1
|
Garza MC, Kang SG, Kim C, Monleón E, van der Merwe J, Kramer DA, Fahlman R, Sim VL, Aiken J, McKenzie D, Cortez LM, Wille H. In Vitro and In Vivo Evidence towards Fibronectin's Protective Effects against Prion Infection. Int J Mol Sci 2023; 24:17525. [PMID: 38139358 PMCID: PMC10743696 DOI: 10.3390/ijms242417525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/08/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
A distinctive signature of the prion diseases is the accumulation of the pathogenic isoform of the prion protein, PrPSc, in the central nervous system of prion-affected humans and animals. PrPSc is also found in peripheral tissues, raising concerns about the potential transmission of pathogenic prions through human food supplies and posing a significant risk to public health. Although muscle tissues are considered to contain levels of low prion infectivity, it has been shown that myotubes in culture efficiently propagate PrPSc. Given the high consumption of muscle tissue, it is important to understand what factors could influence the establishment of a prion infection in muscle tissue. Here we used in vitro myotube cultures, differentiated from the C2C12 myoblast cell line (dC2C12), to identify factors affecting prion replication. A range of experimental conditions revealed that PrPSc is tightly associated with proteins found in the systemic extracellular matrix, mostly fibronectin (FN). The interaction of PrPSc with FN decreased prion infectivity, as determined by standard scrapie cell assay. Interestingly, the prion-resistant reserve cells in dC2C12 cultures displayed a FN-rich extracellular matrix while the prion-susceptible myotubes expressed FN at a low level. In agreement with the in vitro results, immunohistopathological analyses of tissues from sheep infected with natural scrapie demonstrated a prion susceptibility phenotype linked to an extracellular matrix with undetectable levels of FN. Conversely, PrPSc deposits were not observed in tissues expressing FN. These data indicate that extracellular FN may act as a natural barrier against prion replication and that the extracellular matrix composition may be a crucial feature determining prion tropism in different tissues.
Collapse
Affiliation(s)
- M. Carmen Garza
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB T6G 2M8, Canada; (M.C.G.); (S.-G.K.); (J.v.d.M.); (V.L.S.); (D.M.)
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Sang-Gyun Kang
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB T6G 2M8, Canada; (M.C.G.); (S.-G.K.); (J.v.d.M.); (V.L.S.); (D.M.)
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Chiye Kim
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB T6G 2M8, Canada; (M.C.G.); (S.-G.K.); (J.v.d.M.); (V.L.S.); (D.M.)
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - Eva Monleón
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, Departamento de Anatomía e Histología Humana, Universidad de Zaragoza, IA2, IIS Aragón, 50013 Zaragoza, Spain
| | - Jacques van der Merwe
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB T6G 2M8, Canada; (M.C.G.); (S.-G.K.); (J.v.d.M.); (V.L.S.); (D.M.)
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - David A. Kramer
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - Richard Fahlman
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Valerie L. Sim
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB T6G 2M8, Canada; (M.C.G.); (S.-G.K.); (J.v.d.M.); (V.L.S.); (D.M.)
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2G3, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Judd Aiken
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB T6G 2M8, Canada; (M.C.G.); (S.-G.K.); (J.v.d.M.); (V.L.S.); (D.M.)
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Department of Agriculture, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - Debbie McKenzie
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB T6G 2M8, Canada; (M.C.G.); (S.-G.K.); (J.v.d.M.); (V.L.S.); (D.M.)
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada
| | - Leonardo M. Cortez
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB T6G 2M8, Canada; (M.C.G.); (S.-G.K.); (J.v.d.M.); (V.L.S.); (D.M.)
- Department of Medicine, University of Alberta, Edmonton, AB T6G 2G3, Canada
| | - Holger Wille
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB T6G 2M8, Canada; (M.C.G.); (S.-G.K.); (J.v.d.M.); (V.L.S.); (D.M.)
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada
| |
Collapse
|
2
|
Shinjyo N, Kagaya W, Pekna M. Interaction Between the Complement System and Infectious Agents - A Potential Mechanistic Link to Neurodegeneration and Dementia. Front Cell Neurosci 2021; 15:710390. [PMID: 34408631 PMCID: PMC8365172 DOI: 10.3389/fncel.2021.710390] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 07/09/2021] [Indexed: 12/24/2022] Open
Abstract
As part of the innate immune system, complement plays a critical role in the elimination of pathogens and mobilization of cellular immune responses. In the central nervous system (CNS), many complement proteins are locally produced and regulate nervous system development and physiological processes such as neural plasticity. However, aberrant complement activation has been implicated in neurodegeneration, including Alzheimer's disease. There is a growing list of pathogens that have been shown to interact with the complement system in the brain but the short- and long-term consequences of infection-induced complement activation for neuronal functioning are largely elusive. Available evidence suggests that the infection-induced complement activation could be protective or harmful, depending on the context. Here we summarize how various infectious agents, including bacteria (e.g., Streptococcus spp.), viruses (e.g., HIV and measles virus), fungi (e.g., Candida spp.), parasites (e.g., Toxoplasma gondii and Plasmodium spp.), and prion proteins activate and manipulate the complement system in the CNS. We also discuss the potential mechanisms by which the interaction between the infectious agents and the complement system can play a role in neurodegeneration and dementia.
Collapse
Affiliation(s)
- Noriko Shinjyo
- Laboratory of Immune Homeostasis, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| | - Wataru Kagaya
- Department of Parasitology and Research Center for Infectious Disease Sciences, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Marcela Pekna
- Laboratory of Regenerative Neuroimmunology, Center for Brain Repair, Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| |
Collapse
|
3
|
Mammadova N, Cassmann ED, Moore SJ, Nicholson EM, Greenlee JJ. Experimental inoculation of CD11c + B1 lymphocytes, CD68 + macrophages, or platelet-rich plasma from scrapie-infected sheep into susceptible sheep results in variable infectivity. Access Microbiol 2020; 2:acmi000155. [PMID: 33195984 PMCID: PMC7656192 DOI: 10.1099/acmi.0.000155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/24/2020] [Indexed: 11/18/2022] Open
Abstract
Many studies have demonstrated prion infectivity in whole blood and blood components in a variety of transmissible spongiform encephalopathies of livestock and rodents, and variant Creutzfeldt–Jakob disease in humans, as well as an association between pathogenic prion protein (PrPSc) and different immune cells (e.g. follicular dendritic cells, T and B lymphocytes, monocytes and tingible body macrophages). To further investigate the role of various blood components in prion disease transmission, we intracranially inoculated genetically susceptible VRQ/ARQ and ARQ/ARQ sheep with inocula composed of CD11c+ B1 lymphocytes, CD68 +macrophages, or platelet-rich plasma derived from clinically ill sheep infected with the US no. 13–7 scrapie agent. At the completion of the study, we found that VRQ/ARQ and ARQ/ARQ sheep inoculated with CD11c+ B1 lymphocytes and CD68+ macrophages developed scrapie with detectable levels of PrPSc in the central nervous system and lymphoreticular system, while those inoculated with platelet-rich plasma did not develop disease and did not have detectable PrPSc by immunohistochemistry or enzyme immunoassay. This study complements and expands on earlier findings that white blood cells harbour prion infectivity, and reports CD11c+ B1 lymphocytes and CD68+ macrophages as additional targets for possible preclinical detection of prion infection in blood.
Collapse
Affiliation(s)
- Najiba Mammadova
- Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA.,Oak Ridge Institute for Science and Education (ORISE) through an interagency agreement between the U.S. Department of Energy (DOE) and the U.S. Department of Agriculture (USDA). ORISE is managed by ORAU under DOE contract number DE-SC0014664
| | - Eric D Cassmann
- Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA.,Oak Ridge Institute for Science and Education (ORISE) through an interagency agreement between the U.S. Department of Energy (DOE) and the U.S. Department of Agriculture (USDA). ORISE is managed by ORAU under DOE contract number DE-SC0014664
| | - S Jo Moore
- Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA.,Oak Ridge Institute for Science and Education (ORISE) through an interagency agreement between the U.S. Department of Energy (DOE) and the U.S. Department of Agriculture (USDA). ORISE is managed by ORAU under DOE contract number DE-SC0014664
| | - Eric M Nicholson
- Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA
| | - Justin J Greenlee
- Virus and Prion Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA
| |
Collapse
|
4
|
Race B, Jeffrey M, McGovern G, Dorward D, Chesebro B. Ultrastructure and pathology of prion protein amyloid accumulation and cellular damage in extraneural tissues of scrapie-infected transgenic mice expressing anchorless prion protein. Prion 2017; 11:234-248. [PMID: 28759310 DOI: 10.1080/19336896.2017.1336274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
In most human and animal prion diseases the abnormal disease-associated prion protein (PrPSc) is deposited as non-amyloid aggregates in CNS, spleen and lymphoid organs. In contrast, in humans and transgenic mice with PrP mutations which cause expression of PrP lacking a glycosylphosphatidylinositol (GPI)-anchor, most PrPSc is in the amyloid form. In transgenic mice expressing only anchorless PrP (tg anchorless), PrPSc is deposited not only in CNS and lymphoid tissues, but also in extraneural tissues including heart, brown fat, white fat, and colon. In the present paper, we report ultrastructural studies of amyloid PrPSc deposition in extraneural tissues of scrapie-infected tg anchorless mice. Amyloid PrPSc fibrils identified by immunogold-labeling were visible at high magnification in interstitial regions and around blood vessels of heart, brown fat, white fat, colon, and lymphoid tissues. PrPSc amyloid was located on and outside the plasma membranes of adipocytes in brown fat and cardiomyocytes, and appeared to invaginate and disrupt the plasma membranes of these cell types, suggesting cellular damage. In contrast, no cellular damage was apparent near PrPSc associated with macrophages in lymphoid tissues and colon, with enteric neuronal ganglion cells in colon or with adipocytes in white fat. PrPSc localized in macrophage phagolysosomes lacked discernable fibrils and might be undergoing degradation. Furthermore, in contrast to wild-type mice expressing GPI-anchored PrP, in lymphoid tissues of tg anchorless mice, PrPSc was not associated with follicular dendritic cells (FDC), and FDC did not display typical prion-associated pathogenic changes.
Collapse
Affiliation(s)
- Brent Race
- a Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories , National Institute of Allergy and Infectious Diseases , Hamilton , MT , USA
| | - Martin Jeffrey
- b Animal and Plant Health Agency (APHA), Lasswade Laboratory , Bush Loan , Penicuik, Midlothian, Scotland , UK
| | - Gillian McGovern
- b Animal and Plant Health Agency (APHA), Lasswade Laboratory , Bush Loan , Penicuik, Midlothian, Scotland , UK
| | - David Dorward
- c Electron Microscopy Section, Research Technology Branch, Rocky Mountain Laboratories , National Institute of Allergy and Infectious Diseases , Hamilton , MT , USA
| | - Bruce Chesebro
- a Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories , National Institute of Allergy and Infectious Diseases , Hamilton , MT , USA
| |
Collapse
|
5
|
Interaction of prion protein with acetylcholinesterase: potential pathobiological implications in prion diseases. Acta Neuropathol Commun 2015; 3:18. [PMID: 25853328 PMCID: PMC4383067 DOI: 10.1186/s40478-015-0188-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 01/16/2015] [Indexed: 01/01/2023] Open
Abstract
INTRODUCTION The prion protein (PrP) binds to various molecular partners, but little is known about their potential impact on the pathogenesis of prion diseases RESULTS Here, we show that PrP can interact in vitro with acetylcholinesterase (AChE), a key protein of the cholinergic system in neural and non-neural tissues. This heterologous association induced aggregation of monomeric PrP and modified the structural properties of PrP amyloid fibrils. Following its recruitment into PrP fibrils, AChE loses its enzymatic activity and enhances PrP-mediated cytotoxicity. Using several truncated PrP variants and specific tight-binding AChE inhibitors (AChEis), we then demonstrate that the PrP-AChE interaction requires two mutually exclusive sub-sites in PrP N-terminal domain and an aromatic-rich region at the entrance of AChE active center gorge. We show that AChEis that target this site impair PrP-AChE complex formation and also limit the accumulation of pathological prion protein (PrPSc) in prion-infected cell cultures. Furthermore, reduction of AChE levels in prion-infected heterozygous AChE knock-out mice leads to slightly but significantly prolonged incubation time. Finally, we found that AChE levels were altered in prion-infected cells and tissues, suggesting that AChE might be directly associated with abnormal PrP. CONCLUSION Our results indicate that AChE deserves consideration as a new actor in expanding pathologically relevant PrP morphotypes and as a therapeutic target.
Collapse
|
6
|
Close interactions between sympathetic neural fibres and follicular dendritic cells network are not altered in Peyer's patches and spleen of C57BL/6 mice during the preclinical stage of 139A scrapie infection. J Neuroimmunol 2014; 272:1-9. [PMID: 24841625 DOI: 10.1016/j.jneuroim.2014.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Revised: 03/31/2014] [Accepted: 04/08/2014] [Indexed: 11/21/2022]
Abstract
During preclinical stage of prion diseases, secondary lymphoid organs seem to play an important role in prion amplification prior the invasion of the associated peripheral nervous system. In mice, it was shown that the relative positioning of follicular dendritic cells (FDC) and sympathetic nervous system (SNS) affects the velocity of neuroinvasion following scrapie inoculation. In this study, we checked if scrapie infection, by oral or intraperitoneal route, could influence this neuroimmune interface between FDC and tyrosine hydroxylase (TH) positive neural fibres within Peyer's patches (PP) and spleen of the C57BL/6 mouse strain. We concluded that, in vivo, scrapie 139A and ME7 strains do not modify FDC-SNS neuroimmune interface. However, age seems to alter this neuroimmune interface and thus could influence the neuroinvasion in prion pathogenesis.
Collapse
|
7
|
Seelig DM, Nalls AV, Flasik M, Frank V, Eaton S, Mathiason CK, Hoover EA. Lesion profiling and subcellular prion localization of cervid chronic wasting disease in domestic cats. Vet Pathol 2014; 52:107-19. [PMID: 24577721 DOI: 10.1177/0300985814524798] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Chronic wasting disease (CWD) is an efficiently transmitted, fatal, and progressive prion disease of cervids with an as yet to be fully clarified host range. While outbred domestic cats (Felis catus) have recently been shown to be susceptible to experimental CWD infection, the neuropathologic features of the infection are lacking. Such information is vital to provide diagnostic power in the event of natural interspecies transmission and insights into host and strain interactions in interspecies prion infection. Using light microscopy and immunohistochemistry, we detail the topographic pattern of neural spongiosis (the "lesion profile") and the distribution of misfolded prion protein in the primary and secondary passage of feline CWD (Fel(CWD)). We also evaluated cellular and subcellular associations between misfolded prion protein (PrP(D)) and central nervous system neurons and glial cell populations. From these studies, we (1) describe the novel neuropathologic profile of Fel(CWD), which is distinct from either cervid CWD or feline spongiform encephalopathy (FSE), and (2) provide evidence of serial passage-associated interspecies prion adaptation. In addition, we demonstrate through confocal analysis the successful co-localization of PrP(D) with neurons, astrocytes, microglia, lysosomes, and synaptophysin, which, in part, implicates each of these in the neuropathology of Fel(CWD). In conclusion, this work illustrates the simultaneous role of both host and strain in the development of a unique Fel(CWD) neuropathologic profile and that such a profile can be used to discriminate between Fel(CWD) and FSE.
Collapse
Affiliation(s)
- D M Seelig
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - A V Nalls
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - M Flasik
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - V Frank
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - S Eaton
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - C K Mathiason
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - E A Hoover
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
8
|
Filali H, Martín-Burriel I, Harders F, Varona L, Hedman C, Mediano DR, Monzón M, Bossers A, Badiola JJ, Bolea R. Gene expression profiling of mesenteric lymph nodes from sheep with natural scrapie. BMC Genomics 2014; 15:59. [PMID: 24450868 PMCID: PMC3906094 DOI: 10.1186/1471-2164-15-59] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 01/17/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Prion diseases are characterized by the accumulation of the pathogenic PrPSc protein, mainly in the brain and the lymphoreticular system. Although prions multiply/accumulate in the lymph nodes without any detectable pathology, transcriptional changes in this tissue may reflect biological processes that contribute to the molecular pathogenesis of prion diseases. Little is known about the molecular processes that occur in the lymphoreticular system in early and late stages of prion disease. We performed a microarray-based study to identify genes that are differentially expressed at different disease stages in the mesenteric lymph node of sheep naturally infected with scrapie. Oligo DNA microarrays were used to identify gene-expression profiles in the early/middle (preclinical) and late (clinical) stages of the disease. RESULTS In the clinical stage of the disease, we detected 105 genes that were differentially expressed (≥2-fold change in expression). Of these, 43 were upregulated and 62 downregulated as compared with age-matched negative controls. Fewer genes (50) were differentially expressed in the preclinical stage of the disease. Gene Ontology enrichment analysis revealed that the differentially expressed genes were largely associated with the following terms: glycoprotein, extracellular region, disulfide bond, cell cycle and extracellular matrix. Moreover, some of the annotated genes could be grouped into 3 specific signaling pathways: focal adhesion, PPAR signaling and ECM-receptor interaction. We discuss the relationship between the observed gene expression profiles and PrPSc deposition and the potential involvement in the pathogenesis of scrapie of 7 specific differentially expressed genes whose expression levels were confirmed by real time-PCR. CONCLUSIONS The present findings identify new genes that may be involved in the pathogenesis of natural scrapie infection in the lymphoreticular system, and confirm previous reports describing scrapie-induced alterations in the expression of genes involved in protein misfolding, angiogenesis and the oxidative stress response. Further studies will be necessary to determine the role of these genes in prion replication, dissemination and in the response of the organism to this disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Rosa Bolea
- Centro de Investigación en Encefalopatías y Enfermedades Transmisibles Emergentes, Facultad de Veterinaria, Universidad de Zaragoza, Zaragoza, Spain.
| |
Collapse
|
9
|
Dassanayake RP, Truscott TC, Özyiğit MÖ, Zhuang D, Schneider DA, O'Rourke KI. Accumulation profiles of PrP(Sc) in hemal nodes of naturally and experimentally scrapie-infected sheep. BMC Vet Res 2013; 9:82. [PMID: 23601183 PMCID: PMC3651361 DOI: 10.1186/1746-6148-9-82] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 04/17/2013] [Indexed: 11/11/2022] Open
Abstract
Background In classical scrapie, the disease-associated abnormal isoform (PrPSc) of normal prion protein accumulates principally in the nervous system and lymphoid tissues of small ruminants. Lymph nodes traffic leukocytes via lymphatic and blood vasculatures but hemal nodes lack lymphatic vessels and thus traffic leukocytes only via the blood. Although PrPSc accumulation profiles are well-characterized in ovine lymphoid tissues, there is limited information on such profiles in hemal nodes. Therefore, the objective of this study was to compare the follicular accumulation of PrPSc within hemal nodes and lymph nodes by prion epitope mapping and western blot studies. Results Our studies found that PrPSc accumulation in 82% of animals’ abdominal hemal nodes when PrPSc is detected in both mesenteric and retropharyngeal lymph nodes collected from preclinical and clinical, naturally and experimentally (blood transfusion) scrapie-infected sheep representing all three major scrapie-susceptible Prnp genotypes. Abdominal hemal nodes and retropharyngeal lymph nodes were then used to analyze immune cell phenotypes and PrPSc epitope mapping by immunohistochemistry and PrPSc banding patterns by western blot. Similar patterns of PrPSc accumulation were detected within the secondary follicles of hemal nodes and retropharyngeal lymph nodes, where cellular labeling was mostly associated with macrophages and follicular dendritic cells. The pattern of PrPSc accumulation within hemal nodes and retropharyngeal lymph nodes also did not differ with respect to epitope mapping with seven mAbs (N-terminus, n = 4; globular domain, n = 2; C-terminus, n = 1) in all three Prnp genotypes. Western blot analysis of hemal node and retropharyngeal lymph node homogenates revealed identical three banding patterns of proteinase K resistant PrPSc. Conclusion Despite the anatomical difference in leukocyte trafficking between lymph nodes and hemal nodes, the follicles of hemal nodes appear to process PrPSc similarly to lymph nodes.
Collapse
Affiliation(s)
- Rohana P Dassanayake
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-7040, USA.
| | | | | | | | | | | |
Collapse
|
10
|
Membrane toxicity of abnormal prion protein in adrenal chromaffin cells of scrapie infected sheep. PLoS One 2013; 8:e58620. [PMID: 23469286 PMCID: PMC3587603 DOI: 10.1371/journal.pone.0058620] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 02/05/2013] [Indexed: 11/19/2022] Open
Abstract
Transmissible spongiform encephalopathies (TSEs) or prion diseases are associated with accumulations of disease specific PrP (PrP(d)) in the central nervous system (CNS) and often the lymphoreticular system (LRS). Accumulations have additionally been recorded in other tissues including the peripheral nervous system and adrenal gland. Here we investigate the effect of sheep scrapie on the morphology and the accumulation of PrP(d) in the adrenal medulla of scrapie affected sheep using light and electron microscopy. Using immunogold electron microscopy, non-fibrillar forms of PrP(d) were shown to accumulate mainly in association with chromaffin cells, occasional nerve endings and macrophages. PrP(d) accumulation was associated with distinctive membrane changes of chromaffin cells including increased electron density, abnormal linearity and invaginations. Internalisation of PrP(d) from the chromaffin cell plasma membrane occurred in association with granule recycling following hormone exocytosis. PrP(d) accumulation and internalisation from membranes is similarly associated with perturbations of membrane structure and trafficking in CNS neurons and tingible body macrophages of the LRS. These data suggest that a major toxic effect of PrP(d) is at the level of plasma membranes. However, the precise nature of PrP(d)-membrane toxicity is tissue and cell specific suggesting that the normal protein may act as a multi-functional scaffolding molecule. We further suggest that the co-localisation of PrP(d) with exocytic granules of the hormone trafficking system may provide an additional source of infectivity in blood.
Collapse
|
11
|
Marruchella G, Ligios C, Di Guardo G. Age, scrapie status, PrP genotype and follicular dendritic cells in ovine ileal Peyer’s patches. Res Vet Sci 2012; 93:853-6. [DOI: 10.1016/j.rvsc.2011.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2011] [Revised: 08/23/2011] [Accepted: 09/07/2011] [Indexed: 10/17/2022]
|
12
|
Juleff N, Maree F, Waters R, Bengis R, Charleston B. The importance of FMDV localisation in lymphoid tissue. Vet Immunol Immunopathol 2012; 148:145-8. [DOI: 10.1016/j.vetimm.2011.05.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Revised: 04/15/2011] [Accepted: 05/02/2011] [Indexed: 11/28/2022]
|
13
|
Piercey Åkesson C, Press CM, Tranulis MA, Jeffrey M, Aleksandersen M, Landsverk T, Espenes A. Phenotypic characterization of cells participating in transport of prion protein aggregates across the intestinal mucosa of sheep. Prion 2012; 6:261-75. [PMID: 22437736 PMCID: PMC3399537 DOI: 10.4161/pri.19215] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The oral route is considered to be the main entry site of several transmissible spongiform encephalopathies or prion diseases of animals and man. Following natural and experimental oral exposure to scrapie, sheep first accumulate disease associated prion protein (PrPd) in Peyer’s patch (PP) lymphoid follicles. In this study, recombinant ovine prion protein (rPrP) was inoculated into gut loops of young lambs and the transportation across the intestinal wall studied. In particular, the immunohistochemical phenotypes of cells bearing the inoculated prion protein were investigated. The rPrP was shown to be transported across the villi of the gut, into the lacteals and submucosal lymphatics, mimicking the transport route of PrPd from scrapie brain inoculum observed in a previous intestinal loop experiment. The cells bearing the inoculated rPrP were mainly mononuclear cells, and multicolor immunofluorescence procedures were used to show that the rPrP bearing cells were professional antigen presenting cells expressing Major histocompatibility complex II (MHCII). In addition, the rPrP bearing cells labeled with CD205, CD11b and the macrophage marker CD68, and not with the dendritic cell markers CD11c and CD209. Others have reported that cells expressing CD205 and CD11b in the absence of CD11c have been shown to induce T cell tolerance or regulatory T cells. Based on this association, it was speculated that the rPrP and by extension PrPd and scrapie infective material may exploit the physiological process of macromolecular uptake across the gut, and that this route of entry may have implications for immune surveillance.
Collapse
Affiliation(s)
- Caroline Piercey Åkesson
- Department of Basic Sciences and Aquatic Medicine, Norwegian School of Veterinary Science, Oslo, Norway.
| | | | | | | | | | | | | |
Collapse
|
14
|
Åkesson CP, McGovern G, Dagleish MP, Espenes A, McL Press C, Landsverk T, Jeffrey M. Exosome-producing follicle associated epithelium is not involved in uptake of PrPd from the gut of sheep (Ovis aries): an ultrastructural study. PLoS One 2011; 6:e22180. [PMID: 21789232 PMCID: PMC3138767 DOI: 10.1371/journal.pone.0022180] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 06/20/2011] [Indexed: 01/09/2023] Open
Abstract
In natural or experimental oral scrapie infection of sheep, disease associated prion protein (PrP(d)) often first accumulates in Peyer's patch (PP) follicles. The route by which infectivity reaches the follicles is unknown, however, intestinal epithelial cells may participate in intestinal antigenic presentation by delivering exosomes as vehicles of luminal antigens. In a previous study using an intestinal loop model, following inoculation of scrapie brain homogenate, inoculum associated PrP(d) was detected by light microscopy shortly (15 minutes to 3.5 hours) after inoculation in the villous lacteals and sub-mucosal lymphatics. No PrP(d) was located within the follicle-associated epithelium (FAE), sub-FAE domes or the PP follicles. To evaluate this gut loop model and the transportation routes in more detail, we used electron microscopy (EM) to study intestinal tissues exposed to scrapie or control homogenates for 15 minutes to 10 days. In addition, immuno-EM was used to investigate whether exosomes produced in the FAE may possess small amounts of PrP(d) that were not detectable by light microscopy. This study showed that the integrity of the intestinal epithelium was sustained in the intestinal loop model. Despite prominent transcytotic activity and exosome release from the FAE of the ileal PP in sheep, these structures were not associated with transportation of PrP(d) across the mucosa. The study did not determine how infectivity reaches the follicles of PPs. The possibility that the infectious agent is transported across the FAE remains a possibility if it occurs in a form that is undetectable by the methods used in this study. Infectivity may also be transported via lymph to the blood and further to all other lymphoid tissues including the PP follicles, but the early presence of PrP(d) in the PP follicles during scrapie infection argues against such a mechanism.
Collapse
Affiliation(s)
- Caroline Piercey Åkesson
- Department of Basic Sciences and Aquatic Medicine, Norwegian School of Veterinary Science, Oslo, Norway.
| | | | | | | | | | | | | |
Collapse
|
15
|
Gossner A, Roupaka S, Foster J, Hunter N, Hopkins J. Transcriptional profiling of peripheral lymphoid tissue reveals genes and networks linked to SSBP/1 scrapie pathology in sheep. Vet Microbiol 2011; 153:218-28. [PMID: 21684093 DOI: 10.1016/j.vetmic.2011.05.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 05/10/2011] [Accepted: 05/16/2011] [Indexed: 12/30/2022]
Abstract
Transmissible spongiform encephalopathies (TSEs) are slow and progressive neurodegenerative diseases of humans and animals. The major target organ for all TSEs is the brain but some TSE agents are associated with prior accumulation within the peripheral lymphoid system. Many studies have examined the effects of scrapie infection on the expression of central nervous system (CNS) genes, but this study examines the progression of scrapie pathology in the peripheral lymphoid system and how scrapie infection affects the transcriptome of the lymph nodes and spleen. Infection of sheep with SSBP/1 scrapie resulted in PrP(Sc) deposition in the draining prescapular lymph node (PSLN) by 25 days post infection (dpi) in VRQ/VRQ genotype sheep and 75 dpi in tonsils and spleen. Progression of PrP(Sc) deposition in VRQ/ARR animals was 25 dpi later in the PSLN and 250 dpi later in spleen. Microarray analysis of 75 dpi tissues from VRQ/VRQ sheep identified 52 genes in PSLN and 37 genes in spleen cells that showed significant difference (P ≤ 0.05) between scrapie-infected and mock-infected animals. Transcriptional pathway analysis highlighted immunological disease, cell death and neurological disease as the biological pathways associated with scrapie pathogenesis in the peripheral lymphoid system. PrP(Sc) accumulation of lymphoid tissue resulted in the repression of genes linked to inflammation and oxidative stress, and the up-regulation of genes related to apoptosis.
Collapse
Affiliation(s)
- Anton Gossner
- The Roslin Institute & R(D)SVS, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | | | | | | | | |
Collapse
|
16
|
Toppets V, Defaweux V, Piret J, Kirschvink N, Grobet L, Antoine N. Features of follicular dendritic cells in ovine pharyngeal tonsil: An in vivo and in vitro study in the context of scrapie pathogenesis. Vet Immunol Immunopathol 2011; 141:26-32. [DOI: 10.1016/j.vetimm.2011.01.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 01/24/2011] [Accepted: 01/31/2011] [Indexed: 10/18/2022]
|
17
|
Jeffrey M, McGovern G, Sisó S, González L. Cellular and sub-cellular pathology of animal prion diseases: relationship between morphological changes, accumulation of abnormal prion protein and clinical disease. Acta Neuropathol 2011; 121:113-34. [PMID: 20532540 DOI: 10.1007/s00401-010-0700-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2010] [Revised: 05/04/2010] [Accepted: 05/19/2010] [Indexed: 11/24/2022]
Abstract
The transmissible spongiform encephalopathies (TSEs) or prion diseases of animals are characterised by CNS spongiform change, gliosis and the accumulation of disease-associated forms of prion protein (PrP(d)). Particularly in ruminant prion diseases, a wide range of morphological types of PrP(d) depositions are found in association with neurons and glia. When light microscopic patterns of PrP(d) accumulations are correlated with sub-cellular structure, intracellular PrP(d) co-localises with lysosomes while non-intracellular PrP(d) accumulation co-localises with cell membranes and the extracellular space. Intracellular lysosomal PrP(d) is N-terminally truncated, but the site at which the PrP(d) molecule is cleaved depends on strain and cell type. Different PrP(d) cleavage sites are found for different cells infected with the same agent indicating that not all PrP(d) conformers code for different prion strains. Non-intracellular PrP(d) is full-length and is mainly found on plasma-lemmas of neuronal perikarya and dendrites and glia where it may be associated with scrapie-specific membrane pathology. These membrane changes appear to involve a redirection of the predominant axonal trafficking of normal cellular PrP and an altered endocytosis of PrP(d). PrP(d) is poorly excised from membranes, probably due to increased stabilisation on the membrane of PrP(d) complexed with other membrane ligands. PrP(d) on plasma-lemmas may also be transferred to other cells or released to the extracellular space. It is widely assumed that PrP(d) accumulations cause neurodegenerative changes that lead to clinical disease. However, when different animal prion diseases are considered, neurological deficits do not correlate well with any morphological type of PrP(d) accumulation or perturbation of PrP(d) trafficking. Non-PrP(d)-associated neurodegenerative changes in TSEs include vacuolation, tubulovesicular bodies and terminal axonal degeneration. The last of these correlates well with early neurological disease in mice, but such changes are absent from large animal prion disease. Thus, the proximate cause of clinical disease in animal prion disease is uncertain, but may not involve PrP(d).
Collapse
Affiliation(s)
- Martin Jeffrey
- Veterinary Laboratories Agency, Lasswade Laboratory, Pentlands Science Park, Bush Loan, Penicuik, Midlothian, EH26 0PZ, UK.
| | | | | | | |
Collapse
|
18
|
Sisó S, González L, Jeffrey M. Neuroinvasion in prion diseases: the roles of ascending neural infection and blood dissemination. Interdiscip Perspect Infect Dis 2010; 2010:747892. [PMID: 20652006 PMCID: PMC2905956 DOI: 10.1155/2010/747892] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Accepted: 03/08/2010] [Indexed: 01/27/2023] Open
Abstract
Prion disorders are infectious, neurodegenerative diseases that affect humans and animals. Susceptibility to some prion diseases such as kuru or the new variant of Creutzfeldt-Jakob disease in humans and scrapie in sheep and goats is influenced by polymorphisms of the coding region of the prion protein gene, while other prion disorders such as fatal familial insomnia, familial Creutzfeldt-Jakob disease, or Gerstmann-Straussler-Scheinker disease in humans have an underlying inherited genetic basis. Several prion strains have been demonstrated experimentally in rodents and sheep. The progression and pathogenesis of disease is influenced by both genetic differences in the prion protein and prion strain. Some prion diseases only affect the central nervous system whereas others involve the peripheral organs prior to neuroinvasion. Many experiments undertaken in different species and using different prion strains have postulated common pathways of neuroinvasion. It is suggested that prions access the autonomic nerves innervating peripheral organs and tissues to finally reach the central nervous system. We review here published data supporting this view and additional data suggesting that neuroinvasion may concurrently or independently involve the blood vascular system.
Collapse
Affiliation(s)
- Sílvia Sisó
- Veterinary Laboratories Agency (VLA-Lasswade), Pentlands Science Park, Bush Loan, Penicuik, Midlothian EH26 0PZ, UK
| | - Lorenzo González
- Veterinary Laboratories Agency (VLA-Lasswade), Pentlands Science Park, Bush Loan, Penicuik, Midlothian EH26 0PZ, UK
| | - Martin Jeffrey
- Veterinary Laboratories Agency (VLA-Lasswade), Pentlands Science Park, Bush Loan, Penicuik, Midlothian EH26 0PZ, UK
| |
Collapse
|
19
|
Mathiason CK, Hayes-Klug J, Hays SA, Powers J, Osborn DA, Dahmes SJ, Miller KV, Warren RJ, Mason GL, Telling GC, Young AJ, Hoover EA. B cells and platelets harbor prion infectivity in the blood of deer infected with chronic wasting disease. J Virol 2010; 84:5097-107. [PMID: 20219916 PMCID: PMC2863796 DOI: 10.1128/jvi.02169-09] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Accepted: 02/23/2010] [Indexed: 11/20/2022] Open
Abstract
Substantial evidence for prion transmission via blood transfusion exists for many transmissible spongiform encephalopathy (TSE) diseases. Determining which cell phenotype(s) is responsible for trafficking infectivity has important implications for our understanding of the dissemination of prions, as well as their detection and elimination from blood products. We used bioassay studies of native white-tailed deer and transgenic cervidized mice to determine (i) if chronic wasting disease (CWD) blood infectivity is associated with the cellular versus the cell-free/plasma fraction of blood and (ii) in particular if B-cell (MAb 2-104(+)), platelet (CD41/61(+)), or CD14(+) monocyte blood cell phenotypes harbor infectious prions. All four deer transfused with the blood mononuclear cell fraction from CWD(+) donor deer became PrP(CWD) positive by 19 months postinoculation, whereas none of the four deer inoculated with cell-free plasma from the same source developed prion infection. All four of the deer injected with B cells and three of four deer receiving platelets from CWD(+) donor deer became PrP(CWD) positive in as little as 6 months postinoculation, whereas none of the four deer receiving blood CD14(+) monocytes developed evidence of CWD infection (immunohistochemistry and Western blot analysis) after 19 months of observation. Results of the Tg(CerPrP) mouse bioassays mirrored those of the native cervid host. These results indicate that CWD blood infectivity is cell associated and suggest a significant role for B cells and platelets in trafficking CWD infectivity in vivo and support earlier tissue-based studies associating putative follicular B cells with PrP(CWD). Localization of CWD infectivity with leukocyte subpopulations may aid in enhancing the sensitivity of blood-based diagnostic assays for CWD and other TSEs.
Collapse
Affiliation(s)
- Candace K. Mathiason
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, National Park Service, Fort Collins, Colorado, Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia, WASCO Inc., Monroe, Georgia, University of Kentucky Medical Center, Lexington, Kentucky, South Dakota State University, Brookings, South Dakota
| | - Jeanette Hayes-Klug
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, National Park Service, Fort Collins, Colorado, Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia, WASCO Inc., Monroe, Georgia, University of Kentucky Medical Center, Lexington, Kentucky, South Dakota State University, Brookings, South Dakota
| | - Sheila A. Hays
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, National Park Service, Fort Collins, Colorado, Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia, WASCO Inc., Monroe, Georgia, University of Kentucky Medical Center, Lexington, Kentucky, South Dakota State University, Brookings, South Dakota
| | - Jenny Powers
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, National Park Service, Fort Collins, Colorado, Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia, WASCO Inc., Monroe, Georgia, University of Kentucky Medical Center, Lexington, Kentucky, South Dakota State University, Brookings, South Dakota
| | - David A. Osborn
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, National Park Service, Fort Collins, Colorado, Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia, WASCO Inc., Monroe, Georgia, University of Kentucky Medical Center, Lexington, Kentucky, South Dakota State University, Brookings, South Dakota
| | - Sallie J. Dahmes
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, National Park Service, Fort Collins, Colorado, Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia, WASCO Inc., Monroe, Georgia, University of Kentucky Medical Center, Lexington, Kentucky, South Dakota State University, Brookings, South Dakota
| | - Karl V. Miller
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, National Park Service, Fort Collins, Colorado, Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia, WASCO Inc., Monroe, Georgia, University of Kentucky Medical Center, Lexington, Kentucky, South Dakota State University, Brookings, South Dakota
| | - Robert J. Warren
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, National Park Service, Fort Collins, Colorado, Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia, WASCO Inc., Monroe, Georgia, University of Kentucky Medical Center, Lexington, Kentucky, South Dakota State University, Brookings, South Dakota
| | - Gary L. Mason
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, National Park Service, Fort Collins, Colorado, Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia, WASCO Inc., Monroe, Georgia, University of Kentucky Medical Center, Lexington, Kentucky, South Dakota State University, Brookings, South Dakota
| | - Glenn C. Telling
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, National Park Service, Fort Collins, Colorado, Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia, WASCO Inc., Monroe, Georgia, University of Kentucky Medical Center, Lexington, Kentucky, South Dakota State University, Brookings, South Dakota
| | - Alan J. Young
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, National Park Service, Fort Collins, Colorado, Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia, WASCO Inc., Monroe, Georgia, University of Kentucky Medical Center, Lexington, Kentucky, South Dakota State University, Brookings, South Dakota
| | - Edward A. Hoover
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, National Park Service, Fort Collins, Colorado, Warnell School of Forestry and Natural Resources, University of Georgia, Athens, Georgia, WASCO Inc., Monroe, Georgia, University of Kentucky Medical Center, Lexington, Kentucky, South Dakota State University, Brookings, South Dakota
| |
Collapse
|
20
|
McGovern G, Mabbott N, Jeffrey M. Scrapie affects the maturation cycle and immune complex trapping by follicular dendritic cells in mice. PLoS One 2009; 4:e8186. [PMID: 19997557 PMCID: PMC2785472 DOI: 10.1371/journal.pone.0008186] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Accepted: 10/15/2009] [Indexed: 12/01/2022] Open
Abstract
Transmissible spongiform encephalopathies (TSEs) or prion diseases are infectious neurological disorders of man and animals, characterised by abnormal disease-associated prion protein (PrPd) accumulations in the brain and lymphoreticular system (LRS). Prior to neuroinvasion, TSE agents often accumulate to high levels within the LRS, apparently without affecting immune function. However, our analysis of scrapie-affected sheep shows that PrPd accumulations within the LRS are associated with morphological changes to follicular dendritic cells (FDCs) and tingible body macrophages (TBMs). Here we examined FDCs and TBMs in the mesenteric lymph nodes (MLNs) of scrapie-affected mice by light and electron microscopy. In MLNs from uninfected mice, FDCs could be morphologically categorised into immature, mature and regressing forms. However, in scrapie-affected MLNs this maturation cycle was adversely affected. FDCs characteristically trap and retain immune complexes on their surfaces, which they display to B-lymphocytes. In scrapie-affected MLNs, some FDCs were found where areas of normal and abnormal immune complex retention occurred side by side. The latter co-localised with PrPd plasmalemmal accumulations. Our data suggest this previously unrecognised morphology represents the initial stage of an abnormal FDC maturation cycle. Alterations to the FDCs included PrPd accumulation, abnormal cell membrane ubiquitin and excess immunoglobulin accumulation. Regressing FDCs, in contrast, appeared to lose their membrane-attached PrPd. Together, these data suggest that TSE infection adversely affects the maturation and regression cycle of FDCs, and that PrPd accumulation is causally linked to the abnormal pathology observed. We therefore support the hypothesis that TSEs cause an abnormality in immune function.
Collapse
Affiliation(s)
- Gillian McGovern
- Veterinary Laboratories Agency (Lasswade), Penicuik, Midlothian, United Kingdom.
| | | | | |
Collapse
|
21
|
PrP expression, PrPSc accumulation and innervation of splenic compartments in sheep experimentally infected with scrapie. PLoS One 2009; 4:e6885. [PMID: 19727393 PMCID: PMC2731221 DOI: 10.1371/journal.pone.0006885] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Accepted: 07/01/2009] [Indexed: 12/01/2022] Open
Abstract
Background In prion disease, the peripheral expression of PrPC is necessary for the transfer of infectivity to the central nervous system. The spleen is involved in neuroinvasion and neural dissemination in prion diseases but the nature of this involvement is not known. The present study undertook the investigation of the spatial relationship between sites of PrPSc accumulation, localisation of nerve fibres and PrPC expression in the tissue compartments of the spleen of scrapie-inoculated and control sheep. Methodology/Principal Findings Laser microdissection and quantitative PCR were used to determine PrP mRNA levels and results were compared with immunohistochemical protocols to distinguish PrPC and PrPSc in tissue compartments of the spleen. In sheep experimentally infected with scrapie, the major sites of accumulation of PrPSc in the spleen, namely the lymphoid nodules and the marginal zone, expressed low levels of PrP mRNA. Double immunohistochemical labelling for PrPSc and the pan-nerve fibre marker, PGP, was used to evaluate the density of innervation of splenic tissue compartments and the intimacy of association between PrPSc and nerves. Some nerve fibres were observed to accompany blood vessels into the PrPSc-laden germinal centres. However, the close association between nerves and PrPSc was most apparent in the marginal zone. Other sites of close association were adjacent to the wall of the central artery of PALS and the outer rim of germinal centres. Conclusions/Significance The findings suggest that the degree of PrPSc accumulation does not depend on the expression level of PrPC. Though several splenic compartments may contribute to neuroinvasion, the marginal zone may play a central role in being the compartment with most apparent association between nerves and PrPSc.
Collapse
|
22
|
Caughey B, Baron GS, Chesebro B, Jeffrey M. Getting a grip on prions: oligomers, amyloids, and pathological membrane interactions. Annu Rev Biochem 2009; 78:177-204. [PMID: 19231987 DOI: 10.1146/annurev.biochem.78.082907.145410] [Citation(s) in RCA: 250] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The prion (infectious protein) concept has evolved with the discovery of new self-propagating protein states in organisms as diverse as mammals and fungi. The infectious agent of the mammalian transmissible spongiform encephalopathies (TSE) has long been considered the prototypical prion, and recent cell-free propagation and biophysical analyses of TSE infectivity have now firmly established its prion credentials. Other disease-associated protein aggregates, such as some amyloids, can also have prion-like characteristics under certain experimental conditions. However, most amyloids appear to lack the natural transmissibility of TSE prions. One feature that distinguishes the latter from the former is the glycophosphatidylinositol membrane anchor on prion protein, the molecule that is corrupted in TSE diseases. The presence of this anchor profoundly affects TSE pathogenesis, which involves major membrane distortions in the brain, and may be a key reason for the greater neurovirulence of TSE prions relative to many other autocatalytic protein aggregates.
Collapse
Affiliation(s)
- Byron Caughey
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA.
| | | | | | | |
Collapse
|
23
|
Guillerme-Bosselut F, Forestier L, Jayat-Vignoles C, Vilotte JL, Popa I, Portoukalian J, Le Dur A, Laude H, Julien R, Gallet PF. Glycosylation-related gene expression profiling in the brain and spleen of scrapie-affected mouse. Glycobiology 2009; 19:879-89. [PMID: 19386898 DOI: 10.1093/glycob/cwp062] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A central event in the formation of infectious prions is the conformational change of a host-encoded glycoprotein, PrP(C), into a pathogenic isoform, PrP(Sc). The molecular requirements for efficient PrP conversion remain unknown. Altered glycosylation has been linked to various pathologies and the N-glycans harbored by two prion protein isoforms are different. In order to search for glycosylation-related genes that could mark prion infection, we used a glycosylation-dedicated microarray that allowed the simultaneous analysis of the expression of 165 glycosylation-related genes encoding proteins of the glycosyltransferase, glycosidase, lectin, and sulfotransferase families to compare the gene expression profiles of normal and scrapie-infected mouse brain and spleen. Eight genes were found upregulated in "scrapie brain" at the final state of the disease. In the spleen, five genes presented a modified expression. Three genes were also upregulated in the spleen of infected mice, and two (Pigq and St3gal5) downregulated. All changes were confirmed by qPCR and biochemical analyses applied to Pigq and St3gal5 proteins.
Collapse
|
24
|
Béringue V, Vilotte JL, Laude H. Prion agent diversity and species barrier. Vet Res 2008; 39:47. [PMID: 18519020 DOI: 10.1051/vetres:2008024] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2008] [Accepted: 05/30/2008] [Indexed: 11/14/2022] Open
Abstract
Mammalian prions are the infectious agents responsible for transmissible spongiform encephalopathies (TSE), a group of fatal, neurodegenerative diseases, affecting both domestic animals and humans. The most widely accepted view to date is that these agents lack a nucleic acid genome and consist primarily of PrP(Sc), a misfolded, aggregated form of the host-encoded cellular prion protein (PrP(C)) that propagates by autocatalytic conversion and accumulates mainly in the brain. The BSE epizooty, allied with the emergence of its human counterpart, variant CJD, has focused much attention on two characteristics that prions share with conventional infectious agents. First, the existence of multiple prion strains that impose, after inoculation in the same host, specific and stable phenotypic traits such as incubation period, molecular pattern of PrP(Sc) and neuropathology. Prion strains are thought to be enciphered within distinct PrP(Sc) conformers. Second, a transmission barrier exists that restricts the propagation of prions between different species. Here we discuss the possible situations resulting from the confrontation between species barrier and prion strain diversity, the molecular mechanisms involved and the potential of interspecies transmission of animal prions, including recently discovered forms of TSE in ruminants.
Collapse
Affiliation(s)
- Vincent Béringue
- Institut National de la Recherche Agronomique, UR892, Virologie et Immunologie Moléculaires, F-78350 Jouy-en-Josas, France.
| | | | | |
Collapse
|
25
|
Jeffrey M, McGovern G, Goodsir CM, Síso S, González L. Strain-associated variations in abnormal PrP trafficking of sheep scrapie. Brain Pathol 2008; 19:1-11. [PMID: 18400047 PMCID: PMC2659386 DOI: 10.1111/j.1750-3639.2008.00150.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Prion diseases are associated with the accumulation of an abnormal form of the host‐coded prion protein (PrP). It is postulated that different tertiary or quaternary structures of infectious PrP provide the information necessary to code for strain properties. We show here that different light microscopic types of abnormal PrP (PrPd) accumulation found in each of 10 sheep scrapie cases correspond ultrastructurally with abnormal endocytosis, increased endo‐lysosomes, microfolding of plasma membranes, extracellular PrPd release and intercellular PrPd transfer of neurons and/or glia. The same accumulation patterns of PrPd and associated subcellular lesions were present in each of two scrapie strains present, but they were present in different proportions. The observations suggest that different trafficking pathways of PrPd are influenced by strain and cell type and that a single prion strain causes several PrPd–protein interactions at the cell membrane. These results imply that strains may contain or result in production of multiple isoforms of PrPd.
Collapse
Affiliation(s)
- Martin Jeffrey
- Veterinary Laboratories Agency (Lasswade), Pentlands Science Park, Bush Loan, Penicuik, Midlothian, Edinburgh, UK.
| | | | | | | | | |
Collapse
|