1
|
Luo X, Shi J, Wang S, Jin X. The role of circular RNA targeting IGF2BPs in cancer-a potential target for cancer therapy. J Mol Med (Berl) 2024; 102:1297-1314. [PMID: 39287635 DOI: 10.1007/s00109-024-02488-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/01/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024]
Abstract
Circular RNAs (circRNAs) are an interesting class of conserved single-stranded RNA molecules derived from exon or intron sequences produced by the reverse splicing of precursor mRNA. CircRNAs play important roles as microRNA sponges, gene splicing and transcriptional regulators, RNA-binding protein sponges, and protein/peptide translation factors. Abnormal functions of circRNAs and RBPs in tumor progression have been widely reported. Insulin-like growth factor-2 mRNA-binding proteins (IGF2BPs) are a highly conserved family of RBPs identified in humans that function as post-transcriptional fine-tuners of target transcripts. Emerging evidence suggests that IGF2BPs regulate the processing and metabolism of RNA, including its stability, translation, and localization, and participate in a variety of cellular functions and pathophysiology. In this review, we have summarized the roles and molecular mechanisms of circRNAs and IGF2BPs in cancer development and progression. In addition, we briefly introduce the role of other RNAs and IGF2BPs in cancer, discuss the current clinical applications and challenges faced by circRNAs and IGF2BPs, and propose future directions for this promising research field.
Collapse
Affiliation(s)
- Xia Luo
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Jiaxin Shi
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Siyuan Wang
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Xiaofeng Jin
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
2
|
Chuang TD, Ton N, Rysling S, Khorram O. The Functional Role of the Long Non-Coding RNA LINCMD1 in Leiomyoma Pathogenesis. Int J Mol Sci 2024; 25:11539. [PMID: 39519092 PMCID: PMC11545963 DOI: 10.3390/ijms252111539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Existing evidence indicates that LINCMD1 regulates muscle differentiation-related gene expression in skeletal muscle by acting as a miRNA sponge, though its role in leiomyoma development is still unknown. This study investigated LINCMD1's involvement in leiomyoma by analyzing paired myometrium and leiomyoma tissue samples (n = 34) from patients who had not received hormonal treatments for at least three months prior to surgery. Myometrium smooth muscle cells (MSMCs) were isolated, and gene expression of LINCMD1 and miR-135b was assessed via qRT-PCR, while luciferase assays determined the interaction between LINCMD1 and miR-135b. To examine the effects of LINCMD1 knockdown, siRNA transfection was applied to a 3D MSMC spheroid culture, followed by qRT-PCR and Western blot analyses of miR-135b, APC, β-Catenin and COL1A1 expression. The results showed that leiomyoma tissues had significantly reduced LINCMD1 mRNA levels, regardless of patient race or MED12 mutation status, while miR-135b levels were elevated compared to matched myometrium samples. Luciferase assays confirmed LINCMD1's role as a sponge for miR-135b. LINCMD1 knockdown in MSMC spheroids increased miR-135b levels, reduced APC expression, and led to β-Catenin accumulation and higher COL1A1 expression. These findings highlight LINCMD1 as a potential therapeutic target to modulate aberrant Wnt/β-Catenin signaling in leiomyoma.
Collapse
Affiliation(s)
- Tsai-Der Chuang
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA; (T.-D.C.); (N.T.); (S.R.)
| | - Nhu Ton
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA; (T.-D.C.); (N.T.); (S.R.)
| | - Shawn Rysling
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA; (T.-D.C.); (N.T.); (S.R.)
| | - Omid Khorram
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA; (T.-D.C.); (N.T.); (S.R.)
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
3
|
Wang Y, Shao W. LncRNA HOXA‑AS2 promotes the progression of epithelial ovarian cancer via the regulation of miR‑372. Oncol Lett 2024; 28:394. [PMID: 38966577 PMCID: PMC11223025 DOI: 10.3892/ol.2024.14527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 04/18/2024] [Indexed: 07/06/2024] Open
Abstract
Long non-coding RNAs, such as homeobox A cluster antisense RNA2 (HOXA-AS2) are understood to be involved in tumor growth and development of numerous cancers. However, the role of HOXA-AS2 in the progression of human epithelial ovarian cancer (EOC) remains unclear. In the present study, the expression of HOXA-AS2 was found to be upregulated in EOC tissues compared with noncancerous tissues, and to be strongly correlated to an advanced Federation International of Gynecology and Obstetrics grade and poor prognosis. Knockdown of HOXA-AS2 in the EOC cells inhibited cell proliferation, invasion and migration, as well as inducing cell apoptosis. The ENCORI database was used to screen the microRNAs (miRNAs/miRs) that bound to HOXA-AS2, and one was tested using RNA pull-down and luciferase reporter assays. It was demonstrated that HOXA-AS2 functioned through the competing endogenous RNA mechanism to regulate miR-372. It was also demonstrated that the downregulation of miR-372 reversed the inhibitory effects of the knockdown of HOXA-AS2 in EOC cells. These results indicated that HOXA-AS2 promoted EOC progression by regulating the miR-372, which suggests that HOXA-AS2 may be a therapy target for EOC.
Collapse
Affiliation(s)
- Yanli Wang
- Department of Gynecology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Wenjing Shao
- Department of Gynecology, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
4
|
Wang F, Zhou C, Zhu Y, Keshavarzi M. The microRNA Let-7 and its exosomal form: Epigenetic regulators of gynecological cancers. Cell Biol Toxicol 2024; 40:42. [PMID: 38836981 PMCID: PMC11153289 DOI: 10.1007/s10565-024-09884-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/15/2024] [Indexed: 06/06/2024]
Abstract
Many types of gynecological cancer (GC) are often silent until they reach an advanced stage, and are therefore often diagnosed too late for effective treatment. Hence, there is a real need for more efficient diagnosis and treatment for patients with GC. During recent years, researchers have increasingly studied the impact of microRNAs cancer development, leading to a number of applications in detection and treatment. MicroRNAs are a particular group of tiny RNA molecules that regulate regular gene expression by affecting the translation process. The downregulation of numerous miRNAs has been observed in human malignancies. Let-7 is an example of a miRNA that controls cellular processes as well as signaling cascades to affect post-transcriptional gene expression. Recent research supports the hypothesis that enhancing let-7 expression in those cancers where it is downregulated may be a potential treatment option. Exosomes are tiny vesicles that move through body fluids and can include components like miRNAs (including let-7) that are important for communication between cells. Studies proved that exosomes are able to enhance tumor growth, angiogenesis, chemoresistance, metastasis, and immune evasion, thus suggesting their importance in GC management.
Collapse
Affiliation(s)
- Fei Wang
- Haiyan People's Hospital, Zhejiang Province, Jiaxing, 314300, Zhejiang, China
| | - Chundi Zhou
- Haiyan People's Hospital, Zhejiang Province, Jiaxing, 314300, Zhejiang, China
| | - Yanping Zhu
- Haiyan People's Hospital, Zhejiang Province, Jiaxing, 314300, Zhejiang, China.
| | - Maryam Keshavarzi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Tehran, Iran.
| |
Collapse
|
5
|
Jung SY, Yu H, Tan X, Pellegrini M. Novel DNA methylation-based epigenetic signatures in colorectal cancer from peripheral blood leukocytes. Am J Cancer Res 2024; 14:2253-2271. [PMID: 38859857 PMCID: PMC11162685 DOI: 10.62347/mxwj1398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 04/21/2024] [Indexed: 06/12/2024] Open
Abstract
Colorectal cancer (CRC) is a multifactorial disease characterized by accumulation of multiple genetic and epigenetic alterations, transforming colonic epithelial cells into adenocarcinomas. Alteration of DNA methylation (DNAm) is a promising biomarker for predicting cancer risk and prognosis, but its role in CRC tumorigenesis is inconclusive. Notably, few DNAm studies have used pre-diagnostic peripheral blood (PB) DNA, causing difficulty in postulating the underlying biologic mechanism of CRC initiation. We conducted epigenome-wide association (EWA) scans in postmenopausal women from Women's Health Initiative (WHI) with their pre-diagnostic DNAm in PB leukocytes (PBLs) to prospectively evaluate CRC development. Our site-specific DNAm analyses across the genome adjusted for DNAm-age, leukocyte heterogeneities, as well as body mass index, diabetes, and insulin resistance. We validated 20 top EWA-CpGs in 2 independent CRC tissue datasets. Also, we detected differentially methylated regions (DMRs) associated with CRC, further mapped to transcriptomic profile, and finally conducted a Gene Set Enrichment Analysis. We detected multiple novel CpGs validated across WHI and tissue datasets. In particular, 2 CpGs (B4GALNT4cg10321339, SV2Bcg18144285) had the strongest effect on CRC risk. Results from our DMR scans contained MIR663cg06007966, which was also validated in EWA analyses. Also, we detected 1 methylome region in PEG10 of Chr7 shared across datasets. Our findings reflect both novel and well-established epigenomic and transcriptomic sites in CRC, warranting further functional validations. Our study contributes to better understanding of the complex interrelated mechanisms on the methylome underlying CRC tumorigenesis and suggests novel preventive DNAm-targets in PBLs for detecting at-risk individuals for CRC development.
Collapse
Affiliation(s)
- Su Yon Jung
- Translational Sciences Section, School of Nursing, University of CaliforniaLos Angeles, CA 90095, USA
- Department of Epidemiology, Fielding School of Public Health, University of CaliforniaLos Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, University of CaliforniaLos Angeles, CA 90095, USA
| | - Herbert Yu
- Cancer Epidemiology Program, University of Hawaii Cancer CenterHonolulu, HI 96813, USA
| | - Xianglong Tan
- Department of Biological Chemistry, University of CaliforniaLos Angeles, CA 90095, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, Life Sciences Division, University of CaliforniaLos Angeles, CA 90095, USA
| |
Collapse
|
6
|
Alshahrani SH, Yuliastanti T, Al-Dolaimy F, Korotkova NL, Rasulova I, Almuala AF, Alsaalamy A, Ali SHJ, Alasheqi MQ, Mustafa YF. A glimpse into let-7e roles in human disorders; friend or foe? Pathol Res Pract 2024; 253:154992. [PMID: 38103367 DOI: 10.1016/j.prp.2023.154992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/17/2023] [Accepted: 11/27/2023] [Indexed: 12/19/2023]
Abstract
MicroRNAs (miRNAs) have been linked to abnormal expression and regulation in a number of diseases, including cancer. Recent studies have concentrated on miRNA Let-7e's significance in precision medicine for cancer screening and diagnosis as well as its prognostic and therapeutic potential. Differential let-7e levels in bodily fluids have the possibility to enable early detection of cancer utilizing less-invasive techniques, reducing biopsy-related risks. Although Let-7e miRNAs have been described as tumor suppressors, it is crucial to note that there exists proof to support their oncogenic activity in vitro and in in vivo. Let-7e's significance in chemo- and radiation treatment decisions has also been demonstrated. Let-7e can also prevent the synthesis of proinflammatory cytokines in a number of degenerative disorders, including musculoskeletal and neurological conditions. For the first time, an overview of the significance of let-7e in the prevention, detection, and therapy of cancer and other conditions has been given in the current review. Additionally, we focused on the specific molecular processes that underlie the actions of let-7e, more particularly, on malignant cells.
Collapse
Affiliation(s)
| | | | | | - Nadezhda L Korotkova
- I.M. Sechenov First Moscow State Medical University, Moscow, Russian Federation; Federal State Budgetary Educational Institution of Higher Education "Privolzhsky Research Medical University" of the Ministry of Health of the Russian Federation, Nizhny Novgorod, Russian Federation
| | - Irodakhon Rasulova
- School of Humanities, Natural & Social Sciences, New Uzbekistan University, 54 Mustaqillik Ave., Tashkent 100007, Uzbekistan; Department of Public Health, Samarkand State Medical University, Amir Temur Street 18, Samarkand, Uzbekistan
| | - Abbas Firras Almuala
- College of Technical Engineering, the Islamic University, Najaf, Iraq; College of Technical Engineering, the Islamic University of Al Diwaniyah, Iraq; College of Technical Engineering, the Islamic University of Babylon, Iraq
| | - Ali Alsaalamy
- College of Technical Engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna 66002, Iraq
| | - Saad Hayif Jasim Ali
- Department of Medical Laboratory, College of Health and Medical Technololgy, Al-Ayen University, Thi-Qar, Iraq
| | | | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| |
Collapse
|
7
|
Zhao H, Feng L, Cheng R, Wu M, Bai X, Fan L, Liu Y. miR-29c-3p acts as a tumor promoter by regulating β-catenin signaling through suppressing DNMT3A, TET1 and HBP1 in ovarian carcinoma. Cell Signal 2024; 113:110936. [PMID: 37925048 DOI: 10.1016/j.cellsig.2023.110936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/05/2023] [Accepted: 10/19/2023] [Indexed: 11/06/2023]
Abstract
Ovarian Carcinoma (OvCa) is characterized by rapid and sustained growth, activated invasion and metastasis. Studies have shown that microRNAs recruit and alter the expression of key regulators to modulate carcinogenesis. Here, we find that miR-29c-3p is increased in benign OvCa and malignant OvCa compared to normal ovary. Univariate and multivariate analyses report that miR-29c-3p overexpression is associated with poor prognosis in OvCa. Furthermore, we investigate that expression of miR-29c-3p is inversely correlated to DNA methyltransferase (DNMT) 3 A and Ten-Eleven-Translocation enzyme TET1. The high-throughput mRNA sequencing, bioinformatics analysis and pharmacological studies confirm that aberrant miR-29c-3p modulates tumorigenesis in OvCa cells, including epithelial-mesenchymal transition (EMT), proliferation, migration, and invasion. This modulation occurs through the regulation of β-catenin signaling by directly targeting 3'UTR of DNMT3A, TET1 and the HMG box transcription factor HBP1 and suppressing their expression. The further 3D spheres assay clearly shows the regulatory effects of miR-29c-3p on OvCa tumorigenesis. Additionally, the receiver operating characteristic (ROC) curve analysis of miR-29c-3p and the clinical detection/diagnostic biomarker CA125 suggests that miR-29c-3p may be conducive for clinical diagnosis or co-diagnosis of OvCa. These findings support miR-29c-3p functions as a tumor promoter by targeting its functional targets, providing new potential biomarker (s) for precision medicine strategies in OvCa.
Collapse
Affiliation(s)
- Haile Zhao
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, State Key Laboratory of Reproductive Regulation & Breeding of Grassland livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia 010020, PR China
| | - Lijuan Feng
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, State Key Laboratory of Reproductive Regulation & Breeding of Grassland livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia 010020, PR China
| | - Rui Cheng
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, State Key Laboratory of Reproductive Regulation & Breeding of Grassland livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia 010020, PR China
| | - Man Wu
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, State Key Laboratory of Reproductive Regulation & Breeding of Grassland livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia 010020, PR China
| | - Xiaozhou Bai
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, State Key Laboratory of Reproductive Regulation & Breeding of Grassland livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia 010020, PR China
| | - Lifei Fan
- Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, State Key Laboratory of Reproductive Regulation & Breeding of Grassland livestock, School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia 010020, PR China.
| | - Yaping Liu
- Department of Gynecology and Obstetrics, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, PR China.
| |
Collapse
|
8
|
Collins KE, Wang X, Klymenko Y, Davis NB, Martinez MC, Zhang C, So K, Buechlein A, Rusch DB, Creighton CJ, Hawkins SM. Transcriptomic analyses of ovarian clear-cell carcinoma with concurrent endometriosis. Front Endocrinol (Lausanne) 2023; 14:1162786. [PMID: 37621654 PMCID: PMC10445169 DOI: 10.3389/fendo.2023.1162786] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 07/17/2023] [Indexed: 08/26/2023] Open
Abstract
Introduction Endometriosis, a benign inflammatory disease whereby endometrial-like tissue grows outside the uterus, is a risk factor for endometriosis-associated ovarian cancers. In particular, ovarian endometriomas, cystic lesions of deeply invasive endometriosis, are considered the precursor lesion for ovarian clear-cell carcinoma (OCCC). Methods To explore this transcriptomic landscape, OCCC from women with pathology-proven concurrent endometriosis (n = 4) were compared to benign endometriomas (n = 4) by bulk RNA and small-RNA sequencing. Results Analysis of protein-coding genes identified 2449 upregulated and 3131 downregulated protein-coding genes (DESeq2, P< 0.05, log2 fold-change > |1|) in OCCC with concurrent endometriosis compared to endometriomas. Gene set enrichment analysis showed upregulation of pathways involved in cell cycle regulation and DNA replication and downregulation of pathways involved in cytokine receptor signaling and matrisome. Comparison of pathway activation scores between the clinical samples and publicly-available datasets for OCCC cell lines revealed significant molecular similarities between OCCC with concurrent endometriosis and OVTOKO, OVISE, RMG1, OVMANA, TOV21G, IGROV1, and JHOC5 cell lines. Analysis of miRNAs revealed 64 upregulated and 61 downregulated mature miRNA molecules (DESeq2, P< 0.05, log2 fold-change > |1|). MiR-10a-5p represented over 21% of the miRNA molecules in OCCC with endometriosis and was significantly upregulated (NGS: log2fold change = 4.37, P = 2.43e-18; QPCR: 8.1-fold change, P< 0.05). Correlation between miR-10a expression level in OCCC cell lines and IC50 (50% inhibitory concentration) of carboplatin in vitro revealed a positive correlation (R2 = 0.93). MiR-10a overexpression in vitro resulted in a significant decrease in proliferation (n = 6; P< 0.05) compared to transfection with a non-targeting control miRNA. Similarly, the cell-cycle analysis revealed a significant shift in cells from S and G2 to G1 (n = 6; P< 0.0001). Bioinformatic analysis predicted that miR-10a-5p target genes that were downregulated in OCCC with endometriosis were involved in receptor signaling pathways, proliferation, and cell cycle progression. MiR-10a overexpression in vitro was correlated with decreased expression of predicted miR-10a target genes critical for proliferation, cell-cycle regulation, and cell survival including [SERPINE1 (3-fold downregulated; P< 0.05), CDK6 (2.4-fold downregulated; P< 0.05), and RAP2A (2-3-fold downregulated; P< 0.05)]. Discussion These studies in OCCC suggest that miR-10a-5p is an impactful, potentially oncogenic molecule, which warrants further studies.
Collapse
Affiliation(s)
- Kaitlyn E. Collins
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Xiyin Wang
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN, United States
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - Yuliya Klymenko
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Noah B. Davis
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Maria C. Martinez
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Chi Zhang
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Kaman So
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Aaron Buechlein
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN, United States
| | - Douglas B. Rusch
- Center for Genomics and Bioinformatics, Indiana University, Bloomington, IN, United States
| | - Chad J. Creighton
- Department of Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Shannon M. Hawkins
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, United States
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
9
|
Hu Q, Huang T. Regulation of the Cell Cycle by ncRNAs Affects the Efficiency of CDK4/6 Inhibition. Int J Mol Sci 2023; 24:ijms24108939. [PMID: 37240281 DOI: 10.3390/ijms24108939] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Cyclin-dependent kinases (CDKs) regulate cell division at multiple levels. Aberrant proliferation induced by abnormal cell cycle is a hallmark of cancer. Over the past few decades, several drugs that inhibit CDK activity have been created to stop the development of cancer cells. The third generation of selective CDK4/6 inhibition has proceeded into clinical trials for a range of cancers and is quickly becoming the backbone of contemporary cancer therapy. Non-coding RNAs, or ncRNAs, do not encode proteins. Many studies have demonstrated the involvement of ncRNAs in the regulation of the cell cycle and their abnormal expression in cancer. By interacting with important cell cycle regulators, preclinical studies have demonstrated that ncRNAs may decrease or increase the treatment outcome of CDK4/6 inhibition. As a result, cell cycle-associated ncRNAs may act as predictors of CDK4/6 inhibition efficacy and perhaps present novel candidates for tumor therapy and diagnosis.
Collapse
Affiliation(s)
- Qingyi Hu
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tao Huang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
10
|
Ferragut Cardoso AP, Nail AN, Banerjee M, Wise SS, States JC. miR-186 induces tetraploidy in arsenic exposed human keratinocytes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 256:114823. [PMID: 36989553 DOI: 10.1016/j.ecoenv.2023.114823] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 02/21/2023] [Accepted: 03/21/2023] [Indexed: 05/25/2023]
Abstract
Chronic inorganic arsenic (iAs) exposure in drinking water is a global issue affecting >225 million people. Skin is a major target organ for iAs. miRNA dysregulation and chromosomal instability (CIN) are proposed mechanisms of iAs-induced carcinogenesis. CIN is a cancer hallmark and tetraploid cells can better tolerate increase in chromosome number and aberration, contributing to the evolution of CIN. miR-186 is overexpressed in iAs-induced squamous cell carcinoma relative to iAs-induced hyperkeratosis. Bioinformatic analysis indicated that miR-186 targets mRNAs of important cell cycle regulators including mitotic checkpoint serine/threonine kinase B (BUB1) and cell division cycle 27 (CDC27). We hypothesized that miR-186 overexpression contributes to iAs-induced transformation of keratinocytes by targeting mitotic regulators leading to induction of CIN. Ker-CT cells, a near diploid human keratinocyte cell line, were transduced with miR-186 overexpressing or scrambled control lentivirus. Stable clones were isolated after puromycin selection. Clones transduced with lentivirus expressing either a scrambled control miRNA or miR-186 were maintained with 0 or 100 nM iAs for 4 weeks. Unexposed scrambled control clones were considered as passage matched controls. Chronic iAs exposure increased miR-186 expression in miR-186 clones. miR-186 overexpression significantly reduced CDC27 levels irrespective of iAs exposure. The percentage of tetraploid or aneuploid cells was increased in iAs exposed miR-186 clones. Aneuploidy can arise from a tetraploid intermediate. Suppression of CDC27 by miR-186 may lead to impairment of mitotic checkpoint complex formation and its ability to maintain cell cycle arrest leading to chromosome misalignment. As a result, cells overexpressing miR-186 and chronically exposed to iAs may have incorrect chromosome segregation and CIN. These data suggest that dysregulation of miRNA by iAs mediates tetraploidy, aneuploidy and chromosomal instability contributing to iAs-induced carcinogenesis.
Collapse
Affiliation(s)
- Ana P Ferragut Cardoso
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA
| | - Alexandra N Nail
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA
| | - Mayukh Banerjee
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA
| | - Sandra S Wise
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA
| | - J Christopher States
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA.
| |
Collapse
|
11
|
Elmehrath S, Nguyen HL, Karam SM, Amin A, Greish YE. BioMOF-Based Anti-Cancer Drug Delivery Systems. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:953. [PMID: 36903831 PMCID: PMC10005089 DOI: 10.3390/nano13050953] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/19/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
A variety of nanomaterials have been developed specifically for biomedical applications, such as drug delivery in cancer treatment. These materials involve both synthetic and natural nanoparticles and nanofibers of varying dimensions. The efficacy of a drug delivery system (DDS) depends on its biocompatibility, intrinsic high surface area, high interconnected porosity, and chemical functionality. Recent advances in metal-organic framework (MOF) nanostructures have led to the achievement of these desirable features. MOFs consist of metal ions and organic linkers that are assembled in different geometries and can be produced in 0, 1, 2, or 3 dimensions. The defining features of MOFs are their outstanding surface area, interconnected porosity, and variable chemical functionality, which enable an endless range of modalities for loading drugs into their hierarchical structures. MOFs, coupled with biocompatibility requisites, are now regarded as highly successful DDSs for the treatment of diverse diseases. This review aims to present the development and applications of DDSs based on chemically-functionalized MOF nanostructures in the context of cancer treatment. A concise overview of the structure, synthesis, and mode of action of MOF-DDS is provided.
Collapse
Affiliation(s)
- Sandy Elmehrath
- Department of Chemistry, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Ha L. Nguyen
- Department of Chemistry University of California—Berkeley, Kavli Energy Nanoscience Institute at UC Berkeley, and Berkeley Global Science Institute, Berkeley, CA 94720, USA
- Joint UAEU−UC Berkeley Laboratories for Materials Innovations, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Sherif M. Karam
- Department of Anatomy, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
- Zayed Centre for Health Sciences, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Amr Amin
- Zayed Centre for Health Sciences, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
- Department of Biology, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Yaser E. Greish
- Department of Chemistry, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
- Joint UAEU−UC Berkeley Laboratories for Materials Innovations, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
- Zayed Centre for Health Sciences, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| |
Collapse
|
12
|
Keyvani V, Mahmoudian RA, Mollazadeh S, Kheradmand N, Ghorbani E, Khazaei M, Saeed Al-Hayawi I, Hassanian SM, Ferns GA, Avan A, Anvari K. Insight into RNA-based Therapies for Ovarian Cancer. Curr Pharm Des 2023; 29:2692-2701. [PMID: 37916491 DOI: 10.2174/0113816128270476231023052228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/14/2023] [Indexed: 11/03/2023]
Abstract
Ovarian cancer (OC) is one of the most common malignancies in women and is associated with poor outcomes. The treatment for OC is often associated with resistance to therapies and hence this has stimulated the search for alternative therapeutic approaches, including RNA-based therapeutics. However, this approach has some challenges that include RNA degradation. To solve this critical issue, some novel delivery systems have been proposed. In current years, there has been growing interest in the improvement of RNAbased therapeutics as a promising approach to target ovarian cancer and improve patient outcomes. This paper provides a practical insight into the use of RNA-based therapeutics in ovarian cancers, highlighting their potential benefits, challenges, and current research progress. RNA-based therapeutics offer a novel and targeted approach to treat ovarian cancer by exploiting the unique characteristics of RNA molecules. By targeting key oncogenes or genes responsible for drug resistance, siRNAs can effectively inhibit tumor growth and sensitize cancer cells to conventional therapies. Furthermore, messenger RNA (mRNA) vaccines have emerged as a revolutionary tool in cancer immunotherapy. MRNA vaccines can be designed to encode tumor-specific antigens, stimulating the immune system to distinguish and eliminate ovarian cancer cells. A nano-based delivery platform improves the release of loaded RNAs to the target location and reduces the off-target effects. Additionally, off-target effects and immune responses triggered by RNA molecules necessitate careful design and optimization of these therapeutics. Several preclinical and clinical researches have shown promising results in the field of RNA-based therapeutics for ovarian cancer. In a preclinical study, siRNA-mediated silencing of the poly (ADP-ribose) polymerase 1 (PARP1) gene, involved in DNA repair, sensitized ovarian cancer cells to PARP inhibitors, leading to enhanced therapeutic efficacy. In clinical trials, mRNA-based vaccines targeting tumor-associated antigens have demonstrated safety and efficacy in stimulating immune responses in ovarian cancer patients. In aggregate, RNA-based therapeutics represent a promising avenue for the therapy of ovarian cancers. The ability to specifically target oncogenes or stimulate immune responses against tumor cells holds great potential for improving patient outcomes. However, further research is needed to address challenges related to delivery, permanence, and off-target effects. Clinical trials assessing the care and effectiveness of RNAbased therapeutics in larger patient cohorts are warranted. With continued advancements in the field, RNAbased therapeutics have the potential to develop the management of ovarian cancer and provide new hope for patients.
Collapse
Affiliation(s)
- Vahideh Keyvani
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Reihaneh Alsadat Mahmoudian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samaneh Mollazadeh
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Nahid Kheradmand
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elnaz Ghorbani
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazaei
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Seyed Mahdi Hassanian
- Department of Medical Genetics and Molecular Medicine, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton & Sussex Medical School, Falmer, Brighton, Sussex BN1 9PH, UK
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- College of Medicine, University of Warith Al-Anbiyaa, Karbala, Iraq
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane 4059, Australia
| | - Kazem Anvari
- Cancer Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
13
|
Abstract
The type of primary tumour of the ovary ranks first among all organs in the body. Although the incidence of malignant ovarian tumour ranks third among gynaecological malignancies, it is the most fatal type. A lack of effective diagnostic methods for early ovarian cancer remains, and the efficacy of advanced ovarian cancer is often unsatisfactory; the five-year survival rate of stage III-IV is less than 30%. Non-coding RNA is RNA that does not have protein-coding potential and was once considered as 'junk DNA'. However, increasing number of studies have shown that the disorder of non-coding RNA is related to a variety of diseases, including the occurrence and development of tumours. We summarised the dysregulated non-coding RNAs (miRNAs, circRNAs, and lncRNAs) reported currently in ovarian cancer and their functional mechanisms, and the clinical value of different types of ncRNAs as diagnostic or predictive markers for ovarian cancer, providing further evidence for non-coding RNAs to be considered as biomarkers of ovarian cancer.
Collapse
Affiliation(s)
- Ningxia Sun
- Department of Gynecology and Obstetrics, The Affiliated Hospital of Qingdao University, Qingdao, China
- Department of Medical Genetic, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shiguo Liu
- Department of Medical Genetic, The Affiliated Hospital of Qingdao University, Qingdao, China
- Prenatal Diagnosis Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Aiping Chen
- Department of Gynecology and Obstetrics, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
14
|
Timofeeva AV, Asaturova AV, Sannikova MV, Khabas GN, Chagovets VV, Fedorov IS, Frankevich VE, Sukhikh GT. Search for New Participants in the Pathogenesis of High-Grade Serous Ovarian Cancer with the Potential to Be Used as Diagnostic Molecules. LIFE (BASEL, SWITZERLAND) 2022; 12:life12122017. [PMID: 36556382 PMCID: PMC9784419 DOI: 10.3390/life12122017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/25/2022] [Accepted: 12/01/2022] [Indexed: 12/11/2022]
Abstract
Recent studies have attempted to develop molecular signatures of epithelial ovarian cancer (EOC) based on the quantitation of protein-coding and non-coding RNAs to predict disease prognosis. Due to the heterogeneity of EOC, none of the developed prognostic signatures were directly applied in clinical practice. Our work focuses on high-grade serous ovarian carcinoma (HGSOC) due to the highest mortality rate relative to other types of EOC. Using deep sequencing of small non-coding RNAs in combination with quantitative real-time PCR, we confirm the dualistic classification of epithelial ovarian cancers based on the miRNA signature of HGSOC (type 2), which differs from benign cystadenoma and borderline cystadenoma-precursors of low-grade serous ovarian carcinoma (type 1)-and identified two subtypes of HGSOC, which significantly differ in the level of expression of the progesterone receptor in the tumor tissue, the secretion of miR-16-5p, miR-17-5p, miR-93-5p, miR-20a-5p, the level of serum CA125, tumor size, surgical outcome (optimal or suboptimal cytoreduction), and response to chemotherapy. It was found that the combined determination of the level of miR-16-5p, miR-17-5p, miR-20a-5p, and miR-93-5p circulating in blood plasma of patients with primary HGSOC tumors makes it possible to predict optimal cytoreduction with 80.1% sensitivity and 70% specificity (p = 0.022, TPR = 0.8, FPR = 0.3), as well as complete response to adjuvant chemotherapy with 77.8% sensitivity and 90.9% specificity (p = 0.001, TPR = 0.78, FPR = 0.09). After the additional verification of the obtained data in a larger HGSOC patient cohort, the combined quantification of these four miRNAs is proposed to be used as a criterion for selecting patients either for primary cytoreduction or neoadjuvant chemotherapy followed by interval cytoreduction.
Collapse
Affiliation(s)
- Angelika V. Timofeeva
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov Ministry of Healthcare of The Russian Federation, Ac. Oparina 4, 117997 Moscow, Russia
- Correspondence: or ; Tel.: +7-495-531-4444
| | - Aleksandra V. Asaturova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov Ministry of Healthcare of The Russian Federation, Ac. Oparina 4, 117997 Moscow, Russia
| | - Maya V. Sannikova
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov Ministry of Healthcare of The Russian Federation, Ac. Oparina 4, 117997 Moscow, Russia
| | - Grigory N. Khabas
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov Ministry of Healthcare of The Russian Federation, Ac. Oparina 4, 117997 Moscow, Russia
| | - Vitaliy V. Chagovets
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov Ministry of Healthcare of The Russian Federation, Ac. Oparina 4, 117997 Moscow, Russia
| | - Ivan S. Fedorov
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov Ministry of Healthcare of The Russian Federation, Ac. Oparina 4, 117997 Moscow, Russia
| | - Vladimir E. Frankevich
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov Ministry of Healthcare of The Russian Federation, Ac. Oparina 4, 117997 Moscow, Russia
- Laboratory of Translational Medicine, Siberian State Medical University, 634050 Tomsk, Russia
| | - Gennady T. Sukhikh
- National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov Ministry of Healthcare of The Russian Federation, Ac. Oparina 4, 117997 Moscow, Russia
| |
Collapse
|
15
|
Cho JG, Kim SW, Lee A, Jeong HN, Yun E, Choi J, Jeong SJ, Chang W, Oh S, Yoo KH, Lee JB, Yoon S, Lee MS, Park JH, Jung MH, Kim SW, Kim KH, Suh DS, Choi KU, Choi J, Kim J, Kwon BS. MicroRNA-dependent inhibition of WEE1 controls cancer stem-like characteristics and malignant behavior in ovarian cancer. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 29:803-822. [PMID: 36159587 PMCID: PMC9463562 DOI: 10.1016/j.omtn.2022.08.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 08/17/2022] [Indexed: 01/22/2023]
|
16
|
Elgeshy KM, Abdel Wahab AHA. The Role, Significance, and Association of MicroRNA-10a/b in Physiology of Cancer. Microrna 2022; 11:118-138. [PMID: 35616665 DOI: 10.2174/2211536611666220523104408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 03/21/2022] [Accepted: 04/04/2022] [Indexed: 01/01/2023]
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that regulate the translation of mRNA and protein, mainly at the posttranscriptional level. Global expression profiling of miRNAs has demonstrated a broad spectrum of aberrations that correlated with several diseases, and miRNA- 10a and miRNA-10b were the first examined miRNAs to be involved in abnormal activities upon dysregulation, including many types of cancers and progressive diseases. It is expected that the same miRNAs behave inconsistently within different types of cancer. This review aims to provide a set of information about our updated understanding of miRNA-10a and miRNA-10b and their clinical significance, molecular targets, current research gaps, and possible future applications of such potent regulators.
Collapse
Affiliation(s)
- Khaled M Elgeshy
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Cairo, Egypt
| | | |
Collapse
|
17
|
Toward More Comprehensive Homologous Recombination Deficiency Assays in Ovarian Cancer, Part 1: Technical Considerations. Cancers (Basel) 2022; 14:cancers14051132. [PMID: 35267439 PMCID: PMC8909526 DOI: 10.3390/cancers14051132] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/19/2022] [Accepted: 02/22/2022] [Indexed: 02/05/2023] Open
Abstract
Simple Summary High-grade serous ovarian cancer (HGSOC) is the most frequent and lethal form of ovarian cancer and is associated with homologous recombination deficiency (HRD) in 50% of cases. This specific alteration is associated with sensitivity to PARP inhibitors (PARPis). Despite vast prognostic improvements due to PARPis, current molecular assays assessing HRD status suffer from several limitations, and there is an urgent need for a more accurate evaluation. In these companion reviews (Part 1: Technical considerations; Part 2: Medical perspectives), we develop an integrative review to provide physicians and researchers involved in HGSOC management with a holistic perspective, from translational research to clinical applications. Abstract High-grade serous ovarian cancer (HGSOC), the most frequent and lethal form of ovarian cancer, exhibits homologous recombination deficiency (HRD) in 50% of cases. In addition to mutations in BRCA1 and BRCA2, which are the best known thus far, defects can also be caused by diverse alterations to homologous recombination-related genes or epigenetic patterns. HRD leads to genomic instability (genomic scars) and is associated with PARP inhibitor (PARPi) sensitivity. HRD is currently assessed through BRCA1/2 analysis, which produces a genomic instability score (GIS). However, despite substantial clinical achievements, FDA-approved companion diagnostics (CDx) based on GISs have important limitations. Indeed, despite the use of GIS in clinical practice, the relevance of such assays remains controversial. Although international guidelines include companion diagnostics as part of HGSOC frontline management, they also underscore the need for more powerful and alternative approaches for assessing patient eligibility to PARP inhibitors. In these companion reviews, we review and present evidence to date regarding HRD definitions, achievements and limitations in HGSOC. Part 1 is dedicated to technical considerations and proposed perspectives that could lead to a more comprehensive and dynamic assessment of HR, while Part 2 provides a more integrated approach for clinicians.
Collapse
|
18
|
Zhang P, Ouyang Y, Sohn YS, Fadeev M, Karmi O, Nechushtai R, Stein I, Pikarsky E, Willner I. miRNA-Guided Imaging and Photodynamic Therapy Treatment of Cancer Cells Using Zn(II)-Protoporphyrin IX-Loaded Metal-Organic Framework Nanoparticles. ACS NANO 2022; 16:1791-1801. [PMID: 35020370 PMCID: PMC8867907 DOI: 10.1021/acsnano.1c04681] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
An analytical platform for the selective miRNA-21-guided imaging of breast cancer cells and miRNA-221-guided imaging of ovarian cancer cells and the selective photodynamic therapy (PDT) of these cancer cells is introduced. The method is based on Zn(II)-protoporphyrin IX, Zn(II)-PPIX-loaded UiO-66 metal-organic framework nanoparticles, NMOFs, gated by two hairpins Hi/Hj through ligation of their phosphate residues to the vacant Zr4+-ions associated with the NMOFs. The hairpins are engineered to include the miRNA recognition sequence in the stem domain of Hi, and in the Hi and Hj, partial locked stem regions of G-quadruplex subunits. Intracellular phosphate-ions displace the hairpins, resulting in the release of the Zn(II)-PPIX and intracellular miRNAs open Hi, and this triggers the autonomous cross-opening of Hi and Hj. This activates the interhairpin hybridization chain reaction and leads to the assembly of highly fluorescent Zn(II)-PPIX-loaded G-quadruplex chains. The miRNA-guided fluorescent chains allow selective imaging of cancer cells. Moreover, PDT with visible light selectively kills cancer cells and tumor cells through the formation of toxic reactive oxygen species.
Collapse
Affiliation(s)
- Pu Zhang
- Institute
of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Yu Ouyang
- Institute
of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Yang Sung Sohn
- Institute
of Life Science, The Hebrew University of
Jerusalem, Jerusalem 91904, Israel
| | - Michael Fadeev
- Institute
of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Ola Karmi
- Institute
of Life Science, The Hebrew University of
Jerusalem, Jerusalem 91904, Israel
| | - Rachel Nechushtai
- Institute
of Life Science, The Hebrew University of
Jerusalem, Jerusalem 91904, Israel
| | - Ilan Stein
- The
Lautenberg Center for Immunology and Cancer Research, IMRIC, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Eli Pikarsky
- The
Lautenberg Center for Immunology and Cancer Research, IMRIC, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Itamar Willner
- Institute
of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
19
|
Li T, Liu W, Hui W, Shi T, Liu H, Feng Y, Gao F. Integrated Analysis of Ulcerative Colitis Revealed an Association between PHLPP2 and Immune Infiltration. DISEASE MARKERS 2022; 2022:4983471. [PMID: 35308140 PMCID: PMC8931176 DOI: 10.1155/2022/4983471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/08/2022] [Accepted: 02/17/2022] [Indexed: 02/07/2023]
Abstract
Ulcerative colitis (UC) is a progressive intestine inflammatory disease that is prone to recur. Herein, we utilize microarray technology and bioinformatics to reveal the underlying pathogenesis of UC and provide novel markers. Colonic biopsies were taken from eight UC patients and eight healthy controls. Three differentially expressed miRNAs (DEMIs) and 264 differentially expressed genes (DEGs) were screened using mRNA and miRNA microarray. Most DEGs were significantly associated with immune response and were markedly enriched in the IL-17 signaling pathway. Among the target genes of DEMIs, PHLPP2 overlapped with DEGs and the downregulation of PHLPP2 group was mainly involved in the epithelial-mesenchymal transition. PHLPP2 was downregulated in UC patients, which was validated in 5 GEO datasets and qRT-PCR. The ROC curve demonstrated that PHLPP2 has a perfect ability to distinguish UC patients from healthy controls. Moreover, PHLPP2 was low expression in patients with active UC. CIBERSORT algorithm indicated that the abundance of gamma delta T cells (P = 0.04), M0 macrophages (P = 0.01), and activated mast cells (P < 0.01) was significantly greater than that of the control group. The Spearman correlation analysis showed that PHLPP2 was positively correlated with the proportion of activated NK cells (rho = 0.62, P = 0.013) and Tregs (rho = 0.55, P = 0.03), but negatively correlated with those of activated mast cells (rho = -0.8, P < 0.01) and macrophages (rho = -0.73, P < 0.01). These results indicate that PHLPP2 is associated with immune cells in the pathogenesis of UC, as well as provide new prospects and future directions of investigation.
Collapse
Affiliation(s)
- Ting Li
- 1Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Weidong Liu
- 2Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
- 3Xinjiang Clinical Research Center for Digestive Diseases, China
| | - Wenjia Hui
- 2Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
- 3Xinjiang Clinical Research Center for Digestive Diseases, China
| | - Tian Shi
- 2Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
- 3Xinjiang Clinical Research Center for Digestive Diseases, China
| | - Huan Liu
- 2Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
- 3Xinjiang Clinical Research Center for Digestive Diseases, China
| | - Yan Feng
- 2Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
- 3Xinjiang Clinical Research Center for Digestive Diseases, China
| | - Feng Gao
- 1Xinjiang Medical University, Urumqi, Xinjiang, China
- 2Department of Gastroenterology, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, Xinjiang, China
- 3Xinjiang Clinical Research Center for Digestive Diseases, China
| |
Collapse
|
20
|
Das M, Hasan M, Akter S, Roy S, Sharma B, Chowdhury MSR, Ahsan MI, Akhand RN, Uddin MB, Ahmed SSU. In Silico Investigation of Conserved miRNAs and Their Targets From the Expressed Sequence Tags in Neospora Caninum Genome. Bioinform Biol Insights 2021; 15:11779322211046729. [PMID: 34898982 PMCID: PMC8655437 DOI: 10.1177/11779322211046729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 08/20/2021] [Indexed: 12/02/2022] Open
Abstract
Neospora caninum is a protozoan parasite, the etiologic agent of Neosporosis—a common cause of abortion in cattle worldwide. Herd level prevalence of Neosporosis could be as high as 90%. However, there is no approved treatment and vaccines available for Neosporosis. MicroRNA (miRNA) based prophylaxis and therapeutics could be options for Neosporosis in cattle and other animals. The current study aimed to investigate the genome of Neospora caninum to identify and characterize the conserved miRNAs through Expressed Sequence Tags (ESTs) dependent homology search. A total of 1,041 mature miRNAs of reference organisms were employed against 336 non-redundant ESTs available in the genome of Neospora caninum. The study predicted one putative miRNA “nca-miR-9388-5p” of 19 nucleotides with MFEI value -1.51 kcal/mol and (A + U) content% 72.94% corresponding with its pre-miRNA. A comprehensive search for specific gene targets was performed and discovered 16 potential genes associated with different protozoal physiological functions. Significantly, the gene “Protein phosphatase” was found responsible for the virulence of Neospora caninum. The other genes were accounted for gene expression, vesicular transport, cell signaling, cell proliferation, DNA repair mechanism, and different developmental stages of the protozoon. Therefore, this study finding will provide pivotal information to future aspirants upon Bovine Neosporosis. It will also serve as the baseline information for further studies of the bioinformatics approach to identify other protozoal miRNAs.
Collapse
Affiliation(s)
- Moumita Das
- Department of Epidemiology and Public Health, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Mahmudul Hasan
- Department of Pharmaceuticals and Industrial Biotechnology, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Sharmin Akter
- Department of Epidemiology and Public Health, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Sawrab Roy
- Department of Microbiology and Immunology, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Binayok Sharma
- Department of Medicine, Sylhet Agricultural University, Sylhet, Bangladesh
| | | | - Md Irtija Ahsan
- Department of Epidemiology and Public Health, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Rubaiat Nazneen Akhand
- Department of Biochemistry and Chemistry, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Md Bashir Uddin
- Department of Medicine, Sylhet Agricultural University, Sylhet, Bangladesh
| | - Syed Sayeem Uddin Ahmed
- Department of Epidemiology and Public Health, Sylhet Agricultural University, Sylhet, Bangladesh
| |
Collapse
|
21
|
Berner K, Hirschfeld M, Weiß D, Rücker G, Asberger J, Ritter A, Nöthling C, Jäger M, Juhasz-Böss I, Erbes T. Evaluation of circulating microRNAs as non-invasive biomarkers in the diagnosis of ovarian cancer: a case–control study. Arch Gynecol Obstet 2021; 306:151-163. [PMID: 34889994 PMCID: PMC9300512 DOI: 10.1007/s00404-021-06287-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 10/13/2021] [Indexed: 01/10/2023]
Abstract
Purpose Ovarian cancer is the seventh most frequent form of malignant diseases in women worldwide and over 150,000 women die from it every year. More than 70 percent of all ovarian cancer patients are diagnosed at a late-stage disease with poor prognosis necessitating the development of sufficient screening biomarkers. MicroRNAs displayed promising potential as early diagnostics in various malignant diseases including ovarian cancer. The presented study aimed at identifying single microRNAs and microRNA combinations detecting ovarian cancer in vitro and in vivo. Methods Intracellular, extracellular and urinary microRNA expression levels of twelve microRNAs (let-7a, let-7d, miR-10a, miR-15a, miR-15b, miR-19b, miR-20a, miR-21, miR-100, miR-125b, miR-155, miR-222) were quantified performing quantitative real-time-PCR. Therefore, the three ovarian cancer cell lines SK-OV-3, OAW-42, EFO-27 as well as urine samples of ovarian cancer patients and healthy controls were analyzed. Results MiR-15a, miR-20a and miR-222 showed expression level alterations extracellularly, whereas miR-125b did intracellularly across the analyzed cell lines. MicroRNA expression alterations in single cell lines suggest subtype specificity in both compartments. Hypoxia and acidosis showed scarce effects on single miRNA expression levels only. Furthermore, we were able to demonstrate the feasibility to clearly detect the 12 miRNAs in urine samples. In urine, miR-15a was upregulated whereas let-7a was down-regulated in ovarian cancer patients. Conclusion Intracellular, extracellular and urinary microRNA expression alterations emphasize their great potential as biomarkers in liquid biopsies. Especially, miR-15a and let-7a qualify for possible circulating biomarkers in liquid biopsies of ovarian cancer patients. Supplementary Information The online version contains supplementary material available at 10.1007/s00404-021-06287-1.
Collapse
Affiliation(s)
- Kai Berner
- Department of Obstetrics and Gynecology, Medical Center, University of Freiburg, Hugstetterstr. 55, 79106, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Marc Hirschfeld
- Department of Obstetrics and Gynecology, Medical Center, University of Freiburg, Hugstetterstr. 55, 79106, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute of Veterinary Medicine, Georg-August-University Goettingen, Göttingen, Germany
| | - Daniela Weiß
- Department of Obstetrics and Gynecology, Medical Center, University of Freiburg, Hugstetterstr. 55, 79106, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Gerta Rücker
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute of Medical Biometry and Statistics, Medical Center, University of Freiburg, Freiburg, Germany
| | - Jasmin Asberger
- Department of Obstetrics and Gynecology, Medical Center, University of Freiburg, Hugstetterstr. 55, 79106, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andrea Ritter
- Department of Obstetrics and Gynecology, Medical Center, University of Freiburg, Hugstetterstr. 55, 79106, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Claudia Nöthling
- Department of Obstetrics and Gynecology, Medical Center, University of Freiburg, Hugstetterstr. 55, 79106, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Markus Jäger
- Department of Obstetrics and Gynecology, Medical Center, University of Freiburg, Hugstetterstr. 55, 79106, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ingolf Juhasz-Böss
- Department of Obstetrics and Gynecology, Medical Center, University of Freiburg, Hugstetterstr. 55, 79106, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Thalia Erbes
- Department of Obstetrics and Gynecology, Medical Center, University of Freiburg, Hugstetterstr. 55, 79106, Freiburg, Germany.
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
22
|
Yang J, Gao C, Liu M, Liu YC, Kwon J, Qi J, Tian X, Stein A, Liu YV, Kong NR, Wu Y, Yin S, Xi J, Chen Z, Kumari K, Wong H, Luo H, Silberstein LE, Thoms JAI, Unnikrishnan A, Pimanda JE, Tenen DG, Chai L. Targeting an Inducible SALL4-Mediated Cancer Vulnerability with Sequential Therapy. Cancer Res 2021; 81:6018-6028. [PMID: 34593523 PMCID: PMC8639708 DOI: 10.1158/0008-5472.can-21-0030] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 07/28/2021] [Accepted: 09/29/2021] [Indexed: 11/16/2022]
Abstract
Oncofetal protein SALL4 is critical for cancer cell survival. Targeting SALL4, however, is only applicable in a fraction of cancer patients who are positive for this gene. To overcome this limitation, we propose to induce a cancer vulnerability by engineering a partial dependency upon SALL4. Following exogenous expression of SALL4, SALL4-negative cancer cells became partially dependent on SALL4. Treatment of SALL4-negative cells with the FDA-approved hypomethylating agent 5-aza-2'-deoxycytidine (DAC) resulted in transient upregulation of SALL4. DAC pretreatment sensitized SALL4-negative cancer cells to entinostat, which negatively affected SALL4 expression through a microRNA, miRNA-205, both in culture and in vivo. Moreover, SALL4 was essential for the efficiency of sequential treatment of DAC and entinostat. Overall, this proof-of-concept study provides a framework whereby the targeting pathways such as SALL4-centered therapy can be expanded, sensitizing cancer cells to treatment by transient target induction and engineering a dependency. SIGNIFICANCE: These findings provide a therapeutic approach for patients harboring no suitable target by induction of a SALL4-mediated vulnerability.
Collapse
Affiliation(s)
- Junyu Yang
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Chong Gao
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Miao Liu
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Yao-Chung Liu
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Junsu Kwon
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Jun Qi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Xi Tian
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Alicia Stein
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Yanjing V Liu
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Nikki R Kong
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Yue Wu
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Shenyi Yin
- State Key Laboratory of Natural and Biomimetic Drugs, Institute of Molecular Medicine, Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| | - Jianzhong Xi
- State Key Laboratory of Natural and Biomimetic Drugs, Institute of Molecular Medicine, Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| | - Zhiyuan Chen
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts
| | - Kalpana Kumari
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Hannan Wong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Hongbo Luo
- Joint Program in Transfusion Medicine, Department of Laboratory Medicine, Boston Children's Hospital, Boston, Massachusetts
| | - Leslie E Silberstein
- Joint Program in Transfusion Medicine, Department of Laboratory Medicine, Boston Children's Hospital, Boston, Massachusetts
| | - Julie A I Thoms
- School of Medical Sciences and Lowy Cancer Research Centre, Faculty of Medicine, UNSW Sydney, New South Wales, Australia
| | - Ashwin Unnikrishnan
- Prince of Wales Clinical School and Lowy Cancer Research Centre, Faculty of Medicine, UNSW Sydney, New South Wales, Australia
| | - John E Pimanda
- School of Medical Sciences and Lowy Cancer Research Centre, Faculty of Medicine, UNSW Sydney, New South Wales, Australia
- Prince of Wales Clinical School and Lowy Cancer Research Centre, Faculty of Medicine, UNSW Sydney, New South Wales, Australia
- Department of Hematology, Prince of Wales Hospital, Randwick, New South Wales, Australia
| | - Daniel G Tenen
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.
- Harvard Stem Cell Institute, Harvard Medical School, Boston, Massachusetts
| | - Li Chai
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts.
| |
Collapse
|
23
|
Záveský L, Jandáková E, Weinberger V, Hanzíková V, Slanař O, Kohoutová M. Ascites in ovarian cancer: MicroRNA deregulations and their potential roles in ovarian carcinogenesis. Cancer Biomark 2021; 33:1-16. [PMID: 34511487 DOI: 10.3233/cbm-210219] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Ovarian cancer comprises the most lethal gynecologic malignancy and is accompanied by the high potential for the incidence of metastasis, recurrence and chemotherapy resistance, often associated with a formation of ascitic fluid. The differentially expressed ascites-derived microRNAs may be linked to ovarian carcinogenesis. The article focuses on a number of miRNAs that share a common expression pattern as determined by independent studies using ascites samples and with regard to their functions and outcomes in experimental and clinical investigations.Let-7b and miR-143 have featured as tumor suppressors in ovarian cancer, which is in line with data on other types of cancer. Although two miRNAs, i.e. miR-26a-5p and miR-145-5p, act principally as tumor suppressor miRNAs, they occasionally exhibit oncogenic roles. The performance of miR-95-3p, upregulated in ascites, is open to debate given the current lack of supportive data on ovarian cancer; however, data on other cancers indicates its probable oncogenic role. Different findings have been reported for miR-182-5p and miR-200c-3p; in addition to their presumed oncogenic roles, contrasting findings have indicated their ambivalent functions. Further research is required for the identification and evaluation of the potential of specific miRNAs in the diagnosis, prediction, treatment and outcomes of ovarian cancer patients.
Collapse
Affiliation(s)
- Luděk Záveský
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague and General University Hospital, Prague, Czech Republic.,Institute of Pharmacology, First Faculty of Medicine, Charles University, Prague and General University Hospital, Prague, Czech Republic
| | - Eva Jandáková
- Department of Pathology, Faculty of Medicine, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Vít Weinberger
- Department of Obstetrics and Gynecology, Masaryk University and University Hospital Brno, Brno, Czech Republic
| | - Veronika Hanzíková
- Faculty Transfusion Center, General University Hospital, Prague, Czech Republic
| | - Ondřej Slanař
- Institute of Pharmacology, First Faculty of Medicine, Charles University, Prague and General University Hospital, Prague, Czech Republic
| | - Milada Kohoutová
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague and General University Hospital, Prague, Czech Republic
| |
Collapse
|
24
|
Ferneza S, Fetsych M, Shuliak R, Makukh H, Volodko N, Yarema R, Fetsych T. Clinical significance of microRNA-200 and let-7 families expression assessment in patients with ovarian cancer. Ecancermedicalscience 2021; 15:1249. [PMID: 34267805 PMCID: PMC8241451 DOI: 10.3332/ecancer.2021.1249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Indexed: 11/30/2022] Open
Abstract
Ovarian cancer (OC) represents the most lethal malignancy in gynaecologic oncology practice and shows a high recurrence rate due to its early chemoresistance to first-line chemotherapy. Yet, timely selection of the correct treatment strategy is likely to prolong a patient's survival. MicroRNAs (miRNAs) are a class of short non-coding RNAs responsible for the expression of 30%-60% of human genes. In numerous studies, miRNAs have been used to provide the overall prognosis for patients and analyse the process's prevalence and responses to chemotherapy. In particular, miRNAs as markers for predicting the sensitivity of OC to platinum- and taxane-based chemotherapeutics can significantly improve the treatment efficacy. This article highlights two families of miRNAs: miR-200 and let-7, which are promising for further research on OC and its chemosensitivity.
Collapse
Affiliation(s)
- Severyn Ferneza
- Department of Oncology and Radiology FPGE, Danylo Halytsky Lviv National Medical University, Hasheka 2A str., Lviv 79000, Ukraine
| | - Markiyan Fetsych
- Department of Oncology and Radiology FPGE, Danylo Halytsky Lviv National Medical University, Hasheka 2A str., Lviv 79000, Ukraine
| | - Roman Shuliak
- Department of Microinvasive Surgery, Lviv State Regional Oncology Treatment and Diagnostic Center, Hasheka 2A str., Lviv 79000, Ukraine
| | - Halyna Makukh
- Institute of Hereditary Pathology, National Academy of Medical Sciences of Ukraine, Lviv 79000, Ukraine
| | - Natalia Volodko
- Department of Oncology and Radiology FPGE, Danylo Halytsky Lviv National Medical University, Hasheka 2A str., Lviv 79000, Ukraine
| | - Roman Yarema
- Department of Oncology and Radiology FPGE, Danylo Halytsky Lviv National Medical University, Hasheka 2A str., Lviv 79000, Ukraine
| | - Taras Fetsych
- Department of Oncology and Radiology FPGE, Danylo Halytsky Lviv National Medical University, Hasheka 2A str., Lviv 79000, Ukraine
| |
Collapse
|
25
|
Meng Q, Wang N, Duan G. Long non-coding RNA XIST regulates ovarian cancer progression via modulating miR-335/BCL2L2 axis. World J Surg Oncol 2021; 19:165. [PMID: 34090463 PMCID: PMC8180121 DOI: 10.1186/s12957-021-02274-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 05/24/2021] [Indexed: 01/20/2023] Open
Abstract
Background X inactivation-specific transcript (XIST) is the long non-coding RNA (lncRNA) related to cancer, which is involved in the development and progression of various types of tumor. However, up to now, the exact role and molecular mechanism of XIST in the progression of ovarian cancer are not clear. We studied the function of XIST in ovarian cancer cells and clinical tumor specimens. Methods RT-qPCR was performed to detect the expression levels of miR-335 and BCL2L2 in ovarian cancer cells and tissues. MTT and transwell assays were carried out to detect cell proliferation, migration, and invasion abilities. Western blot was performed to analyze the expression level of BCL2L2. The interaction between miR-335 and XIST/BCL2L2 was confirmed using a luciferase reporter assay. Results The inhibition of XIST can inhibit the proliferation invasion and migration of human ovarian cancer cells. In addition, the miR-335/BCL2L2 axis was involved in the functions of XIST in ovarian cancer cells. These results suggested that XIST could regulate tumor proliferation and invasion and migration via modulating miR-335/BCL2L2. Conclusion XIST might be a carcinogenic lncRNA in ovarian cancer by regulating miR-335, and it can serve as a therapeutic target in human ovarian cancer.
Collapse
Affiliation(s)
- Qingjuan Meng
- Medical Examination Center, The Third Hospital of Jinan, Jinan, 250132, China
| | - Ningning Wang
- Department of Obstetrics, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250013, Shandong, China
| | - Guanglan Duan
- Department of Urology Surgery, Jinan Central Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250013, Shandong, China.
| |
Collapse
|
26
|
Oleuropein reduces cisplatin resistance in ovarian cancer by targeting apoptotic pathway regulators. Life Sci 2021; 278:119525. [PMID: 33894272 DOI: 10.1016/j.lfs.2021.119525] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 04/05/2021] [Accepted: 04/10/2021] [Indexed: 12/11/2022]
Abstract
AIMS Despite many attempts to treat ovarian cancer, 13,940 individuals perish annually due to this disease worldwide. Chemotherapy is the main approach to ovarian cancer treatment, but the development of drug resistance is a major obstacle to the successful treatment. Oleuropein is a phenolic ingredient with anticancer characteristics. This study was aimed at investigating the effect of oleuropein on cell viability, cisplatin resistance, and apoptosis, as well as the expression levels of miR-34a, miR-125b, miR16, miR-21, and some of their potential target genes in ovarian cancer cells. MAIN METHODS A2780S and A2780/CP cell lines were exposed to different concentrations of oleuropein alone or in combination with cisplatin for 48 h and 72 h. After that, the cell viability and apoptosis were evaluated using MTT assay and flow cytometry, respectively. Bioinformatics analyses were conducted using STRING database and Cytoscape software. The effect of oleuropein and/or cisplatin on the expression of miRNAs and target genes was assessed via Real-time PCR. KEY FINDINGS Upon treatment with oleuropein, the expression of P21, P53, and TNFRSF10B increased while that of Bcl-2 and Mcl1 decreased. Moreover, this is the 1st report of a significant decrease in the expression of miR-21 and increase in the expression of miR-34a, miR-125b, and miR16 by oleuropein and/or cisplatin in ovarian cancer cells. SIGNIFICANCE Altogether, these data revealed that oleuropein regulated the expression of the above-mentioned miRNAs in ovarian cancer cells, which potentially resulted in apoptosis induction, cell proliferation inhibition, and cisplatin resistance decline in ovarian cancer cells. To confirm the results of this study, it is suggested that similar experiments be performed in animal models of ovarian cancer.
Collapse
|
27
|
Rahimian N, Razavi ZS, Aslanbeigi F, Mirkhabbaz AM, Piroozmand H, Shahrzad MK, Hamblin MR, Mirzaei H. Non-coding RNAs related to angiogenesis in gynecological cancer. Gynecol Oncol 2021; 161:896-912. [PMID: 33781555 DOI: 10.1016/j.ygyno.2021.03.020] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 03/19/2021] [Indexed: 02/07/2023]
Abstract
Gynecological cancer affects the female reproductive system, including ovarian, uterine, endometrial, cervical, vulvar, and vaginal tumors. Non-coding RNAs (ncRNAs), and in particular microRNAs, function as regulatory molecules, which can control gene expression in a post-transcriptional manner. Normal physiological processes like cellular proliferation, differentiation, and apoptosis, and pathological processes such as oncogenesis and metastasis are regulated by microRNAs. Numerous reports have shown a direct role of microRNAs in the modulation of angiogenesis in gynecological cancer, via targeting pro-angiogenic factors and signaling pathways. Understanding the molecular mechanism involved in the regulation of angiogenesis by microRNAs may lead to new treatment options. Recently the regulatory role of some long non-coding RNAs in gynecological cancer has also been explored, but the information on this function is more limited. The aim of this article is to explore the pathways responsible for angiogenesis, and to what extent ncRNAs may be employed as biomarkers or therapeutic targets in gynecological cancer.
Collapse
Affiliation(s)
- Neda Rahimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | | | | | | | - Haleh Piroozmand
- Faculty of Veterinary Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Karim Shahrzad
- Department of Internal Medicine and endocrinology, Shohadae Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa.
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
28
|
Wang SM, Pang J, Zhang KJ, Zhou ZY, Chen FY. lncRNA MIR503HG inhibits cell proliferation and promotes apoptosis in TNBC cells via the miR-224-5p/HOXA9 axis. MOLECULAR THERAPY-ONCOLYTICS 2021; 21:62-73. [PMID: 33869743 PMCID: PMC8027537 DOI: 10.1016/j.omto.2021.03.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 03/14/2021] [Indexed: 12/19/2022]
Abstract
Triple-negative breast cancer (TNBC) is a highly invasive subtype of breast cancer. This study investigated the molecular mechanism and influences of MIR503HG, miR-224-5p, and homeobox A9 (HOXA9) on TNBC cell growth and migration. Dual-luciferase reporter gene and RNA immunoprecipitation were performed to examine the regulation of MIR503HG, miR-224-5p, and HOXA9. Cell proliferation, apoptosis, migration, and invasion were evaluated by colony formation, flow cytometry, and Transwell assays. Finally, nude mice were employed to investigate the influence of MIR503HG on TNBC tumor growth. HOXA9 protein levels were detected by immunohistochemical staining. MIR503HG and HOXA9 expression were reduced in TNBC, while miR-224-5p was increased. Overexpression of MIR503HG or HOXA9 reduced the cell migration ability and proliferation and promoted apoptosis, and knockdown of MIR503HG or overexpression of miR-224-5p exhibited the opposite effects. Furthermore, MIR503HG promoted HOXA9 expression by inhibiting miR-224-5p. Overexpression of miR-224-5p reversed the effects of MIR503HG overexpression on TNBC cells, while overexpression of HOXA9 reversed the effect of MIR503HG knockdown. Additionally, an in vivo study proved that MIR503HG inhibited TNBC tumor growth via the miR-224-5p/HOXA9 axis. MIR503HG inhibited cell proliferation and promoted the apoptosis of TNBC cells via the miR-224-5p/HOXA9 axis, which may function as a novel target for the treatment of TNBC.
Collapse
Affiliation(s)
- Shou-Man Wang
- Department of Breast Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, P.R. China.,Clinical Research Center for Breast Cancer in Hunan Province, Changsha 410008, Hunan Province, P.R. China
| | - Jian Pang
- Department of Breast Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, P.R. China.,Clinical Research Center for Breast Cancer in Hunan Province, Changsha 410008, Hunan Province, P.R. China
| | - Ke-Jing Zhang
- Department of Breast Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, P.R. China.,Clinical Research Center for Breast Cancer in Hunan Province, Changsha 410008, Hunan Province, P.R. China
| | - Zhi-Yang Zhou
- Department of Breast Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, P.R. China.,Clinical Research Center for Breast Cancer in Hunan Province, Changsha 410008, Hunan Province, P.R. China
| | - Fei-Yu Chen
- Department of Breast Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan Province, P.R. China.,Clinical Research Center for Breast Cancer in Hunan Province, Changsha 410008, Hunan Province, P.R. China
| |
Collapse
|
29
|
Ji YJ, Shao Y, Zhang J, Zhang X, Qiang P. Bromodomain-containing protein 4 silencing by microRNA-765 produces anti-ovarian cancer cell activity. Aging (Albany NY) 2021; 13:8214-8227. [PMID: 33686960 PMCID: PMC8034896 DOI: 10.18632/aging.202632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/14/2021] [Indexed: 02/06/2023]
Abstract
Bromodomain-containing protein 4 (BRD4) overexpression promotes ovarian cancer progression, and represents an important therapeutic oncotarget. This current study identified microRNA-765 (miR-765) as a novel BRD4-targeting miRNA. We showed that miR-765 directly associated with and silenced BRD4. In primary ovarian cancer cells and established cell lines (SKOV3 and CaOV3), ectopic overexpression of miR-765 inhibited cancer cell proliferation, migration and invasion, and induced apoptosis activation. In contrast, miR-765 inhibition by its anti-sense induced BRD4 upregulation to promote ovarian cancer cell proliferation, migration and invasion. Significantly, miR-765 overexpression-induced anti-ovarian cancer cell activity was largely attenuated by restoring BRD4 expression through an UTR-null BRD4 construct. Moreover, CRISPR/Cas9-induced BRD4 knockout (KO)inhibited proliferation and activated apoptosis in ovarian cancer cells. BRD4 KO in ovarian cancer cells abolished the functional impact of miR-765. miR-765 expression levels were downregulated in human ovarian cancer tissues and cells, correlating with the upregulation of BRD4 mRNA. Collectively, BRD4 silencing by miR-765produces significant anti-ovarian cancer cell activity. miR-765 could be further tested for its anti-ovarian cancer potential.
Collapse
Affiliation(s)
- Yong-Jun Ji
- Obstetrics and Gynecology Department, Suzhou Ninth People's Hospital of Soochow University, Suzhou, China
| | - Yang Shao
- Obstetrics and Gynecology Department, The Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, China
| | - Jie Zhang
- Obstetrics and Gynecology Department, The Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, China
| | - Xu Zhang
- Obstetrics and Gynecology Department, Suzhou Ninth People's Hospital of Soochow University, Suzhou, China
| | - Ping Qiang
- Obstetrics and Gynecology Department, The Affiliated Zhangjiagang Hospital of Soochow University, Zhangjiagang, China
| |
Collapse
|
30
|
Guttilla Reed IK. CUREing cancer: Development and implementation of a molecular biology-focused course-based undergraduate research experience using a cancer cell culture model. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 49:287-297. [PMID: 32919431 DOI: 10.1002/bmb.21452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 08/06/2020] [Accepted: 08/21/2020] [Indexed: 06/11/2023]
Abstract
Many students in the sciences are interested in exploring research opportunities; however, the one-on-one faculty mentorship model often lacks the ability to supervise large numbers of students. An alternative mechanism for exposing undergraduate students to the research process is participation in a Course-based Undergraduate Research Experience (CURE). CUREs promote inclusivity in research, and provide structure for both students and faculty while engaging students in scientific discovery. This study describes a model for a CURE in cancer biology, and reports student outcomes. Students utilized bioinformatics to predict targets genes of miR-100, a microRNA that is differentially expressed in a cell culture model of breast cancer metastasis. Students were required to engage with primary literature to write a grant proposal for their target gene, and then were trained to perform basic molecular biology techniques to test their individual hypotheses. Additionally, the course integrated opportunities to troubleshoot experiments and present data to the group, and culminated in a publication style scientific report discussing the results of their individual research project. Students reported significantly increased confidence in executing various molecular biology techniques and research-related skills based on pre- and post-assessment surveys. Student feedback also indicated that they gained an understanding of primary literature, experimental design, and scientific writing as a result of the course. This study supports that CUREs can be an effective pedagogy for not only engaging larger groups of students in research, but also improving their confidence and skill set in the laboratory.
Collapse
|
31
|
Identification of miRNAs as diagnostic and prognostic markers in hepatocellular carcinoma. Aging (Albany NY) 2021; 13:6115-6133. [PMID: 33617479 PMCID: PMC7950227 DOI: 10.18632/aging.202606] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 10/27/2020] [Indexed: 12/24/2022]
Abstract
The development of high-throughput technologies has yielded a large amount of data from molecular and epigenetic analysis that could be useful for identifying novel biomarkers of cancers. We analyzed Gene Expression Omnibus (GEO) DataSet micro–ribonucleic acid (miRNA) profiling datasets to identify miRNAs that could have value as diagnostic and prognostic biomarkers in hepatocellular carcinoma (HCC). We adopted several computing methods to identify the functional roles of these miRNAs. Ultimately, via integrated analysis of three GEO DataSets, three differential miRNAs were identified as valuable markers in HCC. Combining the results of receiver operating characteristic (ROC) analyses and Kaplan–Meier Plotter (KM) survival analyses, we identified hsa-let-7e as a novel potential biomarker for HCC diagnosis and prognosis. Then, we found via quantitative reverse-transcription polymerase chain reaction (RT-qPCR) that let-7e was upregulated in HCC tissues and that such upregulation was significantly associated with poor prognosis in HCC. The results of functional analysis indicated that upregulated let-7e promoted tumor cell growth and proliferation. Additionally, via mechanistic analysis, we found that let-7e could regulate mitochondrial apoptosis and autophagy to adjust and control cancer cell proliferation. Therefore, the integrated results of our bioinformatics analyses of both clinical and experimental data showed that let-7e was a novel biomarker for HCC diagnosis and prognosis and might be a new treatment target.
Collapse
|
32
|
The Roles of the miRNAome and Transcriptome in the Ovine Ovary Reveal Poor Efficiency in Juvenile Superovulation. Animals (Basel) 2021; 11:ani11010239. [PMID: 33477862 PMCID: PMC7832859 DOI: 10.3390/ani11010239] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/09/2021] [Accepted: 01/12/2021] [Indexed: 01/22/2023] Open
Abstract
Simple Summary Using the technology of juvenile superovulation, more follicles can be acquired in juvenile animals than in adult animals. However, oocytes derived from the follicles of juvenile animals are usually of poor quality, meaning that they have lower levels of subsequent maturation and embryonic development. In the present study, we used an exogenous hormone treatment to stimulate Hu sheep in order to compare the differences in ovarian superovulation effects and serum hormone secretion in juvenile and adult sheep. Differentially expressed microRNA (miRNA) and messenger RNA (mRNA) from the ovaries of juvenile and adult Hu sheep were then investigated using high-throughput sequencing technology to reveal the formation mechanism of large numbers of follicles and poor oocyte quality in juvenile ovaries under superovulation treatment. We found that molecules of oar-miR-143 and follicle-stimulating hormone receptor (FSHR), among others, might regulate follicle formation, while oar-miR-485-3p, oar-miR-377-3p, and pentraxin 3 (PTX3), among others, may be associated with oocyte quality. The results will help us to identify miRNAs and mRNAs that could be used to predict ovarian superovulation potential and oocyte quality in the future. Abstract Juvenile superovulation can provide a wealth of oocyte material for embryo production, animal cloning, and genetic modification research, but embryos derived from juvenile oocytes show poor efficiency in subsequent developmental capacity. In order to reveal the formation mechanism of large numbers of follicles and poor oocyte quality in juvenile ovaries under superovulation treatment, differentially expressed microRNAs (miRNAs) and messenger RNAs (mRNAs) were characterized and investigated in the ovaries of lambs and adult sheep using high-throughput sequencing technology. The majority of differentially expressed miRNAs (337/358) were upregulated in lamb libraries. The expression levels of mRNAs related to hormone receptors (follicle-stimulating hormone receptor, FSHR; luteinizing hormone/choriogonadotropin receptor, LHCGR; estrogen receptor 1, ESR1), steroid hormone secretion (cytochrome P450 family 11 subfamily A member 1, CYP11A1; cytochrome P450 family 17 subfamily A member 1, CYP17A1; cytochrome P450 family 19 subfamily A member 1, CYP19A1), and oocyte quality (pentraxin 3, PTX3; BCL2 apoptosis regulator, BCL2; caspase 3, CASP3) were significantly different between the lamb and adult libraries. The miRNA aor-miR-143, which targets FSHR, was highly and differentially expressed, and PTX3 was predicted to be targeted by oar-miR-485-3p and oar-miR-377-3p in the ovine ovary. A considerable number of miRNAs were predicted to inhibit ESR1 expression in lamb ovaries. In conclusion, oar-miR-143 and FSHR molecules, among others, might regulate follicle formation, and oar-miR-485-3p, oar-miR-377-3p, and PTX3, among others, may be associated with oocyte quality. These identified miRNAs and mRNAs will be beneficial for the prediction of ovarian superovulation potential and screening of oocytes.
Collapse
|
33
|
Ling J, He P. miR-361-5p regulates ovarian cancer cell proliferation and apoptosis by targeting TRAF3. Exp Ther Med 2021; 21:199. [PMID: 33500694 PMCID: PMC7818538 DOI: 10.3892/etm.2021.9632] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 01/13/2020] [Indexed: 12/29/2022] Open
Abstract
An increasing body of evidence has demonstrated that the abnormal expression of microRNAs (miRNAs) participate in the development and progression of ovarian cancer. miR-361-5p has been reported to serve as a tumor suppressor or oncogene in a number of different human cancer types. In the current study, it was indicated that miR-361-5p was highly expressed in ovarian cancer tissues. Compared with human ovarian epithelial cells HOSEpiC, miR-361-5p was upregulated in ovarian cancer cell lines, including in ES-2 and SKOV3 cells. The binding sites between TNF receptor-associated factor 3 (TRAF3; a member of the TRAF family of cytoplasmic adaptor proteins) and miR-361-5p were predicted using TargetScan, and a dual luciferase reporter gene assay verified the result. Subsequently, a reverse transcription-quantitative PCR assay and western blot assay indicated that TRAF3 was downregulated in ovarian cancer tissues and cell lines. It was demonstrated that miR-361-5p inhibitor significantly reduced the viability of SKOV3 cells and induced apoptosis. However, all changes were reversed by TRAF3 silencing. Furthermore, it was demonstrated that miR-361-5p inhibitor decreased the expression of p-p65 in SKOV3 cells, indicating the inhibition of the NF-kB signaling pathway. In conclusion, miR-361-5p may regulate the proliferation and apoptosis of ovarian cancer cells by targeting TRAF3. Therefore, targeting miR-361-5p may exhibit therapeutic potential in the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Jianmei Ling
- Department of Obstetrics and Gynecology, Nantong Maternal and Child Health Care Hospital, Nantong, Jiangsu 226000, P.R. China
| | - Panwen He
- Clinical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430010, P.R. China
| |
Collapse
|
34
|
Liu J, Li M, Kong L, Cao M, Zhang M, Wang Y, Song C, Fang X, Chen H, Zhang C. CircARID1A regulates mouse skeletal muscle regeneration by functioning as a sponge of miR-6368. FASEB J 2021; 35:e21324. [PMID: 33421208 DOI: 10.1096/fj.202001992r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/30/2020] [Accepted: 12/14/2020] [Indexed: 12/21/2022]
Abstract
The noncoding RNAs play important role in growth and development of mammalian skeletal muscle. Recent work has shown that circRNAs are abundant in skeletal muscle tissue, with significant changes in their expression patterns during muscle development and aging. We identified a novel circRNA called circARID1A that is highly expressed in mice skeletal muscle compare to its linear transcript. Experiments shown that circARID1A significantly inhibited the process of C2C12 cell proliferation and promoted its differentiation. Interactions between circRNA and miRNA were screened by miRNA gene chip sequencing. The results indicated that circARID1A can sponge miR-6368, which was further verified by miRNA sensor and other experiments. Besides, miR-6368 is a commonly expressed miRNA that regulates the expression of several target genes including Tlr4. A mouse model of skeletal muscle injury was successfully established to explore the role of circARID1A in skeletal muscle development and regeneration in vivo. Moreover, we found the overexpression of circARID1A significantly promoted the regeneration of skeletal muscle. The results of our study suggest that circARID1A may regulate skeletal muscle cell development and regeneration by sponging miR-6368.
Collapse
Affiliation(s)
- Jia Liu
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - MengLu Li
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - LingHao Kong
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - MengWen Cao
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - MoLan Zhang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - YanHong Wang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - ChengChuang Song
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - XingTang Fang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Hong Chen
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - ChunLei Zhang
- Institute of Cellular and Molecular Biology, School of Life Science, Jiangsu Normal University, Xuzhou, China
| |
Collapse
|
35
|
Hirschfeld M, Ge I, Rücker G, Waldschmidt J, Mayer S, Jäger M, Voigt M, Kammerer B, Nöthling C, Berner K, Weiss D, Asberger J, Erbes T. Mutually distinguishing microRNA signatures of breast, ovarian and endometrial cancers in vitro. Mol Med Rep 2020; 22:4048-4060. [PMID: 33000259 DOI: 10.3892/mmr.2020.11466] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 07/06/2020] [Indexed: 11/05/2022] Open
Abstract
Early diagnosis and therapy in the first stages of a malignant disease is the most crucial factor for successful cancer treatment and recovery. Currently, there is a high demand for novel diagnostic tools that indicate neoplasms in the first or pre‑malignant stages. MicroRNAs (miRNA or miR) are small non‑coding RNAs that may act as oncogenes and downregulate tumor‑suppressor genes. The detection and mutual discrimination of the three common female malignant neoplasia types breast (BC), ovarian (OC) and endometrial cancer (EC) could be enabled by identification of tumor entity‑specific miRNA expression differences. In the present study, the relative expression levels of 25 BC, EC and OC‑related miRNAs were assessed by reverse transcription‑quantitative PCR and determined using the 2‑ΔΔCq method for normalization against the mean of four housekeeping genes. Expression levels of all miRNAs were analyzed by regression against cell line as a factor. An expression level‑based discrimination between BC and OC cell types was obtained for a subgroup of ten different miRNA types. miR‑30 family genes, as well as three other miRNAs, were found to be uniformly upregulated in OC cells compared with BC cells. BC and EC cells could be distinguished by the expression profiles of six specific miRNAs. In addition, four miRNAs were differentially expressed between EC and OC cells. In conclusion, miRNAs were identified as a potential novel tool to detect and mutually discriminate between BC, OC and EC. Based on a subset of 25 clinically relevant human miRNA types, the present study could significantly discriminate between these three female cancer types by means of their expression levels. For further verification and validation of miRNA‑based biomarker expression signatures that enable valuable tumor detection and characterization in routine screening or potential therapy monitoring, additional and extended in vitro analyses, followed by translational studies utilizing patients' tissue and liquid biopsy materials, are required.
Collapse
Affiliation(s)
- Marc Hirschfeld
- Department of Gynecology and Obstetrics, Faculty of Medicine and Medical Center, University of Freiburg, D‑79106 Freiburg, Germany
| | - Isabel Ge
- Department of Gynecology and Obstetrics, Faculty of Medicine and Medical Center, University of Freiburg, D‑79106 Freiburg, Germany
| | - Gerta Rücker
- Institute of Medical Biometry and Statistics, Faculty of Medicine and Medical Center, University of Freiburg, D‑79104 Freiburg, Germany
| | - Julia Waldschmidt
- Department of Gynecology and Obstetrics, Faculty of Medicine and Medical Center, University of Freiburg, D‑79106 Freiburg, Germany
| | - Sebastian Mayer
- Department of Gynecology and Obstetrics, Faculty of Medicine and Medical Center, University of Freiburg, D‑79106 Freiburg, Germany
| | - Markus Jäger
- Department of Gynecology and Obstetrics, Faculty of Medicine and Medical Center, University of Freiburg, D‑79106 Freiburg, Germany
| | - Matthias Voigt
- Praxis of Plastic and Aesthetic Surgery and Evangelian Deaconry Hospital, D‑79110 Freiburg, Germany
| | - Bernd Kammerer
- Center for Biological Systems Analysis, University of Freiburg, D‑79104 Freiburg, Germany
| | - Claudia Nöthling
- Department of Gynecology and Obstetrics, Faculty of Medicine and Medical Center, University of Freiburg, D‑79106 Freiburg, Germany
| | - Kai Berner
- Department of Gynecology and Obstetrics, Faculty of Medicine and Medical Center, University of Freiburg, D‑79106 Freiburg, Germany
| | - Daniela Weiss
- Department of Gynecology and Obstetrics, Faculty of Medicine and Medical Center, University of Freiburg, D‑79106 Freiburg, Germany
| | - Jasmin Asberger
- Department of Gynecology and Obstetrics, Faculty of Medicine and Medical Center, University of Freiburg, D‑79106 Freiburg, Germany
| | - Thalia Erbes
- Department of Gynecology and Obstetrics, Faculty of Medicine and Medical Center, University of Freiburg, D‑79106 Freiburg, Germany
| |
Collapse
|
36
|
Chirshev E, Hojo N, Bertucci A, Sanderman L, Nguyen A, Wang H, Suzuki T, Brito E, Martinez SR, Castañón C, Mirshahidi S, Vazquez ME, Wat P, Oberg KC, Ioffe YJ, Unternaehrer JJ. Epithelial/mesenchymal heterogeneity of high-grade serous ovarian carcinoma samples correlates with miRNA let-7 levels and predicts tumor growth and metastasis. Mol Oncol 2020; 14:2796-2813. [PMID: 32652647 PMCID: PMC7607177 DOI: 10.1002/1878-0261.12762] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 06/16/2020] [Accepted: 07/07/2020] [Indexed: 12/18/2022] Open
Abstract
Patient‐derived samples present an advantage over current cell line models of high‐grade serous ovarian cancer (HGSOC) that are not always reliable and phenotypically faithful models of in vivo HGSOC. To improve upon cell line models of HGSOC, we set out to characterize a panel of patient‐derived cells and determine their epithelial and mesenchymal characteristics. We analyzed RNA and protein expression levels in patient‐derived xenograft (PDX) models of HGSOC, and functionally characterized these models using flow cytometry, wound healing assays, invasion assays, and spheroid cultures. Besides in vitro work, we also evaluated the growth characteristics of PDX in vivo (orthotopic PDX). We found that all samples had hybrid characteristics, covering a spectrum from an epithelial‐to‐mesenchymal state. Samples with a stronger epithelial phenotype were more active in self‐renewal assays and more tumorigenic in orthotopic xenograft models as compared to samples with a stronger mesenchymal phenotype, which were more migratory and invasive. Additionally, we observed an inverse association between microRNA let‐7 (lethal‐7) expression and stemness, consistent with the loss of let‐7 being an important component of the cancer stem cell phenotype. We observed that lower let‐7 levels were associated with the epithelial state and a lower epithelial mesenchymal transition (EMT) score, more efficient spheroid and tumor formation, and increased sensitivity to platinum‐based chemotherapy. Surprisingly, in these HGSOC cells, stemness could be dissociated from invasiveness: Cells with lower let‐7 levels were more tumorigenic, but less migratory, and with a lower EMT score, than those with higher let‐7 levels. We conclude that let‐7 expression and epithelial/mesenchymal state are valuable predictors of HGSOC proliferation, in vitro self‐renewal, and tumor burden in vivo.
Collapse
Affiliation(s)
- Evgeny Chirshev
- Division of Biochemistry, Department of Basic Sciences, Loma Linda University, Loma Linda, CA, USA.,Department of Pathology and Human Anatomy, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Nozomi Hojo
- Division of Biochemistry, Department of Basic Sciences, Loma Linda University, Loma Linda, CA, USA
| | - Antonella Bertucci
- Division of Biochemistry, Department of Basic Sciences, Loma Linda University, Loma Linda, CA, USA
| | - Linda Sanderman
- Division of Biochemistry, Department of Basic Sciences, Loma Linda University, Loma Linda, CA, USA.,Biology Department, California State University San Bernardino, San Bernardino, CA, USA
| | - Anthony Nguyen
- Division of Biochemistry, Department of Basic Sciences, Loma Linda University, Loma Linda, CA, USA
| | - Hanmin Wang
- Division of Biochemistry, Department of Basic Sciences, Loma Linda University, Loma Linda, CA, USA
| | - Tise Suzuki
- Division of Biochemistry, Department of Basic Sciences, Loma Linda University, Loma Linda, CA, USA
| | - Emmanuel Brito
- Division of Biochemistry, Department of Basic Sciences, Loma Linda University, Loma Linda, CA, USA.,Biology Department, California State University San Bernardino, San Bernardino, CA, USA
| | - Shannalee R Martinez
- Center for Health Disparities and Molecular Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Christine Castañón
- Division of Biochemistry, Department of Basic Sciences, Loma Linda University, Loma Linda, CA, USA.,Center for Health Disparities and Molecular Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Saied Mirshahidi
- Biospecimen Laboratory, Division of Microbiology & Molecular Genetics, Department of Basic Sciences, Loma Linda University Cancer Center, Loma Linda University, Loma Linda, CA, USA
| | - Marcelo E Vazquez
- Department of Radiation Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Pamela Wat
- Department of Pathology and Human Anatomy, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Kerby C Oberg
- Department of Pathology and Human Anatomy, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Yevgeniya J Ioffe
- Division of Gynecologic Oncology, Department of Gynecology and Obstetrics, Loma Linda University Medical Center, Loma Linda, CA, USA
| | - Juli J Unternaehrer
- Division of Biochemistry, Department of Basic Sciences, Loma Linda University, Loma Linda, CA, USA.,Center for Health Disparities and Molecular Medicine, Loma Linda University, Loma Linda, CA, USA.,Department of Gynecology and Obstetrics, Loma Linda University, Loma Linda, CA, USA
| |
Collapse
|
37
|
Zhu F, Li H, Ding F, Guo H, Mou H, Ma J. MiR-422a in gastric cancer cells directly targets CDC40 and modulates cell proliferation. Am J Transl Res 2020; 12:4693-4701. [PMID: 32913542 PMCID: PMC7476107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 07/04/2020] [Indexed: 06/11/2023]
Abstract
MicroRNAs have been shown to be involved in a variety of different human cancers, including gastric cancer, functioning as post-transcriptional regulators of oncogenes or tumor suppressors. This study aimed to clarify the role of miR-422a in gastric cancer and further elucidate the pathogenesis thereof. To this end, miR-422a expression was initially determined in gastric cancer tissues and cells. Our results showed decreased miR-422a and increased cell division cycle 40 (CDC40) expression in gastric cancer. Dual-luciferase reporter assay further confirmed that miR-422a targeted CDC40. Altogether, this study showed that miR-422a downregulated CDC40, thereby affecting cell cycle progression. Moreover, restoration of miR-422a inhibited gastric cancer cell proliferation. In summary, this study has been the first to show that miR-422a was associated with CDC40 levels in human gastric cancer cells and that disease development may be attributed to CDC40.
Collapse
Affiliation(s)
- Fanglai Zhu
- Department of Gastroenterology, The First People’s Hospital of AnqingAnqing, Anhui, China
| | - Hao Li
- Department of Gastroenterology, The First People’s Hospital of AnqingAnqing, Anhui, China
| | - Fei Ding
- Department of Gastroenterology, The First People’s Hospital of AnqingAnqing, Anhui, China
| | - Hao Guo
- Department of Gastroenterology, The First People’s Hospital of AnqingAnqing, Anhui, China
| | - Hong Mou
- Department of Pathology, Zhejiang Provincial People’s Hospital, Hangzhou Medical CollegeHangzhou, Zhejiang, China
| | - Jie Ma
- Department of Pathology, Zhejiang Provincial People’s Hospital, Hangzhou Medical CollegeHangzhou, Zhejiang, China
| |
Collapse
|
38
|
Johnson SC, Chakraborty S, Drosou A, Cunnea P, Tzovaras D, Nixon K, Zawieja DC, Muthuchamy M, Fotopoulou C, Moore JE. Inflammatory state of lymphatic vessels and miRNA profiles associated with relapse in ovarian cancer patients. PLoS One 2020; 15:e0230092. [PMID: 32716937 PMCID: PMC7384632 DOI: 10.1371/journal.pone.0230092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 07/05/2020] [Indexed: 01/20/2023] Open
Abstract
Lymphogenic spread is associated with poor prognosis in epithelial ovarian cancer (EOC), yet little is known regarding roles of non-peri-tumoural lymphatic vessels (LVs) outside the tumour microenvironment that may impact relapse. The aim of this feasibility study was to assess whether inflammatory status of the LVs and/or changes in the miRNA profile of the LVs have potential prognostic and predictive value for overall outcome and risk of relapse. Samples of macroscopically normal human lymph LVs (n = 10) were isolated from the external iliac vessels draining the pelvic region of patients undergoing debulking surgery. This was followed by quantification of the inflammatory state (low, medium and high) and presence of cancer-infiltration of each LV using immunohistochemistry. LV miRNA expression profiling was also performed, and analysed in the context of high versus low inflammation, and cancer-infiltrated versus non-cancer-infiltrated. Results were correlated with clinical outcome data including relapse with an average follow-up time of 13.3 months. The presence of a high degree of inflammation correlated significantly with patient relapse (p = 0.033). Cancer-infiltrated LVs showed a moderate but non-significant association with relapse (p = 0.07). Differential miRNA profiles were identified in cancer-infiltrated LVs and those with high versus low inflammation. In particular, several members of the let-7 family were consistently down-regulated in highly inflamed LVs (>1.8-fold, p<0.05) compared to the less inflamed ones. Down-regulation of the let-7 family appears to be associated with inflammation, but whether inflammation contributes to or is an effect of cancer-infiltration requires further investigation.
Collapse
Affiliation(s)
- Sarah C. Johnson
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | | | - Anastasios Drosou
- Information Technologies Institute Centre for Research & Technology Hellas, Thessaloniki, Greece
| | - Paula Cunnea
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Dimitrios Tzovaras
- Information Technologies Institute Centre for Research & Technology Hellas, Thessaloniki, Greece
| | - Katherine Nixon
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - David C. Zawieja
- College of Medicine, Texas A&M University, TX, United States of America
| | | | - Christina Fotopoulou
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - James E. Moore
- Department of Bioengineering, Imperial College London, London, United Kingdom
| |
Collapse
|
39
|
Feng S, Sun H, Zhu W. MiR-92 overexpression suppresses immune cell function in ovarian cancer via LATS2/YAP1/PD-L1 pathway. Clin Transl Oncol 2020; 23:450-458. [PMID: 32654106 DOI: 10.1007/s12094-020-02439-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 06/19/2020] [Indexed: 02/08/2023]
Abstract
PURPOSE Increasing evidence suggested that microRNA plays an important role in ovarian cancer. In this study, the role of miR-92 in ovarian cancer was investigated. METHODS In this study, miR-92 expression in clinical sample was evaluated, role of miR-92 was investigated in vitro, and underlying mechanism was investigated using Chip, co-IP, and western blot. RESULTS In this study, we show that miR-92 is overexpressed in ovarian cancer tissue compared with normal cancer tissue. Transfection of miR-92 increased proliferation of ovarian cancer cell, and increased migration capacity and colony formation were observed after miR-92 transfection; we found that expression of LATS2 was decreased by miR-92, and this was further confirmed by luciferase assay, which proved that miR-92 is targeting 3' of the endogenous LATS2 gene. Downregulation of LATS2 resulted in increased translocation of YAP1 and upregulation of PD-L1, which subsequently suppressed NK cell function and promoted T cell apoptosis. Moreover, co-transfection of YAP1-targeted shRNA could relieve miR-92-induced immune suppression effect. Mechanically, immunoprecipitation (IP) was used to show that LATS2 interacted with YAP1 and subsequently limited nuclear translocation of YAP1; chromatin immunoprecipitation (ChIP) was used to confirm that YAP1 could bind to enhancer region of PD-L1 to enhance transcription activity of PD-L1. CONCLUSIONS Our data revealed a novel mechanism which finally resulted in immune suppression in ovarian cancer.
Collapse
Affiliation(s)
- S Feng
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215004, Jiangsu Province, People's Republic of China
| | - H Sun
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215004, Jiangsu Province, People's Republic of China
| | - W Zhu
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215004, Jiangsu Province, People's Republic of China.
| |
Collapse
|
40
|
Identification of an Individualized Prognostic Signature Based on the RWSR Model in Early-Stage Bladder Carcinoma. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9186546. [PMID: 32596394 PMCID: PMC7293744 DOI: 10.1155/2020/9186546] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 05/11/2020] [Indexed: 12/19/2022]
Abstract
Bladder cancer (BLCA) is the fourth common cancer among males in the United States, which is also the fourth leading cause of cancer-related death in old males. BLCA has a high recurrence rate, with over 50% of patients which has at least one recurrence within five years. Due to the complexity of the molecular mechanisms and heterogeneous cancer feature, BLCA clinicians find it hard to make an efficient management decision as they lack reliable assessment of mortality risk. Meanwhile, there is currently no screening suitable prognostic signature or method recommended for early detection, which is significantly important to early-stage detection and prognosis. In this study, a novel model, named the risk-weighted sparse regression (RWSR) model, is constructed to identify a robust signature for patients of early-stage BLCA. The 17-gene signature is generated and then validated as an independent prognostic factor in BLCA cohorts from GSE13507 and TCGA_BLCA datasets. Meanwhile, a risk score model is developed and validated among the 17-gene signature. The risk score is also considered an independent factor for prognosis prediction, which is confirmed through prognosis analysis. The Kaplan-Meier with the log-rank test is used to assess survival difference. Furthermore, the predictive capacity of the signature is proved through stratification analysis. Finally, an effective patient classification is completed by a combination of the 17-gene signature and stage information, which is for better survival prediction and treatment decisions. Besides, 11 genes in the signature, such as coiled-coil domain containing 73 (CCDC73) and protein kinase, DNA-activated, and catalytic subunit (PRKDC), are proved to be prognosis marker genes or strongly associated with prognosis and progress of other types of cancer in published literature already. As a result, this paper would more accurately predict a patient's prognosis and improve surveillance in the clinical setting, which may provide a quantitative and reliable decision-making basis for the treatment plan.
Collapse
|
41
|
Hui L, Zheng F, Bo Y, Sen-Lin M, Ai-Jun L, Wei-Ping Z, Yong-Jie Z, Lei Y. MicroRNA let-7b inhibits cell proliferation via upregulation of p21 in hepatocellular carcinoma. Cell Biosci 2020; 10:83. [PMID: 32626571 PMCID: PMC7329548 DOI: 10.1186/s13578-020-00443-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 06/15/2020] [Indexed: 12/15/2022] Open
Abstract
Background Hepatocellular carcinoma (HCC) is one of the most malignant tumor types and has a high incidence and mortality. Many miRNAs play important roles in the development of HCC. Identification of these miRNAs and their targets is increasingly urgent for a better understandingof miRNA function in both physiological and pathological contexts. Many studies have shown that the expression of let-7 is often downregulated in the process of tumorigenesis, suggesting that let-7 may participate in this process as an oncogene. Methods Immunochemistry staining was used to observe the expression of let-7b in HCC tissues. A CCK-8 assay was employed to detect the role of let-7b in the proliferation of HCC cells. The cell cycle of HCC cells was examined by flow cytometry. BALB/c nu/nu mice were used to detect the tumorigenesis potential of HCC cells; western blot and real-time PCR were employed to observe the expression of p21 in HCC cells. Results In our previous studies investigating HCC tissue samples obtained from the national tissue samples bank of liver cancer in Eastern Hepatobiliary Surgery Hospital, we found one abnormal expression of miRNA (let-7b), which was significantly downregulated in HCC tissue. In the current work, we studied the relationship between let-7b and HCC to potentially provide invaluable information for developing novel therapeutic strategies for treating HCC. Based on our findings, let-7b expression was absent in HCC tumors, and its lower expression was associated with poor prognosis of HCC. In further experiments, we found that let-7b inhibited HCC cell proliferation through upregulation of p21. Conclusion The results of our study suggested that let-7b might inhibit the proliferation of HCC cells by upregulating p21.
Collapse
Affiliation(s)
- Li Hui
- The Department of Dermatology, Changhai Hospital, Second Military Medical University, Shanghai, 200438 China
| | - Fang Zheng
- The Second Department of Biliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438 China
| | - Yuan Bo
- The Second Department of Biliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438 China
| | - Ma Sen-Lin
- The Second Department of Biliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438 China
| | - Li Ai-Jun
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438 China
| | - Zhou Wei-Ping
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438 China
| | - Zhang Yong-Jie
- The Second Department of Biliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438 China
| | - Yin Lei
- The Second Department of Biliary Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438 China
| |
Collapse
|
42
|
Xiao L, Peng Z, Zhu A, Xue R, Lu R, Mi J, Xi S, Chen W, Jiang S. Inhibition of RUNX1 promotes cisplatin-induced apoptosis in ovarian cancer cells. Biochem Pharmacol 2020; 180:114116. [PMID: 32579960 DOI: 10.1016/j.bcp.2020.114116] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/13/2020] [Accepted: 06/18/2020] [Indexed: 02/07/2023]
Abstract
Runt-related transcription factor 1 (RUNX1), one subunit of core-binding factors in hematopoiesis and leukemia, was highly expressed in ovarian cancer (OC), but the role of RUNX1 in OC is largely unknown. Since we found that high expression of RUNX1 is correlated with poor survival in patients with OC through bioinformatic analysis of TCGA database, we developed RUNX1-knockout clones by CRISPR/Cas9 technique and discovered that RUNX1 depletion could promote cisplatin-induced apoptosis in OC cells, which was further confirmed by RUNX1 knockdown and overexpression. We also proved that RUNX1 could elevate the expression of BCL2. We then examined a total of 32 candidate miRNAs that might mediate the regulation between RUNX1 and BCL2, of which three miRNAs from the miR-17~92 cluster were found to be negatively regulated by RUNX1. Consistently, our analysis of data from TCGA database revealed the negative correlation between RUNX1 and the cluster. We further confirmed that miR-17~92 cluster could enhance cisplatin-induced apoptosis by directly targeting BCL2 3'UTR. Since rescue experiments proved that RUNX1 could repress cisplatin-induced apoptosis by up-regulating BCL2 via miR-17~92 cluster, combining RUNX1 inhibitor Ro5-3335 and cisplatin showed synergic effect in triggering OC cell apoptosis. Collectively, these findings show for the first time that combinational treatment of cisplatin and RUNX1 inhibitor could be used to potentiate apoptosis of ovarian cancer cells, and reveal the potential of targeting RUNX1 in ovarian cancer chemotherapy.
Collapse
Affiliation(s)
- Li Xiao
- Department of Biological Sciences & Technology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhennan Peng
- Department of Biological Sciences & Technology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Anqi Zhu
- Department of Biological Sciences & Technology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Renxing Xue
- Department of Biological Sciences & Technology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Renming Lu
- Department of Biological Sciences & Technology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jing Mi
- Department of Biological Sciences & Technology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shaowei Xi
- Department of Biological Sciences & Technology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wei Chen
- Department of Gynecology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Songshan Jiang
- Department of Biological Sciences & Technology, School of Life Sciences, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
43
|
Deji QZ, Yan F, Zhaba WD, Liu YJ, Yin J, Huang ZP. Cross-talk between microRNA-let7c and transforming growth factor-β2 during epithelial-to-mesenchymal transition of retinal pigment epithelial cells. Int J Ophthalmol 2020; 13:693-700. [PMID: 32420214 DOI: 10.18240/ijo.2020.05.01] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 03/17/2020] [Indexed: 01/06/2023] Open
Abstract
AIM To explore the roles of microRNA-let7c (miR-let7c) and transforming growth factor-β2 (TGF-β2) and cellular signaling during epithelial-to-mesenchymal transition (EMT) of retinal pigment epithelial cells. METHODS Retinal pigment epithelial (ARPE-19) cells were cultured with no serum for 12h, and then with recombinant human TGF-β2 for different lengths of time. ARPE-19 cells were transfected with 1×106 TU/mL miR-let7c mimcs (miR-let7cM), miR-let7c mimcs negative control (miR-let7cMNC) and miR-let7c inhibitor (miR-let7cI) using the transfection reagent. The expression of keratin-18, vimentin, N-cadherin, IKB alpha, p65 were detected by Western blot, quantitative polymerase chain reaction and immunofluorescence. RESULTS The expression of miR-let7c was dramatically reduced and the nuclear factor-kappa B (NF-κB) signaling pathway was activated after induction by TGF-β2 (P<0.05). In turn, overexpressed miR-let7c significantly inhibited TGF-β2-induced EMT (P<0.05). However, miR-let7c was unable to inhibit TGF-β2-induced EMT when the NF-κB signaling pathway was inhibited by BAY11-7082 (P<0.01). CONCLUSION The miR-let7c regulates TGF-β2-induced EMT through the NF-κB signaling pathway in ARPE-19 cells.
Collapse
Affiliation(s)
- Qu-Zhen Deji
- Department of Ophthalmology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, Jiangsu Province, China
| | - Feng Yan
- Department of Ophthalmology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, Jiangsu Province, China
| | - Wang-Dui Zhaba
- Department of Neurosurgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, Jiangsu Province, China
| | - Ya-Jun Liu
- Department of Ophthalmology, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, Jiangsu Province, China
| | - Jie Yin
- Department of Ophthalmology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, Jiangsu Province, China
| | - Zhen-Ping Huang
- Department of Ophthalmology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, Jiangsu Province, China
| |
Collapse
|
44
|
Ali I, Mukhtar SD, Ali HS, Scotti MT, Scotti L. Advances in Nanoparticles as Anticancer Drug Delivery Vector: Need of this Century. Curr Pharm Des 2020; 26:1637-1649. [DOI: 10.2174/1381612826666200203124330] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/02/2019] [Indexed: 12/17/2022]
Abstract
Background:
Nanotechnology has contributed a great deal to the field of medical science. Smart drugdelivery
vectors, combined with stimuli-based characteristics, are becoming increasingly important. The use of
external and internal stimulating factors can have enormous benefits and increase the targeting efficiency of
nanotechnology platforms. The pH values of tumor vascular tissues are acidic in nature, allowing the improved
targeting of anticancer drug payloads using drug-delivery vectors. Nanopolymers are smart drug-delivery vectors
that have recently been developed and recommended for use by scientists because of their potential targeting
capabilities, non-toxicity and biocompatibility, and make them ideal nanocarriers for personalized drug delivery.
Method:
The present review article provides an overview of current advances in the use of nanoparticles (NPs) as
anticancer drug-delivery vectors.
Results:
This article reviews the molecular basis for the use of NPs in medicine, including personalized medicine,
personalized therapy, emerging vistas in anticancer therapy, nanopolymer targeting, passive and active targeting
transports, pH-responsive drug carriers, biological barriers, computer-aided drug design, future challenges and
perspectives, biodegradability and safety.
Conclusions:
This article will benefit academia, researchers, clinicians, and government authorities by providing a
basis for further research advancements.
Collapse
Affiliation(s)
- Imran Ali
- Department of Chemistry, College of Sciences, Taibah University, Al-Medina Al-Munawara – 41477, Saudi Arabia
| | - Sofi D. Mukhtar
- Department of Chemistry, Jamia Millia Islamia (Central University) New Delhi-110025, India
| | - Heyam S. Ali
- Department of Pharmaceutics, University of Khartoum, Khartoum, Sudan
| | - Marcus T. Scotti
- Cheminformatics Laboratory- Postgraduate Program in Natural Products and Synthetic Bioactive, Federal University of Paraíba-Campus I 58051-970, João Pessoa, PB, Brazil
| | - Luciana Scotti
- Teaching and Research Management - University Hospital, Cheminformatics Laboratory- Postgraduate Program in Natural Products and Synthetic Bioactive, Federal University of Paraíba-Campus I, 58051-970, João Pessoa, PB, Brazil
| |
Collapse
|
45
|
Wahab NA, Othman Z, Nasri NWM, Mokhtar MH, Ibrahim SF, Hamid AA, Raja Ali RA, Mokhtar NM. Inhibition of miR-141 and miR-200a Increase DLC-1 and ZEB2 Expression, Enhance Migration and Invasion in Metastatic Serous Ovarian Cancer. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17082766. [PMID: 32316405 PMCID: PMC7215320 DOI: 10.3390/ijerph17082766] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/02/2020] [Accepted: 04/04/2020] [Indexed: 12/11/2022]
Abstract
The role of microRNA (miRNA) in ovarian cancer has been extensively studied as a regulator for its targeted genes. However, its specific role in metastatic serous ovarian cancer (SOC) is yet to be explored. This paper aims to investigate the differentially expressed miRNAs in metastatic SOC compared to normal. Locked nucleic acid PCR was performed to profile miRNA expression in 11 snap frozen metastatic SOC and 13 normal ovarian tissues. Functional analysis and regulation of their targeted genes were assessed in vitro. Forty-eight miRNAs were significantly differentially expressed in metastatic SOC as compared to normal. MiR-19a is a novel miRNA to be upregulated in metastatic SOC compared to normal. DLC1 is possibly regulated by miR-141 in SOC. MiR-141 inhibition led to significantly reduced cell viability. Cell migration and invasion were significantly increased following miRNA inhibition. This study showed the aberrantly expressed miRNAs in metastatic SOC and the roles of miRNAs in the regulation of their targeted genes and ovarian carcinogenesis.
Collapse
Affiliation(s)
- Norhazlina Abdul Wahab
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (N.A.W.); (Z.O.)
| | - Zahreena Othman
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (N.A.W.); (Z.O.)
| | - Noor Wahidah Mohd Nasri
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (N.A.W.); (Z.O.)
| | - Mohd Helmy Mokhtar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (N.A.W.); (Z.O.)
| | - Siti Fatimah Ibrahim
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (N.A.W.); (Z.O.)
| | - Adila A. Hamid
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (N.A.W.); (Z.O.)
| | - Raja Affendi Raja Ali
- Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Norfilza Mohd Mokhtar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (N.A.W.); (Z.O.)
- Correspondence: ; Tel.: +60-3-9145-8610
| |
Collapse
|
46
|
Chen X, Theobard R, Zhang J, Dai X. Genetic interactions between INPP4B and RAD50 is prognostic of breast cancer survival. Biosci Rep 2020; 40:BSR20192546. [PMID: 31872854 PMCID: PMC6954369 DOI: 10.1042/bsr20192546] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 12/19/2019] [Accepted: 12/23/2019] [Indexed: 12/29/2022] Open
Abstract
RAD50 is commonly depleted in basal-like breast cancer with concomitant absence of INPP4B and several tumor suppressors such as BRCA1 and TP53. Our previous study revealed that INPP4B and RAD50 interact and such an interaction is associated with breast cancer survival at the transcriptional, translational and genomic levels. In the present study, we explored single nucleotide polymorphisms (SNPs) of these two genes that have synergistic effects on breast cancer survival to decipher mechanisms driving their interactions at the genetic level. The Cox's proportional hazards model was used to test whether SNPs of these two genes are interactively associated with breast cancer survival, following expression quantitative trait loci (eQTL) analysis and functional investigations. Our study revealed two disease-associating blocks, each encompassing five and two non-linkage disequilibrium linked SNPs of INPP4B and RAD50, respectively. Concomitant presence of any rare homozygote from each disease-associating block is synergistically prognostic of poor breast cancer survival. Such synergy is mediated via bypassing pathways controlling cell proliferation and DNA damage repair, which are represented by INPP4B and RAD50. Our study provided genetic evidence of interactions between INPP4B and RAD50, and deepened our understandings on the orchestrated genetic machinery governing tumor progression.
Collapse
Affiliation(s)
- Xiao Chen
- School of Biotechnology, Jiangnan University, Wuxi, China
| | | | - Jianying Zhang
- Henan Institute of Medical and Pharmaceutical Sciences and Henan Key Laboratory of Tumor Epidemiology, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaofeng Dai
- Hospital of Xi’an Jiaotong University, Xi’an, 710061, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| |
Collapse
|
47
|
Role of microRNAs as Clinical Cancer Biomarkers for Ovarian Cancer: A Short Overview. Cells 2020; 9:cells9010169. [PMID: 31936634 PMCID: PMC7016727 DOI: 10.3390/cells9010169] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/1970] [Revised: 12/28/2019] [Accepted: 01/06/2020] [Indexed: 12/15/2022] Open
Abstract
Ovarian cancer has the highest mortality rate among gynecological cancers. Early clinical signs are missing and there is an urgent need to establish early diagnosis biomarkers. MicroRNAs are promising biomarkers in this respect. In this paper, we review the most recent advances regarding the alterations of microRNAs in ovarian cancer. We have briefly described the contribution of miRNAs in the mechanisms of ovarian cancer invasion, metastasis, and chemotherapy sensitivity. We have also summarized the alterations underwent by microRNAs in solid ovarian tumors, in animal models for ovarian cancer, and in various ovarian cancer cell lines as compared to previous reviews that were only focused the circulating microRNAs as biomarkers. In this context, we consider that the biomarker screening should not be limited to circulating microRNAs per se, but rather to the simultaneous detection of the same microRNA alteration in solid tumors, in order to understand the differences between the detection of nucleic acids in early vs. late stages of cancer. Moreover, in vitro and in vivo models should also validate these microRNAs, which could be very helpful as preclinical testing platforms for pharmacological and/or molecular genetic approaches targeting microRNAs. The enormous quantity of data produced by preclinical and clinical studies regarding the role of microRNAs that act synergistically in tumorigenesis mechanisms that are associated with ovarian cancer subtypes, should be gathered, integrated, and compared by adequate methods, including molecular clustering. In this respect, molecular clustering analysis should contribute to the discovery of best biomarkers-based microRNAs assays that will enable rapid, efficient, and cost-effective detection of ovarian cancer in early stages. In conclusion, identifying the appropriate microRNAs as clinical biomarkers in ovarian cancer might improve the life quality of patients.
Collapse
|
48
|
Sun W, Li S, Tang G, Luo Y, Ma S, Sun S, Ren J, Gong Y, Xie C. Recent Progress of Nanoscale Metal-Organic Frameworks in Cancer Theranostics and the Challenges of Their Clinical Application. Int J Nanomedicine 2019; 14:10195-10207. [PMID: 32099352 PMCID: PMC6997222 DOI: 10.2147/ijn.s230524] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 12/16/2019] [Indexed: 12/23/2022] Open
Abstract
The growing incidence of cancer raises an urgent need to develop effective diagnostic and therapeutic strategies. With the rapid development of nanomedicine, nanoscale metal-organic frameworks (NMOFs) presented promising potential in various biomedical applications in the last 2 decades, especially in cancer theranostics. Due to the unique features of NMOFs, including structural diversities, enormous porosity, multifunctionality and biocompatibility, they have been widely used to deliver imaging contrast agents and therapeutic drugs. Moreover, multiple types of contrast agents, anti-cancer drugs and targeting ligands could be co-delivered through one single NMOF to enable combination therapy. Co-delivering system using NMOFs helped to avoid multidrug resistance, to reduce adverse effects, to achieve imaging-guided precise therapy and to enhance anti-cancer efficacy. This review summarized the recent research advances on the application of NMOFs in biomedical imaging and cancer treatments in the last few years. The current challenges that impeding their translation to clinical practices and the perspectives for their future applications were also highlighted and discussed.
Collapse
Affiliation(s)
- Wenjie Sun
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Shuying Li
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Guiliang Tang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Yuan Luo
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Shijing Ma
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Shaoxing Sun
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Jiangbo Ren
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Yan Gong
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Conghua Xie
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China.,Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China.,Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| |
Collapse
|
49
|
Role of miR-221/222 in Tumor Development and the Underlying Mechanism. JOURNAL OF ONCOLOGY 2019; 2019:7252013. [PMID: 31929798 PMCID: PMC6942871 DOI: 10.1155/2019/7252013] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 10/22/2019] [Accepted: 11/01/2019] [Indexed: 12/24/2022]
Abstract
MicroRNA-221/222 (miRNA-221/222, miR-221/222) is a noncoding microRNA which is widely distributed in eukaryotic organisms and deeply involved in the posttranscriptional regulation of gene expressions. According to recent studies, abnormal expressions of miR-221/222 are closely related to the occurrence and development of various kinds of malignant tumors. The role of miR-221/222 in tumor development and their potential molecular mechanism in various cancers, including liver cancer, colorectal cancer, cervical cancer, ovarian cancer, and endometrial carcinoma, are summarized and reviewed in this paper. Moreover, the potential translational biomarker role of abnormal miR-221/222 level in tumor or blood circulation for tumor diagnosis is also discussed.
Collapse
|
50
|
Yang ZY, Wang Y, Liu Q, Wu M. microRNA cluster MC-let-7a-1~let-7d promotes autophagy and apoptosis of glioma cells by down-regulating STAT3. CNS Neurosci Ther 2019; 26:319-331. [PMID: 31868319 PMCID: PMC7052808 DOI: 10.1111/cns.13273] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 10/30/2019] [Accepted: 11/13/2019] [Indexed: 12/12/2022] Open
Abstract
Background Accumulating evidence has highlighted the correlation between microRNAs (miRNAs) and the progression of glioma. However, the role of miR cluster MC‐let‐7a‐1 ~ let‐7d in glioma remains elusive. Thus, the current study aimed to investigate the effect of miR cluster MC‐let‐7a‐1 ~ let‐7d on glioma progression. Methods and Results Microarray data analysis provided data indicating the involvement of miR cluster MC‐let‐7a‐1 ~ let‐7d in glioma via STAT3. The expression of let‐7a‐1, let‐7d, let‐7f‐1, and miR cluster MC‐let‐7a‐1 ~ let‐7d was diminished in the glioma tissues and the cell lines. Additionally, our results revealed that STAT3 was a target gene of let‐7d, let‐7a‐1, and let‐7f‐1, which was further verified by the dual‐luciferase reporter gene assay. Moreover, STAT3 expression was negatively mediated by let‐7a‐1, let‐7d, and let‐7f‐1. Up‐regulated miR cluster MC‐let‐7a‐1 ~ let‐7d or silenced STAT3 suppressed cell proliferation but accelerated cell apoptosis and autophagy. Moreover, restrained tumor growth was identified in the nude mice treated with miR cluster MC‐let‐7a‐1 ~ let‐7d mimics or STAT3 siRNA. Conclusion Taken together, the miR cluster MC‐let‐7a‐1 ~ let‐7d promotes glioma cell autophagy and apoptosis by repressing STAT3. The current study highlights the potential of the miR cluster MC‐let‐7a‐1 ~ let‐7d as biomarkers and promising treatment strategies for glioma.
Collapse
Affiliation(s)
- Zhuan-Yi Yang
- Department of Neurosurgery, Xiangya Hospital Central South University, Changsha, China
| | - Ying Wang
- Department of Pathology, Xiangya Medical School of Central South University & Xiangya Hospital Central South University, Changsha, China
| | - Qing Liu
- Department of Neurosurgery, Xiangya Hospital Central South University, Changsha, China
| | - Ming Wu
- Department of Neurosurgery, Xiangya Hospital Central South University, Changsha, China
| |
Collapse
|