1
|
Janiszewska J, Kostrzewska-Poczekaj M, Wierzbicka M, Brenner JC, Giefing M. HPV-driven oncogenesis-much more than the E6 and E7 oncoproteins. J Appl Genet 2024:10.1007/s13353-024-00883-y. [PMID: 38907809 DOI: 10.1007/s13353-024-00883-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/24/2024]
Abstract
High-risk human papillomaviruses are well-established drivers of several cancer types including cervical, head and neck, penile as well as anal cancers. While the E6 and E7 viral oncoproteins have proven to be critical for malignant transformation, evidence is also beginning to emerge suggesting that both host pathways and additional viral genes may also be pivotal for malignant transformation. Here, we focus on the role of host APOBEC genes, which have an important role in molecular editing including in the response to the viral DNA and their role in HPV-driven carcinogenesis. Further, we also discuss data developed suggesting the existence of HPV-derived miRNAs in HPV + tumors and their potential role in regulating the host transcriptome. Collectively, while recent advances in these two areas have added complexity to the working model of papillomavirus-induced oncogenesis, these discoveries have also shed a light onto new areas of research that will be required to fully understand the process.
Collapse
Affiliation(s)
- J Janiszewska
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479, Poznan, Poland
| | - M Kostrzewska-Poczekaj
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479, Poznan, Poland
| | - M Wierzbicka
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479, Poznan, Poland
- Research & Development Centre, Regional Specialist Hospital Wroclaw, Wroclaw, Poland
- Faculty of Medicine, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - J C Brenner
- Department of Otolaryngology - Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | - M Giefing
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszynska 32, 60-479, Poznan, Poland.
| |
Collapse
|
2
|
Dehghani A, Khajepour F, Dehghani M, Razmara E, Zangouey M, Abadi MFS, Nezhad RBA, Dabiri S, Garshasbi M. Hsa-miR-194-5p and hsa-miR-195-5p are down-regulated expressed in high dysplasia HPV-positive Pap smear samples compared to normal cytology HPV-positive Pap smear samples. BMC Infect Dis 2024; 24:182. [PMID: 38342922 PMCID: PMC10860252 DOI: 10.1186/s12879-023-08942-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 12/20/2023] [Indexed: 02/13/2024] Open
Abstract
BACKGROUND The human papillomavirus (HPV) infection may affect the miRNA expression pattern during cervical cancer (CC) development. To demonstrate the association between high-risk HPVs and the development of cervix dysplasia, we examined the expression patterns of hsa-miR-194-5p and hsa-miR-195-5p in Pap smear samples from southeast Iranian women. We compared samples that were HPV-positive but showed no abnormality in the cytological examination to samples that were HPV-positive and had severe dysplasia. METHODS Pap smear samples were obtained from 60 HPV-positive (HPV-16/18) patients with histologically confirmed severe dysplasia (cervical intra-epithelial neoplasia (CIN 3) or carcinoma in situ) and the normal cytology group. The expression of hsa-miR-194-5p and hsa-miR-195-5p was analyzed by real-time quantitative PCR, using specific stem-loop primers and U6 snRNA as the internal reference gene. Clinicopathological features were associated with miRNA expression levels. Furthermore, functional enrichment analysis was conducted using in silico tools. The Kaplan-Meier survival method was also obtained to discriminate survival-significant candidate miRNAs in CC, and receiver operating characteristic (ROC) curves were constructed to assess the diagnostic value. RESULTS Compared to HPV-positive cytologically normal Pap smear samples, hsa-miR-194-5p and hsa-miR-195-5p relative expression decreased significantly in HPV-positive patients with a severe dysplasia Pap smear. Kaplan-Meier analysis indicated a significant association between the miR-194 decrease and poor CC survival. In essence, ROC curve analysis showed that miR-194-5p and miR-195-5p could serve as valuable markers for the development of cervix dysplasia in individuals who are positive for high-risk HPVs. CONCLUSIONS This study revealed that hsa-miR-194-5p and hsa-miR-195-5p may possess tumor suppressor capabilities in the context of cervical dysplasia progression. However, it remains uncertain whether these microRNAs are implicated in the transition of patients with high dysplasia to cervical cancer. We also showed the potential capability of candidate miRNAs as novel diagnostic biomarkers related to cervical dysplasia progression.
Collapse
Affiliation(s)
- Ali Dehghani
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fardin Khajepour
- Department of Immunology, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Dehghani
- Pathology and Stem Cell Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Ehsan Razmara
- Australian Regenerative Medicine Institute, Monash University, Melbourne, Australia
| | - Mohammadreza Zangouey
- Pathology and Stem Cell Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Reza Bahram Abadi Nezhad
- Department of Microbiology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Shahriar Dabiri
- Pathology and Stem Cell Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| | - Masoud Garshasbi
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
3
|
Leopizzi M, Mundo L, Messina E, Campolo F, Lazzi S, Angeloni A, Marchese C, Leoncini L, Giordano C, Slack F, Trivedi P, Anastasiadou E. Epstein-Barr virus-encoded EBNA2 downregulates ICOSL by inducing miR-24 in B-cell lymphoma. Blood 2024; 143:429-443. [PMID: 37847858 PMCID: PMC10862363 DOI: 10.1182/blood.2023021346] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/12/2023] [Accepted: 09/27/2023] [Indexed: 10/19/2023] Open
Abstract
ABSTRACT Hematological malignancies such as Burkitt lymphoma (BL), Hodgkin lymphoma (HL), and diffuse large B-cell lymphoma (DLBCL) cause significant morbidity in humans. A substantial number of these lymphomas, particularly HL and DLBCLs have poorer prognosis because of their association with Epstein-Barr virus (EBV). Our earlier studies have shown that EBV-encoded nuclear antigen (EBNA2) upregulates programmed cell death ligand 1 in DLBCL and BLs by downregulating microRNA-34a. Here, we investigated whether EBNA2 affects the inducible costimulator (ICOS) ligand (ICOSL), a molecule required for efficient recognition of tumor cells by T cells through the engagement of ICOS on the latter. In virus-infected and EBNA2-transfected B-lymphoma cells, ICOSL expression was reduced. Our investigation of the molecular mechanisms revealed that this was due to an increase in microRNA-24 (miR-24) by EBNA2. By using ICOSL 3' untranslated region-luciferase reporter system, we validated that ICOSL is an authentic miR-24 target. Transfection of anti-miR-24 molecules in EBNA2-expressing lymphoma cells reconstituted ICOSL expression and increased tumor immunogenicity in mixed lymphocyte reactions. Because miR-24 is known to target c-MYC, an oncoprotein positively regulated by EBNA2, we analyzed its expression in anti-miR-24 transfected lymphoma cells. Indeed, the reduction of miR-24 in EBNA2-expressing DLBCL further elevated c-MYC and increased apoptosis. Consistent with the in vitro data, EBNA2-positive DLBCL biopsies expressed low ICOSL and high miR-24. We suggest that EBV evades host immune responses through EBNA2 by inducing miR-24 to reduce ICOSL expression, and for simultaneous rheostatic maintenance of proproliferative c-MYC levels. Overall, these data identify miR-24 as a potential therapeutically relevant target in EBV-associated lymphomas.
Collapse
Affiliation(s)
- Martina Leopizzi
- Department of Medico-surgical Sciences and Biotechnologies, Sapienza University, Latina, Italy
| | - Lucia Mundo
- Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - Elena Messina
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Federica Campolo
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Stefano Lazzi
- Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - Antonio Angeloni
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Cinzia Marchese
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Lorenzo Leoncini
- Department of Medical Biotechnology, University of Siena, Siena, Italy
| | - Carla Giordano
- Department of Radiology, Oncology and Pathology, Sapienza University, Rome, Italy
| | - Frank Slack
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Pankaj Trivedi
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Eleni Anastasiadou
- Department of Clinical and Molecular Medicine, Sapienza University, Rome, Italy
| |
Collapse
|
4
|
Chen X, Li Y, Li M, Xie Y, Wang K, Zhang L, Zou Z, Xiong L. Exosomal miRNAs assist in the crosstalk between tumor cells and immune cells and its potential therapeutics. Life Sci 2023; 329:121934. [PMID: 37460057 DOI: 10.1016/j.lfs.2023.121934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/26/2023]
Abstract
Exosomes are small extracellular vesicles that carry active substances (including proteins, lipids, and nucleic acids) and are essential for homeostasis and signal transmission. Recent studies have focused on the function of exosomal miRNAs in tumor progression. Researchers have expanded the use of exosomes and miRNAs as potential therapeutic tools and biomarkers to detect tumor progression. Immune cells, as an important part of the tumor microenvironment (TME), secrete a majority of exosome-derived miRNAs involved in the biological processes of malignancies. However, the underlying mechanisms remain unclear. Currently, there is no literature that systematically summarizes the communication of exosome-derived miRNAs between tumor cells and immune cells. Based on the cell specificity of exosome-derived miRNAs, this review provides the first comprehensive summary of the significant miRNAs from the standpoint of exosome sources, which are tumor cells and immune cells. Furthermore, we elaborated on the potential clinical applications of these miRNAs, attempting to propose existing difficulties and future possibilities in tumor diagnostics and therapy.
Collapse
Affiliation(s)
- Xinyue Chen
- Department of Pathophysiology, Medical College, Nanchang University, Nanchang 330006, China; Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Yuqiu Li
- Queen Mary College of Nanchang University, Nanchang 330006, China
| | - Miao Li
- Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Yujie Xie
- College of Pharmacy, Nanchang University, Nanchang 330006, China
| | - Keqin Wang
- First Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Lifang Zhang
- Department of Pathophysiology, Medical College, Nanchang University, Nanchang 330006, China
| | - Zhuoling Zou
- Queen Mary College of Nanchang University, Nanchang 330006, China
| | - Lixia Xiong
- Department of Pathophysiology, Medical College, Nanchang University, Nanchang 330006, China.
| |
Collapse
|
5
|
Singh G, Sharma SK, Dorata A, Singh SK. miR-17 ~ 92 suppresses proliferation and invasion of cervical cancer cells by inhibiting cell cycle regulator Cdt2. Discov Oncol 2023; 14:172. [PMID: 37707654 PMCID: PMC10501107 DOI: 10.1007/s12672-023-00775-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/21/2023] [Indexed: 09/15/2023] Open
Abstract
Cervical cancer (CC) is the 4th most leading cause of death among women worldwide, and if diagnosed in late stages the treatment options are almost negligible. 99% of CC is caused by high-risk human papilloma viruses (HR-HPV). Upon integration into human genome, the encoded viral proteins mis-regulate various onco-suppressors and checkpoint factors including cell cycle regulators. One such protein is cell cycle S phase licensing factor, CDC-10 dependent transcript-2 (Cdt2) which has been reported to be highly upregulated in various cancers including CC. Also, in CC cells, several tumor suppressor miRNAs are suppressed, including miR-17 ~ 92 cluster. In this study, we report that miR-17 ~ 92 directly recruits to 3'UTR of Cdt2 and downregulates this oncogene which suppresses the proliferation, migration and invasion capabilities of the CC cell lines without affecting non-cancerous cells. We further show that suppression of Cdt2 by miR-17 ~ 92, blocks the cancerous cells in S phase and induces apoptosis, eventually leading to their death. Hence, our work for the first time, mechanistically shows how miR-17 ~ 92 could work as tumor suppressor in cervical cancer cells, opening up the potential of miR-17 ~ 92 to be used in developing therapy for cervical cancer treatment.
Collapse
Affiliation(s)
- Garima Singh
- Cell Cycle and Cancer Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Sonika Kumari Sharma
- Cell Cycle and Cancer Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Aastha Dorata
- Cell Cycle and Cancer Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India
| | - Samarendra Kumar Singh
- Cell Cycle and Cancer Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, UP, 221005, India.
| |
Collapse
|
6
|
Shafique R, Mahjabeen I, Bibi K, Kalsoom F, Rizwan M, Ashraf NS, Mehmood A, Ul Haq MF, Abbasi SF, Saeed N, Kayani MA. miRNA-767 and its binding site polymorphism in the mTOR gene act as potential biomarkers for female reproductive cancers. Future Oncol 2023; 19:1929-1943. [PMID: 37781867 DOI: 10.2217/fon-2022-1055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023] Open
Abstract
Aims: The present study aimed to understand the relationship between the mTOR gene SNP (rs2536) and reproductive cancer risk. The expression level of miRNA-767 was also assessed. Methods: 700 tumor samples (300 breast, 200 ovarian and 200 cervical cancers), along with adjacent uninvolved control tissue, were used. rs2536 was screened using Tetra-ARMS PCR and expression level of miRNA-767 was assessed using quantitative PCR. Results: The frequency of the homozygous mutant genotype of rs2536 was observed significantly higher in breast (p < 0.04), ovarian (p < 0.005) and cervical (p < 0.003) cancers. Significant downregulation of miRNA-767 was observed in tumors compared with controls. Conclusion: The present study demonstrates that increased mutant frequency of rs2536 and deregulation of miRNA-767 are associated with increased reproductive cancer risk.
Collapse
Affiliation(s)
- Rabia Shafique
- Cancer Genetics & Epigenetics Research Group, Department of Biosciences, COMSATS University, Park Road Islamabad, Pakistan
| | - Ishrat Mahjabeen
- Cancer Genetics & Epigenetics Research Group, Department of Biosciences, COMSATS University, Park Road Islamabad, Pakistan
| | - Kashaf Bibi
- Cancer Genetics & Epigenetics Research Group, Department of Biosciences, COMSATS University, Park Road Islamabad, Pakistan
| | - Farah Kalsoom
- Department of Pathology, Sir Ganga Ram Hospital, Lahore, Pakistan
| | - Muhammad Rizwan
- Cancer Genetics & Epigenetics Research Group, Department of Biosciences, COMSATS University, Park Road Islamabad, Pakistan
| | - Nida Sarosh Ashraf
- Cancer Genetics & Epigenetics Research Group, Department of Biosciences, COMSATS University, Park Road Islamabad, Pakistan
| | - Azhar Mehmood
- Cancer Genetics & Epigenetics Research Group, Department of Biosciences, COMSATS University, Park Road Islamabad, Pakistan
| | - Maria Fazal Ul Haq
- Cancer Genetics & Epigenetics Research Group, Department of Biosciences, COMSATS University, Park Road Islamabad, Pakistan
| | - Sumaira Fida Abbasi
- Cancer Genetics & Epigenetics Research Group, Department of Biosciences, COMSATS University, Park Road Islamabad, Pakistan
| | - Nadia Saeed
- Cancer Genetics & Epigenetics Research Group, Department of Biosciences, COMSATS University, Park Road Islamabad, Pakistan
| | - Mahmood Akhtar Kayani
- Cancer Genetics & Epigenetics Research Group, Department of Biosciences, COMSATS University, Park Road Islamabad, Pakistan
| |
Collapse
|
7
|
Gilyazova I, Asadullina D, Kagirova E, Sikka R, Mustafin A, Ivanova E, Bakhtiyarova K, Gilyazova G, Gupta S, Khusnutdinova E, Gupta H, Pavlov V. MiRNA-146a-A Key Player in Immunity and Diseases. Int J Mol Sci 2023; 24:12767. [PMID: 37628949 PMCID: PMC10454149 DOI: 10.3390/ijms241612767] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
miRNA-146a, a single-stranded, non-coding RNA molecule, has emerged as a valuable diagnostic and prognostic biomarker for numerous pathological conditions. Its primary function lies in regulating inflammatory processes, haemopoiesis, allergic responses, and other key aspects of the innate immune system. Several studies have indicated that polymorphisms in miRNA-146a can influence the pathogenesis of various human diseases, including autoimmune disorders and cancer. One of the key mechanisms by which miRNA-146a exerts its effects is by controlling the expression of certain proteins involved in critical pathways. It can modulate the activity of interleukin-1 receptor-associated kinase, IRAK1, IRAK2 adaptor proteins, and tumour necrosis factor (TNF) targeting protein receptor 6, which is a regulator of the TNF signalling pathway. In addition, miRNA-146a affects gene expression through multiple signalling pathways, such as TNF, NF-κB and MEK-1/2, and JNK-1/2. Studies have been carried out to determine the effect of miRNA-146a on cancer pathogenesis, revealing its involvement in the synthesis of stem cells, which contributes to tumourigenesis. In this review, we focus on recent discoveries that highlight the significant role played by miRNA-146a in regulating various defence mechanisms and oncogenesis. The aim of this review article is to systematically examine miRNA-146a's impact on the control of signalling pathways involved in oncopathology, immune system development, and the corresponding response to therapy.
Collapse
Affiliation(s)
- Irina Gilyazova
- Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Institute of Biochemistry and Genetics, 450054 Ufa, Russia (E.K.)
| | - Dilara Asadullina
- Institute of Urology and Clinical Oncology, Department of Medical Genetics and Fundamental Medicine, Bashkir State Medical University, 450008 Ufa, Russia (A.M.); (G.G.)
| | - Evelina Kagirova
- Institute of Urology and Clinical Oncology, Department of Medical Genetics and Fundamental Medicine, Bashkir State Medical University, 450008 Ufa, Russia (A.M.); (G.G.)
| | - Ruhi Sikka
- Department of Biotechnology, Institute of Applied Sciences and Humanities, GLA University, Mathura 281406, India
| | - Artur Mustafin
- Institute of Urology and Clinical Oncology, Department of Medical Genetics and Fundamental Medicine, Bashkir State Medical University, 450008 Ufa, Russia (A.M.); (G.G.)
| | - Elizaveta Ivanova
- Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Institute of Biochemistry and Genetics, 450054 Ufa, Russia (E.K.)
| | - Ksenia Bakhtiyarova
- Institute of Urology and Clinical Oncology, Department of Medical Genetics and Fundamental Medicine, Bashkir State Medical University, 450008 Ufa, Russia (A.M.); (G.G.)
| | - Gulshat Gilyazova
- Institute of Urology and Clinical Oncology, Department of Medical Genetics and Fundamental Medicine, Bashkir State Medical University, 450008 Ufa, Russia (A.M.); (G.G.)
| | - Saurabh Gupta
- Department of Biotechnology, Institute of Applied Sciences and Humanities, GLA University, Mathura 281406, India
| | - Elza Khusnutdinova
- Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, Institute of Biochemistry and Genetics, 450054 Ufa, Russia (E.K.)
- Institute of Urology and Clinical Oncology, Department of Medical Genetics and Fundamental Medicine, Bashkir State Medical University, 450008 Ufa, Russia (A.M.); (G.G.)
| | - Himanshu Gupta
- Department of Biotechnology, Institute of Applied Sciences and Humanities, GLA University, Mathura 281406, India
| | - Valentin Pavlov
- Institute of Urology and Clinical Oncology, Department of Medical Genetics and Fundamental Medicine, Bashkir State Medical University, 450008 Ufa, Russia (A.M.); (G.G.)
| |
Collapse
|
8
|
Dabbagh Ohadi MA, Aleyasin MS, Samiee R, Bordbar S, Maroufi SF, Bayan N, Hanaei S, Smith TR. Micro RNAs as a Diagnostic Marker between Glioma and Primary CNS Lymphoma: A Systematic Review. Cancers (Basel) 2023; 15:3628. [PMID: 37509289 PMCID: PMC10377645 DOI: 10.3390/cancers15143628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 07/04/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
Differentiating glioma from primary central nervous system lymphoma (PCNSL) can be challenging, and current diagnostic measures such as MRI and biopsy are of limited efficacy. Liquid biopsies, which detect circulating biomarkers such as microRNAs (miRs), may provide valuable insights into diagnostic biomarkers for improved discrimination. This review aimed to investigate the role of specific miRs in diagnosing and differentiating glioma from PCNSL. A systematic search was conducted of PubMed, Scopus, Web of Science, and Embase for articles on liquid biopsies as a diagnostic method for glioma and PCNSL. Sixteen dysregulated miRs were identified with significantly different levels in glioma and PCNSL, including miR-21, which was the most prominent miR with higher levels in PCNSL, followed by glioma, including glioblastoma (GBM), and control groups. The lowest levels of miR-16 and miR-205 were observed in glioma, followed by PCNSL and control groups, whereas miR-15b and miR-301 were higher in both tumor groups, with the highest levels observed in glioma patients. The levels of miR-711 were higher in glioma (including GBM) and downregulated in PCNSL compared to the control group. This review suggests that using these six circulating microRNAs as liquid biomarkers with unique changing patterns could aid in better discrimination between glioma, especially GBM, and PCNSL.
Collapse
Affiliation(s)
- Mohammad Amin Dabbagh Ohadi
- Department of Pediatric Neurological Surgery, Children's Medical Center, Tehran University of Medical Sciences, Tehran 1419733151, Iran
- Interdisciplinary Neuroscience Research Program, Tehran University of Medical Sciences, Tehran 1417755331, Iran
| | - Mir Sajjad Aleyasin
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran 1417755331, Iran
| | - Reza Samiee
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran 1417755331, Iran
| | - Sanaz Bordbar
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran 1417755331, Iran
| | - Seyed Farzad Maroufi
- Department of Pediatric Neurological Surgery, Children's Medical Center, Tehran University of Medical Sciences, Tehran 1419733151, Iran
| | - Nikoo Bayan
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran 1417755331, Iran
| | - Sara Hanaei
- Neurosurgery Department, Imam Khomeini Hospital Complex (IKHC), Tehran University of Medical Sciences, Tehran 1419733151, Iran
| | - Timothy R Smith
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA 02115, USA
| |
Collapse
|
9
|
Pessôa R, de Souza DRV, Nukui Y, Pereira J, Fernandes LA, Marcusso RN, de Oliveira ACP, Casseb J, da Silva Duarte AJ, Sanabani SS. Small RNA Profiling in an HTLV-1-Infected Patient with Acute Adult T-Cell Leukemia-Lymphoma at Diagnosis and after Maintenance Therapy: A Case Study. Int J Mol Sci 2023; 24:10643. [PMID: 37445821 DOI: 10.3390/ijms241310643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Small RNAs (sRNAs) are epigenetic regulators of essential biological processes associated with the development and progression of leukemias, including adult T-cell leukemia/lymphoma (ATLL) caused by human T-cell lymphotropic virus type 1 (HTLV-1), an oncogenic human retrovirus originally discovered in a patient with adult T-cell leukemia/lymphoma. Here, we describe the sRNA profile of a 30-year-old woman with ATLL at the time of diagnosis and after maintenance therapy with the aim of correlating expression levels with response to therapy.
Collapse
Affiliation(s)
- Rodrigo Pessôa
- Postgraduate Program in Translational Medicine, Department of Medicine, Federal University of São Paulo (UNIFESP), São Paulo 04039-002, Brazil
| | - Daniela Raguer Valadão de Souza
- Postgraduate Program in Translational Medicine, Department of Medicine, Federal University of São Paulo (UNIFESP), São Paulo 04039-002, Brazil
| | - Youko Nukui
- Department of Hematology, Faculty of Medicine, University of São Paulo, São Paulo 05403-000, Brazil
| | - Juliana Pereira
- Department of Hematology, Faculty of Medicine, University of São Paulo, São Paulo 05403-000, Brazil
| | - Lorena Abreu Fernandes
- Postgraduate Program in Translational Medicine, Department of Medicine, Federal University of São Paulo (UNIFESP), São Paulo 04039-002, Brazil
| | - Rosa Nascimento Marcusso
- Department of Neurology, Emilio Ribas Institute of Infectious Diseases, São Paulo 01246-900, Brazil
| | | | - Jorge Casseb
- Laboratory of Medical Investigation LIM-56, Division of Dermatology, Medical School, University of São Paulo, São Paulo 05403-000, Brazil
| | - Alberto José da Silva Duarte
- Laboratory of Medical Investigation LIM-56, Division of Dermatology, Medical School, University of São Paulo, São Paulo 05403-000, Brazil
| | - Sabri Saeed Sanabani
- Laboratory of Medical Investigation LIM-56, Division of Dermatology, Medical School, University of São Paulo, São Paulo 05403-000, Brazil
- Laboratory of Medical Investigation Unit 03, Clinics Hospital, Faculty of Medicine, University of São Paulo, São Paulo 05403-000, Brazil
- Laboratory of Dermatology and Immunodeficiency, LIM56/03, Instituto de Medicina Tropical de São Paulo Faculdade de Medicina da Universidade de São Paulo, Av. Dr. Eneas de Carvalho Aguiar, 470 3° andar, São Paulo 05403-000, Brazil
| |
Collapse
|
10
|
Valle-Mendiola A, Gutiérrez-Hoya A, Soto-Cruz I. JAK/STAT Signaling and Cervical Cancer: From the Cell Surface to the Nucleus. Genes (Basel) 2023; 14:1141. [PMID: 37372319 DOI: 10.3390/genes14061141] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/13/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
The Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling pathway constitutes a rapid signaling module from the cell surface to the nucleus, and activates different cellular responses, such as proliferation, survival, migration, invasion, and inflammation. When the JAK/STAT pathway is altered, it contributes to cancer progression and metastasis. STAT proteins play a central role in developing cervical cancer, and inhibiting the JAK/STAT signaling may be necessary to induce tumor cell death. Several cancers show continuous activation of different STATs, including cervical cancer. The constitutive activation of STAT proteins is associated with a poor prognosis and overall survival. The human papillomavirus (HPV) oncoproteins E6 and E7 play an essential role in cervical cancer progression, and they activate the JAK/STAT pathway and other signals that induce proliferation, survival, and migration of cancer cells. Moreover, there is a crosstalk between the JAK/STAT signaling cascade with other signaling pathways, where a plethora of different proteins activate to induce gene transcription and cell responses that contribute to tumor growth. Therefore, inhibition of the JAK/STAT pathway shows promise as a new target in cancer treatment. In this review, we discuss the role of the JAK/STAT pathway components and the role of the HPV oncoproteins associated with cellular malignancy through the JAK/STAT proteins and other signaling pathways to induce tumor growth.
Collapse
Affiliation(s)
- Arturo Valle-Mendiola
- Molecular Oncology Laboratory, Cell Differentiation and Cancer Research Unit, FES Zaragoza, National University of Mexico, Batalla 5 de Mayo s/n, Colonia Ejército de Oriente, Mexico City 09230, Mexico
| | - Adriana Gutiérrez-Hoya
- Molecular Oncology Laboratory, Cell Differentiation and Cancer Research Unit, FES Zaragoza, National University of Mexico, Batalla 5 de Mayo s/n, Colonia Ejército de Oriente, Mexico City 09230, Mexico
- Cátedra CONACYT, FES Zaragoza, National University of Mexico, Mexico City 09230, Mexico
| | - Isabel Soto-Cruz
- Molecular Oncology Laboratory, Cell Differentiation and Cancer Research Unit, FES Zaragoza, National University of Mexico, Batalla 5 de Mayo s/n, Colonia Ejército de Oriente, Mexico City 09230, Mexico
| |
Collapse
|
11
|
Xu Y, Sun Y, Song X, Ren J. The mechanisms and diagnostic potential of lncRNAs, miRNAs, and their related signaling pathways in cervical cancer. Front Cell Dev Biol 2023; 11:1170059. [PMID: 37215076 PMCID: PMC10192553 DOI: 10.3389/fcell.2023.1170059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/11/2023] [Indexed: 05/24/2023] Open
Abstract
Cervical cancer (CC), the fourth most prevalent type of cancer among women worldwide, is associated with high rates of morbidity and mortality. Due to the long period of latency in CC, most patients are already in the middle to late stages when initially diagnosed, which greatly reduces the clinical cure rate and quality of survival, thus resulting in poor outcomes. In recent years, with continuous exploration in the fields of bioinformatics and molecules, it has been found that ncRNAs, including miRNAs and lncRNAs, without the ability to translate proteins are capable of activating or inhibiting certain signaling pathways by targeting and modulating the level of expression of proteins involved in these signaling pathways. ncRNAs play important roles in assisting with diagnosis, drug administration, and prediction of prognosis during CC progression. As an entry point, the mechanisms of interaction between miRNAs, lncRNAs, and signaling pathways have long been a focus in basic research relating to CC, and numerous experimental studies have confirmed the close relationship of miRNAs, lncRNAs, and signaling pathways with CC development. Against this background, we summarize the latest advances in the involvement of lncRNA- and miRNA-related signaling pathways in the development of CC to provide guidance for CC treatment.
Collapse
|
12
|
Hatam S. MicroRNAs Improve Cancer Treatment Outcomes Through Personalized Medicine. Microrna 2023; 12:92-98. [PMID: 36733205 DOI: 10.2174/2211536612666230202113415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 11/24/2022] [Accepted: 12/02/2022] [Indexed: 02/04/2023]
Abstract
MicroRNAs (miRNAs) are short non-coding RNAs that repress or degrade mRNA targets to downregulate genes. In cancer occurrence, the expression of miRNAs is altered. Depending on the involvement of a certain miRNA in the pathogenetic growth of a tumor, It may be up or downregulated. The "oncogenic" action of miRNAs corresponds with upregulation, which leads to tumor proliferation and spread meanwhile the miRNAs that have been downregulated bring tumorsuppressive outcomes. Oncogenes and tumor suppressor genes are among the genes whose expression is under their control, demonstrating that classifying them solely as oncogenes or tumor suppressor genes alone is not only hindering but also incorrect. Apart from basic tumors, miRNAs may be found in nearly all human fluids and can be used for cancer diagnosis as well as clinical outcome prognostics and better response to treatment strategies. The overall variance of these tiny noncoding RNAs influences patient-specific pharmacokinetics and pharmacodynamics of anti-cancer medicines, driving a growing demand for personalized medicine. By now, microRNAs from tumor biopsies or blood are being widely investigated as substantial biomarkers for cancer in time diagnosis, prognosis, and, progression. With the rise of COVID-19, this paper also attempts to study recent research on miRNAs involved with deaths in lung cancer COVID patients. With the discovery of single nucleotide polymorphisms, personalized treatment via microRNAs has lately become a reality. The present review article describes the highlights of recent knowledge of miRNAs in various cancers, with a focus on miRNA translational applications as innovative potential diagnostic and prognostic indicators that expand person-to-person therapy options.
Collapse
Affiliation(s)
- Saeid Hatam
- Department of Innovation and Industry, Science and Technology Park of Fars, ExirBitanic Co., Shiraz, Iran
- Department of Health and Wellbeing, Sheffield Hallam University, Sheffield, United Kingdom
- Department of Biological Sciences, Azad University, Zarghan Branch, Shiraz, Iran
| |
Collapse
|
13
|
Rajabi A, Kayedi M, Rahimi S, Dashti F, Mirazimi SMA, Homayoonfal M, Mahdian SMA, Hamblin MR, Tamtaji OR, Afrasiabi A, Jafari A, Mirzaei H. Non-coding RNAs and glioma: Focus on cancer stem cells. Mol Ther Oncolytics 2022; 27:100-123. [PMID: 36321132 PMCID: PMC9593299 DOI: 10.1016/j.omto.2022.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Glioblastoma and gliomas can have a wide range of histopathologic subtypes. These heterogeneous histologic phenotypes originate from tumor cells with the distinct functions of tumorigenesis and self-renewal, called glioma stem cells (GSCs). GSCs are characterized based on multi-layered epigenetic mechanisms, which control the expression of many genes. This epigenetic regulatory mechanism is often based on functional non-coding RNAs (ncRNAs). ncRNAs have become increasingly important in the pathogenesis of human cancer and work as oncogenes or tumor suppressors to regulate carcinogenesis and progression. These RNAs by being involved in chromatin remodeling and modification, transcriptional regulation, and alternative splicing of pre-mRNA, as well as mRNA stability and protein translation, play a key role in tumor development and progression. Numerous studies have been performed to try to understand the dysregulation pattern of these ncRNAs in tumors and cancer stem cells (CSCs), which show robust differentiation and self-regeneration capacity. This review provides recent findings on the role of ncRNAs in glioma development and progression, particularly their effects on CSCs, thus accelerating the clinical implementation of ncRNAs as promising tumor biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Ali Rajabi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Mehrdad Kayedi
- Department of Radiology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shiva Rahimi
- School of Medicine,Fasa University of Medical Sciences, Fasa, Iran
| | - Fatemeh Dashti
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Mohammad Ali Mirazimi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Mina Homayoonfal
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Seyed Mohammad Amin Mahdian
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Omid Reza Tamtaji
- Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Afrasiabi
- Department of Internal Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ameneh Jafari
- Advanced Therapy Medicinal Product (ATMP) Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
14
|
Singh G, Sharma SK, Singh SK. miR-34a negatively regulates cell cycle factor Cdt2/DTL in HPV infected cervical cancer cells. BMC Cancer 2022; 22:777. [PMID: 35840896 PMCID: PMC9288023 DOI: 10.1186/s12885-022-09879-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/04/2022] [Indexed: 11/10/2022] Open
Abstract
MicroRNAs have emerged as an important regulator of cell cycle and various other cellular processes. Aberration in microRNAs has been linked with development of several cancers and other diseases but still very little is known about the mechanism by which they regulate these cellular events. High risk human papilloma virus (HR HPV) is the causative agent of 99% of cervical cancer cases which attenuates multiple tumor suppressors and checkpoint factors of the host cell. The viral proteins also stabilize many oncogenic factors, including an essential cell cycle regulator Cdt2/DTL which in turn promotes cell transformation and proliferation. In this study, we report that a micro-RNA, miR-34a by suppressing HPV E6 protein, destabilizes Cdt2/DTL protein level in HPV infected cervical cancer cell lines. Destabilization of Cdt2 stabilizes pro-apoptotic and onco-suppressor proteins like p21 and Set8 and suppresses cell proliferation, invasion and migration capabilities of the HPV positive cervical cancer cells. Overexpression of either HPV E6 or Cdt2 genes along with miR-34a restored back the suppressed proliferation rate. This study is the first-ever report to show that miR-34a regulates cell cycle factor Cdt2 by suppressing viral E6 protein level, thus opening up the possibility of exploring miR-34a as a specific therapy for cervical cancer treatment.
Collapse
Affiliation(s)
- Garima Singh
- Cell Cycle and Cancer Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, UP-221005, India
| | - Sonika Kumari Sharma
- Cell Cycle and Cancer Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, UP-221005, India
| | - Samarendra Kumar Singh
- Cell Cycle and Cancer Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, UP-221005, India.
| |
Collapse
|
15
|
Cervical Cancer Cells-Derived Extracellular Vesicles Containing microRNA-146a-5p Affect Actin Dynamics to Promote Cervical Cancer Metastasis by Activating the Hippo-YAP Signaling Pathway via WWC2. JOURNAL OF ONCOLOGY 2022; 2022:4499876. [PMID: 35799607 PMCID: PMC9256433 DOI: 10.1155/2022/4499876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 06/02/2022] [Accepted: 06/08/2022] [Indexed: 11/22/2022]
Abstract
Application of extracellular vesicles (EVs) for cancer treatment has been well-documented. We probed into the potential role of cervical cancer cells-secreted EVs by transferring miR-146a-5p in cervical cancer. After characterization of miR-146a-5p expression in clinical cervical cancer tissue samples, gain- and loss-of-function experiments were implemented to test the effect of miR-146a-5p on the invasion, epithelial-mesenchymal transition (EMT), and anoikis in cervical cancer cells. EVs were isolated from high-metastatic cervical cancer cells, after which their effects on the malignant behaviors of low-metastatic cervical cancer cells were assessed in a co-culture system. Luciferase assay was implemented to validate the putative binding relationship between miR-146a-5p and WWC2, followed by further investigation of downstream pathway (Hippo-YAP). Finally, nude mouse lung metastasis model was developed for in vivo validation. miR-146a-5p was elevated in cervical cancer tissues and high miR-146a-5p expression promoted the metastatic potential of cervical cancer cells through enhancing their invasiveness and anoikis resistance, and inducing EMT. Furthermore, miR-146a-5p carried by EVs secreted by highly metastatic cervical cancer cells could promote the metastasis of low-metastatic cervical cancer cells. Mechanistically, miR-146a-5p targeted WWC2 to activate YAP, by which it inhibited the phosphorylation of cofilin, and promoted the process of cofilin-mediated depolymerization of F-actin to G-actin. In vivo data demonstrated that EVs-carried miR-146a-5p promoted tumor metastasis through the WWC2/YAP axis. Cancer-derived EVs delivered pro-metastatic miR-146a-5p to regulate the actin dynamics in cervical cancer, thereby leading to cancer metastasis. This experiment highlighted an appealing therapeutic modality for cervical cancer.
Collapse
|
16
|
Qi Y, Cui S, Liu L, Liu B, Wang T, Yan S, Tian H, Huang X. Expression and role of miR-146a and SMAD4 in placental tissue of pregnant women with preeclampsia. J Obstet Gynaecol Res 2022; 48:2151-2161. [PMID: 35751569 DOI: 10.1111/jog.15323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 03/18/2022] [Accepted: 04/28/2022] [Indexed: 11/30/2022]
Abstract
INTRODUCTION To investigate the expression of miR-146a in severe preeclampsia (PE) and its effect on trophoblast cell proliferation, invasion and apoptosis, as well as its relationship with SMAD4. MATERIAL AND METHODS Participants were divided into the severe PE group (n = 30) and the normal group (n = 30). The expression of miR-146a and SMAD4 in placenta tissue was detected by immunohistochemistry, qRT-PCR, and western blot. Trophoblast cell lines HTR-8/SVneo were cultured to detect the expression of miR-146a under the Cobalt chloride (CoCl2 )-simulated hypoxia. The effects of miR-146a transfection on cell proliferation, invasion, apoptosis, and SMAD4 expression were analyzed. RESULTS Compared with the normal group, miR-146a expression was decreased and the protein and mRNA levels of SMAD4 were increased in placenta tissues of the severe PE group. Our in vitro experiments showed that the expression of miR-146a decreased after CoCl2 treatment. Silencing miR-146a caused increased expression of SMAD4 and decreased expression of VEGF. After transfection with miR-146a inhibitor, compared with the NC group, the invasion and proliferation of HTR-8/Svneo cells were decreased, while the apoptosis was enhanced. CONCLUSION The expression of miR-146a decreased in severe PE and was negatively correlated with SMAD4 expression. The expression of miR-146a was inhibited under hypoxia, and the low expression of miR-146a affected the proliferation, invasion, and apoptosis of trophoblast cells.
Collapse
Affiliation(s)
- Yue Qi
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Shihong Cui
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China.,Department of Medical Research Center, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Ling Liu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Beibei Liu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Tiantian Wang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Shujun Yan
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Haoxin Tian
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Xiaobin Huang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| |
Collapse
|
17
|
Monayo SM, Liu X. The Prospective Application of Melatonin in Treating Epigenetic Dysfunctional Diseases. Front Pharmacol 2022; 13:867500. [PMID: 35668933 PMCID: PMC9163742 DOI: 10.3389/fphar.2022.867500] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/14/2022] [Indexed: 01/09/2023] Open
Abstract
In the past, different human disorders were described by scientists from the perspective of either environmental factors or just by genetically related mechanisms. The rise in epigenetic studies and its modifications, i.e., heritable alterations in gene expression without changes in DNA sequences, have now been confirmed in diseases. Modifications namely, DNA methylation, posttranslational histone modifications, and non-coding RNAs have led to a better understanding of the coaction between epigenetic alterations and human pathologies. Melatonin is a widely-produced indoleamine regulator molecule that influences numerous biological functions within many cell types. Concerning its broad spectrum of actions, melatonin should be investigated much more for its contribution to the upstream and downstream mechanistic regulation of epigenetic modifications in diseases. It is, therefore, necessary to fill the existing gaps concerning corresponding processes associated with melatonin with the physiological abnormalities brought by epigenetic modifications. This review outlines the findings on melatonin’s action on epigenetic regulation in human diseases including neurodegenerative diseases, diabetes, cancer, and cardiovascular diseases. It summarizes the ability of melatonin to act on molecules such as proteins and RNAs which affect the development and progression of diseases.
Collapse
|
18
|
Kwon AY, Jeong JY, Park H, Hwang S, Kim G, Kang H, Heo JH, Lee HJ, Kim TH, An HJ. miR-22-3p and miR-30e-5p Are Associated with Prognosis in Cervical Squamous Cell Carcinoma. Int J Mol Sci 2022; 23:5623. [PMID: 35628433 PMCID: PMC9144648 DOI: 10.3390/ijms23105623] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/11/2022] [Accepted: 05/16/2022] [Indexed: 02/01/2023] Open
Abstract
Alteration in expression of miRNAs can cause various malignant changes and the metastatic process. Our aim was to identify the miRNAs involved in cervical squamous cell carcinoma (SqCC) and metastasis, and to test their utility as indicators of metastasis and survival. Using microarray technology, we performed miRNA expression profiling on primary cervical SqCC tissue (n = 6) compared with normal control (NC) tissue and compared SqCC that had (SqC-M; n = 3) and had not (SqC-NM; n = 3) metastasized. Four miRNAs were selected for validation by qRT-PCR on 29 SqC-NM and 27 SqC-M samples, and nine metastatic lesions (ML-SqC), from a total of 56 patients. Correlation of miRNA expression and clinicopathological parameters was analyzed to evaluate the clinical impact of candidate miRNAs. We found 40 miRNAs differentially altered in cervical SqCC tissue: 21 miRNAs were upregulated and 19 were downregulated (≥2-fold, p < 0.05). Eight were differentially altered in SqC-M compared with SqC-NM samples: four were upregulated (miR-494, miR-92a-3p, miR-205-5p, and miR-221-3p), and four were downregulated (miR-574-3p, miR-4769-3p, miR-1281, and miR-1825) (≥1.5-fold, p < 0.05). MiR-22-3p might be a metastamiR, which was gradually further downregulated in SqC-NM > SqC-M > ML-SqC. Downregulation of miR-30e-5p significantly correlated with high stage, lymph node metastasis, and low survival rate, suggesting an independent poor prognostic factor.
Collapse
Affiliation(s)
- Ah-Young Kwon
- Department of Pathology, CHA University College of Medicine, Seongnam 13496, Gyeonggi-do, Korea; (A.-Y.K.); (S.H.); (G.K.); (H.K.); (J.-H.H.); (H.J.L.); (T.-H.K.)
- Institute of Clinical Research, CHA University College of Medicine, Seongnam 13496, Gyeonggi-do, Korea
| | - Ju-Yeon Jeong
- CHA Future Medical Research Institute, CHA University College of Medicine, Seongnam 13496, Gyeonggi-do, Korea;
| | - Hyun Park
- Department of Gynecological Oncology, CHA University College of Medicine, Seongnam 13496, Gyeonggi-do, Korea;
| | - Sohyun Hwang
- Department of Pathology, CHA University College of Medicine, Seongnam 13496, Gyeonggi-do, Korea; (A.-Y.K.); (S.H.); (G.K.); (H.K.); (J.-H.H.); (H.J.L.); (T.-H.K.)
- Institute of Clinical Research, CHA University College of Medicine, Seongnam 13496, Gyeonggi-do, Korea
| | - Gwangil Kim
- Department of Pathology, CHA University College of Medicine, Seongnam 13496, Gyeonggi-do, Korea; (A.-Y.K.); (S.H.); (G.K.); (H.K.); (J.-H.H.); (H.J.L.); (T.-H.K.)
- Institute of Clinical Research, CHA University College of Medicine, Seongnam 13496, Gyeonggi-do, Korea
| | - Haeyoun Kang
- Department of Pathology, CHA University College of Medicine, Seongnam 13496, Gyeonggi-do, Korea; (A.-Y.K.); (S.H.); (G.K.); (H.K.); (J.-H.H.); (H.J.L.); (T.-H.K.)
- Institute of Clinical Research, CHA University College of Medicine, Seongnam 13496, Gyeonggi-do, Korea
| | - Jin-Hyung Heo
- Department of Pathology, CHA University College of Medicine, Seongnam 13496, Gyeonggi-do, Korea; (A.-Y.K.); (S.H.); (G.K.); (H.K.); (J.-H.H.); (H.J.L.); (T.-H.K.)
- Institute of Clinical Research, CHA University College of Medicine, Seongnam 13496, Gyeonggi-do, Korea
| | - Hye Jin Lee
- Department of Pathology, CHA University College of Medicine, Seongnam 13496, Gyeonggi-do, Korea; (A.-Y.K.); (S.H.); (G.K.); (H.K.); (J.-H.H.); (H.J.L.); (T.-H.K.)
| | - Tae-Heon Kim
- Department of Pathology, CHA University College of Medicine, Seongnam 13496, Gyeonggi-do, Korea; (A.-Y.K.); (S.H.); (G.K.); (H.K.); (J.-H.H.); (H.J.L.); (T.-H.K.)
- Institute of Clinical Research, CHA University College of Medicine, Seongnam 13496, Gyeonggi-do, Korea
| | - Hee Jung An
- Department of Pathology, CHA University College of Medicine, Seongnam 13496, Gyeonggi-do, Korea; (A.-Y.K.); (S.H.); (G.K.); (H.K.); (J.-H.H.); (H.J.L.); (T.-H.K.)
- Institute of Clinical Research, CHA University College of Medicine, Seongnam 13496, Gyeonggi-do, Korea
| |
Collapse
|
19
|
Chen R, Gan Q, Zhao S, Zhang D, Wang S, Yao L, Yuan M, Cheng J. DNA methylation of miR-138 regulates cell proliferation and EMT in cervical cancer by targeting EZH2. BMC Cancer 2022; 22:488. [PMID: 35505294 PMCID: PMC9063191 DOI: 10.1186/s12885-022-09477-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 03/22/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Emerging evidence has identified miR-138 as a tumor suppressor that can suppress the proliferation of various cancers. Meanwhile, the cause of abnormal miR-138 expression in cervical cancer remains uncertain. This study clarified the mechanism by which miR-138 regulates proliferation, invasion, metastasis, and EMT in cervical cancer cells. RESULTS miR-138 expression in human cervical cancer and adjacent normal tissue was measured using qPCR. SiHa and C33A cells were used to determine the function of miR-138 via miR-138 mimic or inhibitor transfection, followed by wound healing, Cell Counting Kit-8, flow cytometry, and Transwell assays. Epithelial and mesenchymal marker expression was analyzed using Western blotting. DNA methylation in the miR-138 promoter was examined using bisulfite sequencing PCR. The downstream target genes of miR-138 were identified via bioinformatics analysis and luciferase reporter assays. A tumor xenograft model was employed to validate DNA methylation-induced miR-138 downregulation and tumor growth inhibition in cervical cancer in vivo. miR-138 levels were significantly lower in cervical cancer tissues than in adjacent control tissues. Furthermore, lower miR-138 expression and higher CpG methylation in the miR-138 promoter were identified in lymph node-positive metastatic cervical cancer tumors versus that in non-metastatic tumor tissues. Upon miR-138 overexpression, cell proliferation, metastasis, invasion, and EMT were suppressed. miR-138 agomir transfection and demethylating drug treatment significantly inhibited cervical tumor growth and EMT in tumor xenograft models. DNA methylation inhibited miR-138 transcription, and enhancer of zeste homolog 2 (EZH2) downregulation mediated the tumor suppressor function of miR-138 in cervical cancer. CONCLUSION We demonstrated that miR-138 suppresses tumor progression by targeting EZH2 in cervical cancer and uncovered the role of DNA methylation in the miR-138 promoter in its downregulation. These findings demonstrated the potential of miR-138 to predict disease metastasis and/or function as a therapeutic target in cervical cancer.
Collapse
Affiliation(s)
- Rui Chen
- Department of Obstetrics and Gynecology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, People's Republic of China
| | - Qiyu Gan
- Department of Obstetrics and Gynecology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, People's Republic of China
| | - Shuting Zhao
- Department of Obstetrics and Gynecology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, People's Republic of China
| | - Dongrui Zhang
- Department of Obstetrics and Gynecology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, People's Republic of China
| | - Shunli Wang
- Department of Pathology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, People's Republic of China
| | - Lili Yao
- Department of Gynecology, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, 830011, People's Republic of China
| | - Min Yuan
- Department of Gynecology, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, 830011, People's Republic of China.
| | - Jingxin Cheng
- Department of Obstetrics and Gynecology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, People's Republic of China.
| |
Collapse
|
20
|
Yu L, Majerciak V, Zheng ZM. HPV16 and HPV18 Genome Structure, Expression, and Post-Transcriptional Regulation. Int J Mol Sci 2022; 23:ijms23094943. [PMID: 35563334 PMCID: PMC9105396 DOI: 10.3390/ijms23094943] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 12/18/2022] Open
Abstract
Human papillomaviruses (HPV) are a group of small non-enveloped DNA viruses whose infection causes benign tumors or cancers. HPV16 and HPV18, the two most common high-risk HPVs, are responsible for ~70% of all HPV-related cervical cancers and head and neck cancers. The expression of the HPV genome is highly dependent on cell differentiation and is strictly regulated at the transcriptional and post-transcriptional levels. Both HPV early and late transcripts differentially expressed in the infected cells are intron-containing bicistronic or polycistronic RNAs bearing more than one open reading frame (ORF), because of usage of alternative viral promoters and two alternative viral RNA polyadenylation signals. Papillomaviruses proficiently engage alternative RNA splicing to express individual ORFs from the bicistronic or polycistronic RNA transcripts. In this review, we discuss the genome structures and the updated transcription maps of HPV16 and HPV18, and the latest research advances in understanding RNA cis-elements, intron branch point sequences, and RNA-binding proteins in the regulation of viral RNA processing. Moreover, we briefly discuss the epigenetic modifications, including DNA methylation and possible APOBEC-mediated genome editing in HPV infections and carcinogenesis.
Collapse
|
21
|
Khatami A, Nahand JS, Kiani SJ, Khoshmirsafa M, Moghoofei M, Khanaliha K, Tavakoli A, Emtiazi N, Bokharaei-Salim F. Human papilloma virus (HPV) and prostate cancer (PCa): The potential role of HPV gene expression and selected cellular MiRNAs in PCa development. Microb Pathog 2022; 166:105503. [DOI: 10.1016/j.micpath.2022.105503] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 01/09/2023]
|
22
|
The Clinical Efficacy of Chemotherapy Combined with Traditional Chinese Medicine in the Treatment of Cervical Cancer and Its Influence on Cellular Immunity, Serum CEA, and TNF- α. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:7728739. [PMID: 35035510 PMCID: PMC8759920 DOI: 10.1155/2022/7728739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/21/2021] [Accepted: 12/27/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND This study aims to investigate the clinical efficacy of chemotherapy combined with traditional Chinese medicine in patients with cervical cancer and its effect on cellular immunoglobulin, serum sugar chain antigen 125 (CA125), carcinoembryonic antigen (CEA), and tumor necrosis factor-α (TNF-α). METHODS Conventional chemotherapy was performed in control and observation groups. Meantime, the observation group received traditional Chinese medicine. Finally, the clinical efficacy, immunoglobulin, serum tumor markers, and serum TNF-α of the two groups were compared. RESULTS Compared with the control group, total effective rate in the observation group was increased. After treatment, serum CD8+, TNF-α, CA125, and CEA levels were reduced in the two groups, and the observation group was higher. In the two groups, CD3+ and CD4+ levels were enhanced after treatment, and the observation group was also higher. Compared with the control group, the immunoglobulin IgG, IgA, and IgM levels increased in the observation group. The incidence of adverse reactions in the observation group was reduced compared to the control group. CONCLUSION Chemotherapy combined with traditional Chinese can help improve the clinical efficacy and immunity in patients with cervical cancer. Moreover, the safety and feasibility of the treatment method are relatively high.
Collapse
|
23
|
Mukherjee S, Shelar B, Krishna S. Versatile role of miR-24/24-1*/24-2* expression in cancer and other human diseases. Am J Transl Res 2022; 14:20-54. [PMID: 35173828 PMCID: PMC8829624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 10/08/2021] [Indexed: 06/14/2023]
Abstract
MiRNAs (miRs) have been proven to be well-validated therapeutic targets. Emerging evidence has demonstrated that intricate, intrinsic and paradoxical functions of miRs are context-dependent because of their multiple upstream regulators, broad spectrum of downstream molecular targets and distinct expression in various tissues, organs and disease states. Targeted therapy has become an emerging field of research. One key for the development of successful miR-based/targeted therapy is to acquire integrated knowledge of its regulatory network and its association with disease phenotypes to identify critical nodes of the underlying pathogenesis. Herein, we systematically summarized the comprehensive role of miR-24-3p (miR-24), along with its passenger strands miR-24-1-5p* (miR-24-1) and miR-24-2-5p* (miR-24-2), emphasizing their microenvironment, intracellular targets, and associated gene networks and regulatory phenotypes in 18 different cancer types and 13 types of other disorders. MiR-24 targets and regulates numerous genes in various cancer types and enhances the expression of several oncogenes (e.g., cMyc, BCL2 and HIF1), which are challenging in terms of druggability. In contrast, several tumor suppressor proteins (p21 and p53) have been reported to be downregulated by miR-24. MiR-24 also regulates the cell cycle and is associated with numerous cancer hallmarks such as apoptosis, proliferation, metastasis, invasion, angiogenesis, autophagy, drug resistance and other diseases pathogenesis. Overall, miR-24 plays an emerging role in the diagnosis, prognosis and pathobiology of various diseases. MiR-24 is a potential target for targeted therapy in the era of precision medicine, which expands the landscape of targetable macromolecules, including undruggable proteins.
Collapse
Affiliation(s)
| | | | - Sudhir Krishna
- National Centre for Biological Sciences (NCBS), Tata Institute of Fundamental Research (TIFR)Bellary Road, Bangalore 560065, Karnataka, India
| |
Collapse
|
24
|
Wei C, Jiang P, Li G, Li M, Wang L. 5,7,2,5-tetrahydroxy-8,6-dimethoxyflavone up-regulates miR-145 expression and inhibits proliferation of gastric cancer cells. Arch Med Sci 2022; 18:753-760. [PMID: 35591840 PMCID: PMC9103526 DOI: 10.5114/aoms/121038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/25/2020] [Indexed: 01/19/2023] Open
Abstract
INTRODUCTION Gastric cancer is a frequently detected malignancy, and its incidence has increased over the past decades in East Asia. The present study investigated the effect of 5,7,2, 5-tetrahydroxy-8,6-dimethoxyflavone (THDMF) on gastric cancer cells and explored the underlying mechanism. The study analysed cell viability changes, apoptotic features, and metastasis potential of treatment with THDMF. MATERIAL AND METHODS MTT colorimetric assay was used for measurement of MKN28, MKN45, and GES-1 cell proliferation and flow cytometry for the detection of apoptosis. Transwell and wound healing assays were used to observe the invasion and migration abilities of MKN28 cells. The expression of p21, MMP2/-9, PI3K, and c-Myc proteins was detected by western blotting. RESULTS The THDMF treatment significantly (p < 0.05) reduced MKN28 and MKN45 cell proliferation without changing GES-1 cell viability. A significant increase in apoptotic cell population on treatment with THDMF was observed. Treatment of MKN28 cells with THDMF increased the percentage of cells in the G1 phase. Exposure of MKN28 cells to THDMF caused a marked decrease in invasion and migration potential in comparison to control cells. The expression of miR-145 was markedly increased in MKN28 cells on treatment with THDMF. In MKN28 cells expression of c-Myc, PI3K, p-AKT, MMP-2, and MMP-9 was suppressed markedly on exposure to THDMF. The expression of p21 protein in MKN28 cells was markedly promoted on exposure to THDMF. CONCLUSIONS THDMF exhibits anti-cancer effect on gastric cancer cells in vitro by activation of cell apoptosis and arrest of cell cycle. In addition, THDMF promoted miR-145 expression and down-regulation of PI3K/AKT signalling pathway in MKN28 cells. Therefore, THDMF may be utilised as a potential novel therapeutic agent for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Chunhong Wei
- Department of Oncology, Second People’s Hospital of Dezhou, Decheng District, Dezhou, Shandong Province, China
| | - Peng Jiang
- Department of Endoscopic, Second People’s Hospital of Dezhou, Decheng District, Dezhou, Shandong Province, China
| | - Guangxu Li
- Department of Thoracic Surgery, Second People’s Hospital of Dezhou, Decheng District, Dezhou, Shandong Province, China
| | - Meng Li
- Department of Gastrointestinal Surgery, Second People’s Hospital of Dezhou, Decheng District, Dezhou, Shandong Province, China
| | - Li Wang
- Department of Oncology, Second People’s Hospital of Dezhou, Decheng District, Dezhou, Shandong Province, China
| |
Collapse
|
25
|
Bañuelos-Villegas EG, Pérez-yPérez MF, Alvarez-Salas LM. Cervical Cancer, Papillomavirus, and miRNA Dysfunction. Front Mol Biosci 2021; 8:758337. [PMID: 34957212 PMCID: PMC8703027 DOI: 10.3389/fmolb.2021.758337] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/18/2021] [Indexed: 12/21/2022] Open
Abstract
Cervical cancer is the leading cause of death by cancer in women from developing countries. Persistent infection with high-risk human papillomavirus (HPV) types 16 and 18 is a major risk factor for cervical carcinogenesis. Nevertheless, only a few women with morphologic expression of HPV infection progress into invasive disease suggesting the involvement of other factors in cervical carcinogenesis. MicroRNAs (miRNAs) are conserved small non-coding RNAs that negatively regulate gene expression including genes involved in fundamental biological processes and human cancer. Dysregulation of miRNAs has been widely reported in cervical cancer. This work focuses on reviewing the miRNAs affected during the HPV infection process, as well relevant miRNAs that contribute to the development and maintenance of malignant cervical tumor cells. Finally, we recapitulate on miRNAs that may be used to distinguish between healthy individuals from patients with precancerous lesions or cervical tumors.
Collapse
Affiliation(s)
- Evelyn Gabriela Bañuelos-Villegas
- Laboratorio de Terapia Génica, Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados Del I.P.N., México City, Mexico
| | - María Fernanda Pérez-yPérez
- Laboratorio de Terapia Génica, Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados Del I.P.N., México City, Mexico
| | - Luis Marat Alvarez-Salas
- Laboratorio de Terapia Génica, Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados Del I.P.N., México City, Mexico
| |
Collapse
|
26
|
MicroRNA-214 in Health and Disease. Cells 2021; 10:cells10123274. [PMID: 34943783 PMCID: PMC8699121 DOI: 10.3390/cells10123274] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/16/2021] [Accepted: 11/20/2021] [Indexed: 12/24/2022] Open
Abstract
MicroRNAs (miRNAs) are endogenously expressed, non-coding RNA molecules that mediate the post-transcriptional repression and degradation of mRNAs by targeting their 3′ untranslated region (3′-UTR). Thousands of miRNAs have been identified since their first discovery in 1993, and miR-214 was first reported to promote apoptosis in HeLa cells. Presently, miR-214 is implicated in an extensive range of conditions such as cardiovascular diseases, cancers, bone formation and cell differentiation. MiR-214 has shown pleiotropic roles in contributing to the progression of diseases such as gastric and lung cancers but may also confer cardioprotection against excessive fibrosis and oxidative damage. These contrasting functions are achieved through the diverse cast of miR-214 targets. Through silencing or overexpressing miR-214, the detrimental effects can be attenuated, and the beneficial effects promoted in order to improve health outcomes. Therefore, discovering novel miR-214 targets and understanding how miR-214 is dysregulated in human diseases may eventually lead to miRNA-based therapies. MiR-214 has also shown promise as a diagnostic biomarker in identifying breast cancer and coronary artery disease. This review provides an up-to-date discussion of miR-214 literature by describing relevant roles in health and disease, areas of disagreement, and the future direction of the field.
Collapse
|
27
|
Liu X, Yin L, Shen S, Hou Y. Inflammation and cancer: paradoxical roles in tumorigenesis and implications in immunotherapies. Genes Dis 2021; 10:151-164. [PMID: 37013041 PMCID: PMC10066281 DOI: 10.1016/j.gendis.2021.09.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 07/29/2021] [Accepted: 09/23/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic inflammation caused by persistent infections and metabolic disorders is thought to contribute to the increased cancer risk and the accelerated cancer progression. Oppositely, acute inflammation induced by bacteria-based vaccines or that is occurring after cancer selectively inhibits cancer progression and metastasis. However, the interaction between inflammation and cancer may be more complex than the current explanations for the relationship between chronic and acute inflammation and cancer. In this review, we described the impact of inflammation on cancer on the basis of three perspectives, including inflammation with different durations (chronic and acute inflammation), different scopes (systemic and local inflammation) and different occurrence sequences (inflammation occurring after and before cancer). In addition, we also introduced bacteria/virus-based cancer immunotherapies. We perceive that inflammation may be a double-edged sword with cancer-promoting and cancer-suppressing functions in certain cases. We expect to further improve the understanding of the relationship between inflammation and cancer and provide a theoretical basis for further research on their complex interaction.
Collapse
Affiliation(s)
- Xinghan Liu
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Lijie Yin
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Sunan Shen
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
- Corresponding author. The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China. Fax: +86 25 8968 8441.
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, Jiangsu 210093, China
- Corresponding author. The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, Jiangsu 210093, China. Fax: +86 25 8968 8441.
| |
Collapse
|
28
|
Expression profiles of miR-196, miR-132, miR-146a, and miR-134 in human colorectal cancer tissues in accordance with their clinical significance : Comparison regarding KRAS mutation. Wien Klin Wochenschr 2021; 133:1162-1170. [PMID: 34463887 DOI: 10.1007/s00508-021-01933-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/25/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Colorectal cancer (CRC) is among the most widespread malignancies in the world. MicroRNA (miRNA) has been identified as an important modulator of the biological processes of the cells. This group of noncoding RNAs also has a pivotal function in the growth and development of human cancers, including CRC. Among these miRNAs, miR-196, miR-132, miR-146a, and miR-134 have fundamental impacts on the regulation of cancers. The current study aimed to investigate the involvement of these miRNAs in CRC patients. METHODS In this study, 50 pairs of tumor and tumor margin samples of CRC patients were investigated to assess the expression levels of miR-196, miR-132, miR-146a, and miR-134 in this cancer. For this purpose, firstly, quantitative real-time PCR (qRT-PCR) was applied. Also, KRAS mutation and clinicopathological characteristics of the CRC patients were analyzed in the study groups. RESULTS The findings demonstrated the overexpression of miR-196 (P-value = 0.0045) and miR-146a (P-value = 0.0033) in tumor tissues compared to controls. Conversely, the expression levels of miR-132 (P-value = 0.00032) and miR-134 (P-value < 0.0001) were downregulated in tumor tissues. Also, miR-146a was the only miRNA with significant expression change in the case of the KRAS gene mutation. Interestingly, the expression ratio of these miRNAs was significantly associated with some of the clinicopathological features of the patients, such as lymph node and distant metastases. CONCLUSION Our data demonstrated that these miRNAs appear to be promising novel biomarkers for early diagnosis of CRC and may pave the way for the future establishment of novel therapeutic options for CRC.
Collapse
|
29
|
Mitra T, Elangovan S. Cervical cancer development, chemoresistance, and therapy: a snapshot of involvement of microRNA. Mol Cell Biochem 2021; 476:4363-4385. [PMID: 34453645 DOI: 10.1007/s11010-021-04249-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 08/17/2021] [Indexed: 12/24/2022]
Abstract
Cervical cancer (CC) is one of the leading causes of death in women due to cancer and a major concern in the developing world. Persistent human papilloma virus (HPV) infection is the major causative agent for CC. Besides HPV infection, genetic and epigenetic factors including microRNA (miRNA) also contribute to the malignant transformation. Earlier studies have revealed that miRNAs participate in cell proliferation, invasion and metastasis, angiogenesis, and chemoresistance processes by binding and inversely regulating the target oncogenes or tumor suppressor genes. Based on functions and mechanistic insights, miRNAs have been identified as cellular modulators that have an enormous role in diagnosis, prognosis, and cancer therapy. Signatures of miRNA could be used as diagnostic markers which are necessary for early diagnosis and management of CC. The therapeutic potential of miRNAs has been shown in CC; however, more comprehensive clinical trials are required for the clinical translation of miRNA-based diagnostics and therapeutics. Understanding the molecular mechanism of miRNAs and their target genes has been useful to develop miRNA-based therapeutic strategies for CC and overcome chemoresistance. In this review, we summarize the role of miRNAs in the development, progression, and metastasis of CC as well as chemoresistance. Further, we discuss the diagnostic and therapeutic potential of miRNAs to overcome chemoresistance and treatment of CC.
Collapse
Affiliation(s)
- Tandrima Mitra
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed To Be University, Bhubaneswar, Odisha, 751024, India
| | - Selvakumar Elangovan
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed To Be University, Bhubaneswar, Odisha, 751024, India.
| |
Collapse
|
30
|
Gong J, Jiang J, Qu J, Li J, Chen X, Ruan Z, Lu G, He Y, He X, Sun R. Association between the rs3733846 in the flanking region of miR-143/145 and risk of cervical squamous cell carcinoma. Biomark Med 2021; 15:891-897. [PMID: 34229450 DOI: 10.2217/bmm-2020-0865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/15/2021] [Indexed: 11/21/2022] Open
Abstract
Aim: To investigate the effect of rs3733846 in the flanking region of miR-143/145 on susceptibility to cervical squamous cell carcinoma (CSCC). Materials & methods: We collected venous blood samples from 242 CSCC patients and 250 healthy controls. The rs3733846 polymorphism was genotyped by SnaPshot and Sanger sequencing. The expression of miR-143/145 in CSCC tissues was detected by quantitative real-time PCR. Results: The rs3733846 AG genotype was associated with a decreased risk of CSCC in genetic model (AGvs.AA: adjusted odds ratio [OR]: 0.44; 95% CI: 0.30-0.66; p < 0.001). Patients with the rs3733846 AG/GG genotypes had a reduced risk of developing poorly differential status (OR: 0.57; 95% CI: 0.33-0.98; p < 0.04) and lymph node metastasis (OR: 0.49; 95% CI: 0.26-0.92; p < 0.03). Conclusion: The rs3733846 in the flanking region of miR-143/145 was related to the susceptibility of CSCC.
Collapse
Affiliation(s)
- Jianyu Gong
- School of Basic Medicine, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
| | - Jike Jiang
- School of Basic Medicine, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
| | - Jianwen Qu
- School of Basic Medicine, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
| | - Ju Li
- School of Basic Medicine, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
| | - Xin Chen
- School of Basic Medicine, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
| | - Zhiguo Ruan
- School of Basic Medicine, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
| | - Gangxu Lu
- School of Basic Medicine, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
| | - Yuxiao He
- School of Basic Medicine, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
| | - Xiaoshan He
- School of Basic Medicine, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
| | - Ruifen Sun
- School of Basic Medicine, Yunnan University of Chinese Medicine, Yunnan, Kunming, China
| |
Collapse
|
31
|
Dräger O, Metz K, Busch M, Dünker N. Role of L1CAM in retinoblastoma tumorigenesis: identification of novel therapeutic targets. Mol Oncol 2021; 16:957-981. [PMID: 34228897 PMCID: PMC8847994 DOI: 10.1002/1878-0261.13054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/11/2021] [Accepted: 07/05/2021] [Indexed: 11/08/2022] Open
Abstract
The study presented focuses on the role of the neuronal cell adhesion molecule L1 cell adhesion molecule (L1CAM) in retinoblastoma (RB), the most common malignant intraocular childhood tumor. L1CAM is differentially expressed in a variety of human cancers and has been suggested as a promising therapeutic target. We likewise observed differential expression patterns for L1CAM in RB cell lines and patient samples. The two proteases involved in ectodomain shedding of L1CAM (L1CAM sheddases: ADAM10 and ADAM17) were likewise differentially expressed in the RB cell lines investigated, and an involvement in L1CAM processing in RB cells could be verified. We also identified ezrin, galectin-3, and fibroblast growth factor basic as L1CAM signaling target genes in RB cells. Lentiviral L1CAM knockdown induced apoptosis and reduced cell viability, proliferation, growth, and colony formation capacity of RB cells, whereas L1CAM-overexpressing RB cells displayed the opposite effects. Chicken chorioallantoic membrane assays revealed that L1CAM depletion decreases the tumorigenic and migration potential of RB cells in vivo. Moreover, L1CAM depletion decreased viability and tumor growth of etoposide-resistant RB cell lines upon etoposide treatment in vitro and in vivo. Thus, L1CAM and its processing sheddases are potential novel targets for future therapeutic RB approaches.
Collapse
Affiliation(s)
- Oliver Dräger
- Institute of Anatomy II, Department of Neuroanatomy, University of Duisburg-Essen, Medical Faculty, Germany
| | - Klaus Metz
- Institute of Pathology, University of Duisburg-Essen, Medical Faculty, Germany
| | - Maike Busch
- Institute of Anatomy II, Department of Neuroanatomy, University of Duisburg-Essen, Medical Faculty, Germany
| | - Nicole Dünker
- Institute of Anatomy II, Department of Neuroanatomy, University of Duisburg-Essen, Medical Faculty, Germany
| |
Collapse
|
32
|
Zheng YJ, Liang TS, Wang J, Zhao JY, Zhai SN, Yang DK, Wang LD. MicroRNA-155 acts as a diagnostic and prognostic biomarker for oesophageal squamous cell carcinoma. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2021; 48:977-982. [PMID: 32573268 DOI: 10.1080/21691401.2020.1773479] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
MicroRNA-155 is over-expressed in many human cancers, but researches on its association with malignant oesophageal squamous cell carcinoma (ESCC) are limited. The aim of the present study was to evaluate the potential value of miR-155 as a biomarker for ESCC diagnosis and prognosis. In this study, we found that miR-155 was significantly increased in ESCC tissues compared with the paired adjacent tissues and healthy normal controls (p < .001), according to qRT-PCR, which suggested that miR-155 might act as an oncogene in ESCC. In addition, clinical features such as the depth of tumour invasion, tumour size, and TNM stage were all proved to impact the expression of miR-155 (p < .01). Then, ROC curve analysis, reaching an AUC of 0.870, and a sensitivity and specificity of 83.5% and 77.5%, respectively, revealed that miR-155 was a predictive factor for ESCC. As well, high expression of miR-155 was associated with poor overall survival of the patients (log-rank test, p = .004), according to Kaplan-Meier analysis. MiR-155 might be an independent predictor for overall survival in ESCC patients, manifested by Cox regression analysis (HR = 16.94, 95%CI = 3.33-86.12, p = .001). Taken together, miR-155 could be an independent diagnostic and prognostic biomarker for ESCC.
Collapse
Affiliation(s)
- Ying-Juan Zheng
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tian-Song Liang
- Department of Radiotherapy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Juan Wang
- Department of Radiotherapy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jing-Yi Zhao
- Department of Radiotherapy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Su-Nan Zhai
- Department of Radiotherapy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dao-Ke Yang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Department of Radiotherapy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Li-Dong Wang
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
33
|
Karimi F, Mollaei H. Potential of miRNAs in cervical cancer chemoresistance. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
34
|
Razavi ZS, Asgarpour K, Mahjoubin-Tehran M, Rasouli S, Khan H, Shahrzad MK, Hamblin MR, Mirzaei H. Angiogenesis-related non-coding RNAs and gastrointestinal cancer. MOLECULAR THERAPY-ONCOLYTICS 2021; 21:220-241. [PMID: 34095461 PMCID: PMC8141508 DOI: 10.1016/j.omto.2021.04.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Gastrointestinal (GI) cancers are among the main reasons for cancer death globally. The deadliest types of GI cancer include colon, stomach, and liver cancers. Multiple lines of evidence have shown that angiogenesis has a key role in the growth and metastasis of all GI tumors. Abnormal angiogenesis also has a critical role in many non-malignant diseases. Therefore, angiogenesis is considered to be an important target for improved cancer treatment. Despite much research, the mechanisms governing angiogenesis are not completely understood. Recently, it has been shown that angiogenesis-related non-coding RNAs (ncRNAs) could affect the development of angiogenesis in cancer cells and tumors. The broad family of ncRNAs, which include long non-coding RNAs, microRNAs, and circular RNAs, are related to the development, promotion, and metastasis of GI cancers, especially in angiogenesis. This review discusses the role of ncRNAs in mediating angiogenesis in various types of GI cancers and looks forward to the introduction of mimetics and antagonists as possible therapeutic agents.
Collapse
Affiliation(s)
| | - Kasra Asgarpour
- Department of Medicine, University of Western Ontario, London, ON, Canada
| | - Maryam Mahjoubin-Tehran
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Susan Rasouli
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Mohammad Karim Shahrzad
- Department of Internal Medicine and Endocrinology, Shohadae Tajrish Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
35
|
Oncogenic HPV promotes the expression of the long noncoding RNA lnc-FANCI-2 through E7 and YY1. Proc Natl Acad Sci U S A 2021; 118:2014195118. [PMID: 33436409 DOI: 10.1073/pnas.2014195118] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) play diverse roles in biological processes, but their expression profiles and functions in cervical carcinogenesis remain unknown. By RNA-sequencing (RNA-seq) analyses of 18 clinical specimens and selective validation by RT-qPCR analyses of 72 clinical samples, we provide evidence that, relative to normal cervical tissues, 194 lncRNAs are differentially regulated in high-risk (HR)-HPV infection along with cervical lesion progression. One such lncRNA, lnc-FANCI-2, is extensively characterized because it is expressed from a genomic locus adjacent to the FANCI gene encoding an important DNA repair factor. Both genes are up-regulated in HPV lesions and in in vitro model systems of HR-HPV18 infection. We observe a moderate reciprocal regulation of lnc-FANCI-2 and FANCI in cervical cancer CaSki cells. In these cells, lnc-FANCI-2 is transcribed from two alternative promoters, alternatively spliced, and polyadenylated at one of two alternative poly(A) sites. About 10 copies of lnc-FANCI-2 per cell are detected preferentially in the cytoplasm. Mechanistically, HR-HPVs, but not low-risk (LR)-HPV oncogenes induce lnc-FANCI-2 in primary and immortalized human keratinocytes. The induction is mediated primarily by E7, and to a lesser extent by E6, mostly independent of p53/E6AP and pRb/E2F. We show that YY1 interacts with an E7 CR3 core motif and transactivates the promoter of lnc-FANCI-2 by binding to two critical YY1-binding motifs. Moreover, HPV18 increases YY1 expression by reducing miR-29a, which targets the 3' untranslated region of YY1 mRNA. These data have provided insights into the mechanisms of how HR-HPV infections contribute to cervical carcinogenesis.
Collapse
|
36
|
Tavakoli F, Khatami SS, Momeni F, Azadbakht J, Ghasemi F. Cervical Cancer Diagnosis: Insights into Biochemical Biomarkers and Imaging Techniques. Comb Chem High Throughput Screen 2021; 24:605-623. [PMID: 32875976 DOI: 10.2174/1386207323666200901101955] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/14/2020] [Accepted: 08/06/2020] [Indexed: 11/22/2022]
Abstract
Cervical malignancy is known as one of the important cancers which is originated from cervix. This malignancy has been observed in women infected with papillomavirus who had regular oral contraceptives, multiple pregnancies, and sexual relations. Early and fast cervical cancer diagnosis is known as two important aspects of cervical cancer therapy. Several investigations indicated that early and fast detection of cervical cancer could be associated with better treatment process and increasing survival rate of patients with this malignancy. Imaging techniques are very important diagnosis tools that could be employed for diagnosis and following responses to therapy in various cervical cancer stages. Multiple lines of evidence indicated that utilization of imaging techniques is related to some limitations (i.e. high cost, and invasive effects). Hence, it seems that along with using imaging techniques, finding and developing new biomarkers could be useful in the diagnosis and treatment of subjects with cervical cancer. Taken together, many studies showed that a variety of biomarkers including, several proteins, mRNAs, microRNAs, exosomes and polymorphisms might be introduced as prognostic, diagnostic and therapeutic biomarkers in cervical cancer therapy. In this review article, we highlighted imaging techniques as well as novel biomarkers for the diagnosis of cervical cancer.
Collapse
Affiliation(s)
- Fatemeh Tavakoli
- Department of Biotechnology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sara Sadat Khatami
- Department of Biotechnology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Fatemeh Momeni
- Isfahan Research Committee of Multiple Sclerosis, Alzahra Research Institute, Alzahra Hospital, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Javid Azadbakht
- Department of Radiology and Imaging, Kashan University of Medical Science, Kashan, Iran
| | - Faezeh Ghasemi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| |
Collapse
|
37
|
MicroRNAs and Long Noncoding RNAs as Novel Therapeutic Targets in Estrogen Receptor-Positive Breast and Ovarian Cancers. Int J Mol Sci 2021; 22:ijms22084072. [PMID: 33920789 PMCID: PMC8071157 DOI: 10.3390/ijms22084072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/11/2021] [Accepted: 04/12/2021] [Indexed: 01/27/2023] Open
Abstract
Aromatase inhibitors (AIs) such as anastrozole, letrozole, and exemestane have shown to prevent metastasis and angiogenesis in estrogen receptor (ER)-positive breast and ovarian tumors. They function primarily by reducing estrogen production in ER-positive post-menopausal breast and ovarian cancer patients. Unfortunately, current AI-based therapies often have detrimental side-effects, along with acquired resistance, with increased cancer recurrence. Thus, there is an urgent need to identify novel AIs with fewer side effects and improved therapeutic efficacies. In this regard, we and others have recently suggested noncoding RNAs (ncRNAs), specifically microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), as potential molecular targets for utilization in modulating cancer hallmarks and overcoming drug resistance in several cancers, including ER-positive breast and ovarian cancer. Herein, we describe the disruptive functions of several miRNAs and lncRNAs seen in dysregulated cancer metabolism, with a focus on the gene encoding for aromatase (CYP19A1 gene) and estrogen synthesis as a novel therapeutic approach for treating ER-positive breast and ovarian cancers. Furthermore, we discuss the oncogenic and tumor-suppressive roles of several miRNAs (oncogenic miRNAs: MIR125b, MIR155, MIR221/222, MIR128, MIR2052HG, and MIR224; tumor-suppressive miRNAs: Lethal-7f, MIR27B, MIR378, and MIR98) and an oncogenic lncRNA (MIR2052HG) in aromatase-dependent cancers via transcriptional regulation of the CYP19A1 gene. Additionally, we discuss the potential effects of dysregulated miRNAs and lncRNAs on the regulation of critical oncogenic molecules, such as signal transducer, and activator of transcription 3, β-catenin, and integrins. The overall goal of this review is to stimulate further research in this area and to facilitate the development of ncRNA-based approaches for more efficacious treatments of ER-positive breast and ovarian cancer patients, with a slight emphasis on associated treatment–delivery mechanisms.
Collapse
|
38
|
Su H, Fan J, Ma D, Zhu H. Identification and Characterization of Osmoregulation Related MicroRNAs in Gills of Hybrid Tilapia Under Three Types of Osmotic Stress. Front Genet 2021; 12:526277. [PMID: 33889171 PMCID: PMC8056028 DOI: 10.3389/fgene.2021.526277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 02/24/2021] [Indexed: 11/13/2022] Open
Abstract
Researchers have increasingly suggested that microRNAs (miRNAs) are small non-coding RNAs that post-transcriptionally regulate gene expression and protein translation in organs and respond to abiotic and biotic stressors. To understand the function of miRNAs in osmotic stress regulation of the gills of hybrid tilapia (Oreochromis mossambicus ♀ × Oreochromis urolepis hornorum ♂), high-throughput Illumina deep sequencing technology was used to investigate the expression profiles of miRNAs under salinity stress (S, 25‰), alkalinity stress (A, 4‰) and salinity-alkalinity stress (SA, S: 15‰, A: 4‰) challenges. The results showed that 31, 41, and 27 upregulated and 33, 42, and 40 downregulated miRNAs (P < 0.05) were identified in the salt stress, alkali stress, and saline-alkali stress group, respectively, which were compared with those in the control group (C). Fourteen significantly differently expressed miRNAs were selected randomly and then validated by a quantitative polymerase chain reaction. On the basis of Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis, genes related to osmoregulation and biosynthesis were enriched in the three types of osmotic stress. In addition, three miRNAs and three predicted target genes were chosen to conduct a quantitative polymerase chain reaction in the hybrid tilapia and its parents during 96-h osmotic stress. Differential expression patterns of miRNAs provided the basis for research data to further investigate the miRNA-modulating networks in osmoregulation of teleost.
Collapse
Affiliation(s)
- Huanhuan Su
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Jiajia Fan
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Dongmei Ma
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Huaping Zhu
- Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| |
Collapse
|
39
|
Okoye JO, Ngokere AA, Onyenekwe CC, Omotuyi O, Dada DI. Epstein-Barr virus, human papillomavirus and herpes simplex virus 2 co-presence severely dysregulates miRNA expression. Afr J Lab Med 2021; 10:975. [PMID: 33824853 PMCID: PMC8008003 DOI: 10.4102/ajlm.v10i1.975] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 10/20/2020] [Indexed: 11/01/2022] Open
Abstract
This cross-sectional study evaluated the expression of miR-let-7b, miR-21, miR-125b, miR-143, miR-145, miR-155, miR-182, miR-200c, p53 gene, Ki67, SCCA1 and CD4+ T-cell counts among 319 women, to Epstein-Barr virus, human papillomavirus and herpes simplex virus 2 mono-infections and co-infections, using enzyme-linked immunosorbent assay and reverse transcriptase-polymerase chain reaction methods. This study suggests that malignancies associated with viral co-infection could be diagnosed early by monitoring cluster of differentiation 4+ T-cell counts and serum expression of miR-145 and miR-182.
Collapse
Affiliation(s)
- Jude O Okoye
- Department of Medical Laboratory Science, School of Public and Allied Health, Babcock University, Ilishan-Remo, Ogun State, Nigeria.,Department of Medical Laboratory Science, Faculty of Health Sciences and Technology, College of Medicine, Nnamdi Azikiwe University, Nnewi campus, Anambra, Nigeria
| | - Anthony A Ngokere
- Department of Medical Laboratory Science, Faculty of Health Sciences and Technology, College of Medicine, Nnamdi Azikiwe University, Nnewi campus, Anambra, Nigeria
| | - Charles C Onyenekwe
- Department of Medical Laboratory Science, Faculty of Health Sciences and Technology, College of Medicine, Nnamdi Azikiwe University, Nnewi campus, Anambra, Nigeria
| | - Olaposi Omotuyi
- Department of Biochemistry, Centre for Biotechnology, Adekunle Ajasin University, Akungba-Akoko, Ondo, Nigeria
| | - Deborah I Dada
- Department of Medical Laboratory Science, School of Public and Allied Health, Babcock University, Ilishan-Remo, Ogun State, Nigeria
| |
Collapse
|
40
|
Liu J, Dong P, Zhou L, Wang S. The Association between Five Genetic Variants in MicroRNAs (rs2910164, rs11614913, rs3746444, rs11134527, and rs531564) and Cervical Cancer Risk: A Meta-Analysis. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9180874. [PMID: 33816633 PMCID: PMC7987420 DOI: 10.1155/2021/9180874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 01/17/2021] [Accepted: 02/15/2021] [Indexed: 12/28/2022]
Abstract
The objective of this study was to conduct a meta-analysis to systematically summarize and investigate the association of miRNA-124 rs531564, miRNA-218 rs11134527, miRNA-146a rs2910164, miRNA-196a2 rs11614913, and miRNA-499 rs3746444 polymorphisms with cervical cancer. A systematic review was performed to identify relevant studies using Embase and PubMed databases. A chi-square-based Q-test combined with the inconsistency index (I 2) was used to check the heterogeneity between studies. A total of six case-control studies on rs2910164 and rs11614913, 4 studies on rs3746444 and rs11134527, and three studies on rs531564 were included. No evidence of association was found between miR-146a rs2910164, miR-196a2 rs11614913, miRNA-499 rs3746444, and miR-218 rs11134527 polymorphisms and cervical cancer risk in all the genetic models. The miR-124 rs531564 polymorphism was associated with a statistically increased risk of cervical cancer in a homozygote model (CC vs. GG: OR = 2.87, 95% CI: 1.40-5.91, P H = 0.887), dominant model (GC/CC vs. GG: OR = 1.38, 95% CI: 1.07-1.80, P H = 0.409), and recessive model (CC vs. GC/GG: OR = 2.26, 95% CI: 1.58-3.23, P H = 0.979). However, this finding should be interpreted with caution for limited samples and heterogeneity. Large-scale and well-designed studies are needed to validate our result.
Collapse
Affiliation(s)
- Jia Liu
- Department of Obstetrics and Gynecology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Peng Dong
- Department of Obstetrics and Gynecology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Liane Zhou
- Department of Obstetrics and Gynecology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Shijun Wang
- Department of Obstetrics and Gynecology, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
41
|
Downregulation of miR-143/145 Cluster in Breast Carcinoma Specimens: Putative Role of DNA Oncoviruses. Jundishapur J Microbiol 2021. [DOI: 10.5812/jjm.110685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: The DNA oncoviruses, including human papillomavirus (HPV) and Epstein-Barr virus (EBV) are among the most important infectious agents involved in breast carcinogenesis. These oncoviruses have a broad disrupting effect on cellular miRNAs and their functions, by which they contribute to carcinogenesis. Objectives: In this investigation, we evaluated the correlation between HPV and EBV and the expression level of tumor suppressor miRNAs (miR-143 and 145), clinical outcomes, and their association with stimulating inflammatory cytokines in patients with breast carcinoma. Methods: In our case-control study, 35 cancerous tissues and 35 adjacent non-cancerous tissues were collected from 35 patients. Nested-PCR was set up for the detection of HPV and EBV genomes, and RT-qPCR was used for miRNA expression in the case and control groups. In addition, serum specimens were obtained from all patients (n = 35) and healthy controls (n = 35) to determine the IL-8 serum concentration. Results: We found HPV and EBV in 14.2% (10/70) and 7% (5/70) of all samples, respectively. The distributions of positive samples in the case and control groups were 25.7% (9/35) and 2.9% (1/35) (P = 0.006) for HPV and 11.4% (4/35) and 2.9% (1/35) (P = 0.164) for EBV, respectively. Besides, RT-qPCR showed that miR-143 and miR-145 were significantly downregulated in HPV and EBV-infected cases compared to non-infected ones (P < 0.05). Data also indicated that the promotion of metastasis status was related to miR-143/145 downregulation and HPV infection (P = 0.003). No significant difference was found in serum IL-8 concentration concerning viral infections. Conclusions: Our results suggested the possible involvement of viral infections in breast carcinogenesis and adverse clinical outcomes by downregulating miR-143/145.
Collapse
|
42
|
Wang Y, Zhou X, Han P, Lu Y, Zhong X, Yang Y, Li D, Liu D, Li Q, Pan N, Mo Y, Luo W, Li P, Zhou X, Liudmila M. Inverse correlation of miR-27a-3p and CDH5 expression serves as a diagnostic biomarker of proliferation and metastasis of clear cell renal carcinoma. Pathol Res Pract 2021; 220:153393. [PMID: 33740544 DOI: 10.1016/j.prp.2021.153393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/18/2021] [Accepted: 02/20/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Cadherin-5 (CDH5) is aberrantly expressed in a variety of human cancers and plays an important role in angiogenesis. The present study provides further insight into the role of miR-27a-3p in the regulation of CDH5 expression in renal clear cell carcinoma (ccRCC). METHODS Thedysregulation of CDH5 expression in ccRCC and its association with clinicopathological characteristics were analyzed using the TCGA database. A meta-analysis was performed to verify the alteration of CDH5 expression in ccRCC using the GEO database. Quantitative RT-PCR and immunohistochemical staining were applied to assess the transcriptional and protein levels of CDH5. TargetScan and Tarbase were employed to predict the miRNAs with the potential to target mRNA of CDH5. RESULTS The mRNA level of CDH5 in ccRCCwas significantly higher than in normal tissue. CDH5 mRNA expression could therefore serve as a potential diagnostic biomarker for ccRCC (AUC = 0.844). However, the reduced CDH5 transcription levels were significantly correlated with patients in the T3-4 stage, lymph node, and distant metastasis, as well as with a worse clinical outcome. We further observed that CDH5, at the protein level, was almost absent in ccRCC samples. In addition, a few databases screen showed that mir-27a-3p is a highly conserved miRNA targeting CDH5. The expression of mir-27a-3p was significantly elevated in ccRCC tissues in contrast to normal tissues. Importantly, it was positively associated with the T3-4 stage and M stage, respectively, suggesting that the expression level of mir-27a-3p could serve as a diagnostic biomarker for ccRCC (AUC = 0.775). CONCLUSION Our data suggest that thereduced translational level of CDH5 in ccRCC was related to the overexpression of mir-27a-3p. The higher mir-27a-3p and lower CDH5 expression significantly correlated with advanced clinical stages for ccRCC patients.
Collapse
Affiliation(s)
- Yifang Wang
- Life Science Institute, Guangxi Medical University, China
| | - Xiaohui Zhou
- Life Science Institute, Guangxi Medical University, China
| | - Peipei Han
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning, China
| | - Yunliang Lu
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning, China
| | - Xuemin Zhong
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning, China
| | - Yanping Yang
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning, China
| | - Danping Li
- Life Science Institute, Guangxi Medical University, China
| | - Deling Liu
- Life Science Institute, Guangxi Medical University, China
| | - Qiuyun Li
- Life Science Institute, Guangxi Medical University, China
| | - Nenghui Pan
- Life Science Institute, Guangxi Medical University, China
| | - Yingxi Mo
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning, China
| | - Wenqi Luo
- Department of Pathology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Ping Li
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning, China
| | - Xiaoying Zhou
- Life Science Institute, Guangxi Medical University, China.
| | - Matskova Liudmila
- Institute of Living Systems, Immanuel Kant Baltic Federal University, Kaliningrad, Russia.
| |
Collapse
|
43
|
Barik S, Mitra S, Suryavanshi M, Dewan A, Kaur I, Kumar D, Mishra M, Vishwakarma G. To study the role of pre-treatment microRNA (micro ribonucleic acid) expression as a predictor of response to chemoradiation in locally advanced carcinoma cervix. Cancer Rep (Hoboken) 2021; 4:e1348. [PMID: 33660436 PMCID: PMC8388174 DOI: 10.1002/cnr2.1348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 12/14/2020] [Accepted: 01/19/2021] [Indexed: 02/04/2023] Open
Abstract
Background Concurrent chemoradiotherapy followed by brachytherapy is the standard of care in locally advanced carcinoma cervix. There is no prognostic factor at present to predict the outcome of disease in locally advanced carcinoma cervix. Aim Differential expression of microRNAs can be used as biomarkers to predict clinical response in locally advanced carcinoma cervix patients. Methods Thirty‐two patients of locally advanced carcinoma cervix with International Federation of Gynecology and Obstetrics Stage IB‐IVA were enrolled from 2017 to 2018. Expression of microRNA‐9 5p, ‐31 3p, ‐100 5p, ‐125a 5p, ‐125b‐5p, and –200a 5p in formalin‐fixed paraffin embedded (FFPE) biopsied tissue were analyzed by real time quantitative reverse transcriptase polymerase chain reaction (RT qPCR). Pretreatment evaluation was done with clinical examination and MRI pelvis. All patients received concurrent chemoradiotherapy followed by brachytherapy. Patients were evaluated for the clinical response after 3 months of treatment, with clinical examination and MRI pelvis scan using RECIST 1.1 criteria. Patients with no residual disease were classified as Complete responders (CR) and with residual or progressive disease were classified as Nonresponders (NR). Results were statistically analyzed using Mann Whiney U test to examine significant difference between the expression of microRNA between complete responders (CR) and nonresponders (NR). Results microRNA‐100 5p was upregulated in complete responders (CR) which showed a trend towards statistical significance (p value = 0.05). Conclusion microRNA‐100 5p can serve as a potential molecular biomarker in predicting clinical response to chemoradiation in locally advanced Carcinoma cervix. Its role should be further investigated in a larger study population.
Collapse
Affiliation(s)
- Soumitra Barik
- Department of Radiation Oncology, Rajiv Gandhi Cancer Institute and Research Centre, New Delhi, India
| | - Swarupa Mitra
- Department of Radiation Oncology, Rajiv Gandhi Cancer Institute and Research Centre, New Delhi, India
| | - Moushumi Suryavanshi
- Department of Molecular Biology, Rajiv Gandhi Cancer Institute and Research Centre, New Delhi, India
| | - Abhinav Dewan
- Department of Radiation Oncology, Rajiv Gandhi Cancer Institute and Research Centre, New Delhi, India
| | - Inderjeet Kaur
- Department of Radiation Oncology, Rajiv Gandhi Cancer Institute and Research Centre, New Delhi, India
| | - Dushyant Kumar
- Department of Molecular Biology, Rajiv Gandhi Cancer Institute and Research Centre, New Delhi, India
| | - Maninder Mishra
- Department of Radiation Oncology, Rajiv Gandhi Cancer Institute and Research Centre, New Delhi, India
| | - Gayatri Vishwakarma
- Department of Biostatistics, Rajiv Gandhi Cancer Institute and Research Centre, New Delhi, India
| |
Collapse
|
44
|
Dwivedi SKD, Rao G, Dey A, Mukherjee P, Wren JD, Bhattacharya R. Small Non-Coding-RNA in Gynecological Malignancies. Cancers (Basel) 2021; 13:1085. [PMID: 33802524 PMCID: PMC7961667 DOI: 10.3390/cancers13051085] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/18/2021] [Accepted: 02/25/2021] [Indexed: 12/12/2022] Open
Abstract
Gynecologic malignancies, which include cancers of the cervix, ovary, uterus, vulva, vagina, and fallopian tube, are among the leading causes of female mortality worldwide, with the most prevalent being endometrial, ovarian, and cervical cancer. Gynecologic malignancies are complex, heterogeneous diseases, and despite extensive research efforts, the molecular mechanisms underlying their development and pathology remain largely unclear. Currently, mechanistic and therapeutic research in cancer is largely focused on protein targets that are encoded by about 1% of the human genome. Our current understanding of 99% of the genome, which includes noncoding RNA, is limited. The discovery of tens of thousands of noncoding RNAs (ncRNAs), possessing either structural or regulatory functions, has fundamentally altered our understanding of genetics, physiology, pathophysiology, and disease treatment as they relate to gynecologic malignancies. In recent years, it has become clear that ncRNAs are relatively stable, and can serve as biomarkers for cancer diagnosis and prognosis, as well as guide therapy choices. Here we discuss the role of small non-coding RNAs, i.e., microRNAs (miRs), P-Element induced wimpy testis interacting (PIWI) RNAs (piRNAs), and tRNA-derived small RNAs in gynecological malignancies, specifically focusing on ovarian, endometrial, and cervical cancer.
Collapse
Affiliation(s)
- Shailendra Kumar Dhar Dwivedi
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (S.K.D.D.); (A.D.)
| | - Geeta Rao
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (G.R.); (P.M.)
| | - Anindya Dey
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (S.K.D.D.); (A.D.)
| | - Priyabrata Mukherjee
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (G.R.); (P.M.)
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Jonathan D. Wren
- Biochemistry and Molecular Biology Department, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Resham Bhattacharya
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (S.K.D.D.); (A.D.)
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Cell Biology, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
45
|
S S, Shukla V, Khan GN, Eswaran S, Adiga D, Kabekkodu SP. Integrated bioinformatic analysis of miR-15a/16-1 cluster network in cervical cancer. Reprod Biol 2021; 21:100482. [PMID: 33548740 DOI: 10.1016/j.repbio.2021.100482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/28/2020] [Accepted: 01/18/2021] [Indexed: 01/14/2023]
Abstract
The miR-15a/16-1 cluster is abnormally expressed in cervical cancer (CC) tissues and plays a vital role in cervical carcinogenesis. We aimed to evaluate the miR-15a/16-1 expression in healthy and cancerous cervical tissues, identify the associated networks, and to test its prognostic significance. miR-15a/16-1-MC expressions were analyzed in TCGA-CESC datasets by UALCAN, GEPIA2, and Datasetviewer. miR-15a/16-1 validated targets were extracted from mirTarBase and in silico functional analysis of the target genes were performed using WebGestalt. The interaction networks were constructed by the miRNet, STRING, and NetworkAnalyst tools. The prognostic significance and metastatic potential of the target genes were predicted using UALCAN and HCMDB. The FDA approved drugs to target miR-15a/16-1 and target gene network in CC were performed using DGIdb, STITCH and PanDrugs. TCGA-CESC and GEO data analysis suggested significant overexpression of miR-15a/16-1 in CC samples. The Kaplan-Meier survival analysis showed that miR-15a and its four target genes (BCL2, CCNE1, NUP50, and RBPJ) influence the overall survival of CC patients. Among the 66 differentially expressed target genes, 12 of them are linked to head, neck, or lung metastasis. Functional enrichment analysis predicted the association of this cluster with p53 signaling, human papillomavirus infection, PI3-AKT signaling pathway, and pathways in cancer. Drug-gene interaction analysis showed 52 potential FDA approved drugs to interact with the miR-15a/16-1 target genes. Nine of the 52 drugs are currently used as a chemotherapeutic agent for the treatment of CC patients. The present study shows that miR-15a/16-1 expression can be used as a clinical marker and target for therapy in CC.
Collapse
Affiliation(s)
- Sriharikrishnaa S
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Vaibhav Shukla
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - G Nadeem Khan
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Sangavi Eswaran
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Divya Adiga
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
46
|
Chakafana G, Shonhai A. The Role of Non-Canonical Hsp70s (Hsp110/Grp170) in Cancer. Cells 2021; 10:254. [PMID: 33525518 PMCID: PMC7911927 DOI: 10.3390/cells10020254] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/21/2021] [Accepted: 01/26/2021] [Indexed: 02/06/2023] Open
Abstract
Although cancers account for over 16% of all global deaths annually, at present, no reliable therapies exist for most types of the disease. As protein folding facilitators, heat shock proteins (Hsps) play an important role in cancer development. Not surprisingly, Hsps are among leading anticancer drug targets. Generally, Hsp70s are divided into two main subtypes: canonical Hsp70 (Escherichia coli Hsp70/DnaK homologues) and the non-canonical (Hsp110 and Grp170) members. These two main Hsp70 groups are delineated from each other by distinct structural and functional specifications. Non-canonical Hsp70s are considered as holdase chaperones, while canonical Hsp70s are refoldases. This unique characteristic feature is mirrored by the distinct structural features of these two groups of chaperones. Hsp110/Grp170 members are larger as they possess an extended acidic insertion in their substrate binding domains. While the role of canonical Hsp70s in cancer has received a fair share of attention, the roles of non-canonical Hsp70s in cancer development has received less attention in comparison. In the current review, we discuss the structure-function features of non-canonical Hsp70s members and how these features impact their role in cancer development. We further mapped out their interactome and discussed the prospects of targeting these proteins in cancer therapy.
Collapse
Affiliation(s)
| | - Addmore Shonhai
- Department of Biochemistry, University of Venda, Private Bag X5050, 0950 Thohoyandou, South Africa
| |
Collapse
|
47
|
Wang MC, McCown PJ, Schiefelbein GE, Brown JA. Secondary Structural Model of MALAT1 Becomes Unstructured in Chronic Myeloid Leukemia and Undergoes Structural Rearrangement in Cervical Cancer. Noncoding RNA 2021; 7:6. [PMID: 33450947 PMCID: PMC7838788 DOI: 10.3390/ncrna7010006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/11/2021] [Accepted: 01/11/2021] [Indexed: 12/14/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) influence cellular function through binding events that often depend on the lncRNA secondary structure. One such lncRNA, metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), is upregulated in many cancer types and has a myriad of protein- and miRNA-binding sites. Recently, a secondary structural model of MALAT1 in noncancerous cells was proposed to form 194 hairpins and 13 pseudoknots. That study postulated that, in cancer cells, the MALAT1 structure likely varies, thereby influencing cancer progression. This work analyzes how that structural model is expected to change in K562 cells, which originated from a patient with chronic myeloid leukemia (CML), and in HeLa cells, which originated from a patient with cervical cancer. Dimethyl sulfate-sequencing (DMS-Seq) data from K562 cells and psoralen analysis of RNA interactions and structure (PARIS) data from HeLa cells were compared to the working structural model of MALAT1 in noncancerous cells to identify sites that likely undergo structural alterations. MALAT1 in K562 cells is predicted to become more unstructured, with almost 60% of examined hairpins in noncancerous cells losing at least half of their base pairings. Conversely, MALAT1 in HeLa cells is predicted to largely maintain its structure, undergoing 18 novel structural rearrangements. Moreover, 50 validated miRNA-binding sites are affected by putative secondary structural changes in both cancer types, such as miR-217 in K562 cells and miR-20a in HeLa cells. Structural changes unique to K562 cells and HeLa cells provide new mechanistic leads into how the structure of MALAT1 may mediate cancer in a cell-type specific manner.
Collapse
Affiliation(s)
| | | | | | - Jessica A. Brown
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA; (M.C.W.); (P.J.M.); (G.E.S.)
| |
Collapse
|
48
|
MicroRNA-205-5p targets the HOXD9-Snail1 axis to inhibit triple negative breast cancer cell proliferation and chemoresistance. Aging (Albany NY) 2021; 13:3945-3956. [PMID: 33428601 PMCID: PMC7906129 DOI: 10.18632/aging.202363] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 10/31/2020] [Indexed: 12/11/2022]
Abstract
MicroRNA-205 (miR-205) is believed to be related to the progress of tumors. HOXD9 has been proved to be expressed abnormally in several kinds of cancers. However, the role of miR-205 and HOXD9 in breast cancer remains unclear. The biological role of miR-205 in breast cancer cell proliferation and chemoresistance was investigated. The expression of miR-205 in clinical tissues and breast cancer cell lines were analyzed using quantitative real-time PCR test (qRT-PCR). Overexpression and knockdown models of miR-205 were established to study cell proliferation and chemotherapy-resistant. Moreover, the potential relationships between miR-205 and HOXD9/Snail1 were measured using qRT-PCR, western blot, and chemotherapy-resistant study. miR-205 was lowly expressed in breast cancer tissues and cell lines. Overexpression of miR-205 could inhibit cell proliferation and chemotherapy-resistance. Moreover, we proved that miR-205 could target the HOXD9-Snail1 axis to suppress triple negative breast cancer cell proliferation and chemoresistance. The activation of Snail1 gene by HOXD9 was also proved in this study. The present study may provide a novel insight for the therapeutic strategies of breast cancer through targeting miR-205/HOXD9/Snail1.
Collapse
|
49
|
Wang H, Hu X, Yang F, Xiao H. miR-325-3p Promotes the Proliferation, Invasion, and EMT of Breast Cancer Cells by Directly Targeting S100A2. Oncol Res 2021; 28:731-744. [PMID: 33419488 PMCID: PMC8420903 DOI: 10.3727/096504020x16100888208039] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
This study was designed to investigate the precise mechanisms of miR-325-3p/S100A2 axis in breast cancer (BC). In this study, we found that the level of miR-325-3p was dramatically increased in BC tissues and cell lines, and the expression of S100A2 was significantly decreased. Also, the high level of miR-325-3p was closely associated with low expression of S100A2 in BC tissues. Moreover, introduction of miR-325-3p significantly promoted proliferation, invasion, and EMT of BC cells. Bioinformatics analysis predicted that the S100A2 was a potential target gene of miR-325-3p. Luciferase reporter assay demonstrated that miR-325-3p could directly target S100A2. In addition, miR-325-3p overexpression had similar effects with knockdown of S100A2 on BC cells. Overexpression of S100A2 in BC cells partially reversed the promoted effects of miR-325-3p mimic. Overexpression of miR-325-3p promoted cell proliferation, invasion, and EMT of BC cells by directly downregulating S100A2 expression.
Collapse
Affiliation(s)
- Huiling Wang
- Department of Surgery, Hunan Provincial Peoples Hospital (The First Affiliated Hospital of Hunan Normal University)ChangshaP.R. China
| | - Xin Hu
- Department of Surgery, Hunan Childrens HospitalChangshaP.R. China
| | - Feng Yang
- Department of Pharmacy, Hunan Provincial Peoples Hospital (The First Affiliated Hospital of Hunan Normal University)ChangshaP.R. China
| | - Hui Xiao
- Department of Surgery, Hunan Provincial Peoples Hospital (The First Affiliated Hospital of Hunan Normal University)ChangshaP.R. China
| |
Collapse
|
50
|
Overexpression of microRNA-21 decreased the sensitivity of advanced cervical cancer to chemoradiotherapy through SMAD7. Anticancer Drugs 2021; 31:272-281. [PMID: 31815762 DOI: 10.1097/cad.0000000000000871] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Drug resistance is a major problem in the treatment of advanced cervical cancer. The oncogenic microRNA-21 (miR-21) is involved in drug resistance in various cancers. However, the regulatory role of miR-21 and its target, Smad7 in drug resistance of cervical cancer remains to be elucidated. We compared miR-21 and Smad7 levels in human samples from chemoradiotherapy-resistance cervical cancer (resistant group) and chemoradiotherapy-sensitive cervical cancer (sensitive group) patients. Then, the miR-21 level was manipulated in HeLa and SiHa cervical cancer cells and the Smad7 level was determined by PCR and western blot. We also manipulated miR-21, Smad7 or both in cells, and measured cell viability using cell counting kit-8 method and epithelial-mesenchymal transition (EMT) biomarkers using Western blot. In human samples, resistant group has significantly higher miR-21 and lower Smad7 levels than sensitive group. In-vitro analysis demonstrated downregulated Smad7 after transfection with miR-21 mimics. When cells were transfected with Smad7 inhibitor, we observed increased drug resistance and changed levels of EMT-biomarkers after chemoradiotherapy, suggesting that downregulation of Smad7 decreased the sensitivity through EMT. When the cells were transfected with miR-21 inhibitor alone, we found increased sensitivity to chemoradiotherapy through EMT. However, such effects were attenuated when Smad7 was also downregulated after cotransfection. In summary, we provided clinical and experimental evidence that decreased miR-21 may improve drug resistance through EMT by direct targeting Smad7 in cervical cancer. Our data suggest that miR-21/Smad7 pathway may be an effective target for drug resistance in cervical cancer treatment.
Collapse
|