1
|
Harris EK, Balaraman V, Keating CC, McDowell C, Kimble JB, De La Mota-Peynado A, Borland EM, Graham B, Wilson WC, Richt JA, Kading RC, Gaudreault NN. Co-Infection of Culex tarsalis Mosquitoes with Rift Valley Fever Phlebovirus Strains Results in Efficient Viral Reassortment. Viruses 2025; 17:88. [PMID: 39861876 PMCID: PMC11768849 DOI: 10.3390/v17010088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Rift Valley fever phlebovirus (RVFV) is a zoonotic mosquito-borne pathogen endemic to sub-Saharan Africa and the Arabian Peninsula which causes Rift Valley fever in ruminant livestock and humans. Co-infection with divergent viral strains can produce reassortment among the L, S, and M segments of the RVFV genome. Reassortment events can produce novel genotypes with altered virulence, transmission dynamics, and/or mosquito host range. This can have severe implications in areas where RVFV is endemic and convolutes our ability to anticipate transmission and circulation in novel geographic regions. Previously, we evaluated the frequency of RVFV reassortment in a susceptible ruminant host and observed low rates of reassortment (0-1.7%). Here, we tested the hypothesis that reassortment occurs predominantly in the mosquito using a highly permissive vector, Culex tarsalis. Cells derived from Cx. tarsalis or adult mosquitoes were co-infected with either two virulent (Kenya-128B-15 and SA01-1322) or a virulent and attenuated (Kenya-128B-15 and MP-12) strain of RVFV. Our results showed approximately 2% of virus genotypes isolated from co-infected Cx. tarsalis-derived cells were reassortant. Co-infected mosquitoes infected via infectious bloodmeal resulted in a higher percentage of reassortant virus (2-60%) isolated from midgut and salivary tissues at 14 days post-infection. The percentage of reassortant genotypes isolated from the midguts of mosquitoes co-infected with Kenya-128B-15 and SA01-1322 was similar to that of mosquitoes co-infected with Kenya-128B-15 and MP-12- strains (60 vs. 47%). However, only 2% of virus isolated from the salivary glands of Kenya-128B-15 and SA01-1322 co-infected mosquitoes represented reassortant genotypes. This was contrasted by 54% reassortment in the salivary glands of mosquitoes co-infected with Kenya-128B-15 and MP-12 strains. Furthermore, we observed preferential inclusion of genomic segments from the three parental strains among the reassorted viruses. Replication curves of select reassorted genotypes were significantly higher in Vero cells but not in Culex-derived cells. These data imply that mosquitoes play a crucial role in the reassortment of RVFV and potentially contribute to driving evolution of the virus.
Collapse
Affiliation(s)
- Emma K. Harris
- Center for Vector-Borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (E.K.H.); (B.G.)
| | - Velmurugan Balaraman
- Center of Excellence for Emerging and Zoonotic Animal Diseases, Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS 66506, USA (C.M.); (J.A.R.)
| | - Cassidy C. Keating
- Center of Excellence for Emerging and Zoonotic Animal Diseases, Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS 66506, USA (C.M.); (J.A.R.)
| | - Chester McDowell
- Center of Excellence for Emerging and Zoonotic Animal Diseases, Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS 66506, USA (C.M.); (J.A.R.)
| | - J. Brian Kimble
- Foreign Arthropod-Borne Animal Diseases Research Unit, United States Department of Agriculture, Agricultural Research Service, National Bio and Agro-Defense Facility, Manhattan, KS 66505, USA; (J.B.K.); (A.D.L.M.-P.); (W.C.W.)
| | - Alina De La Mota-Peynado
- Foreign Arthropod-Borne Animal Diseases Research Unit, United States Department of Agriculture, Agricultural Research Service, National Bio and Agro-Defense Facility, Manhattan, KS 66505, USA; (J.B.K.); (A.D.L.M.-P.); (W.C.W.)
| | - Erin M. Borland
- Center for Vector-Borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (E.K.H.); (B.G.)
| | - Barbara Graham
- Center for Vector-Borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (E.K.H.); (B.G.)
| | - William C. Wilson
- Foreign Arthropod-Borne Animal Diseases Research Unit, United States Department of Agriculture, Agricultural Research Service, National Bio and Agro-Defense Facility, Manhattan, KS 66505, USA; (J.B.K.); (A.D.L.M.-P.); (W.C.W.)
| | - Juergen A. Richt
- Center of Excellence for Emerging and Zoonotic Animal Diseases, Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS 66506, USA (C.M.); (J.A.R.)
| | - Rebekah C. Kading
- Center for Vector-Borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523, USA; (E.K.H.); (B.G.)
| | - Natasha N. Gaudreault
- Center of Excellence for Emerging and Zoonotic Animal Diseases, Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS 66506, USA (C.M.); (J.A.R.)
| |
Collapse
|
2
|
Mwacalimba K, Kimeli P, Tiernan R, Mijten E, Miroshnychenko T, Poulsen Nautrup B. Diseases of Economic Importance in Feedlot Cattle in Sub-Saharan Africa: A Review with a Focus on Existing and Potential Options for Control. Animals (Basel) 2025; 15:97. [PMID: 39795040 PMCID: PMC11718847 DOI: 10.3390/ani15010097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/24/2024] [Accepted: 12/28/2024] [Indexed: 01/13/2025] Open
Abstract
A large number of livestock are found in sub-Saharan Africa (SSA), including 20-25% of the world's ruminants [...].
Collapse
Affiliation(s)
| | - Peter Kimeli
- Department of Clinical Studies, Faculty of Veterinary Medicine, University of Nairobi, P.O. Box 30197-00100, Nairobi, Kenya;
| | | | - Erik Mijten
- Zoetis Belgium S.A., 1930 Zaventem, Belgium; (E.M.); (T.M.)
| | | | | |
Collapse
|
3
|
Gardela J, Yautibug K, Talavera S, Vidal E, Sossah CC, Pagès N, Busquets N. Tissue distribution and transmission of Rift Valley fever phlebovirus in European Culex pipiens and Aedes albopictus mosquitoes following intrathoracic inoculation. J Gen Virol 2024; 105. [PMID: 39302189 DOI: 10.1099/jgv.0.002025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024] Open
Abstract
Rift Valley fever virus (Phlebovirus riftense, RVFV) poses significant economic challenges, particularly in African nations, causing substantial livestock losses and severe haemorrhagic disease in humans. In Europe, the risk of RVFV transmission is deemed moderate due to the presence of competent vectors like Culex pipiens and Aedes albopictus, along with susceptible animal vertebrate hosts across member states. This study investigates RVFV infection dynamics in European mosquito populations, aiming to enhance our understanding of their vectorial capacity and virus transmission, which can be useful for future investigations to improve RVFV surveillance, control programmes, and preventive treatments. Intrathoracic inoculation of European Cx. pipiens and Ae. albopictus with an RVFV virulent strain (RVF 56/74) enabled the assessment of virus tissue distribution and transmission. Immunohistochemistry analyses revealed widespread RVFV infection in all analysable anatomical structures at 5 and 14 days post-inoculation. Notably, the ganglionic nervous system exhibited the highest detection of RVFV in both species. Cx. pipiens showed more frequently infected structures than Ae. albopictus, particularly in reproductive structures. The identification of an RVFV-positive egg follicle in Cx. pipiens hints at potential vertical transmission. Saliva analysis indicated a higher transmission potential in Cx. pipiens (71.4%) compared to Ae. albopictus (4.3%) at the early time point. This study offers the first description and comparison of RVFV tissue distribution in Ae. albopictus and Cx. pipiens, shedding light on the susceptibility of their nervous systems, which may alter mosquito behaviour, which is critical for virus transmission. Overall, enhancing our knowledge of viral infection within mosquitoes holds promise for future vector biology research and innovative approaches to mitigate RVFV transmission.
Collapse
Affiliation(s)
- Jaume Gardela
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
- Unitat mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Karen Yautibug
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
- Unitat mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Sandra Talavera
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
- Unitat mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Enric Vidal
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
- Unitat mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Catherine Cêtre Sossah
- ASTRE, University of Montpellier, CIRAD, INRAe, Montpellier, France
- CIRAD, UMR ASTRE, Montpellier Cedex 34398, France
| | - Nonito Pagès
- ASTRE, University of Montpellier, CIRAD, INRAe, Montpellier, France
- CIRAD, UMR ASTRE, Guadeloupe, France
| | - Núria Busquets
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
- Unitat mixta d'Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
4
|
Madhav M, Blasdell KR, Trewin B, Paradkar PN, López-Denman AJ. Culex-Transmitted Diseases: Mechanisms, Impact, and Future Control Strategies using Wolbachia. Viruses 2024; 16:1134. [PMID: 39066296 PMCID: PMC11281716 DOI: 10.3390/v16071134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/08/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Mosquitoes of the Culex genus are responsible for a large burden of zoonotic virus transmission globally. Collectively, they play a significant role in the transmission of medically significant diseases such as Japanese encephalitis virus and West Nile virus. Climate change, global trade, habitat transformation and increased urbanisation are leading to the establishment of Culex mosquitoes in new geographical regions. These novel mosquito incursions are intensifying concerns about the emergence of Culex-transmitted diseases and outbreaks in previously unaffected areas. New mosquito control methods are currently being developed and deployed globally. Understanding the complex interaction between pathogens and mosquitoes is essential for developing new control strategies for Culex species mosquitoes. This article reviews the role of Culex mosquitos as vectors of zoonotic disease, discussing the transmission of viruses across different species, and the potential use of Wolbachia technologies to control disease spread. By leveraging the insights gained from recent successful field trials of Wolbachia against Aedes-borne diseases, we comprehensively discuss the feasibility of using this technique to control Culex mosquitoes and the potential for the development of next generational Wolbachia-based control methods.
Collapse
Affiliation(s)
- Mukund Madhav
- Australian Centre for Disease Preparedness, CSIRO Health and Biosecurity, Geelong, VIC 3220, Australia
| | - Kim R. Blasdell
- Australian Centre for Disease Preparedness, CSIRO Health and Biosecurity, Geelong, VIC 3220, Australia
| | - Brendan Trewin
- CSIRO Health and Biosecurity, Dutton Park, Brisbane, QLD 4102, Australia
| | - Prasad N. Paradkar
- Australian Centre for Disease Preparedness, CSIRO Health and Biosecurity, Geelong, VIC 3220, Australia
| | - Adam J. López-Denman
- Australian Centre for Disease Preparedness, CSIRO Health and Biosecurity, Geelong, VIC 3220, Australia
| |
Collapse
|
5
|
Kimble JB, Noronha L, Trujillo JD, Mitzel D, Richt JA, Wilson WC. Rift Valley Fever. Vet Clin North Am Food Anim Pract 2024; 40:293-304. [PMID: 38453549 DOI: 10.1016/j.cvfa.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024] Open
Abstract
Rift Valley fever (RVF) is a zoonotic viral disease that affects domestic and wild ruminants such as cattle, sheep, goats, camels, and buffaloes. Rift valley fever virus (RVFV), the causative agent of RVF, can also infect humans. RVFV is an arthropod-borne virus (arbovirus) that is primarily spread through the bites of infected mosquitoes or exposure to infected blood. RVFV was first isolated and characterized in the Rift Valley of Kenya in 1931 and is endemic throughout sub-Saharan Africa, including Comoros and Madagascar, the Arabian Peninsula (Saudi Arabia and Yemen), and Mayotte.
Collapse
Affiliation(s)
- J Brian Kimble
- Foreign Arthropod-Borne Animal Diseases Research Unit, National Bio and Agro-Defense Facility, USDA, ARS, Manhattan, KS, USA
| | - Leela Noronha
- Foreign Arthropod-Borne Animal Diseases Research Unit, National Bio and Agro-Defense Facility, USDA, ARS, Manhattan, KS, USA
| | - Jessie D Trujillo
- Diganostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Dana Mitzel
- Foreign Arthropod-Borne Animal Diseases Research Unit, National Bio and Agro-Defense Facility, USDA, ARS, Manhattan, KS, USA
| | - Juergen A Richt
- Diganostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA; Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | - William C Wilson
- Foreign Arthropod-Borne Animal Diseases Research Unit, National Bio and Agro-Defense Facility, USDA, ARS, Manhattan, KS, USA.
| |
Collapse
|
6
|
Gerken KN, Owuor KO, Ndenga B, Wambua S, Winter C, Chemutai S, Omukuti R, Arabu D, Miring’u I, Wilson WC, Mutuku F, Waggoner JJ, Pinsky B, Bosire C, LaBeaud AD. Expanding Understanding of Urban Rift Valley Fever Risk and Associated Vector Ecology at Slaughterhouses in Kisumu, Kenya. Pathogens 2024; 13:488. [PMID: 38921786 PMCID: PMC11206928 DOI: 10.3390/pathogens13060488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/01/2024] [Accepted: 06/04/2024] [Indexed: 06/27/2024] Open
Abstract
Rift Valley fever virus (RVFV) is an adaptable arbovirus that can be transmitted by a wide variety of arthropods. Widespread urban transmission of RVFV has not yet occurred, but peri-urban outbreaks of RVFV have recently been documented in East Africa. We previously reported low-level exposure in urban communities and highlighted the risk of introduction via live animal influx. We deployed a slaughtered animal testing framework in response to an early warning system at two urban slaughterhouses and tested animals entering the meat value chain for anti-RVFV IgG and IgM antibodies. We simultaneously trapped mosquitoes for RVFV and bloodmeal testing. Out of 923 animals tested, an 8.5% IgG seroprevalence was identified but no evidence of recent livestock exposure was detected. Mosquito species abundance varied greatly by slaughterhouse site, which explained 52% of the variance in blood meals. We captured many Culex spp., a known RVFV amplifying vector, at one of the sites (p < 0.001), and this species had the most diverse blood meals. No mosquito pools tested positive for RVFV antigen using a rapid VecTOR test. These results expand understanding of potential RVF urban disease ecology, and highlight that slaughterhouses are key locations for future surveillance, modelling, and monitoring efforts.
Collapse
Affiliation(s)
- Keli Nicole Gerken
- Department of Pediatrics, Division of Infectious Diseases, Stanford University School of Medicine, Stanford, CA 94305, USA; (B.P.); (A.D.L.)
| | - Kevin Omondi Owuor
- Kenya Medical Research Institute, Centre for Global Health Research, Kisumu 40100, Kenya; (K.O.O.); (B.N.); (C.W.)
| | - Bryson Ndenga
- Kenya Medical Research Institute, Centre for Global Health Research, Kisumu 40100, Kenya; (K.O.O.); (B.N.); (C.W.)
| | - Sammy Wambua
- Pwani University Biosciences Research Centre (PUBReC), Pwani University, Kilifi 80108, Kenya; (S.W.); (S.C.); (R.O.); (D.A.); (I.M.)
- Research and Conservation Support Society (RECOURSE), Kilifi 80108, Kenya
- School of Biodiversity One Health and Veterinary Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| | - Christabel Winter
- Kenya Medical Research Institute, Centre for Global Health Research, Kisumu 40100, Kenya; (K.O.O.); (B.N.); (C.W.)
| | - Salome Chemutai
- Pwani University Biosciences Research Centre (PUBReC), Pwani University, Kilifi 80108, Kenya; (S.W.); (S.C.); (R.O.); (D.A.); (I.M.)
- Research and Conservation Support Society (RECOURSE), Kilifi 80108, Kenya
| | - Rodney Omukuti
- Pwani University Biosciences Research Centre (PUBReC), Pwani University, Kilifi 80108, Kenya; (S.W.); (S.C.); (R.O.); (D.A.); (I.M.)
- Research and Conservation Support Society (RECOURSE), Kilifi 80108, Kenya
| | - Daniel Arabu
- Pwani University Biosciences Research Centre (PUBReC), Pwani University, Kilifi 80108, Kenya; (S.W.); (S.C.); (R.O.); (D.A.); (I.M.)
- Research and Conservation Support Society (RECOURSE), Kilifi 80108, Kenya
| | - Irene Miring’u
- Pwani University Biosciences Research Centre (PUBReC), Pwani University, Kilifi 80108, Kenya; (S.W.); (S.C.); (R.O.); (D.A.); (I.M.)
- Research and Conservation Support Society (RECOURSE), Kilifi 80108, Kenya
| | - William C. Wilson
- Foreign Arthropod-Borne Animal Disease Research, United States Department of Agriculture-Agriculture Research Service (USDA-ARS), Manhattan, KS 66502, USA;
| | - Francis Mutuku
- Department of Environment and Health Sciences, Technical University of Mombasa, Mombasa 80110, Kenya;
| | - Jesse J. Waggoner
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA;
| | - Benjamin Pinsky
- Department of Pediatrics, Division of Infectious Diseases, Stanford University School of Medicine, Stanford, CA 94305, USA; (B.P.); (A.D.L.)
| | - Carren Bosire
- Department of Pure and Applied Sciences, Technical University of Mombasa, Mombasa 80100, Kenya;
| | - Angelle Desiree LaBeaud
- Department of Pediatrics, Division of Infectious Diseases, Stanford University School of Medicine, Stanford, CA 94305, USA; (B.P.); (A.D.L.)
| |
Collapse
|
7
|
Alkan C, Jurado-Cobena E, Ikegami T. Advancements in Rift Valley fever vaccines: a historical overview and prospects for next generation candidates. NPJ Vaccines 2023; 8:171. [PMID: 37925544 PMCID: PMC10625542 DOI: 10.1038/s41541-023-00769-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 10/18/2023] [Indexed: 11/06/2023] Open
Abstract
Rift Valley fever (RVF) is a zoonotic viral disease transmitted by mosquitoes and causes abortion storms, fetal malformations, and newborn animal deaths in livestock ruminants. In humans, RVF can manifest as hemorrhagic fever, encephalitis, or retinitis. Outbreaks of RVF have been occurring in Africa since the early 20th century and continue to pose a threat to both humans and animals in various regions such as Africa, Madagascar, the Comoros, Saudi Arabia, and Yemen. The development of RVF vaccines is crucial in preventing mortality and morbidity and reducing the spread of the virus. While several veterinary vaccines have been licensed in endemic countries, there are currently no licensed RVF vaccines for human use. This review provides an overview of the existing RVF vaccines, as well as potential candidates for future studies on RVF vaccine development, including next-generation vaccines that show promise in combating the disease in both humans and animals.
Collapse
Affiliation(s)
- Cigdem Alkan
- Department of Pathology, The University of Texas Medical Branch at Galveston, 301 University Blvd, Galveston, TX, 77555, USA
| | - Eduardo Jurado-Cobena
- Department of Microbiology and Immunology, The University of Texas Medical Branch at Galveston, 301 University Blvd, Galveston, TX, 77555, USA
| | - Tetsuro Ikegami
- Department of Pathology, The University of Texas Medical Branch at Galveston, 301 University Blvd, Galveston, TX, 77555, USA.
- The Sealy Institute for Vaccine Sciences, The University of Texas Medical Branch at Galveston, 301 University Blvd, Galveston, TX, 77555, USA.
- The Center for Biodefense and Emerging Infectious Diseases, The University of Texas Medical Branch at Galveston, 301 University Blvd, Galveston, TX, 77555, USA.
| |
Collapse
|
8
|
Darby CS, Featherston KM, Lin J, Franz AWE. Detection of La Crosse Virus In Situ and in Individual Progeny to Assess the Vertical Transmission Potential in Aedes albopictus and Aedes aegypti. INSECTS 2023; 14:601. [PMID: 37504607 PMCID: PMC10380845 DOI: 10.3390/insects14070601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 06/28/2023] [Accepted: 06/28/2023] [Indexed: 07/29/2023]
Abstract
La Crosse virus (LACV) is circulating in the midwestern and southeastern states of the United States and can cause human encephalitis. The main vector of the virus is the eastern tree-hole mosquito, Aedes triseriatus. Ae. albopictus has been also described as a natural LACV vector, while Ae. aegypti has been infected with the virus under laboratory conditions. Here, we compare the vertical transmission potential of LACV in Ae. albopictus and Ae. aegypti, with emphasis given to the ovarian infection patterns that the virus generates in both species. Both mosquito species received artificial bloodmeals containing LACV. At defined time points post-infection/bloodmeal, midguts, head tissue, and ovaries were analyzed for the presence of virus. Viral infection patterns in the ovaries were visualized via immunofluorescence confocal microscopy and immunohistopathology assays using an LACV-specific monoclonal antibody. In Ae. aegypti, LACV was confronted with midgut infection and escape barriers, which were much less pronounced in Ae. albopictus, resulting in a significantly higher prevalence of infection in the latter. Following the ingestion of a single virus-containing bloodmeal, no progeny larvae were found to be virus-infected. Regardless, females of both species showed the presence of LACV antigen in their ovariole sheaths. Furthermore, in a single Ae. albopictus female, viral antigen was associated with the nurse cells inside the primary follicles. Following the ingestion of a second non-infectious bloodmeal at 7- or 10-days post-ingestion of an LACV-containing bloodmeal, more progeny larvae of Ae. albopictus than of Ae. aegypti were virus-infected. LACV antigen was detected in the egg chambers and ovariole sheaths of both mosquito species. Traces of viral antigen were also detected in a few oocytes from Ae. albopictus. The low level of vertical transmission and the majority of the ovarian infection patterns suggested the transovum rather than transovarial transmission (TOT) of the virus in both vector species. However, based on the detection of LACV antigen in follicular tissue and oocytes, there was the potential for TOT among several Ae. albopictus females. Thus, TOT is not a general feature of LACV infection in mosquitoes. Instead, the TOT of LACV seems to be dependent on its particular interaction with the reproductive tissues of a female.
Collapse
Affiliation(s)
| | | | | | - Alexander W. E. Franz
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA; (C.S.D.); (K.M.F.); (J.L.)
| |
Collapse
|
9
|
Heinig-Hartberger M, Hellhammer F, Zöller DDJA, Dornbusch S, Bergmann S, Vocadlova K, Junglen S, Stern M, Lee KZ, Becker SC. Culex Y Virus: A Native Virus of Culex Species Characterized In Vivo. Viruses 2023; 15:235. [PMID: 36680275 PMCID: PMC9863036 DOI: 10.3390/v15010235] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/06/2023] [Accepted: 01/11/2023] [Indexed: 01/17/2023] Open
Abstract
Mosquitoes are vectors of various pathogens that cause diseases in humans and animals. To prevent the outbreak of mosquito-borne diseases, it is essential to control vector populations, as treatment or vaccination for mosquito-borne diseases are often unavailable. Insect-specific viruses (ISVs) have previously been described as being potentially helpful against arboviral disease outbreaks. In this study, we present the first in vivo characterization of the ISV Culex Y virus (CYV). CYV was first isolated from free-living Culex pipiens mosquitoes in 2010; then, it was found in several mosquito cell lines in a further study in 2018. For mammalian cells, we were able to confirm that CYV does not replicate as it was previously described. Additionally, we found that CYV does not replicate in honey bees or locusts. However, we detected replication in the Culex pipiens biotype molestus, Aedes albopictus, and Drosophila melanogaster, thus indicating dipteran specificity. We detected significantly higher mortality in Culex pipiens biotype molestus males and Drosophila melanogaster, but not in Aedes albopictus and female Culex pipiens biotype molestus. CYV could not be transmitted transovarially to offspring, but we detected venereal transmission as well as CYV in mosquitos' saliva, indicating that an oral route of infection would also be possible. CYV's dipteran specificity, transmission routes, and killing effect with respect to Culex males may be used as powerful tools with which to destabilize arbovirus vector populations in the future.
Collapse
Affiliation(s)
- Mareike Heinig-Hartberger
- Institute for Parasitology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
| | - Fanny Hellhammer
- Institute for Parasitology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
| | - David D. J. A. Zöller
- Institute for Parasitology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
| | - Susann Dornbusch
- Institute for Parasitology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
| | - Stella Bergmann
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, 30173 Hannover, Germany
| | - Katerina Vocadlova
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Ohlebergsweg 12, 35392 Giessen, Germany
| | - Sandra Junglen
- Institute of Virology, Charité Universitätsmedizin Berlin, Corporate Member of Free University Berlin, Humboldt-University Berlin, and Berlin Institute of Health, Chariteplatz 1, 10117 Berlin, Germany
| | - Michael Stern
- Institute for Physiology and Cell Biology, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, 30173 Hannover, Germany
| | - Kwang-Zin Lee
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Ohlebergsweg 12, 35392 Giessen, Germany
| | - Stefanie C. Becker
- Institute for Parasitology, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Buenteweg 17, 30559 Hannover, Germany
| |
Collapse
|
10
|
Mechanistic models of Rift Valley fever virus transmission: A systematic review. PLoS Negl Trop Dis 2022; 16:e0010339. [PMID: 36399500 PMCID: PMC9718419 DOI: 10.1371/journal.pntd.0010339] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 12/02/2022] [Accepted: 10/31/2022] [Indexed: 11/19/2022] Open
Abstract
Rift Valley fever (RVF) is a zoonotic arbovirosis which has been reported across Africa including the northernmost edge, South West Indian Ocean islands, and the Arabian Peninsula. The virus is responsible for high abortion rates and mortality in young ruminants, with economic impacts in affected countries. To date, RVF epidemiological mechanisms are not fully understood, due to the multiplicity of implicated vertebrate hosts, vectors, and ecosystems. In this context, mathematical models are useful tools to develop our understanding of complex systems, and mechanistic models are particularly suited to data-scarce settings. Here, we performed a systematic review of mechanistic models studying RVF, to explore their diversity and their contribution to the understanding of this disease epidemiology. Researching Pubmed and Scopus databases (October 2021), we eventually selected 48 papers, presenting overall 49 different models with numerical application to RVF. We categorized models as theoretical, applied, or grey, depending on whether they represented a specific geographical context or not, and whether they relied on an extensive use of data. We discussed their contributions to the understanding of RVF epidemiology, and highlighted that theoretical and applied models are used differently yet meet common objectives. Through the examination of model features, we identified research questions left unexplored across scales, such as the role of animal mobility, as well as the relative contributions of host and vector species to transmission. Importantly, we noted a substantial lack of justification when choosing a functional form for the force of infection. Overall, we showed a great diversity in RVF models, leading to important progress in our comprehension of epidemiological mechanisms. To go further, data gaps must be filled, and modelers need to improve their code accessibility.
Collapse
|
11
|
Campbell CL, Snell TK, Bennett S, Wyckoff JH, Heaslip D, Flatt J, Harris EK, Hartman DA, Lian E, Bird BH, Stenglein MD, Bowen RA, Kading RC. Safety study of Rift Valley Fever human vaccine candidate (DDVax) in mosquitoes. Transbound Emerg Dis 2022; 69:2621-2633. [PMID: 34890118 PMCID: PMC9788258 DOI: 10.1111/tbed.14415] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/20/2021] [Accepted: 11/30/2021] [Indexed: 12/30/2022]
Abstract
Rift Valley fever virus (RVFV) is a mosquito-borne pathogen with significant human and veterinary health consequences that periodically emerges in epizootics. RVFV causes fetal loss and death in ruminants and in humans can lead to liver and renal disease, delayed-onset encephalitis, retinitis, and in some cases severe haemorrhagic fever. A live attenuated vaccine candidate (DDVax), was developed by the deletion of the virulence factors NSs and NSm from a clinical isolate, ZH501, and has proven safe and immunogenic in rodents, pregnant sheep and non-human primates. Deletion of NSm also severely restricted mosquito midgut infection and inhibited vector-borne transmission. To demonstrate environmental safety, this study investigated the replication, dissemination and transmission efficiency of DDVax in mosquitoes following oral exposure compared to RVFV strains MP-12 and ZH501. Infection and dissemination profiles were also measured in mosquitoes 7 days after they fed on goats inoculated with DDvax or MP-12. We hypothesized that DDVax would infect mosquitoes at significantly lower rates than other RVFV strains and, due to lack of NSm, be transmission incompetent. Exposure of Ae. aegypti and Cx. tarsalis to 8 log10 plaque forming units (PFU)/ml DDVax by artificial bloodmeal resulted in significantly reduced DDVax infection rates in mosquito bodies compared to controls. Plaque assays indicated negligible transmission of infectious DDVax in Cx. tarsalis saliva (1/140 sampled) and none in Ae. aegypti saliva (0/120). Serum from goats inoculated with DDVax or MP-12 did not harbour detectable infectious virus by plaque assay at 1, 2 or 3 days post-inoculation. Infectious virus was, however, recovered from Aedes and Culex bodies that fed on goats vaccinated with MP-12 (13.8% and 4.6%, respectively), but strikingly, DDvax-positive mosquito bodies were greatly reduced (4%, and 0%, respectively). Furthermore, DDVax did not disseminate to legs/wings in any of the goat-fed mosquitoes. Collectively, these results are consistent with a beneficial environmental safety profile.
Collapse
Affiliation(s)
- Corey L. Campbell
- Department of MicrobiologyImmunology, and PathologyCenter for Vector‐Borne Infectious DiseasesColorado State UniversityFort CollinsColorado
| | - Trey K. Snell
- Department of MicrobiologyImmunology, and PathologyCenter for Vector‐Borne Infectious DiseasesColorado State UniversityFort CollinsColorado
| | - Susi Bennett
- Department of MicrobiologyImmunology, and PathologyCenter for Vector‐Borne Infectious DiseasesColorado State UniversityFort CollinsColorado
| | - John H. Wyckoff
- BioMARC, Infectious Diseases Research Center, Colorado State UniversityFort CollinsColorado
| | - Darragh Heaslip
- BioMARC, Infectious Diseases Research Center, Colorado State UniversityFort CollinsColorado
| | - Jordan Flatt
- BioMARC, Infectious Diseases Research Center, Colorado State UniversityFort CollinsColorado
| | - Emma K. Harris
- Department of MicrobiologyImmunology, and PathologyCenter for Vector‐Borne Infectious DiseasesColorado State UniversityFort CollinsColorado
| | - Daniel A. Hartman
- Department of MicrobiologyImmunology, and PathologyCenter for Vector‐Borne Infectious DiseasesColorado State UniversityFort CollinsColorado
| | - Elena Lian
- Department of MicrobiologyImmunology, and PathologyCenter for Vector‐Borne Infectious DiseasesColorado State UniversityFort CollinsColorado
| | - Brian H. Bird
- School of Veterinary MedicineOne Health InstituteUniversity of CaliforniaDavisCalifornia
| | - Mark D. Stenglein
- Department of MicrobiologyImmunology, and PathologyCenter for Vector‐Borne Infectious DiseasesColorado State UniversityFort CollinsColorado
| | - Richard A. Bowen
- Department of MicrobiologyImmunology, and PathologyCenter for Vector‐Borne Infectious DiseasesColorado State UniversityFort CollinsColorado
| | - Rebekah C. Kading
- Department of MicrobiologyImmunology, and PathologyCenter for Vector‐Borne Infectious DiseasesColorado State UniversityFort CollinsColorado
| |
Collapse
|
12
|
Bergren NA, Borland EM, Hartman DA, Kading RC. Correction: Laboratory demonstration of the vertical transmission of Rift Valley fever virus by Culex tarsalis mosquitoes. PLoS Negl Trop Dis 2022; 16:e0010413. [PMID: 35472148 PMCID: PMC9041846 DOI: 10.1371/journal.pntd.0010413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
13
|
Gerken KN, LaBeaud AD, Mandi H, L’Azou Jackson M, Breugelmans JG, King CH. Paving the way for human vaccination against Rift Valley fever virus: A systematic literature review of RVFV epidemiology from 1999 to 2021. PLoS Negl Trop Dis 2022; 16:e0009852. [PMID: 35073355 PMCID: PMC8812886 DOI: 10.1371/journal.pntd.0009852] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 02/03/2022] [Accepted: 12/22/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Rift Valley fever virus (RVFV) is a lethal threat to humans and livestock in many parts of Africa, the Arabian Peninsula, and the Indian Ocean. This systematic review's objective was to consolidate understanding of RVFV epidemiology during 1999-2021 and highlight knowledge gaps relevant to plans for human vaccine trials. METHODOLOGY/PRINCIPAL FINDINGS The review is registered with PROSPERO (CRD42020221622). Reports of RVFV infection or exposure among humans, animals, and/or vectors in Africa, the Arabian Peninsula, and the Indian Ocean during the period January 1999 to June 2021 were eligible for inclusion. Online databases were searched for publications, and supplemental materials were recovered from official reports and research colleagues. Exposures were classified into five groups: 1) acute human RVF cases, 2) acute animal cases, 3) human RVFV sero-surveys, 4) animal sero-surveys, and 5) arthropod infections. Human risk factors, circulating RVFV lineages, and surveillance methods were also tabulated. In meta-analysis of risks, summary odds ratios were computed using random-effects modeling. 1104 unique human or animal RVFV transmission events were reported in 39 countries during 1999-2021. Outbreaks among humans or animals occurred at rates of 5.8/year and 12.4/year, respectively, with Mauritania, Madagascar, Kenya, South Africa, and Sudan having the most human outbreak years. Men had greater odds of RVFV infection than women, and animal contact, butchering, milking, and handling aborted material were significantly associated with greater odds of exposure. Animal infection risk was linked to location, proximity to water, and exposure to other herds or wildlife. RVFV was detected in a variety of mosquito vectors during interepidemic periods, confirming ongoing transmission. CONCLUSIONS/SIGNIFICANCE With broad variability in surveillance, case finding, survey design, and RVFV case confirmation, combined with uncertainty about populations-at-risk, there were inconsistent results from location to location. However, it was evident that RVFV transmission is expanding its range and frequency. Gaps assessment indicated the need to harmonize human and animal surveillance and improve diagnostics and genotyping. Given the frequency of RVFV outbreaks, human vaccination has strong potential to mitigate the impact of this now widely endemic disease.
Collapse
Affiliation(s)
- Keli N. Gerken
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Stanford University School of Medicine, Stanford, California, United States of America
| | - A. Desirée LaBeaud
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Henshaw Mandi
- Coalition for Epidemic Preparedness Innovations (CEPI), Oslo, Norway
| | | | | | - Charles H. King
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, United States of America
| |
Collapse
|
14
|
Susceptibility and barriers to infection of Colorado mosquitoes with Rift Valley fever virus. PLoS Negl Trop Dis 2021; 15:e0009837. [PMID: 34695125 PMCID: PMC8568276 DOI: 10.1371/journal.pntd.0009837] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 11/04/2021] [Accepted: 09/24/2021] [Indexed: 11/19/2022] Open
Abstract
Rift Valley fever virus (RVFV) causes morbidity and mortality in humans and domestic ungulates in sub-Saharan Africa, Egypt, and the Arabian Peninsula. Mosquito vectors transmit RVFV between vertebrates by bite, and also vertically to produce infectious progeny. Arrival of RVFV into the United States by infected mosquitoes or humans could result in significant impacts on food security, human health, and wildlife health. Elucidation of the vectors involved in the post-introduction RVFV ecology is paramount to rapid implementation of vector control. We performed vector competence experiments in which field-collected mosquitoes were orally exposed to an epidemic strain of RVFV via infectious blood meals. We targeted floodwater Aedes species known to feed on cattle, and/or deer species (Aedes melanimon Dyar, Aedes increpitus Dyar, Aedes vexans [Meigen]). Two permanent-water-breeding species were targeted as well: Culiseta inornata (Williston) of unknown competence considering United States populations, and Culex tarsalis Coquillett as a control species for which transmission efficiency is known. We tested the potential for midgut infection, midgut escape (dissemination), ovarian infection (vertical transmission), and transmission by bite (infectious saliva). Tissues were assayed by plaque assay and RT-qPCR, to quantify infectious virus and confirm virus identity. Tissue infection data were analyzed using a within-host model under a Bayesian framework to determine the probabilities of infection outcomes (midgut-limited infection, disseminated infection, etc.) while estimating barriers to infection between tissues. Permanent-water-breeding mosquitoes (Cx. tarsalis and Cs. inornata) exhibited more efficient horizontal transmission, as well as potential for vertical transmission, which is contrary to the current assumptions of RVFV ecology. Barrier estimates trended higher for Aedes spp., suggesting systemic factors in the differences between these species and Cx. tarsalis and Cs. inornata. These data indicate higher potential for vertical transmission than previously appreciated, and support the consensus of RVFV transmission including a broad range of potential vectors. Rift Valley fever virus (RVFV) causes morbidity and mortality in humans and domestic ungulates in sub-Saharan Africa, Egypt, and the Arabian Peninsula. Mosquito vectors transmit RVFV between vertebrates by bite, and also vertically to produce infectious progeny. To inform vector control priorities upon the introduction of RVFV to the United States, we tested the ability of three floodwater Aedes species known to feed on cattle and/or deer in Colorado (Aedes vexans [Meigen], Aedes melanimon Dyar, Aedes increpitus Dyar) to transmit RVFV (vector competence). We also tested Culiseta inornata (Williston), and Culex tarsalis Coquillett which exhibits high vector competence, and the potential for vertical transmission by testing ovaries. These data were modeled to estimate the potential for virus transmission, based on the infection probabilities of different organs that serve as transmission barriers inside the mosquitoes. The permanent-water-breeders Cs. inornata and Cx. tarsalis exhibited higher efficiency of horizontal transmission as well as potential vertical transmission. Aedes species were less efficient at vertical and horizontal transmission, with high barriers to infection of and dissemination from the midgut. Overall, these data support the transmission of RVFV by a broad range of potential vectors in the United States, posing a major challenge for vector control if this virus is introduced.
Collapse
|
15
|
Tennant WSD, Cardinale E, Cêtre-Sossah C, Moutroifi Y, Le Godais G, Colombi D, Spencer SEF, Tildesley MJ, Keeling MJ, Charafouddine O, Colizza V, Edmunds WJ, Métras R. Modelling the persistence and control of Rift Valley fever virus in a spatially heterogeneous landscape. Nat Commun 2021; 12:5593. [PMID: 34552082 PMCID: PMC8458460 DOI: 10.1038/s41467-021-25833-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 09/02/2021] [Indexed: 02/08/2023] Open
Abstract
The persistence mechanisms of Rift Valley fever (RVF), a zoonotic arboviral haemorrhagic fever, at both local and broader geographical scales have yet to be fully understood and rigorously quantified. We developed a mathematical metapopulation model describing RVF virus transmission in livestock across the four islands of the Comoros archipelago, accounting for island-specific environments and inter-island animal movements. By fitting our model in a Bayesian framework to 2004-2015 surveillance data, we estimated the importance of environmental drivers and animal movements on disease persistence, and tested the impact of different control scenarios on reducing disease burden throughout the archipelago. Here we report that (i) the archipelago network was able to sustain viral transmission in the absence of explicit disease introduction events after early 2007, (ii) repeated outbreaks during 2004-2020 may have gone under-detected by local surveillance, and (iii) co-ordinated within-island control measures are more effective than between-island animal movement restrictions.
Collapse
Affiliation(s)
- Warren S D Tennant
- The Zeeman Institute: SBIDER, University of Warwick, Coventry, CV4 7AL, UK.
- Mathematics Institute, University of Warwick, Coventry, CV4 7AL, UK.
| | - Eric Cardinale
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement, UMR Animal, Santé, Territoires, Risques, et Écosystèmes, F-97490, Sainte Clotilde, La Réunion, France
- Animal, Santé, Territoires, Risques, et Écosystèmes, Université de Montpellier, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, INRAE, Montpellier, France
| | - Catherine Cêtre-Sossah
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement, UMR Animal, Santé, Territoires, Risques, et Écosystèmes, F-97490, Sainte Clotilde, La Réunion, France
- Animal, Santé, Territoires, Risques, et Écosystèmes, Université de Montpellier, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, INRAE, Montpellier, France
| | - Youssouf Moutroifi
- Vice-Présidence en charge de l'Agriculture, l'Elevage, la Pêche, l'Industrie, l'Energie et l'Artisanat, B.P. 41 Mdé, Moroni, Union of the Comoros
| | - Gilles Le Godais
- Direction de l'Alimentation, de l'Agriculture et de la Forêt de Mayotte, Service de l'Alimentation, 97600, Mamoudzou, France
| | - Davide Colombi
- Aizoon Technology Consulting, Str. del Lionetto 6, Torino, Italy
| | - Simon E F Spencer
- The Zeeman Institute: SBIDER, University of Warwick, Coventry, CV4 7AL, UK
- Department of Statistics, University of Warwick, Coventry, CV4, 7AL, UK
| | - Mike J Tildesley
- The Zeeman Institute: SBIDER, University of Warwick, Coventry, CV4 7AL, UK
- Mathematics Institute, University of Warwick, Coventry, CV4 7AL, UK
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Matt J Keeling
- The Zeeman Institute: SBIDER, University of Warwick, Coventry, CV4 7AL, UK
- Mathematics Institute, University of Warwick, Coventry, CV4 7AL, UK
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Onzade Charafouddine
- Vice-Présidence en charge de l'Agriculture, l'Elevage, la Pêche, l'Industrie, l'Energie et l'Artisanat, B.P. 41 Mdé, Moroni, Union of the Comoros
| | - Vittoria Colizza
- INSERM, Sorbonne Université, Institut Pierre Louis d'Épidémiologie et de Santé Publique (Unité Mixte de Recherche en Santé 1136), 75012, Paris, France
| | - W John Edmunds
- Centre for the Mathematical Modelling of Infectious Diseases, Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Raphaëlle Métras
- INSERM, Sorbonne Université, Institut Pierre Louis d'Épidémiologie et de Santé Publique (Unité Mixte de Recherche en Santé 1136), 75012, Paris, France
- Centre for the Mathematical Modelling of Infectious Diseases, Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| |
Collapse
|