1
|
Černý J, Arora G. Proteases and protease inhibitors in saliva of hard ticks: Biological role and pharmacological potential. ADVANCES IN PARASITOLOGY 2024; 126:229-251. [PMID: 39448192 DOI: 10.1016/bs.apar.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
Hard ticks (family Ixodidae) are significant vectors of pathogens affecting humans and animals. This review explores the composition of tick saliva, focusing on proteases and protease inhibitors, their biological roles, and their potential in vaccines and therapies. Tick saliva contains various proteases, mostly metalloproteases, serpins, cystatins, and Kunitz-type inhibitors, which modulate host hemostatic, immune, and wound healing responses to facilitate blood feeding and pathogen transmission. Proteases inhibit blood clotting, degrade extracellular matrix components, and modulate immune responses. Serpins, cystatins, and Kunitz-type inhibitors further inhibit key proteases involved in coagulation and inflammation, making them promising candidates for anticoagulant, anti-inflammatory, and immunomodulatory therapies. Several tick proteases and protease inhibitors have shown potential as vaccine targets, reducing tick feeding success and pathogen transmission. Future research should focus on comprehensive proteomic and genomic analyses, detailed structural and functional studies, and vaccine trials. Advanced omics approaches and bioinformatics tools will be crucial in uncovering the complex interactions between ticks, hosts, and pathogens, improving tick control strategies and public health outcomes.
Collapse
Affiliation(s)
- Jiří Černý
- Centre for Infectious Animal Diseases, Faculty of Tropical AgriSciences, Czech University of Life Sciences Prague, Prague-Suchdol, Czechia.
| | - Gunjan Arora
- Section of Infectious Diseases, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, United States; Laboratory of Host-Pathogen Dynamics, National Heart Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, United States; Molecular and Cellular Immunology Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| |
Collapse
|
2
|
Le Mauff A, Norris EJ, Li AY, Swale DR. Repellent activity of essential oils to the Lone Star tick, Amblyomma americanum. Parasit Vectors 2024; 17:202. [PMID: 38711138 DOI: 10.1186/s13071-024-06246-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/14/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND The Lone Star tick, Amblyomma americanum is important to human health because of a variety of pathogenic organisms transmitted to humans during feeding events, which underscores the need to identify novel approaches to prevent tick bites. Thus, the goal of this study was to test natural and synthetic molecules for repellent activity against ticks in spatial, contact and human fingertip bioassays. METHODS The efficacy of essential oils and naturally derived compounds as repellents to Am. americanum nymphs was compared in three different bioassays: contact, spatial and fingertip repellent bioassays. RESULTS Concentration response curves after contact exposure to 1R-trans-chrysanthemic acid (TCA) indicated a 5.6 μg/cm2 concentration required to repel 50% of ticks (RC50), which was five- and sevenfold more active than DEET and nootkatone, respectively. For contact repellency, the rank order of repellency at 50 μg/cm2 for natural oils was clove > geranium > oregano > cedarwood > thyme > amyris > patchouli > citronella > juniper berry > peppermint > cassia. For spatial bioassays, TCA was approximately twofold more active than DEET and nootkatone at 50 μg/cm2 but was not significantly different at 10 μg/cm2. In spatial assays, thyme and cassia were the most active compounds tested with 100% and 80% ticks repelled within 15 min of exposure respectively and was approximately twofold more effective than DEET at the same concentration. To translate these non-host assays to efficacy when used on the human host, we quantified repellency using a finger-climbing assay. TCA, nootkatone and DEET were equally effective in the fingertip assay, and patchouli oil was the only natural oil that significantly repelled ticks. CONCLUSIONS The differences in repellent potency based on the assay type suggests that the ability to discover active tick repellents suitable for development may be more complicated than with other arthropod species; furthermore, the field delivery mechanism must be considered early in development to ensure translation to field efficacy. TCA, which is naturally derived, is a promising candidate for a tick repellent that has comparable repellency to commercialized tick repellents.
Collapse
Affiliation(s)
- Anais Le Mauff
- Emerging Pathogens Institute, Department of Entomology and Nematology, University of Florida, 2055 Mowry Road, PO Box 100009, Gainesville, FL, 32610, USA
| | - Edmund J Norris
- Center for Medical, Agricultural, and Veterinary Entomology, United States Department of Agriculture, Agricultural Research Service, Gainesville, FL, 32608, USA
| | - Andrew Y Li
- Invasive Insect Biocontrol & Behavior Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD, 20705, USA
| | - Daniel R Swale
- Emerging Pathogens Institute, Department of Entomology and Nematology, University of Florida, 2055 Mowry Road, PO Box 100009, Gainesville, FL, 32610, USA.
| |
Collapse
|
3
|
Nguyen TT, Kim TH, Bencosme-Cuevas E, Berry J, Gaithuma ASK, Ansari MA, Kim TK, Tirloni L, Radulovic Z, Moresco JJ, Yates JR, Mulenga A. A tick saliva serpin, IxsS17 inhibits host innate immune system proteases and enhances host colonization by Lyme disease agent. PLoS Pathog 2024; 20:e1012032. [PMID: 38394332 PMCID: PMC10917276 DOI: 10.1371/journal.ppat.1012032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 03/06/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Lyme disease (LD) caused by Borrelia burgdorferi is among the most important human vector borne diseases for which there is no effective prevention method. Identification of tick saliva transmission factors of the LD agent is needed before the highly advocated tick antigen-based vaccine could be developed. We previously reported the highly conserved Ixodes scapularis (Ixs) tick saliva serpin (S) 17 (IxsS17) was highly secreted by B. burgdorferi infected nymphs. Here, we show that IxsS17 promote tick feeding and enhances B. burgdorferi colonization of the host. We show that IxsS17 is not part of a redundant system, and its functional domain reactive center loop (RCL) is 100% conserved in all tick species. Yeast expressed recombinant (r) IxsS17 inhibits effector proteases of inflammation, blood clotting, and complement innate immune systems. Interestingly, differential precipitation analysis revealed novel functional insights that IxsS17 interacts with both effector proteases and regulatory protease inhibitors. For instance, rIxsS17 interacted with blood clotting proteases, fXII, fX, fXII, plasmin, and plasma kallikrein alongside blood clotting regulatory serpins (antithrombin III and heparin cofactor II). Similarly, rIxsS17 interacted with both complement system serine proteases, C1s, C2, and factor I and the regulatory serpin, plasma protease C1 inhibitor. Consistently, we validated that rIxsS17 dose dependently blocked deposition of the complement membrane attack complex via the lectin complement pathway and protected complement sensitive B. burgdorferi from complement-mediated killing. Likewise, co-inoculating C3H/HeN mice with rIxsS17 and B. burgdorferi significantly enhanced colonization of mouse heart and skin organs in a reverse dose dependent manner. Taken together, our data suggests an important role for IxsS17 in tick feeding and B. burgdorferi colonization of the host.
Collapse
Affiliation(s)
- Thu-Thuy Nguyen
- Department of Veterinary Pathobiology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Tae Heung Kim
- Department of Veterinary Pathobiology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Emily Bencosme-Cuevas
- Department of Veterinary Pathobiology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Jacquie Berry
- Department of Veterinary Pathobiology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Alex Samuel Kiarie Gaithuma
- Department of Veterinary Pathobiology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Moiz Ashraf Ansari
- Department of Veterinary Pathobiology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Tae Kwon Kim
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
| | - Lucas Tirloni
- Tick-Pathogen Transmission Unit, Laboratory of Bacteriology, NIAID, Hamilton, Montana, United States of America
| | - Zeljko Radulovic
- Department of Biology, Stephen F. Austin State University, Nacogdoches, Texas, United States of America
| | - James J. Moresco
- Center for Genetics of Host Defense, UT Southwestern Medical Center, Dallas, Texas, United States of America
| | - John R. Yates
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, United States of America
| | - Albert Mulenga
- Department of Veterinary Pathobiology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
4
|
Li Z, McComic S, Chen R, Kim WTH, Gaithuma AK, Mooney B, Macaluso KR, Mulenga A, Swale DR. ATP-sensitive inward rectifier potassium channels regulate secretion of pro-feeding salivary proteins in the lone star tick (Amblyomma americanum). Int J Biol Macromol 2023; 253:126545. [PMID: 37652342 DOI: 10.1016/j.ijbiomac.2023.126545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/02/2023]
Abstract
Understanding the physiological and molecular regulation of tick feeding is necessary for developing intervention strategies to curb disease transmission by ticks. Pharmacological activation of ATP-gated inward rectifier potassium (KATP) channels reduced fluid secretion from isolated salivary gland and blood feeding in the lone star tick, Amblyomma americanum, yet the temporal expression pattern of KATP channel proteins remained unknown. KATP channels were highly expressed in type II and III acini in off-host stage and early feeding phase ticks, yet expression was reduced in later stages of feeding. We next assessed KATP channel regulation of the secreted proteome of tick saliva. LC-MS/MS analysis identified 40 differentially secreted tick saliva proteins after exposure to KATP activators or inhibitors. Secretion of previously validated tick saliva proteins that promote tick feeding, AV422, AAS27, and AAS41 were significantly reduced by upwards of 8 log units in ticks exposed to KATP channel activators when compared to untreated ticks. Importantly, activation of KATP channels inhibited tick feeding and vice versa for KATP channel inhibitors. Data indicate KATP channels regulate tick feeding biology by controlling secretion of pro-feeding proteins that are essential during early feeding phases, which provides insights into physiological and molecular regulation of tick feeding behavior.
Collapse
Affiliation(s)
- Zhilin Li
- Department of Entomology, Louisiana State University AgCenter, Baton Rouge, LA, United States of America; Emerging Pathogens Institute, Department of Entomology and Nematology, University of Florida, Gainesville, FL 32610, USA
| | - Sarah McComic
- Emerging Pathogens Institute, Department of Entomology and Nematology, University of Florida, Gainesville, FL 32610, USA
| | - Rui Chen
- Emerging Pathogens Institute, Department of Entomology and Nematology, University of Florida, Gainesville, FL 32610, USA
| | - William Tae Heung Kim
- Department of Veterinary pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA
| | - Alex Kiarie Gaithuma
- Department of Veterinary pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA
| | - Brian Mooney
- Department of Biochemistry, Charles W Gehrlke Proteomics Center, University of Missouri, MO, USA
| | - Kevin R Macaluso
- Department of Microbiology and Immunology, College of Medicine, University of South Alabama, Mobile, AL, USA
| | - Albert Mulenga
- Department of Veterinary pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA
| | - Daniel R Swale
- Emerging Pathogens Institute, Department of Entomology and Nematology, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
5
|
Silva FAA, Costa GCA, Parizi LF, Silva Vaz Junior ID, Tanaka AS. Biochemical characterization of a novel sphingomyelinase-like protein from the Rhipicephalus microplus tick. Exp Parasitol 2023; 254:108616. [PMID: 37696328 DOI: 10.1016/j.exppara.2023.108616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/21/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023]
Abstract
Sphingomyelinase D is a toxin present in venomous spiders and bacteria and is associated with infection symptoms in patients affected by spider bites. It was observed that in Ixodes scapularis ticks, sphingomyelinase-like protein secreted in saliva can modulate the host immune response, affecting the transmission of flavivirus to the host via exosomes. In this work, a sphingomyelinase D-like protein (RmSMase) from R. microplus, a tick responsible for economic losses and a vector of pathogens for cattle, was investigated. The amino acid sequence revealed the lack of important residues for enzymatic activity, but the recombinant protein showed sphingomyelinase D activity. RmSMase shows Ca2+ and Mg2+ dependence in acidic pH, differing from IsSMase, which has Mg2+ dependence in neutral pH. Due to the difference between RmSMase and other SMases described, the data suggest that RmSMase belongs to SMase D class IIc. RmSMase mRNA transcription levels are upregulated during tick feeding, and the recombinant protein was recognized by host antibodies elicited after heavy tick infestation, indicating that RmSMase is present in tick saliva and may play a role in the tick feeding process.
Collapse
Affiliation(s)
- Fernando A A Silva
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade de Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Gabriel C A Costa
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade de Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Luís F Parizi
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), RS, Brazil
| | - Itabajara da Silva Vaz Junior
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), RS, Brazil; Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul (UFRGS), RS, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), RJ, Brazil
| | - Aparecida S Tanaka
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade de Federal de São Paulo (UNIFESP), São Paulo, SP, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), RJ, Brazil.
| |
Collapse
|
6
|
Bencosme-Cuevas E, Kim TK, Nguyen TT, Berry J, Li J, Adams LG, Smith LA, Batool SA, Swale DR, Kaufmann SHE, Jones-Hall Y, Mulenga A. Ixodes scapularis nymph saliva protein blocks host inflammation and complement-mediated killing of Lyme disease agent, Borrelia burgdorferi. Front Cell Infect Microbiol 2023; 13:1253670. [PMID: 37965264 PMCID: PMC10641286 DOI: 10.3389/fcimb.2023.1253670] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/14/2023] [Indexed: 11/16/2023] Open
Abstract
Tick serine protease inhibitors (serpins) play crucial roles in tick feeding and pathogen transmission. We demonstrate that Ixodes scapularis (Ixs) nymph tick saliva serpin (S) 41 (IxsS41), secreted by Borrelia burgdorferi (Bb)-infected ticks at high abundance, is involved in regulating tick evasion of host innate immunity and promoting host colonization by Bb. Recombinant (r) proteins were expressed in Pichia pastoris, and substrate hydrolysis assays were used to determine. Ex vivo (complement and hemostasis function related) and in vivo (paw edema and effect on Bb colonization of C3H/HeN mice organs) assays were conducted to validate function. We demonstrate that rIxsS41 inhibits chymase and cathepsin G, pro-inflammatory proteases that are released by mast cells and neutrophils, the first immune cells at the tick feeding site. Importantly, stoichiometry of inhibition analysis revealed that 2.2 and 2.8 molecules of rIxsS41 are needed to 100% inhibit 1 molecule of chymase and cathepsin G, respectively, suggesting that findings here are likely events at the tick feeding site. Furthermore, chymase-mediated paw edema, induced by the mast cell degranulator, compound 48/80 (C48/80), was blocked by rIxsS41. Likewise, rIxsS41 reduced membrane attack complex (MAC) deposition via the alternative and lectin complement activation pathways and dose-dependently protected Bb from complement killing. Additionally, co-inoculating C3H/HeN mice with Bb together with rIxsS41 or with a mixture (rIxsS41 and C48/80). Findings in this study suggest that IxsS41 markedly contributes to tick feeding and host colonization by Bb. Therefore, we conclude that IxsS41 is a potential candidate for an anti-tick vaccine to prevent transmission of the Lyme disease agent.
Collapse
Affiliation(s)
- Emily Bencosme-Cuevas
- Department of Veterinary Pathobiology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Tae Kwon Kim
- Department of Veterinary Pathobiology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Thu-Thuy Nguyen
- Department of Veterinary Pathobiology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Jacquie Berry
- Department of Veterinary Pathobiology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Jianrong Li
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Leslie Garry Adams
- Department of Veterinary Physiology and Pharmacology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | | | | | - Daniel R. Swale
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
| | - Stefan H. E. Kaufmann
- Department of Veterinary Pathobiology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
- Hagler Institute for Advanced Study, Texas A&M University, College Station, TX, United States
- Max Planck Institute for Infection Biology, Berlin, Germany
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Yava Jones-Hall
- Department of Veterinary Pathobiology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Albert Mulenga
- Department of Veterinary Pathobiology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
| |
Collapse
|
7
|
Chlastáková A, Kaščáková B, Kotál J, Langhansová H, Kotsyfakis M, Kutá Smatanová I, Tirloni L, Chmelař J. Iripin-1, a new anti-inflammatory tick serpin, inhibits leukocyte recruitment in vivo while altering the levels of chemokines and adhesion molecules. Front Immunol 2023; 14:1116324. [PMID: 36756125 PMCID: PMC9901544 DOI: 10.3389/fimmu.2023.1116324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/09/2023] [Indexed: 01/25/2023] Open
Abstract
Serpins are widely distributed and functionally diverse inhibitors of serine proteases. Ticks secrete serpins with anti-coagulation, anti-inflammatory, and immunomodulatory activities via their saliva into the feeding cavity to modulate host's hemostatic and immune reaction initiated by the insertion of tick's mouthparts into skin. The suppression of the host's immune response not only allows ticks to feed on a host for several days but also creates favorable conditions for the transmission of tick-borne pathogens. Herein we present the functional and structural characterization of Iripin-1 (Ixodes ricinus serpin-1), whose expression was detected in the salivary glands of the tick Ixodes ricinus, a European vector of tick-borne encephalitis and Lyme disease. Of 16 selected serine proteases, Iripin-1 inhibited primarily trypsin and further exhibited weaker inhibitory activity against kallikrein, matriptase, and plasmin. In the mouse model of acute peritonitis, Iripin-1 enhanced the production of the anti-inflammatory cytokine IL-10 and chemokines involved in neutrophil and monocyte recruitment, including MCP-1/CCL2, a potent histamine-releasing factor. Despite increased chemokine levels, the migration of neutrophils and monocytes to inflamed peritoneal cavities was significantly attenuated following Iripin-1 administration. Based on the results of in vitro experiments, immune cell recruitment might be inhibited due to Iripin-1-mediated reduction of the expression of chemokine receptors in neutrophils and adhesion molecules in endothelial cells. Decreased activity of serine proteases in the presence of Iripin-1 could further impede cell migration to the site of inflammation. Finally, we determined the tertiary structure of native Iripin-1 at 2.10 Å resolution by employing the X-ray crystallography technique. In conclusion, our data indicate that Iripin-1 facilitates I. ricinus feeding by attenuating the host's inflammatory response at the tick attachment site.
Collapse
Affiliation(s)
- Adéla Chlastáková
- Department of Medical Biology, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia,Laboratory of Molecular Biology of Ticks, Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
| | - Barbora Kaščáková
- Laboratory of Structural Chemistry, Institute of Chemistry, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
| | - Jan Kotál
- Tick-Pathogen Transmission Unit, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, MT, United States
| | - Helena Langhansová
- Department of Medical Biology, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
| | - Michail Kotsyfakis
- Laboratory of Genomics and Proteomics of Disease Vectors, Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
| | - Ivana Kutá Smatanová
- Laboratory of Structural Chemistry, Institute of Chemistry, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
| | - Lucas Tirloni
- Tick-Pathogen Transmission Unit, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, MT, United States
| | - Jindřich Chmelař
- Department of Medical Biology, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia,*Correspondence: Jindřich Chmelař,
| |
Collapse
|
8
|
Hodosi R, Kazimirova M, Soltys K. What do we know about the microbiome of I. ricinus? Front Cell Infect Microbiol 2022; 12:990889. [PMID: 36467722 PMCID: PMC9709289 DOI: 10.3389/fcimb.2022.990889] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 10/17/2022] [Indexed: 10/07/2023] Open
Abstract
I. ricinus is an obligate hematophagous parasitic arthropod that is responsible for the transmission of a wide range of zoonotic pathogens including spirochetes of the genus Borrelia, Rickettsia spp., C. burnetii, Anaplasma phagocytophilum and Francisella tularensis, which are part the tick´s microbiome. Most of the studies focus on "pathogens" and only very few elucidate the role of "non-pathogenic" symbiotic microorganisms in I. ricinus. While most of the members of the microbiome are leading an intracellular lifestyle, they are able to complement tick´s nutrition and stress response having a great impact on tick´s survival and transmission of pathogens. The composition of the tick´s microbiome is not consistent and can be tied to the environment, tick species, developmental stage, or specific organ or tissue. Ovarian tissue harbors a stable microbiome consisting mainly but not exclusively of endosymbiotic bacteria, while the microbiome of the digestive system is rather unstable, and together with salivary glands, is mostly comprised of pathogens. The most prevalent endosymbionts found in ticks are Rickettsia spp., Ricketsiella spp., Coxiella-like and Francisella-like endosymbionts, Spiroplasma spp. and Candidatus Midichloria spp. Since microorganisms can modify ticks' behavior, such as mobility, feeding or saliva production, which results in increased survival rates, we aimed to elucidate the potential, tight relationship, and interaction between bacteria of the I. ricinus microbiome. Here we show that endosymbionts including Coxiella-like spp., can provide I. ricinus with different types of vitamin B (B2, B6, B7, B9) essential for eukaryotic organisms. Furthermore, we hypothesize that survival of Wolbachia spp., or the bacterial pathogen A. phagocytophilum can be supported by the tick itself since coinfection with symbiotic Spiroplasma ixodetis provides I. ricinus with complete metabolic pathway of folate biosynthesis necessary for DNA synthesis and cell division. Manipulation of tick´s endosymbiotic microbiome could present a perspective way of I. ricinus control and regulation of spread of emerging bacterial pathogens.
Collapse
Affiliation(s)
- Richard Hodosi
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Maria Kazimirova
- Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Katarina Soltys
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
- Comenius University Science Park, Comenius University in Bratislava, Bratislava, Slovakia
| |
Collapse
|
9
|
Abbas MN, Chlastáková A, Jmel MA, Iliaki-Giannakoudaki E, Chmelař J, Kotsyfakis M. Serpins in Tick Physiology and Tick-Host Interaction. Front Cell Infect Microbiol 2022; 12:892770. [PMID: 35711658 PMCID: PMC9195624 DOI: 10.3389/fcimb.2022.892770] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
Tick saliva has been extensively studied in the context of tick-host interactions because it is involved in host homeostasis modulation and microbial pathogen transmission to the host. Accumulated knowledge about the tick saliva composition at the molecular level has revealed that serine protease inhibitors play a key role in the tick-host interaction. Serpins are one highly expressed group of protease inhibitors in tick salivary glands, their expression can be induced during tick blood-feeding, and they have many biological functions at the tick-host interface. Indeed, tick serpins have an important role in inhibiting host hemostatic processes and in the modulation of the innate and adaptive immune responses of their vertebrate hosts. Tick serpins have also been studied as potential candidates for therapeutic use and vaccine development. In this review, we critically summarize the current state of knowledge about the biological role of tick serpins in shaping tick-host interactions with emphasis on the mechanisms by which they modulate host immunity. Their potential use in drug and vaccine development is also discussed.
Collapse
Affiliation(s)
- Muhammad Nadeem Abbas
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory of Sericultural Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing, China
| | - Adéla Chlastáková
- Department of Medical Biology, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
- Laboratory of Molecular Biology of Ticks, Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
| | - Mohamed Amine Jmel
- Laboratory of Genomics and Proteomics of Disease Vectors, Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
| | | | - Jindřich Chmelař
- Department of Medical Biology, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
- *Correspondence: Jindřich Chmelař, ; Michail Kotsyfakis,
| | - Michail Kotsyfakis
- Laboratory of Genomics and Proteomics of Disease Vectors, Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
- *Correspondence: Jindřich Chmelař, ; Michail Kotsyfakis,
| |
Collapse
|
10
|
Ali A, Zeb I, Alouffi A, Zahid H, Almutairi MM, Ayed Alshammari F, Alrouji M, Termignoni C, Vaz IDS, Tanaka T. Host Immune Responses to Salivary Components - A Critical Facet of Tick-Host Interactions. Front Cell Infect Microbiol 2022; 12:809052. [PMID: 35372098 PMCID: PMC8966233 DOI: 10.3389/fcimb.2022.809052] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/04/2022] [Indexed: 12/15/2022] Open
Abstract
Tick sialome is comprised of a rich cocktail of bioactive molecules that function as a tool to disarm host immunity, assist blood-feeding, and play a vibrant role in pathogen transmission. The adaptation of the tick's blood-feeding behavior has lead to the evolution of bioactive molecules in its saliva to assist them to overwhelm hosts' defense mechanisms. During a blood meal, a tick secretes different salivary molecules including vasodilators, platelet aggregation inhibitors, anticoagulants, anti-inflammatory proteins, and inhibitors of complement activation; the salivary repertoire changes to meet various needs such as tick attachment, feeding, and modulation or impairment of the local dynamic and vigorous host responses. For instance, the tick's salivary immunomodulatory and cement proteins facilitate the tick's attachment to the host to enhance prolonged blood-feeding and to modulate the host's innate and adaptive immune responses. Recent advances implemented in the field of "omics" have substantially assisted our understanding of host immune modulation and immune inhibition against the molecular dynamics of tick salivary molecules in a crosstalk between the tick-host interface. A deep understanding of the tick salivary molecules, their substantial roles in multifactorial immunological cascades, variations in secretion, and host immune responses against these molecules is necessary to control these parasites. In this article, we reviewed updated knowledge about the molecular mechanisms underlying host responses to diverse elements in tick saliva throughout tick invasion, as well as host defense strategies. In conclusion, understanding the mechanisms involved in the complex interactions between the tick salivary components and host responses is essential to decipher the host defense mechanisms against the tick evasion strategies at tick-host interface which is promising in the development of effective anti-tick vaccines and drug therapeutics.
Collapse
Affiliation(s)
- Abid Ali
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Ismail Zeb
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Abdulaziz Alouffi
- King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - Hafsa Zahid
- Department of Zoology, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Mashal M. Almutairi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Fahdah Ayed Alshammari
- College of Sciences and Literature Microbiology, Nothern Border University, Rafha, Saudi Arabia
| | - Mohammed Alrouji
- College of Applied Medical Sciences, Shaqra University, Shaqra, Saudi Arabia
| | - Carlos Termignoni
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Itabajara da Silva Vaz
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Tetsuya Tanaka
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
11
|
Denisov SS, Dijkgraaf I. Immunomodulatory Proteins in Tick Saliva From a Structural Perspective. Front Cell Infect Microbiol 2021; 11:769574. [PMID: 34722347 PMCID: PMC8548845 DOI: 10.3389/fcimb.2021.769574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 09/28/2021] [Indexed: 12/25/2022] Open
Abstract
To feed successfully, ticks must bypass or suppress the host’s defense mechanisms, particularly the immune system. To accomplish this, ticks secrete specialized immunomodulatory proteins into their saliva, just like many other blood-sucking parasites. However, the strategy of ticks is rather unique compared to their counterparts. Ticks’ tendency for gene duplication has led to a diverse arsenal of dozens of closely related proteins from several classes to modulate the immune system’s response. Among these are chemokine-binding proteins, complement pathways inhibitors, ion channels modulators, and numerous poorly characterized proteins whose functions are yet to be uncovered. Studying tick immunomodulatory proteins would not only help to elucidate tick-host relationships but would also provide a rich pool of potential candidates for the development of immunomodulatory intervention drugs and potentially new vaccines. In the present review, we will attempt to summarize novel findings on the salivary immunomodulatory proteins of ticks, focusing on biomolecular targets, structure-activity relationships, and the perspective of their development into therapeutics.
Collapse
Affiliation(s)
- Stepan S Denisov
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), University of Maastricht, Maastricht, Netherlands
| | - Ingrid Dijkgraaf
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), University of Maastricht, Maastricht, Netherlands
| |
Collapse
|
12
|
Kitsou C, Fikrig E, Pal U. Tick host immunity: vector immunomodulation and acquired tick resistance. Trends Immunol 2021; 42:554-574. [PMID: 34074602 PMCID: PMC10089699 DOI: 10.1016/j.it.2021.05.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/04/2021] [Accepted: 05/06/2021] [Indexed: 12/25/2022]
Abstract
Ticks have an unparalleled ability to parasitize diverse land vertebrates. Their natural persistence and vector competence are supported by the evolution of sophisticated hematophagy and remarkable host immune-evasion activities. We analyze the immunomodulatory roles of tick saliva which facilitates their acquisition of a blood meal from natural hosts and allows pathogen transmission. We also discuss the contrasting immunological events of tick-host associations in non-reservoir or incidental hosts, in which the development of acquired tick resistance can deter tick attachment. A critical appraisal of the intricate immunobiology of tick-host associations can plant new seeds of innovative research and contribute to the development of novel preventive strategies against ticks and tick-transmitted infections.
Collapse
Affiliation(s)
- Chrysoula Kitsou
- Department of Veterinary Medicine, University of Maryland, College Park, MD, USA
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Utpal Pal
- Department of Veterinary Medicine, University of Maryland, College Park, MD, USA; Virginia-Maryland College of Veterinary Medicine, College Park, MD, USA.
| |
Collapse
|
13
|
Chlastáková A, Kotál J, Beránková Z, Kaščáková B, Martins LA, Langhansová H, Prudnikova T, Ederová M, Kutá Smatanová I, Kotsyfakis M, Chmelař J. Iripin-3, a New Salivary Protein Isolated From Ixodes ricinus Ticks, Displays Immunomodulatory and Anti-Hemostatic Properties In Vitro. Front Immunol 2021; 12:626200. [PMID: 33732248 PMCID: PMC7957079 DOI: 10.3389/fimmu.2021.626200] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/06/2021] [Indexed: 12/13/2022] Open
Abstract
Tick saliva is a rich source of pharmacologically and immunologically active molecules. These salivary components are indispensable for successful blood feeding on vertebrate hosts and are believed to facilitate the transmission of tick-borne pathogens. Here we present the functional and structural characterization of Iripin-3, a protein expressed in the salivary glands of the tick Ixodes ricinus, a European vector of tick-borne encephalitis and Lyme disease. Belonging to the serpin superfamily of protease inhibitors, Iripin-3 strongly inhibited the proteolytic activity of serine proteases kallikrein and matriptase. In an in vitro setup, Iripin-3 was capable of modulating the adaptive immune response as evidenced by reduced survival of mouse splenocytes, impaired proliferation of CD4+ T lymphocytes, suppression of the T helper type 1 immune response, and induction of regulatory T cell differentiation. Apart from altering acquired immunity, Iripin-3 also inhibited the extrinsic blood coagulation pathway and reduced the production of pro-inflammatory cytokine interleukin-6 by lipopolysaccharide-stimulated bone marrow-derived macrophages. In addition to its functional characterization, we present the crystal structure of cleaved Iripin-3 at 1.95 Å resolution. Iripin-3 proved to be a pluripotent salivary serpin with immunomodulatory and anti-hemostatic properties that could facilitate tick feeding via the suppression of host anti-tick defenses. Physiological relevance of Iripin-3 activities observed in vitro needs to be supported by appropriate in vivo experiments.
Collapse
Affiliation(s)
- Adéla Chlastáková
- Department of Medical Biology, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
| | - Jan Kotál
- Department of Medical Biology, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
- Laboratory of Genomics and Proteomics of Disease Vectors, Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
| | - Zuzana Beránková
- Department of Medical Biology, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
| | - Barbora Kaščáková
- Laboratory of Structural Chemistry, Institute of Chemistry, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
| | - Larissa Almeida Martins
- Laboratory of Genomics and Proteomics of Disease Vectors, Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
| | - Helena Langhansová
- Department of Medical Biology, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
| | - Tatyana Prudnikova
- Laboratory of Structural Chemistry, Institute of Chemistry, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
| | - Monika Ederová
- Department of Medical Biology, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
| | - Ivana Kutá Smatanová
- Laboratory of Structural Chemistry, Institute of Chemistry, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
| | - Michail Kotsyfakis
- Department of Medical Biology, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
- Laboratory of Genomics and Proteomics of Disease Vectors, Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
| | - Jindřich Chmelař
- Department of Medical Biology, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
| |
Collapse
|
14
|
Jmel MA, Aounallah H, Bensaoud C, Mekki I, Chmelař J, Faria F, M’ghirbi Y, Kotsyfakis M. Insights into the Role of Tick Salivary Protease Inhibitors during Ectoparasite-Host Crosstalk. Int J Mol Sci 2021; 22:E892. [PMID: 33477394 PMCID: PMC7831016 DOI: 10.3390/ijms22020892] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 02/07/2023] Open
Abstract
Protease inhibitors (PIs) are ubiquitous regulatory proteins present in all kingdoms. They play crucial tasks in controlling biological processes directed by proteases which, if not tightly regulated, can damage the host organism. PIs can be classified according to their targeted proteases or their mechanism of action. The functions of many PIs have now been characterized and are showing clinical relevance for the treatment of human diseases such as arthritis, hepatitis, cancer, AIDS, and cardiovascular diseases, amongst others. Other PIs have potential use in agriculture as insecticides, anti-fungal, and antibacterial agents. PIs from tick salivary glands are special due to their pharmacological properties and their high specificity, selectivity, and affinity to their target proteases at the tick-host interface. In this review, we discuss the structure and function of PIs in general and those PI superfamilies abundant in tick salivary glands to illustrate their possible practical applications. In doing so, we describe tick salivary PIs that are showing promise as drug candidates, highlighting the most promising ones tested in vivo and which are now progressing to preclinical and clinical trials.
Collapse
Affiliation(s)
- Mohamed Amine Jmel
- Laboratory of Genomics and Proteomics of Disease Vectors, Biology Centre CAS, Institute of Parasitology, Branišovská 1160/31, 37005 České Budějovice, Czech Republic; (M.A.J.); (C.B.); (I.M.)
| | - Hajer Aounallah
- Institut Pasteur de Tunis, Université de Tunis El Manar, LR19IPTX, Service d’Entomologie Médicale, Tunis 1002, Tunisia; (H.A.); (Y.M.)
- Innovation and Development Laboratory, Innovation and Development Center, Instituto Butantan, São Paulo 05503-900, Brazil;
| | - Chaima Bensaoud
- Laboratory of Genomics and Proteomics of Disease Vectors, Biology Centre CAS, Institute of Parasitology, Branišovská 1160/31, 37005 České Budějovice, Czech Republic; (M.A.J.); (C.B.); (I.M.)
| | - Imen Mekki
- Laboratory of Genomics and Proteomics of Disease Vectors, Biology Centre CAS, Institute of Parasitology, Branišovská 1160/31, 37005 České Budějovice, Czech Republic; (M.A.J.); (C.B.); (I.M.)
- Faculty of Science, University of South Bohemia in České Budějovice, 37005 České Budějovice, Czech Republic;
| | - Jindřich Chmelař
- Faculty of Science, University of South Bohemia in České Budějovice, 37005 České Budějovice, Czech Republic;
| | - Fernanda Faria
- Innovation and Development Laboratory, Innovation and Development Center, Instituto Butantan, São Paulo 05503-900, Brazil;
| | - Youmna M’ghirbi
- Institut Pasteur de Tunis, Université de Tunis El Manar, LR19IPTX, Service d’Entomologie Médicale, Tunis 1002, Tunisia; (H.A.); (Y.M.)
| | - Michalis Kotsyfakis
- Laboratory of Genomics and Proteomics of Disease Vectors, Biology Centre CAS, Institute of Parasitology, Branišovská 1160/31, 37005 České Budějovice, Czech Republic; (M.A.J.); (C.B.); (I.M.)
| |
Collapse
|
15
|
De novo assembled salivary gland transcriptome and expression pattern analyses for Rhipicephalus evertsi evertsi Neuman, 1897 male and female ticks. Sci Rep 2021; 11:1642. [PMID: 33452281 PMCID: PMC7810686 DOI: 10.1038/s41598-020-80454-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/21/2020] [Indexed: 12/13/2022] Open
Abstract
Ticks secrete proteins in their saliva that change over the course of feeding to modulate the host inflammation, immune responses, haemostasis or may cause paralysis. RNA next generation sequencing technologies can reveal the complex dynamics of tick salivary glands as generated from various tick life stages and/or males and females. The current study represents 15,115 Illumina sequenced contigs of the salivary gland transcriptome from male and female Rhipicephalus evertsi evertsi ticks of early, mid and late feeding stages from 1320 separate assemblies using three short read assemblers. The housekeeping functional class contributed to the majority of the composition of the transcriptome (80%) but with lower expression (51%), while the secretory protein functional class represented only 14% of the transcriptome but 46% of the total coverage. Six percent had an unknown status contributing 3% of the overall expression in the salivary glands. Platelet aggregation inhibitors, blood clotting inhibitors and immune-modulators orthologous to the ancestral tick lineages were confirmed in the transcriptome and their differential expression during feeding in both genders observed. This transcriptome contributes data of importance to salivary gland biology and blood feeding physiology of non-model organisms.
Collapse
|
16
|
Sajiki Y, Konnai S, Ikenaka Y, Gulay KCM, Kobayashi A, Parizi LF, João BC, Watari K, Fujisawa S, Okagawa T, Maekawa N, Logullo C, da Silva Vaz I, Murata S, Ohashi K. Tick saliva-induced programmed death-1 and PD-ligand 1 and its related host immunosuppression. Sci Rep 2021; 11:1063. [PMID: 33441793 PMCID: PMC7806669 DOI: 10.1038/s41598-020-80251-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 12/18/2020] [Indexed: 11/22/2022] Open
Abstract
The tick Rhipicephalus microplus is a harmful parasite of cattle that causes considerable economic losses to the cattle breeding industry. Although R. microplus saliva (Rm-saliva) contains several immunosuppressants, any association between Rm-saliva and the expression of immunoinhibitory molecules, such as programmed death (PD)-1 and PD-ligand 1 (PD-L1), has not been described. In this study, flow cytometric analyses revealed that Rm-saliva upregulated PD-1 expression in T cells and PD-L1 expression in CD14+ and CD11c+ cells in cattle. Additionally, Rm-saliva decreased CD69 expression in T cells and Th1 cytokine production from peripheral blood mononuclear cells. Furthermore, PD-L1 blockade increased IFN-γ production in the presence of Rm-saliva, suggesting that Rm-saliva suppresses Th1 responses via the PD-1/PD-L1 pathway. To reveal the upregulation mechanism of PD-1/PD-L1 by Rm-saliva, we analyzed the function of prostaglandin E2 (PGE2), which is known as an inducer of PD-L1 expression, in Rm-saliva. We found that Rm-saliva contained a high concentration of PGE2, and PGE2 treatment induced PD-L1 expression in CD14+ cells in vitro. Immunohistochemical analyses revealed that PGE2 and PD-L1 expression was upregulated in tick-attached skin in cattle. These data suggest that PGE2 in Rm-saliva has the potential to induce the expression of immunoinhibitory molecules in host immune cells.
Collapse
Affiliation(s)
- Yamato Sajiki
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, 060-0818, Japan
| | - Satoru Konnai
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, 060-0818, Japan. .,Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan.
| | - Yoshinori Ikenaka
- Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan
| | | | - Atsushi Kobayashi
- Department of Veterinary Clinical Medicine, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan
| | - Luís Fernando Parizi
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 91501-970, Brazil
| | - Benvindo Capela João
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 91501-970, Brazil
| | - Kei Watari
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, 060-0818, Japan
| | - Sotaro Fujisawa
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, 060-0818, Japan
| | - Tomohiro Okagawa
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan
| | - Naoya Maekawa
- Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan
| | - Carlos Logullo
- Laboratório Integrado de Bioquímica Hatisaburo Masuda and Laboratório Integrado de Morfologia, NUPEM-UFRJ, Macaé, RJ, Brazil
| | - Itabajara da Silva Vaz
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 91501-970, Brazil
| | - Shiro Murata
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, 060-0818, Japan.,Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan
| | - Kazuhiko Ohashi
- Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, 060-0818, Japan.,Department of Advanced Pharmaceutics, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, 060-0818, Japan
| |
Collapse
|
17
|
Fractionation of tick saliva reveals proteins associated with the development of acquired resistance to Ixodes scapularis. Vaccine 2020; 38:8121-8129. [PMID: 33168347 DOI: 10.1016/j.vaccine.2020.10.087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 10/21/2020] [Accepted: 10/28/2020] [Indexed: 12/14/2022]
Abstract
Tick-borne diseases pose a global medical problem. As transmission of tick-borne pathogens to their hosts occurs during tick feeding, development of vaccines thwarting this process could potentially prevent transmission of multiple tick-borne pathogens. The idea of tick vaccines is based on the phenomenon of acquired tick immunity, rejection of ticks feeding on hosts which were repeatedly infested by ticks. Recently, we demonstrated that saliva of the blacklegged tick Ixodes scapularis, which is the main vector of tick-borne pathogens in northeast USA, is sufficient for induction of tick immunity in the guinea pig model and that immunity directed against tick glycoproteins is important in this phenomenon. Nevertheless, immunity elicited against individual tick salivary antigens, which have been identified and tested so far, provided only modest tick rejection. We therefore now tested fractions of tick saliva produced by liquid chromatography for their ability to induce tick immunity in the guinea pig model. Immunization with all individual fractions elicited antibodies that reacted with tick saliva, however only some fractions displayed the ability to induce robust protective tick immunity. Mass spectrometry analysis led to identification of 24 proteins present only in saliva fractions which were able to induce tick immunity, suggesting suitable candidates for development of a tick vaccine.
Collapse
|
18
|
Aounallah H, Bensaoud C, M'ghirbi Y, Faria F, Chmelar JI, Kotsyfakis M. Tick Salivary Compounds for Targeted Immunomodulatory Therapy. Front Immunol 2020; 11:583845. [PMID: 33072132 PMCID: PMC7538779 DOI: 10.3389/fimmu.2020.583845] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/02/2020] [Indexed: 12/11/2022] Open
Abstract
Immunodeficiency disorders and autoimmune diseases are common, but a lack of effective targeted drugs and the side-effects of existing drugs have stimulated interest in finding therapeutic alternatives. Naturally derived substances are a recognized source of novel drugs, and tick saliva is increasingly recognized as a rich source of bioactive molecules with specific functions. Ticks use their saliva to overcome the innate and adaptive host immune systems. Their saliva is a rich cocktail of molecules including proteins, peptides, lipid derivatives, and recently discovered non-coding RNAs that inhibit or modulate vertebrate immune reactions. A number of tick saliva and/or salivary gland molecules have been characterized and shown to be promising candidates for drug development for vertebrate immune diseases. However, further validation of these molecules at the molecular, cellular, and organism levels is now required to progress lead candidates to clinical testing. In this paper, we review the data on the immuno-pharmacological aspects of tick salivary compounds characterized in vitro and/or in vivo and present recent findings on non-coding RNAs that might be exploitable as immunomodulatory therapies.
Collapse
Affiliation(s)
- Hajer Aounallah
- Institut Pasteur de Tunis, LR19IPTX, Service d'Entomologie Médicale, Université de Tunis El Manar, Tunis, Tunisia.,Innovation and Development Laboratory, Innovation and Development Center, Instituto Butantan, São Paulo, Brazil
| | - Chaima Bensaoud
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
| | - Youmna M'ghirbi
- Institut Pasteur de Tunis, LR19IPTX, Service d'Entomologie Médicale, Université de Tunis El Manar, Tunis, Tunisia
| | - Fernanda Faria
- Innovation and Development Laboratory, Innovation and Development Center, Instituto Butantan, São Paulo, Brazil
| | - Jindr Ich Chmelar
- Department of Medical Biology, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
| | - Michail Kotsyfakis
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia.,Department of Medical Biology, Faculty of Science, University of South Bohemia in České Budějovice, České Budějovice, Czechia
| |
Collapse
|
19
|
Kim TK, Tirloni L, Berger M, Diedrich JK, Yates JR, Termignoni C, da Silva Vaz I, Mulenga A. Amblyomma americanum serpin 41 (AAS41) inhibits inflammation by targeting chymase and chymotrypsin. Int J Biol Macromol 2020; 156:1007-1021. [PMID: 32320803 PMCID: PMC11005088 DOI: 10.1016/j.ijbiomac.2020.04.088] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/09/2020] [Accepted: 04/12/2020] [Indexed: 01/01/2023]
Abstract
Ticks inject serine protease inhibitors (serpins) into their feeding sites to evade serine protease-mediated host defenses against tick-feeding. This study describes two highly identitical (97%) but functionally different Amblyomma americanum tick saliva serpins (AAS41 and 46) that are secreted at the inception of tick-feeding. We show that AAS41, which encodes a leucine at the P1 site inhibits inflammation system proteases: chymase (SI = 3.23, Ka = 5.6 ± 3.7X103M-1 s-1) and α-chymotrypsin (SI = 3.18, Ka = 1.6 ± 4.1X104M-1 s-1), while AAS46, which encodes threonine has no inhibitory activity. Similary, rAAS41 inhibits rMCP-1 purified from rat peritonuem derived mast cells. Consistently, rAAS41 inhibits chymase-mediated inflammation induced by compound 48/80 in rat paw edema and vascular permeability models. Native AAS41/46 proteins are among tick saliva immunogens that provoke anti-tick immunity in repeatedly infested animals as revealed by specific reactivity with tick immune sera. Of significance, native AAS41/46 play critical tick-feeding functions in that RNAi-mediated silencing caused ticks to ingest significantly less blood. Importantly, monospecific antibodies to rAAS41 blocked inhibitory functions of rAAS41, suggesting potential for design of vaccine antigens that provokes immunity to neutralize functions of this protein at the tick-feeding site. We discuss our findings with reference to tick-feeding physiology and discovery of effective tick vaccine antigens.
Collapse
Affiliation(s)
- Tae Kwon Kim
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, USA
| | - Lucas Tirloni
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, USA; Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Markus Berger
- Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Jolene K Diedrich
- Foundation Peptide Biology Lab, Salk Institute for Biological Studies, La Jolla, CA, USA; Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - John R Yates
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Carlos Termignoni
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Itabajara da Silva Vaz
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Albert Mulenga
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, USA.
| |
Collapse
|
20
|
Coutinho ML, Bizzarro B, Tirloni L, Berger M, Freire Oliveira CJ, Sá-Nunes A, Silva Vaz I. Rhipicephalus microplus serpins interfere with host immune responses by specifically modulating mast cells and lymphocytes. Ticks Tick Borne Dis 2020; 11:101425. [PMID: 32335011 PMCID: PMC11000276 DOI: 10.1016/j.ttbdis.2020.101425] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 03/10/2020] [Accepted: 03/22/2020] [Indexed: 01/09/2023]
Abstract
Rhipicephalus microplus ticks feed on a bovine host for three weeks. At the attachment site, inflammatory and immune responses are triggered resulting in the recruitment of cells and production of a set of immunological mediators. To oppose the host's immune responses, ticks inoculate bioactive salivary molecules capable of interfering with these defense mechanisms. Serpins are among the most frequent molecules present in tick saliva and have been shown to negatively affect the host's anti-tick immunity. R. microplus has at least eighteen full-length serpins (RmS) and eleven are transcribed during blood feeding. Among them, RmS-3, RmS-6, and RmS-17 are present in the saliva of engorged females. Here, the effect of these serpins on the immune responses was evaluated in cells involved in innate/inflammatory (mast cells and macrophages) and adaptive (T cells) immunity. RmS-3 modulated mast cells due to its inhibitory activity on peritoneal rat chymase and on vascular permeability in acute inflammation. In addition, both RmS-6 and RmS-17 inhibited vascular permeability. Of the three serpins studied, neither affected activation nor inflammatory cytokine production by murine macrophages. On the other hand, RmS-3 and RmS-17 presented an inhibitory effect on the metabolic activity of lymphocytes, with the latter being the most potent, while RmS-6 had no effect on it. This activity was associated with a decrease in lymphocyte proliferation, but not with induction of cell death. The present study highlights the powerful modulatory role of tick salivary serpins in the host's immune system and inspire the discovery of targets for the treatment of inflammatory/immune disorders.
Collapse
Affiliation(s)
- Mariana L Coutinho
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 91501-970, Brazil.
| | - Bruna Bizzarro
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, 05508-000, Brazil.
| | - Lucas Tirloni
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 91501-970, Brazil.
| | - Markus Berger
- Laboratório de Bioquímica Farmacológica, Centro de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, 90035-007, Brazil.
| | - Carlo Jose Freire Oliveira
- Instituto de Ciências Biológicas e Naturais, Universidade Federal do Triângulo Mineiro, Uberaba, MG, 38025-180, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, RJ, 21941-902, Brazil.
| | - Anderson Sá-Nunes
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, 05508-000, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, RJ, 21941-902, Brazil.
| | - Itabajara Silva Vaz
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 91501-970, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, RJ, 21941-902, Brazil; Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 91501-970, Brazil.
| |
Collapse
|
21
|
Catalogue of stage-specific transcripts in Ixodes ricinus and their potential functions during the tick life-cycle. Parasit Vectors 2020; 13:311. [PMID: 32546252 PMCID: PMC7296661 DOI: 10.1186/s13071-020-04173-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 06/05/2020] [Indexed: 12/15/2022] Open
Abstract
Background The castor bean tick Ixodes ricinus is an important vector of several clinically important diseases, whose prevalence increases with accelerating global climate changes. Characterization of a tick life-cycle is thus of great importance. However, researchers mainly focus on specific organs of fed life stages, while early development of this tick species is largely neglected. Methods In an attempt to better understand the life-cycle of this widespread arthropod parasite, we sequenced the transcriptomes of four life stages (egg, larva, nymph and adult female), including unfed and partially blood-fed individuals. To enable a more reliable identification of transcripts and their comparison in all five transcriptome libraries, we validated an improved-fit set of five I. ricinus-specific reference genes for internal standard normalization of our transcriptomes. Then, we mapped biological functions to transcripts identified in different life stages (clusters) to elucidate life stage-specific processes. Finally, we drew conclusions from the functional enrichment of these clusters specifically assigned to each transcriptome, also in the context of recently published transcriptomic studies in ticks. Results We found that reproduction-related transcripts are present in both fed nymphs and fed females, underlining the poorly documented importance of ovaries as moulting regulators in ticks. Additionally, we identified transposase transcripts in tick eggs suggesting elevated transposition during embryogenesis, co-activated with factors driving developmental regulation of gene expression. Our findings also highlight the importance of the regulation of energetic metabolism in tick eggs during embryonic development and glutamate metabolism in nymphs. Conclusions Our study presents novel insights into stage-specific transcriptomes of I. ricinus and extends the current knowledge of this medically important pathogen, especially in the early phases of its development.![]()
Collapse
|
22
|
Xu Z, Yan Y, Cao J, Zhou Y, Zhang H, Xu Q, Zhou J. A family of serine protease inhibitors (serpins) and its expression profiles in the ovaries of Rhipicephalus haemaphysaloides. INFECTION GENETICS AND EVOLUTION 2020; 84:104346. [PMID: 32360539 DOI: 10.1016/j.meegid.2020.104346] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/25/2020] [Accepted: 04/27/2020] [Indexed: 12/28/2022]
Abstract
Serpins are evolutionarily conserved serine protease inhibitors found in many organisms. In arthropods, serpins are involved in feeding, development, oviposition, anti-coagulation and innate immune responses. We characterized of 11 serpins in the tick Rhipicephalus haemaphysaloides. These serpins have orthologous genes in other ticks, as indicated by phylogenetic analysis. Analysis of the reactive center loop and hinge regions of the protein sequences indicated that RHS7 encodes proteins that may lack proteinase inhibitor activity. All R. haemaphysaloides serpins had high amino acid sequence identities to Rhipicephalus microplus serpins. Tissue and temporal transcriptional profiling of eight R. haemaphysaloides serpins located in the ovaries demonstrated that they are transcribed during feeding and oviposition. These suggested their participation in the regulation of tick physiology. Immune serum from rabbits repeatedly infested with larvae, nymphs and adults of R. haemaphysaloides can recognize multiple recombinant serpins, respectively. After gene silencing, the blood feeding to repletion time was significantly longer and the 24 h attachment rate was significantly lower in the RHS3 and RHS7 knock down groups. The RHS9 and RHS11 silenced ticks had significant reduction in repletion time and egg-laying rate. Egg hatchability was significantly decreased in RHS4, RHS5 and RHS9 silenced ticks. All groups had significant reductions in engorged body weight. This study increases information on the serpins of R. haemaphysaloides and suggests that some RHSs are potential targets for development of tick vaccines.
Collapse
Affiliation(s)
- Zhengmao Xu
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Yijie Yan
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China; College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Jie Cao
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.
| | - Yongzhi Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.
| | - Houshuang Zhang
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.
| | - Qianming Xu
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China.
| | - Jinlin Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China.
| |
Collapse
|
23
|
Hart CE, Ribeiro JM, Kazimirova M, Thangamani S. Tick-Borne Encephalitis Virus Infection Alters the Sialome of Ixodes ricinus Ticks During the Earliest Stages of Feeding. Front Cell Infect Microbiol 2020; 10:41. [PMID: 32133301 PMCID: PMC7041427 DOI: 10.3389/fcimb.2020.00041] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/21/2020] [Indexed: 01/14/2023] Open
Abstract
Ticks are hematophagous arthropods that transmit a number of pathogens while feeding. Among these is tick-borne encephalitis virus (TBEV), a flavivirus transmitted by Ixodes ricinus ticks in the temperate zone of Europe. The infection results in febrile illness progressing to encephalitis and meningitis with a possibility of fatality or long-term neurological sequelae. The composition of tick saliva plays an essential role in the initial virus transmission during tick feeding. Ticks secrete a diverse range of salivary proteins to modulate the host response, such as lipocalins to control the itch and inflammatory response, and both proteases and protease inhibitors to prevent blood coagulation. Here, the effect of viral infection of adult females of Ixodes ricinus was studied with the goal of determining how the virus alters the tick sialome to modulate host tissue response at the site of infection. Uninfected ticks or those infected with TBEV were fed on mice and removed and dissected one- and 3-h post-attachment. RNA from the salivary glands of these ticks, as well as from unfed ticks, was extracted and subjected to next-generation sequencing to determine the expression of key secreted proteins at each timepoint. Genes showing statistically significant up- or down-regulation between infected and control ticks were selected and compared to published literature to ascertain their function. From this, the effect of tick viral infection on the modulation of the tick-host interface was determined. Infected ticks were found to differentially express a number of uncategorized genes, proteases, Kunitz-type serine protease inhibitors, cytotoxins, and lipocalins at different timepoints. These virus-induced changes to the tick sialome may play a significant role in facilitating virus transmission during the early stages of tick feeding.
Collapse
Affiliation(s)
- Charles E. Hart
- SUNY Center for Environmental Health and Medicine, SUNY Upstate Medical University, Syracuse, NY, United States
- Institute for Global Health and Translational Science, SUNY Upstate Medical University, Syracuse, NY, United States
- The Institute for Translational Science, University of Texas Medical Branch, Galveston, TX, United States
| | - Jose M. Ribeiro
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States
| | - Maria Kazimirova
- Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Saravanan Thangamani
- SUNY Center for Environmental Health and Medicine, SUNY Upstate Medical University, Syracuse, NY, United States
- Institute for Global Health and Translational Science, SUNY Upstate Medical University, Syracuse, NY, United States
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY, United States
| |
Collapse
|
24
|
Kim TK, Tirloni L, Pinto AFM, Diedrich JK, Moresco JJ, Yates JR, da Silva Vaz I, Mulenga A. Time-resolved proteomic profile of Amblyomma americanum tick saliva during feeding. PLoS Negl Trop Dis 2020; 14:e0007758. [PMID: 32049966 PMCID: PMC7041860 DOI: 10.1371/journal.pntd.0007758] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 02/25/2020] [Accepted: 01/03/2020] [Indexed: 12/26/2022] Open
Abstract
Amblyomma americanum ticks transmit more than a third of human tick-borne disease (TBD) agents in the United States. Tick saliva proteins are critical to success of ticks as vectors of TBD agents, and thus might serve as targets in tick antigen-based vaccines to prevent TBD infections. We describe a systems biology approach to identify, by LC-MS/MS, saliva proteins (tick = 1182, rabbit = 335) that A. americanum ticks likely inject into the host every 24 h during the first 8 days of feeding, and towards the end of feeding. Searching against entries in GenBank grouped tick and rabbit proteins into 27 and 25 functional categories. Aside from housekeeping-like proteins, majority of tick saliva proteins belong to the tick-specific (no homology to non-tick organisms: 32%), protease inhibitors (13%), proteases (8%), glycine-rich proteins (6%) and lipocalins (4%) categories. Global secretion dynamics analysis suggests that majority (74%) of proteins in this study are associated with regulating initial tick feeding functions and transmission of pathogens as they are secreted within 24–48 h of tick attachment. Comparative analysis of the A. americanum tick saliva proteome to five other tick saliva proteomes identified 284 conserved tick saliva proteins: we speculate that these regulate critical tick feeding functions and might serve as tick vaccine antigens. We discuss our findings in the context of understanding A. americanum tick feeding physiology as a means through which we can find effective targets for a vaccine against tick feeding. The lone star tick, Amblyomma americanum, is a medically important species in US that transmits 5 of the 16 reported tick-borne disease agents. Most recently, bites of this tick were associated with red meat allergies in humans. Vaccination of animals against tick feeding has been shown to be a sustainable and an effective alternative to current acaricide based tick control method which has several limitations. The pre-requisite to tick vaccine development is to understand the molecular basis of tick feeding physiology. Toward this goal, this study has identified proteins that A. americanum ticks inject into the host at different phases of its feeding cycle. This data set has identified proteins that A. americanum inject into the host within 24–48 h of feeding before it starts to transmit pathogens. Of high importance, we identified 284 proteins that are present in saliva of other tick species, which we suspect regulate important role(s) in tick feeding success and might represent rich source target antigens for a tick vaccine. Overall, this study provides a foundation to understand the molecular mechanisms regulating tick feeding physiology.
Collapse
Affiliation(s)
- Tae Kwon Kim
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, Texas, United States of America
| | - Lucas Tirloni
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, Texas, United States of America
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Antônio F. M. Pinto
- Foundation Peptide Biology Lab, Salk Institute for Biological Studies, La Jolla, Californai, United States of America
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, United States of America
| | - Jolene K. Diedrich
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, United States of America
- Mass Spectrometry Core, Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - James J. Moresco
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, United States of America
- Mass Spectrometry Core, Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - John R. Yates
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, United States of America
| | - Itabajara da Silva Vaz
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Faculdade de Veterinária, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Albert Mulenga
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|
25
|
Bakshi M, Kim TK, Porter L, Mwangi W, Mulenga A. Amblyomma americanum ticks utilizes countervailing pro and anti-inflammatory proteins to evade host defense. PLoS Pathog 2019; 15:e1008128. [PMID: 31756216 PMCID: PMC6897422 DOI: 10.1371/journal.ppat.1008128] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 12/06/2019] [Accepted: 10/05/2019] [Indexed: 02/07/2023] Open
Abstract
Feeding and transmission of tick-borne disease (TBD) agents by ticks are facilitated by tick saliva proteins (TSP). Thus, defining functional roles of TSPs in tick evasion is expected to reveal potential targets in tick-antigen based vaccines to prevent TBD infections. This study describes two types of Amblyomma americanum TSPs: those that are similar to LPS activate macrophage (MΦ) to express pro-inflammation (PI) markers and another set that suppresses PI marker expression by activated MΦ. We show that similar to LPS, three recombinant (r) A. americanum insulin-like growth factor binding-related proteins (rAamIGFBP-rP1, rAamIGFBP-rP6S, and rAamIGFBP-rP6L), hereafter designated as PI-rTSPs, stimulated both PBMC -derived MΦ and mice RAW 267.4 MΦ to express PI co-stimulatory markers, CD40, CD80, and CD86 and cytokines, TNFα, IL-1, and IL-6. In contrast, two A. americanum tick saliva serine protease inhibitors (serpins), AAS27 and AAS41, hereafter designated as anti-inflammatory (AI) rTSPs, on their own did not affect MΦ function or suppress expression of PI markers, but enhanced expression of AI cytokines (IL-10 and TGFβ) in MΦ that were pre-activated by LPS or PI-rTSPs. Mice paw edema test demonstrated that in vitro validated PI- and AI-rTSPs are functional in vivo since injection of HEK293-expressed PI-rTSPs (individually or as a cocktail) induced edema comparable to carrageenan-induced edema and was characterized by upregulation of CD40, CD80, CD86, TNF-α, IL-1, IL-6, and chemokines: CXCL1, CCL2, CCL3, CCL5, and CCL11, whereas the AI-rTSPs (individually and cocktail) were suppressive. We propose that the tick may utilize countervailing PI and AI TSPs to regulate evasion of host immune defenses whereby TSPs such as rAamIGFBP-rPs activate host immune cells and proteins such as AAS27 and AAS41 suppress the activated immune cells. Several studies have documented immuno-suppressive activities in whole tick saliva and salivary gland protein extracts. We have made contribution toward understanding the molecular basis of tick feeding, as we have described functions of defined tick saliva immuno-modulatory proteins. We have shown that A. americanum injects two groups of functionally opposed tick saliva proteins: those that could counter-intuitively be characterized as pro-host defense, and those that are expected to have anti-host immune defense functions. Based on our data, we propose that the tick evades host defense using countervailing pro- and anti- inflammatory proteins in which the pro-host defense tick saliva proteins stimulate host immune cells such as macrophages, and the anti-host defense tick saliva proteins suppress functions of the activated immune cells.
Collapse
Affiliation(s)
- Mariam Bakshi
- Department of Veterinary Pathobiology, College of Veterinary Medicine, TAMU, College Station, Texas, United States of America
| | - Tae Kwon Kim
- Department of Veterinary Pathobiology, College of Veterinary Medicine, TAMU, College Station, Texas, United States of America
| | - Lindsay Porter
- Department of Veterinary Pathobiology, College of Veterinary Medicine, TAMU, College Station, Texas, United States of America
| | - Waithaka Mwangi
- Department of Veterinary Pathobiology, College of Veterinary Medicine, TAMU, College Station, Texas, United States of America
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
| | - Albert Mulenga
- Department of Veterinary Pathobiology, College of Veterinary Medicine, TAMU, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|