1
|
Neven J, Issayama LK, Dewachter I, Wilson DM. Genomic stress and impaired DNA repair in Alzheimer disease. DNA Repair (Amst) 2024; 139:103678. [PMID: 38669748 DOI: 10.1016/j.dnarep.2024.103678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/06/2024] [Indexed: 04/28/2024]
Abstract
Alzheimer disease (AD) is the most prominent form of dementia and has received considerable attention due to its growing burden on economic, healthcare and basic societal infrastructures. The two major neuropathological hallmarks of AD, i.e., extracellular amyloid beta (Aβ) peptide plaques and intracellular hyperphosphorylated Tau neurofibrillary tangles, have been the focus of much research, with an eye on understanding underlying disease mechanisms and identifying novel therapeutic avenues. One often overlooked aspect of AD is how Aβ and Tau may, through indirect and direct mechanisms, affect genome integrity. Herein, we review evidence that Aβ and Tau abnormalities induce excessive genomic stress and impair genome maintenance mechanisms, events that can promote DNA damage-induced neuronal cell loss and associated brain atrophy.
Collapse
Affiliation(s)
- Jolien Neven
- Hasselt University, Biomedical Research Institute, BIOMED, Hasselt 3500, Belgium
| | - Luidy Kazuo Issayama
- Hasselt University, Biomedical Research Institute, BIOMED, Hasselt 3500, Belgium
| | - Ilse Dewachter
- Hasselt University, Biomedical Research Institute, BIOMED, Hasselt 3500, Belgium
| | - David M Wilson
- Hasselt University, Biomedical Research Institute, BIOMED, Hasselt 3500, Belgium.
| |
Collapse
|
2
|
Bukhari H, Nithianandam V, Battaglia RA, Cicalo A, Sarkar S, Comjean A, Hu Y, Leventhal MJ, Dong X, Feany MB. Transcriptional programs mediating neuronal toxicity and altered glial-neuronal signaling in a Drosophila knock-in tauopathy model. Genome Res 2024; 34:590-605. [PMID: 38599684 PMCID: PMC11146598 DOI: 10.1101/gr.278576.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 04/04/2024] [Indexed: 04/12/2024]
Abstract
Missense mutations in the gene encoding the microtubule-associated protein TAU (current and approved symbol is MAPT) cause autosomal dominant forms of frontotemporal dementia. Multiple models of frontotemporal dementia based on transgenic expression of human TAU in experimental model organisms, including Drosophila, have been described. These models replicate key features of the human disease but do not faithfully recreate the genetic context of the human disorder. Here we use CRISPR-Cas-mediated gene editing to model frontotemporal dementia caused by the TAU P301L mutation by creating the orthologous mutation, P251L, in the endogenous Drosophila tau gene. Flies heterozygous or homozygous for Tau P251L display age-dependent neurodegeneration, display metabolic defects, and accumulate DNA damage in affected neurons. To understand the molecular events promoting neuronal dysfunction and death in knock-in flies, we performed single-cell RNA sequencing on approximately 130,000 cells from brains of Tau P251L mutant and control flies. We found that expression of disease-associated mutant tau altered gene expression cell autonomously in all neuronal cell types identified. Gene expression was also altered in glial cells, suggestive of non-cell-autonomous regulation. Cell signaling pathways, including glial-neuronal signaling, were broadly dysregulated as were brain region and cell type-specific protein interaction networks and gene regulatory programs. In summary, we present here a genetic model of tauopathy that faithfully recapitulates the genetic context and phenotypic features of the human disease, and use the results of comprehensive single-cell sequencing analysis to outline pathways of neurotoxicity and highlight the potential role of non-cell-autonomous changes in glia.
Collapse
Affiliation(s)
- Hassan Bukhari
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland 20815, USA
| | - Vanitha Nithianandam
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland 20815, USA
| | - Rachel A Battaglia
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland 20815, USA
| | - Anthony Cicalo
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland 20815, USA
- Genomics and Bioinformatics Hub, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Souvarish Sarkar
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Aram Comjean
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Yanhui Hu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Matthew J Leventhal
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
- MIT Ph.D. Program in Computational and Systems Biology, Cambridge, Massachusetts 02139, USA
| | - Xianjun Dong
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland 20815, USA
- Genomics and Bioinformatics Hub, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Mel B Feany
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA;
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland 20815, USA
| |
Collapse
|
3
|
Abasi LS, Elathram N, Movva M, Deep A, Corbett KD, Debelouchina GT. Phosphorylation regulates tau's phase separation behavior and interactions with chromatin. Commun Biol 2024; 7:251. [PMID: 38429335 PMCID: PMC10907630 DOI: 10.1038/s42003-024-05920-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/16/2024] [Indexed: 03/03/2024] Open
Abstract
Tau is a microtubule-associated protein often found in neurofibrillary tangles (NFTs) in the brains of patients with Alzheimer's disease. Beyond this context, mounting evidence suggests that tau localizes into the nucleus, where it may play a role in DNA protection and heterochromatin regulation. The molecular mechanisms behind these observations are currently unclear. Using in vitro biophysical experiments, here we demonstrate that tau can undergo liquid-liquid phase separation (LLPS) with DNA, mononucleosomes, and reconstituted nucleosome arrays under low salt conditions. Low concentrations of tau promote chromatin compaction and protect DNA from digestion. While the material state of samples at physiological salt is dominated by chromatin oligomerization, tau can still associate strongly and reversibly with nucleosome arrays. These properties are driven by tau's strong interactions with linker and nucleosomal DNA. In addition, tau co-localizes into droplets formed by nucleosome arrays and phosphorylated HP1α, a key heterochromatin constituent thought to function through an LLPS mechanism. Importantly, LLPS and chromatin interactions are disrupted by aberrant tau hyperphosphorylation. These biophysical properties suggest that tau may directly impact DNA and chromatin accessibility and that loss of these interactions could contribute to the aberrant nuclear effects seen in tau pathology.
Collapse
Affiliation(s)
- Lannah S Abasi
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Nesreen Elathram
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Manasi Movva
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093, USA
| | - Amar Deep
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, 92093, USA
| | - Kevin D Corbett
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, 92093, USA
- Department of Molecular Biology, University of California San Diego, La Jolla, CA, 92093, USA
| | - Galia T Debelouchina
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
4
|
Bukhari H, Nithianandam V, Battaglia RA, Cicalo A, Sarkar S, Comjean A, Hu Y, Leventhal MJ, Dong X, Feany MB. Transcriptional programs mediating neuronal toxicity and altered glial-neuronal signaling in a Drosophila knock-in tauopathy model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.02.578624. [PMID: 38352559 PMCID: PMC10862891 DOI: 10.1101/2024.02.02.578624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Missense mutations in the gene encoding the microtubule-associated protein tau cause autosomal dominant forms of frontotemporal dementia. Multiple models of frontotemporal dementia based on transgenic expression of human tau in experimental model organisms, including Drosophila, have been described. These models replicate key features of the human disease, but do not faithfully recreate the genetic context of the human disorder. Here we use CRISPR-Cas mediated gene editing to model frontotemporal dementia caused by the tau P301L mutation by creating the orthologous mutation, P251L, in the endogenous Drosophila tau gene. Flies heterozygous or homozygous for tau P251L display age-dependent neurodegeneration, metabolic defects and accumulate DNA damage in affected neurons. To understand the molecular events promoting neuronal dysfunction and death in knock-in flies we performed single-cell RNA sequencing on approximately 130,000 cells from brains of tau P251L mutant and control flies. We found that expression of disease-associated mutant tau altered gene expression cell autonomously in all neuronal cell types identified and non-cell autonomously in glial cells. Cell signaling pathways, including glial-neuronal signaling, were broadly dysregulated as were brain region and cell-type specific protein interaction networks and gene regulatory programs. In summary, we present here a genetic model of tauopathy, which faithfully recapitulates the genetic context and phenotypic features of the human disease and use the results of comprehensive single cell sequencing analysis to outline pathways of neurotoxicity and highlight the role of non-cell autonomous changes in glia.
Collapse
Affiliation(s)
- Hassan Bukhari
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815
| | - Vanitha Nithianandam
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815
| | - Rachel A. Battaglia
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815
| | - Anthony Cicalo
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815
- Genomics and Bioinformatics Hub, Brigham and Women’s Hospital, Boston, MA 02115
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115
| | - Souvarish Sarkar
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115
| | - Aram Comjean
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115
| | - Yanhui Hu
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115
| | - Matthew J. Leventhal
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
- MIT Ph.D. Program in Computational and Systems Biology, Cambridge, MA 02139
| | - Xianjun Dong
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815
- Genomics and Bioinformatics Hub, Brigham and Women’s Hospital, Boston, MA 02115
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, 02115
| | - Mel B. Feany
- Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network, Chevy Chase, MD 20815
| |
Collapse
|
5
|
Kanaan NM. Tau here, tau there, tau almost everywhere: Clarifying the distribution of tau in the adult CNS. Cytoskeleton (Hoboken) 2024; 81:107-115. [PMID: 38102924 PMCID: PMC10851165 DOI: 10.1002/cm.21820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023]
Abstract
The microtubule-associated protein tau has gained significant attention over the last several decades primarily due to its apparent role in the pathogenesis of several diseases, most notably Alzheimer's disease. While the field has focused largely on tau's potential contributions to disease mechanisms, comparably less work has focused on normal tau physiology. Moreover, as the field has grown, some misconceptions and dogmas regarding normal tau physiology have become engrained in the traditional narrative. Here, one of the most common misconceptions regarding tau, namely its normal cellular/subcellular distribution in the CNS, is discussed. The literature describing the presence of tau in neuronal somata, dendrites, axons and synapses, as well as in glial cells is described. The origins for the erroneous description of tau as an "axon-specific," "axon-enriched" and/or "neuron-specific" protein are discussed as well. The goal of this work is to help address these specific dogmatic misconceptions and provide a concise description of tau's normal cellular/subcellular localization in the adult CNS. This information can help refine our collective understanding of- and hypotheses about tau biology and pathobiology.
Collapse
Affiliation(s)
- Nicholas M. Kanaan
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, Michigan, USA
- Neuroscience Program, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
6
|
Abasi LS, Elathram N, Movva M, Deep A, Corbett KD, Debelouchina GT. Phosphorylation regulates tau's phase separation behavior and interactions with chromatin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.21.572911. [PMID: 38187700 PMCID: PMC10769318 DOI: 10.1101/2023.12.21.572911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Tau is a microtubule-associated protein often found in neurofibrillary tangles (NFTs) in the brains of patients with Alzheimer's disease (AD). Beyond this context, mounting evidence suggests that tau localizes into the nucleus, where it may play a role in DNA protection and heterochromatin regulation. Models of tau depletion or pathology show loss of genetically silent heterochromatin, aberrant expression of heterochromatic genes, and transposable element activation. The molecular mechanisms behind these observations are currently unclear. Using in vitro biophysical experiments, here we demonstrate that tau can undergo liquid-liquid phase separation (LLPS) with DNA, mononucleosomes, and reconstituted nucleosome arrays under low salt conditions. Low concentrations of tau promote chromatin compaction and protect DNA from digestion. While the material state of samples at physiological salt is dominated by chromatin oligomerization, tau can still associate strongly and reversibly with nucleosome arrays. These properties are driven by tau's strong interactions with linker and nucleosomal DNA, while magic angle spinning (MAS) solid-state NMR experiments show that tau binding does not drastically alter nucleosome structure and dynamics. In addition, tau co-localizes into droplets formed by nucleosome arrays and phosphorylated HP1α, a key heterochromatin constituent thought to function through an LLPS mechanism. Importantly, LLPS and chromatin interactions are disrupted by aberrant tau hyperphosphorylation. These biophysical properties suggest that tau may directly impact DNA and chromatin accessibility and that loss of these interactions could contribute to the aberrant nuclear effects seen in tau pathology.
Collapse
Affiliation(s)
- Lannah S. Abasi
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nesreen Elathram
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Manasi Movva
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Amar Deep
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kevin D. Corbett
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Galia T. Debelouchina
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
7
|
Marwaha B. Role of Tau protein in long COVID and potential therapeutic targets. Front Cell Infect Microbiol 2023; 13:1280600. [PMID: 37953801 PMCID: PMC10634420 DOI: 10.3389/fcimb.2023.1280600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 10/06/2023] [Indexed: 11/14/2023] Open
Abstract
Introduction Long COVID is an emerging public health burden and has been defined as a syndrome with common symptoms of fatigue, shortness of breath, cognitive dysfunction, and others impacting day-to-day life, fluctuating or relapsing over, occurring for at least two months in patients with a history of probable or confirmed SARS CoV-2 infection; usually three months from the onset of illness and cannot be explained by an alternate diagnosis. The actual prevalence of long-term COVID-19 is unknown, but it is believed that more than 17 million patients in Europe may have suffered from it during pandemic. Pathophysiology Currently, there is limited understanding of the pathophysiology of this syndrome, and multiple hypotheses have been proposed. Our literature review has shown studies reporting tau deposits in tissue samples of the brain from autopsies of COVID-19 patients compared to the control group, and the in-vitro human brain organoid model has shown aberrant phosphorylation of tau protein in response to SARS-CoV-2 infection. Tauopathies, a group of neurodegenerative disorders with the salient features of tau deposits, can manifest different symptoms based on the anatomical region of brain involvement and have been shown to affect the peripheral nervous system as well and explained even in rat model studies. Long COVID has more than 203 symptoms, with predominant symptoms of fatigue, dyspnea, and cognitive dysfunction, which tauopathy-induced CNS and peripheral nervous system dysfunction can explain. There have been no studies up till now to reveal the pathophysiology of long COVID. Based on our literature review, aberrant tau phosphorylation is a promising hypothesis that can be explored in future studies. Therapeutic approaches for tauopathies have multidimensional aspects, including targeting post-translational modifications, tau aggregation, and tau clearance through the autophagy process with the help of lysosomes, which can be potential targets for developing therapeutic interventions for the long COVID. In addition, future studies can attempt to find the tau proteins in CSF and use those as biomarkers for the long COVID.
Collapse
Affiliation(s)
- Bharat Marwaha
- Department of Cardiology, Adena Health System, Chillicothe, OH, United States
| |
Collapse
|
8
|
Frost B. Alzheimer's disease and related tauopathies: disorders of disrupted neuronal identity. Trends Neurosci 2023; 46:797-813. [PMID: 37591720 PMCID: PMC10528597 DOI: 10.1016/j.tins.2023.07.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/20/2023] [Accepted: 07/24/2023] [Indexed: 08/19/2023]
Abstract
Postmitotic neurons require persistently active controls to maintain terminal differentiation. Unlike dividing cells, aberrant cell cycle activation in mature neurons causes apoptosis rather than transformation. In Alzheimer's disease (AD) and related tauopathies, evidence suggests that pathogenic forms of tau drive neurodegeneration via neuronal cell cycle re-entry. Multiple interconnected mechanisms linking tau to cell cycle activation have been identified, including, but not limited to, tau-induced overstabilization of the actin cytoskeleton, consequent changes to nuclear architecture, and disruption of heterochromatin-mediated gene silencing. Cancer- and development-associated pathways are upregulated in human and cellular models of tauopathy, and many tau-induced cellular phenotypes are also present in various cancers and progenitor/stem cells. In this review, I delve into mechanistic parallels between tauopathies, cancer, and development, and highlight the role of tau in cancer and in the developing brain. Based on these studies, I put forth a model by which pathogenic forms of tau disrupt the program that maintains terminal neuronal differentiation, driving cell cycle re-entry and consequent neuronal death. This framework presents tauopathies as conditions involving the profound toxic disruption of neuronal identity.
Collapse
Affiliation(s)
- Bess Frost
- Sam & Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX, USA; Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health San Antonio, San Antonio, TX, USA; Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, USA.
| |
Collapse
|
9
|
Sturiale V, Bruno F, Brancato D, D’Amico AG, Maugeri G, D’Agata V, Saccone S, Federico C. Cell Cycle Reactivation, at the Start of Neurodegeneration, Induced by Forskolin and Aniline in Differentiated Neuroblastoma Cells. Int J Mol Sci 2023; 24:14373. [PMID: 37762676 PMCID: PMC10531780 DOI: 10.3390/ijms241814373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
A characteristic hallmark of Alzheimer's disease (AD) is the intracellular accumulation of hyperphosphorylated tau protein, a phenomenon that appears to have associations with oxidative stress, double-stranded DNA breakage, and the de-condensation of heterochromatin. Re-entry into the cell division cycle appears to be involved in the onset of this neurodegenerative process. Indeed, the cell cycle cannot proceed regularly in the differentiated neurons leading to cell death. Here, we induced cell cycle reactivation in neuronal-like cells, obtained by neuroblastoma cells treated with retinoic acid, by exposure to forskolin or aniline. These compounds determine tau hyperphosphorylation or oxidative stress, respectively, resulting in the appearance of features resembling the start of neuronal degeneration typical of AD, such as tau hyperphosphorylation and re-entry into the cell cycle. Indeed, we detected an increased transcriptional level of cyclins and the appearance of a high number of mitotic cells. We also observed a delay in the initiation of the cell cycle when forskolin was co-administered with pituitary adenylate cyclase-activating polypeptide (PACAP). This delay was not observed when PACAP was co-administered with aniline. Our data demonstrate the relevance of tau hyperphosphorylation in initiating an ectopic cell cycle in differentiated neuronal cells, a condition that can lead to neurodegeneration. Moreover, we highlight the utility of neuroblastoma cell lines as an in vitro cellular model to test the possible neuroprotective effects of natural molecules.
Collapse
Affiliation(s)
- Valentina Sturiale
- Department of Biological, Geological and Environmental Sciences, University of Catania, 95124 Catania, Italy; (V.S.); (F.B.)
| | - Francesca Bruno
- Department of Biological, Geological and Environmental Sciences, University of Catania, 95124 Catania, Italy; (V.S.); (F.B.)
| | - Desiree Brancato
- Department of Biological, Geological and Environmental Sciences, University of Catania, 95124 Catania, Italy; (V.S.); (F.B.)
| | - Agata Grazia D’Amico
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
| | - Grazia Maugeri
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Velia D’Agata
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Salvatore Saccone
- Department of Biological, Geological and Environmental Sciences, University of Catania, 95124 Catania, Italy; (V.S.); (F.B.)
| | - Concetta Federico
- Department of Biological, Geological and Environmental Sciences, University of Catania, 95124 Catania, Italy; (V.S.); (F.B.)
| |
Collapse
|
10
|
Siano G, Madaro G, Caiazza MC, Allouch A, Varisco M, Mignanelli M, Cattaneo A, Di Primio C. Tau-dependent HDAC1 nuclear reduction is associated with altered VGluT1 expression. Front Cell Dev Biol 2023; 11:1151223. [PMID: 37266450 PMCID: PMC10229822 DOI: 10.3389/fcell.2023.1151223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 05/09/2023] [Indexed: 06/03/2023] Open
Abstract
During AD pathology, Tau protein levels progressively increase from early pathological stages. Tau altered expression causes an unbalance of Tau subcellular localization in the cytosol and in the nuclear compartment leading to synaptic dysfunction, neuronal cell death and neurodegeneration as a consequence. Due to the relevant role of epigenetic remodellers in synaptic activity in physiology and in neurodegeneration, in particular of TRIM28 and HDAC1, we investigated the relationship between Tau and these epigenetic factors. By molecular, imaging and biochemical approaches, here we demonstrate that Tau altered expression in the neuronal cell line SH-SY5y does not alter TRIM28 and HDAC1 expression but it induces a subcellular reduction of HDAC1 in the nuclear compartment. Remarkably, HDAC1 reduced activity modulates the expression of synaptic genes in a way comparable to that observed by Tau increased levels. These results support a competitive relationship between Tau levels and HDAC1 subcellular localization and nuclear activity, indicating a possible mechanism mediating the alternative role of Tau in the pathological alteration of synaptic genes expression.
Collapse
Affiliation(s)
- Giacomo Siano
- Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore di Pisa, Pisa, Italy
| | - Giuseppe Madaro
- Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore di Pisa, Pisa, Italy
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| | - Maria Claudia Caiazza
- Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore di Pisa, Pisa, Italy
- Department of Physiology, Anatomy and Genetics, Oxford Parkinson’s Disease Centre, University of Oxford, Oxford, United Kingdom
| | - Awatef Allouch
- Cell Death, Immunity and Therapeutic Innovation Team, Gustave Roussy Cancer Campus, Villejuif, France
| | - Martina Varisco
- Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore di Pisa, Pisa, Italy
| | - Marianna Mignanelli
- Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore di Pisa, Pisa, Italy
| | - Antonino Cattaneo
- Laboratorio di Biologia Bio@SNS, Scuola Normale Superiore di Pisa, Pisa, Italy
- Rita Levi-Montalcini European Brain Research Institute, Rome, Italy
| | - Cristina Di Primio
- Institute of Neuroscience, Italian National Research Council (CNR), Pisa, Italy
| |
Collapse
|
11
|
Rodríguez-Callejas JD, Fuchs E, Perez-Cruz C. Atrophic astrocytes in aged marmosets present tau hyperphosphorylation, RNA oxidation, and DNA fragmentation. Neurobiol Aging 2023; 129:121-136. [PMID: 37302213 DOI: 10.1016/j.neurobiolaging.2023.04.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/19/2023] [Accepted: 04/22/2023] [Indexed: 06/13/2023]
Abstract
Astrocytes perform multiple essential functions in the brain showing morphological changes. Hypertrophic astrocytes are commonly observed in cognitively healthy aged animals, implying a functional defense mechanism without losing neuronal support. In neurodegenerative diseases, astrocytes show morphological alterations, such as decreased process length and reduced number of branch points, known as astroglial atrophy, with detrimental effects on neuronal cells. The common marmoset (Callithrix jacchus) is a non-human primate that, with age, develops several features that resemble neurodegeneration. In this study, we characterize the morphological alterations in astrocytes of adolescent (mean 1.75 y), adult (mean 5.33 y), old (mean 11.25 y), and aged (mean 16.83 y) male marmosets. We observed a significantly reduced arborization in astrocytes of aged marmosets compared to younger animals in the hippocampus and entorhinal cortex. These astrocytes also show oxidative damage to RNA and increased nuclear plaques in the cortex and tau hyperphosphorylation (AT100). Astrocytes lacking S100A10 protein show a more severe atrophy and DNA fragmentation. Our results demonstrate the presence of atrophic astrocytes in the brains of aged marmosets.
Collapse
Affiliation(s)
- Juan D Rodríguez-Callejas
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Department of Pharmacology, Mexico City, Mexico
| | - Eberhard Fuchs
- German Primate Center, Leibniz-Institute of Primate Research, Göttingen, Germany
| | - Claudia Perez-Cruz
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Department of Pharmacology, Mexico City, Mexico.
| |
Collapse
|
12
|
MacAinsh M, Zhou H. Partial mimicry of the microtubule binding of tau by its membrane binding. Protein Sci 2023; 32:e4581. [PMID: 36710643 PMCID: PMC9926470 DOI: 10.1002/pro.4581] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/10/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023]
Abstract
Tau, as typical of intrinsically disordered proteins (IDPs), binds to multiple targets including microtubules and acidic membranes. The latter two surfaces are both highly negatively charged, raising the prospect of mimicry in their binding by tau. The tau-microtubule complex was recently determined by cryo-electron microscopy. Here, we used molecular dynamics simulations to characterize the dynamic binding of tau K19 to an acidic membrane. This IDP can be divided into three repeats, each containing an amphipathic helix. The three amphipathic helices, along with flanking residues, tether the protein to the membrane interface. The separation between and membrane positioning of the amphipathic helices in the simulations are validated by published EPR data. The membrane contact probabilities of individual residues in tau show both similarities to and distinctions from native contacts with microtubules. In particular, a Lys that is conserved among the repeats forms similar interactions with membranes and with microtubules, as does a conserved Val. This partial mimicry facilitates both the membrane anchoring of microtubules by tau and the transfer of tau from membranes to microtubules.
Collapse
Affiliation(s)
- Matthew MacAinsh
- Department of ChemistryUniversity of Illinois at ChicagoChicagoIllinoisUSA
| | - Huan‐Xiang Zhou
- Department of ChemistryUniversity of Illinois at ChicagoChicagoIllinoisUSA
- Department of PhysicsUniversity of Illinois at ChicagoChicagoIllinoisUSA
| |
Collapse
|
13
|
Cancer Cells Upregulate Tau to Gain Resistance to DNA Damaging Agents. Cancers (Basel) 2022; 15:cancers15010116. [PMID: 36612113 PMCID: PMC9817522 DOI: 10.3390/cancers15010116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Recent reports suggested a role for microtubules in double-strand-DNA break repair. We herein investigated the role of the microtubule-associated protein Tau in radio- and chemotherapy. Noticeably, a lowered expression of Tau in breast cancer cell lines resulted in a significant decrease in mouse-xenograft breast tumor volume after doxorubicin or X-ray treatments. Furthermore, the knockdown of Tau impaired the classical nonhomologous end-joining pathway and led to an improved cellular response to both bleomycin and X-rays. Investigating the mechanism of Tau's protective effect, we found that one of the main mediators of response to double-stranded breaks in DNA, the tumor suppressor p53-binding protein 1 (53BP1), is sequestered in the cytoplasm as a consequence of Tau downregulation. We demonstrated that Tau allows 53BP1 to translocate to the nucleus in response to DNA damage by chaperoning microtubule protein trafficking. Moreover, Tau knockdown chemo-sensitized cancer cells to drugs forming DNA adducts, such as cisplatin and oxaliplatin, and further suggested a general role of Tau in regulating the nuclear trafficking of DNA repair proteins. Altogether, these results suggest that Tau expression in cancer cells may be of interest as a molecular marker for response to DNA-damaging anti-cancer agents. Clinically targeting Tau could sensitize tumors to DNA-damaging treatments.
Collapse
|
14
|
Corsi A, Bombieri C, Valenti MT, Romanelli MG. Tau Isoforms: Gaining Insight into MAPT Alternative Splicing. Int J Mol Sci 2022; 23:ijms232315383. [PMID: 36499709 PMCID: PMC9735940 DOI: 10.3390/ijms232315383] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/27/2022] [Accepted: 12/04/2022] [Indexed: 12/13/2022] Open
Abstract
Tau microtubule-associated proteins, encoded by the MAPT gene, are mainly expressed in neurons participating in axonal transport and synaptic plasticity. Six major isoforms differentially expressed during cell development and differentiation are translated by alternative splicing of MAPT transcripts. Alterations in the expression of human Tau isoforms and their aggregation have been linked to several neurodegenerative diseases called tauopathies, including Alzheimer's disease, progressive supranuclear palsy, Pick's disease, and frontotemporal dementia with parkinsonism linked to chromosome 17. Great efforts have been dedicated in recent years to shed light on the complex regulatory mechanism of Tau splicing, with a perspective to developing new RNA-based therapies. This review summarizes the most recent contributions to the knowledge of Tau isoform expression and experimental models, highlighting the role of cis-elements and ribonucleoproteins that regulate the alternative splicing of Tau exons.
Collapse
|
15
|
Holubiec MI, Gellert M, Hanschmann EM. Redox signaling and metabolism in Alzheimer's disease. Front Aging Neurosci 2022; 14:1003721. [PMID: 36408110 PMCID: PMC9670316 DOI: 10.3389/fnagi.2022.1003721] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/14/2022] [Indexed: 08/11/2023] Open
Abstract
Reduction and oxidation reactions are essential for biochemical processes. They are part of metabolic pathways and signal transduction. Reactive oxygen species (ROS) as second messengers and oxidative modifications of cysteinyl (Cys) residues are key to transduce and translate intracellular and intercellular signals. Dysregulation of cellular redox signaling is known as oxidative distress, which has been linked to various pathologies, including neurodegeneration. Alzheimer's disease (AD) is a neurodegenerative pathology linked to both, abnormal amyloid precursor protein (APP) processing, generating Aβ peptide, and Tau hyperphosphorylation and aggregation. Signs of oxidative distress in AD include: increase of ROS (H2O2, O2 •-), decrease of the levels or activities of antioxidant enzymes, abnormal oxidation of macromolecules related to elevated Aβ production, and changes in mitochondrial homeostasis linked to Tau phosphorylation. Interestingly, Cys residues present in APP form disulfide bonds that are important for intermolecular interactions and might be involved in the aggregation of Aβ. Moreover, two Cys residues in some Tau isoforms have been shown to be essential for Tau stabilization and its interaction with microtubules. Future research will show the complexities of Tau, its interactome, and the role that Cys residues play in the progression of AD. The specific modification of cysteinyl residues in redox signaling is also tightly connected to the regulation of various metabolic pathways. Many of these pathways have been found to be altered in AD, even at very early stages. In order to analyze the complex changes and underlying mechanisms, several AD models have been developed, including animal models, 2D and 3D cell culture, and ex-vivo studies of patient samples. The use of these models along with innovative, new redox analysis techniques are key to further understand the importance of the redox component in Alzheimer's disease and the identification of new therapeutic targets in the future.
Collapse
Affiliation(s)
- M. I. Holubiec
- IBioBA-MPSP Instituto de Investigación en Biomedicina de Buenos Aires, Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - M. Gellert
- Institute for Medical Biochemistry and Molecular Biology, University Medicine Greifwald, University Greifswald, Greifswald, Germany
| | | |
Collapse
|
16
|
Failure of DNA double-strand break repair by tau mediates Alzheimer's disease pathology in vitro. Commun Biol 2022; 5:358. [PMID: 35418705 PMCID: PMC9008043 DOI: 10.1038/s42003-022-03312-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 03/24/2022] [Indexed: 12/26/2022] Open
Abstract
DNA double-strand break (DSB) is the most severe form of DNA damage and accumulates with age, in which cytoskeletal proteins are polymerized to repair DSB in dividing cells. Since tau is a microtubule-associated protein, we investigate whether DSB is involved in tau pathologies in Alzheimer's disease (AD). First, immunohistochemistry reveals the frequent coexistence of DSB and phosphorylated tau in the cortex of AD patients. In vitro studies using primary mouse cortical neurons show that non-p-tau accumulates perinuclearly together with the tubulin after DSB induction with etoposide, followed by the accumulation of phosphorylated tau. Moreover, the knockdown of endogenous tau exacerbates DSB in neurons, suggesting the protective role of tau on DNA repair. Interestingly, synergistic exposure of neurons to microtubule disassembly and the DSB strikingly augments aberrant p-tau aggregation and apoptosis. These data suggest that DSB plays a pivotal role in AD-tau pathology and that the failure of DSB repair leads to tauopathy.
Collapse
|
17
|
Cimini S, Giaccone G, Tagliavini F, Costantino M, Perego P, Rossi G. P301L tau mutation leads to alterations of cell cycle, DNA damage response and apoptosis: evidence for a role of tau in cancer. Biochem Pharmacol 2022; 200:115043. [DOI: 10.1016/j.bcp.2022.115043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 04/11/2022] [Indexed: 01/14/2023]
|
18
|
Yekta R, Sadeghi L, Dehghan G. The role of non-enzymatic glycation on Tau-DNA interactions: Kinetic and mechanistic approaches. Int J Biol Macromol 2022; 207:161-168. [PMID: 35257729 DOI: 10.1016/j.ijbiomac.2022.02.178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/26/2021] [Accepted: 02/27/2022] [Indexed: 11/05/2022]
Abstract
Despite the regulatory role of Tau protein in the stabilization and assembly of microtubules, this protein has an important function in the protection and stabilizing of DNA molecules in the cell nucleus. In the present study, it has been indicated that glycation of lysine residues (Lys-267, Lys-274, and Lys-280) in the microtubule-binding domain (MBD) can considerably decrease its binding affinity to DNA molecules. The structural analysis also confirmed that the decreased glycated tau-DNA complex's stability was due to structural modification of this protein after the glycation process. The study of hippocampal cells under hyperglycemic conditions showed that near to 70% of Tau proteins glycated in these cells, although the expression of Tau remained unaffected. The assessment of H3K9me2, as a marker for binding of Tau to pericentromeric heterochromatin (PCH), indicated that localization of Tau protein on PCH was remarkably decreased at high glucose conditions relative to the controls. It is suggested that increasing the structural stability of Tau protein limits the ability of this protein for DNA binding, while the molecular and physical barrier of glycated Lys residues should not be neglected.
Collapse
Affiliation(s)
- Reza Yekta
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Leila Sadeghi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran..
| | - Gholamreza Dehghan
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran..
| |
Collapse
|
19
|
Roqanian S, Ahmadian S, Nabavi SM, Pakdaman H, Shafiezadeh M, Goudarzi G, Shahpasand K. Tau nuclear translocation is a leading step in tau pathology process through P53 stabilization and nucleolar dispersion. J Neurosci Res 2022; 100:1084-1104. [PMID: 35170061 DOI: 10.1002/jnr.25024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 12/23/2021] [Accepted: 12/27/2021] [Indexed: 12/13/2022]
Abstract
Tau protein abnormalities are associated with various neurodegenerative disorders, including Alzheimer's disease (AD) and traumatic brain injury (TBI). In tau-overexpressing SHSY5Y cells and iPSC-derived neuron models of frontotemporal dementia (FTD), axonal tau translocates into the nuclear compartment, resulting in neuronal dysfunction. Despite extensive research, the mechanisms by which tau translocation results in neurodegeneration remain elusive thus far. We studied the nuclear displacement of different P-tau species [Cis phosphorylated Thr231-tau (cis P-tau), phosphorylated Ser202/Thr205-tau (AT8 P-tau), and phosphorylated Thr212/Ser214-tau (AT100 P-tau)] at various time points using starvation in primary cortical neurons and single severe TBI (ssTBI) in male mouse cerebral cortices as tauopathy models. While all P-tau species translocated into the somatodendritic compartment in response to stress, cis P-tau did so more rapidly than the other species. Notably, nuclear localization of P-tau was associated with p53 apoptotic stabilization and nucleolar stress, both of which resulted in neurodegeneration. In summary, our findings indicate that P-tau nuclear translocation results in p53-dependent apoptosis and nucleolar dispersion, which is consistent with neurodegeneration.
Collapse
Affiliation(s)
- Shaqayeq Roqanian
- Department of Biochemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran.,Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Shahin Ahmadian
- Department of Biochemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Seyed Masood Nabavi
- Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hossein Pakdaman
- Brain Mapping Research Center, Department of Neurology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahshid Shafiezadeh
- Department of Biochemistry, Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Ghazaleh Goudarzi
- Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Koorosh Shahpasand
- Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
20
|
Gil L, Niño SA, Guerrero C, Jiménez-Capdeville ME. Phospho-Tau and Chromatin Landscapes in Early and Late Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms221910283. [PMID: 34638632 PMCID: PMC8509045 DOI: 10.3390/ijms221910283] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 12/25/2022] Open
Abstract
Cellular identity is determined through complex patterns of gene expression. Chromatin, the dynamic structure containing genetic information, is regulated through epigenetic modulators, mainly by the histone code. One of the main challenges for the cell is maintaining functionality and identity, despite the accumulation of DNA damage throughout the aging process. Replicative cells can remain in a senescent state or develop a malign cancer phenotype. In contrast, post-mitotic cells such as pyramidal neurons maintain extraordinary functionality despite advanced age, but they lose their identity. This review focuses on tau, a protein that protects DNA, organizes chromatin, and plays a crucial role in genomic stability. In contrast, tau cytosolic aggregates are considered hallmarks of Alzheimer´s disease (AD) and other neurodegenerative disorders called tauopathies. Here, we explain AD as a phenomenon of chromatin dysregulation directly involving the epigenetic histone code and a progressive destabilization of the tau–chromatin interaction, leading to the consequent dysregulation of gene expression. Although this destabilization could be lethal for post-mitotic neurons, tau protein mediates profound cellular transformations that allow for their temporal survival.
Collapse
Affiliation(s)
- Laura Gil
- Departamento de Genética, Escuela de Medicina, Universidad “Alfonso X el Sabio”, 28691 Madrid, Spain;
| | - Sandra A. Niño
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma, de San Luis Potosí 78210, Mexico;
| | - Carmen Guerrero
- Banco de Cerebros (Biobanco), Hospital Universitario Fundación Alcorcón, Alcorcón, 28922 Madrid, Spain;
| | - María E. Jiménez-Capdeville
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma, de San Luis Potosí 78210, Mexico;
- Correspondence: ; Tel.: +52-444-826-2366
| |
Collapse
|
21
|
Siano G, Falcicchia C, Origlia N, Cattaneo A, Di Primio C. Non-Canonical Roles of Tau and Their Contribution to Synaptic Dysfunction. Int J Mol Sci 2021; 22:ijms221810145. [PMID: 34576308 PMCID: PMC8466023 DOI: 10.3390/ijms221810145] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/12/2021] [Accepted: 09/17/2021] [Indexed: 12/13/2022] Open
Abstract
Tau plays a central role in a group of neurodegenerative disorders collectively named tauopathies. Despite the wide range of diverse symptoms at the onset and during the progression of the pathology, all tauopathies share two common hallmarks, namely the misfolding and aggregation of Tau protein and progressive synaptic dysfunctions. Tau aggregation correlates with cognitive decline and behavioural impairment. The mechanistic link between Tau misfolding and the synaptic dysfunction is still unknown, but this correlation is well established in the human brain and also in tauopathy mouse models. At the onset of the pathology, Tau undergoes post-translational modifications (PTMs) inducing the detachment from the cytoskeleton and its release in the cytoplasm as a soluble monomer. In this condition, the physiological enrichment in the axon is definitely disrupted, resulting in Tau relocalization in the cell soma and in dendrites. Subsequently, Tau aggregates into toxic oligomers and amyloidogenic forms that disrupt synaptic homeostasis and function, resulting in neuronal degeneration. The involvement of Tau in synaptic transmission alteration in tauopathies has been extensively reviewed. Here, we will focus on non-canonical Tau functions mediating synapse dysfunction.
Collapse
Affiliation(s)
- Giacomo Siano
- Laboratory of Biology, BIO@SNS, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy;
| | - Chiara Falcicchia
- Institute of Neuroscience, Italian National Research Council, Via Moruzzi 1, 56124 Pisa, Italy; (C.F.); (N.O.)
| | - Nicola Origlia
- Institute of Neuroscience, Italian National Research Council, Via Moruzzi 1, 56124 Pisa, Italy; (C.F.); (N.O.)
| | - Antonino Cattaneo
- Laboratory of Biology, BIO@SNS, Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy;
- European Brain Research Institute (EBRI), Fondazione Rita Levi-Montalcini, Viale Regina Elena 295, 00161 Roma, Italy
- Correspondence: (A.C.); (C.D.P.)
| | - Cristina Di Primio
- Institute of Neuroscience, Italian National Research Council, Via Moruzzi 1, 56124 Pisa, Italy; (C.F.); (N.O.)
- Correspondence: (A.C.); (C.D.P.)
| |
Collapse
|
22
|
Robbins M, Clayton E, Kaminski Schierle GS. Synaptic tau: A pathological or physiological phenomenon? Acta Neuropathol Commun 2021; 9:149. [PMID: 34503576 PMCID: PMC8428049 DOI: 10.1186/s40478-021-01246-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 12/17/2022] Open
Abstract
In this review, we discuss the synaptic aspects of Tau pathology occurring during Alzheimer's disease (AD) and how this may relate to memory impairment, a major hallmark of AD. Whilst the clinical diagnosis of AD patients is a loss of working memory and long-term declarative memory, the histological diagnosis is the presence of neurofibrillary tangles of hyperphosphorylated Tau and Amyloid-beta plaques. Tau pathology spreads through synaptically connected neurons to impair synaptic function preceding the formation of neurofibrillary tangles, synaptic loss, axonal retraction and cell death. Alongside synaptic pathology, recent data suggest that Tau has physiological roles in the pre- or post- synaptic compartments. Thus, we have seen a shift in the research focus from Tau as a microtubule-stabilising protein in axons, to Tau as a synaptic protein with roles in accelerating spine formation, dendritic elongation, and in synaptic plasticity coordinating memory pathways. We collate here the myriad of emerging interactions and physiological roles of synaptic Tau, and discuss the current evidence that synaptic Tau contributes to pathology in AD.
Collapse
|
23
|
Sinsky J, Pichlerova K, Hanes J. Tau Protein Interaction Partners and Their Roles in Alzheimer's Disease and Other Tauopathies. Int J Mol Sci 2021; 22:9207. [PMID: 34502116 PMCID: PMC8431036 DOI: 10.3390/ijms22179207] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 02/06/2023] Open
Abstract
Tau protein plays a critical role in the assembly, stabilization, and modulation of microtubules, which are important for the normal function of neurons and the brain. In diseased conditions, several pathological modifications of tau protein manifest. These changes lead to tau protein aggregation and the formation of paired helical filaments (PHF) and neurofibrillary tangles (NFT), which are common hallmarks of Alzheimer's disease and other tauopathies. The accumulation of PHFs and NFTs results in impairment of physiological functions, apoptosis, and neuronal loss, which is reflected as cognitive impairment, and in the late stages of the disease, leads to death. The causes of this pathological transformation of tau protein haven't been fully understood yet. In both physiological and pathological conditions, tau interacts with several proteins which maintain their proper function or can participate in their pathological modifications. Interaction partners of tau protein and associated molecular pathways can either initiate and drive the tau pathology or can act neuroprotective, by reducing pathological tau proteins or inflammation. In this review, we focus on the tau as a multifunctional protein and its known interacting partners active in regulations of different processes and the roles of these proteins in Alzheimer's disease and tauopathies.
Collapse
Affiliation(s)
| | | | - Jozef Hanes
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska Cesta 9, 845 10 Bratislava, Slovakia; (J.S.); (K.P.)
| |
Collapse
|
24
|
D’Andrea L, Stringhi R, Di Luca M, Marcello E. Looking at Alzheimer's Disease Pathogenesis from the Nuclear Side. Biomolecules 2021; 11:biom11091261. [PMID: 34572474 PMCID: PMC8467578 DOI: 10.3390/biom11091261] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 01/22/2023] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disorder representing the most common form of dementia. It is biologically characterized by the deposition of extracellular amyloid-β (Aβ) senile plaques and intracellular neurofibrillary tangles, constituted by hyperphosphorylated tau protein. The key protein in AD pathogenesis is the amyloid precursor protein (APP), which is cleaved by secretases to produce several metabolites, including Aβ and APP intracellular domain (AICD). The greatest genetic risk factor associated with AD is represented by the Apolipoprotein E ε4 (APOE ε4) allele. Importantly, all of the above-mentioned molecules that are strictly related to AD pathogenesis have also been described as playing roles in the cell nucleus. Accordingly, evidence suggests that nuclear functions are compromised in AD. Furthermore, modulation of transcription maintains cellular homeostasis, and alterations in transcriptomic profiles have been found in neurodegenerative diseases. This report reviews recent advancements in the AD players-mediated gene expression. Aβ, tau, AICD, and APOE ε4 localize in the nucleus and regulate the transcription of several genes, part of which is involved in AD pathogenesis, thus suggesting that targeting nuclear functions might provide new therapeutic tools for the disease.
Collapse
|
25
|
Mohammadi F, Takalloo Z, Rahmani H, Nasiri Khalili MA, Khajeh K, Riazi G, H Sajedi R. Interplay of isoform 1N4R tau protein and amyloid-β peptide fragment 25-35 in reducing and non-reducing conditions. J Biochem 2021; 169:119-134. [PMID: 32857841 DOI: 10.1093/jb/mvaa101] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/14/2020] [Indexed: 11/13/2022] Open
Abstract
Amyloid-β (Aβ) peptide and tau protein are two hallmark proteins in Alzheimer's disease (AD); however, the parameters, which mediate the abnormal aggregation of Aβ and tau, have not been fully discovered. Here, we have provided an optimum method to purify tau protein isoform 1N4R by using nickel-nitrilotriacetic acid agarose chromatography under denaturing condition. The biochemical and biophysical properties of the purified protein were further characterized using in vitro tau filament assembly, tubulin polymerization assay, circular dichroism (CD) spectroscopy and atomic force microscopy. Afterwards, we investigated the effect of tau protein on aggregation of Aβ (25-35) peptide using microscopic imaging and cell viability assay. Incubation of tau at physiologic and supra-physiologic concentrations with Aβ25-35 for 40 days under reducing and non-reducing conditions revealed formation of two types of aggregates with distinct morphologies and dimensions. In non-reducing condition, the co-incubated sample showed granular aggregates, while in reducing condition, they formed annular protofibrils. Results from cell viability assay revealed the increased cell viability for the co-incubated sample. Therefore, the disassembling action shown by tau protein on Aβ25-35 suggests the possibility that tau may have a protective role in preventing Aβ peptide from acquiring the cytotoxic, aggregated form against oxidative stress damages.
Collapse
Affiliation(s)
- Fatemeh Mohammadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Jalal AleAhmad Highway, P.O.Box: 14115-111, Iran
| | - Zeinab Takalloo
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Jalal AleAhmad Highway, P.O.Box: 14115-111, Iran
| | - Hossein Rahmani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Jalal AleAhmad Highway, P.O.Box: 14115-111, Iran
| | - Mohammad Ali Nasiri Khalili
- Department of Bioscience and Biotechnology, Malek Ashtar University of Technology, Tehran, Lavizan, Babaei Highway, P.O.Box: 15875-1774, Iran
| | - Khosro Khajeh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Jalal AleAhmad Highway, P.O.Box: 14115-111, Iran
| | - Gholamhossein Riazi
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Enghelab Square, Postal Code: 1417466191, Iran
| | - Reza H Sajedi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Jalal AleAhmad Highway, P.O.Box: 14115-111, Iran
| |
Collapse
|
26
|
Kanaan NM, Grabinski T. Neuronal and Glial Distribution of Tau Protein in the Adult Rat and Monkey. Front Mol Neurosci 2021; 14:607303. [PMID: 33986642 PMCID: PMC8112591 DOI: 10.3389/fnmol.2021.607303] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 03/23/2021] [Indexed: 12/27/2022] Open
Abstract
Tau is a microtubule-associated protein for which the physiological functions remain a topic of vigorous investigation. Additionally, tau is a central player in the pathogenesis of several diseases such as Alzheimer's disease and several frontotemporal dementias. A critical variable to understanding tau in physiological and disease contexts is its normal localization within cells of the adult CNS. Tau is often described as an axon-specific (or enriched) and neuron-specific protein with little to no expression in glial cells, all of which are untrue. Understanding normal tau distribution also impacts interpretation of experimental results and hypotheses regarding its role in disease. Thus, we set out to help clarify the normal localization of tau in the adult CNS of middle-aged rats and rhesus macaque using the hippocampus as a representative brain structure. The physiological concentration of tau in the rat hippocampus was 6.6 μM and in white matter was 3.6 μM as determined by quantitative sandwich ELISAs. We evaluated the cellular localization of tau using multiple tau-specific antibodies with epitopes to different regions, including Tau1, Tau5, Tau7, R1, and two novel primate-specific antibodies NT9 and NT15. In the rat and monkey, tau was localized within the somatodendritic and axonal compartments, as well as a subset of neuronal nuclei. Semi-quantitative fluorescence intensity measurements revealed that depending on the specific reagent used the somatodendritic tau is relatively equal to, higher than, or lower than axonal tau, highlighting differential labeling of tau with various antibodies despite its distribution throughout the neuron. Tau was strongly expressed in mature oligodendrocytes and displayed little to no expression in oligodendrocyte precursor cells, astrocytes or microglia. Collectively, the data indicate tau is ∼3 - 7 μM under physiological conditions, is not specifically enriched in axons, and is normally found in both neurons and mature oligodendrocytes in the adult CNS. The full landscape of tau distribution is not revealed by all antibodies suggesting availability of the epitopes is different within specific neuronal compartments. These findings set the stage for better understanding normal tau distributions and interpreting data regarding the presence of tau in different compartments or cell types within disease conditions.
Collapse
Affiliation(s)
- Nicholas M. Kanaan
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
- Neuroscience Program, Michigan State University, East Lansing, MI, United States
- Mercy Health Hauenstein Neuroscience Center, Grand Rapids, MI, United States
| | - Tessa Grabinski
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| |
Collapse
|
27
|
Gil L, Niño SA, Capdeville G, Jiménez-Capdeville ME. Aging and Alzheimer's disease connection: Nuclear Tau and lamin A. Neurosci Lett 2021; 749:135741. [PMID: 33610669 DOI: 10.1016/j.neulet.2021.135741] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 01/12/2021] [Accepted: 02/11/2021] [Indexed: 12/24/2022]
Abstract
Age-related pathologies like Alzheimer`s disease (AD) imply cellular responses directed towards repairing DNA damage. Postmitotic neurons show progressive accumulation of oxidized DNA during decades of brain aging, which is especially remarkable in AD brains. The characteristic cytoskeletal pathology of AD neurons is brought about by the progressive changes that neurons undergo throughout aging, and their irreversible nuclear transformation initiates the disease. This review focusses on critical molecular events leading to the loss of plasticity that underlies cognitive deficits in AD. During healthy neuronal aging, nuclear Tau participates in the regulation of the structure and function of the chromatin. The aberrant cell cycle reentry initiated for DNA repair triggers a cascade of events leading to the dysfunctional AD neuron, whereby Tau protein exits the nucleus leading to chromatin disorganization. Lamin A, which is not typically expressed in neurons, appears at the transformation from senile to AD neurons and contributes to halting the consequences of cell cycle reentry and nuclear Tau exit, allowing the survival of the neuron. Nevertheless, this irreversible nuclear transformation alters the nucleic acid and protein synthesis machinery as well as the nuclear lamina and cytoskeleton structures, leading to neurofibrillary tangles formation and final neurodegeneration.
Collapse
Affiliation(s)
- Laura Gil
- Departamento de Genética, Escuela de Medicina, Universidad "Alfonso X el Sabio", Madrid, Spain
| | - Sandra A Niño
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, Mexico
| | | | | |
Collapse
|
28
|
Niewiadomska G, Niewiadomski W, Steczkowska M, Gasiorowska A. Tau Oligomers Neurotoxicity. Life (Basel) 2021; 11:28. [PMID: 33418848 PMCID: PMC7824853 DOI: 10.3390/life11010028] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/31/2020] [Accepted: 01/04/2021] [Indexed: 12/11/2022] Open
Abstract
Although the mechanisms of toxic activity of tau are not fully recognized, it is supposed that the tau toxicity is related rather not to insoluble tau aggregates but to its intermediate forms. It seems that neurofibrillar tangles (NFTs) themselves, despite being composed of toxic tau, are probably neither necessary nor sufficient for tau-induced neuronal dysfunction and toxicity. Tau oligomers (TauOs) formed during the early stages of tau aggregation are the pathological forms that play a key role in eliciting the loss of neurons and behavioral impairments in several neurodegenerative disorders called tauopathies. They can be found in tauopathic diseases, the most common of which is Alzheimer's disease (AD). Evidence of co-occurrence of b-amyloid, α-synuclein, and tau into their most toxic forms, i.e., oligomers, suggests that these species interact and influence each other's aggregation in several tauopathies. The mechanism responsible for oligomeric tau neurotoxicity is a subject of intensive investigation. In this review, we summarize the most recent literature on the damaging effect of TauOs on the stability of the genome and the function of the nucleus, energy production and mitochondrial function, cell signaling and synaptic plasticity, the microtubule assembly, neuronal cytoskeleton and axonal transport, and the effectiveness of the protein degradation system.
Collapse
Affiliation(s)
- Grazyna Niewiadomska
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Wiktor Niewiadomski
- Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland; (W.N.); (M.S.); (A.G.)
| | - Marta Steczkowska
- Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland; (W.N.); (M.S.); (A.G.)
| | - Anna Gasiorowska
- Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland; (W.N.); (M.S.); (A.G.)
| |
Collapse
|
29
|
Strong MJ, Donison NS, Volkening K. Alterations in Tau Metabolism in ALS and ALS-FTSD. Front Neurol 2020; 11:598907. [PMID: 33329356 PMCID: PMC7719764 DOI: 10.3389/fneur.2020.598907] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 10/27/2020] [Indexed: 12/15/2022] Open
Abstract
There is increasing acceptance that amyotrophic lateral sclerosis (ALS), classically considered a neurodegenerative disease affecting almost exclusively motor neurons, is syndromic with both clinical and biological heterogeneity. This is most evident in its association with a broad range of neuropsychological, behavioral, speech and language deficits [collectively termed ALS frontotemporal spectrum disorder (ALS-FTSD)]. Although the most consistent pathology of ALS and ALS-FTSD is a disturbance in TAR DNA binding protein 43 kDa (TDP-43) metabolism, alterations in microtubule-associated tau protein (tau) metabolism can also be observed in ALS-FTSD, most prominently as pathological phosphorylation at Thr175 (pThr175tau). pThr175 has been shown to promote exposure of the phosphatase activating domain (PAD) in the tau N-terminus with the consequent activation of GSK3β mediated phosphorylation at Thr231 (pThr231tau) leading to pathological oligomer formation. This pathological cascade of tau phosphorylation has been observed in chronic traumatic encephalopathy with ALS (CTE-ALS) and in both in vivo and in vitro experimental paradigms, suggesting that it is of critical relevance to the pathobiology of ALS-FTSD. It is also evident that the co-existence of alterations in the metabolism of TDP-43 and tau acts synergistically in a rodent model to exacerbate the pathology of either.
Collapse
Affiliation(s)
- Michael J Strong
- Molecular Medicine, Schulich School of Medicine and Dentistry, Robarts Research Institute, Western University, London, ON, Canada.,Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Neil S Donison
- Molecular Medicine, Schulich School of Medicine and Dentistry, Robarts Research Institute, Western University, London, ON, Canada.,Neuroscience Graduate Program, Western University, London, ON, Canada
| | - Kathryn Volkening
- Molecular Medicine, Schulich School of Medicine and Dentistry, Robarts Research Institute, Western University, London, ON, Canada.,Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| |
Collapse
|
30
|
Oakley SS, Maina MB, Marshall KE, Al-Hilaly YK, Harrington CR, Wischik CM, Serpell LC. Tau Filament Self-Assembly and Structure: Tau as a Therapeutic Target. Front Neurol 2020; 11:590754. [PMID: 33281730 PMCID: PMC7688747 DOI: 10.3389/fneur.2020.590754] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 09/04/2020] [Indexed: 12/12/2022] Open
Abstract
Tau plays an important pathological role in a group of neurodegenerative diseases called tauopathies, including Alzheimer's disease, Pick's disease, chronic traumatic encephalopathy and corticobasal degeneration. In each disease, tau self-assembles abnormally to form filaments that deposit in the brain. Tau is a natively unfolded protein that can adopt distinct structures in different pathological disorders. Cryo-electron microscopy has recently provided a series of structures for the core of the filaments purified from brain tissue from patients with different tauopathies and revealed that they share a common core region, while differing in their specific conformation. This structurally resolvable part of the core is contained within a proteolytically stable core region from the repeat domain initially isolated from AD tau filaments. Tau has recently become an important target for therapy. Recent work has suggested that the prevention of tau self-assembly may be effective in slowing the progression of Alzheimer's disease and other tauopathies. Here we review the work that explores the importance of tau filament structures and tau self-assembly mechanisms, as well as examining model systems that permit the exploration of the mode of action of potential inhibitors.
Collapse
Affiliation(s)
- Sebastian S. Oakley
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Mahmoud B. Maina
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
- College of Medical Sciences, Yobe State University, Damaturu, Nigeria
| | - Karen E. Marshall
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Youssra K. Al-Hilaly
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
- Chemistry Department, College of Science, Mustansiriyah University, Baghdad, Iraq
| | - Charlie R. Harrington
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
- TauRx Therapeutics Ltd., Aberdeen, United Kingdom
| | - Claude M. Wischik
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, United Kingdom
- TauRx Therapeutics Ltd., Aberdeen, United Kingdom
| | - Louise C. Serpell
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| |
Collapse
|
31
|
Kent SA, Spires-Jones TL, Durrant CS. The physiological roles of tau and Aβ: implications for Alzheimer's disease pathology and therapeutics. Acta Neuropathol 2020; 140:417-447. [PMID: 32728795 PMCID: PMC7498448 DOI: 10.1007/s00401-020-02196-w] [Citation(s) in RCA: 208] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 01/18/2023]
Abstract
Tau and amyloid beta (Aβ) are the prime suspects for driving pathology in Alzheimer's disease (AD) and, as such, have become the focus of therapeutic development. Recent research, however, shows that these proteins have been highly conserved throughout evolution and may have crucial, physiological roles. Such functions may be lost during AD progression or be unintentionally disrupted by tau- or Aβ-targeting therapies. Tau has been revealed to be more than a simple stabiliser of microtubules, reported to play a role in a range of biological processes including myelination, glucose metabolism, axonal transport, microtubule dynamics, iron homeostasis, neurogenesis, motor function, learning and memory, neuronal excitability, and DNA protection. Aβ is similarly multifunctional, and is proposed to regulate learning and memory, angiogenesis, neurogenesis, repair leaks in the blood-brain barrier, promote recovery from injury, and act as an antimicrobial peptide and tumour suppressor. This review will discuss potential physiological roles of tau and Aβ, highlighting how changes to these functions may contribute to pathology, as well as the implications for therapeutic development. We propose that a balanced consideration of both the physiological and pathological roles of tau and Aβ will be essential for the design of safe and effective therapeutics.
Collapse
Affiliation(s)
- Sarah A. Kent
- Translational Neuroscience PhD Programme, Centre for Discovery Brain Sciences and the UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ Scotland, UK
| | - Tara L. Spires-Jones
- Centre for Discovery Brain Sciences and the UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ Scotland, UK
| | - Claire S. Durrant
- Centre for Discovery Brain Sciences and the UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh, EH8 9JZ Scotland, UK
| |
Collapse
|
32
|
Diez L, Wegmann S. Nuclear Transport Deficits in Tau-Related Neurodegenerative Diseases. Front Neurol 2020; 11:1056. [PMID: 33101165 PMCID: PMC7546323 DOI: 10.3389/fneur.2020.01056] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 08/11/2020] [Indexed: 12/14/2022] Open
Abstract
Tau is a cytosolic microtubule binding protein that is highly abundant in the axons of the central nervous system. However, alternative functions of tau also in other cellular compartments are suggested, for example, in the nucleus, where interactions of tau with specific nuclear entities such as DNA, the nucleolus, and the nuclear envelope have been reported. We would like to review the current knowledge about tau-nucleus interactions and lay out possible neurotoxic mechanisms that are based on the (pathological) interactions of tau with the nucleus.
Collapse
Affiliation(s)
- Lisa Diez
- German Center for Neurodegenerative Diseases, Berlin, Germany
| | - Susanne Wegmann
- German Center for Neurodegenerative Diseases, Berlin, Germany
| |
Collapse
|
33
|
Nag TC, Kathpalia P, Wadhwa S. Microtubule alterations may destabilize photoreceptor integrity: Age-related microtubule changes and pattern of expression of MAP-2, Tau and hyperphosphorylated Tau in aging human photoreceptor cells. Exp Eye Res 2020; 198:108153. [PMID: 32710889 DOI: 10.1016/j.exer.2020.108153] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 06/15/2020] [Accepted: 07/15/2020] [Indexed: 11/28/2022]
Abstract
Photoreceptor cells undergo changes with aging. It is unknown if their microtubules are stable or not with aging. This study examined photoreceptor cell ultrastructure from 18 human donor retinas (32 eyes; age: 45-94 years) and quantified the photoreceptors with altered microtubules over six to ninth decades in four defined retinal regions. In addition, immunoreactivity (IR) to microtubule-associated protein-2 (MAP-2), tau and hyperphophorylated tau was performed in retinal sections from companion eyes. In young donor retinas below 75 years of age, microtubules appeared straight in photoreceptor inner segments and axons. With age, they appeared bent or misaligned in macular and mid-peripheral photoreceptors. In addition, dense granular materials were present in photoreceptor axons and synaptic terminals in advanced ages. In all decades, rod microtubules were affected more than their cone counterparts (28% vs 15%, p < 0.005). Both rods and cones were significantly affected in mid-peripheral retina (5-8 mm outside the macular border) in eighth decade, compared to other decades or retinal regions (parafoveal, perifoveal and nasal) examined (p < 0.005). IR showed a steady expression of MAP-2 in inner segments, and tau in inner segments to axons below 75 years of age, but was absent for both markers in scattered macular and mid-peripheral photoreceptors in advanced ages (>75 years). IR to hyperphosphorylated tau was present mainly in inner retina and increased with aging. Markers of oxidative stress, e.g., lipid peroxidation (4-hydroxy 2-nonenal) and nitrosative stress (nitrotyrosine) were immunopositive in aged photoreceptors. The sporadic loss of MAP-2 and tau-IR in photoreceptors may be due to microtubule changes; all these changes may affect intracellular transport and be partly responsible for photoreceptor death in aged human retina.
Collapse
Affiliation(s)
- Tapas C Nag
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India.
| | - Poorti Kathpalia
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Shashi Wadhwa
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
34
|
Gil L, Niño SA, Chi-Ahumada E, Rodríguez-Leyva I, Guerrero C, Rebolledo AB, Arias JA, Jiménez-Capdeville ME. Perinuclear Lamin A and Nucleoplasmic Lamin B2 Characterize Two Types of Hippocampal Neurons through Alzheimer's Disease Progression. Int J Mol Sci 2020; 21:E1841. [PMID: 32155994 PMCID: PMC7084765 DOI: 10.3390/ijms21051841] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 02/28/2020] [Accepted: 03/03/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Recent reports point to a nuclear origin of Alzheimer's disease (AD). Aged postmitotic neurons try to repair their damaged DNA by entering the cell cycle. This aberrant cell cycle re-entry involves chromatin modifications where nuclear Tau and the nuclear lamin are involved. The purpose of this work was to elucidate their participation in the nuclear pathological transformation of neurons at early AD. METHODOLOGY The study was performed in hippocampal paraffin embedded sections of adult, senile, and AD brains at I-VI Braak stages. We analyzed phospho-Tau, lamins A, B1, B2, and C, nucleophosmin (B23) and the epigenetic marker H4K20me3 by immunohistochemistry. RESULTS Two neuronal populations were found across AD stages, one is characterized by a significant increase of Lamin A expression, reinforced perinuclear Lamin B2, elevated expression of H4K20me3 and nuclear Tau loss, while neurons with nucleoplasmic Lamin B2 constitute a second population. CONCLUSIONS The abnormal cell cycle reentry in early AD implies a fundamental neuronal transformation. This implies the reorganization of the nucleo-cytoskeleton through the expression of the highly regulated Lamin A, heterochromatin repression and building of toxic neuronal tangles. This work demonstrates that nuclear Tau and lamin modifications in hippocampal neurons are crucial events in age-related neurodegeneration.
Collapse
Affiliation(s)
- Laura Gil
- Departamento de Genética, Escuela de Medicina, Universidad “Alfonso X el Sabio”, 28691 Madrid, Spain; (L.G.)
| | - Sandra A. Niño
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78210, Mexico
| | - Erika Chi-Ahumada
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78210, Mexico
| | | | - Carmen Guerrero
- Banco de cerebros (Biobanco), Hospital Universitario Fundación Alcorcón, Alcorcón, 28922 Madrid, Spain
| | - Ana Belén Rebolledo
- Banco de cerebros (Biobanco), Hospital Universitario Fundación Alcorcón, Alcorcón, 28922 Madrid, Spain
| | - José A. Arias
- Departamento de Genética, Escuela de Medicina, Universidad “Alfonso X el Sabio”, 28691 Madrid, Spain; (L.G.)
| | - María E. Jiménez-Capdeville
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de San Luis Potosí, San Luis Potosí 78210, Mexico
| |
Collapse
|
35
|
Rane JS, Kumari A, Panda D. The Acetyl Mimicking Mutation, K274Q in Tau, Enhances the Metal Binding Affinity of Tau and Reduces the Ability of Tau to Protect DNA. ACS Chem Neurosci 2020; 11:291-303. [PMID: 31886644 DOI: 10.1021/acschemneuro.9b00455] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The aggregation of tau, a microtubule-associated protein, is known to play an important role in several neurological disorders including Alzheimer's disease. Alzheimer's disease is considered to be associated with the dyshomeostasis of metal ions such as aluminum, zinc, copper, and ferric ions. Tau is predominately acetylated at the K274 residue in Alzheimer's disease, and the acetylation of the K274 residue is thought to be linked with dementia. Using acetyl mimicking K274Q mutation in tau, we have examined the effects of the acetylation at K274 residue of tau on the interactions of tau with metal ions and also on the ability of tau to protect DNA from the heat and other stressors. We found that Zn2+ and Al3+ increased the liquid-liquid phase separation of tau, an initial stage of tau aggregation. Further, Zn2+ and Al3+ considerably reduced the critical concentration for the phase separation of K274Q tau. Using far-UV circular dichroism and fluorescence spectroscopy, we provide evidence suggesting that the binding of Zn2+ and Al3+ induces conformational changes in tau. The K274Q mutation enhanced the binding affinity of tau for Zn2+, Al3+, Cu2+, and Fe3+ ions. In addition, Zn2+, Al3+, Cu2+, and Fe3+ significantly enhanced the aggregation propensity of K274Q tau in comparison to tau. Interestingly, tau binds to DNA with a higher affinity than K274Q tau. Tau protects DNA from the DNase treatment in vitro as well as from the heat stress in neuroblastoma cells more efficiently than K274Q tau. The results indicated that the acetylation of K274 residue of tau may increase metal ion-induced toxicity and diminish the ability of tau to protect DNA.
Collapse
Affiliation(s)
- Jitendra Subhash Rane
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| | - Anuradha Kumari
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| | - Dulal Panda
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| |
Collapse
|
36
|
Fernández-Nogales M, Lucas JJ. Altered Levels and Isoforms of Tau and Nuclear Membrane Invaginations in Huntington's Disease. Front Cell Neurosci 2020; 13:574. [PMID: 32009905 PMCID: PMC6978886 DOI: 10.3389/fncel.2019.00574] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 12/12/2019] [Indexed: 12/13/2022] Open
Abstract
Since the early reports of neurofibrillary Tau pathology in brains of some Huntington’s disease (HD) patients, mounting evidence of multiple alterations of Tau in HD brain tissue has emerged in recent years. Such Tau alterations range from increased total levels, imbalance of isoforms generated by alternative splicing (increased 4R-/3R-Tau ratio) or by post-translational modifications such as hyperphosphorylation or truncation. Besides, the detection in HD brains of a new Tau histopathological hallmark known as Tau nuclear rods (TNRs) or Tau-positive nuclear indentations (TNIs) led to propose HD as a secondary Tauopathy. After their discovery in HD brains, TNIs have also been reported in hippocampal neurons of early Braak stage AD cases and in frontal and temporal cortical neurons of FTD-MAPT cases due to the intronic IVS10+16 mutation in the Tau gene (MAPT) which results in an increased 4R-/3R-Tau ratio similar to that observed in HD. TNIs are likely pathogenic for contributing to the disturbed nucleocytoplasmic transport observed in HD. A key question is whether correction of any of the mentioned Tau alterations might have positive therapeutic implications for HD. The beneficial effect of decreasing Tau expression in HD mouse models clearly implicates Tau in HD pathogenesis. Such beneficial effect might be exerted by diminishing the excess total levels of Tau or specifically by diminishing the excess 4R-Tau, as well as any of their downstream effects. In any case, since gene silencing drugs are under development to attenuate both Huntingtin (HTT) expression for HD and MAPT expression for FTD-MAPT, it is conceivable that the combined therapy in HD patients might be more effective than HTT silencing alone.
Collapse
Affiliation(s)
| | - José J Lucas
- Centro de Biología Molecular Severo Ochoa (CBMSO)(CSIC-UAM), Madrid, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
37
|
Shoeibi A, Olfati N, Litvan I. Frontrunner in Translation: Progressive Supranuclear Palsy. Front Neurol 2019; 10:1125. [PMID: 31695675 PMCID: PMC6817677 DOI: 10.3389/fneur.2019.01125] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 10/08/2019] [Indexed: 12/26/2022] Open
Abstract
Progressive supranuclear palsy (PSP) is a four-repeat tau proteinopathy. Abnormal tau deposition is not unique for PSP and is the basic pathologic finding in some other neurodegenerative disorders such as Alzheimer's disease (AD), age-related tauopathy, frontotemporal degeneration, corticobasal degeneration, and chronic traumatic encephalopathy. While AD research has mostly been focused on amyloid beta pathology until recently, PSP as a prototype of a primary tauopathy with high clinical-pathologic correlation and a rapid course is a crucial candidate for tau therapeutic research. Several novel approaches to slow disease progression are being developed. It is expected that the benefits of translational research in this disease will extend beyond the PSP population. This article reviews advances in the diagnosis, epidemiology, pathology, hypothesized etiopathogenesis, and biomarkers and disease-modifying therapeutic approaches of PSP that is leading it to become a frontrunner in translation.
Collapse
Affiliation(s)
- Ali Shoeibi
- Department of Neurology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nahid Olfati
- Department of Neurology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Irene Litvan
- UC San Diego Department of Neurosciences, Parkinson and Other Movement Disorder Center, La Jolla, CA, United States
| |
Collapse
|
38
|
Venkatramani A, Panda D. Regulation of neuronal microtubule dynamics by tau: Implications for tauopathies. Int J Biol Macromol 2019; 133:473-483. [DOI: 10.1016/j.ijbiomac.2019.04.120] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/16/2019] [Accepted: 04/16/2019] [Indexed: 12/13/2022]
|
39
|
Jadhav S, Avila J, Schöll M, Kovacs GG, Kövari E, Skrabana R, Evans LD, Kontsekova E, Malawska B, de Silva R, Buee L, Zilka N. A walk through tau therapeutic strategies. Acta Neuropathol Commun 2019; 7:22. [PMID: 30767766 PMCID: PMC6376692 DOI: 10.1186/s40478-019-0664-z] [Citation(s) in RCA: 185] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/21/2019] [Indexed: 12/18/2022] Open
Abstract
Tau neuronal and glial pathologies drive the clinical presentation of Alzheimer's disease and related human tauopathies. There is a growing body of evidence indicating that pathological tau species can travel from cell to cell and spread the pathology through the brain. Throughout the last decade, physiological and pathological tau have become attractive targets for AD therapies. Several therapeutic approaches have been proposed, including the inhibition of protein kinases or protein-3-O-(N-acetyl-beta-D-glucosaminyl)-L-serine/threonine Nacetylglucosaminyl hydrolase, the inhibition of tau aggregation, active and passive immunotherapies, and tau silencing by antisense oligonucleotides. New tau therapeutics, across the board, have demonstrated the ability to prevent or reduce tau lesions and improve either cognitive or motor impairment in a variety of animal models developing neurofibrillary pathology. The most advanced strategy for the treatment of human tauopathies remains immunotherapy, which has already reached the clinical stage of drug development. Tau vaccines or humanised antibodies target a variety of tau species either in the intracellular or extracellular spaces. Some of them recognise the amino-terminus or carboxy-terminus, while others display binding abilities to the proline-rich area or microtubule binding domains. The main therapeutic foci in existing clinical trials are on Alzheimer's disease, progressive supranuclear palsy and non-fluent primary progressive aphasia. Tau therapy offers a new hope for the treatment of many fatal brain disorders. First efficacy data from clinical trials will be available by the end of this decade.
Collapse
Affiliation(s)
- Santosh Jadhav
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska 9, 845 10, Bratislava, Slovakia
- AXON Neuroscience R&D Services SE, Dvorakovo nabrezie 10, 811 02, Bratislava, Slovakia
| | - Jesus Avila
- Centro de Biologia Molecular "Severo Ochoa", Consejo Superior de Investigaciones, Cientificas, Universidad Autonoma de Madrid, C/ Nicolas Cabrera, 1. Campus de Cantoblanco, 28049, Madrid, Spain
- Networking Research Center on Neurodegenerative, Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Michael Schöll
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- Department of, Psychiatry and Neurochemistry, University of Gothenburg, Gothenburg, Sweden
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
- Dementia Research Centre, University College London, London, UK
| | - Gabor G Kovacs
- Institute of Neurology, Medical University of Vienna, AKH 4J, Währinger Gürtel 18-20, 1097, Vienna, Austria
| | - Enikö Kövari
- Department of Mental Health and Psychiatry, University Hospitals of Geneva, Geneva, Switzerland
| | - Rostislav Skrabana
- AXON Neuroscience R&D Services SE, Dvorakovo nabrezie 10, 811 02, Bratislava, Slovakia
| | - Lewis D Evans
- Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QN, UK
| | - Eva Kontsekova
- AXON Neuroscience R&D Services SE, Dvorakovo nabrezie 10, 811 02, Bratislava, Slovakia
| | - Barbara Malawska
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Cracow, Poland
| | - Rohan de Silva
- Reta Lila Weston Institute and Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, 1 Wakefield Street, London, WC1N 1PJ, UK
| | - Luc Buee
- Universite of Lille, Inserm, CHU-Lille, UMRS1172, Alzheimer & Tauopathies, Place de Verdun, 59045, Lille cedex, France.
| | - Norbert Zilka
- AXON Neuroscience R&D Services SE, Dvorakovo nabrezie 10, 811 02, Bratislava, Slovakia.
| |
Collapse
|
40
|
Siano G, Varisco M, Caiazza MC, Quercioli V, Mainardi M, Ippolito C, Cattaneo A, Di Primio C. Tau Modulates VGluT1 Expression. J Mol Biol 2019; 431:873-884. [PMID: 30664870 DOI: 10.1016/j.jmb.2019.01.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 01/09/2019] [Indexed: 02/07/2023]
Abstract
Tau displacement from microtubules is the first step in the onset of tauopathies and is followed by toxic protein aggregation. However, other non-canonical functions of Tau might have a role in these pathologies. Here, we demonstrate that a small amount of Tau localizes in the nuclear compartment and accumulates in both the soluble and chromatin-bound fractions. We show that favoring Tau nuclear translocation and accumulation, by Tau overexpression or detachment from MTs, increases the expression of VGluT1, a disease-relevant gene directly involved in glutamatergic synaptic transmission. Remarkably, the P301L mutation, related to frontotemporal dementia FTDP-17, impairs this mechanism leading to a loss of function. Altogether, our results provide the demonstration of a direct physiological role of Tau on gene expression. Alterations of this mechanism may be at the basis of the onset of neurodegeneration.
Collapse
Affiliation(s)
- Giacomo Siano
- Laboratory of Biology, BIO@SNS, Scuola Normale Superiore, Pisa, Italy
| | - Martina Varisco
- Laboratory of Biology, BIO@SNS, Scuola Normale Superiore, Pisa, Italy
| | | | | | - Marco Mainardi
- Laboratory of Biology, BIO@SNS, Scuola Normale Superiore, Pisa, Italy
| | - Chiara Ippolito
- Unit of Histology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Antonino Cattaneo
- Laboratory of Biology, BIO@SNS, Scuola Normale Superiore, Pisa, Italy
| | | |
Collapse
|
41
|
Galas MC, Bonnefoy E, Buee L, Lefebvre B. Emerging Connections Between Tau and Nucleic Acids. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1184:135-143. [PMID: 32096035 DOI: 10.1007/978-981-32-9358-8_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Connections between tau and nucleic acids have been largely underestimated until recently when several reports highlighted new key roles of tau in relation with DNA and RNA structure, metabolism and integrity, and their implications in the context of tauopathies. Here we focus on recent advances involving tau and nucleic acids in neuronal and non-neuronal cells. Implication of tau and tau pathology in mechanisms regulating genome integrity, chromatin organization and RNA metabolism, highlight the connections between tau and nucleic acid as major mechanisms in neuronal homeostasis and the etiopathology of tauopathies.
Collapse
Affiliation(s)
- Marie-Christine Galas
- University of Lille, INSERM, CHU-Lille, UMR-S 1172, Alzheimer & Tauopathies, LabEx DISTALZ, Lille, France.
| | | | - Luc Buee
- University of Lille, INSERM, CHU-Lille, UMR-S 1172, Alzheimer & Tauopathies, LabEx DISTALZ, Lille, France
| | - Bruno Lefebvre
- University of Lille, INSERM, CHU-Lille, UMR-S 1172, Alzheimer & Tauopathies, LabEx DISTALZ, Lille, France
| |
Collapse
|
42
|
Ulrich G, Salvadè A, Boersema P, Calì T, Foglieni C, Sola M, Picotti P, Papin S, Paganetti P. Phosphorylation of nuclear Tau is modulated by distinct cellular pathways. Sci Rep 2018; 8:17702. [PMID: 30531974 PMCID: PMC6286375 DOI: 10.1038/s41598-018-36374-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 11/16/2018] [Indexed: 11/28/2022] Open
Abstract
Post-translational protein modification controls the function of Tau as a scaffold protein linking a variety of molecular partners. This is most studied in the context of microtubules, where Tau regulates their stability as well as the distribution of cellular components to defined compartments. However, Tau is also located in the cell nucleus; and is found to protect DNA. Quantitative assessment of Tau modification in the nucleus when compared to the cytosol may elucidate how subcellular distribution and function of Tau is regulated. We undertook an unbiased approach by combing bimolecular fluorescent complementation and mass spectrometry in order to show that Tau phosphorylation at specific residues is increased in the nucleus of proliferating pluripotent neuronal C17.2 and neuroblastoma SY5Y cells. These findings were validated with the use of nuclear targeted Tau and subcellular fractionation, in particular for the phosphorylation at T181, T212 and S404. We also report that the DNA damaging drug Etoposide increases the translocation of Tau to the nucleus whilst reducing its phosphorylation. We propose that overt phosphorylation of Tau, a hallmark of neurodegenerative disorders defined as tauopathies, may negatively regulate the function of nuclear Tau in protecting against DNA damage.
Collapse
Affiliation(s)
- Giorgio Ulrich
- Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, Ente Cantonale Ospedaliero, Torricella-Taverne, Switzerland
| | - Agnese Salvadè
- Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, Ente Cantonale Ospedaliero, Torricella-Taverne, Switzerland
| | - Paul Boersema
- Institute of Molecular Systems Biology, Department of Biology, ETHZ, Zurich, Switzerland
| | - Tito Calì
- Department of Biomedical Sciences and Padova Neuroscience Center, University of Padova, Padova, Italy
| | - Chiara Foglieni
- Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, Ente Cantonale Ospedaliero, Torricella-Taverne, Switzerland
| | - Martina Sola
- Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, Ente Cantonale Ospedaliero, Torricella-Taverne, Switzerland
| | - Paola Picotti
- Institute of Molecular Systems Biology, Department of Biology, ETHZ, Zurich, Switzerland
| | - Stéphanie Papin
- Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, Ente Cantonale Ospedaliero, Torricella-Taverne, Switzerland
| | - Paolo Paganetti
- Laboratory for Biomedical Neurosciences, Neurocenter of Southern Switzerland, Ente Cantonale Ospedaliero, Torricella-Taverne, Switzerland.
| |
Collapse
|
43
|
Benhelli-Mokrani H, Mansuroglu Z, Chauderlier A, Albaud B, Gentien D, Sommer S, Schirmer C, Laqueuvre L, Josse T, Buée L, Lefebvre B, Galas MC, Souès S, Bonnefoy E. Genome-wide identification of genic and intergenic neuronal DNA regions bound by Tau protein under physiological and stress conditions. Nucleic Acids Res 2018; 46:11405-11422. [PMID: 30321409 PMCID: PMC6265482 DOI: 10.1093/nar/gky929] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/20/2018] [Accepted: 10/04/2018] [Indexed: 01/06/2023] Open
Abstract
Tauopathies such as Alzheimer's Disease (AD) are neurodegenerative disorders for which there is presently no cure. They are named after the abnormal oligomerization/aggregation of the neuronal microtubule-associated Tau protein. Besides its role as a microtubule-associated protein, a DNA-binding capacity and a nuclear localization for Tau protein has been described in neurons. While questioning the potential role of Tau-DNA binding in the development of tauopathies, we have carried out a large-scale analysis of the interaction of Tau protein with the neuronal genome under physiological and heat stress conditions using the ChIP-on-chip technique that combines Chromatin ImmunoPrecipitation (ChIP) with DNA microarray (chip). Our findings show that Tau protein specifically interacts with genic and intergenic DNA sequences of primary culture of neurons with a preference for DNA regions positioned beyond the ±5000 bp range from transcription start site. An AG-rich DNA motif was found recurrently present within Tau-interacting regions and 30% of Tau-interacting regions overlapped DNA sequences coding for lncRNAs. Neurological processes affected in AD were enriched among Tau-interacting regions with in vivo gene expression assays being indicative of a transcriptional repressor role for Tau protein, which was exacerbated in neurons displaying nuclear pathological oligomerized forms of Tau protein.
Collapse
Affiliation(s)
- Houda Benhelli-Mokrani
- Université Paris Descartes, Centre Interdisciplinaire Chimie Biologie-Paris, Inserm UMRS1007, Paris, France
| | - Zeyni Mansuroglu
- Université Paris Descartes, Centre Interdisciplinaire Chimie Biologie-Paris, Inserm UMRS1007, Paris, France
| | - Alban Chauderlier
- Université de Lille, Institut National de la Santé et de la Recherche Medicale (INSERM), CHU Lille, UMR-S 1172, LabEx DISTALZ, Alzheimer & Tauopathies, Lille, France
| | - Benoit Albaud
- Institut Curie, PSL Research University, Translational Research Departement, Genomics Platform, Paris, F-75248 France
| | - David Gentien
- Institut Curie, PSL Research University, Translational Research Departement, Genomics Platform, Paris, F-75248 France
| | - Sabrina Sommer
- Université de Lille, Institut National de la Santé et de la Recherche Medicale (INSERM), CHU Lille, UMR-S 1172, LabEx DISTALZ, Alzheimer & Tauopathies, Lille, France
| | - Claire Schirmer
- Université de Lille, Institut National de la Santé et de la Recherche Medicale (INSERM), CHU Lille, UMR-S 1172, LabEx DISTALZ, Alzheimer & Tauopathies, Lille, France
| | - Lucie Laqueuvre
- Université Paris Descartes, Centre Interdisciplinaire Chimie Biologie-Paris, Inserm UMRS1007, Paris, France
| | - Thibaut Josse
- Université François Rabelais, Institut de Recherche sur la Biologie de l’Insecte, CNRS UMR 7261, Tours, France
| | - Luc Buée
- Université de Lille, Institut National de la Santé et de la Recherche Medicale (INSERM), CHU Lille, UMR-S 1172, LabEx DISTALZ, Alzheimer & Tauopathies, Lille, France
| | - Bruno Lefebvre
- Université de Lille, Institut National de la Santé et de la Recherche Medicale (INSERM), CHU Lille, UMR-S 1172, LabEx DISTALZ, Alzheimer & Tauopathies, Lille, France
| | - Marie-Christine Galas
- Université de Lille, Institut National de la Santé et de la Recherche Medicale (INSERM), CHU Lille, UMR-S 1172, LabEx DISTALZ, Alzheimer & Tauopathies, Lille, France
| | - Sylvie Souès
- Université Paris Descartes, Centre Interdisciplinaire Chimie Biologie-Paris, Inserm UMRS1007, Paris, France
| | - Eliette Bonnefoy
- Université Paris Descartes, Centre Interdisciplinaire Chimie Biologie-Paris, Inserm UMRS1007, Paris, France
| |
Collapse
|
44
|
Chatterjee S, Cassel R, Schneider-Anthony A, Merienne K, Cosquer B, Tzeplaeff L, Halder Sinha S, Kumar M, Chaturbedy P, Eswaramoorthy M, Le Gras S, Keime C, Bousiges O, Dutar P, Petsophonsakul P, Rampon C, Cassel JC, Buée L, Blum D, Kundu TK, Boutillier AL. Reinstating plasticity and memory in a tauopathy mouse model with an acetyltransferase activator. EMBO Mol Med 2018; 10:e8587. [PMID: 30275019 PMCID: PMC6220301 DOI: 10.15252/emmm.201708587] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 08/31/2018] [Accepted: 09/05/2018] [Indexed: 12/17/2022] Open
Abstract
Chromatin acetylation, a critical regulator of synaptic plasticity and memory processes, is thought to be altered in neurodegenerative diseases. Here, we demonstrate that spatial memory and plasticity (LTD, dendritic spine formation) deficits can be restored in a mouse model of tauopathy following treatment with CSP-TTK21, a small-molecule activator of CBP/p300 histone acetyltransferases (HAT). At the transcriptional level, CSP-TTK21 re-established half of the hippocampal transcriptome in learning mice, likely through increased expression of neuronal activity genes and memory enhancers. At the epigenomic level, the hippocampus of tauopathic mice showed a significant decrease in H2B but not H3K27 acetylation levels, both marks co-localizing at TSS and CBP enhancers. Importantly, CSP-TTK21 treatment increased H2B acetylation levels at decreased peaks, CBP enhancers, and TSS, including genes associated with plasticity and neuronal functions, overall providing a 95% rescue of the H2B acetylome in tauopathic mice. This study is the first to provide in vivo proof-of-concept evidence that CBP/p300 HAT activation efficiently reverses epigenetic, transcriptional, synaptic plasticity, and behavioral deficits associated with Alzheimer's disease lesions in mice.
Collapse
Affiliation(s)
- Snehajyoti Chatterjee
- Laboratoire de Neuroscience Cognitives et Adaptatives (LNCA), Université de Strasbourg, Strasbourg, France
- LNCA, CNRS UMR 7364, Strasbourg, France
| | - Raphaelle Cassel
- Laboratoire de Neuroscience Cognitives et Adaptatives (LNCA), Université de Strasbourg, Strasbourg, France
- LNCA, CNRS UMR 7364, Strasbourg, France
| | - Anne Schneider-Anthony
- Laboratoire de Neuroscience Cognitives et Adaptatives (LNCA), Université de Strasbourg, Strasbourg, France
- LNCA, CNRS UMR 7364, Strasbourg, France
| | - Karine Merienne
- Laboratoire de Neuroscience Cognitives et Adaptatives (LNCA), Université de Strasbourg, Strasbourg, France
- LNCA, CNRS UMR 7364, Strasbourg, France
| | - Brigitte Cosquer
- Laboratoire de Neuroscience Cognitives et Adaptatives (LNCA), Université de Strasbourg, Strasbourg, France
- LNCA, CNRS UMR 7364, Strasbourg, France
| | - Laura Tzeplaeff
- Laboratoire de Neuroscience Cognitives et Adaptatives (LNCA), Université de Strasbourg, Strasbourg, France
- LNCA, CNRS UMR 7364, Strasbourg, France
| | - Sarmistha Halder Sinha
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Manoj Kumar
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Piyush Chaturbedy
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Muthusamy Eswaramoorthy
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Stéphanie Le Gras
- CNRS, Inserm, UMR 7104, Microarray and Sequencing Platform, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, Illkirch, France
| | - Céline Keime
- CNRS, Inserm, UMR 7104, Microarray and Sequencing Platform, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, Illkirch, France
| | - Olivier Bousiges
- Laboratoire de Neuroscience Cognitives et Adaptatives (LNCA), Université de Strasbourg, Strasbourg, France
- Laboratory of Biochemistry and Molecular Biology, Hôpital de Hautepierre, University Hospital of Strasbourg, Strasbourg, France
| | - Patrick Dutar
- Centre de Psychiatrie et Neurosciences, INSERM UMRS894, Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Petnoi Petsophonsakul
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, CNRS, UPS, Université de Toulouse, Toulouse, France
| | - Claire Rampon
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative, CNRS, UPS, Université de Toulouse, Toulouse, France
| | - Jean-Christophe Cassel
- Laboratoire de Neuroscience Cognitives et Adaptatives (LNCA), Université de Strasbourg, Strasbourg, France
- LNCA, CNRS UMR 7364, Strasbourg, France
| | - Luc Buée
- Inserm, CHU-Lille, UMR-S 1172, Alzheimer & Tauopathies, Université de Lille, Lille, France
| | - David Blum
- Inserm, CHU-Lille, UMR-S 1172, Alzheimer & Tauopathies, Université de Lille, Lille, France
| | - Tapas K Kundu
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Anne-Laurence Boutillier
- Laboratoire de Neuroscience Cognitives et Adaptatives (LNCA), Université de Strasbourg, Strasbourg, France
- LNCA, CNRS UMR 7364, Strasbourg, France
| |
Collapse
|
45
|
Alonso AD, Cohen LS, Corbo C, Morozova V, ElIdrissi A, Phillips G, Kleiman FE. Hyperphosphorylation of Tau Associates With Changes in Its Function Beyond Microtubule Stability. Front Cell Neurosci 2018; 12:338. [PMID: 30356756 PMCID: PMC6189415 DOI: 10.3389/fncel.2018.00338] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 09/13/2018] [Indexed: 01/02/2023] Open
Abstract
Tau is a neuronal microtubule associated protein whose main biological functions are to promote microtubule self-assembly by tubulin and to stabilize those already formed. Tau also plays an important role as an axonal microtubule protein. Tau is an amazing protein that plays a key role in cognitive processes, however, deposits of abnormal forms of tau are associated with several neurodegenerative diseases, including Alzheimer disease (AD), the most prevalent, and Chronic Traumatic Encephalopathy (CTE) and Traumatic Brain Injury (TBI), the most recently associated to abnormal tau. Tau post-translational modifications (PTMs) are responsible for its gain of toxic function. Alonso et al. (1996) were the first to show that the pathological tau isolated from AD brains has prion-like properties and can transfer its toxic function to the normal molecule. Furthermore, we reported that the pathological changes are associated with tau phosphorylation at Ser199 and 262 and Thr212 and 231. This pathological version of tau induces subcellular mislocalization in cultured cells and neurons, and translocates into the nucleus or accumulated in the perinuclear region of cells. We have generated a transgenic mouse model that expresses pathological human tau (PH-Tau) in neurons at two different concentrations (4% and 14% of the total endogenous tau). In this model, PH-Tau causes cognitive decline by at least two different mechanisms: one that involves the cytoskeleton with axonal disruption (at high concentration), and another in which the apparent neuronal morphology is not grossly affected, but the synaptic terminals are altered (at lower concentration). We will discuss the putative involvement of tau in proteostasis under these conditions. Understanding tau’s biological activity on and off the microtubules will help shed light to the mechanism of neurodegeneration and of normal neuronal function.
Collapse
Affiliation(s)
- Alejandra D Alonso
- Department of Biology and Center for Developmental Neuroscience, College of Staten Island, The City University of New York, Staten Island, NY, United States.,Biology Program, The Graduate Center, The City University of New York, New York, NY, United States.,Biochemistry Program, The Graduate Center, The City University of New York, New York, NY, United States
| | - Leah S Cohen
- Department of Biology and Center for Developmental Neuroscience, College of Staten Island, The City University of New York, Staten Island, NY, United States
| | - Christopher Corbo
- Department of Biology, Wagner College, Staten Island, NY, United States
| | - Viktoriya Morozova
- Department of Biology and Center for Developmental Neuroscience, College of Staten Island, The City University of New York, Staten Island, NY, United States.,Biology Program, The Graduate Center, The City University of New York, New York, NY, United States
| | - Abdeslem ElIdrissi
- Department of Biology and Center for Developmental Neuroscience, College of Staten Island, The City University of New York, Staten Island, NY, United States.,Biology Program, The Graduate Center, The City University of New York, New York, NY, United States
| | - Greg Phillips
- Department of Biology and Center for Developmental Neuroscience, College of Staten Island, The City University of New York, Staten Island, NY, United States.,Biology Program, The Graduate Center, The City University of New York, New York, NY, United States
| | - Frida E Kleiman
- Biochemistry Program, The Graduate Center, The City University of New York, New York, NY, United States.,Department of Chemistry, Hunter College, The City University of New York, New York, NY, United States
| |
Collapse
|
46
|
Rossi G, Redaelli V, Contiero P, Fabiano S, Tagliabue G, Perego P, Benussi L, Bruni AC, Filippini G, Farinotti M, Giaccone G, Buiatiotis S, Manzoni C, Ferrari R, Tagliavini F. Tau Mutations Serve as a Novel Risk Factor for Cancer. Cancer Res 2018; 78:3731-3739. [PMID: 29794074 DOI: 10.1158/0008-5472.can-17-3175] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 02/23/2018] [Accepted: 05/04/2018] [Indexed: 11/16/2022]
Abstract
In addition to its well-recognized role in neurodegeneration, tau participates in maintenance of genome stability and chromosome integrity. In particular, peripheral cells from patients affected by frontotemporal lobar degeneration carrying a mutation in tau gene (genetic tauopathies), as well as cells from animal models, show chromosome numerical and structural aberrations, chromatin anomalies, and a propensity toward abnormal recombination. As genome instability is tightly linked to cancer development, we hypothesized that mutated tau may be a susceptibility factor for cancer. Here we conducted a retrospective cohort study comparing cancer incidence in families affected by genetic tauopathies to control families. In addition, we carried out a bioinformatics analysis to highlight pathways associated with the tau protein interactome. We report that the risk of developing cancer is significantly higher in families affected by genetic tauopathies, and a high proportion of tau protein interactors are involved in cellular processes particularly relevant to cancer. These findings disclose a novel role of tau as a risk factor for cancer, providing new insights in the various pathologic roles of mutated tau.Significance: This study reveals a novel role for tau as a risk factor for cancer, providing new insights beyond its role in neurodegeneration. Cancer Res; 78(13); 3731-9. ©2018 AACR.
Collapse
Affiliation(s)
- Giacomina Rossi
- Unit of Neurology V and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy.
| | - Veronica Redaelli
- Unit of Neurology V and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Paolo Contiero
- Environmental Epidemiology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Sabrina Fabiano
- Cancer Registry Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Giovanna Tagliabue
- Cancer Registry Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Paola Perego
- Molecular Pharmacology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Luisa Benussi
- NeuroBioGen Lab-Memory Clinic, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Amalia C Bruni
- Regional Neurogenetic Centre, ASPCZ, Lamezia Terme, Italy
| | - Graziella Filippini
- Scientific Directorate, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Mariangela Farinotti
- Neuroepidemiology - Scientific Directorate, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Giorgio Giaccone
- Unit of Neurology V and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | | | - Claudia Manzoni
- School of Pharmacy, University of Reading, Whiteknights, Reading, United Kingdom.,Department of Molecular Neuroscience, UCL Institute of Neurology, London, United Kingdom
| | - Raffaele Ferrari
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, United Kingdom
| | - Fabrizio Tagliavini
- Scientific Directorate, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| |
Collapse
|
47
|
Wu M, Yu G, Yan T, Ke D, Wang Q, Liu R, Wang JZ, Zhang B, Chen D, Wang X. Phosphorylation of SET mediates apoptosis via P53 hyperactivation and NM23-H1 nuclear import. Neurobiol Aging 2018; 69:38-47. [PMID: 29852409 DOI: 10.1016/j.neurobiolaging.2018.04.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 04/12/2018] [Accepted: 04/27/2018] [Indexed: 01/22/2023]
Abstract
Apoptosis plays an important role in neuron loss in Alzheimer's disease (AD). SET, an endogenous inhibitor of protein phosphatase-2A, is phosphorylated in AD brains and positively correlates with cell apoptosis. However, the mechanism underlying phosphorylated SET association with apoptosis remains unknown. Here, we show that mimetic phosphorylation of SET (S9E) induced apoptosis of primary cultured neurons. To investigate its mechanism, we overexpressed SET (S9E) in HEK293/tau cells and observed apoptosis accompanied with a marked increase of cleaved caspase-3 and cytoplasmic SET (S9E) retention with enhanced protein phosphatase-2A inhibition, which subsequently caused p53 hyperphosphorylation and activation. In addition, it caused the release of nucleoside diphosphate kinase A isoform a, a positive regulator of p53 with a DNase activity from SET/nucleoside diphosphate kinase A isoform a complex, and migration into the nucleus, resulting in DNA damage. Besides, it reduced nuclear tau accumulation leading to DNA protection deficiency. These findings suggest that SET phosphorylation is involved in the neuronal apoptotic pathway in AD and provide a new insight into the mechanism of this pathology.
Collapse
Affiliation(s)
- Mengjuan Wu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guang Yu
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tonghai Yan
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dan Ke
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qun Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rong Liu
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian-Zhi Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dan Chen
- School of Public Health, Wuhan University of Science and Technology, Wuhan, China
| | - Xiaochuan Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.
| |
Collapse
|
48
|
Federico C, Gil L, Bruno F, D'Amico AG, D'Agata V, Saccone S. Phosphorylated nucleolar Tau protein is related to the neuronal in vitro differentiation. Gene 2018; 664:1-11. [PMID: 29684490 DOI: 10.1016/j.gene.2018.04.051] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 04/06/2018] [Accepted: 04/18/2018] [Indexed: 02/02/2023]
Abstract
Tau is a multifunctional protein, originally identified as a cytoplasmic protein associated with microtubules. It is codified by the MAPT gene, and the alternative splicing, in the neuronal cells, results in six different isoforms. Tau was subsequently observed in the cell nucleus, where its function is not yet clearly understood. Here, we studied the MAPT gene and the cellular localization of the AT8 and Tau-1 epitopes of Tau protein, in the SK-N-BE cell line, which differentiates in neuronal-like cells after retinoic acid treatment. These epitopes correspond to the phosphorylated Ser202/Thr205 and unphosphorylated Pro189/Gly207 amino acid residues, respectively, possibly involved in conformational changes of the protein. Our results demonstrated the presence of the smaller Tau isoform (352 amino acids), whose amount increases in differentiated SK-N-BE cells, with Tau-1/AT8 nuclear distribution related to the differentiation process. Tau-1 showed a spot-like nucleolar localization, in both replicative and differentiated cells, while AT8 was only detected in the differentiated cells, diffusely occupying the entire nucleolar region. Moreover, in the replicative cells exposed to actinomycin-D, AT8 and Tau-1 move to the nucleolar periphery and colocalize, in few spots, with the upstream binding transcription factor (UBTF). Our results, also obtained with lymphocytes exposed to the mitogenic compound phytohaemagglutinin, indicate the AT8 epitope of Tau as a marker of neuronal cell differentiation, whose presence in the nucleolus appears to be related to rDNA transcriptional inactivation.
Collapse
Affiliation(s)
- Concetta Federico
- Department of Biological, Geological and Environmental Sciences, University of Catania, Italy
| | - Laura Gil
- Department of Genetics, Medical School, University "Alfonso X el Sabio", Madrid, Spain
| | - Francesca Bruno
- Department of Biological, Geological and Environmental Sciences, University of Catania, Italy
| | - Agata Grazia D'Amico
- Department of Biomedical and Biotechnological Sciences, University of Catania, Italy; Department of Human Science and Promotion of Quality of Life, San Raffaele Open University of Rome, Italy
| | - Velia D'Agata
- Department of Biomedical and Biotechnological Sciences, University of Catania, Italy
| | - Salvatore Saccone
- Department of Biological, Geological and Environmental Sciences, University of Catania, Italy.
| |
Collapse
|
49
|
Taleski G, Sontag E. Protein phosphatase 2A and tau: an orchestrated 'Pas de Deux'. FEBS Lett 2017; 592:1079-1095. [PMID: 29121398 DOI: 10.1002/1873-3468.12907] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 10/18/2017] [Accepted: 11/02/2017] [Indexed: 12/21/2022]
Abstract
The neuronal microtubule-associated protein tau serves a critical role in regulating axonal microtubule dynamics to support neuronal and synaptic functions. Furthermore, it contributes to glutamatergic regulation and synaptic plasticity. Emerging evidence also suggests that tau serves as a signaling scaffold. Tau function and subcellular localization are tightly regulated, in part, by the orchestrated interplay between phosphorylation and dephosphorylation events. Significantly, protein phosphatase type 2A (PP2A), encompassing the regulatory PPP2R2A (or Bα) subunit, is a major brain heterotrimeric enzyme and the primary tau Ser/Thr phosphatase in vivo. Herein, we closely examine how the intimate and compartmentalized interactions between PP2A and tau regulate tau phosphorylation and function, and play an essential role in neuronal homeostasis. We also review evidence supporting a strong link between deregulation of tau-PP2A functional interactions and the molecular underpinnings of various neurodegenerative diseases collectively called tauopathies. Lastly, we discuss the opportunities and associated challenges in more specifically targeting PP2A-tau interactions for drug development for tauopathies.
Collapse
Affiliation(s)
- Goce Taleski
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, Hunter Medical Research Institute, University of Newcastle, Callaghan, Australia
| | - Estelle Sontag
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, Hunter Medical Research Institute, University of Newcastle, Callaghan, Australia
| |
Collapse
|
50
|
Gil L, Federico C, Pinedo F, Bruno F, Rebolledo AB, Montoya JJ, Olazabal IM, Ferrer I, Saccone S. Aging dependent effect of nuclear tau. Brain Res 2017; 1677:129-137. [PMID: 28974363 DOI: 10.1016/j.brainres.2017.09.030] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 08/11/2017] [Accepted: 09/25/2017] [Indexed: 12/15/2022]
Abstract
Tau protein is characterized by a complex pattern of phosphorylation and is localized in the cytoplasm and nucleus in both neuronal and non-neuronal cells. Human AT100 nuclear tau, endowed by phosphorylation in Thr212/Ser214, was recently shown to decline in cornus ammonis 1 (CA1) and dentate gyrus (DG) in Alzheimer's disease (AD), but a defined function for this nuclear tau remains unclear. Here we show that AT100 progressively increases in the nuclei of neuronal and non-neuronal cells during aging, and decreases in the more severe AD stages, as recently shown, and in cancer cells (colorectal adenocarcinoma and breast cancer). AT100, in addition to a co-localization with the DAPI-positive heterochromatin, was detected in the nucleolus of pyramidal cells from the CA1 region, shown to be at its highest level in the more senescent cells and in the first stage of AD (ADI), and disappearing in the more severe AD cases (ADIV). Taking into account the nuclear distribution of AT100 during cell aging and its relation to the chromatin changes observed in degenerated neurons, as well as in cancerous cells, which are both cellular pathologies associated with age, we can consider the Thr212/Ser214 phosphorylated nuclear tau as a molecular marker of cell aging.
Collapse
Affiliation(s)
- Laura Gil
- Department of Genetics, Medical School, University "Alfonso X el Sabio", Madrid, Spain
| | - Concetta Federico
- Department of Biological, Geological and Environmental Sciences, University of Catania, Italy
| | - Fernando Pinedo
- Hospital Universitario Fundación Alcorcón, Department of Pathology, Alcorcon, Spain
| | - Francesca Bruno
- Department of Biological, Geological and Environmental Sciences, University of Catania, Italy
| | - Ana B Rebolledo
- Hospital Universitario Fundación Alcorcón, Department of Pathology, Alcorcon, Spain
| | - Juan J Montoya
- Department of Genetics, Medical School, University "Alfonso X el Sabio", Madrid, Spain
| | - Isabel M Olazabal
- Department of Genetics, Medical School, University "Alfonso X el Sabio", Madrid, Spain
| | - Isidre Ferrer
- Institut Neuropatologia - Hospital Universitari de Bellvitge, Barcelona, Spain; Department of Pathology and Experimental Therapeutics, University of Barcelona, Spain
| | - Salvatore Saccone
- Department of Biological, Geological and Environmental Sciences, University of Catania, Italy.
| |
Collapse
|