1
|
Sharma S, Patil AS. Myostatin's marvels: From muscle regulator to diverse implications in health and disease. Cell Biochem Funct 2024; 42:e4106. [PMID: 39140697 DOI: 10.1002/cbf.4106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/25/2024] [Accepted: 07/28/2024] [Indexed: 08/15/2024]
Abstract
Myostatin, a member of the transforming growth factor-β superfamily, is a pivotal regulator of skeletal muscle growth in mammals. Its discovery has sparked significant interest due to its multifaceted roles in various physiological processes and its potential therapeutic implications. This review explores the diverse functions of myostatin in skeletal muscle development, maintenance and pathology. We delve into its regulatory mechanisms, including its interaction with other signalling pathways and its modulation by various factors such as microRNAs and mechanical loading. Furthermore, we discuss the therapeutic strategies aimed at targeting myostatin for the treatment of muscle-related disorders, including cachexia, muscular dystrophy and heart failure. Additionally, we examine the impact of myostatin deficiency on craniofacial morphology and bone development, shedding light on its broader implications beyond muscle biology. Through a comprehensive analysis of the literature, this review underscores the importance of further research into myostatin's intricate roles and therapeutic potential in human health and disease.
Collapse
Affiliation(s)
- Sonakshi Sharma
- Department of Orthodontics and Dentofacial Orthopaedics, Bharati Vidyapeeth (Deemed to be University) Dental College and Hospital, Pune, Maharashtra, India
| | - Amol S Patil
- Department of Orthodontics and Dentofacial Orthopaedics, Bharati Vidyapeeth (Deemed to be University) Dental College and Hospital, Pune, Maharashtra, India
| |
Collapse
|
2
|
Vadon-Le Goff S, Tessier A, Napoli M, Dieryckx C, Bauer J, Dussoyer M, Lagoutte P, Peyronnel C, Essayan L, Kleiser S, Tueni N, Bettler E, Mariano N, Errazuriz-Cerda E, Fruchart Gaillard C, Ruggiero F, Becker-Pauly C, Allain JM, Bruckner-Tuderman L, Nyström A, Moali C. Identification of PCPE-2 as the endogenous specific inhibitor of human BMP-1/tolloid-like proteinases. Nat Commun 2023; 14:8020. [PMID: 38049428 PMCID: PMC10696041 DOI: 10.1038/s41467-023-43401-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/08/2023] [Indexed: 12/06/2023] Open
Abstract
BMP-1/tolloid-like proteinases (BTPs) are major players in tissue morphogenesis, growth and repair. They act by promoting the deposition of structural extracellular matrix proteins and by controlling the activity of matricellular proteins and TGF-β superfamily growth factors. They have also been implicated in several pathological conditions such as fibrosis, cancer, metabolic disorders and bone diseases. Despite this broad range of pathophysiological functions, the putative existence of a specific endogenous inhibitor capable of controlling their activities could never be confirmed. Here, we show that procollagen C-proteinase enhancer-2 (PCPE-2), a protein previously reported to bind fibrillar collagens and to promote their BTP-dependent maturation, is primarily a potent and specific inhibitor of BTPs which can counteract their proteolytic activities through direct binding. PCPE-2 therefore differs from the cognate PCPE-1 protein and extends the possibilities to fine-tune BTP activities, both in physiological conditions and in therapeutic settings.
Collapse
Affiliation(s)
- Sandrine Vadon-Le Goff
- University of Lyon, CNRS UMR5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), 69367, Lyon, France
| | - Agnès Tessier
- University of Lyon, CNRS UMR5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), 69367, Lyon, France
- Department of Dermatology, Medical Faculty, Medical Center - University of Freiburg, 79104, Freiburg, Germany
- University of Freiburg, Faculty of Biology, 79104, Freiburg, Germany
| | - Manon Napoli
- University of Lyon, CNRS UMR5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), 69367, Lyon, France
| | - Cindy Dieryckx
- University of Lyon, CNRS UMR5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), 69367, Lyon, France
| | - Julien Bauer
- University of Lyon, CNRS UMR5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), 69367, Lyon, France
| | - Mélissa Dussoyer
- University of Lyon, CNRS UMR5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), 69367, Lyon, France
| | - Priscillia Lagoutte
- University of Lyon, CNRS UMR5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), 69367, Lyon, France
| | - Célian Peyronnel
- University of Lyon, CNRS UMR5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), 69367, Lyon, France
| | - Lucie Essayan
- University of Lyon, CNRS UMR5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), 69367, Lyon, France
| | - Svenja Kleiser
- Department of Dermatology, Medical Faculty, Medical Center - University of Freiburg, 79104, Freiburg, Germany
- University of Freiburg, Faculty of Biology, 79104, Freiburg, Germany
| | - Nicole Tueni
- Laboratoire de Mécanique des Solides, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91120, Palaiseau, France
- INRIA, 91120, Palaiseau, France
- Institute of Applied Mechanics, Department of Mechanical Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058, Erlangen, Germany
| | - Emmanuel Bettler
- University of Lyon, CNRS UMR5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), 69367, Lyon, France
| | - Natacha Mariano
- University of Lyon, CNRS UMR5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), 69367, Lyon, France
| | - Elisabeth Errazuriz-Cerda
- University of Lyon, Centre d'Imagerie Quantitative Lyon-Est (CIQLE), SFR Santé-Lyon Est, 69373, Lyon, France
| | - Carole Fruchart Gaillard
- Université Paris-Saclay, CEA, INRAE, Médicaments et Technologies pour la Santé (MTS), SIMoS, 91191, Gif-sur-Yvette, France
| | - Florence Ruggiero
- ENS Lyon, CNRS UMR 5242, Institut de Génomique Fonctionnelle de Lyon (IGFL), 69007, Lyon, France
| | - Christoph Becker-Pauly
- University of Kiel, Biochemical Institute, Unit for Degradomics of the Protease Web, Kiel, Germany
| | - Jean-Marc Allain
- Laboratoire de Mécanique des Solides, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91120, Palaiseau, France
- INRIA, 91120, Palaiseau, France
| | - Leena Bruckner-Tuderman
- Department of Dermatology, Medical Faculty, Medical Center - University of Freiburg, 79104, Freiburg, Germany
| | - Alexander Nyström
- Department of Dermatology, Medical Faculty, Medical Center - University of Freiburg, 79104, Freiburg, Germany
- Freiburg Institute for Advanced Studies (FRIAS), University of Freiburg, Freiburg, Germany
| | - Catherine Moali
- University of Lyon, CNRS UMR5305, Tissue Biology and Therapeutic Engineering Laboratory (LBTI), 69367, Lyon, France.
| |
Collapse
|
3
|
Driss LB, Lian J, Walker RG, Howard JA, Thompson TB, Rubin LL, Wagers AJ, Lee RT. GDF11 and aging biology - controversies resolved and pending. THE JOURNAL OF CARDIOVASCULAR AGING 2023; 3:42. [PMID: 38235060 PMCID: PMC10793994 DOI: 10.20517/jca.2023.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Since the exogenous administration of GDF11, a TGF-ß superfamily member, was reported to have beneficial effects in some models of human disease, there have been many research studies in GDF11 biology. However, many studies have now confirmed that exogenous administration of GDF11 can improve physiology in disease models, including cardiac fibrosis, experimental stroke, and disordered metabolism. GDF11 is similar to GDF8 (also called Myostatin), differing only by 11 amino acids in their mature signaling domains. These two proteins are now known to be biochemically different both in vitro and in vivo. GDF11 is much more potent than GDF8 and induces more strongly SMAD2 phosphorylation in the myocardium compared to GDF8. GDF8 and GDF11 prodomain are only 52% identical and are cleaved by different Tolloid proteases to liberate the mature signaling domain from inhibition of the prodomain. Here, we review the state of GDF11 biology, highlighting both resolved and remaining controversies.
Collapse
Affiliation(s)
- Laura Ben Driss
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - John Lian
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | - Ryan G. Walker
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
- Department of Molecular and Cellular Biosciences, University of Cincinnati, Cincinnati, OH 45267, USA
| | - James A. Howard
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Thomas B. Thompson
- Department of Molecular and Cellular Biosciences, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Lee L. Rubin
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Amy J. Wagers
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
- Paul F. Glenn Center for the Biology of Aging, Harvard Medical School, Joslin Diabetes Center, Boston, MA 02115, USA
| | - Richard T. Lee
- Department of Stem Cell and Regenerative Biology and the Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
- Cardiovascular Division, Department of Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
| |
Collapse
|
4
|
Browne N, Daly D, Horgan K. Differential impact of yeast cell wall products in recovery of porcine intestinal epithelial cell barrier function following Lipopolysaccharide challenge. Porcine Health Manag 2023; 9:18. [PMID: 37069650 PMCID: PMC10111678 DOI: 10.1186/s40813-023-00312-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 02/24/2023] [Indexed: 04/19/2023] Open
Abstract
BACKGROUND In swine intestinal barrier deterioration can be caused by exposure to harmful bacteria, toxins or contaminants that can lead to a leaky gut and post weaning diarrhoea. A leaky gut leads to increased infection, inflammation and poor nutrient absorption that can impair piglet growth and ultimately survival. Application of yeast cell wall (YCW) products may offer an opportunity to reduce the intestinal barrier damage caused by microbial challenge. A Mannan rich fraction (MRF) and three YCW products were compared by examining their impact on intestinal barrier function using a Jejunal model of intestine in response to a bacterial challenge using Salmonella LPS. RESULTS Trans epithelial electrical resistance (TEER) readings showed MRF had a significantly higher barrier function (P ≤ 0.05) over the positive control while YCW products A, B and C demonstrated no significant improvement to the positive control. Transcriptome analysis of the IPEC-J2 cells showed that differentially expressed genes associated with the gene ontology (GO) term for Structural molecule activity was significantly upregulated in the MRF treated cells over the positive control cells with 56 genes upregulated compared to product B (50 genes), Product C, (25 genes) and the negative control's 60 genes. Product A had no functional grouping under the structural molecule activity term. Both qPCR and western blotting analysis of tight junction associated genes showed that MRF treated cells demonstrated significantly higher Claudin 3 junctional gene expression (P ≤ 0.05) over the positive control and treatments A, B and C. Occludin expression was significantly higher in MRF treated cells (P ≤ 0.05) over the positive control and product B. A nonsignificant rise in TJP-1 gene expression was observed in the MRF treated cells when compared to the positive control. Protein abundances of Claudin 3, Occludin and TJP-1 were significantly (P ≤ 0.05) higher following MRF application to LPS challenged IPEC-J2 cells over the positive control. CONCLUSIONS The difference in each YCW products production and composition appeared to influence intestinal barrier integrity. The action of MRF demonstrates its potential ability to raise intestinal barrier integrity of IPEC-J2 intestinal cells on an in vitro level through significantly elevated intracellular connections.
Collapse
Affiliation(s)
- Niall Browne
- Alltech Bioscience Centre, Summerhill Road, Dunboyne, Co. Meath, Ireland.
| | - Daniel Daly
- Alltech Bioscience Centre, Summerhill Road, Dunboyne, Co. Meath, Ireland
| | - Karina Horgan
- Alltech Bioscience Centre, Summerhill Road, Dunboyne, Co. Meath, Ireland
| |
Collapse
|
5
|
Abstract
Myostatin (GDF-8) was discovered 25 years ago as a new transforming growth factor-β family member that acts as a master regulator of skeletal muscle mass. Myostatin is made by skeletal myofibers, circulates in the blood, and acts back on myofibers to limit growth. Myostatin appears to have all of the salient properties of a chalone, which is a term proposed over a half century ago to describe hypothetical circulating, tissue-specific growth inhibitors that control tissue size. The elucidation of the molecular, cellular, and physiological mechanisms underlying myostatin activity suggests that myostatin functions as a negative feedback regulator of muscle mass and raises the question as to whether this type of chalone mechanism is unique to skeletal muscle or whether it also operates in other tissues.
Collapse
Affiliation(s)
- Se-Jin Lee
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, Connecticut, USA.,The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA;
| |
Collapse
|
6
|
Swanson DL, Zhang Y, Jimenez AG. Skeletal muscle and metabolic flexibility in response to changing energy demands in wild birds. Front Physiol 2022; 13:961392. [PMID: 35936893 PMCID: PMC9353400 DOI: 10.3389/fphys.2022.961392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 06/29/2022] [Indexed: 12/20/2022] Open
Abstract
Phenotypically plastic responses of animals to adjust to environmental variation are pervasive. Reversible plasticity (i.e., phenotypic flexibility), where adult phenotypes can be reversibly altered according to prevailing environmental conditions, allow for better matching of phenotypes to the environment and can generate fitness benefits but may also be associated with costs that trade-off with capacity for flexibility. Here, we review the literature on avian metabolic and muscle plasticity in response to season, temperature, migration and experimental manipulation of flight costs, and employ an integrative approach to explore the phenotypic flexibility of metabolic rates and skeletal muscle in wild birds. Basal (minimum maintenance metabolic rate) and summit (maximum cold-induced metabolic rate) metabolic rates are flexible traits in birds, typically increasing with increasing energy demands. Because skeletal muscles are important for energy use at the organismal level, especially to maximum rates of energy use during exercise or shivering thermogenesis, we consider flexibility of skeletal muscle at the tissue and ultrastructural levels in response to variations in the thermal environment and in workloads due to flight exercise. We also examine two major muscle remodeling regulatory pathways: myostatin and insulin-like growth factor -1 (IGF-1). Changes in myostatin and IGF-1 pathways are sometimes, but not always, regulated in a manner consistent with metabolic rate and muscle mass flexibility in response to changing energy demands in wild birds, but few studies have examined such variation so additional study is needed to fully understand roles for these pathways in regulating metabolic flexibility in birds. Muscle ultrastrutural variation in terms of muscle fiber diameter and associated myonuclear domain (MND) in birds is plastic and highly responsive to thermal variation and increases in workload, however, only a few studies have examined ultrastructural flexibility in avian muscle. Additionally, the relationship between myostatin, IGF-1, and satellite cell (SC) proliferation as it relates to avian muscle flexibility has not been addressed in birds and represents a promising avenue for future study.
Collapse
Affiliation(s)
- David L. Swanson
- Department of Biology, University of South Dakota, Vermillion, SD, United States
| | - Yufeng Zhang
- College of Health Science, University of Memphis, Memphis, TN, United States
| | - Ana Gabriela Jimenez
- Department of Biology, Colgate University, Hamilton, NY, United States
- *Correspondence: Ana Gabriela Jimenez,
| |
Collapse
|
7
|
Bataille S, Dou L, Bartoli M, Sallée M, Aniort J, Ferkak B, Chermiti R, McKay N, Da Silva N, Burtey S, Poitevin S. Mechanisms of myostatin and activin A accumulation in chronic kidney disease. Nephrol Dial Transplant 2022; 37:1249-1260. [PMID: 35333341 DOI: 10.1093/ndt/gfac136] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Myostatin and activin A induce muscle wasting by activating the ubiquitin proteasome system and inhibiting the Akt/mTOR pathway. In chronic kidney disease (CKD), myostatin and activin A plasma concentrations are increased, but it is not clear if there is an increased production or a decreased renal clearance. METHODS We measured myostatin and activin A concentrations in 232 CKD patients and studied their correlation with estimated glomerular filtration rate (eGFR). We analyzed the myostatin gene (MSTN) expression in muscle biopsies of hemodialysis (HD) patients. We then measured circulating myostatin and activin A in plasma and the Mstn and Inhba expression in muscles, kidney, liver and heart of two CKD mice models (adenine and 5/6th nephrectomy models). Finally, we analyzed whether the uremic toxin indoxyl sulfate (IS) increased Mstn expression in mice and cultured muscle cells. RESULTS In patients, myostatin and activin A were inversely correlated with eGFR. MSTN expression was lower in HD patients' muscles (vastus lateralis) than in controls. In mice with CKD, myostatin and activin A blood concentrations were increased. Mstn was not up-regulated in CKD mice tissues. Inha was up-regulated in kidney and heart. Exposure to IS did not induce Mstn up-regulation in mice muscles and in cultured myoblasts and myocytes. CONCLUSION During CKD, myostatin and activin A blood concentrations are increased. Myostatin is not overproduced, suggesting only an impaired renal clearance, but activin A is over produced in kidney and heart. We propose to add myostatin and activin A to the list of uremic toxins.
Collapse
Affiliation(s)
- Stanislas Bataille
- Phocean Nephrology Institute, Clinique Bouchard, ELSAN, Marseille, France.,Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France
| | - Laetitia Dou
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France
| | - Marc Bartoli
- Aix Marseille Univ, MMG, INSERM, Marseille, France
| | - Marion Sallée
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France.,Aix Marseille Univ, Centre de Néphrologie et Transplantation Rénale, AP-HM Hôpital de la Conception, Marseille, France
| | - Julien Aniort
- Nephrology, Dialysis and Transplantation Department, Gabriel Montpied University Hospital, University Hospital of Clermont-Ferrand, Clermont-Ferrand, France
| | - Bohrane Ferkak
- Service d'Evaluation Médicale, AP-HM, Marseille, France.,Aix Marseille Univ, EA 3279 Self-perceived Health Assessment Research Unit, Marseille, France
| | - Rania Chermiti
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France
| | - Nathalie McKay
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France
| | | | - Stéphane Burtey
- Aix Marseille Univ, INSERM, INRAE, C2VN, Marseille, France.,Aix Marseille Univ, Centre de Néphrologie et Transplantation Rénale, AP-HM Hôpital de la Conception, Marseille, France
| | | |
Collapse
|
8
|
Lee SJ, Lehar A, Rydzik R, Youngstrom DW, Bhasin S, Liu Y, Germain-Lee EL. Functional replacement of myostatin with GDF-11 in the germline of mice. Skelet Muscle 2022; 12:7. [PMID: 35287700 PMCID: PMC8922734 DOI: 10.1186/s13395-022-00290-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/04/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Myostatin (MSTN) is a transforming growth factor-ß superfamily member that acts as a major regulator of skeletal muscle mass. GDF-11, which is highly related to MSTN, plays multiple roles during embryonic development, including regulating development of the axial skeleton, kidneys, nervous system, and pancreas. As MSTN and GDF-11 share a high degree of amino acid sequence identity, behave virtually identically in cell culture assays, and utilize similar regulatory and signaling components, a critical question is whether their distinct biological functions result from inherent differences in their abilities to interact with specific regulatory and signaling components or whether their distinct biological functions mainly reflect their differing temporal and spatial patterns of expression. METHODS We generated and characterized mice in which we precisely replaced in the germline the portion of the Mstn gene encoding the mature C-terminal peptide with the corresponding region of Gdf11. RESULTS In mice homozygous for the knock-in allele, all of the circulating MSTN protein was replaced with GDF-11, resulting in ~ 30-40-fold increased levels of circulating GDF-11. Male mice homozygous for the knock-in allele had slightly decreased muscle weights, slightly increased weight gain in response to a high-fat diet, slightly increased plasma cholesterol and HDL levels, and significantly decreased bone density and bone mass, whereas female mice were mostly unaffected. CONCLUSIONS GDF-11 appears to be capable of nearly completely functionally replacing MSTN in the control of muscle mass. The developmental and physiological consequences of replacing MSTN with GDF-11 are strikingly limited.
Collapse
Affiliation(s)
- Se-Jin Lee
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA. .,Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, Farmington, CT, USA.
| | - Adam Lehar
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Renata Rydzik
- Department of Orthopaedic Surgery, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Daniel W Youngstrom
- Department of Orthopaedic Surgery, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Shalender Bhasin
- Brigham Research Assay Core Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,Research Program in Men's Health: Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Yewei Liu
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Emily L Germain-Lee
- Department of Pediatrics, University of Connecticut School of Medicine, Farmington, CT, USA.,Department of Reconstructive Sciences, Center for Regenerative Medicine and Skeletal Development, University of Connecticut School of Dental Medicine, Farmington, CT, USA.,Division of Endocrinology & Diabetes and Center for Rare Bone Disorders, Connecticut Children's, Farmington, CT, USA
| |
Collapse
|
9
|
Chen MM, Zhao YP, Zhao Y, Deng SL, Yu K. Regulation of Myostatin on the Growth and Development of Skeletal Muscle. Front Cell Dev Biol 2022; 9:785712. [PMID: 35004684 PMCID: PMC8740192 DOI: 10.3389/fcell.2021.785712] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/08/2021] [Indexed: 01/01/2023] Open
Abstract
Myostatin (MSTN), a member of the transforming growth factor-β superfamily, can negatively regulate the growth and development of skeletal muscle by autocrine or paracrine signaling. Mutation of the myostatin gene under artificial or natural conditions can lead to a significant increase in muscle quality and produce a double-muscle phenotype. Here, we review the similarities and differences between myostatin and other members of the transforming growth factor-β superfamily and the mechanisms of myostatin self-regulation. In addition, we focus extensively on the regulation of myostatin functions involved in myogenic differentiation, myofiber type conversion, and skeletal muscle protein synthesis and degradation. Also, we summarize the induction of reactive oxygen species generation and oxidative stress by myostatin in skeletal muscle. This review of recent insights into the function of myostatin will provide reference information for future studies of myostatin-regulated skeletal muscle formation and may have relevance to agricultural fields of study.
Collapse
Affiliation(s)
- Ming-Ming Chen
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yi-Ping Zhao
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin, China
| | - Yue Zhao
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shou-Long Deng
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Kun Yu
- College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
10
|
Esposito P, Picciotto D, Battaglia Y, Costigliolo F, Viazzi F, Verzola D. Myostatin: Basic biology to clinical application. Adv Clin Chem 2022; 106:181-234. [PMID: 35152972 DOI: 10.1016/bs.acc.2021.09.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Myostatin is a member of the transforming growth factor (TGF)-β superfamily. It is expressed by animal and human skeletal muscle cells where it limits muscle growth and promotes protein breakdown. Its effects are influenced by complex mechanisms including transcriptional and epigenetic regulation and modulation by extracellular binding proteins. Due to its actions in promoting muscle atrophy and cachexia, myostatin has been investigated as a promising therapeutic target to counteract muscle mass loss in experimental models and patients affected by different muscle-wasting conditions. Moreover, growing evidence indicates that myostatin, beyond to regulate skeletal muscle growth, may have a role in many physiologic and pathologic processes, such as obesity, insulin resistance, cardiovascular and chronic kidney disease. In this chapter, we review myostatin biology, including intracellular and extracellular regulatory pathways, and the role of myostatin in modulating physiologic processes, such as muscle growth and aging. Moreover, we discuss the most relevant experimental and clinical evidence supporting the extra-muscle effects of myostatin. Finally, we consider the main strategies developed and tested to inhibit myostatin in clinical trials and discuss the limits and future perspectives of the research on myostatin.
Collapse
Affiliation(s)
- Pasquale Esposito
- Clinica Nefrologica, Dialisi, Trapianto, Department of Internal Medicine, University of Genoa and IRCCS Ospedale Policlinico San Martino, Genova, Italy.
| | - Daniela Picciotto
- Clinica Nefrologica, Dialisi, Trapianto, Department of Internal Medicine, University of Genoa and IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Yuri Battaglia
- Nephrology and Dialysis Unit, St. Anna University Hospital, Ferrara, Italy
| | - Francesca Costigliolo
- Clinica Nefrologica, Dialisi, Trapianto, Department of Internal Medicine, University of Genoa and IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Francesca Viazzi
- Clinica Nefrologica, Dialisi, Trapianto, Department of Internal Medicine, University of Genoa and IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Daniela Verzola
- Clinica Nefrologica, Dialisi, Trapianto, Department of Internal Medicine, University of Genoa and IRCCS Ospedale Policlinico San Martino, Genova, Italy
| |
Collapse
|
11
|
Local versus systemic control of bone and skeletal muscle mass by components of the transforming growth factor-β signaling pathway. Proc Natl Acad Sci U S A 2021; 118:2111401118. [PMID: 34385332 PMCID: PMC8379946 DOI: 10.1073/pnas.2111401118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Skeletal muscle and bone homeostasis are regulated by members of the myostatin/GDF-11/activin branch of the transforming growth factor-β superfamily, which share many regulatory components, including inhibitory extracellular binding proteins and receptors that mediate signaling. Here, we present the results of genetic studies demonstrating a critical role for the binding protein follistatin (FST) in regulating both skeletal muscle and bone. Using an allelic series corresponding to varying expression levels of endogenous Fst, we show that FST acts in an exquisitely dose-dependent manner to regulate both muscle mass and bone density. Moreover, by employing a genetic strategy to target Fst expression only in the posterior (caudal) region of the animal, we show that the effects of Fst loss are mostly restricted to the posterior region, implying that locally produced FST plays a much more important role than circulating FST with respect to regulation of muscle and bone. Finally, we show that targeting receptors for these ligands specifically in osteoblasts leads to dramatic increases in bone mass, with trabecular bone volume fraction being increased by 12- to 13-fold and bone mineral density being increased by 8- to 9-fold in humeri, femurs, and lumbar vertebrae. These findings demonstrate that bone, like muscle, has an enormous inherent capacity for growth that is normally kept in check by this signaling system and suggest that the extent to which this regulatory mechanism may be used throughout the body to regulate tissue mass may be more significant than previously appreciated.
Collapse
|
12
|
Lee SJ. Targeting the myostatin signaling pathway to treat muscle loss and metabolic dysfunction. J Clin Invest 2021; 131:148372. [PMID: 33938454 DOI: 10.1172/jci148372] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Since the discovery of myostatin (MSTN; also known as GDF-8) as a critical regulator of skeletal muscle mass in 1997, there has been an extensive effort directed at understanding the cellular and physiological mechanisms underlying MSTN activity, with the long-term goal of developing strategies and agents capable of blocking MSTN signaling to treat patients with muscle loss. Considerable progress has been made in elucidating key components of this regulatory system, and in parallel with this effort has been the development of numerous biologics that have been tested in clinical trials for a wide range of indications, including muscular dystrophy, sporadic inclusion body myositis, spinal muscular atrophy, cachexia, muscle loss due to aging or following falls, obesity, and type 2 diabetes. Here, I review what is known about the MSTN regulatory system and the current state of efforts to target this pathway for clinical applications.
Collapse
Affiliation(s)
- Se-Jin Lee
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut, USA.,University of Connecticut School of Medicine, Department of Genetics and Genome Sciences, Farmington, Connecticut, USA
| |
Collapse
|
13
|
Antimyostatin Treatment in Health and Disease: The Story of Great Expectations and Limited Success. Cells 2021; 10:cells10030533. [PMID: 33802348 PMCID: PMC8001237 DOI: 10.3390/cells10030533] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 02/24/2021] [Accepted: 02/26/2021] [Indexed: 12/14/2022] Open
Abstract
In the past 20 years, myostatin, a negative regulator of muscle mass, has attracted attention as a potential therapeutic target in muscular dystrophies and other conditions. Preclinical studies have shown potential for increasing muscular mass and ameliorating the pathological features of dystrophic muscle by the inhibition of myostatin in various ways. However, hardly any clinical trials have proven to translate the promising results from the animal models into patient populations. We present the background for myostatin regulation, clinical and preclinical results and discuss why translation from animal models to patients is difficult. Based on this, we put the clinical relevance of future antimyostatin treatment into perspective.
Collapse
|
14
|
Li C, Wu Q, Li Z, Wang Z, Tu Y, Chen C, Sun S, Sun S. Exosomal microRNAs in cancer-related sarcopenia: Tumor-derived exosomal microRNAs in muscle atrophy. Exp Biol Med (Maywood) 2021; 246:1156-1166. [PMID: 33554647 DOI: 10.1177/1535370221990322] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cancer-associated sarcopenia is a complex metabolic syndrome marked by muscle mass wasting. Muscle wasting is a serious complication that is a primary contributor to cancer-related mortality. The underlying molecular mechanisms of cancer-associated sarcopenia have not been completely described to date. In general, evidence shows that the main pathophysiological alterations in sarcopenia are associated with the degradation of cellular components, an exceptional inflammatory secretome and mitochondrial dysfunction. Importantly, we highlight the prospect that several miRNAs carried by tumor-derived exosomes that have shown the ability to promote inflammatory secretion, activate catabolism, and even participate in the regulation of cellular degradation pathways can be delivered to and exert effects on muscle cells. In this review, we aim to describe the current knowledge about the functions of exosomal miRNAs in the induction of cancer-associated muscle wasting and propose potential treatment strategies.
Collapse
Affiliation(s)
- Chenyuan Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, PR China
| | - Qi Wu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, PR China
| | - Zhiyu Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, PR China
| | - Zhong Wang
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, PR China
| | - Yi Tu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, PR China
| | - Chuang Chen
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, PR China
| | - Si Sun
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, PR China
| | - Shengrong Sun
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, PR China
| |
Collapse
|
15
|
Similar sequences but dissimilar biological functions of GDF11 and myostatin. Exp Mol Med 2020; 52:1673-1693. [PMID: 33077875 PMCID: PMC8080601 DOI: 10.1038/s12276-020-00516-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/13/2020] [Accepted: 08/17/2020] [Indexed: 12/27/2022] Open
Abstract
Growth differentiation factor 11 (GDF11) and myostatin (MSTN) are closely related TGFβ family members that are often believed to serve similar functions due to their high homology. However, genetic studies in animals provide clear evidence that they perform distinct roles. While the loss of Mstn leads to hypermuscularity, the deletion of Gdf11 results in abnormal skeletal patterning and organ development. The perinatal lethality of Gdf11-null mice, which contrasts with the long-term viability of Mstn-null mice, has led most research to focus on utilizing recombinant GDF11 proteins to investigate the postnatal functions of GDF11. However, the reported outcomes of the exogenous application of recombinant GDF11 proteins are controversial partly because of the different sources and qualities of recombinant GDF11 used and because recombinant GDF11 and MSTN proteins are nearly indistinguishable due to their similar structural and biochemical properties. Here, we analyze the similarities and differences between GDF11 and MSTN from an evolutionary point of view and summarize the current understanding of the biological processing, signaling, and physiological functions of GDF11 and MSTN. Finally, we discuss the potential use of recombinant GDF11 as a therapeutic option for a wide range of medical conditions and the possible adverse effects of GDF11 inhibition mediated by MSTN inhibitors.
Collapse
|
16
|
Xie XD, Zhao L, Wu YF, Wang J. [Role of bone morphogenetic protein 1/tolloid proteinase family in the development of teeth and bone]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2020; 38:589-593. [PMID: 33085247 DOI: 10.7518/hxkq.2020.05.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The bone morphogenetic protein (BMP) 1/tolloid (TLD) proteinase family is a group of important metalloproteinases, which play key roles in the growth and development of tissues and organs via regulating the biosynthetic processing of the extracellular matrix. Clinical reports have revealed that mutations in the genes encoding BMP1/TLD proteinases lead to dentinogenesis imperfecta type Ⅰ, accompanied with osteogenesis imperfecta. Therefore, this proteinase family is essential for the development of hard tissues. In this study, we review the research progress in the function and mechanism of the BMP1/TLD proteinase family in the development of teeth and bone.
Collapse
Affiliation(s)
- Xu-Dong Xie
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Lei Zhao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Ya-Fei Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jun Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Dept. of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
17
|
Suh J, Lee YS. Myostatin Inhibitors: Panacea or Predicament for Musculoskeletal Disorders? J Bone Metab 2020; 27:151-165. [PMID: 32911580 PMCID: PMC7571243 DOI: 10.11005/jbm.2020.27.3.151] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 06/23/2020] [Indexed: 01/19/2023] Open
Abstract
Myostatin, also known as growth differentiation factor 8 (GDF8), is a transforming growth factor-β (TGF-β) family member that functions to limit skeletal muscle growth. Accordingly, loss-of-function mutations in myostatin result in a dramatic increase in muscle mass in humans and various animals, while its overexpression leads to severe muscle atrophy. Myostatin also exerts a significant effect on bone metabolism, as demonstrated by enhanced bone mineral density and bone regeneration in myostatin null mice. The identification of myostatin as a negative regulator of muscle and bone mass has sparked an enormous interest in developing myostatin inhibitors as therapeutic agents for treating a variety of clinical conditions associated with musculoskeletal disorders. As a result, various myostatin-targeting strategies involving antibodies, myostatin propeptides, soluble receptors, and endogenous antagonists have been generated, and many of them have progressed to clinical trials. Importantly, most myostatin inhibitors also repress the activities of other closely related TGF-β family members including GDF11, activins, and bone morphogenetic proteins (BMPs), increasing the potential for unwanted side effects, such as vascular side effects through inhibition of BMP 9/10 and bone weakness induced by follistatin through antagonizing several TGF-β family members. Therefore, a careful distinction between targets that may enhance the efficacy of an agent and those that may cause adverse effects is required with the improvement of the target specificity. In this review, we discuss the current understanding of the endogenous function of myostatin, and provide an overview of clinical trial outcomes from different myostatin inhibitors.
Collapse
Affiliation(s)
- Joonho Suh
- Department of Molecular Genetics and Dental Pharmacology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea
| | - Yun-Sil Lee
- Department of Molecular Genetics and Dental Pharmacology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul, Korea
| |
Collapse
|
18
|
Jiang J, Huang J, Gu J, Cai X, Zhao H, Lu H. Genomic analysis of a spinal muscular atrophy (SMA) discordant family identifies a novel mutation in TLL2, an activator of growth differentiation factor 8 (myostatin): a case report. BMC MEDICAL GENETICS 2019; 20:204. [PMID: 31888525 PMCID: PMC6938020 DOI: 10.1186/s12881-019-0935-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/03/2019] [Indexed: 11/25/2022]
Abstract
Background Spinal muscular atrophy (SMA) is a rare neuromuscular disorder threating hundreds of thousands of lives worldwide. And the severity of SMA differs among different clinical types, which has been demonstrated to be modified by factors like SMN2, SERF1, NAIP, GTF2H2 and PLS3. However, the severities of many SMA cases, especially the cases within a family, often failed to be explained by these modifiers. Therefore, other modifiers are still waiting to be explored. Case presentation In this study, we presented a rare case of SMA discordant family with a mild SMA male patient and a severe SMA female patient. The two SMA cases fulfilled the diagnostic criteria defined by the International SMA Consortium. With whole exome sequencing, we confirmed the heterozygous deletion of exon7 at SMN1 on the parents’ genomes and the homozygous deletions on the two patients’ genomes. The MLPA results confirmed the deletions and indicated that all the family members carry two copies of SMN2, SERF1, NAIP and GTF2H2. Further genomic analysis identified compound heterozygous mutations at TLL2 on the male patient’s genome, and compound heterozygous mutations at VPS13A and the de novo mutation at AGAP5 on female patient’s genome. TLL2 is an activator of myostatin, which negatively regulates the growth of skeletal muscle tissue. Mutation in TLL2 has been proved to increase muscular function in mice model. VPS13A encodes proteins that control the cycling of proteins through the trans-Golgi network to endosomes, lysosomes and the plasma membrane. And AGAP5 was reported to have GTPase activator activity. Conclusions We reported a case of SMA discordant family and identified mutations at TLL2, VPS13A and AGAP5 on the patients’ genomes. The mutations at TLL2 were predicted to be pathogenic and are likely to alleviate the severity of the male SMA patient. Our finding broadens the spectrum of genetic modifiers of SMA and will contribute to accurate counseling of SMA affected patients and families.
Collapse
Affiliation(s)
- Jianping Jiang
- Department of Bioinformatics and Biostatistics, SJTU-Yale Joint Center for Biostatistics, College of Life Science and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, China.,Department of Biostatistics, Yale School of Public Health, 300 George Street, New Haven, CT, USA
| | - Jinwei Huang
- Department of Respiration and Critical Care Medicine, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| | - Jianlei Gu
- Department of Bioinformatics and Biostatistics, SJTU-Yale Joint Center for Biostatistics, College of Life Science and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, China.,Department of Biostatistics, Yale School of Public Health, 300 George Street, New Haven, CT, USA.,Center for Biomedical Informatics, Shanghai Children's Hospital, Shanghai, China
| | - Xiaoshu Cai
- Center for Biomedical Informatics, Shanghai Children's Hospital, Shanghai, China
| | - Hongyu Zhao
- Department of Bioinformatics and Biostatistics, SJTU-Yale Joint Center for Biostatistics, College of Life Science and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, China. .,Department of Biostatistics, Yale School of Public Health, 300 George Street, New Haven, CT, USA.
| | - Hui Lu
- Department of Bioinformatics and Biostatistics, SJTU-Yale Joint Center for Biostatistics, College of Life Science and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, China. .,Center for Biomedical Informatics, Shanghai Children's Hospital, Shanghai, China.
| |
Collapse
|
19
|
Favia M, Fitak R, Guerra L, Pierri CL, Faye B, Oulmouden A, Burger PA, Ciani E. Beyond the Big Five: Investigating Myostatin Structure, Polymorphism and Expression in Camelus dromedarius. Front Genet 2019; 10:502. [PMID: 31231423 PMCID: PMC6566074 DOI: 10.3389/fgene.2019.00502] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 05/07/2019] [Indexed: 12/19/2022] Open
Abstract
Myostatin, a negative regulator of skeletal muscle mass in animals, has been shown to play a role in determining muscular hypertrophy in several livestock species, and a high degree of polymorphism has been previously reported for this gene in humans and cattle. In this study, we provide a characterization of the myostatin gene in the dromedary (Camelus dromedarius) at the genomic, transcript and protein level. The gene was found to share high structural and sequence similarity with other mammals, notably Old World camelids. 3D modeling highlighted several non-conservative SNP variants compared to the bovine, as well as putative functional variants involved in the stability of the myostatin dimer. NGS data for nine dromedaries from various countries revealed 66 novel SNPs, all of them falling either upstream or downstream the coding region. The analysis also confirmed the presence of three previously described SNPs in intron 1, predicted here to alter both splicing and transcription factor binding sites (TFBS), thus possibly impacting myostatin processing and/or regulation. Several putative TFBS were identified in the myostatin upstream region, some of them belonging to the myogenic regulatory factor family. Patterns of SNP distribution across countries, as suggested by Bayesian clustering of the nine dromedaries using the 69 SNPs, pointed to weak geographic differentiation, in line with known recurrent gene flow at ancient trading centers along caravan routes. Myostatin expression was investigated in a set of 8 skeletal muscles, both at transcript and protein level, via Digital Droplet PCR and Western Blotting, respectively. No significant differences were observed at the transcript level, while, at the protein level, the only significant differences concerned the promyostatin dimer (75 kDa), in four pair-wise comparisons, all involving the tensor fasciae latae muscle. Beside the mentioned band at 75 kDa, additional bands were observed at around 40 and 25 kDa, corresponding to the promyostatin monomer and the active C-terminal myostatin dimer, respectively. Their weaker intensity suggests that the unprocessed myostatin dimers could act as important reservoirs of slowly available myostatin forms. Under this assumption, the sequential cleavage steps may contribute additional layers of control within an already complex regulatory framework.
Collapse
Affiliation(s)
- Maria Favia
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Bari, Italy
| | - Robert Fitak
- Research Institute of Wildlife Ecology, Vetmeduni, Vienna, Austria.,Department of Biology, Duke University, Durham, NC, United States
| | - Lorenzo Guerra
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Bari, Italy
| | - Ciro Leonardo Pierri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Bari, Italy
| | | | - Ahmad Oulmouden
- Département Sciences du Vivant, Université de Limoges, Limoges, France
| | | | - Elena Ciani
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
20
|
Kim JH, Kim JH, Sutikno LA, Lee SB, Jin DH, Hong YK, Kim YS, Jin HJ. Identification of the minimum region of flatfish myostatin propeptide (Pep45-65) for myostatin inhibition and its potential to enhance muscle growth and performance in animals. PLoS One 2019; 14:e0215298. [PMID: 30998775 PMCID: PMC6472743 DOI: 10.1371/journal.pone.0215298] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 03/30/2019] [Indexed: 12/31/2022] Open
Abstract
Myostatin (MSTN) negatively regulates skeletal muscle growth, and its activity is inhibited by the binding of MSTN propeptide (MSTNpro), the N-terminal domain of proMSTN that is proteolytically cleaved from the proMSTN. Partial sequences from the N-terminal side of MSTNpro have shown to be sufficient to inhibit MSTN activity. In this study, to determine the minimum size of flatfish MSTNpro for MSTN inhibition, various truncated forms of flatfish MSTNpro with N-terminal maltose binding protein (MBP) fusion were expressed in E. coli and purified. MSTNpro regions consisting of residues 45–68, -69, and -70 with MBP fusion suppressed MSTN activity with a potency comparable to that of full-sequence flatfish MSTNpro in a pGL3-(CAGA)12-luciferase reporter assay. Even though the MSTN-inhibitory potency was about 1,000-fold lower, the flatfish MSTNpro region containing residues 45–65 (MBP-Pro45-65) showed MSTN-inhibitory capacity but not the MBP-Pro45-64, indicating that the region 45–65 is the minimum domain required for MSTN binding and suppression of its activity. To examine the in vivo effect of MBP-fused, truncated flatfish MSTNpro, MBP-Pro45-70-His6 (20 mg/kg body wt) was subcutaneously injected 5 times for 14 days in mice. Body wt gain and bone mass were not affected by the administration. Grip strength and swimming time were significantly enhanced at 7 d after the administration. At 14 d, the effect on grip strength disappeared, and the extent of the effect on swimming time significantly diminished. The presence of antibody against MBP-Pro45-70-His6 was observed at both 7 and 14 d after the administration with the titer value at 14 d being much greater than that at 7 d, suggesting that antibodies against MBP-Pro45-70-His6 neutralized the MSTN-inhibitory effect of MBP-Pro45-70-His6. We, thus, examined the MSTN-inhibitory capacity and in vivo effect of flatfish MSTNpro region 45–65 peptide (Pep45-65-NH2), which was predicted to have no immunogenicity in silico analysis. Pep45-65-NH2 suppressed MSTN activity with a potency similar to that of MBP-Pro45-65 but did not suppress GDF11, or activin A. Pep45-65-NH2 blocked MSTN-induced Smad2 phosphorylation in HepG2 cells. The administration of Pep45-65 (20 mg/kg body wt, 5 times for 2 weeks) increased the body wt gain with a greater gain at 14 d than at 7 d and muscle wt. Grip strength and swimming time were also significantly enhanced by the administration. Antibody titer against Pep45-65 was not detected. In conclusion, current results indicate that MSTN-inhibitory proteins with heterologous fusion partner may not be effective in suppressing MSTN activity in vivo due to an immune response against the proteins. Current results also show that the region of flatfish MSTNpro consisting of 45–65 (Pep45-65) can suppress mouse MSTN activity and increase muscle mass and function without invoking an immune response, implying that Pep45-65 would be a potential agent to enhance skeletal muscle growth and function in animals or to treat muscle atrophy caused by various clinical conditions.
Collapse
Affiliation(s)
- Jeong Hwan Kim
- Department of Marine Molecular Bioscience, Gangneung-Wonju National University, Gangneung-si, Ganwon-do, Korea
| | - Jeong Han Kim
- Department of Marine Molecular Bioscience, Gangneung-Wonju National University, Gangneung-si, Ganwon-do, Korea
| | | | - Sang Beum Lee
- Department of Human Nurtrition, Food and Animal Sciences, University of Hawaii, Honolulu, Hawaii, United States of America
| | - Deuk-Hee Jin
- Department of Marine Molecular Bioscience, Gangneung-Wonju National University, Gangneung-si, Ganwon-do, Korea
| | - Yong-Ki Hong
- Department of Biotechnology, Pukyong National University, Namgu, Busan, Korea
| | - Yong Soo Kim
- Department of Human Nurtrition, Food and Animal Sciences, University of Hawaii, Honolulu, Hawaii, United States of America
- * E-mail: (YK); (HJ)
| | - Hyung-Joo Jin
- Department of Marine Molecular Bioscience, Gangneung-Wonju National University, Gangneung-si, Ganwon-do, Korea
- * E-mail: (YK); (HJ)
| |
Collapse
|
21
|
Liu K, Zhang X, Wei W, Liu X, Tian Y, Han H, Zhang L, Wu W, Chen J. Myostatin/SMAD4 signaling-mediated regulation of miR-124-3p represses glucocorticoid receptor expression and inhibits adipocyte differentiation. Am J Physiol Endocrinol Metab 2019; 316:E635-E645. [PMID: 30576242 DOI: 10.1152/ajpendo.00405.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The mechanism of adipocyte regulation specifically in muscle and the influence of muscle tissue on intramuscular fat deposition are unknown. Our previous studies have shown that myostatin, a myokine, is involved in inhibiting the differentiation of preadipocytes and may be a potential regulator that affects the deposition of intramuscular fat. Myostatin inhibited adipogenesis by downregulating the expression of glucocorticoid receptor (GR) in porcine preadipocytes. However, the mechanism of regulation is not yet clear. In this study, we demonstrate microRNA (miR-124-3p) mediates regulation of GR by myostatin. We found that miR-124-3p can target GR 3'-UTR and negatively regulate GR expression. We demonstrate that overexpression of miR-124-3p can reduce differentiation of 3T3-L1 cells by inhibiting GR, and vice versa. The expression of miR-124-3p was upregulated in 3T3-L1 cells treated with myostatin. Further study revealed that myostatin also promotes the expression of SMAD4 and its transfer and localization to the nucleus. The activated myostatin/SMAD4 signal promotes the expression of miR-124-3p by SMAD4 binding to the promoter region of miR-124-3p. When myostatin or SMAD4 activity is inhibited, the upregulation of miR-124-3p is also inhibited. All of these findings suggested that myostatin could inhibit adipogenic differentiation of 3T3-L1 cells by activating miR-124-3p to inhibit GR. These data may provide an explanation for how myostatin signaling affects intramuscular fat deposition in a tissue-specific manner.
Collapse
Affiliation(s)
- Kaiqing Liu
- College of Animal Science and Technology, Nanjing Agricultural University , Nanjing , China
| | - Xinbao Zhang
- College of Animal Science and Technology, Nanjing Agricultural University , Nanjing , China
| | - Wei Wei
- College of Animal Science and Technology, Nanjing Agricultural University , Nanjing , China
| | - Xin Liu
- College of Animal Science and Technology, Nanjing Agricultural University , Nanjing , China
| | - Ye Tian
- College of Animal Science and Technology, Nanjing Agricultural University , Nanjing , China
| | - Haiyin Han
- College of Animal Science and Technology, Nanjing Agricultural University , Nanjing , China
| | - Lifan Zhang
- College of Animal Science and Technology, Nanjing Agricultural University , Nanjing , China
| | - Wangjun Wu
- College of Animal Science and Technology, Nanjing Agricultural University , Nanjing , China
| | - Jie Chen
- College of Animal Science and Technology, Nanjing Agricultural University , Nanjing , China
| |
Collapse
|
22
|
Zhang C, Su S, Li X, Li B, Yang B, Zhu J, Wang W. Comparative transcriptomics identifies genes differentially expressed in the intestine of a new fast-growing strain of common carp with higher unsaturated fatty acid content in muscle. PLoS One 2018; 13:e0206615. [PMID: 30395585 PMCID: PMC6218049 DOI: 10.1371/journal.pone.0206615] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 10/16/2018] [Indexed: 01/01/2023] Open
Abstract
We have created a new, fast-growing strain of common carp with higher unsaturated fatty acid content in muscle. To better understand the impacts of gene regulation in intestinal tissue on growth and unsaturated fatty acid content, we conducted a comparative RNA-Seq transcriptome analysis between intestine samples of Selected and Control groups (and corroborated selected results by PCR). After eight weeks of cage culture, weight gain of the Selected group was 20.84% higher. In muscles of the control group, monounsaturated fatty acids (FAs) were more abundant, whereas polyunsaturated FAs were more abundant in muscles of the Selected group. In total, we found 106 differentially expressed genes (DEGs) between the two groups. Only the endocytosis pathway was significantly enriched in DEGs, with two upregulated genes: il2rb and ehd1. The latter is involved in the growth hormone/insulin-like growth factor (Gh/Igf) axis, which plays a key role in the regulation of growth in animals. tll2, which is known to be associated with intestinal regeneration, was extremely highly upregulated in both transcriptomic (infinite) and qPCR (610.70) analyses. Two of the upregulated genes are associated with the fatty acid metabolism, several genes are likely to be indicators of heightened transcription levels, several are associated with metabolic and developmental roles, several with neuronal functions (including two with vision), several with the immune system, and two downregulated genes with the development of vasculature. The higher growth rate of the Selected group is likely to be at least partially attributed to increased endocytosis efficiency and genetically-driven behavioural differences (higher aggression levels). There are some indications that this new strain might have slightly impaired immune responses, and a higher propensity for inherited diseases leading to sight impairment, as well for neurodegenerative diseases in general, but these indications still need to be confirmed.
Collapse
Affiliation(s)
- Chengfeng Zhang
- College of Fisheries, Huazhong Agricultural University, Wuhan, PR China
- Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Ministry of Agriculture; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, PR China
| | - Shengyan Su
- Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Ministry of Agriculture; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, PR China
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, PR China
| | - Xinyuan Li
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, PR China
| | - Bing Li
- Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Ministry of Agriculture; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, PR China
| | - Baojuan Yang
- Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Ministry of Agriculture; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, PR China
| | - Jian Zhu
- Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes, Ministry of Agriculture; Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, PR China
- * E-mail: (JZ); (WW)
| | - Weimin Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan, PR China
- * E-mail: (JZ); (WW)
| |
Collapse
|
23
|
Higgins MG, Fitzsimons C, McClure MC, McKenna C, Conroy S, Kenny DA, McGee M, Waters SM, Morris DW. GWAS and eQTL analysis identifies a SNP associated with both residual feed intake and GFRA2 expression in beef cattle. Sci Rep 2018; 8:14301. [PMID: 30250203 PMCID: PMC6155370 DOI: 10.1038/s41598-018-32374-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 09/03/2018] [Indexed: 11/09/2022] Open
Abstract
Residual feed intake (RFI), a measure of feed efficiency, is an important economic and environmental trait in beef production. Selection of low RFI (feed efficient) cattle could maintain levels of production, while decreasing feed costs and methane emissions. However, RFI is a difficult and expensive trait to measure. Identification of single nucleotide polymorphisms (SNPs) associated with RFI may enable rapid, cost effective genomic selection of feed efficient cattle. Genome-wide association studies (GWAS) were conducted in multiple breeds followed by meta-analysis to identify genetic variants associated with RFI and component traits (average daily gain (ADG) and feed intake (FI)) in Irish beef cattle (n = 1492). Expression quantitative trait loci (eQTL) analysis was conducted to identify functional effects of GWAS-identified variants. Twenty-four SNPs were associated (P < 5 × 10-5) with RFI, ADG or FI. The variant rs43555985 exhibited strongest association for RFI (P = 8.28E-06). An eQTL was identified between this variant and GFRA2 (P = 0.0038) where the allele negatively correlated with RFI was associated with increased GFRA2 expression in liver. GFRA2 influences basal metabolic rates, suggesting a mechanism by which genetic variation may contribute to RFI. This study identified SNPs that may be useful both for genomic selection of RFI and for understanding the biology of feed efficiency.
Collapse
Affiliation(s)
- Marc G Higgins
- Discipline of Biochemistry, National University of Ireland, Galway, Ireland.,Animal and Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, Co. Meath, Ireland
| | - Claire Fitzsimons
- Livestock Systems Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, Co. Meath, Ireland.,Department of Agriculture, Fisheries and the Marine, Celbridge, Co. Kildare, Ireland
| | - Matthew C McClure
- Irish Cattle Breeding Federation, Highfield House, Bandon, Co. Cork, Ireland.,ABS-Global, DeForest, WI, USA
| | - Clare McKenna
- Animal and Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, Co. Meath, Ireland
| | - Stephen Conroy
- Irish Cattle Breeding Federation, Highfield House, Bandon, Co. Cork, Ireland
| | - David A Kenny
- Animal and Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, Co. Meath, Ireland
| | - Mark McGee
- Livestock Systems Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, Co. Meath, Ireland
| | - Sinéad M Waters
- Animal and Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Grange, Dunsany, Co. Meath, Ireland.
| | - Derek W Morris
- Discipline of Biochemistry, National University of Ireland, Galway, Ireland
| |
Collapse
|
24
|
Zhang Y, Yap KN, Williams TD, Swanson DL. Experimental Increases in Foraging Costs Affect Pectoralis Muscle Mass and Myostatin Expression in Female, but Not Male, Zebra Finches (Taeniopygia guttata). Physiol Biochem Zool 2018; 91:849-858. [DOI: 10.1086/697153] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
25
|
Endoplasmic Reticulum Stress Induces Myostatin High Molecular Weight Aggregates and Impairs Mature Myostatin Secretion. Mol Neurobiol 2018; 55:8355-8373. [PMID: 29546591 PMCID: PMC6153721 DOI: 10.1007/s12035-018-0997-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 03/07/2018] [Indexed: 01/08/2023]
Abstract
Sporadic inclusion body myositis (sIBM) is the most prevalent acquired muscle disorder in the elderly with no defined etiology or effective therapy. Endoplasmic reticulum stress and deposition of myostatin, a secreted negative regulator of muscle growth, have been implicated in disease pathology. The myostatin signaling pathway has emerged as a major target for symptomatic treatment of muscle atrophy. Here, we systematically analyzed the maturation and secretion of myostatin precursor MstnPP and its metabolites in a human muscle cell line. We find that increased MsntPP protein levels induce ER stress. MstnPP metabolites were predominantly retained within the endoplasmic reticulum (ER), also evident in sIBM histology. MstnPP cleavage products formed insoluble high molecular weight aggregates, a process that was aggravated by experimental ER stress. Importantly, ER stress also impaired secretion of mature myostatin. Reduced secretion and aggregation of MstnPP metabolites were not simply caused by overexpression, as both events were also observed in wildtype cells under ER stress. It is tempting to speculate that reduced circulating myostatin growth factor could be one explanation for the poor clinical efficacy of drugs targeting the myostatin pathway in sIBM.
Collapse
|
26
|
Molecular characterization of latent GDF8 reveals mechanisms of activation. Proc Natl Acad Sci U S A 2018; 115:E866-E875. [PMID: 29348202 DOI: 10.1073/pnas.1714622115] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Growth/differentiation factor 8 (GDF8), or myostatin, negatively regulates muscle mass. GDF8 is held in a latent state through interactions with its N-terminal prodomain, much like TGF-β. Using a combination of small-angle X-ray scattering and mutagenesis, we characterized the interactions of GDF8 with its prodomain. Our results show that the prodomain:GDF8 complex can exist in a fully latent state and an activated or "triggered" state where the prodomain remains in complex with the mature domain. However, these states are not reversible, indicating the latent GDF8 is "spring-loaded." Structural analysis shows that the prodomain:GDF8 complex adopts an "open" configuration, distinct from the latency state of TGF-β and more similar to the open state of Activin A and BMP9 (nonlatent complexes). We determined that GDF8 maintains similar features for latency, including the alpha-1 helix and fastener elements, and identified a series of mutations in the prodomain of GDF8 that alleviate latency, including I56E, which does not require activation by the protease Tolloid. In vivo, active GDF8 variants were potent negative regulators of muscle mass, compared with WT GDF8. Collectively, these results help characterize the latency and activation mechanisms of GDF8.
Collapse
|
27
|
Past, Present, and Future Perspective of Targeting Myostatin and Related Signaling Pathways to Counteract Muscle Atrophy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1088:153-206. [DOI: 10.1007/978-981-13-1435-3_8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
28
|
Lee SB, Park SK, Kim YS. Maltose binding protein-fusion enhances the bioactivity of truncated forms of pig myostatin propeptide produced in E. coli. PLoS One 2017; 12:e0174956. [PMID: 28369115 PMCID: PMC5378391 DOI: 10.1371/journal.pone.0174956] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 03/18/2017] [Indexed: 11/18/2022] Open
Abstract
Myostatin (MSTN) is a potent negative regulator of skeletal muscle growth. MSTN propeptide (MSTNpro) inhibits MSTN binding to its receptor through complex formation with MSTN, implying that MSTNpro can be a useful agent to improve skeletal muscle growth in meat-producing animals. Four different truncated forms of pig MSTNpro containing N-terminal maltose binding protein (MBP) as a fusion partner were expressed in E. coli, and purified by the combination of affinity chromatography and gel filtration. The MSTN-inhibitory capacities of these proteins were examined in an in vitro gene reporter assay. A MBP-fused, truncated MSTNpro containing residues 42-175 (MBP-Pro42-175) exhibited the same MSTN-inhibitory potency as the full sequence MSTNpro. Truncated MSTNpro proteins containing either residues 42-115 (MBP-Pro42-115) or 42-98 (MBP-Pro42-98) also exhibited MSTN-inhibitory capacity even though the potencies were significantly lower than that of full sequence MSTNpro. In pull-down assays, MBP-Pro42-175, MBP-Pro42-115, and MBP-Pro42-98 demonstrated their binding to MSTN. MBP was removed from the truncated MSTNpro proteins by incubation with factor Xa to examine the potential role of MBP on MSTN-inhibitory capacity of those proteins. Removal of MBP from MBP-Pro42-175 and MBP-Pro42-98 resulted in 20-fold decrease in MSTN-inhibitory capacity of Pro42-175 and abolition of MSTN-inhibitory capacity of Pro42-98, indicating that MBP as fusion partner enhanced the MSTN-inhibitory capacity of those truncated MSTNpro proteins. In summary, this study shows that MBP is a very useful fusion partner in enhancing MSTN-inhibitory potency of truncated forms of MSTNpro proteins, and MBP-fused pig MSTNpro consisting of amino acid residues 42-175 is sufficient to maintain the full MSTN-inhibitory capacity.
Collapse
Affiliation(s)
- Sang Beum Lee
- Wide River Institute of Immunology, Seoul National University College of Medicine, Hongcheon, Gangwon-do, South Korea
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, United States of America
| | - Sung Kwon Park
- National Institute of Animal Science, RDA, Suwon, South Korea
| | - Yong Soo Kim
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, United States of America
- * E-mail:
| |
Collapse
|
29
|
Zhang Y, Eyster K, Swanson DL. Context-dependent regulation of pectoralis myostatin and lipid transporters by temperature and photoperiod in dark-eyed juncos. Curr Zool 2017; 64:23-31. [PMID: 29492035 PMCID: PMC5809029 DOI: 10.1093/cz/zox020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 02/17/2017] [Indexed: 11/14/2022] Open
Abstract
A prominent example of seasonal phenotypic flexibility is the winter increase in thermogenic capacity (=summit metabolism, [Formula: see text]) in small birds, which is often accompanied by increases in pectoralis muscle mass and lipid catabolic capacity. Temperature or photoperiod may be drivers of the winter phenotype, but their relative impacts on muscle remodeling or lipid transport pathways are little known. We examined photoperiod and temperature effects on pectoralis muscle expression of myostatin, a muscle growth inhibitor, and its tolloid-like protein activators (TLL-1 and TLL-2), and sarcolemmal and intracellular lipid transporters in dark-eyed juncos Junco hyemalis. We acclimated winter juncos to four temperature (3 °C or 24 °C) and photoperiod [short-day (SD) = 8L:16D; long-day (LD) = 16L:8D] treatments. We found that myostatin, TLL-1, TLL-2, and lipid transporter mRNA expression and myostatin protein expression did not differ among treatments, but treatments interacted to influence lipid transporter protein expression. Fatty acid translocase (FAT/CD36) levels were higher for cold SD than for other treatments. Membrane-bound fatty acid binding protein (FABPpm) levels, however, were higher for the cold LD treatment than for cold SD and warm LD treatments. Cytosolic fatty acid binding protein (FABPc) levels were higher on LD than on SD at 3 °C, but higher on SD than on LD at 24 °C. Cold temperature groups showed upregulation of these lipid transporters, which could contribute to elevated Msum compared to warm groups on the same photoperiod. However, interactions of temperature or photoperiod effects on muscle remodeling and lipid transport pathways suggest that these effects are context-dependent.
Collapse
Affiliation(s)
- Yufeng Zhang
- Department of Biology, University of South Dakota, 414 East Clark Street, Vermillion, SD 57069, USA and
- Address correspondence to Yufeng Zhang. E-mail: , who is now at Department of Biological Science, Auburn University, Auburn, AL 36849, USA
| | - Kathleen Eyster
- Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57105, USA
| | - David L Swanson
- Department of Biology, University of South Dakota, 414 East Clark Street, Vermillion, SD 57069, USA and
| |
Collapse
|
30
|
Inactivation of bone morphogenetic protein 1 (Bmp1) and tolloid-like 1 (Tll1) in cells expressing type I collagen leads to dental and periodontal defects in mice. J Mol Histol 2016; 48:83-98. [PMID: 28000152 DOI: 10.1007/s10735-016-9708-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 12/08/2016] [Indexed: 12/17/2022]
Abstract
Bone morphogenetic protein 1 (BMP1) and tolloid-like 1 (TLL1) belong to the BMP1/tolloid-like proteinase family, which cleaves secretory proteins. The constitutive deletion of the Bmp1 or Tll1 genes causes perinatal or embryonic lethality in mice. In this study, we first studied the β-galactosidase activity in mice in which an IRES-lacZ-Neo cassette was inserted in the intron of either the Bmp1 or the Tll1 gene; the β-galactosidase activities were used to reflect the expression of endogenous Bmp1 and Tll1, respectively. Our X-gal staining results showed that the odontoblasts in the tooth and cells in the periodontal ligament express both Bmp1 and Tll1. We then created Bmp1 flox/flox and Tll1 flox/flox mice by removing the IRES-lacZ-Neo cassette. By breeding 2.3 kb Col1a1-Cre mice with the Bmp1 flox/flox and Tll1 flox/flox mice, we further generated Col1a1-Cre;Bmp1 flox/flox ;Tll1 flox/flox mice in which both Bmp1 and Tll1 were inactivated in the Type I collagen-expressing cells. We employed X-ray radiography, histology and immunohistochemistry approaches to characterize the Col1a1-Cre;Bmp1 flox/flox ;Tll1 flox/flox mice. Our results showed that the molars of the Col1a1-Cre;Bmp1 flox/flox ;Tll1 flox/flox mice had wider predentin, thinner dentin and larger pulp chambers than those of the normal controls. The dentinal tubules of the molars in the Col1a1-Cre;Bmp1 flox/flox ;Tll1 flox/flox mice appeared disorganized. The level of dentin sialophosphoprotein in the molars of the 6-week-old Col1a1-Cre;Bmp1 flox/flox ;Tll1 flox/flox mice was lower than in the normal controls. The periodontal ligaments of the Col1a1-Cre;Bmp1 flox/flox ;Tll1 flox/flox mice were disorganized and had less fibrillin-1. Our findings indicate that the proteinases encoded by Bmp1 and Tll1 genes play essential roles in the development and maintenance of mouse dentin and periodontal ligaments.
Collapse
|
31
|
Szláma G, Vásárhelyi V, Trexler M, Patthy L. Influence of WFIKKN1 on BMP1-mediated activation of latent myostatin. FEBS J 2016; 283:4515-4527. [PMID: 27782377 DOI: 10.1111/febs.13938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 09/19/2016] [Accepted: 10/24/2016] [Indexed: 12/01/2022]
Abstract
The NTR domain of WFIKKN1 protein has been shown to have significant affinity for the prodomain regions of promyostatin and latent myostatin but the biological significance of these interactions remained unclear. In view of its role as a myostatin antagonist, we tested the assumption that WFIKKN1 inhibits the release of myostatin from promyostatin and/or latent myostatin. WFIKKN1 was found to have no effect on processing of promyostatin by furin, the rate of cleavage of latent myostatin by BMP1, however, was significantly enhanced in the presence of WFIKKN1 and this enhancer activity was superstimulated by heparin. Unexpectedly, WFIKKN1 was also cleaved by BMP1 and our studies have shown that the KKN1 fragment generated by BMP1-cleavage of WFIKKN1 contributes most significantly to the observed enhancer activity. Analysis of a pro-TGF-β -based homology model of homodimeric latent myostatin revealed that the BMP1-cleavage sites are buried and not readily accessible to BMP1. In view of this observation, the most plausible explanation for the BMP1-enhancer activity of the KKN1 fragment is that it shifts a conformational equilibrium of latent myostatin from the closed circular structure of the homodimer to a more open form, making the cleavage sites more accessible to BMP1. On the other hand, the observation that the enhancer activity of KKN1 is superstimulated in the presence of heparin is explained by the fact KKN1, latent myostatin, and BMP1 have affinity for heparin and these interactions with heparin increase the local concentrations of the reactants thereby facilitating the action of BMP1. ENZYMES Furin: EC 3.4.21.75; BMP1, bone morphogentic protein 1 or procollagen C-endopeptidase: EC 3.4.24.19.
Collapse
Affiliation(s)
- György Szláma
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Viktor Vásárhelyi
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Mária Trexler
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - László Patthy
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
32
|
Swanson DL, King MO, Culver W, Zhang Y. Within-Winter Flexibility in Muscle Masses, Myostatin, and Cellular Aerobic Metabolic Intensity in Passerine Birds. Physiol Biochem Zool 2016; 90:210-222. [PMID: 28277951 DOI: 10.1086/688956] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Metabolic rates of passerine birds are flexible traits that vary both seasonally and among and within winters. Seasonal variation in summit metabolic rates (Msum = maximum thermoregulatory metabolism) in birds is consistently correlated with changes in pectoralis muscle and heart masses and sometimes with variation in cellular aerobic metabolic intensity, so these traits might also be associated with shorter-term, within-winter variation in metabolic rates. To determine whether these mechanisms are associated with within-winter variation in Msum, we examined the effects of short-term (ST; 0-7 d), medium-term (MT; 14-30 d), and long-term (LT; 30-yr means) temperature variables on pectoralis muscle and heart masses, pectoralis expression of the muscle-growth inhibitor myostatin and its metalloproteinase activators TLL-1 and TLL-2, and pectoralis and heart citrate synthase (CS; an indicator of cellular aerobic metabolic intensity) activities for two temperate-zone resident passerines, house sparrows (Passer domesticus) and dark-eyed juncos (Junco hyemalis). For both species, pectoralis mass residuals were positively correlated with ST temperature variables, suggesting that cold temperatures resulted in increased turnover of pectoralis muscle, but heart mass showed little within-winter variation for either species. Pectoralis mRNA and protein expression of myostatin and the TLLs were only weakly correlated with ST and MT temperature variables, which is largely consistent with trends in muscle masses for both species. Pectoralis and heart CS activities showed weak and variable trends with ST temperature variables in both species, suggesting only minor effects of temperature variation on cellular aerobic metabolic intensity. Thus, neither muscle or heart masses, regulation by the myostatin system, nor cellular aerobic metabolic intensity varied consistently with winter temperature, suggesting that other factors regulate within-winter metabolic variation in these birds.
Collapse
|
33
|
Chen JL, Colgan TD, Walton KL, Gregorevic P, Harrison CA. The TGF-β Signalling Network in Muscle Development, Adaptation and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 900:97-131. [PMID: 27003398 DOI: 10.1007/978-3-319-27511-6_5] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Skeletal muscle possesses remarkable ability to change its size and force-producing capacity in response to physiological stimuli. Impairment of the cellular processes that govern these attributes also affects muscle mass and function in pathological conditions. Myostatin, a member of the TGF-β family, has been identified as a key regulator of muscle development, and adaptation in adulthood. In muscle, myostatin binds to its type I (ALK4/5) and type II (ActRIIA/B) receptors to initiate Smad2/3 signalling and the regulation of target genes that co-ordinate the balance between protein synthesis and degradation. Interestingly, evidence is emerging that other TGF-β proteins act in concert with myostatin to regulate the growth and remodelling of skeletal muscle. Consequently, dysregulation of TGF-β proteins and their associated signalling components is increasingly being implicated in muscle wasting associated with chronic illness, ageing, and inactivity. The growing understanding of TGF-β biology in muscle, and its potential to advance the development of therapeutics for muscle-related conditions is reviewed here.
Collapse
Affiliation(s)
- Justin L Chen
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, VIC, 3168, Australia.,Department of Molecular and Translational Sciences, Monash University, Melbourne, VIC, Australia.,Muscle Research and Therapeutics Development, Baker IDI Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia.,Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - Timothy D Colgan
- Muscle Research and Therapeutics Development, Baker IDI Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia.,Department of Physiology, The University of Melbourne, Melbourne, VIC, Australia
| | - Kelly L Walton
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, VIC, 3168, Australia.,Department of Molecular and Translational Sciences, Monash University, Melbourne, VIC, Australia
| | - Paul Gregorevic
- Muscle Research and Therapeutics Development, Baker IDI Heart and Diabetes Institute, Melbourne, VIC, 3004, Australia. .,Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia. .,Department of Physiology, The University of Melbourne, Melbourne, VIC, Australia. .,Department of Neurology, School of Medicine, The University of Washington, Seattle, WA, USA.
| | - Craig A Harrison
- Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, VIC, 3168, Australia. .,Department of Molecular and Translational Sciences, Monash University, Melbourne, VIC, Australia. .,Department of Physiology, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
34
|
Muir AM, Massoudi D, Nguyen N, Keene DR, Lee SJ, Birk DE, Davidson JM, Marinkovich MP, Greenspan DS. BMP1-like proteinases are essential to the structure and wound healing of skin. Matrix Biol 2016; 56:114-131. [PMID: 27363389 DOI: 10.1016/j.matbio.2016.06.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/12/2016] [Accepted: 06/21/2016] [Indexed: 01/10/2023]
Abstract
Closely related extracellular metalloproteinases bone morphogenetic protein 1 (BMP1) and mammalian Tolloid-like 1 (mTLL1) are co-expressed in various tissues and have been suggested to have overlapping roles in the biosynthetic processing of extracellular matrix components. Early lethality of mice null for the BMP1 gene Bmp1 or the mTLL1 gene Tll1 has impaired in vivo studies of these proteinases. To overcome issues of early lethality and functional redundancy we developed the novel BTKO mouse strain, with floxed Bmp1 and Tll1 alleles, for induction of postnatal, simultaneous ablation of the two genes. We previously showed these mice to have a skeletal phenotype that includes elements of osteogenesis imperfecta (OI), osteomalacia, and deficient osteocyte maturation, observations validated by the finding of BMP1 mutations in a subset of human patients with OI-like phenotypes. However, the roles of BMP1-like proteinase in non-skeletal tissues have yet to be explored, despite the supposed importance of putative substrates of these proteinases in such tissues. Here, we employ BTKO mice to investigate potential roles for these proteinases in skin. Loss of BMP1-like proteinase activity is shown to result in markedly thinned and fragile skin with unusually densely packed collagen fibrils and delayed wound healing. We demonstrate deficits in the processing of collagens I and III, decorin, biglycan, and laminin 332 in skin, which indicate mechanisms whereby BMP1-like proteinases affect the biology of this tissue. In contrast, lack of effects on collagen VII processing or deposition indicates this putative substrate to be biosynthetically processed by non-BMP1-like proteinases.
Collapse
Affiliation(s)
- Alison M Muir
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Dawiyat Massoudi
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA
| | - Ngon Nguyen
- Program in Epithelial Biology and Department of Dermatology, Stanford University School of Medicine, Stanford, CA, 94305, USA; Dermatology, VA Medical Center, Palo Alto, CA 94304, USA
| | - Douglas R Keene
- Microimaging Center, Shriners Hospitals for Children, Portland, OR 97239, USA
| | - Se-Jin Lee
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - David E Birk
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Jeffrey M Davidson
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN 37232, USA; Research Service, Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN 37212, USA
| | - M Peter Marinkovich
- Program in Epithelial Biology and Department of Dermatology, Stanford University School of Medicine, Stanford, CA, 94305, USA; Dermatology, VA Medical Center, Palo Alto, CA 94304, USA
| | - Daniel S Greenspan
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA.
| |
Collapse
|
35
|
Identification of Deleterious Mutations in Myostatin Gene of Rohu Carp (Labeo rohita) Using Modeling and Molecular Dynamic Simulation Approaches. BIOMED RESEARCH INTERNATIONAL 2016; 2016:7562368. [PMID: 27019850 PMCID: PMC4785247 DOI: 10.1155/2016/7562368] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 01/13/2016] [Accepted: 01/27/2016] [Indexed: 11/18/2022]
Abstract
The myostatin (MSTN) is a known negative growth regulator of skeletal muscle. The mutated myostatin showed a double-muscular phenotype having a positive significance for the farmed animals. Consequently, adequate information is not available in the teleosts, including farmed rohu carp, Labeo rohita. In the absence of experimental evidence, computational algorithms were utilized in predicting the impact of point mutation of rohu myostatin, especially its structural and functional relationships. The four mutations were generated at different positions (p.D76A, p.Q204P, p.C312Y, and p.D313A) of MSTN protein of rohu. The impacts of each mutant were analyzed using SIFT, I-Mutant 2.0, PANTHER, and PROVEAN, wherein two substitutions (p.D76A and p.Q204P) were predicted as deleterious. The comparative structural analysis of each mutant protein with the native was explored using 3D modeling as well as molecular-dynamic simulation techniques. The simulation showed altered dynamic behaviors concerning RMSD and RMSF, for either p.D76A or p.Q204P substitution, when compared with the native counterpart. Interestingly, incorporated two mutations imposed a significant negative impact on protein structure and stability. The present study provided the first-hand information in identifying possible amino acids, where mutations could be incorporated into MSTN gene of rohu carp including other carps for undertaking further in vivo studies.
Collapse
|
36
|
Kanjanaworakul P, Sawatdichaikul O, Poompuang S. cDNA sequence and protein bioinformatics analyses of MSTN in African catfish (Clarias gariepinus). Mol Biol Rep 2016; 43:283-93. [PMID: 26912268 DOI: 10.1007/s11033-016-3961-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 02/18/2016] [Indexed: 11/28/2022]
Abstract
Myostatin, also known as growth differentiation factor 8, has been identified as a potent negative regulator of skeletal muscle growth. The purpose of this study was to characterize and predict function of the myostatin gene of the African catfish (Cg-MSTN). Expression of Cg-MSTN was determined at three growth stages to establish the relationship between the levels of MSTN transcript and skeletal muscle growth. The partial cDNA sequence of Cg-MSTN was cloned by using published information from its congener walking catfish (Cm-MSTN). The Cg-MSTN was 1194 bp in length encoding a protein of 397 amino acids. The deduced MSTN sequence exhibited key functional sites similar to those of other members of the TGF-β superfamily, especially, the proteolytic processing site (RXXR motif) and nine conserved cysteines at the C-terminal. Expression of MSTN appeared to be correlated with muscle development and growth of African catfish. Protein bioinformatics revealed that the primary sequence of Cg-MSTN shared 98 % sequence identity with that of walking catfish Cm-MSTN with only two different residues, [Formula: see text]. and [Formula: see text]. The proposed model of Cg-MSTN revealed the key point mutation [Formula: see text] causing a 7.35 Å shorter distance between the N- and C-lobes and an approximately 11° narrow angle than those of Cm-MSTN. The substitution of a proline residue near the proteolytic processing site which altered the structure of myostatin may play a critical role in reducing proteolytic activity of this protein in African catfish.
Collapse
Affiliation(s)
- Poonmanee Kanjanaworakul
- Center for Agricultural Biotechnology, Kasetsart University, Nakorn Pathom, 73140, Thailand
- Center of Excellence on Agricultural Biotechnology (AG-BIO/PERDO-CHE), Bangkok, 10900, Thailand
| | - Orathai Sawatdichaikul
- Department of Nutrition and Health, Institute of Food Research and Product Development, Kasetsart University, Bangkok, 10900, Thailand.
| | - Supawadee Poompuang
- Department of Aquaculture, Faculty of Fisheries, Kasetsart University, Bangkok, 10900, Thailand.
| |
Collapse
|
37
|
Bayley CP, Ruiz Nivia HD, Dajani R, Jowitt TA, Collins RF, Rada H, Bird LE, Baldock C. Diversity between mammalian tolloid proteinases: Oligomerisation and non-catalytic domains influence activity and specificity. Sci Rep 2016; 6:21456. [PMID: 26902455 PMCID: PMC4763255 DOI: 10.1038/srep21456] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 01/25/2016] [Indexed: 11/17/2022] Open
Abstract
The mammalian tolloid family of metalloproteinases is essential for tissue patterning and extracellular matrix assembly. The four members of the family: bone morphogenetic protein-1 (BMP-1), mammalian tolloid (mTLD), tolloid-like (TLL)-1 and TLL-2 differ in their substrate specificity and activity levels, despite sharing similar domain organization. We have previously described a model of substrate exclusion by dimerisation to explain differences in the activities of monomeric BMP-1 and dimers of mTLD and TLL-1. Here we show that TLL-2, the least active member of the tolloid family, is predominantly monomeric in solution, therefore it appears unlikely that substrate exclusion via dimerisation is a mechanism for regulating TLL-2 activity. X-ray scattering and electron microscopy structural and biophysical analyses reveal an elongated shape for the monomer and flexibility in the absence of calcium. Furthermore, we show that TLL-2 can cleave chordin in vitro, similar to other mammalian tolloids, but truncated forms of TLL-2 mimicking BMP-1 are unable to cleave chordin. However, both the N- and C-terminal non-catalytic domains from all mammalian tolloids bind chordin with high affinity. The mechanisms underlying substrate specificity and activity in the tolloid family are complex with variation between family members and depend on both multimerisation and substrate interaction.
Collapse
Affiliation(s)
- Christopher P. Bayley
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, M13 9PT, UK
| | - Hilda D. Ruiz Nivia
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, M13 9PT, UK
| | - Rana Dajani
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, M13 9PT, UK
| | - Thomas A. Jowitt
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, M13 9PT, UK
| | - Richard F. Collins
- Faculty of Life Sciences, University of Manchester, Manchester, M13 9PT, UK
| | - Heather Rada
- OPPF-UK, Research Complex at Harwell, Rutherford Appleton Laboratory, Oxford, OX11 0FA, UK
| | - Louise E. Bird
- OPPF-UK, Research Complex at Harwell, Rutherford Appleton Laboratory, Oxford, OX11 0FA, UK
| | - Clair Baldock
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, M13 9PT, UK
| |
Collapse
|
38
|
Bongiorni S, Valentini A, Chillemi G. Structural and Dynamic Characterization of the C313Y Mutation in Myostatin Dimeric Protein, Responsible for the "Double Muscle" Phenotype in Piedmontese Cattle. Front Genet 2016; 7:14. [PMID: 26904102 PMCID: PMC4749705 DOI: 10.3389/fgene.2016.00014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 01/26/2016] [Indexed: 11/25/2022] Open
Abstract
The knowledge of the molecular effects of the C313Y mutation, responsible for the “double muscle” phenotype in Piedmontese cattle, can help understanding the actual mechanism of phenotype determination and paves the route for a better modulation of the positive effects of this economic important phenotype in the beef industry, while minimizing the negative side effects, now inevitably intersected. The structure and dynamic behavior of the active dimeric form of Myostatin in cattle was analyzed by means of three state-of-the-art Molecular Dynamics simulations, 200-ns long, of wild-type and C313Y mutants. Our results highlight a role for the conserved Arg333 in establishing a network of short and long range interactions between the two monomers in the wild-type protein that is destroyed upon the C313Y mutation even in a single monomer. Furthermore, the native protein shows an asymmetry in residue fluctuation that is absent in the double monomer mutant. Time window analysis on further 200-ns of simulation demonstrates that this is a characteristic behavior of the protein, likely dependent on long range communications between monomers. The same behavior, in fact, has already been observed in other mutated dimers. Finally, the mutation does not produce alterations in the secondary structure elements that compose the characteristic TGF-β cystine-knot motif.
Collapse
Affiliation(s)
- Silvia Bongiorni
- Department for Innovation in Biological, Agro-food and Forest systems, University of Tuscia Viterbo, Italy
| | - Alessio Valentini
- Department for Innovation in Biological, Agro-food and Forest systems, University of Tuscia Viterbo, Italy
| | - Giovanni Chillemi
- Department of SuperComputing Applications and Innovation, Cineca Rome, Italy
| |
Collapse
|
39
|
Lee SB, Kim JH, Jin DH, Jin HJ, Kim YS. Myostatin inhibitory region of fish (Paralichthys olivaceus) myostatin-1 propeptide. Comp Biochem Physiol B Biochem Mol Biol 2016; 194-195:65-70. [PMID: 26827850 DOI: 10.1016/j.cbpb.2016.01.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 01/26/2016] [Accepted: 01/26/2016] [Indexed: 11/26/2022]
Abstract
Myostatin (MSTN) is a potent negative regulator of skeletal muscle growth, and its activity is suppressed by MSTN propeptide (MSTNpro), the N-terminal part of MSTN precursor cleaved during post-translational MSTN processing. The current study examined which region of flatfish (Paralichthys olivaceus) MSTN-1 propeptide (MSTN1pro) is critical for MSTN inhibition. Six different truncated forms of MSTN1pro containing N-terminal maltose binding protein (MBP) as a fusion partner were expressed in Escherichia coli, and partially purified by an affinity chromatography for MSTN-inhibitory activity examination. Peptides covering different regions of flatfish MSTN1pro were also synthesized for MSTN-inhibitory activity examination. A MBP-fused MSTN1pro region consisting of residues 45-100 had the same MSTN-inhibitory potency as the full sequence flatfish MSTN1pro (residues 23-265), indicating that the region of flatfish MSTN1pro consisting of residues 45-100 is sufficient to maintain the full MSTN-inhibitory capacity. A MBP-fused MSTN1pro region consisting of residues 45-80 (Pro45-80) also showed MSTN-inhibitory activity with a lower potency, and the Pro45-80 demonstrated its MSTN binding capacity in a pull-down assay, indicating that the MSTN-inhibitory capacity of Pro45-80 is due to its binding to MSTN. Flatfish MSTN1pro synthetic peptides covering residues 45-65, 45-70, and 45-80 demonstrated MSTN-inhibitory activities, but not the synthetic peptide covering residues 45-54, indicating that residues 45-65 of flatfish MSTN1pro are essential for MSTN inhibition. In conclusion, current study show that like the mammalian MSTNpro, the MSTN-inhibitory region of flatfish MSTN1pro resides near its N-terminus, and imply that smaller sizes of MSTNpro can be effectively used in various applications designed for MSTN inhibition.
Collapse
Affiliation(s)
- Sang Beum Lee
- Department of Marine Molecular Biotechnology, Gangneung-Wonju National University, Gangneung-si, Ganwon-do, 210-702, South Korea; Department of Human Nutrition, Food and Animal Sciences, University of Hawaii, 1955 East-West Rd., Honolulu, HI 96822, USA
| | - Jeong Hwan Kim
- Department of Marine Molecular Biotechnology, Gangneung-Wonju National University, Gangneung-si, Ganwon-do, 210-702, South Korea
| | - Deuk-Hee Jin
- Department of Marine Molecular Biotechnology, Gangneung-Wonju National University, Gangneung-si, Ganwon-do, 210-702, South Korea
| | - Hyung-Joo Jin
- Department of Marine Molecular Biotechnology, Gangneung-Wonju National University, Gangneung-si, Ganwon-do, 210-702, South Korea.
| | - Yong Soo Kim
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii, 1955 East-West Rd., Honolulu, HI 96822, USA.
| |
Collapse
|
40
|
Peiris HN, Georgiou H, Lappas M, Kaitu'u-Lino T, Salomón C, Vaswani K, Rice GE, Mitchell MD. Expression of Myostatin in Intrauterine Growth Restriction and Preeclampsia Complicated Pregnancies and Alterations to Cytokine Production by First-Trimester Placental Explants Following Myostatin Treatment. Reprod Sci 2015; 22:1202-11. [PMID: 25736326 DOI: 10.1177/1933719115572482] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Preeclampsia (PE) and intrauterine growth restriction (IUGR) are major obstetric health problems. Higher levels of T-helper (Th) 1 (proinflammatory) cytokines have been observed in pregnancies complicated with PE and IUGR; this is in contrast to the predominant Th2 (anti-inflammatory) cytokine environment found in uncomplicated pregnancies. Myostatin is best known as a negative regulator of muscle development and reportedly has a role in fat deposition, glucose metabolism, and cytokine modulation (outside the placenta). Myostatin concentrations in plasma and protein expression in placental tissue are significantly higher in women with PE. Expression of myostatin in IUGR and PE-IUGR and the effect of this protein on the cytokine production from the placenta is unknown. In the current study, significant differences were identified in the expression of myostatin in pregnancies complicated with IUGR, PE, and PE with IUGR. Furthermore, cytokine production by first-trimester placental tissues was altered following myostatin treatment.
Collapse
Affiliation(s)
| | - Harry Georgiou
- Department of Obstetrics & Gynaecology, The University of Melbourne, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Martha Lappas
- Department of Obstetrics & Gynaecology, The University of Melbourne, Mercy Hospital for Women, Heidelberg, Victoria, Australia Department of Obstetrics and Gynaecology, Obstetrics, Nutrition and Endocrinology Group, University of Melbourne, Melbourne, Victoria, Australia
| | - Tu'uhevaha Kaitu'u-Lino
- Department of Obstetrics & Gynaecology, The University of Melbourne, Mercy Hospital for Women, Heidelberg, Victoria, Australia
| | - Carlos Salomón
- The University of Queensland Centre for Clinical Research, Brisbane, Australia
| | - Kanchan Vaswani
- The University of Queensland Centre for Clinical Research, Brisbane, Australia
| | - Gregory E Rice
- The University of Queensland Centre for Clinical Research, Brisbane, Australia
| | - Murray D Mitchell
- The University of Queensland Centre for Clinical Research, Brisbane, Australia
| |
Collapse
|
41
|
Wang Q, Guo T, Portas J, McPherron AC. A soluble activin receptor type IIB does not improve blood glucose in streptozotocin-treated mice. Int J Biol Sci 2015; 11:199-208. [PMID: 25561902 PMCID: PMC4279095 DOI: 10.7150/ijbs.10430] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 11/05/2014] [Indexed: 12/18/2022] Open
Abstract
Type 1 diabetes mellitus (T1DM), or insulin dependent DM, is accompanied by decreased muscle mass. The growth factor myostatin (MSTN) is a negative regulator of muscle growth, and a loss of MSTN signaling has been shown to increase muscle mass and prevent the development of obesity, insulin resistance and lipodystrophic diabetes in mice. The effects of MSTN inhibition in a T1DM model on muscle mass and blood glucose are unknown. We asked whether MSTN inhibition would increase muscle mass and decrease hyperglycemia in mice treated with streptozotocin (STZ) to destroy pancreatic beta cells. After diabetes developed, mice were treated with a soluble MSTN/activin receptor fused to Fc (ACVR2B:Fc). ACVR2B:Fc increased body weight and muscle mass compared to vehicle treated mice. Unexpectedly, ACVR2B:Fc reproducibly exacerbated hyperglycemia within approximately one week of administration. ACVR2B:Fc treatment also elevated serum levels of the glucocorticoid corticosterone. These results suggest that although MSTN/activin inhibitors increased muscle mass, they may be counterproductive in improving health in patients with T1DM.
Collapse
Affiliation(s)
- Qian Wang
- 1. Current Addresses: Pathology Department, Stony Brook University Medical Center, Stony Brook, New York, USA
| | - Tingqing Guo
- 2. Novo Nordisk Research Centre China, Changping District, Beijing, China
| | - Jennifer Portas
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | | |
Collapse
|
42
|
Peiris HN, Lappas M, Georgiou HM, Vaswani K, Salomon C, Rice GE, Mitchell MD. Myostatin in the placentae of pregnancies complicated with gestational diabetes mellitus. Placenta 2014; 36:1-6. [PMID: 25443639 DOI: 10.1016/j.placenta.2014.11.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 11/05/2014] [Accepted: 11/12/2014] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Gestational diabetes mellitus (GDM) is characterised by maternal glucose intolerance and insulin resistance during pregnancy. Myostatin, initially identified as a negative regulator of muscle development may also function in the regulation of placental development and glucose uptake. Myostatin expression in placentae of GDM complicated pregnancies is unknown. However, higher myostatin levels occur in placentae of pregnancies complicated with preeclampsia. We hypothesise that myostatin will be differentially expressed in GDM complicated pregnancies. METHODS Myostatin concentrations (ELISA) were evaluated in plasma of presymptomatic women who later developed GDM and compared to plasma of normal glucose tolerant (NGT) women. Furthermore, myostatin protein expression (Western blot) was studied in placentae of pregnant women with GDM (treated with diet or insulin) compared to placentae of NGT women. RESULTS No significant difference in myostatin concentration was seen in plasma of pre-symptomatic GDM women compared to NGT women. In placenta significant differences in myostatin protein expressions (higher precursor; p < 0.05and lower dimer: p < 0.005) were observed in GDM complicated compared to NGT pregnancies. Furthermore, placentae of GDM women treated with insulin compared to diet have higher dimer (p < 0.005) and lower precursor (p < 0.05). Compared to lean women, placentae of obese NGT women were lower in myostatin dimer expression (p < 0.05). DISCUSSION Myostatin expression in placental tissue is altered under stress conditions (e.g. obesity and abnormal glucose metabolism) found in pregnancies complicated with GDM. We hypothesise that myostatin is active in these placentae and could affect glucose homoeostasis and/or cytokine production thereby altering the function of the placenta.
Collapse
Affiliation(s)
- H N Peiris
- The University of Queensland Centre for Clinical Research, Brisbane, Australia
| | - M Lappas
- Department of Obstetrics & Gynaecology, The University of Melbourne, Mercy Hospital, Heidelberg, 3084, Victoria, Australia; Obstetrics, Nutrition and Endocrinology Group, Department of Obstetrics and Gynaecology, University of Melbourne, Victoria, Australia
| | - H M Georgiou
- Department of Obstetrics & Gynaecology, The University of Melbourne, Mercy Hospital, Heidelberg, 3084, Victoria, Australia
| | - K Vaswani
- The University of Queensland Centre for Clinical Research, Brisbane, Australia
| | - C Salomon
- The University of Queensland Centre for Clinical Research, Brisbane, Australia
| | - G E Rice
- The University of Queensland Centre for Clinical Research, Brisbane, Australia
| | - M D Mitchell
- The University of Queensland Centre for Clinical Research, Brisbane, Australia.
| |
Collapse
|
43
|
Sakai H, Sagara A, Arakawa K, Sugiyama R, Hirosaki A, Takase K, Jo A, Sato K, Chiba Y, Yamazaki M, Matoba M, Narita M. Mechanisms of cisplatin-induced muscle atrophy. Toxicol Appl Pharmacol 2014; 278:190-9. [DOI: 10.1016/j.taap.2014.05.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 04/23/2014] [Accepted: 05/01/2014] [Indexed: 12/12/2022]
|
44
|
Peiris HN, Ashman K, Vaswani K, Kvaskoff D, Rice GE, Mitchell MD. Method Development for the Detection of Human Myostatin by High-Resolution and Targeted Mass Spectrometry. J Proteome Res 2014; 13:3802-3809. [PMID: 24949862 DOI: 10.1021/pr5004642] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Myostatin, a highly conserved secretory protein, negatively regulates muscle development, affecting both the proliferation and differentiation of muscle cells. Proteolytic processing of the myostatin precursor protein generates a myostatin pro-peptide and mature protein. Dimerization of the mature myostatin protein creates the active form of myostatin. Myostatin dimer activity can be inhibited by noncovalent binding of two monomeric myostatin pro-peptides. This ability for myostatin to self-regulate as well as the altered expression of myostatin in states of abnormal health (e.g., muscle wasting) support the need for specific detection of myostatin forms. Current protein detection methods (e.g., Western blot) rely greatly on antibodies and are semiquantitative at best. Tandem mass spectometry (as in this study) provides a highly specific method of detection, enabling the characterization of myostatin protein forms through the analysis of discrete peptides fragments. Utilizing the scheduled high-resolution multiple reaction monitoring paradigm (sMRMHR; AB SCIEX 5600 TripleTOF) we identified the lower limit of quantitation (LLOQ) of both mature (DFGLDCDEHSTESR) and pro-peptide regions (ELIDQYDVQR) as 0.19 nmol/L. Furthermore, scheduled multiple reaction monitoring (sMRM; AB SCIEX QTRAP 5500) identified a LLOQ for a peptide of the pro-peptide region (LETAPNISK) as 0.16 nmol/L and a peptide of the mature region (EQIIYGK) as 0.25 nmol/L.
Collapse
Affiliation(s)
- Hassendrini Nileishika Peiris
- The University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital , Herston, Brisbane QLD 4029, Australia
| | - Keith Ashman
- The University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital , Herston, Brisbane QLD 4029, Australia
| | - Kanchan Vaswani
- The University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital , Herston, Brisbane QLD 4029, Australia
| | - David Kvaskoff
- The University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital , Herston, Brisbane QLD 4029, Australia
| | - Gregory Edward Rice
- The University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital , Herston, Brisbane QLD 4029, Australia
| | - Murray David Mitchell
- The University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital , Herston, Brisbane QLD 4029, Australia
| |
Collapse
|
45
|
Dschietzig TB. Myostatin — From the Mighty Mouse to cardiovascular disease and cachexia. Clin Chim Acta 2014; 433:216-24. [DOI: 10.1016/j.cca.2014.03.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 03/19/2014] [Accepted: 03/19/2014] [Indexed: 02/02/2023]
|
46
|
Gao F, Sun B, Xing S, Yu X, Lu C, Li A, Zhao Z, Yang R. The effect of leader peptide mutations on the biological function of bovine myostatin gene. Gene 2014; 540:171-7. [PMID: 24583167 DOI: 10.1016/j.gene.2014.02.052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 02/20/2014] [Accepted: 02/25/2014] [Indexed: 11/25/2022]
Abstract
The growth of muscle fibers can be negatively regulated by bovine myostatin. The first two exons of myostatin gene code for the N-propeptide and its third exon codes for the C-polypeptide. Myostatin is secreted as a latent configuration formed by dimerization of two matured C peptides non-covalently linked with the N terminal pro-peptide. Pro-peptide has two distinct functions in guiding protein folding and regulating biological activity of myostatin. When the structure of the leader peptide is altered via mutations resulting in more tight binding with the mature peptide, myostatin function is inhibited, resulting in the changes of P21 and CDK2 expression levels which are related to the regulation of cell cycle. In the present study, the coding region of bMSTN (bovine myostatin) gene was amplified and mutated (A224C and G938A) through fusion PCR, and the mutated bMSTN gene (bMSTN-mut) was inserted in frame into the pEF1a-IRES-DsRed-Express2 vector and transfected into bovine fibroblast cells. The expression levels of bMSTN-mut, P21 and CDK2 (cyclin dependent kinase 2) were examined with qPCR and Western-blotting. Changes in cell cycle after transfection were also analyzed with flow cytometry. The results indicated that leader peptide mutation resulted in down-regulation of P21 expression levels and up-regulation of CDK2 expression levels. The flow cytometry results showed that the proportion of cells in the G0/G1-phase was lower and that of cells in the S-phase was higher in bMSTN-mut transfected group than that in the control group. The proliferation rate of bMSTN-mut transfected cells was also significantly higher than that of the control cells. In conclusion, the studies have shown that the pEF1a-IRES-DsRed-Express2-bMSTN-mut recombinant plasmid could effectively promote the proliferation of bovine fibroblast cells. The site-directed mutagenesis of bMSTN gene leader peptide and in vitro expression in bovine fibroblast cells could be helpful to further the studies of bMSTN in regulating bovine muscle cell growth and development.
Collapse
Affiliation(s)
- Feng Gao
- College of Animal Science, Jilin University, Xi An Road 5333, Changchun, Jilin 130062, P.R. China
| | - Boxing Sun
- College of Animal Science, Jilin University, Xi An Road 5333, Changchun, Jilin 130062, P.R. China
| | - Shenyang Xing
- College of Animal Science, Jilin University, Xi An Road 5333, Changchun, Jilin 130062, P.R. China
| | - Xianzhong Yu
- College of Animal Science, Jilin University, Xi An Road 5333, Changchun, Jilin 130062, P.R. China; College of Agriculture, Forestry and Life Sciences, Clemson University, Clemson, SC 29634, USA
| | - Chunyan Lu
- College of Animal Science, Jilin University, Xi An Road 5333, Changchun, Jilin 130062, P.R. China
| | - Aonan Li
- College of Animal Science, Jilin University, Xi An Road 5333, Changchun, Jilin 130062, P.R. China
| | - Zhihui Zhao
- College of Animal Science, Jilin University, Xi An Road 5333, Changchun, Jilin 130062, P.R. China
| | - Runjun Yang
- College of Animal Science, Jilin University, Xi An Road 5333, Changchun, Jilin 130062, P.R. China.
| |
Collapse
|
47
|
Muir AM, Ren Y, Butz DH, Davis NA, Blank RD, Birk DE, Lee SJ, Rowe D, Feng JQ, Greenspan DS. Induced ablation of Bmp1 and Tll1 produces osteogenesis imperfecta in mice. Hum Mol Genet 2014; 23:3085-101. [PMID: 24419319 DOI: 10.1093/hmg/ddu013] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Osteogenesis imperfecta (OI), or brittle bone disease, is most often caused by dominant mutations in the collagen I genes COL1A1/COL1A2, whereas rarer recessive OI is often caused by mutations in genes encoding collagen I-interacting proteins. Recently, mutations in the gene for the proteinase bone morphogenetic 1 (BMP1) were reported in two recessive OI families. BMP1 and the closely related proteinase mammalian tolloid-like 1 (mTLL1) are co-expressed in various tissues, including bone, and have overlapping activities that include biosynthetic processing of procollagen precursors into mature collagen monomers. However, early lethality of Bmp1- and Tll1-null mice has precluded use of such models for careful study of in vivo roles of their protein products. Here we employ novel mouse strains with floxed Bmp1 and Tll1 alleles to induce postnatal, simultaneous ablation of the two genes, thus avoiding barriers of Bmp1(-/-) and Tll1(-/-) lethality and issues of functional redundancy. Bones of the conditionally null mice are dramatically weakened and brittle, with spontaneous fractures-defining features of OI. Additional skeletal features include osteomalacia, thinned/porous cortical bone, reduced processing of procollagen and dentin matrix protein 1, remarkably high bone turnover and defective osteocyte maturation that is accompanied by decreased expression of the osteocyte marker and Wnt-signaling inhibitor sclerostin, and by marked induction of canonical Wnt signaling. The novel animal model presented here provides new opportunities for in-depth analyses of in vivo roles of BMP1-like proteinases in bone and other tissues, and for their roles, and for possible therapeutic interventions, in OI.
Collapse
Affiliation(s)
- Alison M Muir
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA, Laboratory of Genetics, University of Wisconsin, Madison, WI, USA
| | - Yinshi Ren
- Department of Biomedical Sciences, Baylor College of Dentistry Texas A&M Health Science Center, Dallas, TX, USA
| | - Delana Hopkins Butz
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Nicholas A Davis
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Robert D Blank
- Geriatrics Research, Education, and Clinical Center, William S. Middleton Veterans Hospital, Madison, WI, USA, Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - David E Birk
- Department of Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Se-Jin Lee
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA and
| | - David Rowe
- Department of Reconstructive Sciences, Biomaterials and Skeletal Development, School of Dental Medicine, University of Connecticut, Farmington, CT, USA
| | - Jian Q Feng
- Department of Biomedical Sciences, Baylor College of Dentistry Texas A&M Health Science Center, Dallas, TX, USA
| | - Daniel S Greenspan
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA,
| |
Collapse
|
48
|
Swanson DL, King MO, Harmon E. Seasonal variation in pectoralis muscle and heart myostatin and tolloid-like proteinases in small birds: a regulatory role for seasonal phenotypic flexibility? J Comp Physiol B 2014; 184:249-58. [PMID: 24395519 DOI: 10.1007/s00360-013-0798-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 12/16/2013] [Accepted: 12/20/2013] [Indexed: 01/08/2023]
Abstract
Seasonally variable environments produce seasonal phenotypes in small birds such that winter birds have higher thermogenic capacities and pectoralis and heart masses. One potential regulator of these seasonal phenotypes is myostatin, a muscle growth inhibitor, which may be downregulated under conditions promoting increased energy demand. We examined summer-to-winter variation in skeletal muscle and heart masses and used qPCR and Western blots to measure levels of myostatin and its metalloproteinase activators TLL-1 and TLL-2 for two small temperate-zone resident birds, American goldfinches (Spinus tristis) and black-capped chickadees (Poecile atricapillus). Winter pectoralis and heart masses were significantly greater than in summer for American goldfinches. Neither myostatin expression nor protein levels differed significantly between seasons for goldfinch pectoralis. However, myostatin levels in goldfinch heart were significantly greater in summer than in winter, although heart myostatin expression was seasonally stable. In addition, expression of both metalloproteinase activators was greater in summer than in winter goldfinches for both pectoralis and heart, significantly so except for heart TLL-2 (P = 0.083). Black-capped chickadees showed no significant seasonal variation in muscle or heart masses. Seasonal patterns of pectoralis and heart expression and/or protein levels for myostatin and its metalloproteinase activators in chickadees showed no consistent seasonal trends, which may help explain the absence of significant seasonal variation in muscle or heart masses for chickadees in this study. These data are partially consistent with a regulatory role for myostatin, and especially myostatin processing capacity, in mediating seasonal metabolic phenotypes of small birds.
Collapse
Affiliation(s)
- David L Swanson
- Department of Biology, University of South Dakota, Vermillion, SD, 57069, USA,
| | | | | |
Collapse
|
49
|
Yang J. Enhanced skeletal muscle for effective glucose homeostasis. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 121:133-63. [PMID: 24373237 DOI: 10.1016/b978-0-12-800101-1.00005-3] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
As the single largest organ in the body, the skeletal muscle is the major site of insulin-stimulated glucose uptake in the postprandial state. Skeletal muscles provide the physiological foundation for physical activities and fitness. Reduced muscle mass and strength is commonly associated with many chronic diseases, including obesity and insulin resistance. The complications of diabetes on skeletal muscle mass and physiology, resulting from either insulin deprivation or insulin resistance, may not be life-threatening, but accelerate the lost physiological functions of glucose homeostasis. The formation of skeletal muscle commences in the embryonic developmental stages at the time of mesoderm generation, where somites are the developmental milestone in musculoskeletal formation. Dramatic skeletal muscle growth occurs during adolescence as a result of muscle fiber hypertrophy since muscle fiber formation is mostly completed before birth. The rate of growth rapidly decelerates in the late stages of adulthood as adipose tissue gradually accumulates more fat when energy intake exceeds expenditure. Physiologically, the key to effective glucose homeostasis is the hormone insulin and insulin sensitivity of target tissues. Enhanced skeletal muscle, by either intrinsic mechanism or physical activity, offers great advantages and benefits in facilitating glucose regulation. One key protein factor named myostatin is a dominant inhibitor of muscle mass. Depression of myostatin by its propeptide or mutated receptor enhances muscle mass effectively. The muscle tissue utilizes a large portion of metabolic energy for its growth and maintenance. We demonstrated that transgenic overexpression of myostatin propeptide in mice fed with a high-fat diet enhanced muscle mass and circulating adiponectin, while the wild-type mice developed obesity and insulin resistance. Enhanced muscle growth has positive effects on fat metabolism through increasing adiponectin expression and its regulations. Molecular studies of the exercise-induced glucose uptake in skeletal muscle also provide insights on auxiliary substances that mimic the plastic adaptations of muscle to exercise so that the body may amplify the effects of exercise in contending physical activity limitations or inactivity. The recent results from the peroxisome proliferator-activated receptor γ coactivator 1α provide a promising therapeutic approach for future metabolic drug development. In summary, enhanced skeletal muscle and fundamental understanding of the biological process are critical for effective glucose homeostasis in metabolic disorders.
Collapse
Affiliation(s)
- Jinzeng Yang
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| |
Collapse
|
50
|
Szláma G, Trexler M, Patthy L. Latent myostatin has significant activity and this activity is controlled more efficiently by WFIKKN1 than by WFIKKN2. FEBS J 2013; 280:3822-39. [PMID: 23829672 PMCID: PMC3906830 DOI: 10.1111/febs.12377] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 05/30/2013] [Accepted: 06/05/2013] [Indexed: 01/18/2023]
Abstract
Myostatin, a negative regulator of skeletal muscle growth, is produced from myostatin precursor by multiple steps of proteolytic processing. After cleavage by a furin-type protease, the propeptide and growth factor domains remain associated, forming a noncovalent complex, the latent myostatin complex. Mature myostatin is liberated from latent myostatin by bone morphogenetic protein 1/tolloid proteases. Here, we show that, in reporter assays, latent myostatin preparations have significant myostatin activity, as the noncovalent complex dissociates at an appreciable rate, and both mature and semilatent myostatin (a complex in which the dimeric growth factor domain interacts with only one molecule of myostatin propeptide) bind to myostatin receptor. The interaction of myostatin receptor with semilatent myostatin is efficiently blocked by WAP, Kazal, immunoglobulin, Kunitz and NTR domain-containing protein 1 or growth and differentiation factor-associated serum protein 2 (WFIKKN1), a large extracellular multidomain protein that binds both mature myostatin and myostatin propeptide [Kondás et al. (2008) J Biol Chem283, 23677–23684]. Interestingly, the paralogous protein WAP, Kazal, immunoglobulin, Kunitz and NTR domain-containing protein 2 or growth and differentiation factor-associated serum protein 1 (WFIKKN2) was less efficient than WFIKKN1 as an antagonist of the interactions of myostatin receptor with semilatent myostatin. Our studies have shown that this difference is attributable to the fact that only WFIKKN1 has affinity for the propeptide domain, and this interaction increases its potency in suppressing the receptor-binding activity of semilatent myostatin. As the interaction of WFIKKN1 with various forms of myostatin permits tighter control of myostatin activity until myostatin is liberated from latent myostatin by bone morphogenetic protein 1/tolloid proteases, WFIKKN1 may have greater potential as an antimyostatic agent than WFIKKN2.
Collapse
Affiliation(s)
- György Szláma
- Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | | | | |
Collapse
|