1
|
Lauzon J, Caron D, Lazar CS. The Saint-Leonard Urban Glaciotectonic Cave Harbors Rich and Diverse Planktonic and Sedimentary Microbial Communities. Microorganisms 2024; 12:1791. [PMID: 39338466 PMCID: PMC11434022 DOI: 10.3390/microorganisms12091791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/19/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
The terrestrial subsurface harbors unique microbial communities that play important biogeochemical roles and allow for studying a yet unknown fraction of the Earth's biodiversity. The Saint-Leonard cave in Montreal City (Canada) is of glaciotectonic origin. Its speleogenesis traces back to the withdrawal of the Laurentide Ice Sheet 13,000 years ago, during which the moving glacier dislocated the sedimentary rock layers. Our study is the first to investigate the microbial communities of the Saint-Leonard cave. By using amplicon sequencing, we analyzed the taxonomic diversity and composition of bacterial, archaeal and eukaryote communities living in the groundwater (0.1 µm- and 0.2 µm-filtered water), in the sediments and in surface soils. We identified a microbial biodiversity typical of cave ecosystems. Communities were mainly shaped by habitat type and harbored taxa associated with a wide variety of lifestyles and metabolic capacities. Although we found evidence of a geochemical connection between the above soils and the cave's galleries, our results suggest that the community assembly dynamics are driven by habitat selection rather than dispersal. Furthermore, we found that the cave's groundwater, in addition to being generally richer in microbial taxa than sediments, contained a considerable diversity of ultra-small bacteria and archaea.
Collapse
Affiliation(s)
- Jocelyn Lauzon
- Biological Sciences Department, University of Quebec in Montreal (UQAM), Montreal, QC H3C 3P8, Canada
| | | | - Cassandre Sara Lazar
- Biological Sciences Department, University of Quebec in Montreal (UQAM), Montreal, QC H3C 3P8, Canada
| |
Collapse
|
2
|
Jirsová D, Wideman JG. Integrated overview of stramenopile ecology, taxonomy, and heterotrophic origin. THE ISME JOURNAL 2024; 18:wrae150. [PMID: 39077993 PMCID: PMC11412368 DOI: 10.1093/ismejo/wrae150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/12/2024] [Accepted: 07/29/2024] [Indexed: 07/31/2024]
Abstract
Stramenopiles represent a significant proportion of aquatic and terrestrial biota. Most biologists can name a few, but these are limited to the phototrophic (e.g. diatoms and kelp) or parasitic species (e.g. oomycetes, Blastocystis), with free-living heterotrophs largely overlooked. Though our attention is slowly turning towards heterotrophs, we have only a limited understanding of their biology due to a lack of cultured models. Recent metagenomic and single-cell investigations have revealed the species richness and ecological importance of stramenopiles-especially heterotrophs. However, our lack of knowledge of the cell biology and behaviour of these organisms leads to our inability to match species to their particular ecological functions. Because photosynthetic stramenopiles are studied independently of their heterotrophic relatives, they are often treated separately in the literature. Here, we present stramenopiles as a unified group with shared synapomorphies and evolutionary history. We introduce the main lineages, describe their important biological and ecological traits, and provide a concise update on the origin of the ochrophyte plastid. We highlight the crucial role of heterotrophs and mixotrophs in our understanding of stramenopiles with the goal of inspiring future investigations in taxonomy and life history. To understand each of the many diversifications within stramenopiles-towards autotrophy, osmotrophy, or parasitism-we must understand the ancestral heterotrophic flagellate from which they each evolved. We hope the following will serve as a primer for new stramenopile researchers or as an integrative refresher to those already in the field.
Collapse
Affiliation(s)
- Dagmar Jirsová
- Center for Mechanisms of Evolution, Biodesign Institute, School of Life Sciences, Arizona State University, 1001 S McAllister Avenue, Tempe, Arizona, 85287-7701, United States
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Branišovská 31, České Budějovice 37005, Czech Republic
| | - Jeremy G Wideman
- Center for Mechanisms of Evolution, Biodesign Institute, School of Life Sciences, Arizona State University, 1001 S McAllister Avenue, Tempe, Arizona, 85287-7701, United States
| |
Collapse
|
3
|
Van Etten J, Stephens TG, Bhattacharya D. A k-mer-Based Approach for Phylogenetic Classification of Taxa in Environmental Genomic Data. Syst Biol 2023; 72:1101-1118. [PMID: 37314057 DOI: 10.1093/sysbio/syad037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/20/2023] [Accepted: 06/12/2023] [Indexed: 06/15/2023] Open
Abstract
In the age of genome sequencing, whole-genome data is readily and frequently generated, leading to a wealth of new information that can be used to advance various fields of research. New approaches, such as alignment-free phylogenetic methods that utilize k-mer-based distance scoring, are becoming increasingly popular given their ability to rapidly generate phylogenetic information from whole-genome data. However, these methods have not yet been tested using environmental data, which often tends to be highly fragmented and incomplete. Here, we compare the results of one alignment-free approach (which utilizes the D2 statistic) to traditional multi-gene maximum likelihood trees in 3 algal groups that have high-quality genome data available. In addition, we simulate lower-quality, fragmented genome data using these algae to test method robustness to genome quality and completeness. Finally, we apply the alignment-free approach to environmental metagenome assembled genome data of unclassified Saccharibacteria and Trebouxiophyte algae, and single-cell amplified data from uncultured marine stramenopiles to demonstrate its utility with real datasets. We find that in all instances, the alignment-free method produces phylogenies that are comparable, and often more informative, than those created using the traditional multi-gene approach. The k-mer-based method performs well even when there are significant missing data that include marker genes traditionally used for tree reconstruction. Our results demonstrate the value of alignment-free approaches for classifying novel, often cryptic or rare, species, that may not be culturable or are difficult to access using single-cell methods, but fill important gaps in the tree of life.
Collapse
Affiliation(s)
- Julia Van Etten
- Graduate Program in Ecology and Evolution, Rutgers, The State University of New Jersey, 14 College Farm Road, New Brunswick, NJ 08901, USA
| | - Timothy G Stephens
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, 59 Dudley Road, New Brunswick, NJ 08901, USA
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, 59 Dudley Road, New Brunswick, NJ 08901, USA
| |
Collapse
|
4
|
Sinha SD, Wideman JG. The persistent homology of mitochondrial ATP synthases. iScience 2023; 26:106700. [PMID: 37250340 PMCID: PMC10214729 DOI: 10.1016/j.isci.2023.106700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/24/2023] [Accepted: 04/14/2023] [Indexed: 05/31/2023] Open
Abstract
Relatively little is known about ATP synthase structure in protists, and the investigated ones exhibit divergent structures distinct from yeast or animals. To clarify the subunit composition of ATP synthases across all eukaryotic lineages, we used homology detection techniques and molecular modeling tools to identify an ancestral set of 17 ATP synthase subunits. Most eukaryotes possess an ATP synthase comparable to those of animals and fungi, while some have undergone drastic divergence (e.g., ciliates, myzozoans, euglenozoans). Additionally, a ∼1 billion-year-old gene fusion between ATP synthase stator subunits was identified as a synapomorphy of the SAR (Stramenopila, Alveolata, Rhizaria) supergroup (stramenopile, alveolate, rhizaria). Our comparative approach highlights the persistence of ancestral subunits even amidst major structural changes. We conclude by urging that more ATP synthase structures (e.g., from jakobids, heteroloboseans, stramenopiles, rhizarians) are needed to provide a complete picture of the evolution of the structural diversity of this ancient and essential complex.
Collapse
Affiliation(s)
- Savar D. Sinha
- Center for Mechanisms of Evolution, Biodesign Institute, School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| | - Jeremy G. Wideman
- Center for Mechanisms of Evolution, Biodesign Institute, School of Life Sciences, Arizona State University, Tempe, AZ 85281, USA
| |
Collapse
|
5
|
Agostini A, Bína D, Carbonera D, Litvín R. Conservation of triplet-triplet energy transfer photoprotective pathways in fucoxanthin chlorophyll-binding proteins across algal lineages. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2023; 1864:148935. [PMID: 36379269 DOI: 10.1016/j.bbabio.2022.148935] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/18/2022] [Accepted: 11/07/2022] [Indexed: 11/14/2022]
Abstract
Detailed information on the photo-generated triplet states of diatom and haptophyte Fucoxanthin Chlorophyll-binding Proteins (FCPs and E-FCPs, respectively) have been obtained from a combined spectroscopic investigation involving Transient Absorption and Time-Resolved Electron Paramagnetic Resonance. Pennate diatom Phaeodactylum tricornutum FCP shows identical photoprotective Triplet-Triplet Energy Transfer (TTET) pathways to the previously investigated centric diatom Cyclotella meneghiniana FCP, with the same two chlorophyll a-fucoxanthin pairs that involve the fucoxanthins in sites Fx301 and Fx302 contributing to TTET in both diatom groups. In the case of the haptophyte Emilianina huxleyi E-FCP, only one of the two chlorophyll a-fucoxanthins pairs observed in diatoms, the one involving chlorophyll a409 and Fx301, has been shown to be active in TTET. Furthermore, despite the marked change in the pigment content of E-FCP with growth light intensity, the TTET pathway is not affected. Thus, our comparative investigation of FCPs revealed a photoprotective TTET pathway shared within these classes involving the fucoxanthin in site Fx301, a site exposed to the exterior of the antenna monomer that has no equivalent in Light-Harvesting Complexes from the green lineage.
Collapse
Affiliation(s)
- Alessandro Agostini
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Branišovská 1160/31, 370 05 České Budějovice, Czech Republic.
| | - David Bína
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Branišovská 1160/31, 370 05 České Budějovice, Czech Republic; Institute of Chemistry, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic
| | - Donatella Carbonera
- Department of Chemical Sciences, University of Padova, via Marzolo 1, 35131 Padova, Italy
| | - Radek Litvín
- Biology Centre, Czech Academy of Sciences, Institute of Plant Molecular Biology, Branišovská 1160/31, 370 05 České Budějovice, Czech Republic; Institute of Chemistry, Faculty of Science, University of South Bohemia, Branišovská 1760, 370 05 České Budějovice, Czech Republic.
| |
Collapse
|
6
|
van der Gulik PTS, Hoff WD, Speijer D. Renewing Linnaean taxonomy: a proposal to restructure the highest levels of the Natural System. Biol Rev Camb Philos Soc 2023; 98:584-602. [PMID: 36366773 DOI: 10.1111/brv.12920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 11/13/2022]
Abstract
During the last century enormous progress has been made in the understanding of biological diversity, involving a dramatic shift from macroscopic to microscopic organisms. The question now arises as to whether the Natural System introduced by Carl Linnaeus, which has served as the central system for organizing biological diversity, can accommodate the great expansion of diversity that has been discovered. Important discoveries regarding biological diversity have not been fully integrated into a formal, coherent taxonomic system. In addition, because of taxonomic challenges and conflicts, various proposals have been made to abandon key aspects of the Linnaean system. We review the current status of taxonomy of the living world, focussing on groups at the taxonomic level of phylum and above. We summarize the main arguments against and in favour of abandoning aspects of the Linnaean system. Based on these considerations, we conclude that retaining the Linnaean Natural System provides important advantages. We propose a relatively small number of amendments for extending this system, particularly to include the named rank of world (Latin alternative mundis) formally to include non-cellular entities (viruses), and the named rank of empire (Latin alternative imperium) to accommodate the depth of diversity in (unicellular) eukaryotes that has been uncovered. We argue that in the case of both the eukaryotic domain and the viruses the cladistic approach intrinsically fails. However, the resulting semi-cladistic system provides a productive way forward that can help resolve taxonomic challenges. The amendments proposed allow us to: (i) retain named taxonomic levels and the three-domain system, (ii) improve understanding of the main eukaryotic lineages, and (iii) incorporate viruses into the Natural System. Of note, the proposal described herein is intended to serve as the starting point for a broad scientific discussion regarding the modernization of the Linnaean system.
Collapse
Affiliation(s)
| | - Wouter D Hoff
- Department of Microbiology and Molecular Genetics and Department of Chemistry, Oklahoma State University, Stillwater, OK, 74078, USA
| | - David Speijer
- Department of Medical Biochemistry, AmsterdamUMC, University of Amsterdam, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Gololobova MA, Belyakova GA. Position of Algae on the Tree of Life. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2022; 507:312-326. [PMID: 36781528 DOI: 10.1134/s0012496622060035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 02/15/2023]
Abstract
Issues related to evolution of algal chloroplasts are considered. The position of algae on the Tree of Life is discussed. Algae are now included in five of the monophyletic eukaryotic supergroups: Archaeplastida (Glaucocystophyta, Rhodophyta, Prasinodermophyta, Chlorophyta, and Charophyta), TSAR (Ochrophyta; Dinophyta; Chlorarachniophyta; and photosynthetic species of the genera Chromera, Vetrella, and Paulinella), Haptista (Prymnesiophyta and Rappemonads), Cryptista (Cryptophyta), and Discoba (Euglenophyta). The algal divisions and the respective supergroups are characterized in brief.
Collapse
Affiliation(s)
- M A Gololobova
- Biological Faculty, Moscow State University, Moscow, Russia.
| | - G A Belyakova
- Biological Faculty, Moscow State University, Moscow, Russia
| |
Collapse
|
8
|
Cerón-Romero MA, Fonseca MM, de Oliveira Martins L, Posada D, Katz LA. Phylogenomic Analyses of 2,786 Genes in 158 Lineages Support a Root of the Eukaryotic Tree of Life between Opisthokonts and All Other Lineages. Genome Biol Evol 2022; 14:evac119. [PMID: 35880421 PMCID: PMC9366629 DOI: 10.1093/gbe/evac119] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2022] [Indexed: 12/02/2022] Open
Abstract
Advances in phylogenomics and high-throughput sequencing have allowed the reconstruction of deep phylogenetic relationships in the evolution of eukaryotes. Yet, the root of the eukaryotic tree of life remains elusive. The most popular hypothesis in textbooks and reviews is a root between Unikonta (Opisthokonta + Amoebozoa) and Bikonta (all other eukaryotes), which emerged from analyses of a single-gene fusion. Subsequent, highly cited studies based on concatenation of genes supported this hypothesis with some variations or proposed a root within Excavata. However, concatenation of genes does not consider phylogenetically-informative events like gene duplications and losses. A recent study using gene tree parsimony (GTP) suggested the root lies between Opisthokonta and all other eukaryotes, but only including 59 taxa and 20 genes. Here we use GTP with a duplication-loss model in a gene-rich and taxon-rich dataset (i.e., 2,786 gene families from two sets of 155 and 158 diverse eukaryotic lineages) to assess the root, and we iterate each analysis 100 times to quantify tree space uncertainty. We also contrasted our results and discarded alternative hypotheses from the literature using GTP and the likelihood-based method SpeciesRax. Our estimates suggest a root between Fungi or Opisthokonta and all other eukaryotes; but based on further analysis of genome size, we propose that the root between Opisthokonta and all other eukaryotes is the most likely.
Collapse
Affiliation(s)
- Mario A Cerón-Romero
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, USA
- Program in Organismic and Evolutionary Biology, University of Massachusetts Amherst, Amherst, Massachusetts, USA
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana-Champaign, Illinois, USA
| | - Miguel M Fonseca
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
| | - Leonardo de Oliveira Martins
- Department of Biochemistry, Genetics and Immunology, University of Vigo, 36310 Vigo, Spain
- Quadram Institute Bioscience, Norwich, United Kingdom
| | - David Posada
- Department of Biochemistry, Genetics and Immunology, University of Vigo, 36310 Vigo, Spain
- CINBIO, Universidade de Vigo, 36310 Vigo, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, Vigo, Spain
| | - Laura A Katz
- Department of Biological Sciences, Smith College, Northampton, Massachusetts, USA
- Program in Organismic and Evolutionary Biology, University of Massachusetts Amherst, Amherst, Massachusetts, USA
| |
Collapse
|
9
|
Tekle YI, Wang F, Wood FC, Anderson OR, Smirnov A. New insights on the evolutionary relationships between the major lineages of Amoebozoa. Sci Rep 2022; 12:11173. [PMID: 35778543 PMCID: PMC9249873 DOI: 10.1038/s41598-022-15372-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/22/2022] [Indexed: 11/08/2022] Open
Abstract
The supergroup Amoebozoa unites a wide diversity of amoeboid organisms and encompasses enigmatic lineages that have been recalcitrant to modern phylogenetics. Deep divergences, taxonomic placement of some key taxa and character evolution in the group largely remain poorly elucidated or controversial. We surveyed available Amoebozoa genomes and transcriptomes to mine conserved putative single copy genes, which were used to enrich gene sampling and generate the largest supermatrix in the group to date; encompassing 824 genes, including gene sequences not previously analyzed. We recovered a well-resolved and supported tree of Amoebozoa, revealing novel deep level relationships and resolving placement of enigmatic lineages congruent with morphological data. In our analysis the deepest branching group is Tubulinea. A recent proposed major clade Tevosa, uniting Evosea and Tubulinea, is not supported. Based on the new phylogenetic tree, paleoecological and paleontological data as well as data on the biology of presently living amoebozoans, we hypothesize that the evolution of Amoebozoa probably was driven by adaptive responses to a changing environment, where successful survival and predation resulted from a capacity to disrupt and graze on microbial mats-a dominant ecosystem of the mid-Proterozoic period of the Earth history.
Collapse
Affiliation(s)
- Yonas I Tekle
- Department of Biology, Spelman College, 350 Spelman Lane Southwest, Atlanta, GA, 30314, USA.
| | - Fang Wang
- Department of Biology, Spelman College, 350 Spelman Lane Southwest, Atlanta, GA, 30314, USA
| | - Fiona C Wood
- Department of Biology, Spelman College, 350 Spelman Lane Southwest, Atlanta, GA, 30314, USA
| | - O Roger Anderson
- Department of Biology and Paleo Environment, Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY, USA
| | - Alexey Smirnov
- Department of Invertebrate Zoology, Faculty of Biology, St. Petersburg State University, Saint Petersburg, Russia
| |
Collapse
|
10
|
Yazaki E, Yabuki A, Imaizumi A, Kume K, Hashimoto T, Inagaki Y. The closest lineage of Archaeplastida is revealed by phylogenomics analyses that include Microheliella maris. Open Biol 2022; 12:210376. [PMID: 35414259 PMCID: PMC9006020 DOI: 10.1098/rsob.210376] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
By clarifying the phylogenetic positions of 'orphan' protists (unicellular micro-eukaryotes with no affinity to extant lineages), we may uncover the novel affiliation between two (or more) major lineages in eukaryotes. Microheliella maris was an orphan protist, which failed to be placed within the previously described lineages by pioneering phylogenetic analyses. In this study, we analysed a 319-gene alignment and demonstrated that M. maris represents a basal lineage of one of the major eukaryotic lineages, Cryptista. We here propose a new clade name 'Pancryptista' for Cryptista plus M. maris. The 319-gene analyses also indicated that M. maris is a key taxon to recover the monophyly of Archaeplastida and the sister relationship between Archaeplastida and Pancryptista, which is collectively called 'CAM clade' here. Significantly, Cryptophyceae tend to be attracted to Rhodophyta depending on the taxon sampling (ex., in the absence of M. maris and Rhodelphidia) and the particular phylogenetic 'signal' most likely hindered the stable recovery of the monophyly of Archaeplastida in previous studies.
Collapse
Affiliation(s)
| | - Akinori Yabuki
- Japan Agency for Marine-Earth Science and Technology, Yokosuka, Kanagawa 237-0061, Japan
| | - Ayaka Imaizumi
- College of Biological Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Keitaro Kume
- Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Tetsuo Hashimoto
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan,Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Yuji Inagaki
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan,Center for Computational Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| |
Collapse
|
11
|
López-García A, Saborío-Montero A, Gutiérrez-Rivas M, Atxaerandio R, Goiri I, García-Rodríguez A, Jiménez-Montero JA, González C, Tamames J, Puente-Sánchez F, Serrano M, Carrasco R, Óvilo C, González-Recio O. Fungal and ciliate protozoa are the main rumen microbes associated with methane emissions in dairy cattle. Gigascience 2022; 11:6514927. [PMID: 35077540 PMCID: PMC8848325 DOI: 10.1093/gigascience/giab088] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/18/2021] [Accepted: 11/30/2021] [Indexed: 12/13/2022] Open
Abstract
Background Mitigating the effects of global warming has become the main challenge for humanity in recent decades. Livestock farming contributes to greenhouse gas emissions, with an important output of methane from enteric fermentation processes, mostly in ruminants. Because ruminal microbiota is directly involved in digestive fermentation processes and methane biosynthesis, understanding the ecological relationships between rumen microorganisms and their active metabolic pathways is essential for reducing emissions. This study analysed whole rumen metagenome using long reads and considering its compositional nature in order to disentangle the role of rumen microbes in methane emissions. Results The β-diversity analyses suggested a subtle association between methane production and overall microbiota composition (0.01 < R2 < 0.02). Differential abundance analysis identified 36 genera and 279 KEGGs as significantly associated with methane production (Padj < 0.05). Those genera associated with high methane production were Eukaryota from Alveolata and Fungi clades, while Bacteria were associated with low methane emissions. The genus-level association network showed 2 clusters grouping Eukaryota and Bacteria, respectively. Regarding microbial gene functions, 41 KEGGs were found to be differentially abundant between low- and high-emission animals and were mainly involved in metabolic pathways. No KEGGs included in the methane metabolism pathway (ko00680) were detected as associated with high methane emissions. The KEGG network showed 3 clusters grouping KEGGs associated with high emissions, low emissions, and not differentially abundant in either. A deeper analysis of the differentially abundant KEGGs revealed that genes related with anaerobic respiration through nitrate degradation were more abundant in low-emission animals. Conclusions Methane emissions are largely associated with the relative abundance of ciliates and fungi. The role of nitrate electron acceptors can be particularly important because this respiration mechanism directly competes with methanogenesis. Whole metagenome sequencing is necessary to jointly consider the relative abundance of Bacteria, Archaea, and Eukaryota in the statistical analyses. Nutritional and genetic strategies to reduce CH4 emissions should focus on reducing the relative abundance of Alveolata and Fungi in the rumen. This experiment has generated the largest ONT ruminal metagenomic dataset currently available.
Collapse
Affiliation(s)
- Adrián López-García
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Crta. de la Coruña km 7.5, 28040 Madrid, Spain
| | - Alejandro Saborío-Montero
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Crta. de la Coruña km 7.5, 28040 Madrid, Spain.,Escuela de Zootecnia y Centro de Investigación en Nutrición Animal, Universidad de Costa Rica, 11501 San José, Costa Rica
| | - Mónica Gutiérrez-Rivas
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Crta. de la Coruña km 7.5, 28040 Madrid, Spain
| | - Raquel Atxaerandio
- NEIKER - Instituto Vasco de Investigación y Desarrollo Agrario. Basque Research and Technology Alliance (BRTA), Campus Agroalimentario de Arkaute s/n, 01192 Arkaute, Spain
| | - Idoia Goiri
- NEIKER - Instituto Vasco de Investigación y Desarrollo Agrario. Basque Research and Technology Alliance (BRTA), Campus Agroalimentario de Arkaute s/n, 01192 Arkaute, Spain
| | - Aser García-Rodríguez
- NEIKER - Instituto Vasco de Investigación y Desarrollo Agrario. Basque Research and Technology Alliance (BRTA), Campus Agroalimentario de Arkaute s/n, 01192 Arkaute, Spain
| | - Jose A Jiménez-Montero
- Confederación de Asociaciones de Frisona Española (CONAFE), Ctra. de Andalucía km 23600 Valdemoro, 28340 Madrid, Spain
| | - Carmen González
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Crta. de la Coruña km 7.5, 28040 Madrid, Spain
| | - Javier Tamames
- Departamento de Biología de Sistemas, Centro Nacional de Biotecnología, CSIC, Madrid, 28049 Madrid, Spain
| | - Fernando Puente-Sánchez
- Departamento de Biología de Sistemas, Centro Nacional de Biotecnología, CSIC, Madrid, 28049 Madrid, Spain
| | - Magdalena Serrano
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Crta. de la Coruña km 7.5, 28040 Madrid, Spain
| | - Rafael Carrasco
- Departamento de Periodismo y Nuevos Medios, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Cristina Óvilo
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Crta. de la Coruña km 7.5, 28040 Madrid, Spain
| | - Oscar González-Recio
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Crta. de la Coruña km 7.5, 28040 Madrid, Spain.,Departamento de Producción Agraria, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| |
Collapse
|
12
|
Di Franco A, Baurain D, Glöckner G, Melkonian M, Philippe H. Lower statistical support with larger datasets: insights from the Ochrophyta radiation. Mol Biol Evol 2021; 39:6409865. [PMID: 34694402 PMCID: PMC8763130 DOI: 10.1093/molbev/msab300] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
It is commonly assumed that increasing the number of characters has the potential to resolve evolutionary radiations. Here, we studied photosynthetic stramenopiles (Ochrophyta) using alignments of heterogeneous origin mitochondrion, plastid, and nucleus. Surprisingly while statistical support for the relationships between the six major Ochrophyta lineages increases when comparing the mitochondrion (6,762 sites) and plastid (21,692 sites) trees, it decreases in the nuclear (209,105 sites) tree. Statistical support is not simply related to the data set size but also to the quantity of phylogenetic signal available at each position and our ability to extract it. Here, we show that this ability for current phylogenetic methods is limited, because conflicting results were obtained when varying taxon sampling. Even though the use of a better fitting model improved signal extraction and reduced the observed conflicts, the plastid data set provided higher statistical support for the ochrophyte radiation than the larger nucleus data set. We propose that the higher support observed in the plastid tree is due to an acceleration of the evolutionary rate in one short deep internal branch, implying that more phylogenetic signal per position is available to resolve the Ochrophyta radiation in the plastid than in the nuclear data set. Our work therefore suggests that, in order to resolve radiations, beyond the obvious use of data sets with more positions, we need to continue developing models of sequence evolution that better extract the phylogenetic signal and design methods to search for genes/characters that contain more signal specifically for short internal branches.
Collapse
Affiliation(s)
- Arnaud Di Franco
- Station d'Ecologie Théorique et Expérimentale de Moulis, UMR CNRS 5321, Moulis, France
| | - Denis Baurain
- InBioS-PhytoSYSTEMS, Unité de Phylogénomique des Eucaryotes, Université de Liège, Liège, Belgium
| | - Gernot Glöckner
- Institut für Biochemie I, Medizinische Fakultät, Universität zu Köln, Köln, Germany
| | - Michael Melkonian
- Max Planck Institute for Plant Breeding Research, Integrative Bioinformatics, Cologne, Germany
| | - Hervé Philippe
- Station d'Ecologie Théorique et Expérimentale de Moulis, UMR CNRS 5321, Moulis, France.,Département de Biochimie, Centre Robert-Cedergren, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
13
|
Bussi Y, Kapon R, Reich Z. Large-scale k-mer-based analysis of the informational properties of genomes, comparative genomics and taxonomy. PLoS One 2021; 16:e0258693. [PMID: 34648558 PMCID: PMC8516232 DOI: 10.1371/journal.pone.0258693] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 10/02/2021] [Indexed: 12/24/2022] Open
Abstract
Information theoretic approaches are ubiquitous and effective in a wide variety of bioinformatics applications. In comparative genomics, alignment-free methods, based on short DNA words, or k-mers, are particularly powerful. We evaluated the utility of varying k-mer lengths for genome comparisons by analyzing their sequence space coverage of 5805 genomes in the KEGG GENOME database. In subsequent analyses on four k-mer lengths spanning the relevant range (11, 21, 31, 41), hierarchical clustering of 1634 genus-level representative genomes using pairwise 21- and 31-mer Jaccard similarities best recapitulated a phylogenetic/taxonomic tree of life with clear boundaries for superkingdom domains and high subtree similarity for named taxons at lower levels (family through phylum). By analyzing ~14.2M prokaryotic genome comparisons by their lowest-common-ancestor taxon levels, we detected many potential misclassification errors in a curated database, further demonstrating the need for wide-scale adoption of quantitative taxonomic classifications based on whole-genome similarity.
Collapse
Affiliation(s)
- Yuval Bussi
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ruti Kapon
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Ziv Reich
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
- * E-mail:
| |
Collapse
|
14
|
Lahr DJ. An emerging paradigm for the origin and evolution of shelled amoebae, integrating advances from molecular phylogenetics, morphology and paleontology. Mem Inst Oswaldo Cruz 2021; 116:e200620. [PMID: 34406221 PMCID: PMC8370470 DOI: 10.1590/0074-02760200620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 07/05/2021] [Indexed: 11/22/2022] Open
Abstract
The phylogenetic paradigm of eukaryotic evolution has changed dramatically over the past two decades, with profound reflections on the understanding of life on earth. Arcellinida testate (shelled) amoebae lineages represent some of the oldest fossils of eukaryotes, and the elucidation of their phylogenetic relationships opened a window to the distant past, with important implications for understanding the evolution of life on earth. This four-part essay summarises advances made in the past 20 years regarding: (i) the phylogenetic relationships among amoebae with shells evolving in concert with the advances made in the phylogeny of eukaryotes; (ii) paleobiological studies unraveling the biological affinities of Neoproterozoic vase-shaped microfossils (VSMs); (iii) the interwoven interpretation of these different sets of data concluding that the Neoproterozoic contains a surprising diversity of organisms, in turn demanding a reinterpretation of the most profound events we know in the history of eukaryotes, and; (iv) a synthesis of the current knowledge about the evolution of Arcellinida, together with the possibilities and pitfalls of their interpretation.
Collapse
Affiliation(s)
- Daniel Jg Lahr
- Universidade de São Paulo, Instituto de Biociências, Departamento de Zoologia, São Paulo, SP, Brasil
| |
Collapse
|
15
|
Wiser MF. Unique Endomembrane Systems and Virulence in Pathogenic Protozoa. Life (Basel) 2021; 11:life11080822. [PMID: 34440567 PMCID: PMC8401336 DOI: 10.3390/life11080822] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/10/2021] [Accepted: 08/10/2021] [Indexed: 02/06/2023] Open
Abstract
Virulence in pathogenic protozoa is often tied to secretory processes such as the expression of adhesins on parasite surfaces or the secretion of proteases to assisted in tissue invasion and other proteins to avoid the immune system. This review is a broad overview of the endomembrane systems of pathogenic protozoa with a focus on Giardia, Trichomonas, Entamoeba, kinetoplastids, and apicomplexans. The focus is on unique features of these protozoa and how these features relate to virulence. In general, the basic elements of the endocytic and exocytic pathways are present in all protozoa. Some of these elements, especially the endosomal compartments, have been repurposed by the various species and quite often the repurposing is associated with virulence. The Apicomplexa exhibit the most unique endomembrane systems. This includes unique secretory organelles that play a central role in interactions between parasite and host and are involved in the invasion of host cells. Furthermore, as intracellular parasites, the apicomplexans extensively modify their host cells through the secretion of proteins and other material into the host cell. This includes a unique targeting motif for proteins destined for the host cell. Most notable among the apicomplexans is the malaria parasite, which extensively modifies and exports numerous proteins into the host erythrocyte. These modifications of the host erythrocyte include the formation of unique membranes and structures in the host erythrocyte cytoplasm and on the erythrocyte membrane. The transport of parasite proteins to the host erythrocyte involves several unique mechanisms and components, as well as the generation of compartments within the erythrocyte that participate in extraparasite trafficking.
Collapse
Affiliation(s)
- Mark F Wiser
- Department of Tropical Medicine, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
16
|
Zhang W, Wang X, Miao Y, Li Y, Zhang H, Niu L, Wang L. Determining the effect of sertraline on nitrogen transformation through the microbial food web in sediments based on 15N-DNA-stable isotope probing. ENVIRONMENTAL RESEARCH 2021; 199:111347. [PMID: 34019893 DOI: 10.1016/j.envres.2021.111347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 06/12/2023]
Abstract
Antidepressants may influence the food web and alter the nitrogen cycle through top-down forces. However, the effect of antidepressants on the key nitrogen-using species in the benthic microbial food web remains unclear, particularly the resulting changes in the nitrogen transformation process within the microecosystems. Therefore, in this study, we employed DNA stable-isotope probing to detect nitrogen-converting organisms at various trophic levels and quantify the nitrogen transformation process for the first time. The input of sertraline greatly increased nitrogen-transforming microorganisms and promoted more species to participate in the nitrogen transformation process. 100 μg/L sertraline was observed to stimulate the predation of bacteria via protozoa and metazoan, increasing the total nitrogen flow flux through the microbial food web to 31.50%, 1.32 times that of the natural condition. The results confirm that at sertraline concentrations close to the lowest observable effect concentration in the meiobenthos (100 μg/L), key components in the microbial food web were largely interfered and exerted a long-term interference on the nutrient cycle in the river sediment ecosystem. These findings confirm that sertraline has negative effects on river ecosystems from the perspective of microbial food webs and open a new line of inquiry into assessing ecological risks of antidepressants.
Collapse
Affiliation(s)
- Wenlong Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Xinzi Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Yuanyuan Miao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China.
| | - Huanjun Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Lihua Niu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Longfei Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| |
Collapse
|
17
|
Irisarri I, Strassert JFH, Burki F. Phylogenomic Insights into the Origin of Primary Plastids. Syst Biol 2021; 71:105-120. [PMID: 33988690 DOI: 10.1093/sysbio/syab036] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 05/07/2021] [Accepted: 05/10/2021] [Indexed: 11/13/2022] Open
Abstract
The origin of plastids was a major evolutionary event that paved the way for an astonishing diversification of photosynthetic eukaryotes. Plastids originated by endosymbiosis between a heterotrophic eukaryotic host and cyanobacteria, presumably in a common ancestor of the primary photosynthetic eukaryotes (Archaeplastida). A single origin of primary plastids is well supported by plastid evidence but not by nuclear phylogenomic analyses, which have consistently failed to recover the monophyly of Archaeplastida hosts. Importantly, plastid monophyly and non-monophyletic hosts could be explained under scenarios of independent or serial eukaryote-to-eukaryote endosymbioses. Here, we assessed the strength of the signal for the monophyly of Archaeplastida hosts in four available phylogenomic datasets. The effect of phylogenetic methodology, data quality, alignment trimming strategy, gene and taxon sampling, and the presence of outlier genes were investigated. Our analyses revealed a lack of support for host monophyly in the shorter individual datasets. However, when analyzed together under rigorous data curation and complex mixture models, the combined nuclear datasets supported the monophyly of primary photosynthetic eukaryotes (Archaeplastida) and revealed a putative association with plastid-lacking Picozoa. This study represents an important step towards better understanding deep eukaryotic evolution and the origin of plastids.
Collapse
Affiliation(s)
- Iker Irisarri
- Department of Organismal Biology (Systematic Biology), Uppsala University, Norbyv. 18D, 75236 Uppsala, Sweden.,Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, José Gutiérrez Abascal 2, 28006 Madrid, Spain
| | - Jürgen F H Strassert
- Department of Organismal Biology (Systematic Biology), Uppsala University, Norbyv. 18D, 75236 Uppsala, Sweden.,Department of Ecosystem Research, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 301, 12587 Berlin, Germany
| | - Fabien Burki
- Department of Organismal Biology (Systematic Biology), Uppsala University, Norbyv. 18D, 75236 Uppsala, Sweden.,Science For Life Laboratory, Uppsala University, 75236 Sweden
| |
Collapse
|
18
|
Where are the basal fungi? Current status on diversity, ecology, evolution, and taxonomy. Biologia (Bratisl) 2020. [DOI: 10.2478/s11756-020-00642-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Abstract
Developing a detailed understanding of how all known forms of life are related to one another in the tree of life has been a major preoccupation of biology since the idea of tree-like evolution first took hold. Since most life is microbial, our intuitive use of morphological comparisons to infer relatedness only goes so far, and molecular sequence data, most recently from genomes and transcriptomes, has been the primary means to infer these relationships. For prokaryotes this presented new challenges, since the degree of horizontal gene transfer led some to question the tree-like depiction of evolution altogether. Most eukaryotes are also microbial, but in contrast to prokaryotic life, the application of large-scale molecular data to the tree of eukaryotes has largely been a constructive process, leading to a small number of very diverse lineages, or 'supergroups'. The tree is not completely resolved, and contentious problems remain, but many well-established supergroups now encompass much more diversity than the traditional kingdoms. Some of the most exciting recent developments come from the discovery of branches in the tree that we previously had no inkling even existed, many of which are of great ecological or evolutionary interest. These new branches highlight the need for more exploration, by high-throughput molecular surveys, but also more traditional means of observations and cultivation.
Collapse
Affiliation(s)
- Patrick J Keeling
- Department of Botany, University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada.
| | - Fabien Burki
- Department of Organismal Biology, Program in Systematic Biology, Uppsala University, Uppsala, Sweden; Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
20
|
Jamy M, Foster R, Barbera P, Czech L, Kozlov A, Stamatakis A, Bending G, Hilton S, Bass D, Burki F. Long‐read metabarcoding of the eukaryotic rDNA operon to phylogenetically and taxonomically resolve environmental diversity. Mol Ecol Resour 2019; 20:429-443. [DOI: 10.1111/1755-0998.13117] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/11/2019] [Accepted: 10/31/2019] [Indexed: 11/28/2022]
Affiliation(s)
- Mahwash Jamy
- Science for Life Laboratory Program in Systematic Biology Uppsala University Uppsala Sweden
| | - Rachel Foster
- Department of Life Sciences Natural History Museum London UK
| | - Pierre Barbera
- Computational Molecular Evolution Group Heidelberg Institute for Theoretical Studies Heidelberg Germany
| | - Lucas Czech
- Computational Molecular Evolution Group Heidelberg Institute for Theoretical Studies Heidelberg Germany
| | - Alexey Kozlov
- Computational Molecular Evolution Group Heidelberg Institute for Theoretical Studies Heidelberg Germany
| | - Alexandros Stamatakis
- Computational Molecular Evolution Group Heidelberg Institute for Theoretical Studies Heidelberg Germany
- Institute of Theoretical Informatics Karlsruhe Institute of Technology Karlsruhe Germany
| | - Gary Bending
- School of Life Sciences The University of Warwick Coventry UK
| | - Sally Hilton
- School of Life Sciences The University of Warwick Coventry UK
| | - David Bass
- Department of Life Sciences Natural History Museum London UK
- Centre for Environment Fisheries and Aquaculture Science (Cefas) Weymouth UK
| | - Fabien Burki
- Science for Life Laboratory Program in Systematic Biology Uppsala University Uppsala Sweden
| |
Collapse
|
21
|
Yubuki N, Galindo LJ, Reboul G, López-García P, Brown MW, Pollet N, Moreira D. Ancient Adaptive Lateral Gene Transfers in the Symbiotic Opalina–Blastocystis Stramenopile Lineage. Mol Biol Evol 2019; 37:651-659. [DOI: 10.1093/molbev/msz250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
AbstractLateral gene transfer is a very common process in bacterial and archaeal evolution, playing an important role in the adaptation to new environments. In eukaryotes, its role and frequency remain highly debated, although recent research supports that gene transfer from bacteria to diverse eukaryotes may be much more common than previously appreciated. However, most of this research focused on animals and the true phylogenetic and functional impact of bacterial genes in less-studied microbial eukaryotic groups remains largely unknown. Here, we have analyzed transcriptome data from the deep-branching stramenopile Opalinidae, common members of frog gut microbiomes, and distantly related to the well-known genus Blastocystis. Phylogenetic analyses suggest the early acquisition of several bacterial genes in a common ancestor of both lineages. Those lateral gene transfers most likely facilitated the adaptation of the free-living ancestor of the Opalinidae–Blastocystis symbiotic group to new niches in the oxygen-depleted animal gut environment.
Collapse
Affiliation(s)
- Naoji Yubuki
- Unité d’Ecologie Systématique et Evolution, CNRS, Université Paris-Sud, AgroParisTech, Université Paris-Saclay, Orsay, France
| | - Luis Javier Galindo
- Unité d’Ecologie Systématique et Evolution, CNRS, Université Paris-Sud, AgroParisTech, Université Paris-Saclay, Orsay, France
| | - Guillaume Reboul
- Unité d’Ecologie Systématique et Evolution, CNRS, Université Paris-Sud, AgroParisTech, Université Paris-Saclay, Orsay, France
| | - Purificación López-García
- Unité d’Ecologie Systématique et Evolution, CNRS, Université Paris-Sud, AgroParisTech, Université Paris-Saclay, Orsay, France
| | - Matthew W Brown
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS
- Institute for Genomics, Biocomputing and Biotechnology, Mississippi State University, Mississippi State, MS
| | - Nicolas Pollet
- Laboratoire Evolution Génomes Comportement et Ecologie, CNRS, IRD, Université Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - David Moreira
- Unité d’Ecologie Systématique et Evolution, CNRS, Université Paris-Sud, AgroParisTech, Université Paris-Saclay, Orsay, France
| |
Collapse
|
22
|
Nagai S, Chen H, Kawakami Y, Yamamoto K, Sildever S, Kanno N, Oikawa H, Yasuike M, Nakamura Y, Hongo Y, Fujiwara A, Kobayashi T, Gojobori T. Monitoring of the toxic dinoflagellate Alexandrium catenella in Osaka Bay, Japan using a massively parallel sequencing (MPS)-based technique. HARMFUL ALGAE 2019; 89:101660. [PMID: 31672234 DOI: 10.1016/j.hal.2019.101660] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 08/10/2019] [Accepted: 08/28/2019] [Indexed: 06/10/2023]
Abstract
Since 2002, blooms of Alexandrium catenella sensu Fraga et al. (2015) and paralytic shellfish toxicity events have occurred almost yearly in Osaka Bay, Japan. To better understand the triggers for reoccurring A. catenella blooms in Osaka Bay, phytoplankton community was monitored during the spring seasons of 2012-2015. Monitoring was performed using massively parallel sequencing (MPS)-based technique on amplicon sequences of the 18S rRNA gene. Dense blooms of A. catenella occurred every year except in 2012, however, there was no significant correlation with the environmental parameters investigated. Plankton community diversity decreased before and middle of the A. catenella blooms, suggesting that the decline in diversity could be an indicator for the bloom occurrence. The yearly abundance pattern of A. catenella cells obtained by morphology-based counting coincided with the relative sequence abundances, which supports the effectiveness of MPS-based phytoplankton monitoring.
Collapse
Affiliation(s)
- Satoshi Nagai
- National Research Institute of Fisheries Science, 2-12-4 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-8648, Japan.
| | - Hungyen Chen
- Department of Agronomy, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 10617, Taiwan
| | - Yoko Kawakami
- AXIOHELIX Co. Ltd, -12-17 Kandaizumicho, Chiyoda-ku, Tokyo, 101-0024, Japan
| | - Keigo Yamamoto
- Research Institute of Environment, Agriculture and Fisheries, Osaka Prefecture, 2926-1 Tanigawa, Misaki, Sen-Nan, Osaka, 599-0311, Japan
| | - Sirje Sildever
- National Research Institute of Fisheries Science, 2-12-4 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-8648, Japan
| | - Nanako Kanno
- National Research Institute of Fisheries Science, 2-12-4 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-8648, Japan
| | - Hiroshi Oikawa
- National Research Institute of Fisheries Science, 2-12-4 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-8648, Japan
| | - Motoshige Yasuike
- National Research Institute of Fisheries Science, 2-12-4 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-8648, Japan
| | - Yoji Nakamura
- National Research Institute of Fisheries Science, 2-12-4 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-8648, Japan
| | - Yuki Hongo
- National Research Institute of Fisheries Science, 2-12-4 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-8648, Japan
| | - Atushi Fujiwara
- National Research Institute of Fisheries Science, 2-12-4 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-8648, Japan
| | - Takanori Kobayashi
- National Research Institute of Fisheries Science, 2-12-4 Fukuura, Kanazawa-ku, Yokohama, Kanagawa, 236-8648, Japan
| | - Takashi Gojobori
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, 4700 KAUST, Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
23
|
Burki F, Roger AJ, Brown MW, Simpson AGB. The New Tree of Eukaryotes. Trends Ecol Evol 2019; 35:43-55. [PMID: 31606140 DOI: 10.1016/j.tree.2019.08.008] [Citation(s) in RCA: 412] [Impact Index Per Article: 82.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/15/2019] [Accepted: 08/15/2019] [Indexed: 01/01/2023]
Abstract
For 15 years, the eukaryote Tree of Life (eToL) has been divided into five to eight major groupings, known as 'supergroups'. However, the tree has been profoundly rearranged during this time. The new eToL results from the widespread application of phylogenomics and numerous discoveries of major lineages of eukaryotes, mostly free-living heterotrophic protists. The evidence that supports the tree has transitioned from a synthesis of molecular phylogenetics and biological characters to purely molecular phylogenetics. Most current supergroups lack defining morphological or cell-biological characteristics, making the supergroup label even more arbitrary than before. Going forward, the combination of traditional culturing with maturing culture-free approaches and phylogenomics should accelerate the process of completing and resolving the eToL at its deepest levels.
Collapse
Affiliation(s)
- Fabien Burki
- Department of Organismal Biology, Program in Systematic Biology, Uppsala University, Uppsala, Sweden; Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| | - Andrew J Roger
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada; Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, NS, Canada
| | - Matthew W Brown
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA; Institute for Genomics, Biocomputing, and Biotechnology, Mississippi State University, Mississippi State, MS, USA
| | - Alastair G B Simpson
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, NS, Canada; Department of Biology, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
24
|
Strassert JFH, Jamy M, Mylnikov AP, Tikhonenkov DV, Burki F. New Phylogenomic Analysis of the Enigmatic Phylum Telonemia Further Resolves the Eukaryote Tree of Life. Mol Biol Evol 2019; 36:757-765. [PMID: 30668767 PMCID: PMC6844682 DOI: 10.1093/molbev/msz012] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The resolution of the broad-scale tree of eukaryotes is constantly improving, but the evolutionary origin of several major groups remains unknown. Resolving the phylogenetic position of these “orphan” groups is important, especially those that originated early in evolution, because they represent missing evolutionary links between established groups. Telonemia is one such orphan taxon for which little is known. The group is composed of molecularly diverse biflagellated protists, often prevalent although not abundant in aquatic environments. Telonemia has been hypothesized to represent a deeply diverging eukaryotic phylum but no consensus exists as to where it is placed in the tree. Here, we established cultures and report the phylogenomic analyses of three new transcriptome data sets for divergent telonemid lineages. All our phylogenetic reconstructions, based on 248 genes and using site-heterogeneous mixture models, robustly resolve the evolutionary origin of Telonemia as sister to the Sar supergroup. This grouping remains well supported when as few as 60% of the genes are randomly subsampled, thus is not sensitive to the sets of genes used but requires a minimal alignment length to recover enough phylogenetic signal. Telonemia occupies a crucial position in the tree to examine the origin of Sar, one of the most lineage-rich eukaryote supergroups. We propose the moniker “TSAR” to accommodate this new mega-assemblage in the phylogeny of eukaryotes.
Collapse
Affiliation(s)
- Jürgen F H Strassert
- Department of Organismal Biology, Program in Systematic Biology, Uppsala University, Uppsala, Sweden
| | - Mahwash Jamy
- Department of Organismal Biology, Program in Systematic Biology, Uppsala University, Uppsala, Sweden
| | - Alexander P Mylnikov
- Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Yaroslavl Region, Russia
| | - Denis V Tikhonenkov
- Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Yaroslavl Region, Russia
| | - Fabien Burki
- Department of Organismal Biology, Program in Systematic Biology, Uppsala University, Uppsala, Sweden
- Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Corresponding author: E-mail:
| |
Collapse
|
25
|
Baldisserotto C, Sabia A, Ferroni L, Pancaldi S. Biological aspects and biotechnological potential of marine diatoms in relation to different light regimens. World J Microbiol Biotechnol 2019; 35:35. [PMID: 30712106 DOI: 10.1007/s11274-019-2607-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 01/27/2019] [Indexed: 11/25/2022]
Abstract
As major primary producers in marine environments, diatoms are considered a valuable feedstock of biologically active compounds for application in several biotechnological fields. Due to their metabolic plasticity, especially for light perception and use and in order to make microalgal production more environmentally sustainable, marine diatoms are considered good candidates for the large-scale cultivation. Among physical parameters, light plays a primary role. Even if sunlight is cost-effective, the employment of artificial light becomes a winning strategy if a high-value microalgal biomass is produced. Several researches on marine diatoms are designed to study the influence of different light regimens to increase biomass production enriched in biotechnologically high-value compounds (lipids, carotenoids, proteins, polysaccharides), or with emphasised photonic properties of the frustule.
Collapse
Affiliation(s)
- Costanza Baldisserotto
- Department of Life Sciences and Biotechnology, University of Ferrara, C.so Ercole I d'Este, 32, 44121, Ferrara, Italy
| | - Alessandra Sabia
- Department of Life Sciences and Biotechnology, University of Ferrara, C.so Ercole I d'Este, 32, 44121, Ferrara, Italy
| | - Lorenzo Ferroni
- Department of Life Sciences and Biotechnology, University of Ferrara, C.so Ercole I d'Este, 32, 44121, Ferrara, Italy
| | - Simonetta Pancaldi
- Department of Life Sciences and Biotechnology, University of Ferrara, C.so Ercole I d'Este, 32, 44121, Ferrara, Italy.
| |
Collapse
|
26
|
Kuźnicki D, Meller B, Arasimowicz-Jelonek M, Braszewska-Zalewska A, Drozda A, Floryszak-Wieczorek J. BABA-Induced DNA Methylome Adjustment to Intergenerational Defense Priming in Potato to Phytophthora infestans. FRONTIERS IN PLANT SCIENCE 2019; 10:650. [PMID: 31214209 PMCID: PMC6554679 DOI: 10.3389/fpls.2019.00650] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Accepted: 04/30/2019] [Indexed: 05/21/2023]
Abstract
We provide evidence that alterations in DNA methylation patterns contribute to the regulation of stress-responsive gene expression for an intergenerational resistance of β-aminobutyric acid (BABA)-primed potato to Phytophthora infestans. Plants exposed to BABA rapidly modified their methylation capacity toward genome-wide DNA hypermethylation. De novo induced DNA methylation (5-mC) correlated with the up-regulation of Chromomethylase 3 (CMT3), Domains rearranged methyltransferase 2 (DRM2), and Repressor of silencing 1 (ROS1) genes in potato. BABA transiently activated DNA hypermethylation in the promoter region of the R3a resistance gene triggering its downregulation in the absence of the oomycete pathogen. However, in the successive stages of priming, an excessive DNA methylation state changed into demethylation with the active involvement of potato DNA glycosylases. Interestingly, the 5-mC-mediated changes were transmitted into the next generation in the form of intergenerational stress memory. Descendants of the primed potato, which derived from tubers or seeds carrying the less methylated R3a promoter, showed a higher transcription of R3a that associated with an augmented intergenerational resistance to virulent P. infestans when compared to the inoculated progeny of unprimed plants. Furthermore, our study revealed that enhanced transcription of some SA-dependent genes (NPR1, StWRKY1, and PR1) was not directly linked with DNA methylation changes in the promoter region of these genes, but was a consequence of methylation-dependent alterations in the transcriptional network.
Collapse
Affiliation(s)
- Daniel Kuźnicki
- Department of Plant Physiology, Poznań University of Life Sciences, Poznań, Poland
| | - Barbara Meller
- Department of Plant Physiology, Poznań University of Life Sciences, Poznań, Poland
| | | | - Agnieszka Braszewska-Zalewska
- Department of Plant Anatomy and Cytology, Faculty of Biology and Environmental Protection, The University of Silesia in Katowice, Katowice, Poland
| | - Andżelika Drozda
- Department of Plant Physiology, Poznań University of Life Sciences, Poznań, Poland
| | - Jolanta Floryszak-Wieczorek
- Department of Plant Physiology, Poznań University of Life Sciences, Poznań, Poland
- *Correspondence: Jolanta Floryszak-Wieczorek,
| |
Collapse
|
27
|
Cavalier-Smith T, Chao EE, Lewis R. Multigene phylogeny and cell evolution of chromist infrakingdom Rhizaria: contrasting cell organisation of sister phyla Cercozoa and Retaria. PROTOPLASMA 2018; 255:1517-1574. [PMID: 29666938 PMCID: PMC6133090 DOI: 10.1007/s00709-018-1241-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 03/12/2018] [Indexed: 05/18/2023]
Abstract
Infrakingdom Rhizaria is one of four major subgroups with distinct cell body plans that comprise eukaryotic kingdom Chromista. Unlike other chromists, Rhizaria are mostly heterotrophic flagellates, amoebae or amoeboflagellates, commonly with reticulose (net-like) or filose (thread-like) feeding pseudopodia; uniquely for eukaryotes, cilia have proximal ciliary transition-zone hub-lattices. They comprise predominantly flagellate phylum Cercozoa and reticulopodial phylum Retaria, whose exact phylogenetic relationship has been uncertain. Given even less clear relationships amongst cercozoan classes, we sequenced partial transcriptomes of seven Cercozoa representing five classes and endomyxan retarian Filoreta marina to establish 187-gene multiprotein phylogenies. Ectoreta (retarian infraphyla Foraminifera, Radiozoa) branch within classical Cercozoa as sister to reticulose Endomyxa. This supports recent transfer of subphylum Endomyxa from Cercozoa to Retaria alongside subphylum Ectoreta which embraces classical retarians where capsules or tests subdivide cells into organelle-containing endoplasm and anastomosing pseudopodial net-like ectoplasm. Cercozoa are more homogeneously filose, often with filose pseudopodia and/or posterior ciliary gliding motility: zooflagellate Helkesimastix and amoeboid Guttulinopsis form a strongly supported clade, order Helkesida. Cercomonads are polyphyletic (Cercomonadida sister to glissomonads; Paracercomonadida deeper). Thecofilosea are a clade, whereas Imbricatea may not be; Sarcomonadea may be paraphyletic. Helkesea and Metromonadea are successively deeper outgroups within cercozoan subphylum Monadofilosa; subphylum Reticulofilosa (paraphyletic on site-heterogeneous trees) branches earliest, Granofilosea before Chlorarachnea. Our multiprotein trees confirm that Rhizaria are sisters of infrakingdom Halvaria (Alveolata, Heterokonta) within chromist subkingdom Harosa (= SAR); they further support holophyly of chromist subkingdom Hacrobia, and are consistent with holophyly of Chromista as sister of kingdom Plantae. Site-heterogeneous rDNA trees group Kraken with environmental DNA clade 'eSarcomonad', not Paracercomonadida. Ectoretan fossil dates evidence ultrarapid episodic stem sequence evolution. We discuss early rhizarian cell evolution and multigene tree coevolutionary patterns, gene-paralogue evidence for chromist monophyly, and integrate this with fossil evidence for the age of Rhizaria and eukaryote cells, and revise rhizarian classification.
Collapse
Affiliation(s)
| | - Ema E Chao
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK
| | - Rhodri Lewis
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK
| |
Collapse
|
28
|
Coelho SM, Gueno J, Lipinska AP, Cock JM, Umen JG. UV Chromosomes and Haploid Sexual Systems. TRENDS IN PLANT SCIENCE 2018; 23:794-807. [PMID: 30007571 PMCID: PMC6128410 DOI: 10.1016/j.tplants.2018.06.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/04/2018] [Accepted: 06/07/2018] [Indexed: 05/20/2023]
Abstract
The evolution of sex determination continues to pose major questions in biology. Sex-determination mechanisms control reproductive cell differentiation and development of sexual characteristics in all organisms, from algae to animals and plants. While the underlying processes defining sex (meiosis and recombination) are conserved, sex-determination mechanisms are highly labile. In particular, a flow of new discoveries has highlighted several fascinating features of the previously understudied haploid UV sex determination and related mating systems found in diverse photosynthetic taxa including green algae, bryophytes, and brown algae. Analyses integrating information from these systems and contrasting them with classical XY and ZW systems are providing exciting insights into both the universality and the diversity of sex-determining chromosomes across eukaryotes.
Collapse
Affiliation(s)
- Susana Margarida Coelho
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS), Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29680 Roscoff, France.
| | - Josselin Gueno
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS), Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29680 Roscoff, France
| | - Agnieszka Paulina Lipinska
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS), Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29680 Roscoff, France
| | - Jeremy Mark Cock
- Sorbonne Université, Centre National de la Recherche Scientifique (CNRS), Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), 29680 Roscoff, France
| | - James G Umen
- Donald Danforth Plant Science Center, St. Louis, MO 63132, USA.
| |
Collapse
|
29
|
Zhang S, Liu S, Zhang J, Reiter RJ, Wang Y, Qiu D, Luo X, Khalid AR, Wang H, Feng L, Lin Z, Ren M. Synergistic anti-oomycete effect of melatonin with a biofungicide against oomycetic black shank disease. J Pineal Res 2018; 65:e12492. [PMID: 29575191 DOI: 10.1111/jpi.12492] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 03/09/2018] [Indexed: 01/19/2023]
Abstract
Human health, food safety, and agriculture have been threatened by oomycetic diseases caused by notorious pathogenic oomycetes. Chemical oomyceticides are the main approaches in control of pathogenic oomycetes. However, the overused chemical oomyceticides have resulted in serious environmental pollution and drug resistance. The eco-friendly bio-oomyceticides are required for sustainable development through screening synergistic drug combinations. In this study, Phytophthora nicotianae (P. nicotianae), as one of the most destructive oomycetic diseases in agriculture, was used as a model system to screen the novel bio-oomyceticides based on drug combination. The results showed that treatment of melatonin or ethylicin (IUPAC Name: 1-ethylsulfonylsulfanylethane) alone displayed similar phenotypes such as the inhibition of the hyphal growth, reduction of the cell viability, and suppression of the virulence of P. nicotianae. Importantly, melatonin and ethylicin shared the same targets of interfering with the amino acid metabolism, overexpressing apoptosis-inducing factor, and dysregulating the virulence-related genes. Furthermore, strong synergism against P. nicotianae was induced by combining melatonin with ethylicin. Under treatment of the combination of melatonin and ethylicin, the expression of genes associated with amino acid, the apoptosis-inducing factor, and the virulence-related genes was much more significantly dysregulated than that of single drug treatment. Thus, the tobacco black shank caused by P. nicotianae can be successfully controlled using the combination of melatonin and ethylicin. These observations suggest that the synergistic effect based on the combination of melatonin and ethylicin is an eco-friendly alternative for the control of the destructive oomycetic diseases.
Collapse
Affiliation(s)
- Shumin Zhang
- School of Life Sciences, Chongqing University, Chongqing, China
- School of Basic Medical Sciences, North Sichuan Medical College, Nanchong, China
| | - Sen Liu
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Jiankui Zhang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Russel J Reiter
- Department of Cellular and Structure Biology, UT Health, San Antonio, TX, USA
| | - Ying Wang
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Dan Qiu
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Xiumei Luo
- School of Life Sciences, Chongqing University, Chongqing, China
| | - A Rehman Khalid
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Hanyan Wang
- School of Basic Medical Sciences, North Sichuan Medical College, Nanchong, China
| | - Li Feng
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Zhenghong Lin
- School of Life Sciences, Chongqing University, Chongqing, China
| | - Maozhi Ren
- School of Life Sciences, Chongqing University, Chongqing, China
| |
Collapse
|
30
|
Annenkova NV, Ahrén D, Logares R, Kremp A, Rengefors K. Delineating closely related dinoflagellate lineages using phylotranscriptomics. JOURNAL OF PHYCOLOGY 2018; 54:571-576. [PMID: 29676790 DOI: 10.1111/jpy.12748] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 04/05/2018] [Indexed: 06/08/2023]
Abstract
Recently radiated dinoflagellates Apocalathium aciculiferum (collected in Lake Erken, Sweden), Apocalathium malmogiense (Baltic Sea) and Apocalathium aff. malmogiense (Highway Lake, Antarctica) represent a lineage with an unresolved phylogeny. We determined their phylogenetic relationships using phylotranscriptomics based on 792 amino acid sequences. Our results showed that A. aciculiferum diverged from the other two closely related lineages, consistent with their different morphologies in cell size, relative cell length and presence of spines. We hypothesized that A. aff. malmogiense and A. malmogiense, which inhabit different hemispheres, are evolutionarily more closely related because they diverged from a marine common ancestor, adapting to a wide salinity range, while A. aciculiferum colonized a freshwater habitat, by acquiring adaptations to this environment, in particular, salinity intolerance. We show that phylotranscriptomics can resolve the phylogeny of recently diverged protists. This has broad relevance, given that many phytoplankton species are morphologically very similar, and single genes sometimes lack the information to determine species' relationships.
Collapse
Affiliation(s)
- Nataliia V Annenkova
- Limnological Institute Siberian Branch of the Russian Academy of Sciences 3, Ulan-Batorskaya St., 664033, Irkutsk, Russia
| | - Dag Ahrén
- Microbial Ecology Group, Department of Biology, Lund University, Ecology Building, SE-223 62, Lund, Sweden
- Bioinformatics Infrastructures for Life Sciences (BILS), Department of Biology, Lund University, Ecology Building, SE-223 62, Lund, Sweden
| | - Ramiro Logares
- Department of Marine Biology and Oceanography, Institute of Marine Science (ICM)-Consejo Superior de Investigaciones Científicas (CSIC), Passeig Marítim de la Barceloneta 37-49, E08003, Barcelona, Spain
| | - Anke Kremp
- Marine Research Centre, Finnish Environment Institute, Erik Palmenin aukio 1, 00560, Helsinki, Finland
| | - Karin Rengefors
- Aquatic Ecology, Department of Biology, Lund University, Ecology Building, SE-223 62, Lund, Sweden
| |
Collapse
|
31
|
Chen F, Zhang L, Lin Z, Cheng ZMM. Identification of a novel fused gene family implicates convergent evolution in eukaryotic calcium signaling. BMC Genomics 2018; 19:306. [PMID: 29703146 PMCID: PMC5924475 DOI: 10.1186/s12864-018-4685-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 04/16/2018] [Indexed: 12/31/2022] Open
Abstract
Background Both calcium signals and protein phosphorylation responses are universal signals in eukaryotic cell signaling. Currently three pathways have been characterized in different eukaryotes converting the Ca2+ signals to the protein phosphorylation responses. All these pathways have based mostly on studies in plants and animals. Results Based on the exploration of genomes and transcriptomes from all the six eukaryotic supergroups, we report here in Metakinetoplastina protists a novel gene family. This family, with a proposed name SCAMK, comprises SnRK3 fused calmodulin-like III kinase genes and was likely evolved through the insertion of a calmodulin-like3 gene into an SnRK3 gene by unequal crossover of homologous chromosomes in meiosis cell. Its origin dated back to the time intersection at least 450 million-year-ago when Excavata parasites, Vertebrata hosts, and Insecta vectors evolved. We also analyzed SCAMK’s unique expression pattern and structure, and proposed it as one of the leading calcium signal conversion pathways in Excavata parasite. These characters made SCAMK gene as a potential drug target for treating human African trypanosomiasis. Conclusions This report identified a novel gene fusion and dated its precise fusion time in Metakinetoplastina protists. This potential fourth eukaryotic calcium signal conversion pathway complements our current knowledge that convergent evolution occurs in eukaryotic calcium signaling. Electronic supplementary material The online version of this article (10.1186/s12864-018-4685-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Fei Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; Center for Genomics and Biotechnology; Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology; Ministry of Education Key Laboratory of Genetics, Breeding and Multiple Utilization of Corps; Fujian Agriculture and Forestry University, Fuzhou, 350002, China.,College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.,Department of Plant Sciences, University of Tennessee, Knoxville, 37996, USA
| | - Liangsheng Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; Center for Genomics and Biotechnology; Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology; Ministry of Education Key Laboratory of Genetics, Breeding and Multiple Utilization of Corps; Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhenguo Lin
- Department of Biology, Saint Louis University, St. Louis, 63103-2010, USA
| | - Zong-Ming Max Cheng
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China. .,Department of Plant Sciences, University of Tennessee, Knoxville, 37996, USA.
| |
Collapse
|
32
|
Záhonová K, Petrželková R, Valach M, Yazaki E, Tikhonenkov DV, Butenko A, Janouškovec J, Hrdá Š, Klimeš V, Burger G, Inagaki Y, Keeling PJ, Hampl V, Flegontov P, Yurchenko V, Eliáš M. Extensive molecular tinkering in the evolution of the membrane attachment mode of the Rheb GTPase. Sci Rep 2018; 8:5239. [PMID: 29588502 PMCID: PMC5869587 DOI: 10.1038/s41598-018-23575-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/15/2018] [Indexed: 02/07/2023] Open
Abstract
Rheb is a conserved and widespread Ras-like GTPase involved in cell growth regulation mediated by the (m)TORC1 kinase complex and implicated in tumourigenesis in humans. Rheb function depends on its association with membranes via prenylated C-terminus, a mechanism shared with many other eukaryotic GTPases. Strikingly, our analysis of a phylogenetically rich sample of Rheb sequences revealed that in multiple lineages this canonical and ancestral membrane attachment mode has been variously altered. The modifications include: (1) accretion to the N-terminus of two different phosphatidylinositol 3-phosphate-binding domains, PX in Cryptista (the fusion being the first proposed synapomorphy of this clade), and FYVE in Euglenozoa and the related undescribed flagellate SRT308; (2) acquisition of lipidic modifications of the N-terminal region, namely myristoylation and/or S-palmitoylation in seven different protist lineages; (3) acquisition of S-palmitoylation in the hypervariable C-terminal region of Rheb in apusomonads, convergently to some other Ras family proteins; (4) replacement of the C-terminal prenylation motif with four transmembrane segments in a novel Rheb paralog in the SAR clade; (5) loss of an evident C-terminal membrane attachment mechanism in Tremellomycetes and some Rheb paralogs of Euglenozoa. Rheb evolution is thus surprisingly dynamic and presents a spectacular example of molecular tinkering.
Collapse
Affiliation(s)
- Kristína Záhonová
- Department of Biology and Ecology & Institute of Environmental Technologies, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Romana Petrželková
- Department of Biology and Ecology & Institute of Environmental Technologies, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Matus Valach
- Department of Biochemistry and Robert-Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, Montreal, Canada
| | - Euki Yazaki
- Institute for Biological Sciences, University of Tsukuba, Tsukuba, Japan
| | - Denis V Tikhonenkov
- Laboratory of Microbiology, Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Borok, Russia
| | - Anzhelika Butenko
- Department of Biology and Ecology & Institute of Environmental Technologies, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Jan Janouškovec
- Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Štěpánka Hrdá
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Vladimír Klimeš
- Department of Biology and Ecology & Institute of Environmental Technologies, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Gertraud Burger
- Department of Biochemistry and Robert-Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, Montreal, Canada
| | - Yuji Inagaki
- Center for Computational Sciences, University of Tsukuba, Tsukuba, Japan
| | - Patrick J Keeling
- Department of Botany, University of British Columbia, Vancouver, Canada
| | - Vladimír Hampl
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Pavel Flegontov
- Department of Biology and Ecology & Institute of Environmental Technologies, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Vyacheslav Yurchenko
- Department of Biology and Ecology & Institute of Environmental Technologies, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Marek Eliáš
- Department of Biology and Ecology & Institute of Environmental Technologies, Faculty of Science, University of Ostrava, Ostrava, Czech Republic.
| |
Collapse
|
33
|
Grattepanche J, Walker LM, Ott BM, Paim Pinto DL, Delwiche CF, Lane CE, Katz LA. Microbial Diversity in the Eukaryotic SAR Clade: Illuminating the Darkness Between Morphology and Molecular Data. Bioessays 2018; 40:e1700198. [DOI: 10.1002/bies.201700198] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 01/16/2018] [Indexed: 01/09/2023]
Affiliation(s)
| | - Laura M. Walker
- Department of Biological Sciences, Smith CollegeNorthamptonMA 01063USA
| | - Brittany M. Ott
- Department of Cell Biology and Molecular Genetics, University of MarylandCollege ParkMD 20742USA
| | | | - Charles F. Delwiche
- Department of Cell Biology and Molecular Genetics, University of MarylandCollege ParkMD 20742USA
| | - Christopher E. Lane
- Department of Biological SciencesUniversity of Rhode IslandKingstonRI 02881USA
| | - Laura A. Katz
- Department of Biological Sciences, Smith CollegeNorthamptonMA 01063USA
| |
Collapse
|
34
|
Pelz T, Drose DR, Fleck D, Henkel B, Ackels T, Spehr M, Neuhaus EM. An ancestral TMEM16 homolog from Dictyostelium discoideum forms a scramblase. PLoS One 2018; 13:e0191219. [PMID: 29444117 PMCID: PMC5812556 DOI: 10.1371/journal.pone.0191219] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 12/29/2017] [Indexed: 01/11/2023] Open
Abstract
TMEM16 proteins are a recently identified protein family comprising Ca2+-activated Cl- channels that generate outwardly rectifying ionic currents in response to intracellular Ca2+ elevations. Some TMEM16 family members, such as TMEM16F/ANO6 are also essential for Ca2+-dependent phospholipid scrambling. TMEM16-like genes are present in the genomes of most eukaryotic species, the function(s) of TMEM16 family members from evolutionary ancient eukaryotes is not completely clear. Here, we provide insight into the evolution of these TMEM16 proteins by similarity searches for ancestral sequences. All eukaryotic genomes contain TMEM16 homologs, but only vertebrates have the full repertoire of ten distinct subtypes. TMEM16 homologs studied so far belong to the opisthokont branch of the phylogenetic tree, which includes the animal and fungal kingdoms. An organism outside this group is Dictyostelium discoideum, a representative of the amoebozoa group that diverged from the metazoa before fungi. We here functionally investigated the TMEM16 family member from Dictyostelium discoideum. When recombinantly expressed in HEK293 cells, DdTMEM16 induces phospholipid scrambling. However, in several electrophysiological experiments we did not find evidence for a Ca2+-activated Cl- channel function of DdTMEM16.
Collapse
Affiliation(s)
- Thomas Pelz
- Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
- Cluster of Excellence NeuroCure, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Daniela R. Drose
- Department of Chemosensation, Institute for Biology II, RWTH-Aachen University, Aachen, Germany
| | - David Fleck
- Department of Chemosensation, Institute for Biology II, RWTH-Aachen University, Aachen, Germany
| | - Bastian Henkel
- Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
- Cluster of Excellence NeuroCure, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Tobias Ackels
- Department of Chemosensation, Institute for Biology II, RWTH-Aachen University, Aachen, Germany
| | - Marc Spehr
- Department of Chemosensation, Institute for Biology II, RWTH-Aachen University, Aachen, Germany
| | - Eva M. Neuhaus
- Pharmacology and Toxicology, Jena University Hospital, Friedrich Schiller University Jena, Jena, Germany
- Cluster of Excellence NeuroCure, Charité-Universitätsmedizin Berlin, Berlin, Germany
- * E-mail:
| |
Collapse
|
35
|
Cavalier-Smith T. Kingdom Chromista and its eight phyla: a new synthesis emphasising periplastid protein targeting, cytoskeletal and periplastid evolution, and ancient divergences. PROTOPLASMA 2018; 255:297-357. [PMID: 28875267 PMCID: PMC5756292 DOI: 10.1007/s00709-017-1147-3] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/18/2017] [Indexed: 05/18/2023]
Abstract
In 1981 I established kingdom Chromista, distinguished from Plantae because of its more complex chloroplast-associated membrane topology and rigid tubular multipartite ciliary hairs. Plantae originated by converting a cyanobacterium to chloroplasts with Toc/Tic translocons; most evolved cell walls early, thereby losing phagotrophy. Chromists originated by enslaving a phagocytosed red alga, surrounding plastids by two extra membranes, placing them within the endomembrane system, necessitating novel protein import machineries. Early chromists retained phagotrophy, remaining naked and repeatedly reverted to heterotrophy by losing chloroplasts. Therefore, Chromista include secondary phagoheterotrophs (notably ciliates, many dinoflagellates, Opalozoa, Rhizaria, heliozoans) or walled osmotrophs (Pseudofungi, Labyrinthulea), formerly considered protozoa or fungi respectively, plus endoparasites (e.g. Sporozoa) and all chromophyte algae (other dinoflagellates, chromeroids, ochrophytes, haptophytes, cryptophytes). I discuss their origin, evolutionary diversification, and reasons for making chromists one kingdom despite highly divergent cytoskeletons and trophic modes, including improved explanations for periplastid/chloroplast protein targeting, derlin evolution, and ciliary/cytoskeletal diversification. I conjecture that transit-peptide-receptor-mediated 'endocytosis' from periplastid membranes generates periplastid vesicles that fuse with the arguably derlin-translocon-containing periplastid reticulum (putative red algal trans-Golgi network homologue; present in all chromophytes except dinoflagellates). I explain chromist origin from ancestral corticates and neokaryotes, reappraising tertiary symbiogenesis; a chromist cytoskeletal synapomorphy, a bypassing microtubule band dextral to both centrioles, favoured multiple axopodial origins. I revise chromist higher classification by transferring rhizarian subphylum Endomyxa from Cercozoa to Retaria; establishing retarian subphylum Ectoreta for Foraminifera plus Radiozoa, apicomonad subclasses, new dinozoan classes Myzodinea (grouping Colpovora gen. n., Psammosa), Endodinea, Sulcodinea, and subclass Karlodinia; and ranking heterokont Gyrista as phylum not superphylum.
Collapse
|
36
|
Chaib De Mares M, Sipkema D, Huang S, Bunk B, Overmann J, van Elsas JD. Host Specificity for Bacterial, Archaeal and Fungal Communities Determined for High- and Low-Microbial Abundance Sponge Species in Two Genera. Front Microbiol 2017; 8:2560. [PMID: 29326681 PMCID: PMC5742488 DOI: 10.3389/fmicb.2017.02560] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 12/11/2017] [Indexed: 02/01/2023] Open
Abstract
Sponges are engaged in intimate symbioses with a diversity of microorganisms from all three domains of life, namely Bacteria, Archaea and Eukarya. Sponges have been well studied and categorized for their bacterial communities, some displaying a high microbial abundance (HMA), while others show low microbial abundance (LMA). However, the associated Archaea and Eukarya have remained relatively understudied. We assessed the bacterial, archaeal and eukaryotic diversities in the LMA sponge species Dysidea avara and Dysidea etheria by deep amplicon sequencing, and compared the results to those in the HMA sponges Aplysina aerophoba and Aplysina cauliformis. D. avara and A. aerophoba are sympatric in the Mediterranean Sea, while D. etheria and A. cauliformis are sympatric in the Caribbean Sea. The bacterial communities followed a host-specific pattern, with host species identity explaining most of the variation among samples. We identified OTUs shared by the Aplysina species that support a more ancient association of these microbes, before the split of the two species studied here. These shared OTUs are suitable targets for future studies of the microbial traits that mediate interactions with their hosts. Even though the archaeal communities were not as rich as the bacterial ones, we found a remarkable diversification and specificity of OTUs of the family Cenarchaeaceae and the genus Nitrosopumilus in all four sponge species studied. Similarly, the differences in fungal communities were driven by sponge identity. The structures of the communities of small eukaryotes such as dinophytes and ciliophores (alveolates), and stramenopiles, could not be explained by either sponge host, sponge genus or geographic location. Our analyses suggest that the host specificity that was previously described for sponge bacterial communities also extends to the archaeal and fungal communities, but not to other microbial eukaryotes.
Collapse
Affiliation(s)
- Maryam Chaib De Mares
- Microbial Ecology Cluster, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | - Detmer Sipkema
- Laboratory of Microbiology, Wageningen University, Wageningen, Netherlands
| | - Sixing Huang
- Leibniz-Institut Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany
| | - Boyke Bunk
- Leibniz-Institut Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany.,German Centre of Infection Research (DZIF), Partner site Hannover-Braunschweig, Braunschweig, Germany
| | - Jörg Overmann
- Leibniz-Institut Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany.,German Centre of Infection Research (DZIF), Partner site Hannover-Braunschweig, Braunschweig, Germany
| | - Jan Dirk van Elsas
- Microbial Ecology Cluster, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| |
Collapse
|
37
|
Abrahamian M, Kagda M, Ah-Fong AMV, Judelson HS. Rethinking the evolution of eukaryotic metabolism: novel cellular partitioning of enzymes in stramenopiles links serine biosynthesis to glycolysis in mitochondria. BMC Evol Biol 2017; 17:241. [PMID: 29202688 PMCID: PMC5715807 DOI: 10.1186/s12862-017-1087-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 11/21/2017] [Indexed: 12/17/2022] Open
Abstract
Background An important feature of eukaryotic evolution is metabolic compartmentalization, in which certain pathways are restricted to the cytosol or specific organelles. Glycolysis in eukaryotes is described as a cytosolic process. The universality of this canon has been challenged by recent genome data that suggest that some glycolytic enzymes made by stramenopiles bear mitochondrial targeting peptides. Results Mining of oomycete, diatom, and brown algal genomes indicates that stramenopiles encode two forms of enzymes for the second half of glycolysis, one with and the other without mitochondrial targeting peptides. The predicted mitochondrial targeting was confirmed by using fluorescent tags to localize phosphoglycerate kinase, phosphoglycerate mutase, and pyruvate kinase in Phytophthora infestans, the oomycete that causes potato blight. A genome-wide search for other enzymes with atypical mitochondrial locations identified phosphoglycerate dehydrogenase, phosphoserine aminotransferase, and phosphoserine phosphatase, which form a pathway for generating serine from the glycolytic intermediate 3-phosphoglycerate. Fluorescent tags confirmed the delivery of these serine biosynthetic enzymes to P. infestans mitochondria. A cytosolic form of this serine biosynthetic pathway, which occurs in most eukaryotes, is missing from oomycetes and most other stramenopiles. The glycolysis and serine metabolism pathways of oomycetes appear to be mosaics of enzymes with different ancestries. While some of the noncanonical oomycete mitochondrial enzymes have the closest affinity in phylogenetic analyses with proteins from other stramenopiles, others cluster with bacterial, plant, or animal proteins. The genes encoding the mitochondrial phosphoglycerate kinase and serine-forming enzymes are physically linked on oomycete chromosomes, which suggests a shared origin. Conclusions Stramenopile metabolism appears to have been shaped through the acquisition of genes by descent and lateral or endosymbiotic gene transfer, along with the targeting of the proteins to locations that are novel compared to other eukaryotes. Colocalization of the glycolytic and serine biosynthesis enzymes in mitochondria is apparently necessary since they share a common intermediate. The results indicate that descriptions of metabolism in textbooks do not cover the full diversity of eukaryotic biology. Electronic supplementary material The online version of this article (10.1186/s12862-017-1087-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Melania Abrahamian
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521, USA
| | - Meenakshi Kagda
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521, USA
| | - Audrey M V Ah-Fong
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521, USA
| | - Howard S Judelson
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, 92521, USA.
| |
Collapse
|
38
|
Are Thraustochytrids algae? Fungal Biol 2017; 121:835-840. [DOI: 10.1016/j.funbio.2017.07.006] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 07/25/2017] [Accepted: 07/26/2017] [Indexed: 12/30/2022]
|
39
|
A D Neilson J, Rangsrikitphoti P, Durnford DG. Evolution and regulation of Bigelowiella natans light-harvesting antenna system. JOURNAL OF PLANT PHYSIOLOGY 2017; 217:68-76. [PMID: 28619535 DOI: 10.1016/j.jplph.2017.05.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/16/2017] [Accepted: 05/22/2017] [Indexed: 05/27/2023]
Abstract
Bigelowiella natans is a mixotrophic flagellate and member of the chlorarachniophytes (Rhizaria), whose plastid is derived from a green algal endosymbiont. With the completion of the B. natans nuclear genome we are able to begin the analysis of the structure, function and evolution of the photosynthetic apparatus. B. natans has undergone substantial changes in photosystem structure during the evolution of the plastid from a green alga. While Photosystem II (PSII) composition is well conserved, Photosystem I (PSI) composition has undergone a dramatic reduction in accessory protein subunits. Coinciding with these changes, there was a loss of green algal LHCI orthologs while the PSII-like antenna system has the expected green algal-like proteins (encoded by genes Lhcbm1-8, Lhcb4). There are also a collection of LHCX-like proteins, which are commonly associated with stramenopiles and other eukaryotes with red-algal derived plastids, along with two other unique classes of LHCs- LHCY and LHCZ- whose function remains cryptic. To understand the regulation of the LHC gene family as an initial probe of function, we conducted an RNA-seq experiment under a short-term, high-light (HL) and low-light stress. The most abundant LHCII transcript (Lhcbm6) plus two other LHCBM types (Lhcbm1, 2) were down regulated under HL and up-regulated following a shift to very-low light (VL), as is common in antenna specializing in light harvesting. Many of the other LHCII and LHCY genes had a small, but significant increase in HL and most were only moderately affected under VL. The LHCX and LHCZ genes, however, had a strong up-regulation under HL-stress and most declined under VL, suggesting that they primarily have a role in photoprotection. This contrasts to the LHCY family that is only moderately responsive to light and a much higher basal level of expression, despite being within the LHCSR/LHCX clade. The expression of LHCX/Z proteins under HL-stress may be related to the induction of long-term, non-photochemical quenching mechanisms.
Collapse
Affiliation(s)
- Jonathan A D Neilson
- University of New Brunswick, Department of Biology, Fredericton, New Brunswick, E3B 5A3, Canada.
| | | | - Dion G Durnford
- University of New Brunswick, Department of Biology, Fredericton, New Brunswick, E3B 5A3, Canada.
| |
Collapse
|
40
|
Jayaswal PK, Dogra V, Shanker A, Sharma TR, Singh NK. A tree of life based on ninety-eight expressed genes conserved across diverse eukaryotic species. PLoS One 2017; 12:e0184276. [PMID: 28922368 PMCID: PMC5603157 DOI: 10.1371/journal.pone.0184276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 08/21/2017] [Indexed: 01/07/2023] Open
Abstract
Rapid advances in DNA sequencing technologies have resulted in the accumulation of large data sets in the public domain, facilitating comparative studies to provide novel insights into the evolution of life. Phylogenetic studies across the eukaryotic taxa have been reported but on the basis of a limited number of genes. Here we present a genome-wide analysis across different plant, fungal, protist, and animal species, with reference to the 36,002 expressed genes of the rice genome. Our analysis revealed 9831 genes unique to rice and 98 genes conserved across all 49 eukaryotic species analysed. The 98 genes conserved across diverse eukaryotes mostly exhibited binding and catalytic activities and shared common sequence motifs; and hence appeared to have a common origin. The 98 conserved genes belonged to 22 functional gene families including 26S protease, actin, ADP–ribosylation factor, ATP synthase, casein kinase, DEAD-box protein, DnaK, elongation factor 2, glyceraldehyde 3-phosphate, phosphatase 2A, ras-related protein, Ser/Thr protein phosphatase family protein, tubulin, ubiquitin and others. The consensus Bayesian eukaryotic tree of life developed in this study demonstrated widely separated clades of plants, fungi, and animals. Musa acuminata provided an evolutionary link between monocotyledons and dicotyledons, and Salpingoeca rosetta provided an evolutionary link between fungi and animals, which indicating that protozoan species are close relatives of fungi and animals. The divergence times for 1176 species pairs were estimated accurately by integrating fossil information with synonymous substitution rates in the comprehensive set of 98 genes. The present study provides valuable insight into the evolution of eukaryotes.
Collapse
Affiliation(s)
- Pawan Kumar Jayaswal
- National Research Centre on Plant Biotechnology, IARI, Pusa, New Delhi, India
- Banasthali University, Banasthali, Rajasthan, India
| | - Vivek Dogra
- National Research Centre on Plant Biotechnology, IARI, Pusa, New Delhi, India
| | - Asheesh Shanker
- Bioinformatics Programme, Centre for Biological Sciences, Central University of South Bihar, Patna, Bihar, India
| | - Tilak Raj Sharma
- National Research Centre on Plant Biotechnology, IARI, Pusa, New Delhi, India
| | - Nagendra Kumar Singh
- National Research Centre on Plant Biotechnology, IARI, Pusa, New Delhi, India
- * E-mail:
| |
Collapse
|
41
|
Dzhembekova N, Urusizaki S, Moncheva S, Ivanova P, Nagai S. Applicability of massively parallel sequencing on monitoring harmful algae at Varna Bay in the Black Sea. HARMFUL ALGAE 2017; 68:40-51. [PMID: 28962989 DOI: 10.1016/j.hal.2017.07.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 07/04/2017] [Accepted: 07/17/2017] [Indexed: 06/07/2023]
Abstract
In this study the plankton diversity in 13 environmental samples from Varna Bay (in the western Black Sea) was analyzed using massively parallel sequencing (MPS). This preliminary study was undertaken to assess the potential of this technology for future implementation in monitoring programs in the Black Sea. Amplicon sequences of the 18S rRNA gene (V4-5 regions) were obtained using the Illumina MiSeq 250PE platform. A total of 1137 operational taxonomic units (OTUs) were obtained among which 242 OTUs with >0.990 BLAST top hit similarity (21.3% of all detected OTUs) closely related to sequences belonging to -protists. A large portion (175 OTUs=72.3%) was identified at the species levels, including species typical for the Bulgarian Black Sea plankton community, as well as many that haven't been reported earlier in the Bulgarian Black Sea coast (124 OTUs=51.2%). Dinoflagellates were represented by the highest species number (77 OTUs comprising 31.8% of protist species), with dominant genera Gyrodinium and Heterocapsa. The present survey revealed the presence of 12 species listed as harmful, some of which have been previously overlooked, such as Cochlodinium polykrikoides, Karenia bicuneiformis, and Karlodinium veneficum. Species identification was possible for 10.3-36.0% of the detected OTUs in the six major supergroups. The frequency in Rhizaria was significantly lower than that in other major groups (p<0.05-0.01), implying difficulties in the classification from morphology-based observations. The metagenetic data had an insufficient resolution of the 18S rRNA gene for species identification in many genera. These issues may hamper the implementation of MPS-based surveys for plankton monitoring, especially for detecting harmful algal blooms (HAB). The sequencing technology is steadily improving and it is expected that sequence length and quality issues will be resolved in the near future. The ongoing efforts to register taxonomic information and quality controls in the international nucleotide sequence databases (INSDs) will be essential for improving taxonomic identification power.
Collapse
Affiliation(s)
- Nina Dzhembekova
- Institute of Oceanology, Bulgarian Academy of Sciences, First May street 40, 152, Varna 9000, Bulgaria
| | - Shingo Urusizaki
- AXIOHELIX Co. Ltd., 5-11 Hakozaki, Nihonbashi, Chuouku 103-0015, Tokyo, Japan
| | - Snejana Moncheva
- Institute of Oceanology, Bulgarian Academy of Sciences, First May street 40, 152, Varna 9000, Bulgaria
| | - Petya Ivanova
- Institute of Oceanology, Bulgarian Academy of Sciences, First May street 40, 152, Varna 9000, Bulgaria
| | - Satoshi Nagai
- Research Center for Aquatic Genomics, National Research Institute of Fisheries Science, 2-12-4 Fukuura, Kanazawa-ku, Yokohama, Kanagawa 236-8648, Japan.
| |
Collapse
|
42
|
Phylogenomic Reconstruction of the Oomycete Phylogeny Derived from 37 Genomes. mSphere 2017; 2:mSphere00095-17. [PMID: 28435885 PMCID: PMC5390094 DOI: 10.1128/msphere.00095-17] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Accepted: 03/24/2017] [Indexed: 12/17/2022] Open
Abstract
The oomycetes are a class of eukaryotes and include ecologically significant animal and plant pathogens. Single-gene and multigene phylogenetic studies of individual oomycete genera and of members of the larger classes have resulted in conflicting conclusions concerning interspecies relationships among these species, particularly for the Phytophthora genus. The onset of next-generation sequencing techniques now means that a wealth of oomycete genomic data is available. For the first time, we have used genome-scale phylogenetic methods to resolve oomycete phylogenetic relationships. We used supertree methods to generate single-gene and multigene species phylogenies. Overall, our supertree analyses utilized phylogenetic data from 8,355 oomycete gene families. We have also complemented our analyses with superalignment phylogenies derived from 131 single-copy ubiquitous gene families. Our results show that a genome-scale approach to oomycete phylogeny resolves oomycete classes and clades. Our analysis represents an important first step in large-scale phylogenomic analysis of the oomycetes. The oomycetes are a class of microscopic, filamentous eukaryotes within the Stramenopiles-Alveolata-Rhizaria (SAR) supergroup which includes ecologically significant animal and plant pathogens, most infamously the causative agent of potato blight Phytophthora infestans. Single-gene and concatenated phylogenetic studies both of individual oomycete genera and of members of the larger class have resulted in conflicting conclusions concerning species phylogenies within the oomycetes, particularly for the large Phytophthora genus. Genome-scale phylogenetic studies have successfully resolved many eukaryotic relationships by using supertree methods, which combine large numbers of potentially disparate trees to determine evolutionary relationships that cannot be inferred from individual phylogenies alone. With a sufficient amount of genomic data now available, we have undertaken the first whole-genome phylogenetic analysis of the oomycetes using data from 37 oomycete species and 6 SAR species. In our analysis, we used established supertree methods to generate phylogenies from 8,355 homologous oomycete and SAR gene families and have complemented those analyses with both phylogenomic network and concatenated supermatrix analyses. Our results show that a genome-scale approach to oomycete phylogeny resolves oomycete classes and individual clades within the problematic Phytophthora genus. Support for the resolution of the inferred relationships between individual Phytophthora clades varies depending on the methodology used. Our analysis represents an important first step in large-scale phylogenomic analysis of the oomycetes. IMPORTANCE The oomycetes are a class of eukaryotes and include ecologically significant animal and plant pathogens. Single-gene and multigene phylogenetic studies of individual oomycete genera and of members of the larger classes have resulted in conflicting conclusions concerning interspecies relationships among these species, particularly for the Phytophthora genus. The onset of next-generation sequencing techniques now means that a wealth of oomycete genomic data is available. For the first time, we have used genome-scale phylogenetic methods to resolve oomycete phylogenetic relationships. We used supertree methods to generate single-gene and multigene species phylogenies. Overall, our supertree analyses utilized phylogenetic data from 8,355 oomycete gene families. We have also complemented our analyses with superalignment phylogenies derived from 131 single-copy ubiquitous gene families. Our results show that a genome-scale approach to oomycete phylogeny resolves oomycete classes and clades. Our analysis represents an important first step in large-scale phylogenomic analysis of the oomycetes.
Collapse
|
43
|
Chen F, Liu X, Yu C, Chen Y, Tang H, Zhang L. Water lilies as emerging models for Darwin's abominable mystery. HORTICULTURE RESEARCH 2017; 4:17051. [PMID: 28979789 PMCID: PMC5626932 DOI: 10.1038/hortres.2017.51] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 06/30/2017] [Accepted: 07/26/2017] [Indexed: 05/02/2023]
Abstract
Water lilies are not only highly favored aquatic ornamental plants with cultural and economic importance but they also occupy a critical evolutionary space that is crucial for understanding the origin and early evolutionary trajectory of flowering plants. The birth and rapid radiation of flowering plants has interested many scientists and was considered 'an abominable mystery' by Charles Darwin. In searching for the angiosperm evolutionary origin and its underlying mechanisms, the genome of Amborella has shed some light on the molecular features of one of the basal angiosperm lineages; however, little is known regarding the genetics and genomics of another basal angiosperm lineage, namely, the water lily. In this study, we reviewed current molecular research and note that water lily research has entered the genomic era. We propose that the genome of the water lily is critical for studying the contentious relationship of basal angiosperms and Darwin's 'abominable mystery'. Four pantropical water lilies, especially the recently sequenced Nymphaea colorata, have characteristics such as small size, rapid growth rate and numerous seeds and can act as the best model for understanding the origin of angiosperms. The water lily genome is also valuable for revealing the genetics of ornamental traits and will largely accelerate the molecular breeding of water lilies.
Collapse
Affiliation(s)
- Fei Chen
- Center for Genomics and Biotechnology; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops; Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology; Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xing Liu
- Center for Genomics and Biotechnology; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops; Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology; Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Cuiwei Yu
- Zhejiang Humanities Landscape Co., LTD, Hangzhou 310030, China
| | - Yuchu Chen
- Zhejiang Humanities Landscape Co., LTD, Hangzhou 310030, China
| | - Haibao Tang
- Center for Genomics and Biotechnology; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops; Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology; Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liangsheng Zhang
- Center for Genomics and Biotechnology; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops; Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology; Fujian Agriculture and Forestry University, Fuzhou 350002, China
- )
| |
Collapse
|
44
|
Caron DA, Alexander H, Allen AE, Archibald JM, Armbrust EV, Bachy C, Bell CJ, Bharti A, Dyhrman ST, Guida SM, Heidelberg KB, Kaye JZ, Metzner J, Smith SR, Worden AZ. Probing the evolution, ecology and physiology of marine protists using transcriptomics. Nat Rev Microbiol 2016; 15:6-20. [DOI: 10.1038/nrmicro.2016.160] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
45
|
Kim E, Sprung B, Duhamel S, Filardi C, Kyoon Shin M. Oligotrophic lagoons of the South Pacific Ocean are home to a surprising number of novel eukaryotic microorganisms. Environ Microbiol 2016; 18:4549-4563. [PMID: 27581800 DOI: 10.1111/1462-2920.13523] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 08/30/2016] [Indexed: 12/20/2022]
Abstract
The diversity of microbial eukaryotes was surveyed by environmental sequencing from tropical lagoon sites of the South Pacific, collected through the American Museum of Natural History (AMNH)'s Explore21 expedition to the Solomon Islands in September 2013. The sampled lagoons presented low nutrient concentrations typical of oligotrophic waters, but contained levels of chlorophyll a, a proxy for phytoplankton biomass, characteristic of meso- to eutrophic waters. Two 18S rDNA hypervariable sites, the V4 and V8-V9 regions, were amplified from the total of eight lagoon samples and sequenced on the MiSeq system. After assembly, clustering at 97% similarity, and removal of singletons and chimeras, a total of 2741 (V4) and 2606 (V8-V9) operational taxonomic units (OTUs) were identified. Taxonomic annotation of these reads, including phylogeny, was based on a combination of automated pipeline and manual inspection. About 18.4% (V4) and 13.8% (V8-V9) of the OTUs could not be assigned to any of the known eukaryotic groups. Of these, we focused on OTUs that were not divergent and possessed multiple sources of evidence for their existence. Phylogenetic analyses of these sequences revealed more than ten branches that might represent new deeply-branching lineages of microbial eukaryotes, currently without any cultured representatives or morphological information.
Collapse
Affiliation(s)
- Eunsoo Kim
- Division of Invertebrate Zoology and Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY, 10024, USA
| | - Ben Sprung
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Solange Duhamel
- Lamont-Doherty Earth Observatory, Division of Biology and Paleo Environment, Columbia University, Palisades, NY, 10964, USA
| | - Christopher Filardi
- Center for Biodiversity and Conservation, American Museum of Natural History, New York, NY, 10024, USA
| | - Mann Kyoon Shin
- Department of Biological Sciences, University of Ulsan, Nam-Gu, Ulsan, 44610, South Korea
| |
Collapse
|
46
|
Richardson E, Zerr K, Tsaousis A, Dorrell RG, Dacks JB. Evolutionary cell biology: functional insight from "endless forms most beautiful". Mol Biol Cell 2016; 26:4532-8. [PMID: 26668171 PMCID: PMC4678011 DOI: 10.1091/mbc.e14-10-1433] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In animal and fungal model organisms, the complexities of cell biology have been analyzed in exquisite detail and much is known about how these organisms function at the cellular level. However, the model organisms cell biologists generally use include only a tiny fraction of the true diversity of eukaryotic cellular forms. The divergent cellular processes observed in these more distant lineages are still largely unknown in the general scientific community. Despite the relative obscurity of these organisms, comparative studies of them across eukaryotic diversity have had profound implications for our understanding of fundamental cell biology in all species and have revealed the evolution and origins of previously observed cellular processes. In this Perspective, we will discuss the complexity of cell biology found across the eukaryotic tree, and three specific examples of where studies of divergent cell biology have altered our understanding of key functional aspects of mitochondria, plastids, and membrane trafficking.
Collapse
Affiliation(s)
| | - Kelly Zerr
- Department of Cell Biology, University of Alberta, Edmonton, AB T6G 2H7 Canada
| | - Anastasios Tsaousis
- Laboratory of Molecular and Evolutionary Parasitology, School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
| | | | - Joel B Dacks
- Department of Cell Biology, University of Alberta, Edmonton, AB T6G 2H7 Canada
| |
Collapse
|
47
|
Systematic Search for Evidence of Interdomain Horizontal Gene Transfer from Prokaryotes to Oomycete Lineages. mSphere 2016; 1:mSphere00195-16. [PMID: 27642638 PMCID: PMC5023847 DOI: 10.1128/msphere.00195-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 08/26/2016] [Indexed: 12/19/2022] Open
Abstract
While most commonly associated with prokaryotes, horizontal gene transfer (HGT) can also have a significant influence on the evolution of microscopic eukaryotes. Systematic analysis of HGT in the genomes of the oomycetes, filamentous eukaryotic microorganisms in the Stramenopiles-Alveolates-Rhizaria (SAR) supergroup, has to date focused mainly on intradomain transfer events between oomycetes and fungi. Using systematic whole-genome analysis followed by phylogenetic reconstruction, we have investigated the extent of interdomain HGT between bacteria and plant-pathogenic oomycetes. We report five putative instances of HGT from bacteria into the oomycetes. Two transfers were found in Phytophthora species, including one unique to the cucurbit pathogen Phytophthora capsici. Two were found in Pythium species only, and the final transfer event was present in Phytopythium and Pythium species, the first reported bacterium-inherited genes in these genera. Our putative transfers included one protein that appears to be a member of the Pythium secretome, metabolic proteins, and enzymes that could potentially break down xenobiotics within the cell. Our findings complement both previous reports of bacterial genes in oomycete and SAR genomes and the growing body of evidence suggesting that interdomain transfer from prokaryotes into eukaryotes occurs more frequently than previously thought. IMPORTANCE Horizontal gene transfer (HGT) is the nonvertical inheritance of genetic material by transfer between different species. HGT is an important evolutionary mechanism for prokaryotes and in some cases is responsible for the spread of antibiotic resistance from resistant to benign species. Genome analysis has shown that examples of HGT are not as frequent in eukaryotes, but when they do occur they may have important evolutionary consequences. For example, the acquisition of fungal genes by an ancestral Phytophthora (plant destroyer) species is responsible for the large repertoire of enzymes in the plant-degrading arsenal of modern-day Phytophthora species. In this analysis, we set out to systematically search oomycete genomes for evidence of interdomain HGT (transfer of bacterial genes into oomycete species). Our results show that interdomain HGT is rare in oomycetes but has occurred. We located five well-supported examples, including one that could potentially break down xenobiotics within the cell.
Collapse
|
48
|
Evolution of the microtubular cytoskeleton (flagellar apparatus) in parasitic protists. Mol Biochem Parasitol 2016; 209:26-34. [DOI: 10.1016/j.molbiopara.2016.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Revised: 02/02/2016] [Accepted: 02/05/2016] [Indexed: 01/16/2023]
|
49
|
Derelle R, López-García P, Timpano H, Moreira D. A Phylogenomic Framework to Study the Diversity and Evolution of Stramenopiles (=Heterokonts). Mol Biol Evol 2016; 33:2890-2898. [PMID: 27512113 DOI: 10.1093/molbev/msw168] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Stramenopiles or heterokonts constitute one of the most speciose and diverse clades of protists. It includes ecologically important algae (such as diatoms or large multicellular brown seaweeds), as well as heterotrophic (e.g., bicosoecids, MAST groups) and parasitic (e.g., Blastocystis, oomycetes) species. Despite their evolutionary and ecological relevance, deep phylogenetic relationships among stramenopile groups, inferred mostly from small-subunit rDNA phylogenies, remain unresolved, especially for the heterotrophic taxa. Taking advantage of recently released stramenopile transcriptome and genome sequences, as well as data from the genomic assembly of the MAST-3 species Incisomonas marina generated in our laboratory, we have carried out the first extensive phylogenomic analysis of stramenopiles, including representatives of most major lineages. Our analyses, based on a large data set of 339 widely distributed proteins, strongly support a root of stramenopiles lying between two clades, Bigyra and Gyrista (Pseudofungi plus Ochrophyta). Additionally, our analyses challenge the Phaeista-Khakista dichotomy of photosynthetic stramenopiles (ochrophytes) as two groups previously considered to be part of the Phaeista (Pelagophyceae and Dictyochophyceae), branch with strong support with the Khakista (Bolidophyceae and Diatomeae). We propose a new classification of ochrophytes within the two groups Chrysista and Diatomista to reflect the new phylogenomic results. Our stramenopile phylogeny provides a robust phylogenetic framework to investigate the evolution and diversification of this group of ecologically relevant protists.
Collapse
Affiliation(s)
- Romain Derelle
- Unité d'Ecologie, Systématique et Evolution, Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud/Paris-Saclay, AgroParisTech, Orsay, France
| | - Purificación López-García
- Unité d'Ecologie, Systématique et Evolution, Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud/Paris-Saclay, AgroParisTech, Orsay, France
| | - Hélène Timpano
- Unité d'Ecologie, Systématique et Evolution, Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud/Paris-Saclay, AgroParisTech, Orsay, France
| | - David Moreira
- Unité d'Ecologie, Systématique et Evolution, Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud/Paris-Saclay, AgroParisTech, Orsay, France
| |
Collapse
|
50
|
He D, Sierra R, Pawlowski J, Baldauf SL. Reducing long-branch effects in multi-protein data uncovers a close relationship between Alveolata and Rhizaria. Mol Phylogenet Evol 2016; 101:1-7. [DOI: 10.1016/j.ympev.2016.04.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 03/23/2016] [Accepted: 04/26/2016] [Indexed: 12/22/2022]
|