1
|
Qiao H, Paansri P, Escobar LE. Global Mpox spread due to increased air travel. GEOSPATIAL HEALTH 2024; 19. [PMID: 38872388 DOI: 10.4081/gh.2024.1261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/04/2024] [Indexed: 06/15/2024]
Abstract
Mpox is an emerging, infectious disease that has caused outbreaks in at least 91 countries from May to August 2022. We assessed the link between international air travel patterns and Mpox transmission risk, and the relationship between the translocation of Mpox and human mobility dynamics after travel restrictions due to the COVID-19 pandemic had been lifted. Our three novel observations were that: i) more people traveled internationally after the removal of travel restrictions in the summer of 2022 compared to pre-pandemic levels; ii) countries with a high concentration of global air travel have the most recorded Mpox cases; and iii) Mpox transmission includes a number of previously nonendemic regions. These results suggest that international airports should be a primary location for monitoring the risk of emerging communicable diseases. Findings highlight the need for global collaboration concerning proactive measures emphasizing realtime surveillance.
Collapse
Affiliation(s)
- Huijie Qiao
- Institute of Zoology, Chinese Academy of Sciences, Beijing.
| | - Paanwaris Paansri
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA.
| | - Luis E Escobar
- Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA, United States; Global Change Center, Virginia Tech, Blacksburg, VA, United States; Center for Emerging Zoonotic and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA, United States; Kellogg Center for Philosophy, Politics, and Economics, Virginia Tech, Blacksburg, VA.
| |
Collapse
|
2
|
Edelson PJ, Harold R, Ackelsberg J, Duchin JS, Lawrence SJ, Manabe YC, Zahn M, LaRocque RC. Climate Change and the Epidemiology of Infectious Diseases in the United States. Clin Infect Dis 2023; 76:950-956. [PMID: 36048507 DOI: 10.1093/cid/ciac697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/08/2022] [Accepted: 08/24/2022] [Indexed: 11/14/2022] Open
Abstract
The earth is rapidly warming, driven by increasing atmospheric carbon dioxide and other gases that result primarily from fossil fuel combustion. In addition to causing arctic ice melting and extreme weather events, climatologic factors are linked strongly to the transmission of many infectious diseases. Changes in the prevalence of infectious diseases not only reflect the impacts of temperature, humidity, and other weather-related phenomena on pathogens, vectors, and animal hosts but are also part of a complex of social and environmental factors that will be affected by climate change, including land use, migration, and vector control. Vector- and waterborne diseases and coccidioidomycosis are all likely to be affected by a warming planet; there is also potential for climate-driven impacts on emerging infectious diseases and antimicrobial resistance. Additional resources for surveillance and public health activities are urgently needed, as well as systematic education of clinicians on the health impacts of climate change.
Collapse
Affiliation(s)
- Paul J Edelson
- College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Rachel Harold
- Medical Society Consortium on Climate and Health, Center for Climate Change Communication, George Mason University, Fairfax, Virginia, USA
| | - Joel Ackelsberg
- New York City Department of Health and Mental Hygiene, Bureau of Communicable Disease, New York, New York, USA
| | - Jeffrey S Duchin
- Public Health-Seattle and King County, Seattle, Washington, USA.,Division of Infectious Diseases, University of Washington, Seattle, Washington, USA
| | | | - Yukari C Manabe
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Matt Zahn
- Orange County Health Care Agency, Santa Ana, California, USA
| | - Regina C LaRocque
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Rawson T, Doohan P, Hauck K, Murray KA, Ferguson N. Climate change and communicable diseases in the Gulf Cooperation Council (GCC) countries. Epidemics 2023; 42:100667. [PMID: 36652872 DOI: 10.1016/j.epidem.2023.100667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 12/05/2022] [Accepted: 01/06/2023] [Indexed: 01/15/2023] Open
Abstract
A review of the extant literature reveals the extent to which the spread of communicable diseases will be significantly impacted by climate change. Specific research into how this will likely be observed in the countries of the Gulf Cooperation Council (GCC) is, however, greatly lacking. This report summarises the unique public health challenges faced by the GCC countries in the coming century, and outlines the need for greater investment in public health research and disease surveillance to better forecast the imminent epidemiological landscape. Significant data gaps currently exist regarding vector occurrence, spatial climate measures, and communicable disease case counts in the GCC - presenting an immediate research priority for the region. We outline policy work necessary to strengthen public health interventions, and to facilitate evidence-driven mitigation strategies. Such research will require a transdisciplinary approach, utilising existing cross-border public health initiatives, to ensure that such investigations are well-targeted and effectively communicated.
Collapse
Affiliation(s)
- Thomas Rawson
- MRC Centre for Global Infectious Disease Analysis, Jameel Institute, School of Public Health, Imperial College London, London, UK.
| | - Patrick Doohan
- MRC Centre for Global Infectious Disease Analysis, Jameel Institute, School of Public Health, Imperial College London, London, UK
| | - Katharina Hauck
- MRC Centre for Global Infectious Disease Analysis, Jameel Institute, School of Public Health, Imperial College London, London, UK
| | - Kris A Murray
- Centre on Climate Change and Planetary Health, MRC Unit The Gambia at London School of Hygiene and Tropical Medicine, Atlantic Boulevard, Fajara, The Gambia
| | - Neil Ferguson
- MRC Centre for Global Infectious Disease Analysis, Jameel Institute, School of Public Health, Imperial College London, London, UK
| |
Collapse
|
4
|
Traore T, Shanks S, Haider N, Ahmed K, Jain V, Rüegg SR, Razavi A, Kock R, Erondu N, Rahman-Shepherd A, Yavlinsky A, Mboera L, Asogun D, McHugh TD, Elton L, Oyebanji O, Okunromade O, Ansumana R, Djingarey MH, Ali Ahmed Y, Diallo AB, Balde T, Talisuna A, Ntoumi F, Zumla A, Heymann D, Socé Fall I, Dar O. How prepared is the world? Identifying weaknesses in existing assessment frameworks for global health security through a One Health approach. Lancet 2023; 401:673-687. [PMID: 36682374 DOI: 10.1016/s0140-6736(22)01589-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 01/21/2023]
Abstract
The COVID-19 pandemic has exposed faults in the way we assess preparedness and response capacities for public health emergencies. Existing frameworks are limited in scope, and do not sufficiently consider complex social, economic, political, regulatory, and ecological factors. One Health, through its focus on the links among humans, animals, and ecosystems, is a valuable approach through which existing assessment frameworks can be analysed and new ways forward proposed. Although in the past few years advances have been made in assessment tools such as the International Health Regulations Joint External Evaluation, a rapid and radical increase in ambition is required. To sufficiently account for the range of complex systems in which health emergencies occur, assessments should consider how problems are defined across stakeholders and the wider sociopolitical environments in which structures and institutions operate. Current frameworks do little to consider anthropogenic factors in disease emergence or address the full array of health security hazards across the social-ecological system. A complex and interdependent set of challenges threaten human, animal, and ecosystem health, and we cannot afford to overlook important contextual factors, or the determinants of these shared threats. Health security assessment frameworks should therefore ensure that the process undertaken to prioritise and build capacity adheres to core One Health principles and that interventions and outcomes are assessed in terms of added value, trade-offs, and cobenefits across human, animal, and environmental health systems.
Collapse
Affiliation(s)
- Tieble Traore
- WHO Emergency Preparedness and Response Cluster, WHO Regional Office for Africa, Dakar Hub, Dakar, Senegal.
| | - Sarah Shanks
- Institute of Zoology, Zoological Society of London, London, UK
| | - Najmul Haider
- Royal Veterinary College, University of London, London, UK; School of Life Sciences, Keele University, Keele, UK
| | - Kanza Ahmed
- Global Operations, UK Health Security Agency, London, UK
| | - Vageesh Jain
- Institute for Global Health, University College London, London, UK
| | - Simon R Rüegg
- Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Ahmed Razavi
- Global Operations, UK Health Security Agency, London, UK
| | - Richard Kock
- Royal Veterinary College, University of London, London, UK
| | - Ngozi Erondu
- O'Neill Institute for National and Global Health Law, Georgetown University Law Center, Washington, DC, USA
| | | | - Alexei Yavlinsky
- Infectious Disease Informatics, Institute of Health Informatics, University College London, London, UK
| | - Leonard Mboera
- Southern African Centre for Infectious Disease Surveillance Foundation for One Health, Morogoro, Tanzania
| | - Danny Asogun
- Ekpoma and Irrua Specialist Teaching Hospital, Ambrose Alli University, Irrua, Nigeria
| | - Timothy D McHugh
- Centre for Clinical Microbiology, Division of Infection and Immunity, University College London, London, UK
| | - Linzy Elton
- Centre for Clinical Microbiology, Division of Infection and Immunity, University College London, London, UK
| | - Oyeronke Oyebanji
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | | | - Rashid Ansumana
- School of Community Health Sciences, Niala University, Bo Campus, Bo, Sierra Leone
| | - Mamoudou Harouna Djingarey
- WHO Emergency Preparedness and Response Cluster, WHO Regional Office for Africa, Brazzaville, Republic of the Congo
| | - Yahaya Ali Ahmed
- WHO Emergency Preparedness and Response Cluster, WHO Regional Office for Africa, Brazzaville, Republic of the Congo
| | - Amadou Bailo Diallo
- WHO Emergency Preparedness and Response Cluster, WHO Regional Office for Africa, Dakar Hub, Dakar, Senegal
| | - Thierno Balde
- WHO Emergency Preparedness and Response Cluster, WHO Regional Office for Africa, Brazzaville, Republic of the Congo
| | - Ambrose Talisuna
- WHO Emergency Preparedness and Response Cluster, WHO Regional Office for Africa, Brazzaville, Republic of the Congo
| | - Francine Ntoumi
- Fondation Congolaise pour la Recherche Médicale, Brazzaville, Republic of the Congo; Institute for Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Alimuddin Zumla
- Department of Infection, Division of Infection and Immunity, University College London, London, UK; National Institute for Health and Care Research Biomedical Research Centre, University College London Hospitals NHS Foundation Trust, London, UK
| | - David Heymann
- Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK
| | | | - Osman Dar
- Global Operations, UK Health Security Agency, London, UK; Global Health Programme, Royal Institute of International Affairs, London, UK
| |
Collapse
|
5
|
Epidemiologically-based strategies for the detection of emerging plant pathogens. Sci Rep 2022; 12:10972. [PMID: 35768558 PMCID: PMC9243127 DOI: 10.1038/s41598-022-13553-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
Emerging pests and pathogens of plants are a major threat to natural and managed ecosystems worldwide. Whilst it is well accepted that surveillance activities are key to both the early detection of new incursions and the ability to identify pest-free areas, the performance of these activities must be evaluated to ensure they are fit for purpose. This requires consideration of the number of potential hosts inspected or tested as well as the epidemiology of the pathogen and the detection method used. In the case of plant pathogens, one particular concern is whether the visual inspection of plant hosts for signs of disease is able to detect the presence of these pathogens at low prevalences, given that it takes time for these symptoms to develop. One such pathogen is the ST53 strain of the vector-borne bacterial pathogen Xylella fastidiosa in olive hosts, which was first identified in southern Italy in 2013. Additionally, X. fastidiosa ST53 in olive has a rapid rate of spread, which could also have important implications for surveillance. In the current study, we evaluate how well visual surveillance would be expected to perform for this pathogen and investigate whether molecular testing of either tree hosts or insect vectors offer feasible alternatives. Our results identify the main constraints to each of these strategies and can be used to inform and improve both current and future surveillance activities.
Collapse
|
6
|
Pley C, Evans M, Lowe R, Montgomery H, Yacoub S. Digital and technological innovation in vector-borne disease surveillance to predict, detect, and control climate-driven outbreaks. Lancet Planet Health 2021; 5:e739-e745. [PMID: 34627478 DOI: 10.1016/s2542-5196(21)00141-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 05/11/2021] [Accepted: 05/14/2021] [Indexed: 06/13/2023]
Abstract
Vector-borne diseases are particularly sensitive to changes in weather and climate. Timely warnings from surveillance systems can help to detect and control outbreaks of infectious disease, facilitate effective management of finite resources, and contribute to knowledge generation, response planning, and resource prioritisation in the long term, which can mitigate future outbreaks. Technological and digital innovations have enabled the incorporation of climatic data into surveillance systems, enhancing their capacity to predict trends in outbreak prevalence and location. Advance notice of the risk of an outbreak empowers decision makers and communities to scale up prevention and preparedness interventions and redirect resources for outbreak responses. In this Viewpoint, we outline important considerations in the advent of new technologies in disease surveillance, including the sustainability of innovation in the long term and the fundamental obligation to ensure that the communities that are affected by the disease are involved in the design of the technology and directly benefit from its application.
Collapse
Affiliation(s)
- Caitlin Pley
- School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Megan Evans
- Centre for Environmental Health and Sustainability, University of Leicester, Leicester, UK.
| | - Rachel Lowe
- Centre on Climate Change and Planetary Health and Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Hugh Montgomery
- Centre for Human Health and Performance, University College London, London, UK
| | - Sophie Yacoub
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam; Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| |
Collapse
|
7
|
Preliminary Evaluation of a Recombinant Rift Valley Fever Virus Glycoprotein Subunit Vaccine Providing Full Protection against Heterologous Virulent Challenge in Cattle. Vaccines (Basel) 2021; 9:vaccines9070748. [PMID: 34358166 PMCID: PMC8310273 DOI: 10.3390/vaccines9070748] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 01/15/2023] Open
Abstract
Rift Valley fever virus (RVFV) is a mosquito-borne zoonotic pathogen that causes periodic outbreaks of abortion in ruminant species and hemorrhagic disease in humans in sub-Saharan Africa. These outbreaks have a significant impact on veterinary and public health. Its introduction to the Arabian Peninsula in 2003 raised concerns of further spread of this transboundary pathogen to non-endemic areas. These concerns are supported by the presence of competent vectors in many non-endemic countries. There is no licensed RVF vaccine available for humans and only a conditionally licensed veterinary vaccine available in the United States. Currently employed modified live attenuated virus vaccines in endemic countries lack the ability for differentiating infected from vaccinated animals (DIVA). Previously, the efficacy of a recombinant subunit vaccine based on the RVFV Gn and Gc glycoproteins, derived from the 1977 human RVFV isolate ZH548, was demonstrated in sheep. In the current study, cattle were vaccinated subcutaneously with the Gn only, or Gn and Gc combined, with either one or two doses of the vaccine and then subjected to heterologous virus challenge with the virulent Kenya-128B-15 RVFV strain, isolated from Aedes mosquitoes in 2006. The elicited immune responses by some vaccine formulations (one or two vaccinations) conferred complete protection from RVF within 35 days after the first vaccination. Vaccines given 35 days prior to RVFV challenge prevented viremia, fever and RVFV-associated histopathological lesions. This study indicates that a recombinant RVFV glycoprotein-based subunit vaccine platform is able to prevent and control RVFV infections in target animals.
Collapse
|
8
|
Ribeiro GS, Hamer GL, Diallo M, Kitron U, Ko AI, Weaver SC. Influence of herd immunity in the cyclical nature of arboviruses. Curr Opin Virol 2020; 40:1-10. [PMID: 32193135 PMCID: PMC7434662 DOI: 10.1016/j.coviro.2020.02.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 02/05/2020] [Accepted: 02/13/2020] [Indexed: 12/15/2022]
Abstract
We review and contrast the evidence for an effect of amplifying host herd immunity on circulation and human exposure to arboviruses. Herd immunity of short-lived West Nile virus avian amplifying hosts appears to play a limited role in levels of enzootic circulation and spillover infections of humans, which are not amplifiers. In contrast, herd immunity of nonhuman primate hosts for enzootic Zika, dengue, and chikungunya viruses is much stronger and appears to regulate to a large extent the periodicity of sylvatic amplification in Africa. Following the recent Zika and chikungunya pandemics, human herd immunity in the Americas quickly rose to ∼50% in many regions, although seroprevalence remains patchy. Modeling from decades of chikungunya circulation in Asia suggests that this level of herd immunity will suppress for many years major chikungunya and Zika epidemics in the Americas, followed by smaller outbreaks as herd immunity cycles with a periodicity of up to several decades.
Collapse
Affiliation(s)
- Guilherme S Ribeiro
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Rua Waldemar Falcão, 121, Candeal, 40296-710, Salvador, BA, Brazil; Universidade Federal da Bahia, Salvador, Brazil
| | - Gabriel L Hamer
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | | | - Uriel Kitron
- Population Biology, Ecology, and Evolution Graduate Program, Graduate Division of Biological and Biomedical Sciences, Department of Environmental Sciences, Emory University, Atlanta, GA, USA
| | - Albert I Ko
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Scott C Weaver
- World Reference Center for Emerging Viruses and Arboviruses, Institute for Human Infections and Immunity, and Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, 77555-0610 TX, USA.
| |
Collapse
|
9
|
Weber DJ, Sickbert-Bennett EE, Kanamori H, Rutala WA. New and emerging infectious diseases (Ebola, Middle Eastern respiratory syndrome coronavirus, carbapenem-resistant Enterobacteriaceae, Candida auris): Focus on environmental survival and germicide susceptibility. Am J Infect Control 2019; 47S:A29-A38. [PMID: 31146847 PMCID: PMC7132701 DOI: 10.1016/j.ajic.2019.03.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|