1
|
Seguel M, Budischak SA, Jolles AE, Ezenwa VO. Helminth-associated changes in host immune phenotype connect top-down and bottom-up interactions during co-infection. Funct Ecol 2023; 37:860-872. [PMID: 37214767 PMCID: PMC10195069 DOI: 10.1111/1365-2435.14237] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 11/01/2022] [Indexed: 11/26/2022]
Abstract
1. Within-host parasite interactions can be mediated by the host and changes in host phenotypes often serve as indicators of the presence or intensity of parasite interactions. 2. Parasites like helminths induce a range of physiological, morphological, and immunological changes in hosts that can drive bottom-up (resource-mediated) or top-down (immune-mediated) interactions with co-infecting parasites. Although top-down and bottom-up interactions are typically studied in isolation, the diverse phenotypic changes induced by parasite infection may serve as a useful tool for understanding if, and when, these processes act in concert. 3. Using an anthelmintic treatment study of African buffalo (Syncerus caffer), we tracked changes in host immunological and morphological phenotypes during helminth-coccidia co-infection to investigate their role in driving independent and combinatorial bottom-up and top-down parasite interactions. We also examined repercussions for host fitness. 4. Clearance of a blood-sucking helminth, Haemonchus, from the host gastrointestinal tract induced a systemic Th2 immune phenotype, while clearance of a tissue-feeding helminth, Cooperia, induced a systemic Th1 phenotype. Furthermore, the Haemonchus-associated systemic Th2 immune phenotype drove simultaneous top-down and bottom-up effects that increased coccidia shedding by changing the immunological and morphological landscapes of the intestine. 5. Higher coccidia shedding was associated with lower host body condition, a lower chance of pregnancy, and older age at first pregnancy, suggesting that coccidia infection imposed significant condition and reproductive costs on the host. 6. Our findings suggest that top-down and bottom-up interactions may commonly co-occur and that tracking key host phenotypes that change in response to infection can help uncover complex pathways by which parasites interact.
Collapse
Affiliation(s)
- Mauricio Seguel
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Sarah A. Budischak
- W.M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, USA
| | - Anna E. Jolles
- Department of Biomedical Sciences and Department of Integrative Biology, Oregon State University, Corvallis, OR, USA
| | - Vanessa O. Ezenwa
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
| |
Collapse
|
2
|
Petrellis G, Piedfort O, Katsandegwaza B, Dewals BG. Parasitic worms affect virus coinfection: a mechanistic overview. Trends Parasitol 2023; 39:358-372. [PMID: 36935340 DOI: 10.1016/j.pt.2023.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/16/2023] [Accepted: 02/18/2023] [Indexed: 03/19/2023]
Abstract
Helminths are parasitic worms that coevolve with their host, usually resulting in long-term persistence through modulating host immunity. The multifarious mechanisms altering the immune system induced by helminths have significant implications on the control of coinfecting pathogens such as viruses. Here, we explore the recent literature to highlight the main immune alterations and mechanisms that affect the control of viral coinfection. Insights from these mechanisms are valuable in the understanding of clinical observations in helminth-prevalent areas and in the design of new therapeutic and vaccination strategies to control viral diseases.
Collapse
Affiliation(s)
- Georgios Petrellis
- Laboratory of Parasitology, FARAH, University of Liège, Liège, Belgium; Laboratory of Immunology-Vaccinology, FARAH, University of Liège, Liège, Belgium
| | - Ophélie Piedfort
- Laboratory of Parasitology, FARAH, University of Liège, Liège, Belgium; Laboratory of Immunology-Vaccinology, FARAH, University of Liège, Liège, Belgium
| | - Brunette Katsandegwaza
- Laboratory of Parasitology, FARAH, University of Liège, Liège, Belgium; Laboratory of Immunology-Vaccinology, FARAH, University of Liège, Liège, Belgium
| | - Benjamin G Dewals
- Laboratory of Parasitology, FARAH, University of Liège, Liège, Belgium; Laboratory of Immunology-Vaccinology, FARAH, University of Liège, Liège, Belgium.
| |
Collapse
|
3
|
Filarial infections compromise influenza vaccination efficacy: Lessons from the mouse. Immunol Lett 2023; 255:62-66. [PMID: 36889363 DOI: 10.1016/j.imlet.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/24/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023]
Abstract
Helminth parasites infect more than a quarter of the human population and inflict significant changes to the immunological status of their hosts. Several human studies report impaired responses to vaccinations in helminth-infected individuals. Analysing the impact of helminth infections on the efficacy of influenza vaccinations in the mouse system helps to elucidate the underlying immunological processes. Concurrent infection with the parasitic nematode Litomosoides sigmodontis reduced the quantity and quality of antibody responses to vaccination against seasonal influenza in BALB/c and C57BL/6 mice. This led to impaired vaccination-induced protection against challenge infections with the human pathogenic 2009 pandemic H1N1 influenza A virus in helminth-infected mice. Impaired responses were also observed if vaccinations were performed after immune-driven or drug-induced clearance of a previous helminth infection. Mechanistically, the suppression was associated with a systemic and sustained expansion of IL-10-producing CD4+CD49b+LAG-3+ type 1 regulatory T cells and partially abrogated by in vivo blockade of the IL-10 receptor. In summary, these findings raise the concern that individuals in helminth-endemic areas may not always benefit from vaccinations, even in the absence of an acute and diagnosable helminth infection.
Collapse
|
4
|
Hardisty GR, Knipper JA, Fulton A, Hopkins J, Dutia BM, Taylor MD. Concurrent Infection With the Filarial Helminth Litomosoides sigmodontis Attenuates or Worsens Influenza A Virus Pathogenesis in a Stage-Dependent Manner. Front Immunol 2022; 12:819560. [PMID: 35140712 PMCID: PMC8818685 DOI: 10.3389/fimmu.2021.819560] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 12/29/2021] [Indexed: 11/13/2022] Open
Abstract
Filarial helminths infect approximately 120 million people worldwide initiating a type 2 immune response in the host. Influenza A viruses stimulate a virulent type 1 pro-inflammatory immune response that in some individuals can cause uncontrolled immunopathology and fatality. Although coinfection with filariasis and influenza is a common occurrence, the impact of filarial infection on respiratory viral infection is unknown. The aim of this study was to determine the impact of pre-existing filarial infection on concurrent infection with influenza A virus. A murine model of co-infection was established using the filarial helminth Litomosoides sigmodontis and the H1N1 (A/WSN/33) influenza A virus (IAV). Co-infection was performed at 3 different stages of L. sigmodontis infection (larval, juvenile adult, and patency), and the impact of co-infection was determined by IAV induced weight loss and clinical signs, quantification of viral titres, and helminth counts. Significant alterations of IAV pathogenesis, dependent upon stage of infection, was observed on co-infection with L. sigmodontis. Larval stage L. sigmodontis infection alleviated clinical signs of IAV co-infection, whilst more established juvenile adult infection also significantly delayed weight loss. Viral titres remained unaltered at either infection stage. In contrast, patent L. sigmdodontis infection led to a reversal of age-related resistance to IAV infection, significantly increasing weight loss and clinical signs of infection as well as increasing IAV titre. These data demonstrate that the progression of influenza infection can be ameliorated or worsened by pre-existing filarial infection, with the outcome dependent upon the stage of filarial infection.
Collapse
Affiliation(s)
- Gareth R. Hardisty
- The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Johanna A. Knipper
- Institute of Immunology and Infection Research, Ashworth Laboratories, University of Edinburgh, Edinburgh, United Kingdom
| | - Alison Fulton
- Institute of Immunology and Infection Research, Ashworth Laboratories, University of Edinburgh, Edinburgh, United Kingdom
| | - John Hopkins
- The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Matthew D. Taylor
- Institute of Immunology and Infection Research, Ashworth Laboratories, University of Edinburgh, Edinburgh, United Kingdom
- *Correspondence: Matthew D. Taylor,
| |
Collapse
|
5
|
Risch F, Ritter M, Hoerauf A, Hübner MP. Human filariasis-contributions of the Litomosoides sigmodontis and Acanthocheilonema viteae animal model. Parasitol Res 2021; 120:4125-4143. [PMID: 33547508 PMCID: PMC8599372 DOI: 10.1007/s00436-020-07026-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/20/2020] [Indexed: 12/16/2022]
Abstract
Filariae are vector-borne parasitic nematodes that are endemic worldwide, in tropical and subtropical regions. Important human filariae spp. include Onchocerca volvulus, Wuchereria bancrofti and Brugia spp., and Loa loa and Mansonella spp. causing onchocerciasis (river blindness), lymphatic filariasis (lymphedema and hydrocele), loiasis (eye worm), and mansonelliasis, respectively. It is estimated that over 1 billion individuals live in endemic regions where filarial diseases are a public health concern contributing to significant disability adjusted life years (DALYs). Thus, efforts to control and eliminate filarial diseases were already launched by the WHO in the 1970s, especially against lymphatic filariasis and onchocerciasis, and are mainly based on mass drug administration (MDA) of microfilaricidal drugs (ivermectin, diethylcarbamazine, albendazole) to filarial endemic areas accompanied with vector control strategies with the goal to reduce the transmission. With the United Nations Sustainable Development Goals (SDGs), it was decided to eliminate transmission of onchocerciasis and stop lymphatic filariasis as a public health problem by 2030. It was also requested that novel drugs and treatment strategies be developed. Mouse models provide an important platform for anti-filarial drug research in a preclinical setting. This review presents an overview about the Litomosoides sigmodontis and Acanthocheilonema viteae filarial mouse models and their role in immunological research as well as preclinical studies about novel anti-filarial drugs and treatment strategies.
Collapse
Affiliation(s)
- Frederic Risch
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn, Bonn, Germany
| | - Manuel Ritter
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn, Bonn, Germany
| | - Achim Hoerauf
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
| | - Marc P Hübner
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), University Hospital Bonn, Bonn, Germany.
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany.
| |
Collapse
|
6
|
Kwarteng A, Asiedu E, Koranteng KK, Asiedu SO. Highlighting the Relevance of CD8 + T Cells in Filarial Infections. Front Immunol 2021; 12:714052. [PMID: 34603287 PMCID: PMC8481813 DOI: 10.3389/fimmu.2021.714052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/31/2021] [Indexed: 01/06/2023] Open
Abstract
The T cell immune responses in filarial infections are primarily mediated by CD4+ T cells and type 2-associated cytokines. Emerging evidence indicates that CD8+ T cell responses are important for anti-filarial immunity, however, could be suppressed in co-infections. This review summarizes what we know so far about the activities of CD8+ T cell responses in filarial infections, co-infections, and the associations with the development of filarial pathologies.
Collapse
Affiliation(s)
- Alexander Kwarteng
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi, Ghana
| | - Ebenezer Asiedu
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi, Ghana
| | - Kelvin Kwaku Koranteng
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| | - Samuel Opoku Asiedu
- Kumasi Centre for Collaborative Research in Tropical Medicine (KCCR), Kumasi, Ghana
- Department of Theoretical and Applied Biology, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana
| |
Collapse
|
7
|
Vaughan JA, Hinson J, Andrews ES, Turell MJ. Pre-existing Microfilarial Infections of American Robins (Passeriformes: Turdidae) and Common Grackles (Passeriformes: Icteridae) Have Limited Impact on Enhancing Dissemination of West Nile Virus in Culex pipiens Mosquitoes (Diptera: Culicidae). JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:1389-1397. [PMID: 33257996 PMCID: PMC8122231 DOI: 10.1093/jme/tjaa261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Indexed: 06/12/2023]
Abstract
Microfilariae (MF) are the immature stages of filarial nematode parasites and inhabit the blood and dermis of all classes of vertebrates, except fish. Concurrent ingestion of MF and arboviruses by mosquitoes can enhance mosquito transmission of virus compared to when virus is ingested alone. Shortly after being ingested, MF penetrate the mosquito's midgut and may introduce virus into the mosquito's hemocoel, creating a disseminated viral infection much sooner than normal. This phenomenon is known as microfilarial enhancement. Both American Robins and Common Grackles harbor MF-that is, Eufilaria sp. and Chandlerella quiscali von Linstow (Spirurida: Onchocercidae), respectively. We compared infection and dissemination rates in Culex pipiens L. mosquitoes that fed on birds with and without MF infections that had been infected with West Nile virus (WNV). At moderate viremias, about 107 plaque-forming units (pfu)/ml of blood, there were no differences in infection or dissemination rates among mosquitoes that ingested viremic blood from a bird with or without microfilaremia. At high viremias, >108.5 pfu/ml, mosquitoes feeding on a microfilaremic Grackle with concurrent viremia had significantly higher infection and dissemination rates than mosquitoes fed on viremic Grackles without microfilaremia. Microfilarial enhancement depends on the specific virus, MF, and mosquito species examined. How virus is introduced into the hemocoel by MF differs between the avian/WNV systems described here (i.e., leakage) and various arboviruses with MF of the human filarid, Brugia malayi (Brug) (Spirurida: Onchocercidae) (i.e., cotransport). Additional studies are needed to determine if other avian species and their MF are involved in the microfilarial enhancement of WNV in nature.
Collapse
Affiliation(s)
| | - Juanita Hinson
- Virology Division, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD
| | - Elizabeth S Andrews
- Virology Division, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD
| | - Michael J Turell
- Virology Division, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD
| |
Collapse
|
8
|
Brosschot TP, Lawrence KM, Moeller BE, Kennedy MHE, FitzPatrick RD, Gauthier CM, Shin D, Gatti DM, Conway KME, Reynolds LA. Impaired host resistance to Salmonella during helminth co-infection is restored by anthelmintic treatment prior to bacterial challenge. PLoS Negl Trop Dis 2021; 15:e0009052. [PMID: 33471793 PMCID: PMC7850471 DOI: 10.1371/journal.pntd.0009052] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 02/01/2021] [Accepted: 12/08/2020] [Indexed: 12/29/2022] Open
Abstract
Intestinal helminth infection can impair host resistance to co-infection with enteric bacterial pathogens. However, it is not known whether helminth drug-clearance can restore host resistance to bacterial infection. Using a mouse helminth-Salmonella co-infection system, we show that anthelmintic treatment prior to Salmonella challenge is sufficient to restore host resistance to Salmonella. The presence of the small intestine-dwelling helminth Heligmosomoides polygyrus at the point of Salmonella infection supports the initial establishment of Salmonella in the small intestinal lumen. Interestingly, if helminth drug-clearance is delayed until Salmonella has already established in the small intestinal lumen, anthelmintic treatment does not result in complete clearance of Salmonella. This suggests that while the presence of helminths supports initial Salmonella colonization, helminths are dispensable for Salmonella persistence in the host small intestine. These data contribute to the mechanistic understanding of how an ongoing or prior helminth infection can affect pathogenic bacterial colonization and persistence in the mammalian intestine. In regions where helminth infection is common and sanitation standards are poor, people are at a high risk of exposure to bacterial pathogens. Previous work in animal models has shown that helminth infection can impair host resistance to bacterial infection. The current treatment for helminth infection is the administration of helminth-clearing drugs, yet it is not known whether drug clearance of helminths restores helminth-impaired host resistance to bacterial infection. In this report we use a mouse helminth-Salmonella co-infection model system, where we find that the presence of small intestinal helminths at the point of Salmonella infection aids the establishment of Salmonella in the small intestinal lumen. We show that helminth drug clearance prior to Salmonella infection is sufficient to restore host resistance to Salmonella. However, if helminth drug clearance is delayed until after Salmonella had already established in the small intestinal lumen, helminth elimination does not result in complete clearance of Salmonella from this site. Our work suggests that helminth drug clearance may be beneficial in reducing susceptibility to subsequent intestinal bacterial infections, but that helminth drug clearance after co-infection may not result in clearance of bacterial populations that have firmly established in the intestinal lumen.
Collapse
Affiliation(s)
- Tara P Brosschot
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, Canada
| | - Katherine M Lawrence
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, Canada
| | - Brandon E Moeller
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, Canada
| | - Mia H E Kennedy
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, Canada
| | - Rachael D FitzPatrick
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, Canada
| | - Courtney M Gauthier
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, Canada
| | - Dongju Shin
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, Canada
| | - Dominique M Gatti
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, Canada
| | - Kate M E Conway
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, Canada
| | - Lisa A Reynolds
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, Canada
| |
Collapse
|
9
|
Hartmann W, Brunn ML, Stetter N, Gagliani N, Muscate F, Stanelle-Bertram S, Gabriel G, Breloer M. Helminth Infections Suppress the Efficacy of Vaccination against Seasonal Influenza. Cell Rep 2020; 29:2243-2256.e4. [PMID: 31747598 DOI: 10.1016/j.celrep.2019.10.051] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 08/29/2019] [Accepted: 10/10/2019] [Indexed: 12/15/2022] Open
Abstract
Helminth parasites infect more than a quarter of the human population and inflict significant changes to the immunological status of their hosts. Here, we analyze the impact of helminth infections on the efficacy of vaccinations using Litomosoides sigmodontis-infected mice. Concurrent helminth infection reduces the quantity and quality of antibody responses to vaccination against seasonal influenza. Vaccination-induced protection against challenge infections with the human pathogenic 2009 pandemic H1N1 influenza A virus is drastically impaired in helminth-infected mice. Impaired responses are also observed if vaccinations are performed after clearance of a previous helminth infection, suggesting that individuals in helminth-endemic areas may not always benefit from vaccinations, even in the absence of an acute and diagnosable helminth infection. Mechanistically, the suppression is associated with a systemic and sustained expansion of interleukin (IL)-10-producing CD4+CD49+LAG-3+ type 1 regulatory T cells and partially abrogated by in vivo blockade of the IL-10 receptor.
Collapse
Affiliation(s)
- Wiebke Hartmann
- Section for Molecular Biology and Immunology, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
| | - Marie-Luise Brunn
- Section for Molecular Biology and Immunology, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
| | - Nadine Stetter
- Section for Molecular Biology and Immunology, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
| | - Nicola Gagliani
- I Department of Medicine and Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Immunology and Allergy Unit, Department of Medicine, Solna, Karolinska Institute and University Hospital, 17176 Stockholm, Sweden
| | - Franziska Muscate
- I Department of Medicine and Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Stephanie Stanelle-Bertram
- Research Department for Viral Zoonoses-One Health, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, 20251 Hamburg, Germany
| | - Gülsah Gabriel
- Research Department for Viral Zoonoses-One Health, Heinrich Pette Institute, Leibniz Institute for Experimental Virology, 20251 Hamburg, Germany; Institute for Virology, University for Veterinary Medicine, Hannover, Germany
| | - Minka Breloer
- Section for Molecular Biology and Immunology, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany.
| |
Collapse
|
10
|
Finlay CM, Allen JE. The immune response of inbred laboratory mice to Litomosoides sigmodontis: A route to discovery in myeloid cell biology. Parasite Immunol 2020; 42:e12708. [PMID: 32145033 PMCID: PMC7317388 DOI: 10.1111/pim.12708] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/12/2020] [Accepted: 02/24/2020] [Indexed: 12/11/2022]
Abstract
Litomosoides sigmodontis is the only filarial nematode where the full life cycle, from larval delivery to the skin through to circulating microfilaria, can be completed in immunocompetent laboratory mice. It is thus an invaluable tool for the study of filariasis. It has been used for the study of novel anti-helminthic therapeutics, the development of vaccines against filariasis, the development of immunomodulatory drugs for the treatment of inflammatory disease and the study of basic immune responses to filarial nematodes. This review will focus on the latter and aims to summarize how the L sigmodontis model has advanced our basic understanding of immune responses to helminths, led to major discoveries in macrophage biology and provided new insights into the immunological functions of the pleural cavity. Finally, and most importantly L sigmodontis represents a suitable platform to study how host genotype affects immune responses, with the potential for further discovery in myeloid cell biology and beyond.
Collapse
Affiliation(s)
- Conor M Finlay
- Lydia Becker Institute for Immunology & Infection, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Judith E Allen
- Lydia Becker Institute for Immunology & Infection, Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| |
Collapse
|
11
|
Frohberger SJ, Fercoq F, Neumann AL, Surendar J, Stamminger W, Ehrens A, Karunakaran I, Remion E, Vogl T, Hoerauf A, Martin C, Hübner MP. S100A8/S100A9 deficiency increases neutrophil activation and protective immune responses against invading infective L3 larvae of the filarial nematode Litomosoides sigmodontis. PLoS Negl Trop Dis 2020; 14:e0008119. [PMID: 32107497 PMCID: PMC7064255 DOI: 10.1371/journal.pntd.0008119] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 03/10/2020] [Accepted: 02/05/2020] [Indexed: 12/17/2022] Open
Abstract
Neutrophils are essentially involved in protective immune responses against invading infective larvae of filarial nematodes. The present study investigated the impact of S100A8/S100A9 on protective immune responses against the rodent filarial nematode Litomosoides sigmodontis. S100A9 forms with S100A8 the heterodimer calprotectin, which is expressed by circulating neutrophils and monocytes and mitigates or amplifies tissue damage as well as inflammation depending on the immune environment. Mice deficient for S100A8/A9 had a significantly reduced worm burden in comparison to wildtype (WT) animals 12 days after infection (dpi) with infective L3 larvae, either by the vector or subcutaneous inoculation, the latter suggesting that circumventing natural immune responses within the epidermis and dermis do not alter the phenotype. Nevertheless, upon intradermal injection of L3 larvae, increased total numbers of neutrophils, eosinophils and macrophages were observed within the skin of S100A8/A9-/- mice. Furthermore, upon infection the bronchoalveolar and thoracic cavity lavage of S100A8/A9-/- mice showed increased concentrations of CXCL-1, CXCL-2, CXCL-5, as well as elastase in comparison to the WT controls. Neutrophils from S100A8/A9-/- mice exhibited an increased in vitro activation and reduced L3 larval motility more effectively in vitro compared to WT neutrophils. The depletion of neutrophils from S100A8/A9-/- mice prior to L. sigmodontis infection until 5dpi abrogated the protective effect and led to an increased worm burden, indicating that neutrophils mediate enhanced protective immune responses against invading L3 larvae in S100A8/A9-/- mice. Interestingly, complete circumvention of protective immune responses in the skin and the lymphatics by intravenous injection of L3 larvae reversed the phenotype and resulted in an increased worm burden in S100A8/A9-/- mice. In summary, our results reveal that lack of S100A8/S100A9 triggers L3-induced inflammatory responses, increasing chemokine levels, granulocyte recruitment as well as neutrophil activation and therefore impairs larval migration and susceptibility for filarial infection.
Collapse
Affiliation(s)
- Stefan J. Frohberger
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Frederic Fercoq
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245), Muséum national d’Histoire naturelle, CNRS; Paris, France
| | - Anna-Lena Neumann
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Jayagopi Surendar
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Wiebke Stamminger
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Alexandra Ehrens
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Indulekha Karunakaran
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Estelle Remion
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245), Muséum national d’Histoire naturelle, CNRS; Paris, France
| | - Thomas Vogl
- Institute of Immunology, University Hospital of Münster, Münster, Germany
| | - Achim Hoerauf
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
- German Center for Infection Research (DZIF), partner site Bonn-Cologne, Bonn, Germany
| | - Coralie Martin
- Unité Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245), Muséum national d’Histoire naturelle, CNRS; Paris, France
| | - Marc P. Hübner
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
- * E-mail:
| |
Collapse
|
12
|
Shen SS, Qu XY, Zhang WZ, Li J, Lv ZY. Infection against infection: parasite antagonism against parasites, viruses and bacteria. Infect Dis Poverty 2019; 8:49. [PMID: 31200765 PMCID: PMC6570864 DOI: 10.1186/s40249-019-0560-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 05/28/2019] [Indexed: 12/21/2022] Open
Abstract
Background Infectious diseases encompass a large spectrum of diseases that threaten human health, and coinfection is of particular importance because pathogen species can interact within the host. Currently, the antagonistic relationship between different pathogens during concurrent coinfections is defined as one in which one pathogen either manages to inhibit the invasion, development and reproduction of the other pathogen or biologically modulates the vector density. In this review, we provide an overview of the phenomenon and mechanisms of antagonism of coinfecting pathogens involving parasites. Main body This review summarizes the antagonistic interaction between parasites and parasites, parasites and viruses, and parasites and bacteria. At present, relatively clear mechanisms explaining polyparasitism include apparent competition, exploitation competition, interference competition, biological control of intermediate hosts or vectors and suppressive effect on transmission. In particular, immunomodulation, including the suppression of dendritic cell (DC) responses, activation of basophils and mononuclear macrophages and adjuvant effects of the complement system, is described in detail. Conclusions In this review, we summarize antagonistic concurrent infections involving parasites and provide a functional framework for in-depth studies of the underlying mechanisms of coinfection with different microorganisms, which will hasten the development of promising antimicrobial alternatives, such as novel antibacterial vaccines or biological methods of controlling infectious diseases, thus relieving the overwhelming burden of ever-increasing antimicrobial resistance. Electronic supplementary material The online version of this article (10.1186/s40249-019-0560-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shi-Shi Shen
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Xiao-Yan Qu
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Wei-Zhe Zhang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China
| | - Jian Li
- Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, ZhuHai, Guangdong, China
| | - Zhi-Yue Lv
- Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, ZhuHai, Guangdong, China. .,Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China. .,Provincial Engineering Technology Research Center for Biological Vector Control, Guangzhou, China.
| |
Collapse
|
13
|
Delacher M, Schmidl C, Herzig Y, Breloer M, Hartmann W, Brunk F, Kägebein D, Träger U, Hofer AC, Bittner S, Weichenhan D, Imbusch CD, Hotz-Wagenblatt A, Hielscher T, Breiling A, Federico G, Gröne HJ, Schmid RM, Rehli M, Abramson J, Feuerer M. Rbpj expression in regulatory T cells is critical for restraining T H2 responses. Nat Commun 2019; 10:1621. [PMID: 30962454 PMCID: PMC6453958 DOI: 10.1038/s41467-019-09276-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 02/26/2019] [Indexed: 12/14/2022] Open
Abstract
The transcriptional regulator Rbpj is involved in T-helper (TH) subset polarization, but its function in Treg cells remains unclear. Here we show that Treg-specific Rbpj deletion leads to splenomegaly and lymphadenopathy despite increased numbers of Treg cells with a polyclonal TCR repertoire. A specific defect of Rbpj-deficient Treg cells in controlling TH2 polarization and B cell responses is observed, leading to the spontaneous formation of germinal centers and a TH2-associated immunoglobulin class switch. The observed phenotype is environment-dependent and can be induced by infection with parasitic nematodes. Rbpj-deficient Treg cells adopt open chromatin landscapes and gene expression profiles reminiscent of tissue-derived TH2-polarized Treg cells, with a prevailing signature of the transcription factor Gata-3. Taken together, our study suggests that Treg cells require Rbpj to specifically restrain TH2 responses, including their own excessive TH2-like differentiation potential.
Collapse
Affiliation(s)
- Michael Delacher
- Chair for Immunology, University Regensburg and University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
- Regensburg Center for Interventional Immunology (RCI), University Regensburg and University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
- Immune Tolerance Group, Tumor Immunology Program, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Christian Schmidl
- Regensburg Center for Interventional Immunology (RCI), University Regensburg and University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Yonatan Herzig
- Department of Immunology, Weizmann Institute of Science, 234 Herzl Street, 76100, Rehovot, Israel
| | - Minka Breloer
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Straße 74, 20359, Hamburg, Germany
| | - Wiebke Hartmann
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Straße 74, 20359, Hamburg, Germany
| | - Fabian Brunk
- Division of Developmental Immunology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Danny Kägebein
- Immune Tolerance Group, Tumor Immunology Program, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Ulrike Träger
- Immune Tolerance Group, Tumor Immunology Program, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Ann-Cathrin Hofer
- Immune Tolerance Group, Tumor Immunology Program, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Sebastian Bittner
- Chair for Immunology, University Regensburg and University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
- Regensburg Center for Interventional Immunology (RCI), University Regensburg and University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Dieter Weichenhan
- Division of Epigenomics and Cancer Risk Factors, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Charles D Imbusch
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Agnes Hotz-Wagenblatt
- Genomics and Proteomics Core Facility, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Thomas Hielscher
- Division of Biostatistics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Achim Breiling
- Division of Epigenetics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Giuseppina Federico
- Division of Cellular and Molecular Pathology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Hermann-Josef Gröne
- Division of Cellular and Molecular Pathology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Roland M Schmid
- Department of Internal Medicine, Technical University of Munich, Ismaninger Straße 22, 81675, Munich, Germany
| | - Michael Rehli
- Regensburg Center for Interventional Immunology (RCI), University Regensburg and University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
- Department of Internal Medicine III, Hematology and Oncology, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Jakub Abramson
- Department of Immunology, Weizmann Institute of Science, 234 Herzl Street, 76100, Rehovot, Israel
| | - Markus Feuerer
- Chair for Immunology, University Regensburg and University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany.
- Regensburg Center for Interventional Immunology (RCI), University Regensburg and University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany.
- Immune Tolerance Group, Tumor Immunology Program, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| |
Collapse
|
14
|
Mabbott NA. The Influence of Parasite Infections on Host Immunity to Co-infection With Other Pathogens. Front Immunol 2018; 9:2579. [PMID: 30467504 PMCID: PMC6237250 DOI: 10.3389/fimmu.2018.02579] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/19/2018] [Indexed: 12/13/2022] Open
Abstract
Parasites have evolved a wide range of mechanisms that they use to evade or manipulate the host's immune response and establish infection. The majority of the in vivo studies that have investigated these host-parasite interactions have been undertaken in experimental animals, especially rodents, which were housed and maintained to a high microbiological status. However, in the field situation it is increasingly apparent that pathogen co-infections within the same host are a common occurrence. For example, chronic infection with pathogens including malarial parasites, soil-transmitted helminths, Mycobacterium tuberculosis and viruses such as HIV may affect a third of the human population of some developing countries. Increasing evidence shows that co-infection with these pathogens may alter susceptibility to other important pathogens, and/or influence vaccine efficacy through their effects on host immune responsiveness. Co-infection with certain pathogens may also hinder accurate disease diagnosis. This review summarizes our current understanding of how the host's immune response to infection with different types of parasites can influence susceptibility to infection with other pathogenic microorganisms. A greater understanding of how infectious disease susceptibility and pathogenesis can be influenced by parasite co-infections will enhance disease diagnosis and the design of novel vaccines or therapeutics to more effectively control the spread of infectious diseases.
Collapse
Affiliation(s)
- Neil A Mabbott
- The Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|