1
|
Nisha SJ, Uma G, Sathishkumar R, Prakash VSG, Isaac R, Citarasu T. Optimization and characterization of bioactive secondary metabolites from Streptomyces sp CMSTAAHL-4 isolated from mangrove sediment. BMC Microbiol 2025; 25:57. [PMID: 39891067 PMCID: PMC11786576 DOI: 10.1186/s12866-025-03763-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/24/2023] [Accepted: 01/10/2025] [Indexed: 02/03/2025] Open
Abstract
BACKGROUND Ten morphologically different actinomycetes were isolated from mangrove sediments of Manakudy, Kanyakumari District, India. The potent strain was selected based on their primary screening against Gram positive Staphylococcus aureus, Enterococcus faecalis and Gram negative Klebsiella pneumoniae, Escherichia coli, Pseudomonas aeruginosa, Salmonella typhi bacterial pathogens. The selected strain was identified as Streptomyces sp CMSTAAHL-4 by 16S rRNA sequencing. The media optimization for secondary metabolites production was performed by One-Variable at a Time and Response Surface Methodology-Central Composite Design. Minimum inhibitory concentration and minimum bacterial concentration for the extracted secondary metabolites were determined. The antioxidant potential of the secondary metabolites showed that the concentration of the metabolites increases, with the percentage of inhibition. The anti-inflammatory activity of the secondary metabolites found that maximum activity was observed at 500 µg/ml of the metabolites. Alcohols, alkenes, alkynes, alkyl halides, carboxylic acids, aliphatic esters functional groups were identified by fourier transform infrared spectroscopy, gas chromatography and mass spectrometer analysis of the secondary metabolites revealed five bioactive compounds. The X-ray diffraction analysis revealed that the secondary metabolites are amorphous. The thermogravimetric analysis showed the thermal stability of secondary metabolites. Atomic force microscopy analysis revealed specific structural characteristics of the secondary metabolites, which may be associated with their potential biological activities. CONCLUSIONS The results showed that the antibacterial, antioxidant, and anti-inflammatory chemicals present in the isolated secondary metabolites give them therapeutic properties.
Collapse
Affiliation(s)
- Selvaraj Jeraldin Nisha
- Centre for Marine Science and Technology (CMST), Manonmaniam Sundaranar University, Rajakkamangalam, Tamilnadu, 629 502, India
- Department of surgery, Morehouse School of Medicine, 720 Westview Dr, Atlanta, GA, 30310, USA
| | - Ganapathi Uma
- Centre for Marine Science and Technology (CMST), Manonmaniam Sundaranar University, Rajakkamangalam, Tamilnadu, 629 502, India
| | - Ramamoorthy Sathishkumar
- Centre for Marine Science and Technology (CMST), Manonmaniam Sundaranar University, Rajakkamangalam, Tamilnadu, 629 502, India
| | - Vincent Samuel Gnana Prakash
- Centre for Marine Science and Technology (CMST), Manonmaniam Sundaranar University, Rajakkamangalam, Tamilnadu, 629 502, India
| | - Rimal Isaac
- Department of Nanotechnology, Noorul Islam Centre for Higher Education, Tamilnadu, Kanyakumari District, 629 190, India
| | - Thavasimuthu Citarasu
- Centre for Marine Science and Technology (CMST), Manonmaniam Sundaranar University, Rajakkamangalam, Tamilnadu, 629 502, India.
- Adjunct Faculty, Department of Biochemistry, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha Nagar, Thandalam, Chennai, 602 105, India.
| |
Collapse
|
2
|
Sülzen H, Fajtova P, O’Donoghue AJ, Boura E, Silhan J. Structural insights into Salinosporamide A mediated inhibition of the human 20S proteasome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.28.635221. [PMID: 39974992 PMCID: PMC11838377 DOI: 10.1101/2025.01.28.635221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 02/21/2025]
Abstract
The 20S proteasome, a critical component of the ubiquitin-proteasome system, plays a central role in regulating protein degradation in eukaryotic cells. Marizomib (MZB), a natural γ-lactam-β-lactone compound derived from Salinispora tropica, is a potent 20S proteasome covalent inhibitor with demonstrated anticancer properties. Its broad-spectrum inhibition of all three proteasome subunits and ability to cross the blood-brain barrier has made it a promising therapeutic candidate for glioblastoma. Here, we present the cryo-EM structure of the human 20S proteasome in complex with MZB at 2.55 Å resolution. This structure reveals the binding mode of MZB to all six catalytic subunits within the two β-rings of the 20S proteasome, providing a detailed molecular understanding of its irreversible inhibitory mechanism. These findings explain the therapeutic potential of MZB at the molecular level and highlight marine-derived natural products in targeting the proteasome for anticancer treatment.
Collapse
Affiliation(s)
- Hagen Sülzen
- Institute of Organic Chemistry and Biochemistry AS CR, v.v.i., Flemingovo nam. 2., 166 10 Prague 6, Czech Republic
| | - Pavla Fajtova
- Institute of Organic Chemistry and Biochemistry AS CR, v.v.i., Flemingovo nam. 2., 166 10 Prague 6, Czech Republic
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, 92037, USA
| | - Anthony J O’Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, 92037, USA
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Evzen Boura
- Institute of Organic Chemistry and Biochemistry AS CR, v.v.i., Flemingovo nam. 2., 166 10 Prague 6, Czech Republic
| | - Jan Silhan
- Institute of Organic Chemistry and Biochemistry AS CR, v.v.i., Flemingovo nam. 2., 166 10 Prague 6, Czech Republic
| |
Collapse
|
3
|
Cheng W, Huang Y, Gao H, Bold B, Zhang T, Yang D. Marine Natural Products as Novel Treatments for Parasitic Diseases. Handb Exp Pharmacol 2025; 287:325-393. [PMID: 38554166 DOI: 10.1007/164_2024_712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 04/01/2024]
Abstract
Parasitic diseases including malaria, leishmaniasis, and trypanosomiasis have received significant attention due to their severe health implications, especially in developing countries. Marine natural products from a vast and diverse range of marine organisms such as sponges, corals, molluscs, and algae have been found to produce unique bioactive compounds that exhibit promising potent properties, including antiparasitic, anti-Plasmodial, anti-Leishmanial, and anti-Trypanosomal activities, providing hope for the development of effective treatments. Furthermore, various techniques and methodologies have been used to investigate the mechanisms of these antiparasitic compounds. Continued efforts in the discovery and development of marine natural products hold significant promise for the future of novel treatments against parasitic diseases.
Collapse
Affiliation(s)
- Wenbing Cheng
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, China
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning, Guangxi, China
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia Engineering Technology Research Center of Germplasm Resources Conservation and Utilization, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia Autonomous Region, China
| | - Yanbing Huang
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Haijun Gao
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, China
- Chengdu Fifth People's Hospital (Affiliated Fifth People's Hospital of Chengdu University of Traditional Chinese Medicine/The Second Clinical Medical College), Chengdu, Sichuan, China
| | - Bolor Bold
- National Center for Zoonotic Disease, Ulaanbaatar, Mongolia
| | - Ting Zhang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention (Chinese Center for Tropical Diseases Research), NHC Key Laboratory of Parasite and Vector Biology, WHO Collaborating Center for Tropical Diseases, National Center for International Research on Tropical Diseases, Shanghai, China.
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia Engineering Technology Research Center of Germplasm Resources Conservation and Utilization, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia Autonomous Region, China.
| | - Dengfeng Yang
- Guangxi Key Laboratory of Marine Natural Products and Combinatorial Biosynthesis Chemistry, Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, Nanning, Guangxi, China
- College of Food and Quality Engineering, Nanning University, Nanning, China
| |
Collapse
|
4
|
Gonçalves AF, Lima-Pinheiro A, Ferreira PE. Ubiquitin-proteasome system in Plasmodium: a potential antimalarial target to overcome resistance - a systematic review. Front Med (Lausanne) 2024; 11:1441352. [PMID: 39497850 PMCID: PMC11532105 DOI: 10.3389/fmed.2024.1441352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/06/2024] [Accepted: 10/08/2024] [Indexed: 11/07/2024] Open
Abstract
Background Malaria is a devasting parasitic disease that causes over half a million deaths every year. The necessity for prompt and thorough antimalarial drug discovery and development is accelerated by the rise in multidrug resistance and the lack of an effective vaccine. The Plasmodium spp. proteasome represents a prospective target for antimalarial treatment since several chemotherapy types have been shown to potently and selectively limit the growth of parasites. Combined with first-line artemisinin medicines, it creates synergy, even in the artemisinin-resistant parasites. Methods PRISMA guidelines were used in the development of this systematic review. A literature search was performed in March 2024 in PubMed, Science Direct, and Scopus databases, with the following keywords: ((antimalarial resistance) AND (plasmodium OR malaria) AND (proteasome)) NOT (cancer [Title/Abstract]). Only articles with the susceptibility assessment were included. Results Herein, 35 articles were included in the systematic review, which was divided into two subcategories: those that studied the UPS inhibitors, which accounted for 25 articles, and those that studied genetic modifications, including knockouts, knockdowns, and mutations, in the UPS toward antimalarial resistance, accounting for 16 articles. 6 articles included both subcategories. In total, 16 categories of inhibitors were analyzed, together with two knockdowns, one knockout, and 35 mutations. Conclusion In this study, we reviewed the literature for available inhibitors and their respective susceptibility and ability to develop resistance toward Plasmodium spp. 26 s proteasome. The proteasome was highlighted as a potential antimalarial target and as an artemisinin partner drug. However, host toxicity and susceptibility to resistance appear as the main obstacle in the development of highly potent drugs, indicating a need for additional scrutiny during any further drug development efforts.
Collapse
Affiliation(s)
- Adriana F. Gonçalves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute (ICVS), Biomaterials, Biodegradables and Biomimetics Research Group (3B's), PT Government Associate Laboratory, Braga, Portugal
| | - Ana Lima-Pinheiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute (ICVS), Biomaterials, Biodegradables and Biomimetics Research Group (3B's), PT Government Associate Laboratory, Braga, Portugal
| | - Pedro E. Ferreira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- Life and Health Sciences Research Institute (ICVS), Biomaterials, Biodegradables and Biomimetics Research Group (3B's), PT Government Associate Laboratory, Braga, Portugal
| |
Collapse
|
5
|
Liu LJ, O'Donoghue AJ, Caffrey CR. The proteasome as a drug target for treatment of parasitic diseases. ADVANCES IN PARASITOLOGY 2024; 126:53-96. [PMID: 39448194 DOI: 10.1016/bs.apar.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 10/26/2024]
Abstract
The proteasome is a proteolytically active molecular machine comprising many different protein subunits. It is essential for growth and survival in eukaryotic cells and has long been considered a drug target. Here, we summarize the biology of the proteasome, the early research relating to the development of specific proteasome inhibitors (PIs) for treatment of various cancers, and their translation and eventual evolution as exciting therapies for parasitic diseases. We also highlight the development and adaptation of technologies that have allowed for a deep understanding of the idiosyncrasies of individual parasite proteasomes, as well as the preclinical and clinical advancement of PIs with remarkable therapeutic indices.
Collapse
Affiliation(s)
- Lawrence J Liu
- Center for Discovery and Innovation in Diseases (CDIPD), Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA, United States; Department of Chemistry and Biochemistry, University of California, San Diego, CA, United States.
| | - Anthony J O'Donoghue
- Center for Discovery and Innovation in Diseases (CDIPD), Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA, United States
| | - Conor R Caffrey
- Center for Discovery and Innovation in Diseases (CDIPD), Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, CA, United States
| |
Collapse
|
6
|
Guchait A, Kumar A, Singh R, Joshi G, Dwivedi AR. A review on reported phytochemicals as druggable leads with antimalarial potential. Med Chem Res 2023; 32:1633-1657. [DOI: 10.1007/s00044-023-03113-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/21/2023] [Accepted: 06/14/2023] [Indexed: 01/03/2025]
|
7
|
Negm WA, Ezzat SM, Zayed A. Marine organisms as potential sources of natural products for the prevention and treatment of malaria. RSC Adv 2023; 13:4436-4475. [PMID: 36760290 PMCID: PMC9892989 DOI: 10.1039/d2ra07977a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/14/2022] [Accepted: 01/26/2023] [Indexed: 02/05/2023] Open
Abstract
Vector-borne diseases (VBDs) are a worldwide critical concern accounting for 17% of the estimated global burden of all infectious diseases in 2020. Despite the various medicines available for the management, the deadliest VBD malaria, caused by Plasmodium sp., has resulted in hundreds of thousands of deaths in sub-Saharan Africa only. This finding may be explained by the progressive loss of antimalarial medication efficacy, inherent toxicity, the rise of drug resistance, or a lack of treatment adherence. As a result, new drug discoveries from uncommon sources are desperately needed, especially against multi-drug resistant strains. Marine organisms have been investigated, including sponges, soft corals, algae, and cyanobacteria. They have been shown to produce many bioactive compounds that potentially affect the causative organism at different stages of its life cycle, including the chloroquine (CQ)-resistant strains of P. falciparum. These compounds also showed diverse chemical structures belonging to various phytochemical classes, including alkaloids, terpenoids, polyketides, macrolides, and others. The current article presents a comprehensive review of marine-derived natural products with antimalarial activity as potential candidates for targeting different stages and species of Plasmodium in both in vitro and in vivo and in comparison with the commercially available and terrestrial plant-derived products, i.e., quinine and artemisinin.
Collapse
Affiliation(s)
- Walaa A Negm
- Department of Pharmacognosy, Tanta University, College of Pharmacy El-Guish Street Tanta 31527 Egypt
| | - Shahira M Ezzat
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University Kasr El-Aini Street Cairo 11562 Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA) Giza 12451 Egypt
| | - Ahmed Zayed
- Department of Pharmacognosy, Tanta University, College of Pharmacy El-Guish Street Tanta 31527 Egypt
| |
Collapse
|
8
|
Preparative high‐performance liquid chromatography: Isolation of natural chemical compounds for identification and characterization. SEPARATION SCIENCE PLUS 2022. [DOI: 10.1002/sscp.202200040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/07/2022]
|
9
|
Abstract
Butenolides are a family of lactones containing a double bond and have been frequently found in the extracts of Streptomyces bacterial species with various pharmacological activities. In this study, seven butenolides (1–7) were discovered and isolated from the culture broth of a marine-derived Streptomyces sp. 13G036 based on a molecular networking analysis. Among the seven isolates, compound 7 was first isolated as a natural product in this study. The structures of compounds 1–7 were determined by combined analysis of 1D/2D Nuclear Magnetic Resonance (NMR) spectra, Mass Spectrometry (MS) spectra and electronic circular dichroism (ECD) data. Compounds 1–6 showed potential anti-inflammatory activities by inhibiting the production of nitric oxide (NO), tumor necrosis factor-α (TNF-α) and interleukine-6 (IL-6) in lipopolysaccharide-stimulated macrophages.
Collapse
|
10
|
Zamora-Quintero AY, Torres-Beltrán M, Guillén Matus DG, Oroz-Parra I, Millán-Aguiñaga N. Rare actinobacteria isolated from the hypersaline Ojo de Liebre Lagoon as a source of novel bioactive compounds with biotechnological potential. MICROBIOLOGY (READING, ENGLAND) 2022; 168:001144. [PMID: 35213299 PMCID: PMC8941997 DOI: 10.1099/mic.0.001144] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 10/05/2021] [Accepted: 01/19/2022] [Indexed: 12/18/2022]
Abstract
The Ojo de Liebre Lagoon is a Marine Protected Area that lies within a UNESCO World Heritage Site and is a critical habitat for important migratory species such as the grey whale and bird species. Unique hypersaline environments, such as the Ojo de Liebre Lagoon, are underexplored in terms of their bacterial and chemical diversity, representing a potential source for new bioactive compounds with pharmacological properties. Actinobacteria are one of the most diverse and prolific taxonomic bacterial groups in terms of marine bioactive compounds. This study aimed to identify the culturable actinobacterial community inhabiting the Lagoon, as well as to test their potential as new sources of anticancer compounds with pharmacological potential. A selective isolation approach focused on spore-forming bacteria from 40 sediment samples generated a culture collection of 64 strains. The 16S rRNA gene analyses identified three phyla in this study, the Actinobacteria, Firmicutes and Proteobacteria, where the phylum Actinobacteria dominated (57%) the microbial community profiles. Within the Actinobacteria, nine different genera were isolated including the Actinomadura, Micromonospora, Nocardiopsis, Plantactinospora and Streptomyces sp. We observed seasonal differences on actinobacteria recovery. For instance, Micromonospora strains were recovered during the four sampling seasons, while Arthrobacter and Pseudokineococcus were only isolated in February 2018, and Blastococcus, Rhodococcus and Streptomyces were uniquely isolated in June 2018. Ethyl acetate crude extracts derived from actinobacterial cultures were generated and screened for cytotoxic activity against six cancer cell lines. Strains showed promising low percentages of viability on lung (H1299), cervical (SiHa), colon (Caco-2) and liver (HepG2) cancer lines. Molecular networking results suggest many of the metabolites produced by these strains are unknown and they might harbour novel chemistry. Our results showed the Ojo de Liebre Lagoon is a novel source for isolating diverse marine actinobacteria which produce promising bioactive compounds for potential biotechnological use as anticancer agents.
Collapse
Affiliation(s)
- Andrea Y. Zamora-Quintero
- Facultad de Ciencias Marinas, Universidad Autónoma de Baja California, Ensenada, Baja California, México
| | - Mónica Torres-Beltrán
- Facultad de Ciencias Marinas, Universidad Autónoma de Baja California, Ensenada, Baja California, México
| | - Dulce G. Guillén Matus
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, USA
| | - Irasema Oroz-Parra
- Facultad de Ciencias Marinas, Universidad Autónoma de Baja California, Ensenada, Baja California, México
| | - Natalie Millán-Aguiñaga
- Facultad de Ciencias Marinas, Universidad Autónoma de Baja California, Ensenada, Baja California, México
| |
Collapse
|
11
|
Bharti H, Singal A, Saini M, Cheema PS, Raza M, Kundu S, Nag A. Repurposing the Pathogen Box compounds for identification of potent anti-malarials against blood stages of Plasmodium falciparum with PfUCHL3 inhibitory activity. Sci Rep 2022; 12:918. [PMID: 35042884 PMCID: PMC8766476 DOI: 10.1038/s41598-021-04619-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/18/2021] [Accepted: 12/22/2021] [Indexed: 11/08/2022] Open
Abstract
Malaria has endured as a global epidemic since ages and its eradication poses an immense challenge due to the complex life cycle of the causative pathogen and its tolerance to a myriad of therapeutics. PfUCHL3, a member of the ubiquitin C-terminal hydrolase (UCH) family of deubiquitinases (DUBs) is cardinal for parasite survival and emerges as a promising therapeutic target. In this quest, we employed a combination of computational and experimental approaches to identify PfUCHL3 inhibitors as novel anti-malarials. The Pathogen Box library was screened against the crystal structure of PfUCHL3 (PDB ID: 2WE6) and its human ortholog (PDB ID: 1XD3). Fifty molecules with better comparative score, bioavailability and druglikeliness were subjected to in-vitro enzyme inhibition assay and among them only two compounds effectively inhibited PfUCHL3 activity at micro molar concentrations. Both MMV676603 and MMV688704 exhibited anti-plasmodial activity by altering the parasite phenotype at late stages of the asexual life cycle and inducing the accumulation of polyubiquitinated substrates. In addition, both the compounds were non-toxic and portrayed high selectivity window for the parasite over mammalian cells. This is the first comprehensive study to demonstrate the anti-malarial efficacy of PfUCHL3 inhibitors and opens new avenues to exploit UCH family of DUBs as a promising target for the development of next generation anti-malaria therapy.
Collapse
Affiliation(s)
- Hina Bharti
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Aakriti Singal
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Manisha Saini
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Pradeep Singh Cheema
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Mohsin Raza
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Suman Kundu
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Alo Nag
- Department of Biochemistry, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India.
| |
Collapse
|
12
|
Kingston DGI, Cassera MB. Antimalarial Natural Products. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2022; 117:1-106. [PMID: 34977998 DOI: 10.1007/978-3-030-89873-1_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Academic Contribution Register] [Indexed: 12/28/2022]
Abstract
Natural products have made a crucial and unique contribution to human health, and this is especially true in the case of malaria, where the natural products quinine and artemisinin and their derivatives and analogues, have saved millions of lives. The need for new drugs to treat malaria is still urgent, since the most dangerous malaria parasite, Plasmodium falciparum, has become resistant to quinine and most of its derivatives and is becoming resistant to artemisinin and its derivatives. This volume begins with a short history of malaria and follows this with a summary of its biology. It then traces the fascinating history of the discovery of quinine for malaria treatment and then describes quinine's biosynthesis, its mechanism of action, and its clinical use, concluding with a discussion of synthetic antimalarial agents based on quinine's structure. The volume then covers the discovery of artemisinin and its development as the source of the most effective current antimalarial drug, including summaries of its synthesis and biosynthesis, its mechanism of action, and its clinical use and resistance. A short discussion of other clinically used antimalarial natural products leads to a detailed treatment of other natural products with significant antiplasmodial activity, classified by compound type. Although the search for new antimalarial natural products from Nature's combinatorial library is challenging, it is very likely to yield new antimalarial drugs. The chapter thus ends by identifying over ten natural products with development potential as clinical antimalarial agents.
Collapse
Affiliation(s)
- David G I Kingston
- Department of Chemistry and the Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA, 24061, USA.
| | - Maria Belen Cassera
- Department of Biochemistry and Molecular Biology, and Center for Tropical and Emerging Global Diseases (CTEGD), University of Georgia, Athens, GA, 30602, USA
| |
Collapse
|
13
|
Sanapala P, Pola S, Nageswara Rao Reddy N, Pallaval VB. Expanding Role of Marine Natural Compounds in Immunomodulation: Challenges and Future Perspectives. MARINE BIOMATERIALS 2022:307-349. [DOI: 10.1007/978-981-16-5374-2_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 01/03/2025]
|
14
|
Influence of Cultivation Conditions on the Sioxanthin Content and Antioxidative Protection Effect of a Crude Extract from the Vegetative Mycelium of Salinispora tropica. Mar Drugs 2021; 19:md19090509. [PMID: 34564171 PMCID: PMC8469146 DOI: 10.3390/md19090509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/12/2021] [Revised: 09/01/2021] [Accepted: 09/06/2021] [Indexed: 11/24/2022] Open
Abstract
Due to their bioavailability, glycosylated carotenoids may have interesting biological effects. Sioxanthin, as a representative of this type of carotenoid, has been identified in marine actinomycetes of the genus Salinispora. This study evaluates, for the first time, the effect of cultivation temperature (T) and light intensity (LI) on the total cellular carotenoid content (TC), antioxidant activity (AA) and sioxanthin content (SX) of a crude extract (CE) from Salinispora tropica biomass in its vegetative state. Treatment-related differences in TC and SX values were statistically significantly and positively affected by T and LI, while AA was most significantly affected by T. In the S. tropica CE, TC correlated well (R2 = 0.823) with SX and somewhat less with AA (R2 = 0.777). A correlation between AA and SX was found to be less significant (R2 = 0.731). The most significant protective effect against oxidative stress was identified in the CE extracted from S. tropica biomass grown at the highest T and LI (CE-C), as was demonstrated using LNCaP and KYSE-30 human cell lines. The CE showed no cytotoxicity against LNCaP and KYSE-30 cell lines.
Collapse
|
15
|
Davies-Bolorunduro O, Osuolale O, Saibu S, Adeleye I, Aminah N. Bioprospecting marine actinomycetes for antileishmanial drugs: current perspectives and future prospects. Heliyon 2021; 7:e07710. [PMID: 34409179 PMCID: PMC8361068 DOI: 10.1016/j.heliyon.2021.e07710] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/21/2021] [Revised: 07/25/2021] [Accepted: 07/30/2021] [Indexed: 01/01/2023] Open
Abstract
Revived analysis interests in natural products in the hope of discovering new and novel antileishmanial drug leads have been driven partially by the increasing incidence of drug resistance. However, the search for novel chemotherapeutics to combat drug resistance had previously concentrated on the terrestrial environment. As a result, the marine environment was often overlooked. For example, actinomycetes are an immensely important group of bacteria for antibiotic production, producing two-thirds of the known antibiotics. However, these bacteria have been isolated primarily from terrestrial sources. Consequently, there have been revived efforts to discover new compounds from uncharted or uncommon environments like the marine ecosystem. Isolation, purification and structure elucidation of target compounds from complex metabolic extract are major challenges in natural products chemistry. As a result, marine-derived natural products from actinomycetes that have antileishmanial bioactivity potentials have been understudied. This review highlights metagenomic and bioassay approaches which could help streamline the drug discovery process thereby greatly reducing time and cost of dereplication to identify suitable antileishmanial drug candidates.
Collapse
Affiliation(s)
- O.F. Davies-Bolorunduro
- Microbiology Department, Nigerian Institute of Medical Research, Lagos, Nigeria
- Postdoc Fellow Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Komplek Kampus C, Jl. Mulyorejo, Surabaya, 60115, Indonesia
| | - O. Osuolale
- Applied Environmental Metagenomics and Infectious Diseases Research Group (AEMIDR), Department of Biological Sciences, Elizade University, Ilara Mokin, Nigeria
| | - S. Saibu
- Department of Microbiology, University of Lagos, Akoka, Lagos, Nigeria
| | - I.A. Adeleye
- Department of Microbiology, University of Lagos, Akoka, Lagos, Nigeria
| | - N.S. Aminah
- Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Komplek Kampus C UNAIR, Jl. Mulyorejo, Surabaya, 60115, Indonesia
- Biotechnology of Tropical Medicinal Plants Research Group, Universitas Airlangga, Indonesia
| |
Collapse
|
16
|
Banzragchgarav O, Ariefta NR, Murata T, Myagmarsuren P, Battsetseg B, Battur B, Batkhuu J, Nishikawa Y. Evaluation of Mongolian compound library for potential antimalarial and anti-Toxoplasma agents. Parasitol Int 2021; 85:102424. [PMID: 34302982 DOI: 10.1016/j.parint.2021.102424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/17/2021] [Revised: 07/17/2021] [Accepted: 07/17/2021] [Indexed: 11/17/2022]
Abstract
179 compounds in a Mongolian compound library were investigated for their inhibitory effect on the in vitro growth of Plasmodium falciparum and Toxoplasma gondii. Among these compounds, brachangobinan A at a half-maximal inhibition concentration (IC50) of 2.62 μM and a selectivity index (SI) of 27.91; 2-(2'-hydroxy-5'-O-methylphenyl)-5-(2″,5″-dihydroxyphenyl)oxazole (IC50 3.58 μM and SI 24.66); chrysosplenetin (IC50 3.78 μM and SI 15.26); 4,11-di-O-galloylbergenin (IC50 3.87 μM and SI 13.38); and 2-(2',5'-dihydroxyphenyl)-5-(2″-hydroxyphenyl)oxazole (IC50 6.94 μM and SI 11.48) were identified as potential inhibitors of P. falciparum multiplication. Additionally, tricin (IC50 12.94 μM and SI > 23.40) was identified as a potential inhibitor of T. gondii multiplication. Our findings represent a good starting point for developing novel antimalarial and anti-Toxoplasma therapeutics from Mongolian compounds.
Collapse
Affiliation(s)
- Orkhon Banzragchgarav
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido 080-8555, Japan; Institute of Veterinary Medicine, Mongolian University of Life Sciences, Ulaanbaatar 17024, Mongolia
| | - Nanang R Ariefta
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido 080-8555, Japan
| | - Toshihiro Murata
- Division of Pharmacognosy, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan
| | | | - Badgar Battsetseg
- Institute of Veterinary Medicine, Mongolian University of Life Sciences, Ulaanbaatar 17024, Mongolia
| | - Banzragch Battur
- Institute of Veterinary Medicine, Mongolian University of Life Sciences, Ulaanbaatar 17024, Mongolia; Graduate School, Mongolian University of Life Science, Ulaanbaatar 17024, Mongolia
| | - Javzan Batkhuu
- School of Engineering and Applied Sciences, National University of Mongolia, Ulaanbaatar 14201, Mongolia
| | - Yoshifumi Nishikawa
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Hokkaido 080-8555, Japan.
| |
Collapse
|
17
|
Saraiva RG, Dimopoulos G. Bacterial natural products in the fight against mosquito-transmitted tropical diseases. Nat Prod Rep 2021; 37:338-354. [PMID: 31544193 DOI: 10.1039/c9np00042a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/12/2023]
Abstract
Covering: up to 2019 Secondary metabolites of microbial origin have long been acknowledged as medically relevant, but their full potential remains largely unexploited. Of the countless natural compounds discovered thus far, only 5-10% have been isolated from microorganisms. At the same time, while whole-genome sequencing has demonstrated that bacteria and fungi often encode natural products, only a few genera have yet been mined for new compounds. This review explores the contributions of bacterial natural products to combatting infection by malaria parasites, filarial worms, and arboviruses such as dengue, Zika, Chikungunya, and West Nile. It highlights how molecules isolated from microorganisms ranging from marine cyanobacteria to mosquito endosymbionts can be exploited as antimicrobials and antivirals. Pursuit of this mostly untapped source of chemical entities will potentially result in new interventions against these tropical diseases, which are urgently needed to combat the increase in the incidence of resistance.
Collapse
Affiliation(s)
- Raúl G Saraiva
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA.
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA.
| |
Collapse
|
18
|
Cao Y, Zhu H, He R, Kong L, Shao J, Zhuang R, Xi J, Zhang J. Proteasome, a Promising Therapeutic Target for Multiple Diseases Beyond Cancer. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:4327-4342. [PMID: 33116419 PMCID: PMC7585272 DOI: 10.2147/dddt.s265793] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 06/16/2020] [Accepted: 09/22/2020] [Indexed: 12/14/2022]
Abstract
Proteasome is vital for intracellular protein homeostasis as it eliminates misfolded and damaged protein. Inhibition of proteasome has been validated as a powerful strategy for anti-cancer therapy, and several drugs have been approved for treatment of multiple myeloma. Recent studies indicate that proteasome has potent therapeutic effects on a variety of diseases besides cancer, including parasite infectious diseases, bacterial/fungal infections diseases, neurodegenerative diseases and autoimmune diseases. In this review, recent developments of proteasome inhibitors for various diseases and related structure activity relationships are going to be summarized.
Collapse
Affiliation(s)
- Yu Cao
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang Province, 310015, People's Republic of China
| | - Huajian Zhu
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang Province, 310015, People's Republic of China
| | - Ruoyu He
- Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou, Zhejiang Province, 310023 People's Republic of China
| | - Limin Kong
- Department of Pharmacy, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang Province, 310003, People's Republic of China
| | - Jiaan Shao
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang Province, 310015, People's Republic of China
| | - Rangxiao Zhuang
- Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou, Zhejiang Province, 310023 People's Republic of China
| | - Jianjun Xi
- Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou, Zhejiang Province, 310023 People's Republic of China
| | - Jiankang Zhang
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang Province, 310015, People's Republic of China
| |
Collapse
|
19
|
Clark RD, Morris DN, Chinigo G, Lawless MS, Prudhomme J, Le Roch KG, Lafuente MJ, Ferrer S, Gamo FJ, Gadwood R, Woltosz WS. Design and tests of prospective property predictions for novel antimalarial 2-aminopropylaminoquinolones. J Comput Aided Mol Des 2020; 34:1117-1132. [PMID: 32833084 PMCID: PMC7533260 DOI: 10.1007/s10822-020-00333-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/09/2020] [Accepted: 07/21/2020] [Indexed: 10/31/2022]
Abstract
There is a pressing need to improve the efficiency of drug development, and nowhere is that need more clear than in the case of neglected diseases like malaria. The peculiarities of pyrimidine metabolism in Plasmodium species make inhibition of dihydroorotate dehydrogenase (DHODH) an attractive target for antimalarial drug design. By applying a pair of complementary quantitative structure-activity relationships derived for inhibition of a truncated, soluble form of the enzyme from Plasmodium falciparum (s-PfDHODH) to data from a large-scale phenotypic screen against cultured parasites, we were able to identify a class of antimalarial leads that inhibit the enzyme and abolish parasite growth in blood culture. Novel analogs extending that class were designed and synthesized with a goal of improving potency as well as the general pharmacokinetic and toxicological profiles. Their synthesis also represented an opportunity to prospectively validate our in silico property predictions. The seven analogs synthesized exhibited physicochemical properties in good agreement with prediction, and five of them were more active against P. falciparum growing in blood culture than any of the compounds in the published lead series. The particular analogs prepared did not inhibit s-PfDHODH in vitro, but advanced biological assays indicated that other examples from the class did inhibit intact PfDHODH bound to the mitochondrial membrane. The new analogs, however, killed the parasites by acting through some other, unidentified mechanism 24-48 h before PfDHODH inhibition would be expected to do so.
Collapse
Affiliation(s)
- Robert D Clark
- Simulations Plus, Inc., 42505 10th Street West, Lancaster, CA, 93534-7059, USA.
| | - Denise N Morris
- Cognigen Corporation, a Simulations Plus Company, Buffalo, NY, USA
| | - Gary Chinigo
- Kalexsyn, Inc., Kalamazoo, MI, USA.,Pfizer Inc., Groton, CT, USA
| | - Michael S Lawless
- Simulations Plus, Inc., 42505 10th Street West, Lancaster, CA, 93534-7059, USA
| | - Jacques Prudhomme
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, USA
| | - Karine G Le Roch
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA, USA
| | - Maria José Lafuente
- Tres Cantos Medicines Development Campus-Diseases of the Developing World, GlaxoSmithKline, Tres Cantos, Madrid, Spain
| | - Santiago Ferrer
- Tres Cantos Medicines Development Campus-Diseases of the Developing World, GlaxoSmithKline, Tres Cantos, Madrid, Spain
| | - Francisco Javier Gamo
- Tres Cantos Medicines Development Campus-Diseases of the Developing World, GlaxoSmithKline, Tres Cantos, Madrid, Spain
| | | | - Walter S Woltosz
- Simulations Plus, Inc., 42505 10th Street West, Lancaster, CA, 93534-7059, USA
| |
Collapse
|
20
|
Xu M, Meng SS, Liang H, Gu ZY. A metal–organic framework with tunable exposed facets as a high-affinity artificial receptor for enzyme inhibition. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00827c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/20/2022]
Abstract
Copper-based metal-organic framework HKUST-1 was utilized as artificial receptor to recognize positive-charged α-chymotrypsin with high affinity. The affinity between them could be tuned through comprehensive synthetic design of exposed facets.
Collapse
Affiliation(s)
- Ming Xu
- Jiangsu Key Laboratory of Biofunctional Materials
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- College of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing
| | - Sha-Sha Meng
- Jiangsu Key Laboratory of Biofunctional Materials
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- College of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing
| | - Hong Liang
- Jiangsu Key Laboratory of Biofunctional Materials
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- College of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing
| | - Zhi-Yuan Gu
- Jiangsu Key Laboratory of Biofunctional Materials
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials
- College of Chemistry and Materials Science
- Nanjing Normal University
- Nanjing
| |
Collapse
|
21
|
4-Hydroxy-pyran-2-one and 3-hydroxy-N-methyl-2-oxindole derivatives of Salinispora arenicola from Brazilian marine sediments. Fitoterapia 2019; 138:104357. [DOI: 10.1016/j.fitote.2019.104357] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/12/2019] [Revised: 08/29/2019] [Accepted: 09/10/2019] [Indexed: 02/07/2023]
|
22
|
Ōmura S, Crump A. Lactacystin: first-in-class proteasome inhibitor still excelling and an exemplar for future antibiotic research. J Antibiot (Tokyo) 2019; 72:189-201. [PMID: 30755736 PMCID: PMC6760633 DOI: 10.1038/s41429-019-0141-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/13/2018] [Revised: 12/12/2018] [Accepted: 01/07/2019] [Indexed: 01/28/2023]
Abstract
Lactacystin exemplifies the role that serendipity plays in drug discovery and why “finding things without actually looking for them” retains such a pivotal role in the search for the useful properties of chemicals. The first proteasome inhibitor discovered, lactacystin stimulated new possibilities in cancer control. New and innovative uses are regularly being found for lactacystin, including as a model to study dementia, while new formulations and delivery systems may facilitate its use clinically as an anticancer agent. All this provides yet more evidence that we need a comprehensive, collaborative and coordinated programme to fully investigate all new and existing chemical compounds, especially those of microbial origin. We need to do so in order to avoid failing to detect and successfully exploit unsought yet potentially life-saving or extremely advantageous properties of microbial metabolites.
Collapse
Affiliation(s)
- Satoshi Ōmura
- Kitasato Institute for Life Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan.
| | - Andy Crump
- Kitasato Institute for Life Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| |
Collapse
|
23
|
Effect of Metabolite Extract of Streptomyces hygroscopicus subsp. hygroscopicus on Plasmodium falciparum 3D7 in Vitro. IRANIAN JOURNAL OF PARASITOLOGY 2019; 14:444-452. [PMID: 31673263 PMCID: PMC6815862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Malaria eradication has been complicated by the repeated emergence of antimalarial drug resistances. We aimed to determine whether a metabolite extract of Streptomyces hygrocopicus subsp. hygroscopicus could decrease the viability of Plasmodium falciparum 3D7 in vitro. METHODS S. hygroscopicus subsp. hygroscopicus isolates were inoculated and fermented on the ISP4 medium. The fermented S. hygroscopicus was mixed with ethylacetate 1:5 (v/v), and the solvent phase was evaporated. Several concentrations of isolated extract was added to the P. falciparum 3D7 culture containing trophozoite and schizont stages in 24 wells plates when the degree of parasite-infected erythrocytes reached 5%, then incubated for 8 hours. DNA parasite density was measured using flow cytometry, parasite degree and morphology were observed under microscopic by Giemsa-stained smears. RESULTS The metabolite extract affected the morphology of almost all of parasite asexual stages. Schizonts and trophozoites failed to grow and appeared damaged with pycnotic cores and loss of cytoplasmic content. At 8 hours there was a significant decrease in DNA parasite density in culture exposed to 2.6 mg/ml and 13 mg/ml (P = 0.002; P = 0.024) of the extract. The degree of parasite-infected erythrocytes was decreased from the beginning of exposure (0.02 mg/ml of the extract). There was a significant inverse correlation between the concentration of extract and the degree of parasite-infected erythrocytes as well as the density of DNA parasite (r = -0.772, P = 0.000; r =-0.753; P =0.000). CONCLUSION Metabolite extract of S. hygroscopicus subsp. hygroscopicus causes morphological damage, decreases the degree of parasite-infected erythrocytes and the DNA density of P. falciparum 3D7 in vitro.
Collapse
|
24
|
Yoo E, Stokes BH, de Jong H, Vanaerschot M, Kumar TRS, Lawrence N, Njoroge M, Garcia A, Van der Westhuyzen R, Momper JD, Ng CL, Fidock DA, Bogyo M. Defining the Determinants of Specificity of Plasmodium Proteasome Inhibitors. J Am Chem Soc 2018; 140:11424-11437. [PMID: 30107725 PMCID: PMC6407133 DOI: 10.1021/jacs.8b06656] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/16/2022]
Abstract
The Plasmodium proteasome is an emerging antimalarial target due to its essential role in all the major life cycle stages of the parasite and its contribution to the establishment of resistance to artemisinin (ART)-based therapies. However, because of a similarly essential role for the host proteasome, the key property of any antiproteasome therapeutic is selectivity. Several parasite-specific proteasome inhibitors have recently been reported, however, their selectivity must be improved to enable clinical development. Here we describe screening of diverse libraries of non-natural synthetic fluorogenic substrates to identify determinants at multiple positions on the substrate that produce enhanced selectivity. We find that selection of an optimal electrophilic "warhead" is essential to enable high selectivity that is driven by the peptide binding elements on the inhibitor. We also find that host cell toxicity is dictated by the extent of coinhibition of the human β2 and β5 subunits. Using this information, we identify compounds with over 3 orders of magnitude selectivity for the parasite enzyme. Optimization of the pharmacological properties resulted in molecules that retained high potency and selectivity, were soluble, sufficiently metabolically stable and orally bioavailable. These molecules are highly synergistic with ART and can clear parasites in a mouse model of infection, making them promising leads as antimalarial drugs.
Collapse
Affiliation(s)
- Euna Yoo
- Department of Pathology and Stanford University
School of Medicine, Stanford, California 94305, United States
| | - Barbara H. Stokes
- Department of Microbiology and Immunology Columbia
University Medical Center, New York 10032, United States
| | - Hanna de Jong
- Department of Pathology and Stanford University
School of Medicine, Stanford, California 94305, United States
| | - Manu Vanaerschot
- Department of Microbiology and Immunology Columbia
University Medical Center, New York 10032, United States
| | - TRS Kumar
- Department of Microbiology and Immunology Columbia
University Medical Center, New York 10032, United States
| | - Nina Lawrence
- Drug Discovery and Development Centre (H3D),
University of Cape Town, Rondebosch 7701, South Africa
| | - Mathew Njoroge
- Drug Discovery and Development Centre (H3D),
University of Cape Town, Rondebosch 7701, South Africa
| | - Arnold Garcia
- Skaggs School of Pharmacy and Pharmaceutical Sciences,
University of California, San Diego, La Jolla, California 92093, United States
| | | | - Jeremiah D. Momper
- Skaggs School of Pharmacy and Pharmaceutical Sciences,
University of California, San Diego, La Jolla, California 92093, United States
| | - Caroline L. Ng
- Department of Microbiology and Immunology Columbia
University Medical Center, New York 10032, United States
- Department of Pathology and Microbiology, University
of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - David A. Fidock
- Department of Microbiology and Immunology Columbia
University Medical Center, New York 10032, United States
- Division of Infectious Diseases, Department of
Medicine, Columbia University Medical Center, New York 10032, United States
| | - Matthew Bogyo
- Department of Pathology and Stanford University
School of Medicine, Stanford, California 94305, United States
- Department of Microbiology and Immunology, Stanford
University School of Medicine, Stanford, California 94305, United States
| |
Collapse
|
25
|
Hu Y, He L, Ma W, Chen L. Reduced graphene oxide-based bortezomib delivery system for photothermal chemotherapy with enhanced therapeutic efficacy. POLYM INT 2018. [DOI: 10.1002/pi.5689] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/19/2023]
Affiliation(s)
- Yanfang Hu
- Department of Chemistry; Northeast Normal University; Changchun PR China
| | - Liang He
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry; Chinese Academy of Sciences; Changchun PR China
| | - Weiqian Ma
- Department of Chemistry; Northeast Normal University; Changchun PR China
| | - Li Chen
- Department of Chemistry; Northeast Normal University; Changchun PR China
| |
Collapse
|
26
|
Krishnan KM, Williamson KC. The proteasome as a target to combat malaria: hits and misses. Transl Res 2018; 198:40-47. [PMID: 30009761 PMCID: PMC6422032 DOI: 10.1016/j.trsl.2018.04.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 02/12/2018] [Revised: 04/26/2018] [Accepted: 04/30/2018] [Indexed: 01/25/2023]
Abstract
The proteasome plays a vital role throughout the life cycle as Plasmodium parasites quickly adapt to a new host and undergo a series of morphologic changes during asexual replication and sexual differentiation. Plasmodium carries 3 different types of protease complexes: typical eukaryotic proteasome (26S) that resides in the cytoplasm and the nucleus, a prokaryotic proteasome homolog ClpQ that resides in the mitochondria, and a caseinolytic protease complex ClpP that resides in the apicoplast. In silico prediction in conjunction with immunoprecipitation analysis of ubiquitin conjugates have suggested that over half of the Plasmodium falciparum proteome during asexual reproduction are potential targets for ubiquitination. The marked potency of multiple classes of proteasome inhibitors against all stages of the life cycle, synergy with the current frontline antimalarial, artemisinin, and recent advances identifying differences between Plasmodium and human proteasomes strongly support further drug development efforts.
Collapse
Affiliation(s)
| | - Kim C Williamson
- Uniformed Services University of the Health Sciences, Bethesda, Maryland.
| |
Collapse
|
27
|
Ravi L, Ragunathan A, Krishnan K. Antidiabetic and Antioxidant Potential of GancidinW from Streptomyces Paradoxus VITALK03. ACTA ACUST UNITED AC 2017. [DOI: 10.2174/1874847301705010031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/22/2022]
Abstract
Background:The aim of the present study was to analyse the antidiabetic and antioxidant potential of GancidinW (GW) extracted fromStreptomyces paradoxusVITALK03.Materials and Methods:Antidiabetic potential of GW was evaluated by assay of α-amylase and α-glucosidase inhibitory activity; haemoglobin glycosylation and yeast glucose uptake. The antioxidant potential of GW was assessed by 2,2-Diphenyl-1-picrylhydrazyl (DPPH) assay, 2,2′-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical cation decolorization assay and superoxide assay. The inhibition of α-amylase and α-glucosidase by GW was also studied byin Silicomolecular docking analysis.Results:GW (1mg/ml) showed 69.32% of α-amylase and 54.04% of α-glucosidase inhibitory activity. GW (1mg/ml) prevented haemoglobin glycosylation up to 30.92% and the glucose uptake by yeast cells was increased up to 64.38%. The binding interaction GW with α-amylase showed the least free binding energy of -6.09Kcal/mol and -7.53Kcal/mol with α-glucosidase by docking studies. GW also demonstrated moderate antioxidant activity in all the antioxidant assays performed.Conclusion:The results of this study suggests that the antidiabetic and antioxidant potential of GW can be probed further to develop GW as effective antidiabetic agent.
Collapse
|
28
|
Song Y, Li Q, Qin F, Sun C, Liang H, Wei X, Wong NK, Ye L, Zhang Y, Shao M, Ju J. Neoabyssomicins A–C, polycyclic macrolactones from the deep-sea derived Streptomyces koyangensis SCSIO 5802. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.07.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 10/19/2022]
|
29
|
Jose PA, Jha B. Intertidal marine sediment harbours Actinobacteria with promising bioactive and biosynthetic potential. Sci Rep 2017; 7:10041. [PMID: 28855551 PMCID: PMC5577230 DOI: 10.1038/s41598-017-09672-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/21/2016] [Accepted: 07/28/2017] [Indexed: 11/29/2022] Open
Abstract
Actinobacteria are the major source of bioactive natural products that find their value in research and drug discovery programmes. Antimicrobial resistance and the resulting high demand for novel antibiotics underscore the need for exploring novel sources of these bacteria endowed with biosynthetic potential. Intertidal ecosystems endure regular periods of immersion and emersion, and represent an untapped source of Actinobacteria. In this study, we studied the diversity and biosynthetic potential of cultivable Actinobacteria from intertidal sediments of Diu Island in the Arabian Sea. A total of 148 Actinobacteria were selectively isolated using a stamping method with eight isolation media. Isolates were grouped into OTUs based on their 16S rRNA gene sequence, and categorized within actinobacterial families such as Glycomycetaceae, Micromonosporaceae, Nocardiaceae, Nocardiopsaceae, Pseudonocardiaceae, Streptomycetaceae, and Thermomonosporaceae. The biosynthetic potential of the Actinobacteria, necessary for secondary metabolite biosynthesis, was screened and confirmed by extensive fingerprinting approaches based on genes coding for polyketide synthases and nonribosomal peptide synthetases. The observed biosynthetic potential was correlated with the antibacterial activity exhibited by these isolates in laboratory conditions. Ultimately, the results demonstrate that intertidal sediment is a rich source of diverse cultivable Actinobacteria with high potential to synthesize novel bioactive compounds in their genomes.
Collapse
Affiliation(s)
- Polpass Arul Jose
- Marine Biotechnology and Ecology Division, CSIR- Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar - 364002, Gujarat, India.
| | - Bhavanath Jha
- Marine Biotechnology and Ecology Division, CSIR- Central Salt and Marine Chemicals Research Institute, G. B. Marg, Bhavnagar - 364002, Gujarat, India. .,Academy of Scientific and Innovative Research (AcSIR), Council of Scientific and Industrial Research (CSIR), New Delhi, India.
| |
Collapse
|
30
|
Actinoalloteichus fjordicus sp. nov. isolated from marine sponges: phenotypic, chemotaxonomic and genomic characterisation. Antonie van Leeuwenhoek 2017; 110:1705-1717. [PMID: 28770445 PMCID: PMC5676828 DOI: 10.1007/s10482-017-0920-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 04/25/2017] [Accepted: 07/25/2017] [Indexed: 12/04/2022]
Abstract
Two actinobacterial strains, ADI 127-17T and GBA 129-24, isolated from marine sponges Antho dichotoma and Geodia barretti, respectively, collected at the Trondheim fjord in Norway, were the subjects of a polyphasic study. According to their 16S rRNA gene sequences, the new isolates were preliminarily classified as belonging to the genus Actinoalloteichus. Both strains formed a distinct branch, closely related to the type strains of Actinoalloteichus hoggarensis and Actinoalloteichus hymeniacidonis, within the evolutionary radiation of the genus Actinoalloteichus in the 16S rRNA gene-based phylogenetic tree. Isolates ADI 127-17T and GBA 129-24 exhibited morphological, chemotaxonomic and genotypic features distinguishable from their close phylogenetic neighbours. Digital DNA: DNA hybridization and ANI values between strains ADI 127-17T and GBA 129-24 were 97.6 and 99.7%, respectively, whereas the corresponding values between both tested strains and type strains of their closely related phylogenetic neighbours, A. hoggarensis and A. hymeniacidonis, were well below the threshold for delineation of prokaryotic species. Therefore, strains ADI 127-17T (= DSM 46855T) and GBA 129-24 (= DSM 46856) are concluded to represent a novel species of the genus Actinoalloteichus for which the name of Actinoalloteichus fjordicus sp. nov. (type strain ADI 127-17T = DSM 46855T = CECT 9355T) is proposed. The complete genome sequences of the new strains were obtained and compared to that of A. hymeniacidonis DSM 45092T and A. hoggarensis DSM 45943T to unravel unique genome features and biosynthetic potential of the new isolates.
Collapse
|
31
|
Protein Degradation Systems as Antimalarial Therapeutic Targets. Trends Parasitol 2017; 33:731-743. [PMID: 28688800 DOI: 10.1016/j.pt.2017.05.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/28/2017] [Revised: 05/23/2017] [Accepted: 05/24/2017] [Indexed: 12/11/2022]
Abstract
Artemisinin (ART)-based combination therapies are the most efficacious treatment of uncomplicated Plasmodium falciparum malaria. Alarmingly, P. falciparum strains have acquired resistance to ART across much of Southeast Asia. ART creates widespread protein and lipid damage inside intraerythrocytic parasites, necessitating macromolecule degradation. The proteasome is the main engine of Plasmodium protein degradation. Indeed, proteasome inhibition and ART have shown synergy in ART-resistant parasites. Moreover, ubiquitin modification is associated with altered parasite susceptibility to multiple antimalarials. Targeting the ubiquitin-proteasome system (UPS), therefore, is an attractive avenue to combat drug resistance. Here, we review recent advances leading to specific targeting of the Plasmodium proteasome. We also highlight the potential for targeting other nonproteasomal protein degradation systems as an additional strategy to disrupt protein homeostasis.
Collapse
|
32
|
Hassan SSU, Shaikh AL. Marine actinobacteria as a drug treasure house. Biomed Pharmacother 2017; 87:46-57. [DOI: 10.1016/j.biopha.2016.12.086] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/06/2016] [Revised: 12/20/2016] [Accepted: 12/20/2016] [Indexed: 01/19/2023] Open
|
33
|
Bibo-Verdugo B, Jiang Z, Caffrey CR, O'Donoghue AJ. Targeting proteasomes in infectious organisms to combat disease. FEBS J 2017; 284:1503-1517. [PMID: 28122162 DOI: 10.1111/febs.14029] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/25/2016] [Revised: 12/21/2016] [Accepted: 01/23/2017] [Indexed: 01/04/2023]
Abstract
Proteasomes are multisubunit, energy-dependent, proteolytic complexes that play an essential role in intracellular protein turnover. They are present in eukaryotes, archaea, and in some actinobacteria species. Inhibition of proteasome activity has emerged as a powerful strategy for anticancer therapy and three drugs have been approved for treatment of multiple myeloma. These compounds react covalently with a threonine residue located in the active site of a proteasome subunit to block protein degradation. Proteasomes in pathogenic organisms such as Mycobacterium tuberculosis and Plasmodium falciparum also have a nucleophilic threonine residue in the proteasome active site and are therefore sensitive to these anticancer drugs. This review summarizes efforts to validate the proteasome in pathogenic organisms as a therapeutic target. We describe several strategies that have been used to develop inhibitors with increased potency and selectivity for the pathogen proteasome relative to the human proteasome. In addition, we highlight a cell-based chemical screening approach that identified a potent, allosteric inhibitor of proteasomes found in Leishmania and Trypanosoma species. Finally, we discuss the development of proteasome inhibitors as anti-infective agents.
Collapse
Affiliation(s)
- Betsaida Bibo-Verdugo
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA.,Center for Discovery and Innovation in Parasitic Diseases, University of California San Diego, La Jolla, CA, USA
| | - Zhenze Jiang
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA.,Chemistry & Biochemistry Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Conor R Caffrey
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA.,Center for Discovery and Innovation in Parasitic Diseases, University of California San Diego, La Jolla, CA, USA
| | - Anthony J O'Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA.,Center for Discovery and Innovation in Parasitic Diseases, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
34
|
Zin NM, Baba MS, Zainal-Abidin AH, Latip J, Mazlan NW, Edrada-Ebel R. Gancidin W, a potential low-toxicity antimalarial agent isolated from an endophytic Streptomyces SUK10. Drug Des Devel Ther 2017; 11:351-363. [PMID: 28223778 PMCID: PMC5308589 DOI: 10.2147/dddt.s121283] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/23/2022] Open
Abstract
Endophytic Streptomyces strains are potential sources for novel bioactive molecules. In this study, the diketopiperazine gancidin W (GW) was isolated from the endophytic actinobacterial genus Streptomyces, SUK10, obtained from the bark of Shorea ovalis tree, and it was tested in vivo against Plasmodium berghei PZZ1/100. GW exhibited an inhibition rate of nearly 80% at 6.25 and 3.125 μg kg-1 body weight on day four using the 4-day suppression test method on male ICR strain mice. Comparing GW at both concentrations with quinine hydrochloride and normal saline as positive and negative controls, respectively, 50% of the mice treated with 3.125 μg kg-1 body weight managed to survive for more than 11 months after infection, which almost reached the life span of normal mice. Biochemical tests of selected enzymes and proteins in blood samples of mice treated with GW were also within normal levels; in addition, no abnormalities or injuries were found on internal vital organs. These findings indicated that this isolated bioactive compound from Streptomyces SUK10 exhibits very low toxicity and is a good candidate for potential use as an antimalarial agent in an animal model.
Collapse
Affiliation(s)
- Noraziah Mohamad Zin
- Programme of Biomedical Science, School of Diagnostic and Applied Health Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur
| | - Mohd Shukri Baba
- Department of Biomedical Sciences, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia, Kuantan
| | | | - Jalifah Latip
- School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi
| | - Noor Wini Mazlan
- Analytical and Environmental Chemistry, School of Marine and Environmental Sciences, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
| | - RuAngelie Edrada-Ebel
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| |
Collapse
|
35
|
Zhao L, Feng C, Wu K, Chen W, Chen Y, Hao X, Wu Y. Advances and prospects in biogenic substances against plant virus: A review. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2017; 135:15-26. [PMID: 28043326 DOI: 10.1016/j.pestbp.2016.07.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 12/08/2015] [Revised: 07/13/2016] [Accepted: 07/18/2016] [Indexed: 05/26/2023]
Abstract
Plant virus diseases, known as 'plant cancer', are the second largest plant diseases after plant fungal diseases, which have caused great damage to agricultural industry. Since now, the most direct and effective method for controlling viruses is chemotherapeutics, except for screening of anti-disease species. As the occurrence and harm of plant diseases intensify, production and consumption of pesticides have increased year by year, and greatly contributed to the fertility of agriculture, but also brought a series of problems, such as the increase of drug resistance of plant pathogens and the excessive pesticide residues. In recent years, biopesticide, as characterized by environmentally safe due to low residual, safe to non-target organism due to better specificity and not as susceptible to produce drug resistance due to diverse work ways, has gained more attention than ever before and exhibited great development potential. Now much progress has been made about researches on new biogenic anti-plant-virus substances. The types of active components include proteins, polysaccharides and small molecules (alkaloids, flavonoids, phenols, essential oils) from plants, proteins and polysaccharides from microorganisms, polysaccharides from algae and oligochitosan from animals. This study summarized the research advance of biogenic anti-plant-virus substances in recent years and put forward their further development in the future.
Collapse
Affiliation(s)
- Lei Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Crop Pest Integrated Pest Management on Crop in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Chaohong Feng
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, No. 116 Huayuan Road, Jinshui District, Zhengzhou, Henan Province 450002, China
| | - Kuan Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Crop Pest Integrated Pest Management on Crop in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Wenbao Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Crop Pest Integrated Pest Management on Crop in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yujia Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Crop Pest Integrated Pest Management on Crop in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xingan Hao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Crop Pest Integrated Pest Management on Crop in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yunfeng Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Crop Pest Integrated Pest Management on Crop in Northwestern Loess Plateau, Ministry of Agriculture, Northwest A&F University, Yangling, 712100, Shaanxi, China; Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
36
|
Hassan SSU, Anjum K, Abbas SQ, Akhter N, Shagufta BI, Shah SAA, Tasneem U. Emerging biopharmaceuticals from marine actinobacteria. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 49:34-47. [PMID: 27898308 DOI: 10.1016/j.etap.2016.11.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 08/19/2016] [Revised: 11/11/2016] [Accepted: 11/20/2016] [Indexed: 05/10/2023]
Abstract
Actinobacteria are quotidian microorganisms in the marine world, playing a crucial ecological role in the recycling of refractory biomaterials and producing novel secondary metabolites with pharmaceutical applications. Actinobacteria have been isolated from the huge area of marine organisms including sponges, tunicates, corals, mollusks, crabs, mangroves and seaweeds. Natural products investigation of the marine actinobacteria revealed that they can synthesize numerous natural products including alkaloids, polyketides, peptides, isoprenoids, phenazines, sterols, and others. These natural products have a potential to provide future drugs against crucial diseases like cancer, HIV, microbial and protozoal infections and severe inflammations. Therefore, marine actinobacteria portray as a pivotal resource for marine drugs. It is an upcoming field of research to probe a novel and pharmaceutically important secondary metabolites from marine actinobacteria. In this review, we attempt to summarize the present knowledge on the diversity, chemistry and mechanism of action of marine actinobacteria-derived secondary metabolites from 2007 to 2016.
Collapse
Affiliation(s)
| | - Komal Anjum
- Ocean College, Zhejiang University, Hangzhou 310058, China
| | - Syed Qamar Abbas
- Faculty of Pharmacy, Gomal University D.I. Khan, K.P.K 29050, Pakistan
| | - Najeeb Akhter
- Ocean College, Zhejiang University, Hangzhou 310058, China
| | - Bibi Ibtesam Shagufta
- Department of Zoology, Kohat University of Science and Technology (KUST), K.P.K 26000, Pakistan
| | | | - Umber Tasneem
- Department of Microbiology, Kohat University of Science and Technology (KUST), K.P.K 26000, Pakistan
| |
Collapse
|
37
|
Schaffert L, Albersmeier A, Winkler A, Kalinowski J, Zotchev SB, Rückert C. Complete genome sequence of the actinomycete Actinoalloteichus hymeniacidonis type strain HPA 177 T isolated from a marine sponge. Stand Genomic Sci 2016; 11:91. [PMID: 28031775 PMCID: PMC5168871 DOI: 10.1186/s40793-016-0213-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/06/2016] [Accepted: 11/26/2016] [Indexed: 11/10/2022] Open
Abstract
Actinoalloteichus hymeniacidonis HPA 177T is a Gram-positive, strictly aerobic, black pigment producing and spore-forming actinomycete, which forms branching vegetative hyphae and was isolated from the marine sponge Hymeniacidon perlevis. Actinomycete bacteria are prolific producers of secondary metabolites, some of which have been developed into anti-microbial, anti-tumor and immunosuppressive drugs currently used in human therapy. Considering this and the growing interest in natural products as sources of new drugs, actinomycete bacteria from the hitherto poorly explored marine environments may represent promising sources for drug discovery. As A. hymeniacidonis, isolated from the marine sponge, is a type strain of the recently described and rare genus Actinoalloteichus, knowledge of the complete genome sequence enables genome analyses to identify genetic loci for novel bioactive compounds. This project, describing the 6.31 Mbp long chromosome, with its 5346 protein-coding and 73 RNA genes, will aid the Genomic Encyclopedia of Bacteria and Archaea project.
Collapse
Affiliation(s)
- Lena Schaffert
- Technology Platform Genomics, CeBiTec, Bielefeld University, Bielefeld, Germany
| | - Andreas Albersmeier
- Technology Platform Genomics, CeBiTec, Bielefeld University, Bielefeld, Germany
| | - Anika Winkler
- Technology Platform Genomics, CeBiTec, Bielefeld University, Bielefeld, Germany
| | - Jörn Kalinowski
- Technology Platform Genomics, CeBiTec, Bielefeld University, Bielefeld, Germany
| | - Sergey B. Zotchev
- Department of Pharmacognosy, University of Vienna, 1090 Vienna, Austria
| | - Christian Rückert
- Technology Platform Genomics, CeBiTec, Bielefeld University, Bielefeld, Germany
- Sinkey Lab, Department of Biology, Massachusetts Institute of Technology, Cambridge, USA
| |
Collapse
|
38
|
Abdelmohsen UR, Balasubramanian S, Oelschlaeger TA, Grkovic T, Pham NB, Quinn RJ, Hentschel U. Potential of marine natural products against drug-resistant fungal, viral, and parasitic infections. THE LANCET. INFECTIOUS DISEASES 2016; 17:e30-e41. [PMID: 27979695 DOI: 10.1016/s1473-3099(16)30323-1] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 12/23/2015] [Revised: 07/26/2016] [Accepted: 08/15/2016] [Indexed: 12/12/2022]
Abstract
Antibiotics have revolutionised medicine in many aspects, and their discovery is considered a turning point in human history. However, the most serious consequence of the use of antibiotics is the concomitant development of resistance against them. The marine environment has proven to be a very rich source of diverse natural products with significant antibacterial, antifungal, antiviral, antiparasitic, antitumour, anti-inflammatory, antioxidant, and immunomodulatory activities. Many marine natural products (MNPs)-for example, neoechinulin B-have been found to be promising drug candidates to alleviate the mortality and morbidity rates caused by drug-resistant infections, and several MNP-based anti-infectives have already entered phase 1, 2, and 3 clinical trials, with six approved for usage by the US Food and Drug Administration and one by the EU. In this Review, we discuss the diversity of marine natural products that have shown in-vivo efficacy or in-vitro potential against drug-resistant infections of fungal, viral, and parasitic origin, and describe their mechanism of action. We highlight the drug-like physicochemical properties of the reported natural products that have bioactivity against drug-resistant pathogens in order to assess their drug potential. Difficulty in isolation and purification procedures, toxicity associated with the active compound, ecological impacts on natural environment, and insufficient investments by pharmaceutical companies are some of the clear reasons behind market failures and a poor pipeline of MNPs available to date. However, the diverse abundance of natural products in the marine environment could serve as a ray of light for the therapy of drug-resistant infections. Development of resistance-resistant antibiotics could be achieved via the coordinated networking of clinicians, microbiologists, natural product chemists, and pharmacologists together with pharmaceutical venture capitalist companies.
Collapse
Affiliation(s)
- Usama Ramadan Abdelmohsen
- Department of Botany II, Julius-von-Sachs-Institute for Biological Sciences, University of Würzburg, Würzburg, Germany; Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia, Egypt.
| | - Srikkanth Balasubramanian
- Department of Botany II, Julius-von-Sachs-Institute for Biological Sciences, University of Würzburg, Würzburg, Germany; Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Tobias A Oelschlaeger
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Tanja Grkovic
- Natural Products Support Group, Leidos Biomedical Research Inc, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Ngoc B Pham
- Eskitis Institute for Drug Discovery, Griffith University, Brisbane, QLD, Australia
| | - Ronald J Quinn
- Eskitis Institute for Drug Discovery, Griffith University, Brisbane, QLD, Australia
| | - Ute Hentschel
- Department of Botany II, Julius-von-Sachs-Institute for Biological Sciences, University of Würzburg, Würzburg, Germany; GEOMAR Helmholtz Centre for Ocean Research, RD3 Marine Microbiology, Kiel, Germany; Christian-Albrechts University of Kiel, Kiel, Germany
| |
Collapse
|
39
|
Prieto-Davó A, Dias T, Gomes SE, Rodrigues S, Parera-Valadez Y, Borralho PM, Pereira F, Rodrigues CMP, Santos-Sanches I, Gaudêncio SP. The Madeira Archipelago As a Significant Source of Marine-Derived Actinomycete Diversity with Anticancer and Antimicrobial Potential. Front Microbiol 2016; 7:1594. [PMID: 27774089 PMCID: PMC5053986 DOI: 10.3389/fmicb.2016.01594] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/02/2016] [Accepted: 09/23/2016] [Indexed: 12/21/2022] Open
Abstract
Marine-derived actinomycetes have demonstrated an ability to produce novel compounds with medically relevant biological activity. Studying the diversity and biogeographical patterns of marine actinomycetes offers an opportunity to identify genera that are under environmental pressures, which may drive adaptations that yield specific biosynthetic capabilities. The present study describes research efforts to explore regions of the Atlantic Ocean, specifically around the Madeira Archipelago, where knowledge of the indigenous actinomycete diversity is scarce. A total of 400 actinomycetes were isolated, sequenced, and screened for antimicrobial and anticancer activities. The three most abundant genera identified were Streptomyces, Actinomadura, and Micromonospora. Phylogenetic analyses of the marine OTUs isolated indicated that the Madeira Archipelago is a new source of actinomycetes adapted to life in the ocean. Phylogenetic differences between offshore (>100 m from shore) and nearshore (< 100 m from shore) populations illustrates the importance of sampling offshore in order to isolate new and diverse bacterial strains. Novel phylotypes from chemically rich marine actinomycete groups like MAR4 and the genus Salinispora were isolated. Anticancer and antimicrobial assays identified Streptomyces, Micromonospora, and Salinispora as the most biologically active genera. This study illustrates the importance of bioprospecting efforts at unexplored regions of the ocean to recover bacterial strains with the potential to produce novel and interesting chemistry.
Collapse
Affiliation(s)
- Alejandra Prieto-Davó
- Laboratorio de Productos Naturales Marinos, Facultad de Química, Universidad Nacional Autónoma de México, Unidad Sisal Sisal, Mexico
| | - Tiago Dias
- LAQV-REQUIMTE, Department of Chemistry, Faculty of Science and Technology, Universidade NOVA de LisboaCaparica, Portugal; UCIBIO-REQUIMTE, Department of Life Sciences, Faculty of Science and Technology, Universidade NOVA de LisboaCaparica, Portugal
| | - Sofia E Gomes
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa Lisbon, Portugal
| | - Sara Rodrigues
- LAQV-REQUIMTE, Department of Chemistry, Faculty of Science and Technology, Universidade NOVA de LisboaCaparica, Portugal; UCIBIO-REQUIMTE, Department of Life Sciences, Faculty of Science and Technology, Universidade NOVA de LisboaCaparica, Portugal
| | - Yessica Parera-Valadez
- Laboratorio de Productos Naturales Marinos, Facultad de Química, Universidad Nacional Autónoma de México, Unidad Sisal Sisal, Mexico
| | - Pedro M Borralho
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de LisboaLisbon, Portugal; Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de LisboaLisbon, Portugal
| | - Florbela Pereira
- LAQV-REQUIMTE, Department of Chemistry, Faculty of Science and Technology, Universidade NOVA de Lisboa Caparica, Portugal
| | - Cecilia M P Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de LisboaLisbon, Portugal; Department of Biochemistry and Human Biology, Faculty of Pharmacy, Universidade de LisboaLisbon, Portugal
| | - Ilda Santos-Sanches
- UCIBIO-REQUIMTE, Department of Life Sciences, Faculty of Science and Technology, Universidade NOVA de Lisboa Caparica, Portugal
| | - Susana P Gaudêncio
- LAQV-REQUIMTE, Department of Chemistry, Faculty of Science and Technology, Universidade NOVA de LisboaCaparica, Portugal; UCIBIO-REQUIMTE, Department of Life Sciences, Faculty of Science and Technology, Universidade NOVA de LisboaCaparica, Portugal
| |
Collapse
|
40
|
Dahari DE, Salleh RM, Mahmud F, Chin LP, Embi N, Sidek HM. Anti-malarial Activities of Two Soil Actinomycete Isolates from Sabah via Inhibition of Glycogen Synthase Kinase 3β. Trop Life Sci Res 2016; 27:53-71. [PMID: 27688851 DOI: 10.21315/tlsr2016.27.2.5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/20/2022] Open
Abstract
Exploiting natural resources for bioactive compounds is an attractive drug discovery strategy in search for new anti-malarial drugs with novel modes of action. Initial screening efforts in our laboratory revealed two preparations of soil-derived actinomycetes (H11809 and FH025) with potent anti-malarial activities. Both crude extracts showed glycogen synthase kinase 3β (GSK3β)-inhibitory activities in a yeast-based kinase assay. We have previously shown that the GSK3 inhibitor, lithium chloride (LiCl), was able to suppress parasitaemia development in a rodent model of malarial infection. The present study aims to evaluate whether anti-malarial activities of H11809 and FH025 involve the inhibition of GSK3β. The acetone crude extracts of H11809 and FH025 each exerted strong inhibition on the growth of Plasmodium falciparum 3D7 in vitro with 50% inhibitory concentration (IC50) values of 0.57 ± 0.09 and 1.28 ± 0.11 µg/mL, respectively. The tested extracts exhibited Selectivity Index (SI) values exceeding 10 for the 3D7 strain. Both H11809 and FH025 showed dosage-dependent chemo-suppressive activities in vivo and improved animal survivability compared to non-treated infected mice. Western analysis revealed increased phosphorylation of serine (Ser 9) GSK3β (by 6.79 to 6.83-fold) in liver samples from infected mice treated with H11809 or FH025 compared to samples from non-infected or non-treated infected mice. A compound already identified in H11809 (data not shown), dibutyl phthalate (DBP) showed active anti-plasmodial activity against 3D7 (IC50 4.87 ± 1.26 µg/mL which is equivalent to 17.50 µM) and good chemo-suppressive activity in vivo (60.80% chemo-suppression at 300 mg/kg body weight [bw] dosage). DBP administration also resulted in increased phosphorylation of Ser 9 GSK3β compared to controls. Findings from the present study demonstrate that the potent anti-malarial activities of H11809 and FH025 were mediated via inhibition of host GSK3β. In addition, our study suggests that DBP is in part the bioactive component contributing to the anti-malarial activity displayed by H11809 acting through the inhibition of GSK3β.
Collapse
Affiliation(s)
- Dhiana Efani Dahari
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Raifana Mohamad Salleh
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Fauze Mahmud
- School of Science and Technology, Universiti Malaysia Sabah, 88999 Kota Kinabalu, Sabah, Malaysia
| | - Lee Ping Chin
- School of Science and Technology, Universiti Malaysia Sabah, 88999 Kota Kinabalu, Sabah, Malaysia
| | - Noor Embi
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| | - Hasidah Mohd Sidek
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia
| |
Collapse
|
41
|
Lei M, Feng H, Wang C, Li H, Shi J, Wang J, Liu Z, Chen S, Hu S, Zhu Y. 3D-QSAR-aided design, synthesis, in vitro and in vivo evaluation of dipeptidyl boronic acid proteasome inhibitors and mechanism studies. Bioorg Med Chem 2016; 24:2576-2588. [PMID: 27117691 DOI: 10.1016/j.bmc.2016.04.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/15/2016] [Revised: 04/09/2016] [Accepted: 04/12/2016] [Indexed: 01/23/2023]
Abstract
Proteasome had been clinically validated as an effective target for the treatment of cancers. Up to now, many structurally diverse proteasome inhibitors were discovered. And two of them were launched to treat multiple myeloma (MM) and mantle cell lymphoma (MCL). Based on our previous biological results of dipeptidyl boronic acid proteasome inhibitors, robust 3D-QSAR models were developed and structure-activity relationship (SAR) was summarized. Several structurally novel compounds were designed based on the theoretical models and finally synthesized. Biological results showed that compound 12e was as active as the standard bortezomib in enzymatic and cellular activities. In vivo pharmacokinetic profiles suggested compound 12e showed a long half-life, which indicated that it could be administered intravenously. Cell cycle analysis indicated that compound 12e inhibited cell cycle progression at the G2M stage.
Collapse
Affiliation(s)
- Meng Lei
- College of Science, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, PR China
| | - Huayun Feng
- College of Science, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, PR China
| | - Cheng Wang
- College of Science, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, PR China
| | - Hailing Li
- College of Life Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210037, PR China
| | - Jingmiao Shi
- Jiangsu Chia Tai Fenghai Pharmaceutical Co. Ltd, No. 9 Weidi Road, Nanjing 210046, PR China
| | - Jia Wang
- Jiangsu Chia Tai Fenghai Pharmaceutical Co. Ltd, No. 9 Weidi Road, Nanjing 210046, PR China
| | - Zhaogang Liu
- Jiangsu Chia Tai Fenghai Pharmaceutical Co. Ltd, No. 9 Weidi Road, Nanjing 210046, PR China
| | - Shanshan Chen
- Jiangsu Chia Tai Fenghai Pharmaceutical Co. Ltd, No. 9 Weidi Road, Nanjing 210046, PR China
| | - Shihe Hu
- Jiangsu Chia Tai Fenghai Pharmaceutical Co. Ltd, No. 9 Weidi Road, Nanjing 210046, PR China
| | - Yongqiang Zhu
- College of Life Science, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210037, PR China.
| |
Collapse
|
42
|
Feng Y, Liu J, Carrasco YP, MacMillan JB, De Brabander JK. Rifamycin Biosynthetic Congeners: Isolation and Total Synthesis of Rifsaliniketal and Total Synthesis of Salinisporamycin and Saliniketals A and B. J Am Chem Soc 2016; 138:7130-42. [DOI: 10.1021/jacs.6b03248] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/30/2022]
Affiliation(s)
- Yu Feng
- Department of Biochemistry and ‡Harold C. Simmons Comprehensive
Cancer Center, The University of Texas Southwestern Medical Center at Dallas, 5323 Harry
Hines Boulevard, Dallas, Texas 75390-9038, United States
| | - Jun Liu
- Department of Biochemistry and ‡Harold C. Simmons Comprehensive
Cancer Center, The University of Texas Southwestern Medical Center at Dallas, 5323 Harry
Hines Boulevard, Dallas, Texas 75390-9038, United States
| | - Yazmin P. Carrasco
- Department of Biochemistry and ‡Harold C. Simmons Comprehensive
Cancer Center, The University of Texas Southwestern Medical Center at Dallas, 5323 Harry
Hines Boulevard, Dallas, Texas 75390-9038, United States
| | - John B. MacMillan
- Department of Biochemistry and ‡Harold C. Simmons Comprehensive
Cancer Center, The University of Texas Southwestern Medical Center at Dallas, 5323 Harry
Hines Boulevard, Dallas, Texas 75390-9038, United States
| | - Jef K. De Brabander
- Department of Biochemistry and ‡Harold C. Simmons Comprehensive
Cancer Center, The University of Texas Southwestern Medical Center at Dallas, 5323 Harry
Hines Boulevard, Dallas, Texas 75390-9038, United States
| |
Collapse
|
43
|
Mata-Cantero L, Azkargorta M, Aillet F, Xolalpa W, LaFuente MJ, Elortza F, Carvalho AS, Martin-Plaza J, Matthiesen R, Rodriguez MS. New insights into host-parasite ubiquitin proteome dynamics in P. falciparum infected red blood cells using a TUBEs-MS approach. J Proteomics 2016; 139:45-59. [PMID: 26972027 DOI: 10.1016/j.jprot.2016.03.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/03/2015] [Revised: 02/11/2016] [Accepted: 03/02/2016] [Indexed: 02/06/2023]
Abstract
UNLABELLED Malaria, caused by Plasmodium falciparum (P. falciparum), ranks as one of the most baleful infectious diseases worldwide. New antimalarial treatments are needed to face existing or emerging drug resistant strains. Protein degradation appears to play a significant role during the asexual intraerythrocytic developmental cycle (IDC) of P. falciparum. Inhibition of the ubiquitin proteasome system (UPS), a major intracellular proteolytic pathway, effectively reduces infection and parasite replication. P. falciparum and erythrocyte UPS coexist during IDC but the nature of their relationship is largely unknown. We used an approach based on Tandem Ubiquitin-Binding Entities (TUBEs) and 1D gel electrophoresis followed by mass spectrometry to identify major components of the TUBEs-associated ubiquitin proteome of both host and parasite during ring, trophozoite and schizont stages. Ring-exported protein (REX1), a P. falciparum protein located in Maurer's clefts and important for parasite nutrient import, was found to reach a maximum level of ubiquitylation in trophozoites stage. The Homo sapiens (H. sapiens) TUBEs associated ubiquitin proteome decreased during the infection, whereas the equivalent P. falciparum TUBEs-associated ubiquitin proteome counterpart increased. Major cellular processes such as DNA repair, replication, stress response, vesicular transport and catabolic events appear to be regulated by ubiquitylation along the IDC P. falciparum infection. BIOLOGICAL SIGNIFICANCE In this work we analyze for the first time the interconnection between Plasmodium and human red blood cells ubiquitin-regulated proteins in the context of infection. We identified a number of human and Plasmodium proteins whose ubiquitylation pattern changes during the asexual infective stage. We demonstrate that ubiquitylation of REX1, a P. falciparum protein located in Maurer's clefts and important for parasite nutrient import, peaks in trophozoites stage. The ubiquitin-proteome from P. falciparum infected red blood cells (iRBCs) revealed a significant host-parasite crosstalk, underlining the importance of ubiquitin-regulated proteolytic activities during the intraerythrocytic developmental cycle (IDC) of P. falciparum. Major cellular processes defined from gene ontology such as DNA repair, replication, stress response, vesicular transport and catabolic events appear to be regulated by ubiquitylation along the IDC P. falciparum infection. Given the importance of ubiquitylation in the development of infectious diseases, this work provides a number of potential drug-target candidates that should be further explored.
Collapse
Affiliation(s)
- Lydia Mata-Cantero
- Medicines Development Campus, Diseases of the Developing World, GlaxoSmithKline Tres Cantos, Madrid, Spain; Proteomics Platform CICbioGUNE, CIBERehd, ProteoRed-ISCIII, Parque Tecnologico de Bizkaia, Derio, Spain; Ubiquitylation and Cancer Molecular Biology, Inbiomed, San Sebastian, Spain
| | - Mikel Azkargorta
- Proteomics Platform CICbioGUNE, CIBERehd, ProteoRed-ISCIII, Parque Tecnologico de Bizkaia, Derio, Spain
| | - Fabienne Aillet
- Ubiquitylation and Cancer Molecular Biology, Inbiomed, San Sebastian, Spain
| | - Wendy Xolalpa
- Proteomics Platform CICbioGUNE, CIBERehd, ProteoRed-ISCIII, Parque Tecnologico de Bizkaia, Derio, Spain
| | - Maria J LaFuente
- Medicines Development Campus, Diseases of the Developing World, GlaxoSmithKline Tres Cantos, Madrid, Spain
| | - Felix Elortza
- Proteomics Platform CICbioGUNE, CIBERehd, ProteoRed-ISCIII, Parque Tecnologico de Bizkaia, Derio, Spain
| | - Ana Sofia Carvalho
- Computational and Experimental Biology Group, Health Promotion and Chronic Diseases Department, National Institute of Health Dr Ricardo Jorge, Lisbon, Portugal
| | - Julio Martin-Plaza
- Centro de Investigación Básica, GlaxoSmithKline, Tres Cantos, Madrid, Spain
| | - Rune Matthiesen
- Computational and Experimental Biology Group, Health Promotion and Chronic Diseases Department, National Institute of Health Dr Ricardo Jorge, Lisbon, Portugal.
| | - Manuel S Rodriguez
- Proteomics Platform CICbioGUNE, CIBERehd, ProteoRed-ISCIII, Parque Tecnologico de Bizkaia, Derio, Spain; Ubiquitylation and Cancer Molecular Biology, Inbiomed, San Sebastian, Spain; Institut des Technologies Avancées en sciences du Vivant (ITAV), Université de Toulouse, CNRS, UPS, France; University of Toulouse III-Paul Sabatier, 31077 Toulouse, France; Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, France.
| |
Collapse
|
44
|
Structure- and function-based design of Plasmodium-selective proteasome inhibitors. Nature 2016; 530:233-6. [PMID: 26863983 PMCID: PMC4755332 DOI: 10.1038/nature16936] [Citation(s) in RCA: 192] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/10/2015] [Accepted: 12/18/2015] [Indexed: 12/13/2022]
Abstract
The proteasome is a multi-component protease complex responsible for regulating key processes such as the cell cycle and antigen presentation1. Compounds that target the proteasome are potentially valuable tools for the treatment of pathogens that depend on proteasome function for survival and replication. In particular, proteasome inhibitors have been shown to be toxic for the malaria parasite Plasmodium falciparum at all stages of its life cycle2-5. Most compounds that have been tested against the parasite also inhibit the mammalian proteasome resulting in toxicity that precludes their use as therapeutic agents2,6. Therefore, better definition of the substrate specificity and structural properties of the Plasmodium proteasome could enable the development of compounds with sufficient selectivity to allow their use as anti-malarial agents. To accomplish this goal, we used a substrate profiling method to uncover differences in the specificities of the human and P. falciparum proteasome. We designed inhibitors based on amino acid preferences specific to the parasite proteasome, and found that they preferentially inhibit the β 2 subunit. We determined the structure of the P. falciparum 20S proteasome bound to the inhibitor using cryo-electron microscopy (cryo-EM) and single particle analysis, to a resolution of 3.6 Å. These data reveal the unusually open P. falciparum β2 active site and provide valuable information regarding active site architecture that can be used to further refine inhibitor design. Furthermore, consistent with the recent finding that the proteasome is important for stress pathways associated with resistance of artemisinin (ART) family anti-malarials7,8, we observed growth inhibition synergism with low doses of this β 2 selective inhibitor in ART sensitive and resistant parasites. Finally, we demonstrated that a parasite selective inhibitor could be used to attenuate parasite growth in vivo without significant toxicity to the host. Thus, the Plasmodium proteasome is a chemically tractable target that could be exploited by next generation anti-malarial agents.
Collapse
|
45
|
Rathore SS, Ramamurthy V, Allen S, Selva Ganesan S, Ramakrishnan J. Novel approach of adaptive laboratory evolution: triggers defense molecules in Streptomyces sp. against targeted pathogen. RSC Adv 2016. [DOI: 10.1039/c6ra15952d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/09/2023] Open
Abstract
Adaptive laboratory evolution by competition-based co-culture: triggers and enhance specific bioactive molecules against targeted pathogen.
Collapse
Affiliation(s)
- Sudarshan Singh Rathore
- Centre for Research in Infectious Diseases (CRID)
- School of Chemical and Biotechnology
- SASTRA University
- Thanjavur
- India – 613401
| | - Vigneshwari Ramamurthy
- Centre for Research in Infectious Diseases (CRID)
- School of Chemical and Biotechnology
- SASTRA University
- Thanjavur
- India – 613401
| | - Sally Allen
- Centre for Research in Infectious Diseases (CRID)
- School of Chemical and Biotechnology
- SASTRA University
- Thanjavur
- India – 613401
| | - S. Selva Ganesan
- Department of Chemistry
- School of Chemical and Biotechnology
- SASTRA University
- Thanjavur-613401
- India
| | - Jayapradha Ramakrishnan
- Centre for Research in Infectious Diseases (CRID)
- School of Chemical and Biotechnology
- SASTRA University
- Thanjavur
- India – 613401
| |
Collapse
|
46
|
Actinobacteria and Myxobacteria—Two of the Most Important Bacterial Resources for Novel Antibiotics. Curr Top Microbiol Immunol 2016; 398:273-302. [DOI: 10.1007/82_2016_503] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/16/2022]
|
47
|
Baba MS, Zin NM, Hassan ZAA, Latip J, Pethick F, Hunter IS, Edrada-Ebel R, Herron PR. In vivo antimalarial activity of the endophytic actinobacteria, Streptomyces SUK 10. J Microbiol 2015; 53:847-55. [PMID: 26626355 DOI: 10.1007/s12275-015-5076-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/09/2015] [Revised: 10/30/2015] [Accepted: 11/10/2015] [Indexed: 10/22/2022]
Abstract
Endophytic bacteria, such as Streptomyces, have the potential to act as a source for novel bioactive molecules with medicinal properties. The present study was aimed at assessing the antimalarial activity of crude extract isolated from various strains of actinobacteria living endophytically in some Malaysian medicinal plants. Using the four day suppression test method on male ICR strain mice, compounds produced from three strains of Streptomyces (SUK8, SUK10, and SUK27) were tested in vivo against Plasmodium berghei PZZ1/100 in an antimalarial screen using crude extracts at four different concentrations. One of these extracts, isolated from Streptomyces SUK10 obtained from the bark of Shorea ovalis tree, showed inhibition of the test organism and was further tested against P. berghei-infected mice for antimalarial activity at different concentrations. There was a positive relationship between the survival of the infected mouse group treated with 50 µg/kg body weight (bw) of ethyl acetate-SUK10 crude extract and the ability to inhibit the parasites growth. The parasite inhibition percentage for this group showed that 50% of the mice survived for more than 90 days after infection with the parasite. The nucleotide sequence and phylogenetic tree suggested that Streptomyces SUK10 may constitute a new species within the Streptomyces genus. As part of the drug discovery process, these promising finding may contribute to the medicinal and pharmaceutical field for malarial treatment.
Collapse
Affiliation(s)
- Mohd Shukri Baba
- School of Diagnostic Sciences and Applied Health, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia
| | - Noraziah Mohamad Zin
- School of Diagnostic Sciences and Applied Health, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300, Kuala Lumpur, Malaysia.
| | - Zainal Abidin Abu Hassan
- Department of Parasitology, Medical Faculty, Universiti Teknologi MARA, 40450, Shah Alam, Selangor, Malaysia
| | - Jalifah Latip
- School of Chemistry Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, UKM Bangi, Selangor, Malaysia
| | - Florence Pethick
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, United Kingdom
| | - Iain S Hunter
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, United Kingdom
| | - RuAngelie Edrada-Ebel
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, United Kingdom
| | - Paul R Herron
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, United Kingdom
| |
Collapse
|
48
|
Daub ME, Prudhomme J, Le Roch K, Vanderwal CD. Synthesis and potent antimalarial activity of kalihinol B. J Am Chem Soc 2015; 137:4912-5. [PMID: 25815413 PMCID: PMC4415034 DOI: 10.1021/jacs.5b01152] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/02/2015] [Indexed: 11/28/2022]
Abstract
Of the 50+ kalihinane diterpenoids reported to date, only five had been tested for antimalarial activity, in spite of the fact that kalihinol A is the most potent among the members of the larger family of antimalarial isocyanoterpenes. We have validated a strategy designed to access many of the kalihinanes with a 12-step enantioselective synthesis of kalihinol B, the tetrahydrofuran isomer of kalihinol A (a tetrahydropyran). Kalihinol B shows similarly high potency against chloroquine-resistant Plasmodium falciparum.
Collapse
Affiliation(s)
- Mary Elisabeth Daub
- Department
of Chemistry, University of California,
Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| | - Jacques Prudhomme
- Department
of Cell Biology and Neuroscience, University
of California, Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Karine Le Roch
- Department
of Cell Biology and Neuroscience, University
of California, Riverside, 900 University Avenue, Riverside, California 92521, United States
| | - Christopher D. Vanderwal
- Department
of Chemistry, University of California,
Irvine, 1102 Natural Sciences II, Irvine, California 92697-2025, United States
| |
Collapse
|
49
|
Valan AM, Asha KRT, Duraipandiyan V, Ignacimuthu S, Agastian P. Characterization and phylogenetic analysis of novel polyene type antimicrobial metabolite producing actinomycetes from marine sediments: Bay of Bengal, India. Asian Pac J Trop Biomed 2015; 2:803-10. [PMID: 23569851 DOI: 10.1016/s2221-1691(12)60233-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/15/2011] [Revised: 04/27/2011] [Accepted: 06/28/2011] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVE To isolate and indentify the promising antimicrobial metabolite producing Streptomyces strains from marine sediment samples from Andrapradesh coast of India. METHODS Antagonistic actinomycetes were isolated by starch casein agar medium and modified nutrient agar medium with 1% glucose used as a base for primary screening. Significant antimicrobial metabolite producing strains were selected and identified by using biochemical and 16S rDNA level. Minimum inhibitory concentrations of the organic extracts were done by using broth micro dilution method. RESULTS Among the 210 actinomycetes, 64.3% exhibited activity against Gram positive bacteria, 48.5 % showed activity towards Gram negative bacteria, 38.8% exhibited both Gram positive and negative bacteria and 80.85 % isolates revealed significant antifungal activity. However, five isolates AP-5, AP-18, AP-41 and AP-70 showed significant antimicrobial activity. The analysis of cell wall hydrolysates showed the presence of LL-diaminopimelic acid and glycine in all the isolates. Sequencing analysis indicated that the isolates shared 98.5%-99.8% sequence identity to the 16S rDNA gene sequences of the Streptomyces taxons. The antimicrobial substances were extracted using hexane and ethyl acetate from spent medium in which strains were cultivated at 30°Cfor five days. The antimicrobial activity was assessed using broth micro dilution technique. Each of the culture extracts from these five strains showed a typical polyene-like property. The lowest minimum inhibitory concentrations of ethyl acetate extracts against Escherichia coli and Curvularia lunata were 67.5 and 125.0 µg/mL, respectively. CONCLUSIONS It can be concluded that hexane and ethyl acetate soluble extracellular products of novel isolates are effective against pathogenic bacteria and fungi.
Collapse
Affiliation(s)
- Arasu M Valan
- Division of Microbiology, Entomology Research Institute, Loyola College, Chennai, India
| | | | | | | | | |
Collapse
|
50
|
Schulze CJ, Navarro G, Ebert D, DeRisi J, Linington RG. Salinipostins A–K, Long-Chain Bicyclic Phosphotriesters as a Potent and Selective Antimalarial Chemotype. J Org Chem 2015; 80:1312-20. [DOI: 10.1021/jo5024409] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 01/17/2023]
Affiliation(s)
- Christopher J. Schulze
- Department
of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, United States
| | - Gabriel Navarro
- Department
of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, United States
| | - Daniel Ebert
- Department
of Biochemistry and Biophysics, University of California, San Francisco, California 94158, United States
| | - Joseph DeRisi
- Department
of Biochemistry and Biophysics, University of California, San Francisco, California 94158, United States
| | - Roger G. Linington
- Department
of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, United States
| |
Collapse
|