1
|
Szűcs G, Szekanecz Z, Szamosi S. Can we define difficult-to-treat systemic sclerosis? Expert Rev Clin Immunol 2024; 20:1065-1081. [PMID: 38711393 DOI: 10.1080/1744666x.2024.2352450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
INTRODUCTION Systemic sclerosis (SSc) is a chronic autoimmune rheumatic disease characterized by microvascular alterations, immunopathology, and widespread fibrosis involving various organs. It is considered difficult to treat due to several reasons: complex pathogenesis, heterogeneity, late diagnosis, limited treatment options for certain organ manifestations, lack of personalized medicine. AREAS COVERED This review presents the heterogeneity, survival and organ manifestations with their risk factors of systemic sclerosis and their current treatment options, while drawing attention to difficult-to-treat forms of the disease, based on literature indexed in PubMed. EXPERT OPINION Despite recent advances in the management of SSc over the last decades, the disease presents significant morbidity and mortality. Although available treatment protocols brought significant advancements in terms of survival in SSc-associated interstitial lung disease and pulmonary arterial hypertension, less success has been achieved in the treatment of Raynaud's phenomenon and digital ulcers and the results are modest in case of heart, gastrointestinal, and renal manifestations. There are patients who do not respond to treatment and deteriorate even with adequate therapy. They can be considered difficult-to treat (D2T) cases. We have created a possible score system based on the individual organ manifestations and highlighted treatment options for the D2T SSc category.
Collapse
Affiliation(s)
- Gabriella Szűcs
- Department of Rheumatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zoltán Szekanecz
- Department of Rheumatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Szilvia Szamosi
- Department of Rheumatology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
2
|
Le Maître M, Guerrier T, Collet A, Derhourhi M, Meneboo JP, Toussaint B, Bonnefond A, Villenet C, Sebda S, Bongiovanni A, Tardivel M, Simon M, Jendoubi M, Daunou B, Largy A, Figeac M, Dubucquoi S, Launay D. Characteristics and impact of infiltration of B-cells from systemic sclerosis patients in a 3D healthy skin model. Front Immunol 2024; 15:1373464. [PMID: 39185406 PMCID: PMC11341436 DOI: 10.3389/fimmu.2024.1373464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 07/23/2024] [Indexed: 08/27/2024] Open
Abstract
Introduction In systemic sclerosis (SSc), B-cells are activated and present in the skin and lung of patients where they can interact with fibroblasts. The precise impact and mechanisms of the interaction of B-cells and fibroblasts at the tissular level are poorly studied. Objective We investigated the impact and mechanisms of B-cell/fibroblast interactions in cocultures between B-cells from patients with SSc and 3-dimensional reconstituted healthy skin model including fibroblasts, keratinocytes and extracellular matrix. Methods The quantification and description of the B-cell infiltration in 3D cocultures were performed using cells imagery strategy and cytometry. The effect of coculture on the transcriptome of B-cells and fibroblasts was studied with bulk and single-cell RNA sequencing approaches. The mechanisms of this interaction were studied by blocking key cytokines like IL-6 and TNF. Results We showed a significant infiltration of B-cells in the 3D healthy skin model. The amount but not the depth of infiltration was higher with B-cells from SSc patients and with activated B-cells. B-cell infiltrates were mainly composed of naïve and memory cells, whose frequencies differed depending on B-cells origin and activation state: infiltrated B-cells from patients with SSc showed an activated profile and an overexpression of immunoglobulin genes compared to circulating B-cells before infiltration. Our study has shown for the first time that activated B-cells modified the transcriptomic profile of both healthy and SSc fibroblasts, toward a pro-inflammatory (TNF and IL-17 signaling) and interferon profile, with a key role of the TNF pathway. Conclusion B-cells and 3D skin cocultures allowed the modelization of B-cells infiltration in tissues observed in SSc, uncovering an influence of the underlying disease and the activation state of B-cells. We showed a pro-inflammatory effect on skin fibroblasts and pro-activation effect on infiltrating B-cells during coculture. This reinforces the role of B-cells in SSc and provide potential targets for future therapeutic approach in this disease.
Collapse
Affiliation(s)
- Mathilde Le Maître
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, Lille, France
| | - Thomas Guerrier
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, Lille, France
| | - Aurore Collet
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, Lille, France
- CHU Lille, Institut d’Immunologie, Pôle de Biologie Pathologie Génétique, Lille, France
| | - Mehdi Derhourhi
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille University Hospital, Lille, France
- Université de Lille, Lille, France
| | - Jean-Pascal Meneboo
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UAR 2014 - PLBS, Lille, France
| | - Bénédicte Toussaint
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille University Hospital, Lille, France
- Université de Lille, Lille, France
| | - Amélie Bonnefond
- Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, Lille University Hospital, Lille, France
- Université de Lille, Lille, France
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Céline Villenet
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UAR 2014 - PLBS, Lille, France
| | - Shéhérazade Sebda
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UAR 2014 - PLBS, Lille, France
| | - Antonino Bongiovanni
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UAR 2014 - PLBS, Lille, France
| | - Meryem Tardivel
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UAR 2014 - PLBS, Lille, France
| | - Myriam Simon
- Service de Médecine Interne et d’Immunologie Clinique, Centre de Référence Des Maladies Auto-Immunes et Systémiques Rares du Nord et Nord-Ouest de France (CeRAINO), CHU Lille, Lille, France
| | - Manel Jendoubi
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, Lille, France
| | - Blanche Daunou
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, Lille, France
| | - Alexis Largy
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, Lille, France
| | - Martin Figeac
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UAR 2014 - PLBS, Lille, France
| | - Sylvain Dubucquoi
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, Lille, France
- CHU Lille, Institut d’Immunologie, Pôle de Biologie Pathologie Génétique, Lille, France
| | - David Launay
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE - Institute for Translational Research in Inflammation, Lille, France
- Service de Médecine Interne et d’Immunologie Clinique, Centre de Référence Des Maladies Auto-Immunes et Systémiques Rares du Nord et Nord-Ouest de France (CeRAINO), CHU Lille, Lille, France
| |
Collapse
|
3
|
Zhu H, Luo H, Skaug B, Tabib T, Li YN, Tao Y, Matei AE, Lyons MA, Schett G, Lafyatis R, Assassi S, Distler JHW. Fibroblast Subpopulations in Systemic Sclerosis: Functional Implications of Individual Subpopulations and Correlations with Clinical Features. J Invest Dermatol 2024; 144:1251-1261.e13. [PMID: 38147960 PMCID: PMC11116078 DOI: 10.1016/j.jid.2023.09.288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 12/28/2023]
Abstract
Fibroblasts constitute a heterogeneous population of cells. In this study, we integrated single-cell RNA-sequencing and bulk RNA-sequencing data as well as clinical information to study the role of individual fibroblast populations in systemic sclerosis (SSc). SSc skin demonstrated an increased abundance of COMP+, COL11A1+, MYOC+, CCL19+, SFRP4/SFRP2+, and PRSS23/SFRP2+ fibroblasts signatures and decreased proportions of CXCL12+ and PI16+ fibroblast signatures in the Prospective Registry of Early Systemic Sclerosis and Genetics versus Environment in Scleroderma Outcome Study cohorts. Numerical differences were confirmed by multicolor immunofluorescence for selected fibroblast populations. COMP+, COL11A1+, SFRP4/SFRP2+, PRSS23/SFRP2+, and PI16+ fibroblasts were similarly altered between normal wound healing and patients with SSc. The proportions of profibrotic COMP+, COL11A1+, SFRP4/SFRP2+, and PRSS23/SFRP2+ and proinflammatory CCL19+ fibroblast signatures were positively correlated with clinical and histopathological parameters of skin fibrosis, whereas signatures of CXCL12+ and PI16+ fibroblasts were inversely correlated. Incorporating the proportions of COMP+, COL11A1+, SFRP4/SFRP2+, and PRSS23/SFRP2+ fibroblast signatures into machine learning models improved the classification of patients with SSc into those with progressive versus stable skin fibrosis. In summary, the profound imbalance of fibroblast subpopulations in SSc may drive the progression of skin fibrosis. Specific targeting of disease-relevant fibroblast populations may offer opportunities for the treatment of SSc and other fibrotic diseases.
Collapse
Affiliation(s)
- Honglin Zhu
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, China; Department of Internal Medicine 3, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| | - Hui Luo
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Brian Skaug
- Division of Rheumatology, Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Tracy Tabib
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yi-Nan Li
- Department of Internal Medicine 3, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany; Department of Rheumatology, University Hospital Düsseldorf, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Hiller Research Center, University Hospital Düsseldorf, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Yongguang Tao
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Alexandru-Emil Matei
- Department of Internal Medicine 3, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany; Department of Rheumatology, University Hospital Düsseldorf, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Hiller Research Center, University Hospital Düsseldorf, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Marka A Lyons
- Division of Rheumatology, Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Georg Schett
- Department of Internal Medicine 3, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Robert Lafyatis
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Shervin Assassi
- Division of Rheumatology, Department of Internal Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Jörg H W Distler
- Department of Internal Medicine 3, Friedrich-Alexander University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany; Department of Rheumatology, University Hospital Düsseldorf, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Hiller Research Center, University Hospital Düsseldorf, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
4
|
Abraham D, Lescoat A, Stratton R. Emerging diagnostic and therapeutic challenges for skin fibrosis in systemic sclerosis. Mol Aspects Med 2024; 96:101252. [PMID: 38325132 DOI: 10.1016/j.mam.2024.101252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/29/2024] [Indexed: 02/09/2024]
Abstract
Systemic sclerosis (also called scleroderma, SSc) is a chronic autoimmune disorder characterized by excessive collagen deposition leading to skin fibrosis and various internal organ manifestations. The emergent diagnostics and therapeutic strategies for scleroderma focus on early detection and targeted interventions to improve patient outcomes and quality of life. Diagnostics for SSc have evolved significantly in recent years, driven by advancements in serological markers and imaging techniques. Autoantibody profiling, especially antinuclear antibodies (ANA) and specific scleroderma-associated autoantibodies, aids in identifying subsets of scleroderma and predicting disease progression. Furthermore, novel imaging modalities, such as high-frequency ultrasonography and optical coherence tomography, enable early detection of skin fibrosis and internal organ involvement, enhancing the diagnostic precision and allowing for tailored management. Therapeutic strategies for SSc are multifaceted, targeting immune dysregulation, vascular abnormalities, and fibrotic processes. Emerging biologic agents have shown promise in clinical trials, including monoclonal antibodies directed against key cytokines involved in fibrosis, such as transforming growth factor-β (TGF-β) and interleukin-6 (IL-6). Additionally, small-molecule inhibitors that disrupt fibrotic pathways, like tyrosine kinase inhibitors, have exhibited potential in limiting collagen deposition and preventing disease progression. Stem cell therapy, cell ablation and gene editing techniques hold great potential in regenerating damaged tissue and halting fibrotic processes. Early intervention remains crucial in managing SSc, as irreversible tissue damage often occurs in advanced stages. Novel diagnostic methods, such as biomarkers and gene expression profiling, are being explored to identify individuals at high risk for developing progressive severe disease and intervene proactively. Furthermore, patient-tailored therapeutic approaches, employing a combination of immunosuppressive agents and targeted anti-fibrotic therapies, are being investigated to improve treatment efficacy while minimizing adverse effects. The emergent diagnostics and therapeutic strategies in scleroderma are transforming the management of this challenging disease. Nevertheless, ongoing research and clinical trials are needed to optimize the efficacy and safety of these novel approaches in the complex and diverse spectrum of SSc manifestations.
Collapse
Affiliation(s)
- David Abraham
- UCL Centre for Rheumatology, Royal Free Hospital, UCL Division of Medicine, Department of Inflammation, London, UK
| | - Alain Lescoat
- Department of Internal Medicine and Clinical Immunology, Rennes University Hospital, Rennes, France
| | - Richard Stratton
- UCL Centre for Rheumatology, Royal Free Hospital, UCL Division of Medicine, Department of Inflammation, London, UK.
| |
Collapse
|
5
|
Sun T, Vander Heiden JA, Gao X, Yin J, Uttarwar S, Liang WC, Jia G, Yadav R, Huang Z, Mitra M, Halpern W, Bender HS, Brightbill HD, Wu Y, Lupardus P, Ramalingam T, Arron JR. Isoform-selective TGF-β3 inhibition for systemic sclerosis. MED 2024; 5:132-147.e7. [PMID: 38272035 DOI: 10.1016/j.medj.2023.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 11/03/2023] [Accepted: 12/14/2023] [Indexed: 01/27/2024]
Abstract
BACKGROUND Transforming growth factor β (TGF-β) is implicated as a key mediator of pathological fibrosis, but its pleiotropic activity in a range of homeostatic functions presents challenges to its safe and effective therapeutic targeting. There are three isoforms of TGF-β, TGF-β1, TGF-β2, and TGF-β3, which bind to a common receptor complex composed of TGF-βR1 and TGF-βR2 to induce similar intracellular signals in vitro. We have recently shown that the cellular expression patterns and activation thresholds of TGF-β2 and TGF-β3 are distinct from those of TGF-β1 and that selective short-term TGF-β2 and TGF-β3 inhibition can attenuate fibrosis in vivo without promoting excessive inflammation. Isoform-selective inhibition of TGF-β may therefore provide a therapeutic opportunity for patients with chronic fibrotic disorders. METHODS Transcriptomic profiling of skin biopsies from patients with systemic sclerosis (SSc) from multiple clinical trials was performed to evaluate the role of TGF-β3 in this disease. Antibody humanization, biochemical characterization, crystallization, and pre-clinical experiments were performed to further characterize an anti-TGF-β3 antibody. FINDINGS In the skin of patients with SSc, TGF-β3 expression is uniquely correlated with biomarkers of TGF-β signaling and disease severity. Crystallographic studies establish a structural basis for selective TGF-β3 inhibition with a potent and selective monoclonal antibody that attenuates fibrosis effectively in vivo at clinically translatable exposures. Toxicology studies suggest that, as opposed to pan-TGF-β inhibitors, this anti-TGF-β3 antibody has a favorable safety profile for chronic administration. CONCLUSION We establish a rationale for targeting TGF-β3 in SSc with a favorable therapeutic index. FUNDING This study was funded by Genentech, Inc.
Collapse
Affiliation(s)
- Tianhe Sun
- Department of Immunology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| | - Jason A Vander Heiden
- Department of OMNI Bioinformatics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Xia Gao
- Department of Biomarker Discovery OMNI, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Jianping Yin
- Department of Structural Biology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Salil Uttarwar
- Department of OMNI Bioinformatics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Wei-Ching Liang
- Department of Antibody Engineering, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Guiquan Jia
- Department of Biomarker Discovery OMNI, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Rajbharan Yadav
- Department of Preclinical and Translational Pharmacokinetics, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Zhiyu Huang
- Department of Translational Immunology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Mayurranjan Mitra
- Department of DevSci Safety Assessment, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Wendy Halpern
- Department of DevSci SA Pathology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Hannah S Bender
- Department of Pathology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Hans D Brightbill
- Department of Translational Immunology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Yan Wu
- Department of Antibody Engineering, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Patrick Lupardus
- Department of Structural Biology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Thirumalai Ramalingam
- Department of Biomarker Discovery OMNI, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Joseph R Arron
- Department of Immunology, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| |
Collapse
|
6
|
Jia G, Ramalingam TR, Heiden JV, Gao X, DePianto D, Morshead KB, Modrusan Z, Ramamoorthi N, Wolters P, Lin C, Khanna D, Arron JR. An interleukin 6 responsive plasma cell signature is associated with disease progression in systemic sclerosis interstitial lung disease. iScience 2023; 26:108133. [PMID: 37867940 PMCID: PMC10585397 DOI: 10.1016/j.isci.2023.108133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 08/14/2023] [Accepted: 09/30/2023] [Indexed: 10/24/2023] Open
Abstract
Systemic sclerosis (SSc) interstitial lung disease (ILD) is among the leading causes of SSc-related morbidity and mortality. Tocilizumab (TCZ, anti-IL6RA) has demonstrated a reduced rate of pulmonary function decline in two phase 2/3 trials (faSScinate and focuSSced) in SSc-ILD patients. We performed transcriptome analysis of skin biopsy samples collected in the studies to decipher gene networks that were potentially associated with clinical responses to TCZ treatment. One module correlated with disease progression showed pharmacodynamic changes with TCZ treatment, and was characterized by plasma cell (PC) genes. PC signature gene expression levels were also significantly increased in both fibrotic SSc and IPF lungs compared to controls. scRNAseq analyses confirmed that PC signature genes were co-expressed in CD38 and CD138 expressing PC subsets in SSc lungs. These data provide insights into the potential role of PC in disease progression and mechanisms of action of TCZ in fibrotic interstitial lung diseases.
Collapse
Affiliation(s)
- Guiquan Jia
- Genentech Inc, South San Francisco, CA 94080, USA
| | | | | | - Xia Gao
- Genentech Inc, South San Francisco, CA 94080, USA
| | | | | | | | | | | | - Celia Lin
- Genentech Inc, South San Francisco, CA 94080, USA
| | | | | |
Collapse
|
7
|
Chen HW, Zhu JL, Martyanov V, Tsoi LC, Johnson ME, Barber G, Popovich D, O'Brien JC, Coias J, Cyrus N, Malviya N, Florez-Pollack S, Kunzler E, Hosler GA, Gudjonsson JE, Khanna D, Whitfield M, Jacobe HT. Gene Expression Signatures in Inflammatory and Sclerotic Morphea Skin and Sera Distinguish Morphea from Systemic Sclerosis. J Invest Dermatol 2023; 143:1886-1895.e10. [PMID: 37028702 DOI: 10.1016/j.jid.2023.02.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 02/10/2023] [Accepted: 02/18/2023] [Indexed: 04/08/2023]
Abstract
Morphea is an inflammatory fibrotic disorder of the skin that has been likened to systemic sclerosis (SSc). We sought to examine the molecular landscape of morphea by examining lesional skin gene expression and blood biomarkers and comparing the gene expression profiles with those from site-matched nonlesional and SSc lesional skin. We found the morphea transcriptome is dominated by IFN-γ-mediated T helper 1 immune dysregulation, with a relative paucity of fibrosis pathways. Specifically, expression profiles of morphea skin clustered with the SSc inflammatory subset and were distinct from the those of SSc fibroproliferative subset. Unaffected morphea skin also differed from unaffected SSc skin because it did not exhibit pathological gene expression signatures. Examination of downstream IFN-γ-mediated chemokines, CXCL9 and CXCL10, revealed increased transcription in the skin but not in circulation. In contrast to transcriptional activity, CXCL9 was elevated in serum and was associated with active, widespread cutaneous involvement. Taken together, these results indicate that morphea is a skin-directed process characterized by T helper 1 immune-mediated dysregulation, which contrasts with fibrotic signatures and systemic transcriptional changes associated with SSc. The similarity between morphea and the inflammatory subset of SSc on transcriptional profiling indicates that therapies under development for this subset of SSc are also promising for treatment of morphea.
Collapse
Affiliation(s)
- Henry W Chen
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jane L Zhu
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Viktor Martyanov
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Lam C Tsoi
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA; Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA
| | - Michael E Johnson
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Grant Barber
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Dillon Popovich
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Jack C O'Brien
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jennifer Coias
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Nika Cyrus
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Neeta Malviya
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | - Elaine Kunzler
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | | | - Dinesh Khanna
- Scleroderma Program, Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Michael Whitfield
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Heidi T Jacobe
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
| |
Collapse
|
8
|
Berkowitz JS, Tabib T, Xiao H, Sadej GM, Khanna D, Fuschiotti P, Lafyatis RA, Das J. Cell Type-Specific Biomarkers of Systemic Sclerosis Disease Severity Capture Cell-Intrinsic and Cell-Extrinsic Circuits. Arthritis Rheumatol 2023; 75:1819-1830. [PMID: 37096444 PMCID: PMC10543405 DOI: 10.1002/art.42536] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 03/04/2023] [Accepted: 04/13/2023] [Indexed: 04/26/2023]
Abstract
OBJECTIVE Systemic sclerosis (SSc) is a multifactorial autoimmune fibrotic disorder involving complex rewiring of cell-intrinsic and cell-extrinsic signaling coexpression networks involving a range of cell types. However, the rewired circuits as well as corresponding cell-cell interactions remain poorly understood. To address this, we used a predictive machine learning framework to analyze single-cell RNA-sequencing data from 24 SSc patients across the severity spectrum as quantified by the modified Rodnan skin score (MRSS). METHODS We used a least absolute shrinkage and selection operator (LASSO)-based predictive machine learning approach on the single-cell RNA-sequencing data set to identify predictive biomarkers of SSc severity, both across and within cell types. The use of L1 regularization helps prevent overfitting on high-dimensional data. Correlation network analyses were coupled to the LASSO model to identify cell-intrinsic and cell-extrinsic co-correlates of the identified biomarkers of SSc severity. RESULTS We found that the uncovered cell type-specific predictive biomarkers of MRSS included previously implicated genes in fibroblast and myeloid cell subsets (e.g., SFPR2+ fibroblasts and monocytes), as well as novel gene biomarkers of MRSS, especially in keratinocytes. Correlation network analyses revealed novel cross-talk between immune pathways and implicated keratinocytes in addition to fibroblast and myeloid cells as key cell types involved in SSc pathogenesis. We then validated the uncovered association of key gene expression and protein markers in keratinocytes, KRT6A and S100A8, with SSc skin disease severity. CONCLUSION Our global systems analyses reveal previously uncharacterized cell-intrinsic and cell-extrinsic signaling coexpression networks underlying SSc severity that involve keratinocytes, myeloid cells, and fibroblasts.
Collapse
Affiliation(s)
- Jacob S Berkowitz
- Center for Systems Immunology, Departments of Immunology and Computational & Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tracy Tabib
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hanxi Xiao
- Center for Systems Immunology, Departments of Immunology and Computational & Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Gabrielle M. Sadej
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dinesh Khanna
- Division of Rheumatology, Department of Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Patrizia Fuschiotti
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Robert A. Lafyatis
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jishnu Das
- Center for Systems Immunology, Departments of Immunology and Computational & Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
9
|
Saracino AM, Kelberman D, Otto GW, Gagunashvili A, Abraham DJ, Denton CP. Unravelling morphoea aetiopathogenesis by next-generation sequencing of paired skin biopsies. Arch Dermatol Res 2023; 315:2035-2056. [PMID: 36912952 PMCID: PMC10366313 DOI: 10.1007/s00403-023-02541-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 11/24/2022] [Accepted: 01/16/2023] [Indexed: 03/14/2023]
Abstract
BACKGROUND Morphoea can have a significant disease burden. Aetiopathogenesis remains poorly understood, with very limited existing genetic studies. Linear morphoea (LM) may follow Blascho's lines of epidermal development, providing potential pathogenic clues. OBJECTIVE The first objective of this study was to identify the presence of primary somatic epidermal mosaicism in LM. The second objective was tTo explore differential gene expression in morphoea epidermis and dermis to identify potential pathogenic molecular pathways and tissue layer cross-talk. METHODOLOGY Skin biopsies from paired affected and contralateral unaffected skin were taken from 16 patients with LM. Epidermis and dermis were isolated using a 2-step chemical-physical separation protocol. Whole Genome Sequencing (WGS; n = 4 epidermal) and RNA-seq (n = 5-epidermal, n = 5-dermal) with gene expression analysis via GSEA-MSigDBv6.3 and PANTHER-v14.1 pathway analyses, were performed. RTqPCR and immunohistochemistry were used to replicate key results. RESULTS Sixteen participants (93.8% female, mean age 27.7 yrs disease-onset) were included. Epidermal WGS identified no single affected gene or SNV. However, many potential disease-relevant pathogenic variants were present, including ADAMTSL1 and ADAMTS16. A highly proliferative, inflammatory and profibrotic epidermis was seen, with significantly-overexpressed TNFα-via-NFkB, TGFβ, IL6/JAKSTAT and IFN-signaling, apoptosis, p53 and KRAS-responses. Upregulated IFI27 and downregulated LAMA4 potentially represent initiating epidermal 'damage' signals and enhanced epidermal-dermal communication. Morphoea dermis exhibited significant profibrotic, B-cell and IFN-signatures, and upregulated morphogenic patterning pathways such as Wnt. CONCLUSION This study supports the absence of somatic epidermal mosaicism in LM, and identifies potential disease-driving epidermal mechanisms, epidermal-dermal interactions and disease-specific dermal differential-gene-expression in morphoea. We propose a potential molecular narrative for morphoea aetiopathogenesis which could help guide future targeted studies and therapies.
Collapse
Affiliation(s)
- Amanda M Saracino
- Division of Medicine, Centre for Rheumatology and Connective Tissues Diseases, University College London, London, UK.
- Department of Dermatology, Royal Free NHS Foundation Trust, London, UK.
- Melbourne Dermatology Clinic, 258 Park Street, South Melbourne, VIC, 3205, Australia.
| | - Daniel Kelberman
- GOSgene, Genetics and Genomic Medicine, Great Ormand Street Institute of Child Health, University College London, London, UK
| | - Georg W Otto
- GOSgene, Genetics and Genomic Medicine, Great Ormand Street Institute of Child Health, University College London, London, UK
| | - Andrey Gagunashvili
- GOSgene, Genetics and Genomic Medicine, Great Ormand Street Institute of Child Health, University College London, London, UK
| | - David J Abraham
- Division of Medicine, Centre for Rheumatology and Connective Tissues Diseases, University College London, London, UK
| | - Christopher P Denton
- Division of Medicine, Centre for Rheumatology and Connective Tissues Diseases, University College London, London, UK
- Department of Rheumatology, Royal Free NHS Foundation Trust, London, UK
| |
Collapse
|
10
|
Yang M, Goh V, Lee J, Espinoza M, Yuan Y, Carns M, Aren K, Chung L, Khanna D, McMahan ZH, Agrawal R, Nelson LB, Shah SJ, Whitfield ML, Hinchcliff M. Clinical Phenotypes of Patients With Systemic Sclerosis With Distinct Molecular Signatures in Skin. Arthritis Care Res (Hoboken) 2023; 75:1469-1480. [PMID: 35997480 PMCID: PMC9947190 DOI: 10.1002/acr.24998] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 07/21/2022] [Accepted: 08/16/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Systemic sclerosis (SSc) patients are classified according to degree of skin fibrosis (limited and diffuse cutaneous [lc and dc]) and serum autoantibodies. We undertook the present multicenter study to determine whether intrinsic subset (IS) classification based upon skin gene expression yields additional valuable clinical information. METHODS SSc patients and healthy participants (HPs) were classified into Normal-like, Limited, Fibroproliferative, and Inflammatory ISs using a previously trained classifier. Clinical data were obtained (serum autoantibodies, pulmonary function testing, modified Rodnan skin thickness scores [mRSS], and high-resolution chest computed tomography [HRCT]). Statistical analyses were performed to compare patients classified by IS, traditional cutaneous classification, and serum autoantibodies. RESULTS A total of 223 participants (165 SSc [115 dcSSc and 50 lcSSc] and 58 HPs) were classified. Inflammatory IS patients had higher mRSS (22.1 ± 9.9; P < 0.001) than other ISs and dcSSc patients (19.4 ± 9.4; P = 0.05) despite similar disease duration (median [interquartile range] months 14.9 [19.9] vs. 18.4 [31.6]; P = 0.48). In multivariable modeling, no significant association between mRSS and RNA polymerase III (P = 0.07) or anti-topoisomerase I (Scl-70) (P = 0.09) was found. Radiographic interstitial lung disease (ILD) was more prevalent in Fibroproliferative IS compared with other ISs (91%; P = 0.04) with similar prevalence between lcSSc and dcSSc (67% vs. 76%; P = 0.73). Positive Scl-70 antibody was the strongest ILD predictor (P < 0.001). Interestingly, all lcSSc/Fibroproliferative patients demonstrated radiographic ILD. CONCLUSIONS Classification by IS identifies patients with distinct clinical phenotypes versus traditional cutaneous or autoantibody classification. IS classification identifies subgroups of SSc patients with more radiographic ILD (Fibroproliferative), higher mRSS (Inflammatory), and milder phenotype (Normal-like) and may provide additional clinically useful information to current SSc classification systems.
Collapse
Affiliation(s)
- Monica Yang
- Department of Medicine, Division of Rheumatology, University of California San Francisco, San Francisco, California
| | - Vivien Goh
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Jungwha Lee
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Monica Espinoza
- Department of Biomedical Data Science, Geisel School of Medicine Dartmouth, Lebanon, New Hampshire
| | - Yiwei Yuan
- Department of Biomedical Data Science, Geisel School of Medicine Dartmouth, Lebanon, New Hampshire
| | - Mary Carns
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Kathleen Aren
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Lorinda Chung
- Department of Internal Medicine, Stanford University, Palo Alto, California
| | - Dinesh Khanna
- University of Michigan Scleroderma Program, Ann Arbor, Michigan
| | - Zsuzsanna H. McMahan
- Department of Internal Medicine, Division of Rheumatology, Johns Hopkins University, Baltimore, Maryland
| | - Rishi Agrawal
- Department of Radiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Lauren Beussink Nelson
- Department of Internal Medicine, Division of Cardiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Sanjiv J Shah
- Department of Internal Medicine, Division of Cardiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Michael L. Whitfield
- Department of Biomedical Data Science, Geisel School of Medicine Dartmouth, Lebanon, New Hampshire
| | - Monique Hinchcliff
- Department of Internal Medicine, Section of Rheumatology, Allergy & Immunology, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
11
|
Xie Y, Zhao H, Luo H, Zuo X, Li Q, Liu S. Genome-wide DNA methylation and transcriptome expression profiles of peripheral blood mononuclear cells in patients with systemic sclerosis with interstitial lung disease. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2023; 48:829-836. [PMID: 37587067 PMCID: PMC10930437 DOI: 10.11817/j.issn.1672-7347.2023.220538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Indexed: 08/18/2023]
Abstract
OBJECTIVES This study aims to investigate the genome-wide DNA methylation and transcriptome expression profiles of peripheral blood mononuclear cells (PBMCs) in patients with systemic sclerosis (SSc) with interstitial lung disease (ILD), and to analyze the effects of DNA methylation on Wnt/β-catenin and chemokine signaling pathways. METHODS PBMCs were collected from 19 patients with SSc (SSc group) and 18 healthy persons (control group). Among SSc patients, there were 10 patients with ILD (SSc with ILD subgroup) and 9 patients without ILD (SSc without ILD subgroup). The genome-wide DNA methylation and gene expression level were analyzed by using Illumina 450K methylation chip and Illumina HT-12 v4.0 gene expression profiling chip. The effect of DNA methylation on Wnt/β-catenin and chemokine signal pathways was investigated. RESULTS Genome-wide DNA methylation analysis identified 71 hypermethylated CpG sites and 98 hypomethylated CpG sites in the SSc with ILD subgroup compared with the SSc without ILD subgroup. Transcriptome analysis distinguished 164 upregulated genes and 191 downregulated genes in the SSc with ILD subgroup as compared with the SSc without ILD subgroup. In PBMCs of the SSc group, 35 genes in Wnt/β-catenin signaling pathway were hypomethylated, while frizzled-1 (FZD1), mitogen-activated protein kinase 9 (MAPK9), mothers against DPP homolog 2 (SMAD2), transcription factor 7-like 2 (TCF7L2), and wingless-type MMTV integration site family, member 5B (WNT5B) mRNA expressions were upregulated as compared with the control group (all P<0.05). Compared with the SSc without ILD subgroup, the mRNA expressions of dickkopf homolog 2 (DKK2), FZD1, MAPK9 were upregulated in the SSc with ILD subgroup, but the differences were not statistically significant (all P>0.05). In PBMCs of the SSc group, 38 genes in chemokine signaling pathway were hypomethylated, while β-arrestin 1 (ARRB1), C-X-C motif chemokine ligand 10 (CXCL10), C-X-C motif chemokine ligand 16 (CXCL16), FGR, and neutrophil cytosolic factor 1C (NCF1C) mRNA expressions were upregulated as compared with the control group (all P<0.05). Compared with the SSc without ILD subgroup, the mRNA expressions of ARRB1, CXCL10, CXCL16 were upregulated in the SSc with ILD subgroup, but the differences were not statistically significant (all P>0.05). CONCLUSIONS There are differences in DNA methylation and transcriptome profiles between SSc with ILD and SSc without ILD. The expression levels of multiple genes in Wnt/β- catenin and chemokine signaling pathways are upregulated, which might be associatea with the pathogenesis of SSc.
Collapse
Affiliation(s)
- Yanli Xie
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha 410008, China.
| | - Hongjun Zhao
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Hui Luo
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xiaoxia Zuo
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Quanzhen Li
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Sijia Liu
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha 410008, China.
| |
Collapse
|
12
|
Makinde HKM, Dunn JLM, Gadhvi G, Carns M, Aren K, Chung AH, Muhammad LN, Song J, Cuda CM, Dominguez S, Pandolfino JE, Dematte D’Amico JE, Budinger GS, Assassi S, Frech TM, Khanna D, Shaeffer A, Perlman H, Hinchcliff M, Winter DR. Three Distinct Transcriptional Profiles of Monocytes Associate with Disease Activity in Scleroderma Patients. Arthritis Rheumatol 2023; 75:595-608. [PMID: 36281773 PMCID: PMC10165944 DOI: 10.1002/art.42380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 09/23/2022] [Accepted: 10/06/2022] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Patients with diffuse cutaneous systemic sclerosis (dcSSc) display a complex clinical phenotype. Transcriptional profiling of whole blood or tissue from patients are affected by changes in cellular composition that drive gene expression and an inability to detect minority cell populations. We undertook this study to focus on the 2 main subtypes of circulating monocytes, classical monocytes (CMs) and nonclassical monocytes (NCMs) as a biomarker of SSc disease severity. METHODS SSc patients were recruited from the Prospective Registry for Early Systemic Sclerosis. Clinical data were collected, as well as peripheral blood for isolation of CMs and NCMs. Age-, sex-, and race-matched healthy volunteers were recruited as controls. Bulk macrophages were isolated from the skin in a separate cohort. All samples were assayed by RNA sequencing (RNA-seq). RESULTS We used an unbiased approach to cluster patients into 3 groups (groups A-C) based on the transcriptional signatures of CMs relative to controls. Each group maintained their characteristic transcriptional signature in NCMs. Genes up-regulated in group C demonstrated the highest expression compared to the other groups in SSc skin macrophages, relative to controls. Patients from groups B and C exhibited worse lung function than group A, although there was no difference in SSc skin disease at baseline, relative to controls. We validated our approach by applying our group classifications to published bulk monocyte RNA-seq data from SSc patients, and we found that patients without skin disease were most likely to be classified as group A. CONCLUSION We are the first to show that transcriptional signatures of CMs and NCMs can be used to unbiasedly stratify SSc patients and correlate with disease activity outcome measures.
Collapse
Affiliation(s)
- Hadijat-Kubura M. Makinde
- Northwestern University, Feinberg School of Medicine Department of Medicine, Division of Rheumatology. Chicago, IL 60611
| | - Julia L. M. Dunn
- Northwestern University, Feinberg School of Medicine Department of Medicine, Division of Rheumatology. Chicago, IL 60611
- Cincinnati Children’s Hospital Medical Center, Division of Allergy & Immunology. Cincinnati, OH 45229 (current affiliation)
| | - Gaurav Gadhvi
- Northwestern University, Feinberg School of Medicine Department of Medicine, Division of Rheumatology. Chicago, IL 60611
| | - Mary Carns
- Northwestern University, Feinberg School of Medicine Department of Medicine, Division of Rheumatology. Chicago, IL 60611
| | - Kathleen Aren
- Northwestern University, Feinberg School of Medicine Department of Medicine, Division of Rheumatology. Chicago, IL 60611
| | - Anh H. Chung
- Northwestern University, Feinberg School of Medicine Department of Medicine, Division of Rheumatology. Chicago, IL 60611
| | - Lutfiyya N. Muhammad
- Northwestern University, Feinberg School of Medicine Department of Preventive Medicine. Chicago, IL 60611
| | - Jing Song
- Northwestern University, Feinberg School of Medicine Department of Preventive Medicine. Chicago, IL 60611
| | - Carla M. Cuda
- Northwestern University, Feinberg School of Medicine Department of Medicine, Division of Rheumatology. Chicago, IL 60611
| | - Salina Dominguez
- Northwestern University, Feinberg School of Medicine Department of Medicine, Division of Rheumatology. Chicago, IL 60611
| | - John E. Pandolfino
- Northwestern University, Feinberg School of Medicine, Department of Medicine, Division of Gastroenterology and Hepatology. Chicago, IL 60611
| | - Jane E. Dematte D’Amico
- Northwestern University, Feinberg School of Medicine, Department of Medicine, Division of Division of Pulmonary and Critical Care. Chicago, IL 60611
| | - G. Scott Budinger
- Northwestern University, Feinberg School of Medicine, Department of Medicine, Division of Division of Pulmonary and Critical Care. Chicago, IL 60611
| | - Shervin Assassi
- Prospective Registry of Early Systemic Sclerosis (PRESS) consortium. Shervin Assassi MD MS- University of Texas Health Sciences Center at Houston (TX), Elana Bernstein MD MS- Columbia University (NY), Robyn Domsic MD MS - University of Pittsburgh (PA), Tracy Frech MD MS - University of Utah (UT), Jessica Gordon - Hospital for Special Surgery (NY), Faye Hant - Medical University of South Carolina (SC), Monique Hinchcliff – Yale School of Medicine (CT), Dinesh Khanna MD MS - University of Michigan (MI), Ami Shah - Johns Hopkins University (MD), Victoria Shanmugam - George Washington University (DC)
- University of Texas Health Science Center at Houston, Division of Rheumatology, Houston, Texas 77030
| | - Tracy M. Frech
- Prospective Registry of Early Systemic Sclerosis (PRESS) consortium. Shervin Assassi MD MS- University of Texas Health Sciences Center at Houston (TX), Elana Bernstein MD MS- Columbia University (NY), Robyn Domsic MD MS - University of Pittsburgh (PA), Tracy Frech MD MS - University of Utah (UT), Jessica Gordon - Hospital for Special Surgery (NY), Faye Hant - Medical University of South Carolina (SC), Monique Hinchcliff – Yale School of Medicine (CT), Dinesh Khanna MD MS - University of Michigan (MI), Ami Shah - Johns Hopkins University (MD), Victoria Shanmugam - George Washington University (DC)
- Vanderbilt University, Department of Medicine, Division of Rheumatology and Immunology. Nashville, TN 37232
| | - Dinesh Khanna
- Prospective Registry of Early Systemic Sclerosis (PRESS) consortium. Shervin Assassi MD MS- University of Texas Health Sciences Center at Houston (TX), Elana Bernstein MD MS- Columbia University (NY), Robyn Domsic MD MS - University of Pittsburgh (PA), Tracy Frech MD MS - University of Utah (UT), Jessica Gordon - Hospital for Special Surgery (NY), Faye Hant - Medical University of South Carolina (SC), Monique Hinchcliff – Yale School of Medicine (CT), Dinesh Khanna MD MS - University of Michigan (MI), Ami Shah - Johns Hopkins University (MD), Victoria Shanmugam - George Washington University (DC)
- University of Michigan, Department of Medicine, Division of Rheumatology. Ann Arbor, MI 48109
| | - Alex Shaeffer
- Northwestern University, Feinberg School of Medicine Department of Medicine, Division of Rheumatology. Chicago, IL 60611
| | - Harris Perlman
- Northwestern University, Feinberg School of Medicine Department of Medicine, Division of Rheumatology. Chicago, IL 60611
| | - Monique Hinchcliff
- Northwestern University, Feinberg School of Medicine Department of Medicine, Division of Rheumatology. Chicago, IL 60611
- Prospective Registry of Early Systemic Sclerosis (PRESS) consortium. Shervin Assassi MD MS- University of Texas Health Sciences Center at Houston (TX), Elana Bernstein MD MS- Columbia University (NY), Robyn Domsic MD MS - University of Pittsburgh (PA), Tracy Frech MD MS - University of Utah (UT), Jessica Gordon - Hospital for Special Surgery (NY), Faye Hant - Medical University of South Carolina (SC), Monique Hinchcliff – Yale School of Medicine (CT), Dinesh Khanna MD MS - University of Michigan (MI), Ami Shah - Johns Hopkins University (MD), Victoria Shanmugam - George Washington University (DC)
- Yale University, School of Medicine, Section of Rheumatology, Allergy & Immunology. New Haven, CT 06520
| | - Deborah R. Winter
- Northwestern University, Feinberg School of Medicine Department of Medicine, Division of Rheumatology. Chicago, IL 60611
| |
Collapse
|
13
|
Johnson SR, Foeldvari I. Approach to Systemic Sclerosis Patient Assessment. Rheum Dis Clin North Am 2023; 49:193-210. [PMID: 37028831 DOI: 10.1016/j.rdc.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Systemic sclerosis (SSc) is a heterogeneous disease comprising of a wide spectrum of ages of onset, sex-based differences, ethnic variations, disease manifestations, differential serologic profiles, and variable response to therapy resulting in reduced health-related quality of life, disability, and survival. The ability to subset groups of patients with SSc can assist with refining the diagnosis, guide appropriate monitoring, inform aggressiveness of immunosuppression, and predict prognosis. The ability to subset patients with SSc has several important practical implications for patient care.
Collapse
|
14
|
Keyes-Elstein L, Pinckney A, Goldmuntz E, Welch B, Franks JM, Martyanov V, Wood TA, Crofford L, Mayes M, McSweeney P, Nash R, Georges G, Csuka M, Simms R, Furst D, Khanna D, St Clair EW, Whitfield ML, Sullivan KM. Clinical and Molecular Findings After Autologous Stem Cell Transplantation or Cyclophosphamide for Scleroderma: Handling Missing Longitudinal Data. Arthritis Care Res (Hoboken) 2023; 75:307-316. [PMID: 34533286 PMCID: PMC8926930 DOI: 10.1002/acr.24785] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 08/23/2021] [Accepted: 09/14/2021] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Among individuals with systemic sclerosis (SSc) randomized to cyclophosphamide (CYC) (n = 34) or hematopoietic stem cell transplantation (HSCT) (n = 33), we examined longitudinal trends of clinical, pulmonary function, and quality of life measures while accounting for the influence of early failures on treatment comparisons. METHODS Assuming that data were missing at random, mixed-effects regression models were used to estimate longitudinal trends for clinical measures when comparing treatment groups. Results were compared to observed means and to longitudinal trends estimated from shared parameter models, assuming that data were missing not at random. Longitudinal trends for SSc intrinsic molecular subsets defined by baseline gene expression signatures (normal-like, inflammatory, and fibroproliferative signatures) were also studied. RESULTS Available observed means for pulmonary function tests appeared to improve over time in both arms. However, after accounting for participant loss, forced vital capacity in HSCT recipients increased by 0.77 percentage points/year but worsened by -3.70/year for CYC (P = 0.004). Similar results were found for diffusing capacity for carbon monoxide and quality of life indicators. Results for both analytic models were consistent. HSCT recipients in the inflammatory (n = 20) and fibroproliferative (n = 20) subsets had superior long-term trends compared to CYC for pulmonary and quality of life measures. HSCT was also superior for modified Rodnan skin thickness scores in the fibroproliferative subset. For the normal-like subset (n = 22), superiority of HSCT was less apparent. CONCLUSION Longitudinal trends estimated from 2 statistical models affirm the efficacy of HSCT over CYC in severe SSc. Failure to account for early loss of participants may distort estimated clinical trends over the long term.
Collapse
Affiliation(s)
| | | | - Ellen Goldmuntz
- National Institute of Allergy and Infectious Diseases, Bethesda, MD
| | - Beverly Welch
- National Institute of Allergy and Infectious Diseases, Bethesda, MD
| | | | | | | | - Leslie Crofford
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN
| | - Maureen Mayes
- University of Texas McGovern Medical School, Houston, TX
| | | | | | | | - M.E. Csuka
- Medical College of Wisconsin, Milwaukee, WI
| | - Robert Simms
- Geisel School of Medicine at Dartmouth, Hanover, NH
| | - Daniel Furst
- University of California Los Angeles, Los Angeles, CA; University of Washington, Seattle, WA; University of Florence, Florence, Italy
| | | | | | | | | |
Collapse
|
15
|
Franks JM, Toledo DM, Martyanov V, Wang Y, Huang S, Wood TA, Spino C, Chung L, Denton CP, Derrett-Smith E, Gordon JK, Spiera R, Domsic R, Hinchcliff M, Khanna D, Whitfield ML. A genomic meta-analysis of clinical variables and their association with intrinsic molecular subsets in systemic sclerosis. Rheumatology (Oxford) 2022; 62:19-28. [PMID: 35751592 PMCID: PMC9788818 DOI: 10.1093/rheumatology/keac344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 05/19/2022] [Accepted: 06/06/2022] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVES Four intrinsic molecular subsets (inflammatory, fibroproliferative, limited, normal-like) have previously been identified in SSc and are characterized by unique gene expression signatures and pathways. The intrinsic subsets have been linked to improvement with specific therapies. Here, we investigated associations between baseline demographics and intrinsic molecular subsets in a meta-analysis of published datasets. METHODS Publicly available gene expression data from skin biopsies of 311 SSc patients measured by DNA microarray were classified into the intrinsic molecular subsets. RNA-sequencing data from 84 participants from the ASSET trial were used as a validation cohort. Baseline clinical demographics and intrinsic molecular subsets were tested for statistically significant associations. RESULTS Males were more likely to be classified in the fibroproliferative subset (P = 0.0046). SSc patients who identified as African American/Black were 2.5 times more likely to be classified as fibroproliferative compared with White/Caucasian patients (P = 0.0378). ASSET participants sera positive for anti-RNA pol I and RNA pol III autoantibodies were enriched in the inflammatory subset (P = 5.8 × 10-5, P = 9.3 × 10-5, respectively), while anti-Scl-70 was enriched in the fibroproliferative subset. Mean modified Rodnan Skin Score (mRSS) was statistically higher in the inflammatory and fibroproliferative subsets compared with normal-like (P = 0.0027). The average disease duration for inflammatory subset was less than fibroproliferative and normal-like intrinsic subsets (P = 8.8 × 10-4). CONCLUSIONS We identified multiple statistically significant differences in baseline demographics between the intrinsic subsets that may represent underlying features of disease pathogenesis (e.g. chronological stages of fibrosis) and have implications for treatments that are more likely to work in certain SSc populations.
Collapse
Affiliation(s)
| | - Diana M Toledo
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH
| | | | - Yue Wang
- Department of Biomedical Data Science
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH
| | - Suiyuan Huang
- Department of Biostatistics, University of Michigan, Ann Arbor, MI
| | - Tammara A Wood
- Department of Biomedical Data Science
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH
| | - Cathie Spino
- Department of Biostatistics, University of Michigan, Ann Arbor, MI
| | - Lorinda Chung
- Palo Alto Health Care System, Palo Alto, Stanford, CA, USA
| | | | | | | | | | | | | | - Dinesh Khanna
- Correspondence to: Michael L. Whitfield, Department of Biomedical Data Science, Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, HB 7261, 1 Medical Center Drive, Lebanon, NH 03756, USA. E-mail: ; Dinesh Khanna, Division of Rheumatology, Department of Internal Medicine, University of Michigan Scleroderma Program, Suite 7C27, 300 North Ingalls Street, SP C 5422, Ann Arbor, MI 48109, USA. E-mail:
| | - Michael L Whitfield
- Correspondence to: Michael L. Whitfield, Department of Biomedical Data Science, Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, HB 7261, 1 Medical Center Drive, Lebanon, NH 03756, USA. E-mail: ; Dinesh Khanna, Division of Rheumatology, Department of Internal Medicine, University of Michigan Scleroderma Program, Suite 7C27, 300 North Ingalls Street, SP C 5422, Ann Arbor, MI 48109, USA. E-mail:
| |
Collapse
|
16
|
Mehta BK, Espinoza ME, Franks JM, Yuan Y, Wang Y, Wood T, Gudjonsson JE, Spino C, Fox DA, Khanna D, Whitfield ML. Machine-learning classification identifies patients with early systemic sclerosis as abatacept responders via CD28 pathway modulation. JCI Insight 2022; 7:155282. [PMID: 36355434 PMCID: PMC9869963 DOI: 10.1172/jci.insight.155282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/04/2022] [Indexed: 11/12/2022] Open
Abstract
Here, the efficacy of abatacept in patients with early diffuse systemic sclerosis (dcSSc) was analyzed to test the hypothesis that patients in the inflammatory intrinsic subset would show the most significant clinical improvement. Eighty-four participants with dcSSc were randomized to receive abatacept or placebo for 12 months. RNA-Seq was performed on 233 skin paired biopsies at baseline and at 3 and 6 months. Improvement was defined as a 5-point or more than 20% change in modified Rodnan skin score (mRSS) between baseline and 12 months. Samples were assigned to intrinsic gene expression subsets (inflammatory, fibroproliferative, or normal-like subsets). In the abatacept arm, change in mRSS was most pronounced for the inflammatory and normal-like subsets relative to the placebo subset. Gene expression for participants on placebo remained in the original molecular subset, whereas inflammatory participants treated with abatacept had gene expression that moved toward the normal-like subset. The Costimulation of the CD28 Family Reactome Pathway decreased in patients who improved on abatacept and was specific to the inflammatory subset. Patients in the inflammatory subset had elevation of the Costimulation of the CD28 Family pathway at baseline relative to that of participants in the fibroproliferative and normal-like subsets. There was a correlation between improved ΔmRSS and baseline expression of the Costimulation of the CD28 Family pathway. This study provides an example of precision medicine in systemic sclerosis clinical trials.
Collapse
Affiliation(s)
- Bhaven K. Mehta
- Department of Biomedical Data Science, Department of Molecular & Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Monica E. Espinoza
- Department of Biomedical Data Science, Department of Molecular & Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Jennifer M. Franks
- Department of Biomedical Data Science, Department of Molecular & Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Yiwei Yuan
- Department of Biomedical Data Science, Department of Molecular & Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Yue Wang
- Department of Biomedical Data Science, Department of Molecular & Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Tammara Wood
- Department of Biomedical Data Science, Department of Molecular & Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| | - Johann E. Gudjonsson
- Department of Dermatology, Department of Medicine, Clinical Autoimmunity Center of Excellence and University of Michigan Scleroderma Program, University of Michigan, Ann Arbor, Michigan, USA
| | - Cathie Spino
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA
| | - David A. Fox
- Division of Rheumatology, Department of Medicine, Clinical Autoimmunity Center of Excellence and University of Michigan Scleroderma Program, University of Michigan, Ann Arbor, Michigan, USA
| | - Dinesh Khanna
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA
- Division of Rheumatology, Department of Medicine, Clinical Autoimmunity Center of Excellence and University of Michigan Scleroderma Program, University of Michigan, Ann Arbor, Michigan, USA
| | - Michael L. Whitfield
- Department of Biomedical Data Science, Department of Molecular & Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire, USA
| |
Collapse
|
17
|
Rana I, Kataria S, Tan TL, Hajam EY, Kashyap DK, Saha D, Ajnabi J, Paul S, Jayappa S, Ananthan ASHP, Kumar P, Zaarour RF, Haarshaadri J, Kansagara G, Rizvi A, Zirmire RK, Badarinath K, Khedkar SU, Chandra Y, Samuel R, George R, Danda D, Jacob PM, Dey R, Dhandapany PS, He YW, Varga J, Varghese S, Jamora C. Mindin (SPON2) Is Essential for Cutaneous Fibrogenesis in a Mouse Model of Systemic Sclerosis. J Invest Dermatol 2022; 143:699-710.e10. [PMID: 36528128 DOI: 10.1016/j.jid.2022.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 10/02/2022] [Accepted: 10/04/2022] [Indexed: 12/16/2022]
Abstract
Systemic sclerosis is a fibrotic disease that initiates in the skin and progresses to internal organs, leading to a poor prognosis. Unraveling the etiology of a chronic, multifactorial disease such as systemic sclerosis has been aided by various animal models that recapitulate certain aspects of the human pathology. We found that the transcription factor SNAI1 is overexpressed in the epidermis of patients with systemic sclerosis, and a transgenic mouse recapitulating this expression pattern is sufficient to induce many clinical features of the human disease. Using this mouse model as a discovery platform, we have uncovered a critical role for the matricellular protein Mindin (SPON2) in fibrogenesis. Mindin is produced by SNAI1 transgenic skin keratinocytes and aids fibrogenesis by inducing early inflammatory cytokine production and collagen secretion in resident dermal fibroblasts. Given the dispensability of Mindin in normal tissue physiology, targeting this protein holds promise as an effective therapy for fibrosis.
Collapse
Affiliation(s)
- Isha Rana
- IFOM-inStem Joint Research Laboratory, Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science & Regenerative Medicine, Bangalore, India; School of Chemical and Biotechnology, Shanmugha Arts, Science, Technology and Research Academy (SASTRA) Deemed University, Thanjavur, India
| | - Sunny Kataria
- IFOM-inStem Joint Research Laboratory, Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science & Regenerative Medicine, Bangalore, India; National Centre for Biological Sciences, Bangalore, India
| | - Tuan Lin Tan
- Department of Bioengineering, Jacobs School of Engineering, University of California San Diego, San Diego, California, USA; School of Chemical & Life Sciences, Singapore Polytechnic, Singapore, Singapore
| | - Edries Yousaf Hajam
- IFOM-inStem Joint Research Laboratory, Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science & Regenerative Medicine, Bangalore, India; School of Chemical and Biotechnology, Shanmugha Arts, Science, Technology and Research Academy (SASTRA) Deemed University, Thanjavur, India
| | - Deepak Kumar Kashyap
- Centre for Cardiovascular Biology and Disease, Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India; Centre for Cellular and Molecular Biology, Hyderabad, India
| | - Dyuti Saha
- IFOM-inStem Joint Research Laboratory, Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science & Regenerative Medicine, Bangalore, India; Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Johan Ajnabi
- IFOM-inStem Joint Research Laboratory, Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science & Regenerative Medicine, Bangalore, India
| | - Sayan Paul
- Centre for Cardiovascular Biology and Disease, Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India
| | - Shashank Jayappa
- Centre for Cardiovascular Biology and Disease, Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India
| | - Akhil S H P Ananthan
- IFOM-inStem Joint Research Laboratory, Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science & Regenerative Medicine, Bangalore, India
| | - Pankaj Kumar
- IFOM-inStem Joint Research Laboratory, Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science & Regenerative Medicine, Bangalore, India
| | - Rania F Zaarour
- IFOM-inStem Joint Research Laboratory, Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science & Regenerative Medicine, Bangalore, India; Thumbay Research Institute for Precision Medicine (TRIPM), Gulf Medical University, Ajman, United Arab Emirates
| | - J Haarshaadri
- IFOM-inStem Joint Research Laboratory, Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science & Regenerative Medicine, Bangalore, India
| | - Gaurav Kansagara
- IFOM-inStem Joint Research Laboratory, Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science & Regenerative Medicine, Bangalore, India; Animal Care and Resource Centre (ACRC), Bangalore Life Science Cluster, Bangalore, India
| | - Abrar Rizvi
- IFOM-inStem Joint Research Laboratory, Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science & Regenerative Medicine, Bangalore, India
| | - Ravindra K Zirmire
- IFOM-inStem Joint Research Laboratory, Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science & Regenerative Medicine, Bangalore, India; School of Chemical and Biotechnology, Shanmugha Arts, Science, Technology and Research Academy (SASTRA) Deemed University, Thanjavur, India
| | - Krithika Badarinath
- IFOM-inStem Joint Research Laboratory, Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science & Regenerative Medicine, Bangalore, India; National Centre for Biological Sciences, Bangalore, India
| | - Sneha Uday Khedkar
- IFOM-inStem Joint Research Laboratory, Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science & Regenerative Medicine, Bangalore, India
| | - Yogesh Chandra
- Animal Care and Resource Centre (ACRC), Bangalore Life Science Cluster, Bangalore, India
| | - Rekha Samuel
- Centre for Stem Cell Research (CSCR), Christian Medical College Vellore, Vellore, India; Department of Pathology, Manipal - Tata Medical College Jamshedpur, Jamshedpur, India
| | - Renu George
- Department of Dermatology, Venereology and Leprosy, Christian Medical College Vellore, Vellore, India
| | - Debashish Danda
- Department of Clinical Immunology & Rheumatology, Christian Medical College Vellore, Vellore, India
| | | | - Rakesh Dey
- IFOM-inStem Joint Research Laboratory, Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science & Regenerative Medicine, Bangalore, India
| | | | - You-Wen He
- Department of Immunology, Duke University School of Medicine, Durham, North Carolina, USA
| | - John Varga
- Department of Internal Medicine, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Shyni Varghese
- Department of Bioengineering, Jacobs School of Engineering, University of California San Diego, San Diego, California, USA; Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA; Department of Mechanical Engineering & Materials Science, Duke University, Durham, North Carolina, USA; Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | - Colin Jamora
- IFOM-inStem Joint Research Laboratory, Centre for Inflammation and Tissue Homeostasis, Institute for Stem Cell Science & Regenerative Medicine, Bangalore, India.
| |
Collapse
|
18
|
Mesenchymal stem cells alleviate systemic sclerosis by inhibiting the recruitment of pathogenic macrophages. Cell Death Dis 2022; 8:466. [DOI: 10.1038/s41420-022-01264-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/28/2022]
Abstract
AbstractSystemic sclerosis (SSc) is a recalcitrant autoimmune disease for which there is no cure. Mesenchymal stem cell (MSC)-based treatment has emerged as a promising therapeutic option for several autoimmune diseases. Previously, we found that the immunoregulatory potential of MSCs can be greatly enhanced by IFN-γ and TNF-α. Here, we found that IFN-γ- and TNF-α-pretreated MSCs significantly alleviated skin fibrosis in a bleomycin (BLM)-induced SSc model. Macrophages were found to be the predominant profibrotic immune cell population in the pathogenesis of SSc. The accumulation of macrophages was significantly decreased by MSC treatment. Importantly, MSCs primarily reduced the population of maturing macrophages with high CCR2 expression by inhibiting the generation of CCL2 from fibroblasts and macrophages. This finding may help to improve MSC-based clinical treatments for SSc patients.
Collapse
|
19
|
Corano Scheri K, Liang X, Dalal V, Le Poole IC, Varga J, Hayashida T. SARA suppresses myofibroblast precursor transdifferentiation in fibrogenesis in a mouse model of scleroderma. JCI Insight 2022; 7:160977. [PMID: 36136606 PMCID: PMC9675568 DOI: 10.1172/jci.insight.160977] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 09/12/2022] [Indexed: 12/15/2022] Open
Abstract
We previously reported that Smad anchor for receptor activation (SARA) plays a critical role in maintaining epithelial cell phenotype. Here, we show that SARA suppressed myofibroblast precursor transdifferentiation in a mouse model of scleroderma. Mice overexpressing SARA specifically in PDGFR-β+ pericytes and pan-leukocytes (SARATg) developed significantly less skin fibrosis in response to bleomycin injection compared with wild-type littermates (SARAWT). Single-cell RNA-Seq analysis of skin PDGFR-β+ cells implicated pericyte subsets assuming myofibroblast characteristics under fibrotic stimuli, and SARA overexpression blocked the transition. In addition, a cluster that expresses molecules associated with Th2 cells and macrophage activation was enriched in SARAWT mice, but not in SARATg mice, after bleomycin treatment. Th2-specific Il-31 expression was increased in skin of the bleomycin-treated SARAWT mice and patients with scleroderma (or systemic sclerosis, SSc). Receptor-ligand analyses indicated that lymphocytes mediated pericyte transdifferentiation in SARAWT mice, while with SARA overexpression the myofibroblast activity of pericytes was suppressed. Together, these data suggest a potentially novel crosstalk between myofibroblast precursors and immune cells in the pathogenesis of SSc, in which SARA plays a critical role.
Collapse
Affiliation(s)
- Katia Corano Scheri
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.,Pediatric Nephrology, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, USA
| | - Xiaoyan Liang
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Vidhi Dalal
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.,Pediatric Nephrology, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, USA
| | - I. Caroline Le Poole
- Departments of Dermatology and Microbiology and Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - John Varga
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Tomoko Hayashida
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.,Pediatric Nephrology, Ann and Robert H. Lurie Children’s Hospital of Chicago, Chicago, Illinois, USA
| |
Collapse
|
20
|
Collagen V α1 Chain Decrease in Papillary Dermis from Early Systemic Sclerosis: A New Proposal in Cutaneous Fibrosis Molecular Structure. Int J Mol Sci 2022; 23:ijms232012654. [PMID: 36293511 PMCID: PMC9604101 DOI: 10.3390/ijms232012654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/06/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
Cutaneous fibrosis is one of the main features of systemic sclerosis (SSc). Recent findings correlated abnormal collagen V (Col V) deposition in dermis with skin thickening and disease activity in SSc. Considering that Col V is an important regulator of collagen fibrillogenesis, understanding the role of Col V in the first two years of the skin fibrosis in SSc (early SSc) can help to determine new targets for future treatments. In this study, we analyzed the morphological, ultrastructural and molecular features of α1(V) and α2(V) chains and the expression of their coding genes COL5A1 and COL5A2 in collagen fibrillogenesis in early-SSc. Skin biopsies were obtained from seven consecutive treatment-naïve patients with SSc-related fibrosis and four healthy controls. Our data showed increased α1(V) and α2(V) chain expression in the reticular dermis of early-SSc patients; however, immunofluorescence and ultrastructural immunogold staining determined a significant decreased expression of the α1(V) chain along the dermoepidermal junction in the papillary dermis from early-SSc-patients in relation to the control (12.77 ± 1.34 vs. 66.84 ± 3.36; p < 0.0001). The immunoblot confirmed the decreased expression of the α1(V) chain by the cutaneous fibroblasts of early-SSc, despite the increased COL5A1 and COL5A2 gene expression. In contrast, the α2(V) chain was overexpressed in the small vessels (63.18 ± 3.56 vs. 12.16 ± 0.81; p < 0.0001) and capillaries (60.88 ± 5.82 vs. 15.11 ± 3.80; p < 0.0001) in the reticular dermis of early-SSc patients. Furthermore, COLVA2 siRNA in SSc cutaneous fibroblasts resulted in a decreased α1(V) chain expression. These results highlight an intense decrease in the α1(V) chain along the dermoepidermal junction, suggesting an altered molecular histoarchitecture in the SSc papillary dermis, with a possible decrease in the expression of the α1(V)3 homotrimeric isoform, which could interfere with the thickening and cutaneous fibrosis related to SSc.
Collapse
|
21
|
Treatment of juvenile localized scleroderma: current recommendations, response factors, and potential alternative treatments. Curr Opin Rheumatol 2022; 34:245-254. [PMID: 35880663 DOI: 10.1097/bor.0000000000000886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Juvenile localized scleroderma (jLS) is a chronic autoimmune and fibrosing disease associated with a high risk for functional impairment. Antifibrotic options are limited, so current treatment strategies are focused on disease activity control. Pediatric rheumatologists are in consensus on the need to treat with systemic immunosuppressants, in particular, methotrexate. However, more than 30% of patients fail initial methotrexate treatment. This review provides an update on current management and reviews reports on potential alternative treatments. RECENT FINDINGS An overview of current treatment recommendations and its efficacy are discussed. Recent studies have identified several factors associated with likelihood of treatment response. These include time to initiation of treatment, certain subtypes, and extracutaneous involvement. Findings from recent reports of alternative systemic immunomodulators, including biologic medications, will be summarized. SUMMARY Methotrexate treatment has greatly improved outcome for most jLS patients but a substantial portion have refractory cutaneous and/or extracutaneous disease. Treatment response factors are being identified, which could lead to improved management strategies. Recent studies provide further support on mycophenolate mofetil as an alternative treatment. Data on biologic therapies is encouraging, with data suggesting efficacy for many extracutaneous manifestations but more studies are needed to evaluate these and other options for jLS.
Collapse
|
22
|
Guthridge JM, Wagner CA, James JA. The promise of precision medicine in rheumatology. Nat Med 2022; 28:1363-1371. [PMID: 35788174 PMCID: PMC9513842 DOI: 10.1038/s41591-022-01880-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/23/2022] [Indexed: 01/07/2023]
Abstract
Systemic autoimmune rheumatic diseases (SARDs) exhibit extensive heterogeneity in clinical presentation, disease course, and treatment response. Therefore, precision medicine - whereby treatment is tailored according to the underlying pathogenic mechanisms of an individual patient at a specific time - represents the 'holy grail' in SARD clinical care. Current strategies include treat-to-target therapies and autoantibody testing for patient stratification; however, these are far from optimal. Recent innovations in high-throughput 'omic' technologies are now enabling comprehensive profiling at multiple levels, helping to identify subgroups of patients who may taper off potentially toxic medications or better respond to current molecular targeted therapies. Such advances may help to optimize outcomes and identify new pathways for treatment, but there are many challenges along the path towards clinical translation. In this Review, we discuss recent efforts to dissect cellular and molecular heterogeneity across multiple SARDs and future directions for implementing stratification approaches for SARD treatment in the clinic.
Collapse
Affiliation(s)
- Joel M Guthridge
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Departments of Medicine and Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Catriona A Wagner
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Judith A James
- Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.
- Departments of Medicine and Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| |
Collapse
|
23
|
Chepy A, Vivier S, Bray F, Ternynck C, Meneboo JP, Figeac M, Filiot A, Guilbert L, Jendoubi M, Rolando C, Launay D, Dubucquoi S, Marot G, Sobanski V. Effects of Immunoglobulins G From Systemic Sclerosis Patients in Normal Dermal Fibroblasts: A Multi-Omics Study. Front Immunol 2022; 13:904631. [PMID: 35844491 PMCID: PMC9276964 DOI: 10.3389/fimmu.2022.904631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/18/2022] [Indexed: 11/17/2022] Open
Abstract
Autoantibodies (Aabs) are frequent in systemic sclerosis (SSc). Although recognized as potent biomarkers, their pathogenic role is debated. This study explored the effect of purified immunoglobulin G (IgG) from SSc patients on protein and mRNA expression of dermal fibroblasts (FBs) using an innovative multi-omics approach. Dermal FBs were cultured in the presence of sera or purified IgG from patients with diffuse cutaneous SSc (dcSSc), limited cutaneous SSc or healthy controls (HCs). The FB proteome and transcriptome were explored using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) and microarray assays, respectively. Proteomic analysis identified 3,310 proteins. SSc sera and purified IgG induced singular protein profile patterns. These FB proteome changes depended on the Aab serotype, with a singular effect observed with purified IgG from anti-topoisomerase-I autoantibody (ATA) positive patients compared to HC or other SSc serotypes. IgG from ATA positive SSc patients induced enrichment in proteins involved in focal adhesion, cadherin binding, cytosolic part, or lytic vacuole. Multi-omics analysis was performed in two ways: first by restricting the analysis of the transcriptomic data to differentially expressed proteins; and secondly, by performing a global statistical analysis integrating proteomics and transcriptomics. Transcriptomic analysis distinguished 764 differentially expressed genes and revealed that IgG from dcSSc can induce extracellular matrix (ECM) remodeling changes in gene expression profiles in FB. Global statistical analysis integrating proteomics and transcriptomics confirmed that IgG from SSc can induce ECM remodeling and activate FB profiles. This effect depended on the serotype of the patient, suggesting that SSc Aab might play a pathogenic role in some SSc subsets.
Collapse
Affiliation(s)
- Aurélien Chepy
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE ( Institute for Translational Research) in Inflammation, Lille, France
- CHU Lille, Département de Médecine Interne et Immunologie Clinique, Centre de Référence des Maladies Auto-immunes Systémiques Rares du Nord et Nord-Ouest de France, Lille, France
| | - Solange Vivier
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE ( Institute for Translational Research) in Inflammation, Lille, France
| | - Fabrice Bray
- Univ. Lille, CNRS, USR 3290, Miniaturisation pour la Synthèse, l’Analyse et la Protéomique, Lille, France
| | - Camille Ternynck
- Univ. Lille, CHU Lille, ULR 2694, METRICS: Évaluation des Technologies de Santé et des Pratiques Médicales, Lille, France
| | - Jean-Pascal Meneboo
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, US 41—UAR 2014-PLBS, Lille, France
| | - Martin Figeac
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, US 41—UAR 2014-PLBS, Lille, France
| | - Alexandre Filiot
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE ( Institute for Translational Research) in Inflammation, Lille, France
| | - Lucile Guilbert
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE ( Institute for Translational Research) in Inflammation, Lille, France
- CHU Lille, Institut d’Immunologie, Lille, France
| | - Manel Jendoubi
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE ( Institute for Translational Research) in Inflammation, Lille, France
| | - Christian Rolando
- Univ. Lille, CNRS, USR 3290, Miniaturisation pour la Synthèse, l’Analyse et la Protéomique, Lille, France
| | - David Launay
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE ( Institute for Translational Research) in Inflammation, Lille, France
- CHU Lille, Département de Médecine Interne et Immunologie Clinique, Centre de Référence des Maladies Auto-immunes Systémiques Rares du Nord et Nord-Ouest de France, Lille, France
- *Correspondence: David Launay,
| | - Sylvain Dubucquoi
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE ( Institute for Translational Research) in Inflammation, Lille, France
- CHU Lille, Institut d’Immunologie, Lille, France
| | - Guillemette Marot
- Univ. Lille, CHU Lille, ULR 2694, METRICS: Évaluation des Technologies de Santé et des Pratiques Médicales, Lille, France
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, US 41—UAR 2014-PLBS, Lille, France
- Inria, Models for Data Analysis and Learning, Lille, France
| | - Vincent Sobanski
- Univ. Lille, Inserm, CHU Lille, U1286 - INFINITE ( Institute for Translational Research) in Inflammation, Lille, France
- CHU Lille, Département de Médecine Interne et Immunologie Clinique, Centre de Référence des Maladies Auto-immunes Systémiques Rares du Nord et Nord-Ouest de France, Lille, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
24
|
Melissaropoulos K, Iliopoulos G, Sakkas LI, Daoussis D. Pathogenetic Aspects of Systemic Sclerosis: A View Through the Prism of B Cells. Front Immunol 2022; 13:925741. [PMID: 35812378 PMCID: PMC9259786 DOI: 10.3389/fimmu.2022.925741] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/26/2022] [Indexed: 12/24/2022] Open
Abstract
Systemic sclerosis (SSc) is a rare fibrotic rheumatic disease, associated with psychological distress and increased morbidity and mortality due to skin involvement and internal organ damage. The current understanding of the complex pathogenesis is yet incomplete and disease therapeutic algorithms are far from optimal. Immunologic aberrations are considered key factors for the disease, along with vascular involvement and excess fibrosis. Adaptive immunity and its specialized responses are an attractive research target and both T and B cells have been extensively studied in recent years. In the present review, the focus is placed on B cells in SSc. B cell homeostasis is deranged and B cell subsets exhibit an activated phenotype and abnormal receptor signaling. Autoantibodies are a hallmark of the disease and the current perception of their diagnostic and pathogenetic role is analyzed. In addition, B cell cytokine release and its effect on immunity and fibrosis are examined, together with B cell tissue infiltration of the skin and lung. These data support the concept of targeting B cells as part of the therapeutic plan for SSc through well designed clinical trials.
Collapse
Affiliation(s)
| | - George Iliopoulos
- Department of Rheumatology , University of Patras Medical School, Patras University Hospital, Patras, Greece
| | - Lazaros I. Sakkas
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Dimitrios Daoussis
- Department of Rheumatology , University of Patras Medical School, Patras University Hospital, Patras, Greece
| |
Collapse
|
25
|
Xue D, Tabib T, Morse C, Yang Y, Domsic R, Khanna D, Lafyatis R. Expansion of Fcγ Receptor IIIa-Positive Macrophages, Ficolin 1-Positive Monocyte-Derived Dendritic Cells, and Plasmacytoid Dendritic Cells Associated With Severe Skin Disease in Systemic Sclerosis. Arthritis Rheumatol 2022; 74:329-341. [PMID: 34042322 PMCID: PMC8626521 DOI: 10.1002/art.41813] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 04/07/2021] [Accepted: 05/11/2021] [Indexed: 02/03/2023]
Abstract
OBJECTIVE In this study, we sought a comprehensive understanding of myeloid cell types driving fibrosis in diffuse cutaneous systemic sclerosis (dcSSc) skin. METHODS We analyzed the transcriptomes of 2,465 myeloid cells from skin biopsy specimens from 12 dcSSc patients and 10 healthy control subjects using single-cell RNA sequencing. Monocyte-derived dendritic cells (mo-DCs) were assessed using immunohistochemical staining and immunofluorescence analyses targeting ficolin-1 (FCN-1). RESULTS A t-distributed stochastic neighbor embedding analysis of single-cell transcriptome data revealed 12 myeloid cell clusters, 9 of which paralleled previously described healthy control macrophage/DC clusters, and 3 of which were dcSSc-specific myeloid cell clusters. One SSc-associated macrophage cluster, highly expressing Fcγ receptor IIIA, was suggested on pseudotime analysis to be derived from normal CCR1+ and MARCO+ macrophages. A second SSc-associated myeloid population highly expressed monocyte markers FCN-1, epiregulin, S100A8, and S100A9, but was closely related to type 2 conventional DCs on pseudotime analysis and identified as mo-DCs. Mo-DCs were associated with more severe skin disease. Proliferating macrophages and plasmacytoid DCs were detected almost exclusively in dcSSc skin, the latter clustering with B cells and apparently derived from lymphoid progenitors. CONCLUSION Transcriptional signatures in these and other myeloid populations indicate innate immune system activation, possibly through Toll-like receptors and highly up-regulated chemokines. However, the appearance and activation of myeloid cells varies between patients, indicating potential differences in the underlying pathogenesis and/or temporal disease activity in dcSSc.
Collapse
Affiliation(s)
- Dan Xue
- Division of Rheumatology and Clinical Rheumatology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan
| | - Tracy Tabib
- Division of Rheumatology and Clinical Rheumatology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Christina Morse
- Division of Rheumatology and Clinical Rheumatology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yi Yang
- Department of Rheumatology and Immunology, Xiangya Hospital, Central South University, Changsha, Hunan
| | - Robyn Domsic
- Division of Rheumatology and Clinical Rheumatology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Dinesh Khanna
- Division of Rheumatology, Department of Medicine, University of Michigan, Ann Arbor, MI
| | - Robert Lafyatis
- Division of Rheumatology and Clinical Rheumatology, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
26
|
Skaug B, Lyons MA, Swindell WR, Salazar GA, Wu M, Tran TM, Charles J, Vershel CP, Mayes MD, Assassi S. Large-scale analysis of longitudinal skin gene expression in systemic sclerosis reveals relationships of immune cell and fibroblast activity with skin thickness and a trend towards normalisation over time. Ann Rheum Dis 2021; 81:516-523. [PMID: 34937693 DOI: 10.1136/annrheumdis-2021-221352] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/29/2021] [Indexed: 11/04/2022]
Abstract
OBJECTIVES Determine relationships between skin gene expression and systemic sclerosis (SSc) clinical disease features, and changes in skin gene expression over time. METHODS A total of 339 forearm skin biopsies were obtained from 113 SSc patients and 44 matched healthy controls. 105 SSc patients had a second biopsy, and 76 had a third biopsy. Global gene expression profiling was performed, and differentially expressed genes and cell type-specific signatures in SSc were evaluated for relationships to modified Rodnan Skin Score (mRSS) and other clinical variables. Changes in skin gene expression over time were analysed by mixed effects models and principal component analysis. Immunohistochemical staining was performed to validate conclusions. RESULTS Gene expression dysregulation was greater in SSc patients with affected skin than in those with unaffected skin. Immune cell and fibroblast signatures positively correlated with mRSS. High baseline immune cell and fibroblast signatures predicted higher mRSS over time, but were not independently predictive of longitudinal mRSS after adjustment for baseline mRSS. In early diffuse cutaneous SSc, immune cell and fibroblast signatures declined over time, and overall skin gene expression trended towards normalisation. On immunohistochemical staining, most early diffuse cutaneous SSc patients with high baseline T cell and macrophage numbers had declines in these numbers at follow-up. CONCLUSIONS Skin thickness in SSc is related to dysregulated immune cell and fibroblast gene expression. Skin gene expression changes over time in early diffuse SSc, with a tendency towards normalisation. These observations are relevant for understanding SSc pathogenesis and could inform treatment strategies and clinical trial design.
Collapse
Affiliation(s)
- Brian Skaug
- Division of Rheumatology, University of Texas Health Science Center Houston, McGovern Medical School, Houston, Texas, USA
| | - Marka A Lyons
- Division of Rheumatology, University of Texas Health Science Center Houston, McGovern Medical School, Houston, Texas, USA
| | - William R Swindell
- Department of Internal Medicine, The Jewish Hospital, Cincinnati, Ohio, USA
| | - Gloria A Salazar
- Division of Rheumatology, University of Texas Health Science Center Houston, McGovern Medical School, Houston, Texas, USA
| | - Minghua Wu
- Division of Rheumatology, University of Texas Health Science Center Houston, McGovern Medical School, Houston, Texas, USA
| | - Tuan M Tran
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Julio Charles
- Division of Rheumatology, University of Texas Health Science Center Houston, McGovern Medical School, Houston, Texas, USA
| | - Connor P Vershel
- Division of Rheumatology, University of Texas Health Science Center Houston, McGovern Medical School, Houston, Texas, USA
| | - Maureen D Mayes
- Division of Rheumatology, University of Texas Health Science Center Houston, McGovern Medical School, Houston, Texas, USA
| | - Shervin Assassi
- Division of Rheumatology, University of Texas Health Science Center Houston, McGovern Medical School, Houston, Texas, USA
| |
Collapse
|
27
|
Kim SK, Jung SM, Park KS, Kim KJ. Integrative analysis of lung molecular signatures reveals key drivers of idiopathic pulmonary fibrosis. BMC Pulm Med 2021; 21:404. [PMID: 34876074 PMCID: PMC8650281 DOI: 10.1186/s12890-021-01749-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/16/2021] [Indexed: 11/10/2022] Open
Abstract
Background Idiopathic pulmonary fibrosis (IPF) is a devastating disease with a high clinical burden. The molecular signatures of IPF were analyzed to distinguish molecular subgroups and identify key driver genes and therapeutic targets. Methods Thirteen datasets of lung tissue transcriptomics including 585 IPF patients and 362 normal controls were obtained from the databases and subjected to filtration of differentially expressed genes (DEGs). A functional enrichment analysis, agglomerative hierarchical clustering, network-based key driver analysis, and diffusion scoring were performed, and the association of enriched pathways and clinical parameters was evaluated. Results A total of 2,967 upregulated DEGs was filtered during the comparison of gene expression profiles of lung tissues between IPF patients and healthy controls. The core molecular network of IPF featured p53 signaling pathway and cellular senescence. IPF patients were classified into two molecular subgroups (C1, C2) via unsupervised clustering. C1 was more enriched in the p53 signaling pathway and ciliated cells and presented a worse prognostic score, while C2 was more enriched for cellular senescence, profibrosing pathways, and alveolar epithelial cells. The p53 signaling pathway was closely correlated with a decline in forced vital capacity and carbon monoxide diffusion capacity and with the activation of cellular senescence. CDK1/2, CKDNA1A, CSNK1A1, HDAC1/2, FN1, VCAM1, and ITGA4 were the key regulators as evidence by high diffusion scores in the disease module. Currently available and investigational drugs showed differential diffusion scores in terms of their target molecules. Conclusions An integrative molecular analysis of IPF lungs identified two molecular subgroups with distinct pathobiological characteristics and clinical prognostic scores. Inhibition against CDKs or HDACs showed great promise for controlling lung fibrosis. This approach provided molecular insights to support the prediction of clinical outcomes and the selection of therapeutic targets in IPF patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12890-021-01749-3.
Collapse
Affiliation(s)
- Sung Kyoung Kim
- Division of Pulmonology, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seung Min Jung
- Division of Rheumatology, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Kyung-Su Park
- Division of Rheumatology, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Ki-Jo Kim
- Division of Rheumatology, Department of Internal Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea. .,Division of Rheumatology, Department of Internal Medicine, St. Vincent's Hospital, The Catholic University of Korea, 93 Jungbu-daero, Paldal-gu, Suwon, Gyeonggi-do, 16247, Republic of Korea.
| |
Collapse
|
28
|
Hinchcliff M, Garcia-Milian R, Di Donato S, Dill K, Bundschuh E, Galdo FD. Cellular and Molecular Diversity in Scleroderma. Semin Immunol 2021; 58:101648. [PMID: 35940960 DOI: 10.1016/j.smim.2022.101648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
With the increasing armamentarium of high-throughput tools available at manageable cost, it is attractive and informative to determine the molecular underpinnings of patient heterogeneity in systemic sclerosis (SSc). Given the highly variable clinical outcomes of patients labelled with the same diagnosis, unravelling the cellular and molecular basis of disease heterogeneity will be crucial to predicting disease risk, stratifying management and ultimately informing a patient-centered precision medicine approach. Herein, we summarise the findings of the past several years in the fields of genomics, transcriptomics, and proteomics that contribute to unraveling the cellular and molecular heterogeneity of SSc. Expansion of these findings and their routine integration with quantitative analysis of histopathology and imaging studies into clinical care promise to inform a scientifically driven patient-centred personalized medicine approach to SSc in the near future.
Collapse
Affiliation(s)
- Monique Hinchcliff
- Yale School of Medicine, Department of Internal Medicine, Section of Rheumatology, Allergy & Immunology, USA.
| | | | - Stefano Di Donato
- Raynaud's and Scleroderma Programme, Leeds Institute of Rheumatic and Musculoskeletal Medicine and NIHR Biomedical Research Centre, University of Leeds, UK
| | | | - Elizabeth Bundschuh
- Yale School of Medicine, Department of Internal Medicine, Section of Rheumatology, Allergy & Immunology, USA
| | - Francesco Del Galdo
- Raynaud's and Scleroderma Programme, Leeds Institute of Rheumatic and Musculoskeletal Medicine and NIHR Biomedical Research Centre, University of Leeds, UK.
| |
Collapse
|
29
|
Nevskaya T, Pope JE, Turk MA, Shu J, Marquardt A, van den Hoogen F, Khanna D, Fransen J, Matucci-Cerinic M, Baron M, Denton CP, Johnson SR. Systematic Analysis of the Literature in Search of Defining Systemic Sclerosis Subsets. J Rheumatol 2021; 48:1698-1717. [PMID: 33993109 PMCID: PMC10613330 DOI: 10.3899/jrheum.201594] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2021] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Systemic sclerosis (SSc) is a multisystem disease with heterogeneity in presentation and prognosis.An international collaboration to develop new SSc subset criteria is underway. Our objectives were to identify systems of SSc subset classification and synthesize novel concepts to inform development of new criteria. METHODS Medline, Cochrane MEDLINE, the Cumulative Index to Nursing and Allied Health Literature, EMBASE, and Web of Science were searched from their inceptions to December 2019 for studies related to SSc subclassification, limited to humans and without language or sample size restrictions. RESULTS Of 5686 citations, 102 studies reported original data on SSc subsets. Subset classification systems relied on extent of skin involvement and/or SSc-specific autoantibodies (n = 61), nailfold capillary patterns (n = 29), and molecular, genomic, and cellular patterns (n = 12). While some systems of subset classification confer prognostic value for clinical phenotype, severity, and mortality, only subsetting by gene expression signatures in tissue samples has been associated with response to therapy. CONCLUSION Subsetting on extent of skin involvement remains important. Novel disease attributes including SSc-specific autoantibodies, nailfold capillary patterns, and tissue gene expression signatures have been proposed as innovative means of SSc subsetting.
Collapse
Affiliation(s)
- Tatiana Nevskaya
- T. Nevskaya, MD, PhD, J.E. Pope, MD, MPH, M.A. Turk, MSc, J. Shu, MD, HBSc, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Janet E Pope
- T. Nevskaya, MD, PhD, J.E. Pope, MD, MPH, M.A. Turk, MSc, J. Shu, MD, HBSc, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Matthew A Turk
- T. Nevskaya, MD, PhD, J.E. Pope, MD, MPH, M.A. Turk, MSc, J. Shu, MD, HBSc, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Jenny Shu
- T. Nevskaya, MD, PhD, J.E. Pope, MD, MPH, M.A. Turk, MSc, J. Shu, MD, HBSc, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - April Marquardt
- A. Marquardt, DO, D. Khanna, MD, MS, University of Michigan, Ann Arbor, Michigan, USA
| | - Frank van den Hoogen
- F. van den Hoogen, MD, PhD, St. Maartenskliniek and Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Dinesh Khanna
- A. Marquardt, DO, D. Khanna, MD, MS, University of Michigan, Ann Arbor, Michigan, USA
| | - Jaap Fransen
- J. Fransen, MSc, PhD, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Marco Matucci-Cerinic
- M. Matucci-Cerinic, MD, PhD, Department of Experimental and Clinical Medicine & Division of Rheumatology AOUC, Florence Italy University of Florence, Florence, Italy
| | - Murray Baron
- M. Baron, MD, McGill University, Division Head Rheumatology, Jewish General Hospital, Montreal, Quebec, Canada
| | - Christopher P Denton
- C.P. Denton, FRCP, PhD, University College London, Division of Medicine, London, UK
| | - Sindhu R Johnson
- S.R. Johnson, MD, PhD, Toronto Scleroderma Program, Toronto Western and Mount Sinai Hospitals, Department of Medicine, and Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
30
|
Thoreau B, Chaigne B, Renaud A, Mouthon L. Treatment of systemic sclerosis. Presse Med 2021; 50:104088. [PMID: 34718109 DOI: 10.1016/j.lpm.2021.104088] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 10/20/2021] [Indexed: 12/29/2022] Open
Abstract
Systemic sclerosis (SSc) is a rare connective tissue disease characterized by skin and visceral fibrosis, vascular hyperreactivity and obliterative vasculopathy. Some of its complications such as interstitial lung disease (ILD), pulmonary arterial hypertension (PAH) and heart involvement can be life-threatening and are associated with a high mortality and a poor prognosis. Many clinical trials were carried out in order to improve the survival and prognosis of SSc patients. The management of SSc is based on the frequent and regular assessment of the potential organ damage, and if present, the establishment of graduated pharmacological therapeutic strategies, associated with non-pharmacological procedures. Several randomized clinical trials have showed significant positive outcomes regarding some specific involvements. Many advances have been made, especially in the field of targeted therapies and personalized medicine, based on specific characteristics of the patient and the SSc.
Collapse
Affiliation(s)
- Benjamin Thoreau
- Institut Cochin, INSERM U1016, CNRS UMR 8104, Université de Paris; Service de Médecine Interne, Centre de Référence Maladies Systémiques Autoimmunes Rares d'Ile de France, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Benjamin Chaigne
- Institut Cochin, INSERM U1016, CNRS UMR 8104, Université de Paris; Service de Médecine Interne, Centre de Référence Maladies Systémiques Autoimmunes Rares d'Ile de France, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Arthur Renaud
- Institut Cochin, INSERM U1016, CNRS UMR 8104, Université de Paris; Service de Médecine Interne, Centre de Compétence Maladies Systémiques Autoimmunes Rares, CHU de Nantes, Nantes, France
| | - Luc Mouthon
- Institut Cochin, INSERM U1016, CNRS UMR 8104, Université de Paris; Service de Médecine Interne, Centre de Référence Maladies Systémiques Autoimmunes Rares d'Ile de France, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France.
| |
Collapse
|
31
|
Abstract
From the clinical standpoint, systemic sclerosis (SSc) is characterized by skin and internal organ fibrosis, diffuse fibroproliferative vascular modifications, and autoimmunity. Clinical presentation and course are highly heterogenous and life expectancy variably affected mostly dependent on lung and heart involvement. SSc touches more women than men with differences in disease severity and environmental exposure. Pathogenetic events originate from altered homeostasis favored by genetic predisposition, environmental cues and a variety of endogenous and exogenous triggers. Epigenetic modifications modulate SSc pathogenesis which strikingly associate profound immune-inflammatory dysregulation, abnormal endothelial cell behavior, and cell trans-differentiation into myofibroblasts. SSc myofibroblasts show enhanced survival and enhanced extracellular matrix deposition presenting altered structure and altered physicochemical properties. Additional cell types of likely pathogenic importance are pericytes, platelets, and keratinocytes in conjunction with their relationship with vessel wall cells and fibroblasts. In SSc, the profibrotic milieu is favored by cell signaling initiated in the one hand by transforming growth factor-beta and related cytokines and in the other hand by innate and adaptive type 2 immune responses. Radical oxygen species and invariant receptors sensing danger participate to altered cell behavior. Conventional and SSc-specific T cell subsets modulate both fibroblasts as well as endothelial cell dysfunction. Beside autoantibodies directed against ubiquitous antigens important for enhanced clinical classification, antigen-specific agonistic autoantibodies may have a pathogenic role. Recent studies based on single-cell RNAseq and multi-omics approaches are revealing unforeseen heterogeneity in SSc cell differentiation and functional states. Advances in system biology applied to the wealth of data generated by unbiased screening are allowing to subgroup patients based on distinct pathogenic mechanisms. Deciphering heterogeneity in pathogenic mechanisms will pave the way to highly needed personalized therapeutic approaches.
Collapse
|
32
|
Wasson CW, Ross RL, Morton R, Mankouri J, Del Galdo F. The intracellular chloride channel 4 (CLIC4) activates systemic sclerosis fibroblasts. Rheumatology (Oxford) 2021; 60:4395-4400. [PMID: 33331912 DOI: 10.1093/rheumatology/keaa797] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/26/2020] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVES Tissue fibrosis in SSc is driven by active fibroblasts (myofibroblasts). Previous studies have shown the intracellular chloride channel 4 (CLIC4) mediates the activation of cancer-associated fibroblasts. In this study we investigated the role of CLIC4 in SSc fibroblast activation. METHODS Fibroblasts were obtained from full thickness skin biopsies from SSc patients (early-diffuse). RNA and protein were collected from the fibroblasts and CLIC4 transcript and protein levels were assessed by qPCR and western blot. SSc patient fibroblasts were treated with the chloride channel inhibitors nitro-2-(3-phenylpropylamino)benzoic acid and indyanyloxyacetic acid 94. RESULTS CLIC4 was expressed at significantly higher levels in SSc patients' fibroblasts compared with healthy controls, at both the transcript (3.7-fold) and protein (1.7-fold) levels. Inhibition of the TGF-β receptor and its downstream transcription factor SMAD3 led to a reduction in CLIC4 expression, confirming this pathway as the main driver of CLIC4 expression. Importantly, treatment of SSc fibroblasts with known pharmacological inhibitors of CLIC4 led to reduced expression of the myofibroblast markers collagen type 1 and α-smooth muscle actin, inferring a direct role for CLIC4 in disease pathogenesis. CONCLUSIONS We have identified a novel role for CLIC4 in SSc myofibroblast activation, which strengthens the similarities of SSc fibroblasts with cancer-associated fibroblasts and highlights this channel as a novel target for therapeutic intervention.
Collapse
Affiliation(s)
- Christopher W Wasson
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Rebecca L Ross
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Ruth Morton
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK
| | - Jamel Mankouri
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Francesco Del Galdo
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, Faculty of Medicine and Health, University of Leeds, Leeds, UK.,Scleroderma Programme, NIHR Leeds Biomedical Research Centre, Leeds, UK
| |
Collapse
|
33
|
Rusek M, Krasowska D. Non-Coding RNA in Systemic Sclerosis: A Valuable Tool for Translational and Personalized Medicine. Genes (Basel) 2021; 12:1296. [PMID: 34573278 PMCID: PMC8471866 DOI: 10.3390/genes12091296] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/17/2021] [Accepted: 08/23/2021] [Indexed: 02/06/2023] Open
Abstract
Epigenetic factors are heritable and ultimately play a role in modulating gene expression and, thus, in regulating cell functions. Non-coding RNAs have growing recognition as novel biomarkers and crucial regulators of pathological conditions in humans. Their characteristic feature is being transcribed in a tissue-specific pattern. Now, there is emerging evidence that lncRNAs have been identified to be involved in the differentiation of human skin, wound healing, fibrosis, inflammation, and immunological response. Systemic sclerosis (SSc) is a heterogeneous autoimmune disease characterized by fibrosis, vascular abnormalities, and immune system activation. The pathogenesis remains elusive, but clinical manifestations reveal autoimmunity with the presence of specific autoantibodies, activation of innate and adaptive immunity, vascular changes, and active deposition of extracellular matrix components leading to fibrosis. The use of multi-omics studies, including NGS, RNA-seq, or GWAS, has proposed that the non-coding genome may be a significant player in its pathogenesis. Moreover, it may unravel new therapeutic targets in the future. The aim of this review is to show the pathogenic role of long non-coding RNAs in systemic sclerosis. Investigation of these transcripts' functions has the potential to elucidate the molecular pathology of SSc and provide new opportunities for drug-targeted therapy for this disorder.
Collapse
Affiliation(s)
- Marta Rusek
- Department of Dermatology, Venereology and Pediatric Dermatology, Laboratory for Immunology of Skin Diseases, Medical University of Lublin, 20-080 Lublin, Poland;
- Department of Pathophysiology, Medical University of Lublin, 20-090 Lublin, Poland
| | - Dorota Krasowska
- Department of Dermatology, Venereology and Pediatric Dermatology, Laboratory for Immunology of Skin Diseases, Medical University of Lublin, 20-080 Lublin, Poland;
| |
Collapse
|
34
|
Insights Into Systemic Sclerosis from Gene Expression Profiling. CURRENT TREATMENT OPTIONS IN RHEUMATOLOGY 2021. [DOI: 10.1007/s40674-021-00183-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
35
|
Tabib T, Huang M, Morse N, Papazoglou A, Behera R, Jia M, Bulik M, Monier DE, Benos PV, Chen W, Domsic R, Lafyatis R. Myofibroblast transcriptome indicates SFRP2 hi fibroblast progenitors in systemic sclerosis skin. Nat Commun 2021; 12:4384. [PMID: 34282151 PMCID: PMC8289865 DOI: 10.1038/s41467-021-24607-6] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 06/11/2021] [Indexed: 12/14/2022] Open
Abstract
Skin and lung fibrosis in systemic sclerosis (SSc) is driven by myofibroblasts, alpha-smooth muscle actin expressing cells. The number of myofibroblasts in SSc skin correlates with the modified Rodnan skin score, the most widely used clinical measure of skin disease severity. Murine fibrosis models indicate that myofibroblasts can arise from a variety of different cell types, but their origin in SSc skin has remained uncertain. Utilizing single cell RNA-sequencing, we define different dermal fibroblast populations and transcriptome changes, comparing SSc to healthy dermal fibroblasts. Here, we show that SSc dermal myofibroblasts arise in two steps from an SFRP2hi/DPP4-expressing progenitor fibroblast population. In the first step, SSc fibroblasts show globally upregulated expression of transcriptome markers, such as PRSS23 and THBS1. A subset of these cells shows markers indicating that they are proliferating. Only a fraction of SFRP2hi SSc fibroblasts differentiate into myofibroblasts, as shown by expression of additional markers, SFRP4 and FNDC1. Bioinformatics analysis of the SSc fibroblast transcriptomes implicated upstream transcription factors, including FOSL2, RUNX1, STAT1, FOXP1, IRF7 and CREB3L1, as well as SMAD3, driving SSc myofibroblast differentiation. Myofibroblasts drive fibrosis in systemic sclerosis (SSc), but the cellular progenitors are unknown. Utilizing single cell RNA-sequencing, the authors show that SSc dermal myofibroblasts arise in a two-step process from SFRP2/DPP4-expressing progenitors and implicate upstream transcription factors.
Collapse
Affiliation(s)
- Tracy Tabib
- Division of Rheumatology and Clinical Immunology, School of Medicine, University of Pittsburgh, Department of Medicine, Pittsburgh, PA, USA
| | - Mengqi Huang
- Division of Rheumatology and Clinical Immunology, School of Medicine, University of Pittsburgh, Department of Medicine, Pittsburgh, PA, USA
| | - Nina Morse
- Division of Rheumatology and Clinical Immunology, School of Medicine, University of Pittsburgh, Department of Medicine, Pittsburgh, PA, USA
| | - Anna Papazoglou
- Division of Rheumatology and Clinical Immunology, School of Medicine, University of Pittsburgh, Department of Medicine, Pittsburgh, PA, USA
| | - Rithika Behera
- Division of Rheumatology and Clinical Immunology, School of Medicine, University of Pittsburgh, Department of Medicine, Pittsburgh, PA, USA
| | - Minxue Jia
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,Joint CMU-Pitt PhD Program in Computational Biology, Pittsburgh, PA, USA
| | - Melissa Bulik
- Division of Rheumatology and Clinical Immunology, School of Medicine, University of Pittsburgh, Department of Medicine, Pittsburgh, PA, USA
| | - Daisy E Monier
- Division of Rheumatology and Clinical Immunology, School of Medicine, University of Pittsburgh, Department of Medicine, Pittsburgh, PA, USA
| | - Panayiotis V Benos
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,Joint CMU-Pitt PhD Program in Computational Biology, Pittsburgh, PA, USA
| | - Wei Chen
- Division of Pulmonary Medicine, Allergy and Immunology, Department of Pediatrics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Robyn Domsic
- Division of Rheumatology and Clinical Immunology, School of Medicine, University of Pittsburgh, Department of Medicine, Pittsburgh, PA, USA
| | - Robert Lafyatis
- Division of Rheumatology and Clinical Immunology, School of Medicine, University of Pittsburgh, Department of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
36
|
Clark KEN, Campochiaro C, Csomor E, Taylor A, Nevin K, Galwey N, Morse MA, Singh J, Teo YV, Ong VH, Derrett-Smith E, Wisniacki N, Flint SM, Denton CP. Molecular basis for clinical diversity between autoantibody subsets in diffuse cutaneous systemic sclerosis. Ann Rheum Dis 2021; 80:1584-1593. [PMID: 34230031 DOI: 10.1136/annrheumdis-2021-220402] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 06/25/2021] [Indexed: 11/03/2022]
Abstract
OBJECTIVES Clinical heterogeneity is a cardinal feature of systemic sclerosis (SSc). Hallmark SSc autoantibodies are central to diagnosis and associate with distinct patterns of skin-based and organ-based complications. Understanding molecular differences between patients will benefit clinical practice and research and give insight into pathogenesis of the disease. We aimed to improve understanding of the molecular differences between key diffuse cutaneous SSc subgroups as defined by their SSc-specific autoantibodies METHODS: We have used high-dimensional transcriptional and proteomic analysis of blood and the skin in a well-characterised cohort of SSc (n=52) and healthy controls (n=16) to understand the molecular basis of clinical diversity in SSc and explore differences between the hallmark antinuclear autoantibody (ANA) reactivities. RESULTS Our data define a molecular spectrum of SSc based on skin gene expression and serum protein analysis, reflecting recognised clinical subgroups. Moreover, we show that antitopoisomerase-1 antibodies and anti-RNA polymerase III antibodies specificities associate with remarkably different longitudinal change in serum protein markers of fibrosis and divergent gene expression profiles. Overlapping and distinct disease processes are defined using individual patient pathway analysis. CONCLUSIONS Our findings provide insight into clinical diversity and imply pathogenetic differences between ANA-based subgroups. This supports stratification of SSc cases by ANA antibody subtype in clinical trials and may explain different outcomes across ANA subgroups in trials targeting specific pathogenic mechanisms.
Collapse
Affiliation(s)
| | - Corrado Campochiaro
- Centre for Rheumatology and Connective Tissue Diseases, UCL Division of Medicine, London, UK
| | - Eszter Csomor
- Clinical Pharmacology & Experimental Medicine, GlaxoSmithKline Research and Development, Stevenage, UK
| | - Adam Taylor
- Clinical Pharmacology & Experimental Medicine, GlaxoSmithKline Research and Development, Stevenage, UK
| | - Katherine Nevin
- Clinical Pharmacology & Experimental Medicine, GlaxoSmithKline Research and Development, Stevenage, UK
| | - Nicholas Galwey
- Clinical Pharmacology & Experimental Medicine, GlaxoSmithKline Research and Development, Stevenage, UK
| | - Mary A Morse
- Clinical Pharmacology & Experimental Medicine, GlaxoSmithKline Research and Development, Stevenage, UK
| | - Jennifer Singh
- Clinical Pharmacology & Experimental Medicine, GlaxoSmithKline Research and Development, Stevenage, UK
| | - Yee Voan Teo
- Clinical Pharmacology & Experimental Medicine, GlaxoSmithKline Research and Development, Stevenage, UK
| | - Voon H Ong
- Centre for Rheumatology and Connective Tissue Diseases, UCL Division of Medicine, London, UK
| | - Emma Derrett-Smith
- Centre for Rheumatology and Connective Tissue Diseases, UCL Division of Medicine, London, UK
| | - Nicolas Wisniacki
- Clinical Pharmacology & Experimental Medicine, GlaxoSmithKline Research and Development, Stevenage, UK
| | - Shaun M Flint
- Clinical Pharmacology & Experimental Medicine, GlaxoSmithKline Research and Development, Stevenage, UK
| | - Christopher P Denton
- Centre for Rheumatology and Connective Tissue Diseases, UCL Division of Medicine, London, UK
| |
Collapse
|
37
|
Rozier P, Maumus M, Bony C, Maria ATJ, Sabatier F, Jorgensen C, Guilpain P, Noël D. Extracellular Vesicles Are More Potent Than Adipose Mesenchymal Stromal Cells to Exert an Anti-Fibrotic Effect in an In Vitro Model of Systemic Sclerosis. Int J Mol Sci 2021; 22:ijms22136837. [PMID: 34202139 PMCID: PMC8269376 DOI: 10.3390/ijms22136837] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 12/14/2022] Open
Abstract
Systemic sclerosis (SSc) is a complex disorder resulting from dysregulated interactions between the three main pathophysiological axes: fibrosis, immune dysfunction, and vasculopathy, with no specific treatment available to date. Adipose tissue-derived mesenchymal stromal cells (ASCs) and their extracellular vesicles (EVs) have proved efficacy in pre-clinical murine models of SSc. However, their precise action mechanism is still not fully understood. Because of the lack of availability of fibroblasts isolated from SSc patients (SSc-Fb), our aim was to determine whether a TGFβ1-induced model of human myofibroblasts (Tβ-Fb) could reproduce the characteristics of SSc-Fb and be used to evaluate the anti-fibrotic function of ASCs and their EVs. We found out that Tβ-Fb displayed the main morphological and molecular features of SSc-Fb, including the enlarged hypertrophic morphology and expression of several markers associated with the myofibroblastic phenotype. Using this model, we showed that ASCs were able to regulate the expression of most myofibroblastic markers on Tβ-Fb and SSc-Fb, but only when pre-stimulated with TGFβ1. Of interest, ASC-derived EVs were more effective than parental cells for improving the myofibroblastic phenotype. In conclusion, we provided evidence that Tβ-Fb are a relevant model to mimic the main characteristics of SSc fibroblasts and investigate the mechanism of action of ASCs. We further reported that ASC-EVs are more effective than parental cells suggesting that the TGFβ1-induced pro-fibrotic environment may alter the function of ASCs.
Collapse
Affiliation(s)
- Pauline Rozier
- INSERM U1183, Hôpital Saint-Eloi, IRMB, University of Montpellier, 80 Avenue Augustin Fliche, CEDEX 5, 34295 Montpellier, France; (P.R.); (M.M.); (C.B.); (C.J.); (P.G.)
| | - Marie Maumus
- INSERM U1183, Hôpital Saint-Eloi, IRMB, University of Montpellier, 80 Avenue Augustin Fliche, CEDEX 5, 34295 Montpellier, France; (P.R.); (M.M.); (C.B.); (C.J.); (P.G.)
| | - Claire Bony
- INSERM U1183, Hôpital Saint-Eloi, IRMB, University of Montpellier, 80 Avenue Augustin Fliche, CEDEX 5, 34295 Montpellier, France; (P.R.); (M.M.); (C.B.); (C.J.); (P.G.)
| | | | - Florence Sabatier
- INSERM, INRA, C2VN, Aix Marseille University, 13005 Marseille, France;
| | - Christian Jorgensen
- INSERM U1183, Hôpital Saint-Eloi, IRMB, University of Montpellier, 80 Avenue Augustin Fliche, CEDEX 5, 34295 Montpellier, France; (P.R.); (M.M.); (C.B.); (C.J.); (P.G.)
- Clinical Immunology and Osteoarticular Disease Therapeutic Unit, Department of Rheumatology, CHU, 34295 Montpellier, France
| | - Philippe Guilpain
- INSERM U1183, Hôpital Saint-Eloi, IRMB, University of Montpellier, 80 Avenue Augustin Fliche, CEDEX 5, 34295 Montpellier, France; (P.R.); (M.M.); (C.B.); (C.J.); (P.G.)
- Department of Internal Medicine, Multi-Organic Diseases, CHU, 34295 Montpellier, France;
| | - Danièle Noël
- INSERM U1183, Hôpital Saint-Eloi, IRMB, University of Montpellier, 80 Avenue Augustin Fliche, CEDEX 5, 34295 Montpellier, France; (P.R.); (M.M.); (C.B.); (C.J.); (P.G.)
- Clinical Immunology and Osteoarticular Disease Therapeutic Unit, Department of Rheumatology, CHU, 34295 Montpellier, France
- Correspondence: ; Tel.: +33-4-67-33-04-73; Fax: +33-4-67-33-01-13
| |
Collapse
|
38
|
Ota Y, Kuwana M. Updates on genetics in systemic sclerosis. Inflamm Regen 2021; 41:17. [PMID: 34130729 PMCID: PMC8204536 DOI: 10.1186/s41232-021-00167-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/24/2021] [Indexed: 12/15/2022] Open
Abstract
Systemic sclerosis (SSc) is a complex disease, in which an interaction of genetic and environmental factors plays an important role in its development and pathogenesis. A number of genetic studies, including candidate gene analysis and genome-wide association study, have found that the associated genetic variants are mainly localized in noncoding regions in the expression quantitative trait locus and influence corresponding gene expression. The gene variants identified as a risk for SSc susceptibility include those associated with innate immunity, adaptive immune response, and cell death, while there are only few SSc-associated genes involved in the fibrotic process or vascular homeostasis. Human leukocyte antigen class II genes are associated with SSc-related autoantibodies rather than SSc itself. Since the pathways between the associated genotype and phenotype are still poorly understood, further investigations using multi-omics technologies are necessary to characterize the complex molecular architecture of SSc, identify biomarkers useful to predict future outcomes and treatment responses, and discover effective drug targets.
Collapse
Affiliation(s)
- Yuko Ota
- Department of Allergy and Rheumatology, Nippon Medical School Graduate School of Medicine, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8603-8582, Japan
| | - Masataka Kuwana
- Department of Allergy and Rheumatology, Nippon Medical School Graduate School of Medicine, 1-1-5 Sendagi, Bunkyo-ku, Tokyo, 113-8603-8582, Japan.
| |
Collapse
|
39
|
Talia J, Bitar C, Wang Y, Whitfield ML, Khanna D. A Case of Recalcitrant Linear Morphea Responding to Subcutaneous Abatacept. JOURNAL OF SCLERODERMA AND RELATED DISORDERS 2021; 6:194-198. [PMID: 34337154 PMCID: PMC8320776 DOI: 10.1177/2397198320983240] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/02/2020] [Indexed: 11/15/2022]
Abstract
INTRODUCTION Linear morphea is an inflammatory condition that is often treated with systemic glucocorticoids and methotrexate, with mycophenolate mofetil being used as an alternative agent. However, there are few published reports on beneficial effect of abatacept for refractory disease. We present a case of a woman in her 30s who presented with linear morphea on her scalp, with a notable response following the addition of subcutaneous abatacept. METHODS Computational analysis was performed comparing the immune cell scores of skin biopsies from 5 morphea skin biopsies from 3 unique patients and 15 healthy control skin biopsies. P < 0.05 was considered statistically significant. RESULTS Immune cell scores demonstrated a statistically significant enrichment of activated CD4 memory T cells, M1 macrophages, monocytes, and memory B cells comparing skin biopsies of morphea vs healthy controls (p < 0.05 for all). DISCUSSION Abatacept may be considered for recalcitrant cases of morphea. Our computational analysis supports a well-designed study to assess abatacept as first line therapy.
Collapse
Affiliation(s)
- Jordan Talia
- Department of Dermatology, University of
Michigan, Ann Arbor, MI, USA
| | - Carole Bitar
- Department of Pathology, University of
Michigan, Ann Arbor, MI, USA
| | - Yue Wang
- Department of Biomedical Data Science and
Department of Molecular & Systems Biology, Dartmouth Geisel School of Medicine, Hanover,
NH, USA
| | - Michael L Whitfield
- Department of Biomedical Data Science and
Department of Molecular & Systems Biology, Dartmouth Geisel School of Medicine, Hanover,
NH, USA
| | - Dinesh Khanna
- Division of Rheumatology, Department of
Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
40
|
Gaydosik AM, Tabib T, Domsic R, Khanna D, Lafyatis R, Fuschiotti P. Single-cell transcriptome analysis identifies skin-specific T-cell responses in systemic sclerosis. Ann Rheum Dis 2021; 80:1453-1460. [PMID: 34031030 DOI: 10.1136/annrheumdis-2021-220209] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 05/08/2021] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Although T cells have been implicated in the pathogenesis of systemic sclerosis (SSc), a comprehensive study of T-cell-mediated immune responses in the affected skin of patients with progressive SSc is lacking. Droplet-based single-cell transcriptome analysis of SSc skin biopsies opens avenues for dissecting patient-specific T-cell heterogeneity, providing a basis for identifying novel gene expression related to functional pathways associated with severity of SSc skin disease. METHODS Single-cell RNA sequencing was performed by droplet-based sequencing (10x Genomics), focusing on 3729 CD3+ lymphocytes (867 cells from normal and 2862 cells from SSc skin samples) from skin biopsies of 27 patients with active SSc and 10 healthy donors. Confocal immunofluorescence microscopy of progressive SSc skin samples validated transcriptional results and visualised spatial localisations of T-cell subsets. RESULTS We identified several subsets of recirculating and tissue-resident T cells in healthy and SSc skin that were associated with distinct signalling pathways. While most clusters shared a common gene expression signature between patients and controls, we identified a unique cluster of recirculating CXCL13+ T cells in SSc skin which expressed a T helper follicular-like gene expression signature and that appears to be poised to promote B-cell responses within the inflamed skin of patients. CONCLUSIONS Current available therapies to reverse or even slow progression of SSc lead to broad killing of immune cells and consequent toxicities, including death. Identifying the precise immune mechanism(s) driving SSc pathogenesis could lead to innovative therapies that selectively target the aberrant immune response, resulting in better efficacy and less toxicity.
Collapse
Affiliation(s)
- Alyxzandria M Gaydosik
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Tracy Tabib
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Robyn Domsic
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Dinesh Khanna
- Division of Rheumatology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Robert Lafyatis
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Patrizia Fuschiotti
- Division of Rheumatology and Clinical Immunology, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
41
|
Mendoza FA, Piera-Velazquez S, Jimenez SA. Tyrosine kinases in the pathogenesis of tissue fibrosis in systemic sclerosis and potential therapeutic role of their inhibition. Transl Res 2021; 231:139-158. [PMID: 33422651 DOI: 10.1016/j.trsl.2021.01.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 12/09/2020] [Accepted: 01/04/2021] [Indexed: 12/30/2022]
Abstract
Systemic sclerosis (SSc) is an idiopathic autoimmune disease with a heterogeneous clinical phenotype ranging from limited cutaneous involvement to rapidly progressive diffuse SSc. The most severe SSc clinical and pathologic manifestations result from an uncontrolled fibrotic process involving the skin and various internal organs. The molecular mechanisms responsible for the initiation and progression of the SSc fibrotic process have not been fully elucidated. Recently it has been suggested that tyrosine protein kinases play a role. The implicated kinases include receptor-activated tyrosine kinases and nonreceptor tyrosine kinases. The receptor kinases are activated following specific binding of growth factors (platelet-derived growth factor, fibroblast growth factor, or vascular endothelial growth factor). Other receptor kinases are the discoidin domain receptors activated by binding of various collagens, the ephrin receptors that are activated by ephrins and the angiopoetin-Tie-2s receptors. The nonreceptor tyrosine kinases c-Abl, Src, Janus, and STATs have also been shown to participate in SSc-associated tissue fibrosis. Currently, there are no effective disease-modifying therapies for SSc-associated tissue fibrosis. Therefore, extensive investigation has been conducted to examine whether tyrosine kinase inhibitors (TKIs) may exert antifibrotic effects. Here, we review the role of receptor and nonreceptor tyrosine kinases in the pathogenesis of the frequently progressive cutaneous and systemic fibrotic alterations in SSc, and the potential of TKIs as SSc disease-modifying antifibrotic therapeutic agents.
Collapse
Affiliation(s)
- Fabian A Mendoza
- Rheumatology Division, Department of Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania; Jefferson Institute of Molecular Medicine and Scleroderma Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Sonsoles Piera-Velazquez
- Jefferson Institute of Molecular Medicine and Scleroderma Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Sergio A Jimenez
- Jefferson Institute of Molecular Medicine and Scleroderma Center, Thomas Jefferson University, Philadelphia, Pennsylvania.
| |
Collapse
|
42
|
Novel classifications for systemic sclerosis: challenging historical subsets to unlock new doors. Curr Opin Rheumatol 2021; 32:463-471. [PMID: 32941248 DOI: 10.1097/bor.0000000000000747] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW Systemic sclerosis (SSc) is a severe rheumatic disease characterized by a considerable heterogeneity in clinical presentations and pathophysiological mechanisms. This variability has a substantial impact on morbidity and mortality and limits the generalizability of clinical trial results. This review aims to highlight recent studies that have proposed new innovative approaches to decipher this heterogeneity, in particular, by attempting to optimize disease classification. RECENT FINDINGS The historical dichotomy limited/diffuse subsets based on cutaneous involvement has been challenged by studies highlighting an underestimated heterogeneity between these two subtypes and showing that presence of organ damage and autoantibody profiles markedly influenced survival beyond skin extension. Advanced computational methods using unsupervised machine learning analyses of clinical variables and/or high-throughput omics technologies, clinical variables trajectories modelling overtime or radiomics have provided significant insights on key pathogenic processes that could help defining new subgroups beyond the diffuse/limited subsets. SUMMARY We can anticipate that a future classification of SSc patients will integrate innovative approaches encompassing clinical phenotypes, variables trajectories, serological features and innovative omics molecular signatures. It nevertheless seems crucial to also pursue the implementation and standardization of readily available and easy to use tools that can be used in clinical practice.
Collapse
|
43
|
Inamo J. Association of differentially expressed genes and autoantibody type in patients with systemic sclerosis. Rheumatology (Oxford) 2021; 60:929-939. [PMID: 32911535 DOI: 10.1093/rheumatology/keaa447] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 06/21/2020] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES The aims of this study were to investigate the relationship between the type of autoantibody and gene expression profile in skin lesions from patients with SSc, and to identify specific dysregulated pathways in SSc patients compared with healthy controls. METHODS Sixty-one patients with SSc from the Genetics vs Environment in Scleroderma Outcome Study cohort and 36 healthy controls were included in this study. Differentially expressed genes were extracted and functional enrichment and pathway analysis were conducted. RESULTS Compared with healthy controls, lists containing 2, 71, 10, 144 and 78 differentially expressed genes were created for patients without specific autoantibody, ACA, anti-U1 RNP antibody (RNP), anti-RNA polymerase III antibody (RNAP) and anti-topoisomerase I antibody (ATA), respectively. While part of the enriched pathways overlapped, distinct pathways were identified except in those patients lacking specific autoantibody. The distinct enriched pathways included 'keratinocyte differentiation' for ACA, 'nuclear factor κB signalling' and 'cellular response to TGF-β stimulus' for RNAP, 'interferon α/β signalling' for RNP, and 'cellular response to stress' for ATA. Cell type signature score analysis revealed that macrophages/monocytes, endothelial cells and fibroblasts were associated with ACA, RNAP, ATA and the severity of the SSc skin lesions. CONCLUSION Pathogenic pathways were identified according to the type of autoantibody by leveraging gene expression data of patients and controls from a multicentre cohort. The current study may promote the search for new therapeutic targets for SSc.
Collapse
Affiliation(s)
- Jun Inamo
- Division of Rheumatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
44
|
Schutt C, Mirizio E, Salgado C, Reyes-Mugica M, Wang X, Chen W, Grunwaldt L, Schollaert KL, Torok KS. Transcriptomic Evaluation of Juvenile Localized Scleroderma Skin With Histologic and Clinical Correlation. Arthritis Rheumatol 2021; 73:1921-1930. [PMID: 33844442 DOI: 10.1002/art.41758] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 04/01/2021] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Juvenile localized scleroderma (LS) is an autoimmune disease of the skin whose pathogenesis is not well understood due to the rarity of the disease. This study was undertaken to determine the skin transcriptome in skin biopsy tissue from children with juvenile LS compared to pediatric healthy controls, with identification of significant molecular targets using RNA sequencing (RNA-Seq). In this study, differentially expressed genes (DEGs) were assessed for correlations with histopathologic and clinical features in children with juvenile LS, and were used to group the children into distinct genetic clusters based on immunophenotype. METHODS RNA-Seq was performed on sections of paraffin-embedded skin tissue obtained from 28 children with juvenile LS and 10 pediatric healthy controls. RNA-Seq was carried out using an Illumina HTS TruSeq RNA Access library prep kit, with data aligned using STAR and data analysis using a DESeq2 platform. A standardized histologic scoring system was used to score skin sections for the severity of inflammation and levels of collagen deposition. Histologic scoring was completed by 2 pathologists who were blinded with regard to the status of each sample. Spearman's rank correlation coefficients were used to assess significant correlations between DEG expression profiles and skin histologic findings in patients with juvenile LS. RESULTS We identified 589 significant DEGs in children with juvenile LS as compared to healthy controls. Hierarchical clustering was used to demonstrate 3 distinct juvenile LS immunophenotype clusters. The histologic scores of skin inflammation (based on numbers and categories of inflammatory cell infiltrates) were significantly correlated with the expression levels of HLA-DPB1, HLA-DQA2, HLA-DRA, and STAT1 genes (rs > 0.5, P < 0.01). Collagen thickness correlated with the expression levels of collagen organization genes as well as with genes found to be correlated with the severity of inflammation, including genes for major histocompatibility complex (MHC) class I, MHC class II, and interferon-γ signaling. CONCLUSION Among children with juvenile LS, 3 distinct genetic signatures, or clusters, were identified. In one cluster, inflammation-related pathways were up-regulated, corresponding to the histologic skin inflammation score. In the second cluster, fibrosis-related pathways were up-regulated. In the third cluster, gene expression in the skin corresponded to the patterns seen in healthy controls. Up-regulation of HLA class II genes was observed within the first cluster (characterized by predominant inflammation), a feature that has also been observed in the peripheral blood of patients with morphea and in the skin of patients with systemic sclerosis.
Collapse
Affiliation(s)
- Christina Schutt
- University of Pittsburgh Medical Center, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, and University of Rochester MedicalCenter and Golisano Children's Hospital, Rochester, New York
| | | | - Claudia Salgado
- University of Pittsburgh Medical Center, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Miguel Reyes-Mugica
- University of Pittsburgh Medical Center, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Xinjun Wang
- University of Pittsburgh Medical Center, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Wei Chen
- University of Pittsburgh, University of Pittsburgh Medical Center, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Lorelei Grunwaldt
- University of Pittsburgh Medical Center, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Kathryn S Torok
- University of Pittsburgh, University of Pittsburgh Medical Center, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
45
|
Whitfield ML. Moving towards a molecular categorization of autoimmune disease. Nat Rev Rheumatol 2021; 17:193-194. [PMID: 33654308 DOI: 10.1038/s41584-021-00589-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Michael L Whitfield
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA.
| |
Collapse
|
46
|
B cells in systemic sclerosis: from pathophysiology to treatment. Clin Rheumatol 2021; 40:2621-2631. [PMID: 33745085 DOI: 10.1007/s10067-021-05665-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/17/2021] [Accepted: 02/21/2021] [Indexed: 01/13/2023]
Abstract
Systemic sclerosis is a debilitating autoimmune disease with unknown pathogenesis. The clinical phenotype of fibrosis is preceded by vascular and immunologic aberrations. Adaptive immunity has been extensively studied in patients with the disease and B cells appear to be dysregulated. This is evident in peripheral blood B cell subsets, with activated effector B cells and impaired B regulatory function. In addition, B cells infiltrate target organs and tissues of patients with the disease, such as the skin and the lung, indicating a probable role in the pathogenesis. Impaired B cell homeostasis explains the rationale behind B cell therapeutic targeting. Indeed, several studies in recent years have shown that depletion of B cells appears to be a promising treatment alongside current established therapeutic choices, such as mycophenolate. In this review, B cell aberrations in animal models and human patients with systemic sclerosis will be presented. Moreover, we will also summarize current existing data regarding therapeutic targeting of the B cells in systemic sclerosis.
Collapse
|
47
|
Zamanian RT, Badesch D, Chung L, Domsic RT, Medsger T, Pinckney A, Keyes-Elstein L, D'Aveta C, Spychala M, White RJ, Hassoun PM, Torres F, Sweatt AJ, Molitor JA, Khanna D, Maecker H, Welch B, Goldmuntz E, Nicolls MR. Safety and Efficacy of B-Cell Depletion with Rituximab for the Treatment of Systemic Sclerosis-associated Pulmonary Arterial Hypertension: A Multicenter, Double-Blind, Randomized, Placebo-controlled Trial. Am J Respir Crit Care Med 2021; 204:209-221. [PMID: 33651671 PMCID: PMC8650794 DOI: 10.1164/rccm.202009-3481oc] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Rationale: Systemic sclerosis (SSc)-pulmonary arterial hypertension (PAH) is one of the most prevalent and deadly forms of PAH. B cells may contribute to SSc pathogenesis. Objectives: We investigated the safety and efficacy of B-cell depletion for SSc-PAH. Methods: In an NIH-sponsored, multicenter, double-blinded, randomized, placebo-controlled, proof-of-concept trial, 57 patients with SSc-PAH on stable-dose standard medical therapy received two infusions of 1,000 mg rituximab or placebo administered 2 weeks apart. The primary outcome measure was the change in 6-minute-walk distance (6MWD) at 24 weeks. Secondary endpoints included safety and invasive hemodynamics. We applied a machine learning approach to predict drug responsiveness. Measurements and Main Results: We randomized 57 subjects from 2010 to 2018. In the primary analysis, using data through Week 24, the adjusted mean change in 6MWD at 24 weeks favored the treatment arm but did not reach statistical significance (23.6 ± 11.1 m vs. 0.5 ± 9.7 m; P = 0.12). Although a negative study, when data through Week 48 were also considered, the estimated change in 6MWD at Week 24 was 25.5 ± 8.8 m for rituximab and 0.4 ± 7.4 m for placebo (P = 0.03). Rituximab treatment appeared to be safe and well tolerated. Low levels of RF (rheumatoid factor), IL-12, and IL-17 were sensitive and specific as favorable predictors of a rituximab response as measured by an improved 6MWD (receiver operating characteristic area under the curve, 0.88-0.95). Conclusions: B-cell depletion therapy is a potentially effective and safe adjuvant treatment for SSc-PAH. Future studies in these patients can confirm whether the identified biomarkers predict rituximab responsiveness. Clinical trial registered with www.clinicaltrails.gov (NCT01086540).
Collapse
Affiliation(s)
- Roham T Zamanian
- Division of Pulmonary, Allergy, and Critical Care Medicine and.,Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford, California
| | - David Badesch
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Lorinda Chung
- Division of Pulmonary, Allergy, and Critical Care Medicine and.,Division of Rheumatology and Immunology, Stanford University, Stanford University School of Medicine, Stanford, California
| | - Robyn T Domsic
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Thomas Medsger
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | | | | | - Carla D'Aveta
- Rho Federal Systems Division, Durham, North Carolina
| | | | - R James White
- Division of Pulmonary and Critical Care Medicine, University of Rochester, Rochester, New York
| | - Paul M Hassoun
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Fernando Torres
- Division of Pulmonary and Critical Care Medicine, University of Texas Southwestern, Dallas, Texas
| | - Andrew J Sweatt
- Division of Pulmonary, Allergy, and Critical Care Medicine and.,Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford, California
| | - Jerry A Molitor
- Division of Rheumatic and Autoimmune Diseases, University of Minnesota, Minneapolis, Minnesota
| | - Dinesh Khanna
- Division of Rheumatology, University of Michigan, Ann Arbor, Michigan
| | - Holden Maecker
- Division of Pulmonary, Allergy, and Critical Care Medicine and
| | - Beverly Welch
- National Institute of Allergy and Infectious Diseases, Bethesda, Maryland; and
| | - Ellen Goldmuntz
- National Institute of Allergy and Infectious Diseases, Bethesda, Maryland; and
| | - Mark R Nicolls
- Division of Pulmonary, Allergy, and Critical Care Medicine and.,Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford, California.,Veterans Affairs Palo Alto Health Care System, Palo Alto, California
| |
Collapse
|
48
|
Tom K, Mehta BK, Hoffmann A, Aren K, Carns M, Lee J, Martyanov V, Popovich D, Kosarek N, Wood T, Brenner D, Carlson DA, Ostilla L, Willcocks E, Bryce P, Wechsler JB, Whitfield ML, Hinchcliff M. Mast Cell Activation in the Systemic Sclerosis Esophagus. JOURNAL OF SCLERODERMA AND RELATED DISORDERS 2021; 6:77-86. [PMID: 34179507 PMCID: PMC8225255 DOI: 10.1177/2397198320941322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/11/2020] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Previously, we discovered similar esophageal gene expression patterns in patients with systemic sclerosis (SSc) and eosinophilic esophagitis (EoE) where eosinophil/mast cell-targeted therapies are beneficial. Because SSc and EoE patients experience similar esophageal symptoms, we hypothesized that eosinophil/mast cell-directed therapy may potentially benefit SSc patients. Herein, we determine the association between esophageal mast cell quantities, gene expression and clinical parameters in order to identify SSc patients who may benefit from eosinophil/mast cell-directed therapy. METHODS Esophageal biopsies from SSc patients and healthy participants were stained for tryptase, a mast cell marker, and associations with relevant clinical parameters including 24h esophageal pH testing were assessed. Intra-epithelial mast cell density was quantified by semi-automated microscopy. Microarray data were utilized for functional and gene set enrichment analyses and to identify intrinsic subset (IS) assignment, an SSc molecular classification system that includes inflammatory, proliferative, limited and normal-like subsets. RESULTS Esophageal biopsies from 40 SSc patients (39 receiving proton pump inhibition) and eleven healthy participants were studied. Mast cell numbers in both the upper esophagus (rs = 0.638, p = 0.004) and the entire (upper + lower) esophagus (rs = 0.562, p = 0.019) significantly correlated with acid exposure time percentage. The inflammatory, fibroproliferative, and normal-like ISs originally defined in skin biopsies were identified in esophageal biopsies. Although esophageal mast cell numbers in SSc patients and healthy participants were similar, gene expression for mast cell-related pathways showed significant upregulation in the inflammatory IS of SSc patients compared to patients classified as proliferative or normal-like. DISCUSSION Esophageal mast cell numbers are heterogeneous in SSc patients and may correlate with acid exposure. Patients with inflammatory IS profiles in the esophagus demonstrate more tryptase staining. Mast cell targeted therapy may be a useful therapeutic approach in SSc patients belonging to the inflammatory IS, but additional studies are warranted.
Collapse
Affiliation(s)
- Kevin Tom
- Midwestern University, Chicago College of Osteopathic Medicine, 555 31 Street, Downers Grove, IL 60515
- Northwestern University Feinberg School of Medicine, Department of Medicine, Division of Rheumatology, McGaw Pavilion, 240 E. Huron Street, Suite M-300
| | - Bhaven K Mehta
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Aileen Hoffmann
- Northwestern University Feinberg School of Medicine, Department of Medicine, Division of Rheumatology, McGaw Pavilion, 240 E. Huron Street, Suite M-300
| | - Kathleen Aren
- Northwestern University Feinberg School of Medicine, Department of Medicine, Division of Rheumatology, McGaw Pavilion, 240 E. Huron Street, Suite M-300
| | - Mary Carns
- Northwestern University Feinberg School of Medicine, Department of Medicine, Division of Rheumatology, McGaw Pavilion, 240 E. Huron Street, Suite M-300
| | - Jungwha Lee
- Department of Preventive Medicine, 680 N. Lake Shore Drive, Suite 1400
- Institute for Public Health and Medicine, 633 N. St. Clair Street, 18th Floor
| | - Viktor Martyanov
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Dillon Popovich
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Noelle Kosarek
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Tammara Wood
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Darren Brenner
- Division of Gastroenterology, 676 N. St. Clair Street, Suite 1400
| | - Dustin A Carlson
- Division of Gastroenterology, 676 N. St. Clair Street, Suite 1400
| | - Lorena Ostilla
- Division of Allergy and Immunology, 240 E. Huron Street, McGaw Pavilion, Suite M-300, Chicago, IL 60611
| | - Emma Willcocks
- Division of Allergy and Immunology, 240 E. Huron Street, McGaw Pavilion, Suite M-300, Chicago, IL 60611
| | - Paul Bryce
- Division of Allergy and Immunology, 240 E. Huron Street, McGaw Pavilion, Suite M-300, Chicago, IL 60611
- Northwestern University Feinberg School of Medicine, Department of Pediatrics, Division of Gastroenterology, Hepatology & Nutrition, 225 E. Chicago, Box 65, Chicago, IL 60611
- Immunology & Inflammation Therapeutic Area, Sanofi US, Cambridge, MA 02139
| | - Joshua B Wechsler
- Division of Allergy and Immunology, 240 E. Huron Street, McGaw Pavilion, Suite M-300, Chicago, IL 60611
- Northwestern University Feinberg School of Medicine, Department of Pediatrics, Division of Gastroenterology, Hepatology & Nutrition, 225 E. Chicago, Box 65, Chicago, IL 60611
| | - Michael L Whitfield
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Monique Hinchcliff
- Northwestern University Feinberg School of Medicine, Department of Medicine, Division of Rheumatology, McGaw Pavilion, 240 E. Huron Street, Suite M-300
- Yale School of Medicine, Department of Medicine, Section of Rheumatology, Allergy & Immunology, 300 Cedar Street, The Anylan Center, PO BOX 208031, New Haven, CT 06473
| |
Collapse
|
49
|
Worrell JC, Leslie J, Smith GR, Zaki MYW, Paish HL, Knox A, James ML, Cartwright TN, O'Reilly S, Kania G, Distler O, Distler JHW, Herrick AL, Jeziorska M, Borthwick LA, Fisher AJ, Mann J, Mann DA, Oakley F. cRel expression regulates distinct transcriptional and functional profiles driving fibroblast matrix production in systemic sclerosis. Rheumatology (Oxford) 2021; 59:3939-3951. [PMID: 32725139 DOI: 10.1093/rheumatology/keaa272] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/24/2020] [Indexed: 11/12/2022] Open
Abstract
OBJECTIVES NF-κB regulates genes that control inflammation, cell proliferation, differentiation and survival. Dysregulated NF-κB signalling alters normal skin physiology and deletion of cRel limits bleomycin-induced skin fibrosis. This study investigates the role of cRel in modulating fibroblast phenotype in the context of SSc. METHODS Fibrosis was assessed histologically in mice challenged with bleomycin to induce lung or skin fibrosis. RNA sequencing and pathway analysis was performed on wild type and Rel-/- murine lung and dermal fibroblasts. Functional assays examined fibroblast proliferation, migration and matrix production. cRel overexpression was investigated in human dermal fibroblasts. cRel immunostaining was performed on lung and skin tissue sections from SSc patients and non-fibrotic controls. RESULTS cRel expression was elevated in murine lung and skin fibrosis models. Rel-/- mice were protected from developing pulmonary fibrosis. Soluble collagen production was significantly decreased in fibroblasts lacking cRel while proliferation and migration of these cells was significantly increased. cRel regulates genes involved in extracellular structure and matrix organization. Positive cRel staining was observed in fibroblasts in human SSc skin and lung tissue. Overexpression of constitutively active cRel in human dermal fibroblasts increased expression of matrix genes. An NF-κB gene signature was identified in diffuse SSc skin and nuclear cRel expression was elevated in SSc skin fibroblasts. CONCLUSION cRel regulates a pro-fibrogenic transcriptional programme in fibroblasts that may contribute to disease pathology. Targeting cRel signalling in fibroblasts of SSc patients could provide a novel therapeutic avenue to limit scar formation in this disease.
Collapse
Affiliation(s)
- Julie C Worrell
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne
| | - Jack Leslie
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne
| | - Graham R Smith
- Bioinformatics Support Unit, Newcastle University, Newcastle upon Tyne, UK
| | - Marco Y W Zaki
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne.,Biochemistry Department, Faculty of Pharmacy, Minia University, Egypt
| | - Hannah L Paish
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne
| | - Amber Knox
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne
| | - Michelle L James
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne
| | - Tyrell N Cartwright
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne
| | - Steven O'Reilly
- Department of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK
| | - Gabriela Kania
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, Zurich, Switzerland
| | - Oliver Distler
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, Zurich, Switzerland
| | - Jörg H W Distler
- Department of Internal Medicine III and Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Ariane L Herrick
- Centre for Musculoskeletal Research, The University of Manchester, Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester
| | - Maria Jeziorska
- Division of Cardiovascular Sciences, University of Manchester, Manchester
| | - Lee A Borthwick
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne
| | - Andrew J Fisher
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne.,Institute of Transplantation, The Freeman Hospital, High Heaton, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Jelena Mann
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne
| | - Derek A Mann
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne
| | - Fiona Oakley
- Newcastle Fibrosis Research Group, Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne
| |
Collapse
|
50
|
Yaseen B, Lopez H, Taki Z, Zafar S, Rosario H, Abdi BA, Vigneswaran S, Xing F, Arumalla N, Black S, Ahmad S, Kumar K, Gul R, Scolamiero L, Morris S, Bowman A, Stainer A, Rice A, Stock C, Renzoni E, Denton CP, Venturini C, Brown M, O'Reilly S, Stratton R. Interleukin-31 promotes pathogenic mechanisms underlying skin and lung fibrosis in scleroderma. Rheumatology (Oxford) 2021; 59:2625-2636. [PMID: 32365362 DOI: 10.1093/rheumatology/keaa195] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 03/19/2020] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES Cytokines released by infiltrating T cells may promote mechanisms leading to fibrosis in scleroderma. The aim of this study was to investigate the role of the Th2 cytokine IL-31, and its receptor IL-31RA, in scleroderma skin and lung fibrosis. METHODS IL-31 was measured by ELISA of plasma, and by immunochemistry of fibrotic skin and lung tissue of scleroderma patients. The receptor, IL-31RA, was assayed by qPCR of tissue resident cells. Next-generation sequencing was used to profile the responses of normal skin fibroblasts to IL-31. In wild-type Balb/c mice, IL-31 was administered by subcutaneous mini pump, with or without additional TGFβ, and the fibrotic reaction measured by histology and ELISA of plasma. RESULTS IL-31 was present at high levels in plasma and fibrotic skin and lung lesions in a subset of scleroderma patients, and the receptor overexpressed by downstream cells relevant to the disease process, including skin and lung fibroblasts, through loss of epigenetic regulation by miR326. In skin fibroblasts, IL-31 induced next generation sequencing profiles associated with cellular growth and proliferation, anaerobic metabolism and mineralization, and negatively associated with angiogenesis and vascular repair, as well as promoting phenotype changes including migration and collagen protein release via pSTAT3, resembling the activation state in the disease. In mice, IL-31 induced skin and lung fibrosis. No synergy was seen with TGFβ, which supressed IL-31RA. CONCLUSION IL-31/IL-31RA is confirmed as a candidate pro-fibrotic pathway, which may contribute to skin and lung fibrosis in a subset of scleroderma patients.
Collapse
Affiliation(s)
- Bodoor Yaseen
- Centre for Rheumatology and Connective Tissue Diseases, Royal Free Hospital Campus, University College London Medical School, London, UK
| | - Henry Lopez
- Centre for Rheumatology and Connective Tissue Diseases, Royal Free Hospital Campus, University College London Medical School, London, UK.,MuriGenics, Inc, Vallejo, CA, USA
| | - Zeinab Taki
- Centre for Rheumatology and Connective Tissue Diseases, Royal Free Hospital Campus, University College London Medical School, London, UK
| | - Sara Zafar
- Centre for Rheumatology and Connective Tissue Diseases, Royal Free Hospital Campus, University College London Medical School, London, UK
| | - Henrique Rosario
- Centre for Rheumatology and Connective Tissue Diseases, Royal Free Hospital Campus, University College London Medical School, London, UK
| | - Bahja Ahmed Abdi
- Centre for Rheumatology and Connective Tissue Diseases, Royal Free Hospital Campus, University College London Medical School, London, UK
| | - Shivanee Vigneswaran
- Centre for Rheumatology and Connective Tissue Diseases, Royal Free Hospital Campus, University College London Medical School, London, UK
| | - Fiona Xing
- Centre for Rheumatology and Connective Tissue Diseases, Royal Free Hospital Campus, University College London Medical School, London, UK
| | - Nikita Arumalla
- Centre for Rheumatology and Connective Tissue Diseases, Royal Free Hospital Campus, University College London Medical School, London, UK
| | - Simon Black
- Centre for Rheumatology and Connective Tissue Diseases, Royal Free Hospital Campus, University College London Medical School, London, UK
| | - Sara Ahmad
- Centre for Rheumatology and Connective Tissue Diseases, Royal Free Hospital Campus, University College London Medical School, London, UK
| | - Kimti Kumar
- Centre for Rheumatology and Connective Tissue Diseases, Royal Free Hospital Campus, University College London Medical School, London, UK
| | - Rabia Gul
- Centre for Rheumatology and Connective Tissue Diseases, Royal Free Hospital Campus, University College London Medical School, London, UK
| | - Laura Scolamiero
- Centre for Rheumatology and Connective Tissue Diseases, Royal Free Hospital Campus, University College London Medical School, London, UK
| | - Sian Morris
- Centre for Rheumatology and Connective Tissue Diseases, Royal Free Hospital Campus, University College London Medical School, London, UK
| | - Alex Bowman
- Department of Respiratory Medicine, Imperial College London, Royal Brompton Campus
| | - Anna Stainer
- Department of Respiratory Medicine, Imperial College London, Royal Brompton Campus
| | - Alexandra Rice
- Department of Respiratory Medicine, Imperial College London, Royal Brompton Campus
| | - Carmel Stock
- Department of Respiratory Medicine, Imperial College London, Royal Brompton Campus
| | - Elisabetta Renzoni
- Department of Respiratory Medicine, Imperial College London, Royal Brompton Campus
| | - Christopher P Denton
- Centre for Rheumatology and Connective Tissue Diseases, Royal Free Hospital Campus, University College London Medical School, London, UK
| | | | - Max Brown
- Department of Health and Life Sciences, Northumbria University, Newcastle Upon Tyne, UK
| | - Steven O'Reilly
- Department of Health and Life Sciences, Northumbria University, Newcastle Upon Tyne, UK
| | - Richard Stratton
- Centre for Rheumatology and Connective Tissue Diseases, Royal Free Hospital Campus, University College London Medical School, London, UK
| |
Collapse
|