filarial infection and that IL-4R–independent/IL-5– and CCR3-dependent pathways are sufficient to control filarial adult infection via an eosinophil-dependent effector response prior to patency.
Collapse
Affiliation(s)
- Nicolas Pionnier
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom
| | - Hanna Sjoberg
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom
| | - Julio Furlong-Silva
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom
| | - Amy Marriott
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom
| | - Alice Halliday
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom
| | - John Archer
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom
| | - Andrew Steven
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom
| | - Mark J Taylor
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom
| | - Joseph D Turner
- Centre for Drugs and Diagnostics, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, United Kingdom
| |
Collapse
|
13
|
Artru F, Bou Saleh M, Maggiotto F, Lassailly G, Ningarhari M, Demaret J, Ntandja-Wandji LC, Pais de Barros JP, Labreuche J, Drumez E, Helou DG, Dharancy S, Gantier E, Périanin A, Chollet-Martin S, Bataller R, Mathurin P, Dubuquoy L, Louvet A. IL-33/ST2 pathway regulates neutrophil migration and predicts outcome in patients with severe alcoholic hepatitis. J Hepatol 2020; 72:1052-1061. [PMID: 31953139 DOI: 10.1016/j.jhep.2019.12.017] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/30/2019] [Accepted: 12/12/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Severe alcoholic hepatitis (SAH) is associated with a high risk of infection. The IL-33/ST2 pathway is involved in sepsis control but data regarding its role in alcohol-related liver disease (ALD) are lacking. We aimed to characterize the role of IL-33/ST2 in the polymorphonuclear neutrophils (PMNs) of patients with ALD and SAH. METHODS Serum and circulating neutrophils were collected from patients with SAH, alcoholic cirrhosis and healthy controls. We quantified IL-33/ST2 pathway activity and CXCR2 at baseline and after exposure to IL-33. We also determined the migration capacity of PMNs. RESULTS The decoy receptor of IL-33 (soluble ST2 [sST2]) was increased in SAH vs. cirrhosis and controls, demonstrating the defect in this pathway during ALD. The sST2 level was associated with response to treatment, 2-month survival, infection-free survival and probability of infection in SAH. Endotoxemia was weakly correlated with sST2. GRK2, a negative regulator of CXCR2, was overexpressed in PMNs of patients with SAH and cirrhosis and was decreased by IL-33. CXCR2 levels on PMNs were lower in SAH vs. cirrhosis and controls. Treatment with IL-33 partially restored CXCR2 expression in SAH and cirrhosis. PMN migration upon IL-8 was lower in patients with SAH and cirrhosis vs. controls. Treatment with IL-33 partially restored migration in those with SAH and cirrhosis. Interestingly, the migration capacity of PMNs and the response to IL-33 were enhanced in responders to corticosteroids (Lille <0.45) compared to non-responders. CONCLUSION The IL33/ST2 pathway is defective in SAH and predicts outcome. This defect is associated with decreased CXCR2 expression on the surface of PMNs and lower migration capacity, which can be corrected by IL-33, especially in patients responding to steroids. These results suggest that IL-33 has therapeutic potential for SAH and its infectious complications. LAY SUMMARY The neutrophils of patients with severe alcoholic hepatitis are associated with a defect in the IL-33/ST2 pathway. This defect is associated with lower migration capacities in neutrophils and a higher probability of getting infected. Administration of IL-33 to the neutrophils at least partly restores this defect and may be effective at reducing the risk of infection in patients with severe alcoholic hepatitis.
Collapse
Affiliation(s)
- Florent Artru
- Hôpital Claude-Huriez, Service Maladies de l'Appareil Digestif, CHU Lille, Lille, France; Université de Lille/Inserm/CHU de Lille, U995 - LIRIC - Lille Inflammation Research Center, Lille, France
| | - Mohamed Bou Saleh
- Université de Lille/Inserm/CHU de Lille, U995 - LIRIC - Lille Inflammation Research Center, Lille, France
| | - François Maggiotto
- Université de Lille/Inserm/CHU de Lille, U995 - LIRIC - Lille Inflammation Research Center, Lille, France
| | - Guillaume Lassailly
- Hôpital Claude-Huriez, Service Maladies de l'Appareil Digestif, CHU Lille, Lille, France; Université de Lille/Inserm/CHU de Lille, U995 - LIRIC - Lille Inflammation Research Center, Lille, France
| | - Massih Ningarhari
- Hôpital Claude-Huriez, Service Maladies de l'Appareil Digestif, CHU Lille, Lille, France; Université de Lille/Inserm/CHU de Lille, U995 - LIRIC - Lille Inflammation Research Center, Lille, France
| | - Julie Demaret
- Université de Lille/Inserm/CHU de Lille, U995 - LIRIC - Lille Inflammation Research Center, Lille, France; Centre de Biologie-Pathologie, CHU de Lille, Lille, France
| | - Line-Carolle Ntandja-Wandji
- Hôpital Claude-Huriez, Service Maladies de l'Appareil Digestif, CHU Lille, Lille, France; Université de Lille/Inserm/CHU de Lille, U995 - LIRIC - Lille Inflammation Research Center, Lille, France
| | | | | | - Elodie Drumez
- Département de biostatistiques, CHU de Lille, Lille, France
| | - Doumet Georges Helou
- Inserm/Université Paris-Sud/Université Paris-Saclay, UMR996, Chatenay-Malabry, France; Assistance publique-Hôpitaux de Paris, Hôpital Bichat, Laboratoire d'immunologie « Autoimmunité et Hypersensibilités », Paris, France
| | - Sébastien Dharancy
- Hôpital Claude-Huriez, Service Maladies de l'Appareil Digestif, CHU Lille, Lille, France; Université de Lille/Inserm/CHU de Lille, U995 - LIRIC - Lille Inflammation Research Center, Lille, France
| | - Emilie Gantier
- Université de Lille/Inserm/CHU de Lille, U995 - LIRIC - Lille Inflammation Research Center, Lille, France
| | - Axel Périanin
- Inserm/Faculté de Médecine Xavier Bichat, UMRS-1149, Paris, France; CNRS, ERL-8252 Centre de Recherche sur l'Inflammation, Paris, France; Université Paris Diderot, Sorbonne Paris Cité, Laboratoire d'Excellence INFLAMEX, Paris, France
| | - Sylvie Chollet-Martin
- Inserm/Université Paris-Sud/Université Paris-Saclay, UMR996, Chatenay-Malabry, France; Assistance publique-Hôpitaux de Paris, Hôpital Bichat, Laboratoire d'immunologie « Autoimmunité et Hypersensibilités », Paris, France
| | - Ramon Bataller
- Division of Gastroenterology, Hepatology and Nutrition, Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Philippe Mathurin
- Hôpital Claude-Huriez, Service Maladies de l'Appareil Digestif, CHU Lille, Lille, France; Université de Lille/Inserm/CHU de Lille, U995 - LIRIC - Lille Inflammation Research Center, Lille, France
| | - Laurent Dubuquoy
- Université de Lille/Inserm/CHU de Lille, U995 - LIRIC - Lille Inflammation Research Center, Lille, France.
| | - Alexandre Louvet
- Hôpital Claude-Huriez, Service Maladies de l'Appareil Digestif, CHU Lille, Lille, France; Université de Lille/Inserm/CHU de Lille, U995 - LIRIC - Lille Inflammation Research Center, Lille, France.
| |
Collapse
|
14
|
Frohberger SJ, Fercoq F, Neumann AL, Surendar J, Stamminger W, Ehrens A, Karunakaran I, Remion E, Vogl T, Hoerauf A, Martin C, Hübner MP. S100A8/S100A9 deficiency increases neutrophil activation and protective immune responses against invading infective L3 larvae of the filarial nematode Litomosoides sigmodontis. PLoS Negl Trop Dis 2020; 14:e0008119. [PMID: 32107497 PMCID: PMC7064255 DOI: 10.1371/journal.pntd.0008119] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 03/10/2020] [Accepted: 02/05/2020] [Indexed: 12/17/2022] Open
Abstract
Neutrophils are essentially involved in protective immune responses against invading infective larvae of filarial nematodes. The present study investigated the impact of S100A8/S100A9 on protective immune responses against the rodent filarial nematode Litomosoides sigmodontis. S100A9 forms with S100A8 the heterodimer calprotectin, which is expressed by circulating neutrophils and monocytes and mitigates or amplifies tissue damage as well as inflammation depending on the immune environment. Mice deficient for S100A8/A9 had a significantly reduced worm burden in comparison to wildtype (WT) animals 12 days after infection (dpi) with infective L3 larvae, either by the vector or subcutaneous inoculation, the latter suggesting that circumventing natural immune responses within the epidermis and dermis do not alter the phenotype. Nevertheless, upon intradermal injection of L3 larvae, increased total numbers of neutrophils, eosinophils and macrophages were observed within the skin of S100A8/A9-/- mice. Furthermore, upon infection the bronchoalveolar and thoracic cavity lavage of S100A8/A9-/- mice showed increased concentrations of CXCL-1, CXCL-2, CXCL-5, as well as elastase in comparison to the WT controls. Neutrophils from S100A8/A9-/- mice exhibited an increased in vitro activation and reduced L3 larval motility more effectively in vitro compared to WT neutrophils. The depletion of neutrophils from S100A8/A9-/- mice prior to L. sigmodontis infection until 5dpi abrogated the protective effect and led to an increased worm burden, indicating that neutrophils mediate enhanced protective immune responses against invading L3 larvae in S100A8/A9-/- mice. Interestingly, complete circumvention of protective immune responses in the skin and the lymphatics by intravenous injection of L3 larvae reversed the phenotype and resulted in an increased worm burden in S100A8/A9-/- mice. In summary, our results reveal that lack of S100A8/S100A9 triggers L3-induced inflammatory responses, increasing chemokine levels, granulocyte recruitment as well as neutrophil activation and therefore impairs larval migration and susceptibility for filarial infection.
Collapse
Affiliation(s)
- Stefan J. Frohberger
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Frederic Fercoq
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245), Muséum national d’Histoire naturelle, CNRS; Paris, France
| | - Anna-Lena Neumann
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Jayagopi Surendar
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Wiebke Stamminger
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Alexandra Ehrens
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Indulekha Karunakaran
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Estelle Remion
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245), Muséum national d’Histoire naturelle, CNRS; Paris, France
| | - Thomas Vogl
- Institute of Immunology, University Hospital of Münster, Münster, Germany
| | - Achim Hoerauf
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
| | - Coralie Martin
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245), Muséum national d’Histoire naturelle, CNRS; Paris, France
| | - Marc P. Hübner
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
- * E-mail:
| |
Collapse
|
15
|
Chunda VC, Ritter M, Bate A, Gandjui NVT, Esum ME, Fombad FF, Njouendou AJ, Ndongmo PWC, Taylor MJ, Hoerauf A, Layland LE, Turner JD, Wanji S. Comparison of immune responses to Loa loa stage-specific antigen extracts in Loa loa-exposed BALB/c mice upon clearance of infection. Parasit Vectors 2020; 13:51. [PMID: 32033624 PMCID: PMC7006431 DOI: 10.1186/s13071-020-3921-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 01/31/2020] [Indexed: 01/10/2023] Open
Abstract
Background Different immune mechanisms are capable of killing developmental stages of filarial nematodes and these mechanisms are also likely to vary between the primary and a challenge infection. However, the lack of a detailed analysis of cytokine, chemokine and immunoglobulin levels in human loiasis is still evident. Therefore, detailed analysis of immune responses induced by the different developmental stages of Loa loa in immune-competent BALB/c mice will aid in the characterization of distinct immune responses that are important for the immunity against loiasis. Methods Different developmental stages of L. loa were obtained from human peripheral blood (microfilariae, MF), the transmitting vector, Chrysops (larval stage 3, L3) and infected immune-deficient BALB/cRAG2γc−/− mice (L4, L5, adult worms). Groups of wildtype BALB/c mice were then injected with the isolated stages and after 42 days post-infection (pi), systemic cytokine, chemokine and immunoglobulin levels were determined. These were then compared to L. loa-specific responses from in vitro re-stimulated splenocytes from individual mice. All parameters were determined using Luminex technology. Results In a pilot study, BALB/c mice cleared the different life stages of L. loa within 42 days pi and systemic cytokine, chemokine and immunoglobulin levels were equal between infected and naive mice. Nevertheless, L. loa-specific re-stimulation of splenocytes from mice infected with L5, MF or adult worms led to induction of Th2, Th17 and chemokine secretion patterns. Conclusions This study shows that although host immunity remains comparable to naive mice, clearance of L. loa life-cycle development stages can induce immune cell memory leading to cytokine, chemokine and immunoglobulins secretion patterns which might contribute to immunity and protection against reinfection.![]()
Collapse
Affiliation(s)
- Valerine C Chunda
- Parasite and Vector Biology Research Unit, Department of Microbiology and Parasitology, Faculty of Science, University of Buea, P.O. Box 63, Buea, Cameroon.,Research Foundation in Tropical Diseases and the Environment, P.O. Box 474, Buea, Cameroon
| | - Manuel Ritter
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), Medical Faculty, University of Bonn, Bonn, Germany.
| | - Ayukenchengamba Bate
- Parasite and Vector Biology Research Unit, Department of Microbiology and Parasitology, Faculty of Science, University of Buea, P.O. Box 63, Buea, Cameroon.,Research Foundation in Tropical Diseases and the Environment, P.O. Box 474, Buea, Cameroon
| | - Narcisse V T Gandjui
- Parasite and Vector Biology Research Unit, Department of Microbiology and Parasitology, Faculty of Science, University of Buea, P.O. Box 63, Buea, Cameroon.,Research Foundation in Tropical Diseases and the Environment, P.O. Box 474, Buea, Cameroon
| | - Mathias E Esum
- Parasite and Vector Biology Research Unit, Department of Microbiology and Parasitology, Faculty of Science, University of Buea, P.O. Box 63, Buea, Cameroon.,Research Foundation in Tropical Diseases and the Environment, P.O. Box 474, Buea, Cameroon
| | - Fanny F Fombad
- Parasite and Vector Biology Research Unit, Department of Microbiology and Parasitology, Faculty of Science, University of Buea, P.O. Box 63, Buea, Cameroon.,Research Foundation in Tropical Diseases and the Environment, P.O. Box 474, Buea, Cameroon
| | - Abdel J Njouendou
- Parasite and Vector Biology Research Unit, Department of Microbiology and Parasitology, Faculty of Science, University of Buea, P.O. Box 63, Buea, Cameroon.,Research Foundation in Tropical Diseases and the Environment, P.O. Box 474, Buea, Cameroon
| | - Patrick W C Ndongmo
- Parasite and Vector Biology Research Unit, Department of Microbiology and Parasitology, Faculty of Science, University of Buea, P.O. Box 63, Buea, Cameroon.,Research Foundation in Tropical Diseases and the Environment, P.O. Box 474, Buea, Cameroon
| | - Mark J Taylor
- Centre for Drugs and Diagnostics Research, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Achim Hoerauf
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), Medical Faculty, University of Bonn, Bonn, Germany.,German Centre for Infection Research (DZIF), Bonn-Cologne partner site, Bonn, Germany
| | - Laura E Layland
- Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), Medical Faculty, University of Bonn, Bonn, Germany.,German Centre for Infection Research (DZIF), Bonn-Cologne partner site, Bonn, Germany
| | - Joseph D Turner
- Centre for Drugs and Diagnostics Research, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Samuel Wanji
- Parasite and Vector Biology Research Unit, Department of Microbiology and Parasitology, Faculty of Science, University of Buea, P.O. Box 63, Buea, Cameroon.,Research Foundation in Tropical Diseases and the Environment, P.O. Box 474, Buea, Cameroon
| |
Collapse
|
16
|
Baek H, Sariev A, Kim MJ, Lee H, Kim J, Kim H. A neuroprotective brain stimulation for vulnerable cerebellar Purkinje cell after ischemic stroke: a study with low-intensity focused ultrasound. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2019; 2018:4744-4747. [PMID: 30441409 DOI: 10.1109/embc.2018.8513138] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The role of established contralateral cerebrocerebellar connections on cerebellar injury during stroke has been increasingly revealed in recent years. An extensive number of studies have investigated alteration in inter-hemispheric correlation in order to find brain regions whose responses are specific to restore functional loss and enhance adaptive neural plasticity after stroke. Although, several non-invasive brain stimulation studies have proven their efficacy in the treatment of stroke recovery, finding more effective brain regions that responsible for stroke rehabilitation as well as optimizing neural stimulation protocol are the main goals of further investigations. In this study, the lateral cerebellar nucleus (LCN) was exposed to Low-Intensity Focused Ultrasound (LIFU) to reduce the cerebellar damage resulting from crossed cerebellar diaschisis (CCD) phenomenon after cerebral ischemia. A mouse brain ischemia was induced by middle cerebral artery occlusion (MCAO). A level of decrease in Purkinje cell (PC) number and a quantity of myeloperoxidase (MPO) positive neutrophils in the cerebral cortex were compared between stroke and stroke+LIFU groups after MCAO. In stroke+LIFU group, the increased ipsilateral water content due to tissue swelling was observed, showing an attenuation of brain edema. Prominently, the reduction of the neuroimmune reactivity at the infarct core and the peri-infarct regions, and the increased rate of survival among PCs clearly demonstrated primary evidence of neuroprotective effect induced by LIFU-mediated cerebellar modulation.
Collapse
|
17
|
Helou DG, Braham S, De Chaisemartin L, Granger V, Damien MH, Pallardy M, Kerdine-Römer S, Chollet-Martin S. Nrf2 downregulates zymosan-induced neutrophil activation and modulates migration. PLoS One 2019; 14:e0216465. [PMID: 31419224 PMCID: PMC6697320 DOI: 10.1371/journal.pone.0216465] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 07/09/2019] [Indexed: 12/23/2022] Open
Abstract
Polymorphonuclear neutrophils (PMNs) are the first line of defense against pathogens and their activation needs to be tightly regulated in order to limit deleterious effects. Nrf2 (Nuclear factor (erythroïd-derived 2)-like 2) transcription factor regulates oxidative stress and/or represses inflammation in various cells such as dendritic cells or macrophages. However, its involvement in PMN biology is still unclear. Using Nrf2 KO mice, we thus aimed to investigate the protective role of Nrf2 in various PMN functions such as oxidative burst, netosis, migration, cytokine production and phagocytosis, mainly in response to zymosan. We found that zymosan induced Nrf2 accumulation in PMNs leading to the upregulation of some target genes including Hmox-1, Nqo1 and Cat. Nrf2 was able to decrease zymosan-induced PMN oxidative burst; sulforaphane-induced Nrf2 hyperexpression confirmed its implication. Tnfα, Ccl3 and Cxcl2 gene transcription was decreased in zymosan-stimulated Nrf2 KO PMNs, suggesting a role for Nrf2 in the regulation of proinflammatory cytokine production. However, Nrf2 was not involved in phagocytosis. Finally, spontaneous migration of Nrf2 KO PMNs was lower than that of WT PMNs. Moreover, in response to low concentrations of CXCL2 or CXCL12, Nrf2 KO PMN migration was decreased despite similar CXCR2 and CXCR4 expression and ATP levels in PMNs from both genotypes. Nrf2 thus seems to be required for an optimal migration. Altogether these results suggest that Nrf2 has a protective role in several PMN functions. In particular, it downregulates their activation in response to zymosan and is required for an adequate migration.
Collapse
Affiliation(s)
- Doumet Georges Helou
- Inflammation, Chimiokines et Immunopathologie, INSERM UMR996, Univ. Paris-Sud, Université Paris-Saclay,Châtenay-Malabry, France
| | - Sarah Braham
- Inflammation, Chimiokines et Immunopathologie, INSERM UMR996, Univ. Paris-Sud, Université Paris-Saclay,Châtenay-Malabry, France
| | - Luc De Chaisemartin
- Inflammation, Chimiokines et Immunopathologie, INSERM UMR996, Univ. Paris-Sud, Université Paris-Saclay,Châtenay-Malabry, France
- Laboratoire d'immunologie, « Autoimmunité et Hypersensibilités », Hôpital Bichat-Claude Bernard, AP-HP, Paris, France
| | - Vanessa Granger
- Inflammation, Chimiokines et Immunopathologie, INSERM UMR996, Univ. Paris-Sud, Université Paris-Saclay,Châtenay-Malabry, France
- Laboratoire d'immunologie, « Autoimmunité et Hypersensibilités », Hôpital Bichat-Claude Bernard, AP-HP, Paris, France
| | - Marie-Hélène Damien
- Inflammation, Chimiokines et Immunopathologie, INSERM UMR996, Univ. Paris-Sud, Université Paris-Saclay,Châtenay-Malabry, France
| | - Marc Pallardy
- Inflammation, Chimiokines et Immunopathologie, INSERM UMR996, Univ. Paris-Sud, Université Paris-Saclay,Châtenay-Malabry, France
| | - Saadia Kerdine-Römer
- Inflammation, Chimiokines et Immunopathologie, INSERM UMR996, Univ. Paris-Sud, Université Paris-Saclay,Châtenay-Malabry, France
| | - Sylvie Chollet-Martin
- Inflammation, Chimiokines et Immunopathologie, INSERM UMR996, Univ. Paris-Sud, Université Paris-Saclay,Châtenay-Malabry, France
- Laboratoire d'immunologie, « Autoimmunité et Hypersensibilités », Hôpital Bichat-Claude Bernard, AP-HP, Paris, France
- * E-mail:
| |
Collapse
|
18
|
Frohberger SJ, Ajendra J, Surendar J, Stamminger W, Ehrens A, Buerfent BC, Gentil K, Hoerauf A, Hübner MP. Susceptibility to L. sigmodontis infection is highest in animals lacking IL-4R/IL-5 compared to single knockouts of IL-4R, IL-5 or eosinophils. Parasit Vectors 2019; 12:248. [PMID: 31109364 PMCID: PMC6528299 DOI: 10.1186/s13071-019-3502-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 05/10/2019] [Indexed: 12/21/2022] Open
Abstract
Background Mice are susceptible to infections with the rodent filarial nematode Litomosoides sigmodontis and develop immune responses that resemble those of human filarial infections. Thus, the L. sigmodontis model is used to study filarial immunomodulation, protective immune responses against filariae and to screen drug candidates for human filarial diseases. While previous studies showed that type 2 immune responses are protective against L. sigmodontis, the present study directly compared the impact of eosinophils, IL-5, and the IL-4R on the outcome of L. sigmodontis infection. Methods Susceptible wildtype (WT) BALB/c mice, BALB/c mice lacking eosinophils (dblGATA mice), IL-5−/− mice, IL-4R−/− mice and IL-4R−/−/IL-5−/− mice were infected with L. sigmodontis. Analyses were performed during the peak of microfilaremia in WT animals (71 dpi) as well as after IL-4R−/−/IL-5−/− mice showed a decline in microfilaremia (119 dpi) and included adult worm counts, peripheral blood microfilariae levels, cytokine production from thoracic cavity lavage, the site of adult worm residence, and quantification of major immune cell types within the thoracic cavity and spleen. Results Our study reveals that thoracic cavity eosinophil numbers correlated negatively with the adult worm burden, whereas correlations of alternatively activated macrophage (AAM) numbers with the adult worm burden (positive correlation) were likely attributed to the accompanied changes in eosinophil numbers. IL-4R−/−/IL-5−/− mice exhibited an enhanced embryogenesis achieving the highest microfilaremia with all animals becoming microfilariae positive and had an increased adult worm burden combined with a prolonged adult worm survival. Conclusions These data indicate that mice deficient for IL-4R−/−/IL-5−/− have the highest susceptibility for L. sigmodontis infection, which resulted in an earlier onset of microfilaremia, development of microfilaremia in all animals with highest microfilariae loads, and an extended adult worm survival. Electronic supplementary material The online version of this article (10.1186/s13071-019-3502-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stefan J Frohberger
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany
| | - Jesuthas Ajendra
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany
| | - Jayagopi Surendar
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany
| | - Wiebke Stamminger
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany
| | - Alexandra Ehrens
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany
| | - Benedikt C Buerfent
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany.,Center for Human Genetics, University Hospital of Marburg, Marburg, Germany
| | - Katrin Gentil
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany.,Institute of Medical Microbiology, Justus Liebig University Giessen, Giessen, Germany
| | - Achim Hoerauf
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany.,German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Bonn, Germany
| | - Marc P Hübner
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany.
| |
Collapse
|
19
|
Díaz-Godínez C, Carrero JC. The state of art of neutrophil extracellular traps in protozoan and helminthic infections. Biosci Rep 2019; 39:BSR20180916. [PMID: 30498092 PMCID: PMC6328873 DOI: 10.1042/bsr20180916] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 10/26/2018] [Accepted: 11/15/2018] [Indexed: 12/23/2022] Open
Abstract
Neutrophil extracellular traps (NETs) are DNA fibers associated with histones, enzymes from neutrophil granules and anti-microbial peptides. NETs are released in a process denominated NETosis, which involves sequential steps that culminate with the DNA extrusion. NETosis has been described as a new mechanism of innate immunity related to defense against different pathogens. The initial studies of NETs were carried out with bacteria and fungi, but currently a large variety of microorganisms capable of inducing NETs have been described including protozoan and helminth parasites. Nevertheless, we have little knowledge about how NETosis process is carried out in response to the parasites, and about its implication in the resolution of this kind of disease. In the best case, the NETs entrap and kill parasites in vitro, but in others, immobilize the parasites without affecting their viability. Moreover, insufficient studies on the NETs in animal models of infections that would help to define their role, and the association of NETs with chronic inflammatory pathologies such as those occurring in several parasitic infections have left open the possibility of NETs contributing to pathology instead of protection. In this review, we focus on the reported mechanisms that lead to NET release by protozoan and helminth parasites and the evidence that support the role of NETosis in the resolution or pathogenesis of parasitic diseases.
Collapse
Affiliation(s)
- César Díaz-Godínez
- Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, México D.F., México
| | - Julio C Carrero
- Department of Immunology, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, México D.F., México
| |
Collapse
|
20
|
McDermott DH, Heusinkveld LE, Zein WM, Sen HN, Marquesen MM, Parta M, Rosenzweig SD, Fahle GA, Keller MD, Wiley HE, Murphy PM. Case Report: Ocular toxoplasmosis in a WHIM syndrome immunodeficiency patient. F1000Res 2019; 8:2. [PMID: 31249677 PMCID: PMC6587139 DOI: 10.12688/f1000research.16825.2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/12/2019] [Indexed: 01/17/2023] Open
Abstract
A patient with WHIM syndrome immunodeficiency presented with sudden painless right eye blindness associated with advanced retinal and optic nerve damage. Toxoplasma gondii was detected by PCR in vitreous fluid but not serum. The patient was treated with pyrimethamine/sulfadiazine for 6 weeks due to evidence of active ocular inflammation and then received prophylaxis with trimethoprim-sulfamethoxazole due to his immunosuppression. Vision did not return; however, the infection did not spread to involve other sites. Toxoplasmosis is rare in primary immunodeficiency disorders and is the first protozoan infection reported in WHIM syndrome.
Collapse
Affiliation(s)
- David H. McDermott
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lauren E. Heusinkveld
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Wadih M. Zein
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - H. Nida Sen
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Martha M. Marquesen
- Laboratory of Clinical Immunology and Microbiology, National Institute Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Mark Parta
- Clinical Research Directorate/Clinical Monitoring Research Program, Bethesda, MD, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Bethesda, Maryland, 20892, USA
| | - Sergio D. Rosenzweig
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Gary A. Fahle
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Michael D. Keller
- Division of Allergy & Immunology, Children’s National Medical Center, Washington, DC, 20010, USA
| | - Henry E. Wiley
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Philip M. Murphy
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
21
|
McDermott DH, Heusinkveld LE, Zein WM, Sen HN, Marquesen MM, Parta M, Rosenzweig SD, Fahle GA, Keller MD, Wiley HE, Murphy PM. Case Report: Ocular toxoplasmosis in a WHIM syndrome immunodeficiency patient. F1000Res 2019; 8:2. [PMID: 31249677 PMCID: PMC6587139 DOI: 10.12688/f1000research.16825.1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/01/2018] [Indexed: 06/16/2024] Open
Abstract
A patient with WHIM syndrome immunodeficiency presented with sudden painless right eye blindness associated with advanced retinal and optic nerve damage. Toxoplasma gondii was detected by PCR in vitreous fluid but not serum. The patient was treated with trimethoprim-sulfamethoxazole. Vision did not return; however, the infection did not spread to involve other sites. Toxoplasmosis is rare in primary immunodeficiency disorders and is the first protozoan infection reported in WHIM syndrome.
Collapse
Affiliation(s)
- David H. McDermott
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Lauren E. Heusinkveld
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Wadih M. Zein
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - H. Nida Sen
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Martha M. Marquesen
- Laboratory of Clinical Immunology and Microbiology, National Institute Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Mark Parta
- Clinical Research Directorate/Clinical Monitoring Research Program, Bethesda, MD, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Bethesda, Maryland, 20892, USA
| | - Sergio D. Rosenzweig
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Gary A. Fahle
- Department of Laboratory Medicine, Clinical Center, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Michael D. Keller
- Division of Allergy & Immunology, Children’s National Medical Center, Washington, DC, 20010, USA
| | - Henry E. Wiley
- National Eye Institute, National Institutes of Health, Bethesda, Maryland, 20892, USA
| | - Philip M. Murphy
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
22
|
Mast cell deficiency in mice results in biomass overgrowth and delayed expulsion of the rat tapeworm Hymenolepis diminuta. Biosci Rep 2018; 38:BSR20180687. [PMID: 30341242 PMCID: PMC6265620 DOI: 10.1042/bsr20180687] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 09/11/2018] [Accepted: 10/03/2018] [Indexed: 02/06/2023] Open
Abstract
Infection with helminth parasites evokes a complex cellular response in the host, where granulocytes (i.e. eosinophils, basophils and mast cells (MCs)) feature prominently. In addition to being used as markers of helminthic infections, MCs have been implicated in worm expulsion since animals defective in c-kit signaling, which results in diminished MC numbers, can have delayed worm expulsion. The role of MCs in the rejection of the rat tapeworm, Hymenolepsis diminuta, from the non-permissive mouse host is not known. MC-deficient mice display a delay in the expulsion of H. diminuta that is accompanied by a less intense splenic Th2 response, as determined by in vitro release of interleukin (IL)-4, IL-5 and IL-13 cytokines. Moreover, worms retrieved from MC-deficient mice were larger than those from wild-type (WT) mice. Assessment of gut-derived IL-25, IL-33, thymic stromal lymphopoietin revealed lower levels in uninfected MC-deficient mice compared with WT, suggesting a role for MCs in homeostatic control of these cytokines: differences in these gut cytokines between the mouse strains were not observed after infection with H. diminuta. Finally, mice infected with H. diminuta display less severe dinitrobenzene sulphonic acid (DNBS)-induced colitis, and this beneficial effect of the worm was unaltered in MC-deficient mice challenged with DNBS, as assessed by a macroscopic disease score. Thus, while MCs are not essential for rejection of H. diminuta from mice, their absence slows the kinetics of expulsion allowing the development of greater worm biomass prior to successful rejection of the parasitic burden.
Collapse
|
23
|
Graves N, Venu VP, Yipp BG, Petri B, Hirota S, Gilleard J, McKay DM, Lopes F. A Trypsin-Sensitive Proteoglycan from the Tapeworm Hymenolepis diminuta Inhibits Murine Neutrophil Chemotaxis in vitro by Suppressing p38 MAP Kinase Activation. J Innate Immun 2018; 11:136-149. [PMID: 30205385 PMCID: PMC6738252 DOI: 10.1159/000492303] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/23/2018] [Accepted: 07/23/2018] [Indexed: 12/19/2022] Open
Abstract
It has emerged that neutrophils can play important roles in the host response following infection with helminth parasites. Mice infected with the tapeworm, Hymenolepis diminuta, are protected from some inflammatory conditions, accompanied by reduced neutrophil tissue infiltration. Thus, the ability of a phosphate-buffered saline-soluble extract of the worm (H. diminuta extract [HdE]) was tested for (1) its ability to activate murine neutrophils (Ca2+ mobilization, reactive oxygen species (ROS) and cytokine production); and (2) affect neutrophil chemotaxis in vitro to the penta-peptide, WKYMVm, the chemokine, KC, and leukotriene B4. HdE was not cytotoxic to neutrophils, elicited a Ca2+ response and ROS, but not, cytokine (KC, interleukin-10, tumour necrosis factor-α) generation. HdE is not a chemotactic stimulus for murine neutrophils. However, a heat- and trypsin-sensitive, acid-insensitive proteoglycan (sensitive to sodium metaperiodate) in the HdE significantly reduced neutrophil chemotaxis towards WKYMVm or KC, but not LTB4. The latter suggested that the HdE interfered with p38 mitogen-activated protein kinase signalling, which is important in WKYMVm chemotaxis. Corroborating this, immunoblotting revealed reduced phosphorylated p38, and the downstream signal heat-shock protein-27, in protein extracts from HdE + WkYMVm treated cells compared to those exposed to the penta-peptide only. We speculate that HdE can be used to modify the outcome of neutrophilic disease and that purification of the bioactive proteoglycan(s) from the extract could be used as a template to design immunomodulatory drugs targeting neutrophils.
Collapse
Affiliation(s)
- Nicholas Graves
- Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Vivek P Venu
- Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Bryan G Yipp
- Department of Critical Care Medicine, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Björn Petri
- Mouse Phenomics Resource Laboratory, Department of Microbiology, Immunology and Infectious Diseases, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Simon Hirota
- Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - John Gilleard
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Derek M McKay
- Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta,
| | - Fernando Lopes
- Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
24
|
Muhsin M, Ajendra J, Gentil K, Berbudi A, Neumann AL, Klaas L, Schmidt KE, Hoerauf A, Hübner MP. IL-6 is required for protective immune responses against early filarial infection. Int J Parasitol 2018; 48:925-935. [PMID: 30176234 DOI: 10.1016/j.ijpara.2018.05.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 05/23/2018] [Accepted: 05/24/2018] [Indexed: 12/29/2022]
Abstract
IL-6 has a wide range of biological activities that includes anti- and pro-inflammatory aspects. In this study, we investigated the role of IL-6 in immune responses to the rodent filarial nematode Litomosoides sigmodontis, a model for human filarial infections. IL-6-/- mice had a significantly increased worm burden after natural infection compared with wild type controls at early time points p.i. Given that the worm burden in IL-6-/- mice was already increased at the time point the infective larvae reached the pleural cavity, immune responses that may facilitate the migration from the site of infection (skin) via the lymphatics to the pleural cavity were analysed. Increased vascular permeability may facilitate larval migration, but blocking of histamine receptors had no effect on worm burden and vascular permeability was similar between IL-6-/- mice and wild type controls. In contrast, blocking mast cell degranulation reduced the worm burden in IL-6-/- mice partially, suggesting that release of mast cell-derived mediators improves larval migration to some degree. Protective immune responses within the skin were involved, as bypassing the skin barrier by inoculating infective L3s subcutaneously resulted in a comparable worm recovery in both mouse strains. Analysis of the cellular composition by flow cytometry and PCR array in the skin after exposure to filarial extract or L3s, respectively, indicate that the absence of IL-6 results in a delayed recruitment of neutrophils and macrophages to the site of initial infection. These results demonstrate that IL-6 is essentially involved in protective immune responses within the skin that impair migration of infective L3s.
Collapse
Affiliation(s)
- Muhsin Muhsin
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany; Department of Parasitology Faculty of Medicine, Syiah Kuala University, Banda Aceh, Indonesia
| | - Jesuthas Ajendra
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Katrin Gentil
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany; Institute of Medical Microbiology, Justus Liebig University Giessen, Giessen, Germany
| | - Afiat Berbudi
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany; Department of Biomedical Sciences, Parasitology Division, Faculty of Medicine, Universitas Padjadjaran, Bandung, Indonesia
| | - Anna-Lena Neumann
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Lil Klaas
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Kim E Schmidt
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Achim Hoerauf
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany; German Centre for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
| | - Marc P Hübner
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany.
| |
Collapse
|
25
|
Muñoz-Caro T, Conejeros I, Zhou E, Pikhovych A, Gärtner U, Hermosilla C, Kulke D, Taubert A. Dirofilaria immitis Microfilariae and Third-Stage Larvae Induce Canine NETosis Resulting in Different Types of Neutrophil Extracellular Traps. Front Immunol 2018; 9:968. [PMID: 29867950 PMCID: PMC5951940 DOI: 10.3389/fimmu.2018.00968] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/18/2018] [Indexed: 12/20/2022] Open
Abstract
Heartworm disease is a zoonotic vector-borne disease caused by Dirofilaria immitis mainly affecting canids. Infectious third-stage larvae (L3) are transmitted to the definitive hosts via culicid mosquitoes; adult nematodes reside in the pulmonary arteries and in the right heart releasing unsheathed first-stage larvae (microfilariae) into the bloodstream leading to chronic and sometimes fatal disease. So far, early innate immune reactions triggered by these different D. immitis stages in the canine host have scarcely been investigated. Therefore, D. immitis microfilariae and L3 were analyzed for their capacity to induce neutrophil extracellular traps (NETs) in canine polymorphonuclear neutrophils (PMN). Overall, scanning electron microscopy analysis revealed both larval stages as strong inducers of canine NETosis. Co-localization of PMN-derived extracellular DNA with granulocytic histones, neutrophil elastase, or myeloperoxidase in parasite-entrapping structures confirmed the classical characteristics of NETosis. Quantitative analyses showed that both larval stages triggered canine NETs in a time-dependent but dose-independent manner. Moreover, parasite-induced NET formation was not influenced by the parasites viability since heat-inactivated microfilariae and L3 also induced NETs. In addition, parasite/PMN confrontation promoted significant entrapment but not killing of microfilariae and L3. Both, NETosis and larval entrapment was significantly reversed via DNase I treatments while treatments with the NADPH oxidase inhibitor diphenyleneiodonium failed to significantly influence these reactions. Interestingly, different types of NETs were induced by microfilariae and L3 since microfilarial stages merely induced spread and diffuse NETs while the larger L3 additionally triggered aggregated NET formation.
Collapse
Affiliation(s)
- Tamara Muñoz-Caro
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| | - Iván Conejeros
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| | - Ershun Zhou
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| | - Anton Pikhovych
- Clinical Development Animal Health, Animal Center, Bayer Animal Health GmbH, Leverkusen, Germany
| | - Ulrich Gärtner
- Institute of Anatomy and Cell Biology, Justus Liebig University Giessen, Giessen, Germany
| | - Carlos Hermosilla
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| | - Daniel Kulke
- Drug Discovery Animal Health, Parasiticides, Filaricides Research, Bayer Animal Health GmbH, Leverkusen, Germany
| | - Anja Taubert
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
26
|
Karadjian G, Fercoq F, Pionnier N, Vallarino-Lhermitte N, Lefoulon E, Nieguitsila A, Specht S, Carlin LM, Martin C. Migratory phase of Litomosoides sigmodontis filarial infective larvae is associated with pathology and transient increase of S100A9 expressing neutrophils in the lung. PLoS Negl Trop Dis 2017; 11:e0005596. [PMID: 28486498 PMCID: PMC5438187 DOI: 10.1371/journal.pntd.0005596] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 05/19/2017] [Accepted: 04/25/2017] [Indexed: 01/22/2023] Open
Abstract
Filarial infections are tropical diseases caused by nematodes of the Onchocercidae family such as Mansonella perstans. The infective larvae (L3) are transmitted into the skin of vertebrate hosts by blood-feeding vectors. Many filarial species settle in the serous cavities including M. perstans in humans and L. sigmodontis, a well-established model of filariasis in mice. L. sigmodontis L3 migrate to the pleural cavity where they moult into L4 around day 9 and into male and female adult worms around day 30. Little is known of the early phase of the parasite life cycle, after the L3 is inoculated in the dermis by the vector and enters the afferent lymphatic vessels and before the moulting processes in the pleural cavity. Here we reveal a pulmonary phase associated with lung damage characterized by haemorrhages and granulomas suggesting L3 reach the lung via pulmonary capillaries and damage the endothelium and parenchyma by crossing them to enter the pleural cavity. This study also provides evidence for a transient inflammation in the lung characterized by a very early recruitment of neutrophils associated with high expression levels of S100A8 and S100A9 proteins.
Collapse
Affiliation(s)
- Gregory Karadjian
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245), Sorbonne Universités, Muséum national d’Histoire naturelle, CNRS, Paris, France
| | - Frédéric Fercoq
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245), Sorbonne Universités, Muséum national d’Histoire naturelle, CNRS, Paris, France
| | - Nicolas Pionnier
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245), Sorbonne Universités, Muséum national d’Histoire naturelle, CNRS, Paris, France
| | - Nathaly Vallarino-Lhermitte
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245), Sorbonne Universités, Muséum national d’Histoire naturelle, CNRS, Paris, France
| | - Emilie Lefoulon
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245), Sorbonne Universités, Muséum national d’Histoire naturelle, CNRS, Paris, France
| | - Adélaïde Nieguitsila
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245), Sorbonne Universités, Muséum national d’Histoire naturelle, CNRS, Paris, France
| | - Sabine Specht
- Institute for Medical Microbiology, Immunology & Parasitology (IMMIP), University Hospital of Bonn, Bonn, Germany
| | - Leo M. Carlin
- Inflammation, Repair and Development, National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Coralie Martin
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245), Sorbonne Universités, Muséum national d’Histoire naturelle, CNRS, Paris, France
| |
Collapse
|
27
|
McCoy CJ, Reaves BJ, Giguère S, Coates R, Rada B, Wolstenholme AJ. Human Leukocytes Kill Brugia malayi Microfilariae Independently of DNA-Based Extracellular Trap Release. PLoS Negl Trop Dis 2017; 11:e0005279. [PMID: 28045905 PMCID: PMC5234842 DOI: 10.1371/journal.pntd.0005279] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 01/13/2017] [Accepted: 12/21/2016] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Wuchereria bancrofti, Brugia malayi and Brugia timori infect over 100 million people worldwide and are the causative agents of lymphatic filariasis. Some parasite carriers are amicrofilaremic whilst others facilitate mosquito-based disease transmission through blood-circulating microfilariae (Mf). Recent findings, obtained largely from animal model systems, suggest that polymorphonuclear leukocytes (PMNs) contribute to parasitic nematode-directed type 2 immune responses. When exposed to certain pathogens PMNs release extracellular traps (NETs) in the form of chromatin loaded with various antimicrobial molecules and proteases. PRINCIPAL FINDINGS In vitro, PMNs expel large amounts of NETs that capture but do not kill B. malayi Mf. NET morphology was confirmed by fluorescence imaging of worm-NET aggregates labelled with DAPI and antibodies to human neutrophil elastase, myeloperoxidase and citrullinated histone H4. A fluorescent, extracellular DNA release assay was used to quantify and observe Mf induced NETosis over time. Blinded video analyses of PMN-to-worm attachment and worm survival during Mf-leukocyte co-culture demonstrated that DNase treatment eliminates PMN attachment in the absence of serum, autologous serum bolsters both PMN attachment and PMN plus peripheral blood mononuclear cell (PBMC) mediated Mf killing, and serum heat inactivation inhibits both PMN attachment and Mf killing. Despite the effects of heat inactivation, the complement inhibitor compstatin did not impede Mf killing and had little effect on PMN attachment. Both human PMNs and monocytes, but not lymphocytes, are able to kill B. malayi Mf in vitro and NETosis does not significantly contribute to this killing. Leukocytes derived from presumably parasite-naïve U.S. resident donors vary in their ability to kill Mf in vitro, which may reflect the pathological heterogeneity associated with filarial parasitic infections. CONCLUSIONS/SIGNIFICANCE Human innate immune cells are able to recognize, attach to and kill B. malayi microfilariae in an in vitro system. This suggests that, in vivo, the parasites can evade this ability, or that only some human hosts support an infection with circulating Mf.
Collapse
Affiliation(s)
- Ciaran J. McCoy
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States of America
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, United States of America
| | - Barbara J. Reaves
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States of America
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, United States of America
| | - Steeve Giguère
- Department of Large Animal Medicine, College of Veterinary Medicine, University of Georgia, Athens, GA, United States of America
| | - Ruby Coates
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States of America
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, United States of America
- Department of Biology & Biochemistry, University of Bath, Bath, United Kingdom
| | - Balázs Rada
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States of America
| | - Adrian J. Wolstenholme
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, United States of America
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, United States of America
| |
Collapse
|
28
|
Ajendra J, Specht S, Ziewer S, Schiefer A, Pfarr K, Parčina M, Kufer TA, Hoerauf A, Hübner MP. NOD2 dependent neutrophil recruitment is required for early protective immune responses against infectious Litomosoides sigmodontis L3 larvae. Sci Rep 2016; 6:39648. [PMID: 28004792 PMCID: PMC5177913 DOI: 10.1038/srep39648] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 11/15/2016] [Indexed: 12/22/2022] Open
Abstract
Nucleotide-binding oligomerization domain-containing protein 2 (NOD2) recognizes muramyl dipeptide (MDP) of bacterial cell walls, triggering NFκB-induced pro-inflammation. As most human pathogenic filariae contain Wolbachia endobacteria that synthesize the MDP-containing cell wall precursor lipid II, NOD2’s role during infection with the rodent filaria Litomosoides sigmodontis was investigated. In NFκB reporter-cells, worm-extract containing Wolbachia induced NOD2 and NOD1. NOD2-deficient mice infected with L. sigmodontis had significantly more worms than wildtype controls early in infection. Increased worm burden was not observed after subcutaneous infection, suggesting that protective NOD2-dependent immune responses occur within the skin. Flow cytometry demonstrated that neutrophil recruitment to the skin was impaired in NOD2−/− mice after intradermal injection of third stage larvae (L3), and blood neutrophil numbers were reduced after L. sigmodontis infection. PCR array supported the requirement of NOD2 for recruitment of neutrophils to the skin, as genes associated with neutrophil recruitment and activation were downregulated in NOD2−/− mice after intradermal L3 injection. Neutrophil depletion before L. sigmodontis infection increased worm recovery in wildtype mice, confirming that neutrophils are essential against invading L3 larvae. This study indicates that NOD-like receptors are implemented in first-line protective immune responses against filarial nematodes.
Collapse
Affiliation(s)
- Jesuthas Ajendra
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany
| | - Sabine Specht
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany
| | - Sebastian Ziewer
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany
| | - Andrea Schiefer
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany
| | - Kenneth Pfarr
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany.,German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
| | - Marijo Parčina
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany
| | - Thomas A Kufer
- Institute of Nutritional Medicine, University Hohenheim, Stuttgart, Germany
| | - Achim Hoerauf
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany.,German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
| | - Marc P Hübner
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital of Bonn, Bonn, Germany
| |
Collapse
|
29
|
Wolbachia endosymbionts induce neutrophil extracellular trap formation in human onchocerciasis. Sci Rep 2016; 6:35559. [PMID: 27752109 PMCID: PMC5067710 DOI: 10.1038/srep35559] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 10/03/2016] [Indexed: 12/12/2022] Open
Abstract
The endosymbiotic bacteria, Wolbachia, induce neutrophilic responses to the human helminth pathogen Onchocerca volvulus. The formation of Neutrophil Extracellular Traps (NETs), has been implicated in anti-microbial defence, but has not been identified in human helminth infection. Here, we demonstrate NETs formation in human onchocerciasis. Extracellular NETs and neutrophils were visualised around O. volvulus in nodules excised from untreated patients but not in nodules from patients treated with the anti-Wolbachia drug, doxycycline. Whole Wolbachia or microspheres coated with a synthetic Wolbachia lipopeptide (WoLP) of the major nematode Wolbachia TLR2/6 ligand, peptidoglycan associated lipoprotein, induced NETosis in human neutrophils in vitro. TLR6 dependency of Wolbachia and WoLP NETosis was demonstrated using purified neutrophils from TLR6 deficient mice. Thus, we demonstrate for the first time that NETosis occurs during natural human helminth infection and demonstrate a mechanism of NETosis induction via Wolbachia endobacteria and direct ligation of Wolbachia lipoprotein by neutrophil TLR2/6.
Collapse
|
30
|
Hoffmann JHO, Enk AH. Neutrophil extracellular traps in dermatology: Caught in the NET. J Dermatol Sci 2016; 84:3-10. [PMID: 27481818 DOI: 10.1016/j.jdermsci.2016.07.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 07/03/2016] [Accepted: 07/04/2016] [Indexed: 01/21/2023]
Abstract
Neutrophil, or polymorphonuclear granulocytes (PMN) constitute the most abundant type of leucocytes in peripheral human blood. One of the major advances in the last decade was the discovery of neutrophil extracellular trap (NET) formation: a process by which neutrophils externalize web-like chromatin strands decorated with antimicrobial peptides. These structures were soon implicated in immune defense and auto-immunity alike and now link neutrophils to the pathogenesis of a variety of diseases of dermatological relevance. Currently, NET formation is mainly subdivided into suicidal and vital NETosis. Controversy exists regarding the capacity of NETs to kill pathogens, and little is known about the way NETs are formed in vivo. Here, we discuss the current terminology, methods for NET quantification, pathways leading to NET formation, and the role of NETs in systemic and cutaneous immune defense and auto-immunity, with a focus on psoriasis and systemic lupus erythematosus.
Collapse
Affiliation(s)
| | - Alexander H Enk
- Department of Dermatology, University of Heidelberg, Germany
| |
Collapse
|