1
|
Brindle HE, Choisy M, Christley R, French N, Griffiths M, Thai PQ, van Doorn HR, Nadjm B. Review of the aetiologies of central nervous system infections in Vietnam. Front Public Health 2025; 12:1396915. [PMID: 39959908 PMCID: PMC11825750 DOI: 10.3389/fpubh.2024.1396915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 12/04/2024] [Indexed: 02/21/2025] Open
Abstract
Central nervous system (CNS) infections are an important cause of morbidity and mortality in Vietnam, with many studies conducted to determine the aetiology. However, the cause remains unknown in a large proportion of cases. Although a systematic review of the aetiologies of CNS infections was conducted in the Mekong region, there are no known published reviews of the studies specifically in Vietnam. Here, we review the cause of CNS infections in Vietnam while also considering the potential aetiologies where a cause was not identified, based on the literature from the region. In particular, we focus on the most common pathogens in adults and children including Streptococcus suis which is associated with the consumption of raw pig products, and Japanese encephalitis virus, a mosquito-borne pathogen. We also discuss pathogens less commonly known to cause CNS infections in Vietnam but have been detected in neighbouring countries such as Orientia tsutsugamushi, Rickettsia typhi and Leptospira species and how these may contribute to the unknown causes in Vietnam. We anticipate that this review may help guide future public health measures to reduce the burden of known pathogens and broaden testing to help identify additional aetiologies.
Collapse
Affiliation(s)
- Hannah E. Brindle
- Institute of Infection, Veterinary and Ecological Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
- Oxford University Clinical Research Unit, Hanoi, Vietnam
| | - Marc Choisy
- Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| | - Robert Christley
- Institute of Infection, Veterinary and Ecological Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Neil French
- Institute of Infection, Veterinary and Ecological Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Michael Griffiths
- Institute of Infection, Veterinary and Ecological Sciences, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Pham Quang Thai
- National Institute of Hygiene and Epidemiology, Hanoi, Vietnam
| | - H. Rogier van Doorn
- Oxford University Clinical Research Unit, Hanoi, Vietnam
- Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, United Kingdom
| | - Behzad Nadjm
- Oxford University Clinical Research Unit, Hanoi, Vietnam
- The Medical Research Council, The Gambia at London School of Hygiene and Tropical Medicine, Fajara, Gambia
| |
Collapse
|
2
|
Hsueh YL, Chen HF, Chang MC, Yen TY, Su CL, Chiu HC, Hu HC, Chung YT, Shu PY, Yang SL. Epidemiology of Murine Typhus in Taiwan from 2013 to 2020. Am J Trop Med Hyg 2024; 110:768-778. [PMID: 38471176 PMCID: PMC10993848 DOI: 10.4269/ajtmh.23-0155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 12/13/2023] [Indexed: 03/14/2024] Open
Abstract
Murine typhus is a flea-borne disease caused by Rickettsia typhi infection. The disease is a notifiable infectious disease in Taiwan. Specimens from suspected cases are required to be sent to the Taiwan Centers for Disease Control and Prevention for laboratory diagnosis. In this study, 204 cases of murine typhus were identified by bacterial isolation, real-time polymerase chain reaction, or indirect immunofluorescence assay between 2013 and 2020. The average incidence rate was 0.11/100,000 person-years (95% CI: 0.08-0.13). Murine typhus occurred throughout the year, but it was most prevalent in summer (May to August). The majority of patients were males (75%), residents of Kaohsiung city (31%), and worked in agriculture, forestry, fishing, and animal husbandry (27%). Fever was the most common symptom, present in 95.6% of patients, followed by headache (41%), myalgia (33%), and liver dysfunction (33%). Only 13% of patients had a rash. Up to 80% of cases were among hospitalized patients, and 43% of patients developed severe manifestations. Serological assays also indicated coinfection events. Seven patients showed a 4-fold increase in antibody titers against Orientia tsutsugamushi (N = 2), Coxiella burnetii (n = 2), and Leptospira (N = 3). In conclusion, murine typhus is an endemic and important zoonotic rickettsial disease in Taiwan that cannot be ignored. Further epidemiological surveillance and clinical characteristics should be continuously investigated to prevent and control murine typhus.
Collapse
Affiliation(s)
- Yeou-Lin Hsueh
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, Taiwan, Republic of China
| | - Hsiang-Fei Chen
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, Taiwan, Republic of China
| | - Mei-Chun Chang
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, Taiwan, Republic of China
| | - Tsai-Ying Yen
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, Taiwan, Republic of China
| | - Chien-Ling Su
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, Taiwan, Republic of China
| | - Hsien-Chun Chiu
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, Taiwan, Republic of China
| | - Huai-Chin Hu
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, Taiwan, Republic of China
| | - Ya-Ting Chung
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, Taiwan, Republic of China
| | - Pei-Yun Shu
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, Taiwan, Republic of China
| | - Su-Lin Yang
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, Taiwan, Republic of China
| |
Collapse
|
3
|
Zhang Y, Hai Y, Duan B, Long H, Xie X, Teng Z, Yin F, Wang M, Xiong Y, Shao Z, Guo W, Qin A. A seminested recombinase polymerase amplification assay to detect rickettsial pathogens in clinical samples. Diagn Microbiol Infect Dis 2023; 107:116067. [PMID: 37751629 DOI: 10.1016/j.diagmicrobio.2023.116067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 09/28/2023]
Abstract
Treatment at the early stage of onset is vital for the prognosis of rickettsioses. But the absence of specific clinical symptoms complicates the diagnosis of this condition. Herein we established a seminested recombinase polymerase amplification assay (snRPA-nfo) that enables quick detection and differentiation of rickettsial pathogens in clinical samples with high sensitivity and specificity. The conserved 17-kDa protein gene of Rickettsia sibirica and the 47-kDa protein gene of Orientia tsutsugamushi were targeted for the duplex RPA-nfo assay. The snRPA-nfo assay exhibited an increased LOD in spiked blood samples, up to 1000-fold in comparison to standard RPA-nfo, and a better detection rate (83.3%, 5/6) than TaqMan PCR (16.6%, 1/6, Ct ≤ 35) in clinically confirmed patient blood samples. Thus, snRPA-nfo assay represents a promising alternative to TaqMan PCR in the early diagnosis of rickettsioses for point-of-care testing as well as in resource-limited settings.
Collapse
Affiliation(s)
- Ying Zhang
- Center for Disease Control and Prevention of Xilingol League, Xilinhaote, Inner Mongolia, China; State Key Laboratory of Infectious Diseases Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yan Hai
- Center for Disease Control and Prevention of Inner Mongolia, Hohhot, Inner Mongolia, China
| | - Biao Duan
- Institute of Endemic Diseases Control and Prevention of Yunnan, Dali, Yunnan, China
| | - Hu Long
- Center for Disease Control and Prevention of Guilin City, Guilin, Guangxi, China
| | - Xiaofei Xie
- State Key Laboratory of Infectious Diseases Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China; Hainan Medical College, Haikou, Hainan, China
| | - Zhongqiu Teng
- State Key Laboratory of Infectious Diseases Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Feifei Yin
- Hainan Medical College, Haikou, Hainan, China
| | - Mingliu Wang
- Center for Disease Control and Prevention of Guangxi, Nanning, Guangxi, China
| | - Yanwen Xiong
- State Key Laboratory of Infectious Diseases Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhujun Shao
- State Key Laboratory of Infectious Diseases Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Weidong Guo
- Center for Disease Control and Prevention of Xilingol League, Xilinhaote, Inner Mongolia, China; Institute of Endemic Diseases Control and Prevention of Yunnan, Dali, Yunnan, China.
| | - Aiping Qin
- State Key Laboratory of Infectious Diseases Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.
| |
Collapse
|
4
|
Varadarajan R, Patel AP, Rashidi K, Oh A, Rahman R, Neal R. Flea-Borne Typhus Presenting with Acalculous Cholecystitis and Severe Anemia. Case Rep Infect Dis 2023; 2023:5510295. [PMID: 37954983 PMCID: PMC10637845 DOI: 10.1155/2023/5510295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/05/2023] [Accepted: 10/18/2023] [Indexed: 11/14/2023] Open
Abstract
Background Flea-borne typhus (FBT), an uncommon illness in the United States, typically presents as a high continuous fever with commonly associated symptoms including headache, myalgias, and rashes on the trunk and extremities. Patients infected with FBT may also present with atypical symptoms. As such, the combination of its relatively low incidence in the United States coupled with its variability in associated symptoms poses a diagnostic challenge for clinicians; early empiric treatment with doxycycline is warranted prior to a definitive diagnosis to reduce the risk of damage to vital organs. Case Report. This case describes a 54-year-old male who presented to an emergency room in Houston, Texas, with one week of constant right upper quadrant abdominal pain and fevers up to 40°C. The patient was initially diagnosed with Grade III severe acute cholangitis after abdominal ultrasound revealed gallbladder sludge and wall thickening without ductal dilatation, but a subsequent endoscopic retrograde cholangiopancreatography was unremarkable. Following intermittent fevers and worsening anemia, the patient was started on oral doxycycline for atypical infection, and an infectious disease workup subsequently returned a positive titer for Rickettsia typhi. He experienced rapid symptomatic and clinical improvement, and the patient was discharged home with a final diagnosis of flea-borne typhus. Conclusion Albeit uncommon, the presentation of this patient's symptoms and final diagnosis of flea-borne typhus demonstrates the importance of (1) keeping atypical infections such as FBT in the differential diagnosis and (2) beginning empiric treatment to prevent damage to vital organs if suspicion of FBT is high.
Collapse
Affiliation(s)
- Ramya Varadarajan
- Texas A&M College of Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Ashmi P. Patel
- Department of Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Keyvon Rashidi
- Texas A&M College of Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Albert Oh
- Texas A&M College of Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
| | - Rashmeen Rahman
- Department of Endocrinology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Ryan Neal
- Department of Medicine, Houston Methodist Hospital, Houston, TX 77030, USA
| |
Collapse
|
5
|
Chinchilla D, Sánchez I, Chung I, Gleaton AN, Kato CY. Severe Rickettsia typhi Infections, Costa Rica. Emerg Infect Dis 2023; 29:2374-2376. [PMID: 37877575 PMCID: PMC10617344 DOI: 10.3201/eid2911.221561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023] Open
Abstract
Murine typhus is a febrile, fleaborne disease caused by infection with Rickettsia typhi bacteria. Cases can range from mild and nonspecific to fatal. We report 2 cases of murine typhus in Costa Rica, confirming the presence and circulation of R. typhi causing severe disease in the country.
Collapse
|
6
|
Blanton LS. Murine Typhus: A Review of a Reemerging Flea-Borne Rickettsiosis with Potential for Neurologic Manifestations and Sequalae. Infect Dis Rep 2023; 15:700-716. [PMID: 37987401 PMCID: PMC10660532 DOI: 10.3390/idr15060063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 11/22/2023] Open
Abstract
Murine typhus is an acute febrile illness caused by Rickettsia typhi, an obligately intracellular Gram-negative coccobacillus. Rats (Rattus species) and their fleas (Xenopsylla cheopis) serve as the reservoir and vector of R. typhi, respectively. Humans become infected when R. typhi-infected flea feces are rubbed into flea bite wounds or onto mucous membranes. The disease is endemic throughout much of the world, especially in tropical and subtropical seaboard regions where rats are common. Murine typhus is reemerging as an important cause of febrile illness in Texas and Southern California, where an alternate transmission cycle likely involves opossums (Didelphis virginiana) and cat fleas (Ctenocephalides felis). Although primarily an undifferentiated febrile illness, a range of neurologic manifestations may occur, especially when treatment is delayed. Serology is the mainstay of diagnostic testing, but confirmation usually requires demonstrating seroconversion or a fourfold increase in antibody titer from acute- and convalescent-phase sera (antibodies are seldom detectable in the first week of illness). Thus, early empiric treatment with doxycycline, the drug of choice, is imperative. The purpose of this review is to highlight murine typhus as an important emerging and reemerging infectious disease, review its neurologic manifestations, and discuss areas in need of further study.
Collapse
Affiliation(s)
- Lucas S Blanton
- Department Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
7
|
Alabbas AB. Identification of promising methionine aminopeptidase enzyme inhibitors: A combine study of comprehensive virtual screening and dynamics simulation study. Saudi Pharm J 2023; 31:101745. [PMID: 37638221 PMCID: PMC10448168 DOI: 10.1016/j.jsps.2023.101745] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/05/2023] [Indexed: 08/29/2023] Open
Abstract
Methionine aminopeptidase (MetAP) enzymes play a critical role in bacterial cell survival by cleaving formyl-methionine initiators at N-terminal of nascent protein, a process which is vital in proper protein folding. This makes MetAP an attractive and novel antibacterial target to unveil promising antibiotics. In this study, the crystal structure of R. prowazekii MetAP was used in structure-based virtual screening of drug libraries such as Asinex antibacterial library and Comprehensive Marine Natural Products Database (CMNPD) to identify promising lead molecules against the enzyme. This shortlisted three drug molecules; BDE-25098678, BDE-30686468 and BDD_25351157 as most potent leads that showed strong binding to the MetAP enzyme. The static docked conformation of the compounds to the MetAP was reevaluated in molecular dynamics simulation studies. The analysis observed the docked complexes as stable structure with no major local or global deviations noticed. These findings suggest the formation of strong intermolecular docked complexes, which showed stable dynamics and atomic level interactions network. The binding free energy analysis predicted net MMGBSA energy of complexes as: BDE-25098678 (-73.41 kcal/mol), BDE-30686468 (-59.93 kcal/mol), and BDD_25351157 (-75.39 kcal/mol). In case of MMPBSA, the complexes net binding energy was as; BDE-25098678 (-77.47 kcal/mol), BDE-30686468 (-69.47 kcal/mol), and BDD_25351157 (-75.6 kcal/mol). Further, the compounds were predicted to follow the famous Lipinski rule of five and have non-toxic, non-carcinogenic and non-mutagenic profile. The screened compounds might be used in experimental test to highlight the real anti- R. prowazekii MetAP activity.
Collapse
Affiliation(s)
- Alhumaidi B. Alabbas
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|
8
|
Helminiak L, Mishra S, Keun Kim H. Pathogenicity and virulence of Rickettsia. Virulence 2022; 13:1752-1771. [PMID: 36208040 PMCID: PMC9553169 DOI: 10.1080/21505594.2022.2132047] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/16/2022] [Accepted: 09/29/2022] [Indexed: 12/24/2022] Open
Abstract
Rickettsiae include diverse Gram-negative microbial species that exhibit obligatory intracellular lifecycles between mammalian hosts and arthropod vectors. Human infections with arthropod-borne Rickettsia continue to cause significant morbidity and mortality as recent environmental changes foster the proliferation of arthropod vectors and increased exposure to humans. However, the technical difficulties in working with Rickettsia have delayed our progress in understanding the molecular mechanisms involved in rickettsial pathogenesis and disease transmission. Recent advances in developing genetic tools for Rickettsia have enabled investigators to identify virulence genes, uncover molecular functions, and characterize host responses to rickettsial determinants. Therefore, continued efforts to determine virulence genes and their biological functions will help us understand the underlying mechanisms associated with arthropod-borne rickettsioses.
Collapse
Affiliation(s)
| | | | - Hwan Keun Kim
- Center for Infectious Diseases, Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
9
|
Systematic Surveillance of Rickettsial Diseases in 27 Hospitals from 26 Provinces throughout Vietnam. Trop Med Infect Dis 2022; 7:tropicalmed7060088. [PMID: 35736967 PMCID: PMC9231031 DOI: 10.3390/tropicalmed7060088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/28/2022] [Accepted: 05/29/2022] [Indexed: 11/27/2022] Open
Abstract
In Vietnam, the public health burden of rickettsial infections continues to be underestimated due to knowledge gaps in the epidemiology of these diseases. We conducted a systematic study among 27 hospitals from 26 provinces in eight ecological regions throughout Vietnam to investigate the prevalence, distribution, and clinical characteristics of rickettsial diseases. We recruited 1834 patients in the study from April 2018 to October 2019. The findings showed that rickettsial diseases were common among undifferentiated febrile patients, with 564 (30.8%) patients positive by qPCR for scrub typhus, murine typhus or spotted fever. Scrub typhus (484, 85.8%) was the most common rickettsial disease, followed by murine typhus (67, 11.9%) and spotted fever (10, 1.8%). Rickettsial diseases were widely distributed in all regions of Vietnam and presented with nonspecific clinical manifestations.
Collapse
|
10
|
Bottieau E, Van Duffel L, El Safi S, Koirala KD, Khanal B, Rijal S, Bhattarai NR, Phe T, Lim K, Mukendi D, Kalo JRL, Lutumba P, Barbé B, Jacobs J, Van Esbroeck M, Foqué N, Tsoumanis A, Parola P, Yansouni CP, Boelaert M, Verdonck K, Chappuis F. Etiological spectrum of persistent fever in the tropics and predictors of ubiquitous infections: a prospective four-country study with pooled analysis. BMC Med 2022; 20:144. [PMID: 35491421 PMCID: PMC9059373 DOI: 10.1186/s12916-022-02347-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 03/21/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Persistent fever, defined as fever lasting for 7 days or more at first medical evaluation, has been hardly investigated as a separate clinical entity in the tropics. This study aimed at exploring the frequencies and diagnostic predictors of the ubiquitous priority (i.e., severe and treatable) infections causing persistent fever in the tropics. METHODS In six different health settings across four countries in Africa and Asia (Sudan, Democratic Republic of Congo [DRC], Nepal, and Cambodia), consecutive patients aged 5 years or older with persistent fever were prospectively recruited from January 2013 to October 2014. Participants underwent a reference diagnostic workup targeting a pre-established list of 12 epidemiologically relevant priority infections (i.e., malaria, tuberculosis, HIV, enteric fever, leptospirosis, rickettsiosis, brucellosis, melioidosis, relapsing fever, visceral leishmaniasis, human African trypanosomiasis, amebic liver abscess). The likelihood ratios (LRs) of clinical and basic laboratory features were determined by pooling all cases of each identified ubiquitous infection (i.e., found in all countries). In addition, we assessed the diagnostic accuracy of five antibody-based rapid diagnostic tests (RDTs): Typhidot Rapid IgM, Test-itTM Typhoid IgM Lateral Flow Assay, and SD Bioline Salmonella typhi IgG/IgM for Salmonella Typhi infection, and Test-itTM Leptospira IgM Lateral Flow Assay and SD Bioline Leptospira IgG/IgM for leptospirosis. RESULTS A total of 1922 patients (median age: 35 years; female: 51%) were enrolled (Sudan, n = 667; DRC, n = 300; Nepal, n = 577; Cambodia, n = 378). Ubiquitous priority infections were diagnosed in 452 (23.5%) participants and included malaria 8.0% (n = 154), tuberculosis 6.7% (n = 129), leptospirosis 4.0% (n = 77), rickettsiosis 2.3% (n = 44), enteric fever 1.8% (n = 34), and new HIV diagnosis 0.7% (n = 14). The other priority infections were limited to one or two countries. The only features with a positive LR ≥ 3 were diarrhea for enteric fever and elevated alanine aminotransferase level for enteric fever and rickettsiosis. Sensitivities ranged from 29 to 67% for the three RDTs targeting S. Typhi and were 9% and 16% for the two RDTs targeting leptospirosis. Specificities ranged from 86 to 99% for S. Typhi detecting RDTs and were 96% and 97% for leptospirosis RDTs. CONCLUSIONS Leptospirosis, rickettsiosis, and enteric fever accounted each for a substantial proportion of the persistent fever caseload across all tropical areas, in addition to malaria, tuberculosis, and HIV. Very few discriminative features were however identified, and RDTs for leptospirosis and Salmonella Typhi infection performed poorly. Improved field diagnostics are urgently needed for these challenging infections. TRIAL REGISTRATION NCT01766830 at ClinicalTrials.gov.
Collapse
Affiliation(s)
- Emmanuel Bottieau
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium.
| | - Lukas Van Duffel
- Infectious Diseases Operative Unit, Santa Maria delle Croci Hospital, AUSL Romagna, Ravenna, Italy
| | - Sayda El Safi
- Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | | | - Basudha Khanal
- B. P. Koirala Institute of Health Sciences, Dharan, Nepal
| | - Suman Rijal
- B. P. Koirala Institute of Health Sciences, Dharan, Nepal
| | | | - Thong Phe
- Sihanouk Hospital Center of HOPE, Phnom Penh, Cambodia
| | - Kruy Lim
- Sihanouk Hospital Center of HOPE, Phnom Penh, Cambodia
| | - Deby Mukendi
- Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of Congo.,Service de neurologie, Université de Kinshasa, Kinshasa, Democratic Republic of Congo
| | - Jean-Roger Lilo Kalo
- Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of Congo
| | - Pascal Lutumba
- Institut National de Recherche Biomédicale, Kinshasa, Democratic Republic of Congo
| | - Barbara Barbé
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Jan Jacobs
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium.,Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Marjan Van Esbroeck
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Nikki Foqué
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Achilleas Tsoumanis
- Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Philippe Parola
- IHU-Méditerranée Infection & Aix-Marseille University, Marseille, France
| | - Cedric P Yansouni
- JD MacLean Centre for Tropical Diseases, McGill University Health Centre, Montreal, Canada
| | - Marleen Boelaert
- Department of Public Health, Institute of Tropical Medicine, Antwerp, Belgium
| | - Kristien Verdonck
- Department of Public Health, Institute of Tropical Medicine, Antwerp, Belgium
| | - François Chappuis
- Division of Tropical and Humanitarian Medicine, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| |
Collapse
|
11
|
Rydzak CE, Lima AS, Meirelles GS. Endemic Thoracic Infections in Sub-Saharan Africa. Radiol Clin North Am 2022; 60:461-479. [DOI: 10.1016/j.rcl.2022.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Ngamprasertchai T, Hanboonkunupakarn B, Piyaphanee W. Rickettsiosis in Southeast Asia: Summary for International Travellers during the COVID-19 Pandemic. Trop Med Infect Dis 2022; 7:tropicalmed7020018. [PMID: 35202213 PMCID: PMC8879928 DOI: 10.3390/tropicalmed7020018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 01/23/2022] [Accepted: 01/25/2022] [Indexed: 02/04/2023] Open
Abstract
Rickettsiosis is an important cause of febrile illness among travellers visiting Southeast Asia (SEA). The true incidence of rickettsiosis is underestimated; however, murine typhus and scrub typhus are widely distributed across SEA. Among travellers visiting SEA, scrub typhus was mostly reported from Thailand, whereas murine typhus was frequently found in Indonesia. Although most cases are self-limited or present with mild symptoms, a few cases with severe clinical manifestations have been reported. Doxycycline remains the key treatment of rickettsiosis. Some travellers, such as backpackers, trekkers, or cave explorers, are at a higher risk for rickettsiosis than others. Therefore, in resource-limited conditions, empirical treatment should be considered in these travellers. The coronavirus disease 2019 (COVID-19) pandemic has contributed to difficulty in the diagnosis of rickettsiosis because of the clinical similarities between these diseases. In addition, physical distancing mandated by COVID-19 management guidelines limits accurate physical examination, resulting in misdiagnosis and delayed treatment of rickettsiosis. This review summarises the characteristics of murine typhus and scrub typhus, describes travel-associated rickettsiosis, and discusses the impact of the COVID-19 pandemic on rickettsiosis.
Collapse
|
13
|
Morelli S, Diakou A, Di Cesare A, Colombo M, Traversa D. Canine and Feline Parasitology: Analogies, Differences, and Relevance for Human Health. Clin Microbiol Rev 2021; 34:e0026620. [PMID: 34378954 PMCID: PMC8404700 DOI: 10.1128/cmr.00266-20] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Cats and dogs are treated as family members by most pet owners. Therefore, a high quality of veterinary care and preventive medicine is imperative for animal health and welfare and for the protection of humans from zoonotic pathogens. There is a general perception of cats being treated as "small dogs," especially in the field of clinical parasitology. As a result, several important differences between the two animal species are not taken into proper consideration and are often overlooked. Dogs and cats are profoundly different under evolutionary, biological, ethological, behavioral, and immunological standpoints. These differences impact clinical features, diagnosis, and control of canine and feline parasites and transmission risk for humans. This review outlines the most common parasitoses and vector-borne diseases of dogs and cats, with a focus on major convergences and divergences, and discusses parasites that have (i) evolved based on different preys for dogs and cats, (ii) adapted due to different immunological or behavioral animal profiles, and (iii) developed more similarities than differences in canine and feline infections and associated diseases. Differences, similarities, and peculiarities of canine and feline parasitology are herein reviewed in three macrosections: (i) carnivorism, vegetarianism, anatomy, genetics, and parasites, (ii) evolutionary adaptation of nematodes, including veterinary reconsideration and zoonotic importance, and (iii) behavior and immune system driving ectoparasites and transmitted diseases. Emphasis is given to provide further steps toward a more accurate evaluation of canine and feline parasitology in a changing world in terms of public health relevance and One Health approach.
Collapse
Affiliation(s)
- Simone Morelli
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| | - Anastasia Diakou
- Faculty of Veterinary Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Angela Di Cesare
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| | | | - Donato Traversa
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| |
Collapse
|
14
|
Molecular Evidence for Flea-Borne Rickettsiosis in Febrile Patients from Madagascar. Pathogens 2021; 10:pathogens10111482. [PMID: 34832637 PMCID: PMC8621948 DOI: 10.3390/pathogens10111482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/02/2021] [Accepted: 11/09/2021] [Indexed: 11/16/2022] Open
Abstract
Rickettsiae may cause febrile infections in humans in tropical and subtropical regions. From Madagascar, no molecular data on the role of rickettsioses in febrile patients are available. Blood samples from patients presenting with fever in the area of the capital Antananarivo were screened for the presence of rickettsial DNA. EDTA (ethylenediaminetetraacetic acid) blood from 1020 patients presenting with pyrexia > 38.5 °C was analyzed by gltA-specific qPCR. Positive samples were confirmed by ompB-specific qPCR. From confirmed samples, the gltA amplicons were sequenced and subjected to phylogenetic analysis. From five gltA-reactive samples, two were confirmed by ompB-specific qPCR. The gltA sequence in the sample taken from a 38-year-old female showed 100% homology with R. typhi. The other sample taken from a 1.5-year-old infant was 100% homologous to R. felis. Tick-borne rickettsiae were not identified. The overall rate of febrile patients with molecular evidence for a rickettsial infection from the Madagascan study site was 0.2% (2/1020 patients). Flea-borne rickettsiosis is a rare but neglected cause of infection in Madagascar. Accurate diagnosis may prompt adequate antimicrobial treatment.
Collapse
|
15
|
Das A, Kim K, Park SG, Choi N, Choo J. SERS-based serodiagnosis of acute febrile diseases using plasmonic nanopopcorn microarray platforms. Biosens Bioelectron 2021; 192:113525. [PMID: 34325318 DOI: 10.1016/j.bios.2021.113525] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/14/2021] [Accepted: 07/17/2021] [Indexed: 10/20/2022]
Abstract
We report a surface-enhanced Raman scattering (SERS)-based immunoassay platform for the rapid diagnosis of scrub typhus and murine typhus, which are the most common acute febrile diseases in South Korea. A microarray device, composed of multiple gold nanopopcorn substrates capable of detecting ultra-sensitive biomarkers, was used as a multiplex SERS-based assay platform. Sequentially diluted titers of Orientia tsutsugamushi and Rickettsia typhi specific human IgG/IgM antibodies, which are biomarkers of two typhus diseases, were analyzed by Raman spectroscopy, and the peak intensity was plotted against the different titer concentration range (0-2048 and 0-1024 for O. tsutsugamushi IgG/IgM and 0-8192 and 0-256 for R. typhi IgG/IgM) to generate calibration curves. The sensitivities and limits of detection (LODs) determined for four different IgG/IgM antibodies were significantly lower than those for the ELISA method. The LODs of titer concentrations for O. tsutsugamushi IgG/IgM and R. typhi IgG/IgM are determined to be 20.4, 7.03, 16.8 and 12.5, respectively. The LOD values were all lower than the cut-off values (256, 16, 128, and 64) used for clinical diagnosis, which means that this assay platform can diagnose two typhus diseases with high sensitivity. When the microarray sensors are combined with portable Raman spectrophotometers, which are commercially available worldwide, it is also possible to directly diagnose a patient in the field without sending their blood sample to a hospital.
Collapse
Affiliation(s)
- Anupam Das
- Department of Chemistry, Chung-Ang University, Seoul, 06974, South Korea
| | - Kihyun Kim
- Department of Chemistry, Chung-Ang University, Seoul, 06974, South Korea
| | - Sung-Gyu Park
- Advanced Nano-Surface Department, Korea Institute of Materials Science (KIMS), Changwon, 51508, South Korea
| | - Namhyun Choi
- Department of Chemistry, Chung-Ang University, Seoul, 06974, South Korea.
| | - Jaebum Choo
- Department of Chemistry, Chung-Ang University, Seoul, 06974, South Korea.
| |
Collapse
|
16
|
Um J, Nam Y, Lim JN, Kim M, An Y, Hwang SH, Park JS. Seroprevalence of scrub typhus, murine typhus and spotted fever groups in North Korean refugees. Int J Infect Dis 2021; 106:23-28. [DOI: 10.1016/j.ijid.2021.02.111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 12/31/2022] Open
|
17
|
Caravedo Martinez MA, Ramírez-Hernández A, Blanton LS. Manifestations and Management of Flea-Borne Rickettsioses. Res Rep Trop Med 2021; 12:1-14. [PMID: 33574726 PMCID: PMC7873028 DOI: 10.2147/rrtm.s274724] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 01/26/2021] [Indexed: 12/16/2022] Open
Abstract
Murine typhus and flea-borne spotted fever are undifferentiated febrile illnesses caused by Rickettsia typhi and Rickettsia felis, respectively. These organisms are small obligately intracellular bacteria and are transmitted to humans by fleas. Murine typhus is endemic to coastal areas of the tropics and subtropics (especially port cities), where rats are the primary mammalian host and rat fleas (Xenopsylla cheopis) are the vector. In the United States, a cycle of transmission involving opossums and cat fleas (Ctenocephalides felis) are the presumed reservoir and vector, respectively. The incidence and distribution of murine typhus appear to be increasing in endemic areas of the US. Rickettsia felis has also been reported throughout the world and is found within the ubiquitous cat flea. Flea-borne rickettsioses manifest as an undifferentiated febrile illness. Headache, malaise, and myalgia are frequent symptoms that accompany fever. The incidence of rash is variable, so its absence should not dissuade the clinician to consider a rickettsial illness as part of the differential diagnosis. When present, the rash is usually macular or papular. Although not a feature of murine typhus, eschar has been found in 12% of those with flea-borne spotted fever. Confirmatory laboratory diagnosis is usually obtained by serology; the indirect immunofluorescence assay is the serologic test of choice. Antibodies are seldom present during the first few days of illness. Thus, the diagnosis requires acute- and convalescent-phase specimens to document seroconversion or a four-fold increase in antibody titer. Since laboratory diagnosis is usually retrospective, when a flea-borne rickettsiosis is considered, empiric treatment should be initiated. The treatment of choice for both children and adults is doxycycline, which results in a swift and effective response. The following review is aimed to summarize the key clinical, epidemiological, ecological, diagnostic, and treatment aspects of flea-borne rickettsioses.
Collapse
Affiliation(s)
- Maria A Caravedo Martinez
- Department of Internal Medicine – Division of Infectious Diseases, University of Texas Medical Branch, Galveston, TX, USA
| | | | - Lucas S Blanton
- Department of Internal Medicine – Division of Infectious Diseases, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
18
|
Elders PND, Swe MMM, Phyo AP, McLean ARD, Lin HN, Soe K, Htay WYA, Tanganuchitcharnchai A, Hla TK, Tun NN, Nwe TT, Moe MM, Thein WM, Zaw NN, Kyaw WM, Linn H, Htwe YY, Smithuis FM, Blacksell SD, Ashley EA. Serological evidence indicates widespread distribution of rickettsioses in Myanmar. Int J Infect Dis 2020; 103:494-501. [PMID: 33310022 PMCID: PMC7862081 DOI: 10.1016/j.ijid.2020.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 11/26/2022] Open
Abstract
Diagnosis of rickettsial infections is difficult in low-resource settings; this leads to delays in receiving appropriate treatment. Before this study, the distribution of rickettsioses in Myanmar was not known. This serosurvey shows that rickettsioses are widespread in Myanmar. Particularly high prevalence of scrub typhus was found in central and northern regions.
Background Little research has been published on the prevalence of rickettsial infections in Myanmar. This study determined the seroprevalence of immunoglobulin G (IgG) antibodies to rickettsial species in different regions of Myanmar. Methods Seven hundred leftover blood samples from patients of all ages in primary care clinics and hospitals in seven regions of Myanmar were collected. Samples were screened for scrub typhus group (STG), typhus group (TG) and spotted fever group (SFG) IgG antibodies using enzyme-linked immunosorbent assays (ELISA). Immunofluorescence assays were performed for the same rickettsial groups to confirm seropositivity if ELISA optical density ≥0.5. Results Overall IgG seroprevalence was 19% [95% confidence interval (CI) 16–22%] for STG, 5% (95% CI 3–7%) for TG and 3% (95% CI: 2–5%) for SFG. The seroprevalence of STG was particularly high in northern and central Myanmar (59% and 19–33%, respectively). Increasing age was associated with higher odds of STG and TG seropositivity [per 10-year increase, adjusted odds ratio estimate 1.68 (p < 0.01) and 1.24 (p = 0.03), respectively]. Conclusion Rickettsial infections are widespread in Myanmar, with particularly high seroprevalence of STG IgG antibodies in central and northern regions. Healthcare workers should consider rickettsial infections as common causes of fever in Myanmar.
Collapse
Affiliation(s)
| | | | | | - Alistair R D McLean
- Myanmar Oxford Clinical Research Unit, Yangon, Myanmar; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Kyaw Soe
- Myanmar Oxford Clinical Research Unit, Yangon, Myanmar
| | | | - Ampai Tanganuchitcharnchai
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Thel K Hla
- Myanmar Oxford Clinical Research Unit, Yangon, Myanmar; Medical Action Myanmar, Yangon, Myanmar
| | - Ni Ni Tun
- Medical Action Myanmar, Yangon, Myanmar
| | - Thin Thin Nwe
- Magway General Hospital and University of Medicine, Magway, Myanmar; University of Medicine 2, Yangon, Myanmar
| | - Myat Myat Moe
- Magway General Hospital and University of Medicine, Magway, Myanmar
| | - Win May Thein
- Mandalay General Hospital and University of Medicine, Mandalay, Myanmar
| | - Ni Ni Zaw
- Mandalay General Hospital and University of Medicine, Mandalay, Myanmar
| | | | - Htun Linn
- Monywa General Hospital, Monywa, Myanmar
| | | | - Frank M Smithuis
- Myanmar Oxford Clinical Research Unit, Yangon, Myanmar; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom; Medical Action Myanmar, Yangon, Myanmar
| | - Stuart D Blacksell
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom; Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Elizabeth A Ashley
- Myanmar Oxford Clinical Research Unit, Yangon, Myanmar; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom; Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Microbiology Laboratory, Mahosot Hospital, Vientiane, Lao Democratic People's Republic.
| |
Collapse
|