1
|
Ciubotariu II, Broyles BK, Xie S, Thimmapuram J, Mwenda MC, Mambwe B, Mulube C, Matoba J, Schue JL, Moss WJ, Bridges DJ, He Q, Carpi G. Diversity and selection analyses identify transmission-blocking antigens as the optimal vaccine candidates in Plasmodium falciparum. EBioMedicine 2024; 106:105227. [PMID: 39018754 DOI: 10.1016/j.ebiom.2024.105227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 07/19/2024] Open
Abstract
BACKGROUND A highly effective vaccine for malaria remains an elusive target, at least in part due to the under-appreciated natural parasite variation. This study aimed to investigate genetic and structural variation, and immune selection of leading malaria vaccine candidates across the Plasmodium falciparum's life cycle. METHODS We analysed 325 P. falciparum whole genome sequences from Zambia, in addition to 791 genomes from five other African countries available in the MalariaGEN Pf3k Database. Ten vaccine antigens spanning three life-history stages were examined for genetic and structural variations, using population genetics measures, haplotype network analysis, and 3D structure selection analysis. FINDINGS Among the ten antigens analysed, only three in the transmission-blocking vaccine category display P. falciparum 3D7 as the dominant haplotype. The antigens AMA1, CSP, MSP119 and CelTOS, are much more diverse than the other antigens, and their epitope regions are under moderate to strong balancing selection. In contrast, Rh5, a blood stage antigen, displays low diversity yet slightly stronger immune selection in the merozoite-blocking epitope region. Except for CelTOS, the transmission-blocking antigens Pfs25, Pfs48/45, Pfs230, Pfs47, and Pfs28 exhibit minimal diversity and no immune selection in epitopes that induce strain-transcending antibodies, suggesting potential effectiveness of 3D7-based vaccines in blocking transmission. INTERPRETATION These findings offer valuable insights into the selection of optimal vaccine candidates against P. falciparum. Based on our results, we recommend prioritising conserved merozoite antigens and transmission-blocking antigens. Combining these antigens in multi-stage approaches may be particularly promising for malaria vaccine development initiatives. FUNDING Purdue Department of Biological Sciences; Puskas Memorial Fellowship; National Institute of Allergy and Infectious Diseases (U19AI089680).
Collapse
Affiliation(s)
- Ilinca I Ciubotariu
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Bradley K Broyles
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA
| | - Shaojun Xie
- Bioinformatics Core, Purdue University, West Lafayette, IN, USA
| | | | - Mulenga C Mwenda
- PATH-Malaria Control and Elimination Partnership in Africa (MACEPA), National Malaria Elimination Centre, Lusaka, Zambia
| | - Brenda Mambwe
- PATH-Malaria Control and Elimination Partnership in Africa (MACEPA), National Malaria Elimination Centre, Lusaka, Zambia
| | - Conceptor Mulube
- PATH-Malaria Control and Elimination Partnership in Africa (MACEPA), National Malaria Elimination Centre, Lusaka, Zambia
| | | | - Jessica L Schue
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - William J Moss
- The W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA; Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | | | - Qixin He
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA.
| | - Giovanna Carpi
- Department of Biological Sciences, Purdue University, West Lafayette, IN, USA; Purdue Institute of Inflammation, Immunology and Infectious Disease, West Lafayette, IN, USA.
| |
Collapse
|
2
|
Natural Plasmodium falciparum Infection Stimulates Human Antibodies to MSP1 Epitopes Identified in Mice Infection Models upon Non-Natural Modified Peptidomimetic Vaccination. Molecules 2023; 28:molecules28062527. [PMID: 36985500 PMCID: PMC10057838 DOI: 10.3390/molecules28062527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 03/12/2023] Open
Abstract
(1) Background: Malaria, a vector-borne infectious disease, is caused by parasites of the Plasmodium genus, responsible for increased extreme morbidity and mortality rates. Despite advances in approved vaccines, full protection has not yet been achieved upon vaccination, thus the development of more potent and safe immuno-stimulating agents for malaria prevention is a goal to be urgently accomplished. We have focused our research on a strategy to identify Plasmodium spp. epitopes by naturally acquired human antibodies and rodent malaria infection models immunized with site-directed non-natural antigens. (2) Methods: Some predictive algorithms and bioinformatics tools resembling different biological environments, such as phagosome-lysosome proteolytic degradation, affinity, and the high frequency of malaria-resistant and -sensitive HLA-II alleles were regarded for the proper selection of epitopes and potential testing. Each epitope’s binding profile to both host cells and HLA-II molecules was considered for such initial screening. (3) Results: Once selected, we define each epitope-peptide to be synthesized in terms of size and hydrophobicity, and introduced peptide-bond surrogates and non-natural amino acids in a site-directed fashion, and then they were produced by solid-phase peptide synthesis. Molecules were then tested by their antigenic and immunogenic properties compared to human sera from Colombian malaria-endemic areas. The antigenicity and protective capacity of each epitope-peptide in a rodent infection model were examined. The ability of vaccinated mice after being challenged with P. berghei ANKA and P. yoelii 17XL to control malaria led to the determination of an immune stimulation involving Th1 and Th1/Th2 mechanisms. In silico molecular dynamics and modeling provided some interactions insights, leading to possible explanations for protection due to immunization. (4) Conclusions: We have found evidence for proposing MSP1-modified epitopes to be considered as neutralizing antibody stimulators that are useful as probes for the detection of Plasmodium parasites, as well as for sub-unit components of a site-directed designed malaria vaccine candidate.
Collapse
|
3
|
Thiam LG, Mangou K, Ba A, Mbengue A, Bei AK. Leveraging genome editing to functionally evaluate Plasmodium diversity. Trends Parasitol 2022; 38:558-571. [PMID: 35469746 DOI: 10.1016/j.pt.2022.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/20/2022] [Accepted: 03/21/2022] [Indexed: 12/13/2022]
Abstract
The ambitious goal of malaria elimination requires an in-depth understanding of the parasite's biology to counter the growing threat of antimalarial resistance and immune evasion. Timely assessment of the functional impact of antigenic diversity in the early stages of vaccine development will be critical for achieving the goal of malaria control, elimination, and ultimately eradication. Recent advances in targeted genome editing enabled the functional validation of resistance-associated markers in Plasmodium falciparum, the deadliest malaria-causing pathogen and strain-specific immune neutralization. This review explores recent advances made in leveraging genome editing to aid the functional evaluation of Plasmodium diversity and highlights how these techniques can assist in prioritizing both therapeutic and vaccine candidates.
Collapse
Affiliation(s)
- Laty Gaye Thiam
- G4 - Malaria Experimental Genetic Approaches & Vaccines, Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Dakar, Senegal
| | - Khadidiatou Mangou
- G4 - Malaria Experimental Genetic Approaches & Vaccines, Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Dakar, Senegal
| | - Aboubacar Ba
- G4 - Malaria Experimental Genetic Approaches & Vaccines, Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Dakar, Senegal
| | - Alassane Mbengue
- G4 - Malaria Experimental Genetic Approaches & Vaccines, Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Dakar, Senegal
| | - Amy K Bei
- G4 - Malaria Experimental Genetic Approaches & Vaccines, Pôle Immunophysiopathologie et Maladies Infectieuses, Institut Pasteur de Dakar, Dakar, Senegal; Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06510, USA.
| |
Collapse
|
4
|
Lozano JM, Rodríguez Parra Z, Hernández-Martínez S, Yasnot-Acosta MF, Rojas AP, Marín-Waldo LS, Rincón JE. The Search of a Malaria Vaccine: The Time for Modified Immuno-Potentiating Probes. Vaccines (Basel) 2021; 9:vaccines9020115. [PMID: 33540947 PMCID: PMC7913233 DOI: 10.3390/vaccines9020115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 12/25/2022] Open
Abstract
Malaria is a deadly disease that takes the lives of more than 420,000 people a year and is responsible for more than 229 million clinical cases globally. In 2019, 95% of malaria morbidity occurred in African countries. The development of a highly protective vaccine is an urgent task that remains to be solved. Many vaccine candidates have been developed, from the use of the entire attenuated and irradiated pre-erythrocytic parasite forms (or recombinantly expressed antigens thereof) to synthetic candidates formulated in a variety of adjuvants and delivery systems, however these have unfortunately proven a limited efficacy. At present, some vaccine candidates are finishing safety and protective efficacy trials, such as the PfSPZ and the RTS,S/AS01 which are being introduced in Africa. We propose a strategy for introducing non-natural elements into target antigens representing key epitopes of Plasmodium spp. Accordingly, chemical strategies and knowledge of host immunity to Plasmodium spp. have served as the basis. Evidence is obtained after being tested in experimental rodent models for malaria infection and recognized for human sera from malaria-endemic regions. This encourages us to propose such an immune-potentiating strategy to be further considered in the search for new vaccine candidates.
Collapse
Affiliation(s)
- José Manuel Lozano
- Grupo de Investigación Mimetismo Molecular de los Agentes Infecciosos, Departamento de Farmacia, Universidad Nacional de Colombia—Sede Bogotá, 111321 Bogota, Colombia;
- Correspondence: ; Tel.: +57-3102-504-657
| | - Zully Rodríguez Parra
- Grupo de Investigación Mimetismo Molecular de los Agentes Infecciosos, Departamento de Farmacia, Universidad Nacional de Colombia—Sede Bogotá, 111321 Bogota, Colombia;
| | - Salvador Hernández-Martínez
- Dirección de Infección e Inmunidad, Centro de Investigaciones Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, 62508 Cuernavaca, Morelos, Mexico;
| | - Maria Fernanda Yasnot-Acosta
- Grupo de Investigaciones Microbiológicas y Biomédicas de Córdoba, Universidad de Córdoba, 230002 Monteria, Colombia;
| | - Angela Patricia Rojas
- Grupo de Investigación Biología Celular y Autoinmuniad, Departamento de Farmacia, Universidad Nacional de Colombia-Sede Bogotá, 111321 Bogota, Colombia;
| | | | - Juan Edilberto Rincón
- Departamento de Ingeniería y Mecatrónica, Universidad Nacional de Colombia-Sede Bogotá, 111321 Bogota, Colombia;
| |
Collapse
|
5
|
Schneider CG, Taylor JA, Sibilo MQ, Miura K, Mallory KL, Mann C, Karch C, Beck Z, Matyas GR, Long CA, Bergmann-Leitner E, Burkhard P, Angov E. Orientation of Antigen Display on Self-Assembling Protein Nanoparticles Influences Immunogenicity. Vaccines (Basel) 2021; 9:vaccines9020103. [PMID: 33572803 PMCID: PMC7911071 DOI: 10.3390/vaccines9020103] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 11/16/2022] Open
Abstract
Self-assembling protein nanoparticles (SAPN) serve as a repetitive antigen delivery platform with high-density epitope display; however, antigen characteristics such as size and epitope presentation can influence the immunogenicity of the assembled particle and are aspects to consider for a rationally designed effective vaccine. Here, we characterize the folding and immunogenicity of heterogeneous antigen display by integrating (a) dual-stage antigen SAPN presenting the P. falciparum (Pf) merozoite surface protein 1 subunit, PfMSP119, and Pf cell-traversal protein for ookinetes and sporozoites, PfCelTOS, in addition to (b) a homogenous antigen SAPN displaying two copies of PfCelTOS. Mice and rabbits were utilized to evaluate antigen-specific humoral and cellular induction as well as functional antibodies via growth inhibition of the blood-stage parasite. We demonstrate that antigen orientation and folding influence the elicited immune response, and when appropriately designed, SAPN can serve as an adaptable platform for an effective multi-antigen display.
Collapse
Affiliation(s)
- Cosette G. Schneider
- Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (C.G.S.); (J.A.T.); (M.Q.S.); (K.L.M.); (C.M.); (E.B.-L.)
- Oak Ridge Institute for Science and Education, Oak Ridge, TN 37831, USA
| | - Justin A. Taylor
- Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (C.G.S.); (J.A.T.); (M.Q.S.); (K.L.M.); (C.M.); (E.B.-L.)
- Oak Ridge Institute for Science and Education, Oak Ridge, TN 37831, USA
| | - Michael Q. Sibilo
- Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (C.G.S.); (J.A.T.); (M.Q.S.); (K.L.M.); (C.M.); (E.B.-L.)
- Parsons Corporation, Centreville, VA 20120, USA
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Rockville, MD 20892, USA; (K.M.); (C.A.L.)
| | - Katherine L. Mallory
- Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (C.G.S.); (J.A.T.); (M.Q.S.); (K.L.M.); (C.M.); (E.B.-L.)
- Parsons Corporation, Centreville, VA 20120, USA
| | - Christopher Mann
- Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (C.G.S.); (J.A.T.); (M.Q.S.); (K.L.M.); (C.M.); (E.B.-L.)
- Parsons Corporation, Centreville, VA 20120, USA
| | - Christopher Karch
- Laboratory of Antigen and Adjuvants, US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (C.K.); (Z.B.); (G.R.M.)
- Henry Jackson Foundation, Bethesda, MD 20817, USA
| | - Zoltan Beck
- Laboratory of Antigen and Adjuvants, US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (C.K.); (Z.B.); (G.R.M.)
- Henry Jackson Foundation, Bethesda, MD 20817, USA
| | - Gary R. Matyas
- Laboratory of Antigen and Adjuvants, US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (C.K.); (Z.B.); (G.R.M.)
| | - Carole A. Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Rockville, MD 20892, USA; (K.M.); (C.A.L.)
| | - Elke Bergmann-Leitner
- Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (C.G.S.); (J.A.T.); (M.Q.S.); (K.L.M.); (C.M.); (E.B.-L.)
| | | | - Evelina Angov
- Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (C.G.S.); (J.A.T.); (M.Q.S.); (K.L.M.); (C.M.); (E.B.-L.)
- Correspondence: ; Tel.: +1-301-319-9614
| |
Collapse
|
6
|
Yepes-Pérez Y, López C, Suárez CF, Patarroyo MA. Plasmodium vivax Pv12 B-cell epitopes and HLA-DRβ1*-dependent T-cell epitopes in vitro antigenicity. PLoS One 2018; 13:e0203715. [PMID: 30199554 PMCID: PMC6130872 DOI: 10.1371/journal.pone.0203715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/24/2018] [Indexed: 11/18/2022] Open
Abstract
Malaria is an infectious disease caused by parasites from the genus Plasmodium (P. falciparum and P. vivax are responsible for 90% of all clinical cases); it is widely distributed throughout the world’s tropical and subtropical regions. The P. vivax Pv12 protein is involved in invasion, is expressed on merozoite surface and has been recognised by antibodies from individuals exposed to the disease. In this study, B- and T-cell epitopes from Pv12 were predicted and characterised to advance in the design of a peptide-based vaccine against malaria. For evaluating the humoral response of individuals exposed to natural P. vivax infection from two endemic areas in Colombia, BepiPred-1.0 software was used for selecting B-cell epitopes. B-cell epitope 39038 displayed the greatest recognition by naturally-acquired antibodies and induced an IgG2/IgG4 response. NetMHCIIpan-3.1 prediction software was used for selecting peptides having high affinity binding for HLA-DRβ1* allele lineages and this was confirmed by in-vitro binding assays. T-epitopes 39113 and 39117 triggered a memory T-cell response (Stimulation Index≥2) and significant cytokine production. Combining in-silico, in-vitro and functional assays, two Pv12 protein regions (containing peptides 39038, 39040, 39113 and 39117) have thus been characterised as promising vaccine candidates against P. vivax malaria.
Collapse
Affiliation(s)
- Yoelis Yepes-Pérez
- Molecular Biology and Immunology Department, Fundación Instituto de Immunología de Colombia (FIDIC), Bogotá D.C., Colombia
- MSc Programme in Microbiology, Universidad Nacional de Colombia, Bogotá D.C., Colombia
| | - Carolina López
- Molecular Biology and Immunology Department, Fundación Instituto de Immunología de Colombia (FIDIC), Bogotá D.C., Colombia
- PhD Programme in Biomedical and Biological Sciences, Universidad del Rosario, Bogotá D.C., Colombia
| | - Carlos Fernando Suárez
- Bio-mathematics Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá D.C., Colombia
- Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Bogotá D.C., Colombia
| | - Manuel Alfonso Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Immunología de Colombia (FIDIC), Bogotá D.C., Colombia
- Basic Sciences Department, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá D.C., Colombia
- * E-mail:
| |
Collapse
|
7
|
Mehrizi AA, Rezvani N, Zakeri S, Gholami A, Babaeekhou L. Poly(I:C) adjuvant strongly enhances parasite-inhibitory antibodies and Th1 response against Plasmodium falciparum merozoite surface protein-1 (42-kDa fragment) in BALB/c mice. Med Microbiol Immunol 2018; 207:151-166. [PMID: 29397427 DOI: 10.1007/s00430-018-0535-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 01/10/2018] [Indexed: 10/18/2022]
Abstract
Malaria vaccine development has been confronted with various challenges such as poor immunogenicity of malaria vaccine candidate antigens, which is considered as the main challenge. However, this problem can be managed using appropriate formulations of antigens and adjuvants. Poly(I:C) is a potent Th1 inducer and a human compatible adjuvant capable of stimulating both B- and T-cell immunity. Plasmodium falciparum merozoite surface protein 142 (PfMSP-142) is a promising vaccine candidate for blood stage of malaria that has faced several difficulties in clinical trials, mainly due to improper adjuvants. Therefore, in the current study, poly(I:C), as a potent Th1 inducer adjuvant, was evaluated to improve the immunogenicity of recombinant PfMSP-142, when compared to CFA/IFA, as reference adjuvant. Poly(I:C) produced high level and titers of anti-PfMSP-142 IgG antibodies in which was comparable to CFA/IFA adjuvant. In addition, PfMSP-142 formulated with poly(I:C) elicited a higher ratio of IFN-γ/IL-4 (23.9) and IgG2a/IgG1 (3.77) with more persistent, higher avidity, and titer of IgG2a relative to CFA/IFA, indicating a potent Th1 immune response. Poly(I:C) could also help to induce anti-PfMSP-142 antibodies with higher growth-inhibitory activity than CFA/IFA. Altogether, the results of the current study demonstrated that poly(I:C) is a potent adjuvant that can be appropriate for being used in PfMSP-142-based vaccine formulations.
Collapse
Affiliation(s)
- Akram Abouie Mehrizi
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, P.O. Box 1316943551, Tehran, Iran.
| | - Niloufar Rezvani
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, P.O. Box 1316943551, Tehran, Iran.,Department of Biology, Islamshahr Branch, Islamic Azad University, Islamshahr, Tehran, Iran
| | - Sedigheh Zakeri
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, P.O. Box 1316943551, Tehran, Iran
| | - Atefeh Gholami
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, P.O. Box 1316943551, Tehran, Iran
| | - Laleh Babaeekhou
- Department of Biology, Islamshahr Branch, Islamic Azad University, Islamshahr, Tehran, Iran
| |
Collapse
|
8
|
Ntege EH, Takashima E, Morita M, Nagaoka H, Ishino T, Tsuboi T. Blood-stage malaria vaccines: post-genome strategies for the identification of novel vaccine candidates. Expert Rev Vaccines 2017; 16:769-779. [PMID: 28604122 DOI: 10.1080/14760584.2017.1341317] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION An efficacious malaria vaccine is necessary to advance the current control measures towards malaria elimination. To-date, only RTS,S/AS01, a leading pre-erythrocytic stage vaccine completed phase 3 trials, but with an efficacy of 28-36% in children, and 18-26% in infants, that waned over time. Blood-stage malaria vaccines protect against disease, and are considered effective targets for the logical design of next generation vaccines to improve the RTS,S field efficacy. Therefore, novel blood-stage vaccine candidate discovery efforts are critical, albeit with several challenges including, high polymorphisms in vaccine antigens, poor understanding of targets of naturally protective immunity, and difficulties in the expression of high AT-rich plasmodial proteins. Areas covered: PubMed ( www.ncbi.nlm.nih.gov/pubmed ) was searched to review the progress and future prospects of malaria vaccine research and development. We focused on post-genome vaccine candidate discovery, malaria vaccine development, sequence diversity, pre-clinical and clinical trials. Expert commentary: Post-genome high-throughput technologies using wheat germ cell-free protein synthesis technology and immuno-profiling with sera from malaria patients with clearly defined outcomes are highlighted to overcome current challenges of malaria vaccine candidate discovery.
Collapse
Affiliation(s)
- Edward H Ntege
- a Division of Malaria Research , Proteo-Science Center, Ehime University , Matsuyama , Ehime , Japan
| | - Eizo Takashima
- a Division of Malaria Research , Proteo-Science Center, Ehime University , Matsuyama , Ehime , Japan
| | - Masayuki Morita
- a Division of Malaria Research , Proteo-Science Center, Ehime University , Matsuyama , Ehime , Japan
| | - Hikaru Nagaoka
- a Division of Malaria Research , Proteo-Science Center, Ehime University , Matsuyama , Ehime , Japan
| | - Tomoko Ishino
- b Division of Molecular Parasitology , Proteo-Science Center, Ehime University , Toon , Ehime , Japan
| | - Takafumi Tsuboi
- a Division of Malaria Research , Proteo-Science Center, Ehime University , Matsuyama , Ehime , Japan
| |
Collapse
|
9
|
A Plasmodium vivax Plasmid DNA- and Adenovirus-Vectored Malaria Vaccine Encoding Blood-Stage Antigens AMA1 and MSP1 42 in a Prime/Boost Heterologous Immunization Regimen Partially Protects Aotus Monkeys against Blood-Stage Challenge. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:CVI.00539-16. [PMID: 28179404 DOI: 10.1128/cvi.00539-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/06/2017] [Indexed: 01/30/2023]
Abstract
Malaria is caused by parasites of the genus Plasmodium, which are transmitted to humans by the bites of Anopheles mosquitoes. After the elimination of Plasmodium falciparum, it is predicted that Plasmodium vivax will remain an important cause of morbidity and mortality outside Africa, stressing the importance of developing a vaccine against P. vivax malaria. In this study, we assessed the immunogenicity and protective efficacy of two P. vivax antigens, apical membrane antigen 1 (AMA1) and the 42-kDa C-terminal fragment of merozoite surface protein 1 (MSP142) in a plasmid recombinant DNA prime/adenoviral (Ad) vector boost regimen in Aotus monkeys. Groups of 4 to 5 monkeys were immunized with plasmid DNA alone, Ad alone, prime/boost regimens with each antigen, prime/boost regimens with both antigens, and empty vector controls and then subjected to blood-stage challenge. The heterologous immunization regimen with the antigen pair was more protective than either antigen alone or both antigens delivered with a single vaccine platform, on the basis of their ability to induce the longest prepatent period and the longest time to the peak level of parasitemia, the lowest peak and mean levels of parasitemia, the smallest area under the parasitemia curve, and the highest self-cure rate. Overall, prechallenge MSP142 antibody titers strongly correlated with a decreased parasite burden. Nevertheless, a significant proportion of immunized animals developed anemia. In conclusion, the P. vivax plasmid DNA/Ad serotype 5 vaccine encoding blood-stage parasite antigens AMA1 and MSP142 in a heterologous prime/boost immunization regimen provided significant protection against blood-stage challenge in Aotus monkeys, indicating the suitability of these antigens and this regimen for further development.
Collapse
|
10
|
Ntege EH, Arisue N, Ito D, Hasegawa T, Palacpac NM, Egwang TG, Horii T, Takashima E, Tsuboi T. Identification of Plasmodium falciparum reticulocyte binding protein homologue 5-interacting protein, PfRipr, as a highly conserved blood-stage malaria vaccine candidate. Vaccine 2016; 34:5612-5622. [DOI: 10.1016/j.vaccine.2016.09.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 08/10/2016] [Accepted: 09/15/2016] [Indexed: 10/20/2022]
|
11
|
Persistence and immunogenicity of chemically attenuated blood stage Plasmodium falciparum in Aotus monkeys. Int J Parasitol 2016; 46:581-91. [PMID: 27238088 DOI: 10.1016/j.ijpara.2016.05.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 04/05/2016] [Accepted: 05/03/2016] [Indexed: 12/24/2022]
Abstract
Malaria is a disease caused by a protozoan of the Plasmodium genus and results in 0.5-0.7million deaths per year. Increasing drug resistance of the parasite and insecticide resistance of mosquitoes necessitate alternative control measures. Numerous vaccine candidates have been identified but none have been able to induce robust, long-lived protection when evaluated in malaria endemic regions. Rodent studies have demonstrated that chemically attenuated blood stage parasites can persist at sub-patent levels and induce homologous and heterologous protection against malaria. Parasite-specific cellular responses were detected, with protection dependent on CD4+ T cells. To investigate this vaccine approach for Plasmodium falciparum, we characterised the persistence and immunogenicity of chemically attenuated P. falciparum FVO strain parasites (CAPs) in non-splenectomised Aotus nancymaae monkeys following administration of a single dose. Control monkeys received either normal red blood cells or wild-type parasites followed by drug treatment. Chemical attenuation was performed using tafuramycin A, which irreversibly binds to DNA. CAPs were detected in the peripheral blood for up to 2days following inoculation as determined by thick blood smears, and for up to 8days as determined by quantitative PCR. Parasite-specific IgG was not detected in monkeys that received CAPs; however, in vitro parasite-specific T cell proliferation was observed. Following challenge, the CAP monkeys developed an infection; however, one CAP monkey and the infection and drug-cure monkeys showed partial or complete resistance. These experiments lay the groundwork for further assessment of CAPs as a potential vaccine against malaria.
Collapse
|
12
|
Ochola-Oyier LI, Okombo J, Wagatua N, Ochieng J, Tetteh KK, Fegan G, Bejon P, Marsh K. Comparison of allele frequencies of Plasmodium falciparum merozoite antigens in malaria infections sampled in different years in a Kenyan population. Malar J 2016; 15:261. [PMID: 27154310 PMCID: PMC4858837 DOI: 10.1186/s12936-016-1304-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/20/2016] [Indexed: 11/24/2022] Open
Abstract
Background Plasmodium falciparum merozoite antigens elicit antibody responses in malaria-endemic populations, some of which are clinically protective, which is one of the reasons why merozoite antigens are the focus of malaria vaccine development efforts. Polymorphisms in several merozoite antigen-encoding genes are thought to arise as a result of selection by the human immune system. Methods The allele frequency distribution of 15 merozoite antigens over a two-year period, 2007 and 2008, was examined in parasites obtained from children with uncomplicated malaria. In the same population, allele frequency changes pre- and post-anti-malarial treatment were also examined. Any gene which showed a significant shift in allele frequencies was also assessed longitudinally in asymptomatic and complicated malaria infections. Results Fluctuating allele frequencies were identified in codons 147 and 148 of reticulocyte-binding homologue (Rh) 5, with a shift from HD to YH haplotypes over the two-year period in uncomplicated malaria infections. However, in both the asymptomatic and complicated malaria infections YH was the dominant and stable haplotype over the two-year and ten-year periods, respectively. A logistic regression analysis of all three malaria infection populations between 2007 and 2009 revealed, that the chance of being infected with the HD haplotype decreased with time from 2007 to 2009 and increased in the uncomplicated and asymptomatic infections. Conclusion Rh5 codons 147 and 148 showed heterogeneity at both an individual and population level and may be under some degree of immune selection. Electronic supplementary material The online version of this article (doi:10.1186/s12936-016-1304-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - John Okombo
- KEMRI-Wellcome Trust Collaborative Programme, P.O. Box 230, Kilifi, 80108, Kenya
| | - Njoroge Wagatua
- KEMRI-Wellcome Trust Collaborative Programme, P.O. Box 230, Kilifi, 80108, Kenya
| | - Jacob Ochieng
- KEMRI-Wellcome Trust Collaborative Programme, P.O. Box 230, Kilifi, 80108, Kenya
| | - Kevin K Tetteh
- Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Greg Fegan
- KEMRI-Wellcome Trust Collaborative Programme, P.O. Box 230, Kilifi, 80108, Kenya
| | - Philip Bejon
- KEMRI-Wellcome Trust Collaborative Programme, P.O. Box 230, Kilifi, 80108, Kenya
| | - Kevin Marsh
- KEMRI-Wellcome Trust Collaborative Programme, P.O. Box 230, Kilifi, 80108, Kenya
| |
Collapse
|
13
|
Chiu CY, White MT, Healer J, Thompson JK, Siba PM, Mueller I, Cowman AF, Hansen DS. Different Regions of Plasmodium falciparum Erythrocyte-Binding Antigen 175 Induce Antibody Responses to Infection of Varied Efficacy. J Infect Dis 2016; 214:96-104. [PMID: 27020092 DOI: 10.1093/infdis/jiw119] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 03/18/2016] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Increasing evidence suggests that antibodies against merozoite proteins involved in Plasmodium falciparum invasion into the red blood cell play an important role in clinical immunity to malaria. Erythrocyte-binding antigen 175 (EBA-175) is the best-characterized P. falciparum invasion ligand, reported to recognize glycophorin A on the surface of erythrocytes. Its protein structure comprises 6 extracellular regions. Whereas region II contains Duffy binding-like domains involved in the binding to glycophorin A, the functional role of regions III-V is less clear. METHODS We developed a novel cytometric bead array for assessment of antigen-specific antibody concentration in plasma to evaluate the efficacy of immune responses to different regions of EBA-175 and associations between antibody levels with protection from symptomatic malaria in a treatment-reinfection cohort study. RESULTS We found that while antibodies to region II are highly abundant, circulating levels as low as 5-10 µg/mL of antibodies specific for region III or the highly conserved regions IV-V predict strong protection from clinical malaria. CONCLUSIONS These results lend support for the development of conserved regions of EBA-175 as components in a combination of a malaria vaccine.
Collapse
Affiliation(s)
- Chris Y Chiu
- The Walter and Eliza Hall Institute of Medical Research Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Michael T White
- The Walter and Eliza Hall Institute of Medical Research MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Imperial College London, United Kingdom
| | - Julie Healer
- The Walter and Eliza Hall Institute of Medical Research Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Jenny K Thompson
- The Walter and Eliza Hall Institute of Medical Research Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Peter M Siba
- Vector Borne Disease Unit, Papua New Guinea Institute of Medical Research, Goroka, Eastern Highlands Province
| | - Ivo Mueller
- The Walter and Eliza Hall Institute of Medical Research Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Alan F Cowman
- The Walter and Eliza Hall Institute of Medical Research Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Diana S Hansen
- The Walter and Eliza Hall Institute of Medical Research Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
14
|
Burns JM, Miura K, Sullivan J, Long CA, Barnwell JW. Immunogenicity of a chimeric Plasmodium falciparum merozoite surface protein vaccine in Aotus monkeys. Malar J 2016; 15:159. [PMID: 26975721 PMCID: PMC4791798 DOI: 10.1186/s12936-016-1226-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 03/10/2016] [Indexed: 11/23/2022] Open
Abstract
Background The production of properly folded, recombinant sub-unit Plasmodium falciparum malaria vaccine candidates in sufficient quantities is often a challenge. Success in vaccine immunogenicity studies in small animal models does not always predict immunogenicity in non-human primates and/or human subjects. The aim of this study was to assess the immunogenicity of a chimeric blood-stage malaria vaccine in Aotus monkeys. This vaccine candidate includes the neutralizing B cell epitopes of P. falciparum merozoite surface protein 1 (rPfMSP119) genetically linked to a highly immunogenic, well-conserved P. falciparum merozoite surface protein 8 (rPfMSP8 (ΔAsn/Asp)) partner. Methods Aotus nancymaae monkeys were immunized with purified rPfMSP1/8 or rPfMSP8 (ΔAsn/Asp) formulated with Montanide ISA 720 as adjuvant, or with adjuvant alone. Antibody responses to MSP119 and MSP8 domains were measured by ELISA following primary, secondary and tertiary immunizations. The functionality of vaccine-induced antibodies was assessed in a standard P. falciparum blood-stage in vitro growth inhibition assay. Non-parametric tests with corrections for multiple comparisons when appropriate were used to determine the significance of differences in antigen-specific IgG titres and in parasite growth inhibition. Results The chimeric rPfMSP1/8 vaccine was shown to be well tolerated and highly immunogenic with boost-able antibody responses elicited to both PfMSP8 and PfMSP119 domains. Elicited antibodies were highly cross-reactive between FVO and 3D7 alleles of PfMSP119 and potently inhibited the in vitro growth of P. falciparum blood-stage parasites. Conclusions Similar to previous results with inbred and outbred mice and with rabbits, the PfMSP1/8 vaccine was shown to be highly effective in eliciting P. falciparum growth inhibitory antibodies upon immunization of non-human primates. The data support the further assessment of PfMSP1/8 as a component of a multivalent vaccine for use in human subjects. As important, the data indicate that rPfMSP8 (ΔAsn/Asp) can be used as a malaria specific carrier protein to: (1) drive production of antibody responses to neutralizing B cell epitopes of heterologous vaccine candidates and (2) facilitate production of properly folded, recombinant P. falciparum subunit vaccines in high yield.
Collapse
Affiliation(s)
- James M Burns
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA, 19129, USA.
| | - Kazutoyo Miura
- Malaria Immunology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - JoAnn Sullivan
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| | - Carole A Long
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA, 19129, USA.,Malaria Immunology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, USA
| | - John W Barnwell
- Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| |
Collapse
|
15
|
Abstract
There have been significant decreases in malaria mortality and morbidity in the last 10-15 years, and the most advanced pre-erythrocytic malaria vaccine, RTS,S, received a positive opinion from European regulators in July 2015. However, no blood-stage vaccine has reached a phase III trial. The first part of this review summarizes the pros and cons of various assays and models that have been and will be used to predict the efficacy of blood-stage vaccines. In the second part, blood-stage vaccine candidates that showed some efficacy in human clinical trials or controlled human malaria infection models are discussed. Then, candidates under clinical investigation are described in the third part, and other novel candidates and strategies are reviewed in the last part.
Collapse
Affiliation(s)
- Kazutoyo Miura
- a Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases , National Institutes of Health , Rockville , MD , USA
| |
Collapse
|
16
|
Douglas AD, Baldeviano GC, Lucas CM, Lugo-Roman LA, Crosnier C, Bartholdson SJ, Diouf A, Miura K, Lambert LE, Ventocilla JA, Leiva KP, Milne KH, Illingworth JJ, Spencer AJ, Hjerrild KA, Alanine DGW, Turner AV, Moorhead JT, Edgel KA, Wu Y, Long CA, Wright GJ, Lescano AG, Draper SJ. A PfRH5-based vaccine is efficacious against heterologous strain blood-stage Plasmodium falciparum infection in aotus monkeys. Cell Host Microbe 2015; 17:130-9. [PMID: 25590760 PMCID: PMC4297294 DOI: 10.1016/j.chom.2014.11.017] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Revised: 09/11/2014] [Accepted: 11/13/2014] [Indexed: 12/22/2022]
Abstract
Antigenic diversity has posed a critical barrier to vaccine development against the pathogenic blood-stage infection of the human malaria parasite Plasmodium falciparum. To date, only strain-specific protection has been reported by trials of such vaccines in nonhuman primates. We recently showed that P. falciparum reticulocyte binding protein homolog 5 (PfRH5), a merozoite adhesin required for erythrocyte invasion, is highly susceptible to vaccine-inducible strain-transcending parasite-neutralizing antibody. In vivo efficacy of PfRH5-based vaccines has not previously been evaluated. Here, we demonstrate that PfRH5-based vaccines can protect Aotus monkeys against a virulent vaccine-heterologous P. falciparum challenge and show that such protection can be achieved by a human-compatible vaccine formulation. Protection was associated with anti-PfRH5 antibody concentration and in vitro parasite-neutralizing activity, supporting the use of this in vitro assay to predict the in vivo efficacy of future vaccine candidates. These data suggest that PfRH5-based vaccines have potential to achieve strain-transcending efficacy in humans. Vaccines based on the P. falciparum merozoite antigen PfRH5 were tested in Aotus monkeys PfRH5-based vaccines afforded protection against heterologous strains of P. falciparum Protection correlated with anti-PfRH5 IgG concentration and in vivo neutralization
Collapse
Affiliation(s)
| | | | - Carmen M Lucas
- US Naval Medical Research Unit No. 6 (NAMRU-6), Lima, Peru
| | | | | | | | - Ababacar Diouf
- Laboratory of Malaria and Vector Research, NIAID/NIH, Rockville, MD 20852, USA
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, NIAID/NIH, Rockville, MD 20852, USA
| | - Lynn E Lambert
- Laboratory of Malaria Immunology and Vaccinology, NIAID/NIH, Rockville, MD 20852, USA
| | | | - Karina P Leiva
- US Naval Medical Research Unit No. 6 (NAMRU-6), Lima, Peru
| | | | | | | | | | | | | | | | | | - Yimin Wu
- Laboratory of Malaria Immunology and Vaccinology, NIAID/NIH, Rockville, MD 20852, USA
| | - Carole A Long
- Laboratory of Malaria and Vector Research, NIAID/NIH, Rockville, MD 20852, USA
| | | | | | - Simon J Draper
- Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| |
Collapse
|
17
|
Sack BK, Keitany GJ, Vaughan AM, Miller JL, Wang R, Kappe SHI. Mechanisms of stage-transcending protection following immunization of mice with late liver stage-arresting genetically attenuated malaria parasites. PLoS Pathog 2015; 11:e1004855. [PMID: 25974076 PMCID: PMC4431720 DOI: 10.1371/journal.ppat.1004855] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Accepted: 04/06/2015] [Indexed: 11/19/2022] Open
Abstract
Malaria, caused by Plasmodium parasite infection, continues to be one of the leading causes of worldwide morbidity and mortality. Development of an effective vaccine has been encumbered by the complex life cycle of the parasite that has distinct pre-erythrocytic and erythrocytic stages of infection in the mammalian host. Historically, malaria vaccine development efforts have targeted each stage in isolation. An ideal vaccine, however, would target multiple life cycle stages with multiple arms of the immune system and be capable of eliminating initial infection in the liver, the subsequent blood stage infection, and would prevent further parasite transmission. We have previously shown that immunization of mice with Plasmodium yoelii genetically attenuated parasites (GAP) that arrest late in liver stage development elicits stage-transcending protection against both a sporozoite challenge and a direct blood stage challenge. Here, we show that this immunization strategy engenders both T- and B-cell responses that are essential for stage-transcending protection, but the relative importance of each is determined by the host genetic background. Furthermore, potent anti-blood stage antibodies elicited after GAP immunization rely heavily on FC-mediated functions including complement fixation and FC receptor binding. These protective antibodies recognize the merozoite surface but do not appear to recognize the immunodominant merozoite surface protein-1. The antigen(s) targeted by stage-transcending immunity are present in both the late liver stages and blood stage parasites. The data clearly show that GAP-engendered protective immune responses can target shared antigens of pre-erythrocytic and erythrocytic parasite life cycle stages. As such, this model constitutes a powerful tool to identify novel, protective and stage-transcending T and B cell targets for incorporation into a multi-stage subunit vaccine.
Collapse
Affiliation(s)
- Brandon K. Sack
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Gladys J. Keitany
- Department of Immunology, University of Washington, Seattle, Washington, United States of America
| | - Ashley M. Vaughan
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Jessica L. Miller
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Ruobing Wang
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Stefan H. I. Kappe
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
18
|
Riccio EKP, Pratt-Riccio LR, Bianco-Júnior C, Sanchez V, Totino PRR, Carvalho LJM, Daniel-Ribeiro CT. Molecular and immunological tools for the evaluation of the cellular immune response in the neotropical monkey Saimiri sciureus, a non-human primate model for malaria research. Malar J 2015; 14:166. [PMID: 25927834 PMCID: PMC4416248 DOI: 10.1186/s12936-015-0688-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 04/10/2015] [Indexed: 02/07/2023] Open
Abstract
Background The neotropical, non-human primates (NHP) of the genus Saimiri and Aotus are recommended by the World Health Organization as experimental models for the study of human malaria because these animals can be infected with the same Plasmodium that cause malaria in humans. However, one limitation is the lack of immunological tools to assess the immune response in these models. The present study focuses on the development and comparative use of molecular and immunological methods to evaluate the cellular immune response in Saimiri sciureus. Methods Blood samples were obtained from nineteen uninfected Saimiri. Peripheral blood mononuclear cells (PBMC) from these animals and splenocytes from one splenectomized animal were cultured for 6, 12, 18, 24, 48, 72 and 96 hrs in the presence of phorbol-12-myristate-13-acetate and ionomycin. The cytokine levels in the supernatant were detected using human and NHP cytometric bead array Th1/Th2 cytokine kits, the Bio-Plex Pro Human Cytokine Th1/Th2 Assay, enzyme-linked immunosorbent assay, enzyme-linked immunospot assays and intracellular cytokine secretion assays. Cytokine gene expression was examined through TaqMan® Gene Expression Real-Time PCR using predesigned human gene-specific primers and probes or primers and probes designed based on published S. sciureus cytokine sequences. Results The use of five assays based on monoclonal antibodies specific for human cytokines facilitated the detection of IL-2, IL-4 and/or IFN-γ. TaqMan array plates facilitated the detection of 12 of the 28 cytokines assayed. However, only seven cytokines (IL-1A, IL-2, IL-10, IL-12B, IL-17, IFN-β, and TNF) presented relative expression levels of at least 70% of the gene expression observed in human PBMC. The use of primers and probes specific for S. sciureus cytokines facilitated the detection of transcripts that showed relative expression below the threshold of 70%. The most efficient evaluation of cytokine gene expression, in PBMC and splenocytes, was observed after 6–12 hrs of culture, except for LTA in PBMC, whose expression was best analysed after 24 hrs of culture. Conclusions Real-time PCR facilitates the analysis of a large number of cytokines altered during malaria infection, and this technique is considered the best tool for the evaluation of the cellular immune response in S. sciureus.
Collapse
Affiliation(s)
- Evelyn K P Riccio
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fiocruz, Avenida Brasil 4365, Pavilhão Leônidas Deane, Salas 513-517, 5° andar Manguinhos, Rio de Janeiro, RJ, CEP: 21040-900, Brazil. .,Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Fiocruz, Reference Centre for Malaria in the Extra-Amazonian Region for the Secretary for Health Surveillance, Ministry of Health, Rio de Janeiro, RJ, Brazil.
| | - Lilian R Pratt-Riccio
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fiocruz, Avenida Brasil 4365, Pavilhão Leônidas Deane, Salas 513-517, 5° andar Manguinhos, Rio de Janeiro, RJ, CEP: 21040-900, Brazil. .,Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Fiocruz, Reference Centre for Malaria in the Extra-Amazonian Region for the Secretary for Health Surveillance, Ministry of Health, Rio de Janeiro, RJ, Brazil.
| | - Cesare Bianco-Júnior
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fiocruz, Avenida Brasil 4365, Pavilhão Leônidas Deane, Salas 513-517, 5° andar Manguinhos, Rio de Janeiro, RJ, CEP: 21040-900, Brazil. .,Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Fiocruz, Reference Centre for Malaria in the Extra-Amazonian Region for the Secretary for Health Surveillance, Ministry of Health, Rio de Janeiro, RJ, Brazil.
| | - Violette Sanchez
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fiocruz, Avenida Brasil 4365, Pavilhão Leônidas Deane, Salas 513-517, 5° andar Manguinhos, Rio de Janeiro, RJ, CEP: 21040-900, Brazil. .,Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Fiocruz, Reference Centre for Malaria in the Extra-Amazonian Region for the Secretary for Health Surveillance, Ministry of Health, Rio de Janeiro, RJ, Brazil. .,Present address: Research Department, Sanofi Pasteur, Lyon, France.
| | - Paulo R R Totino
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fiocruz, Avenida Brasil 4365, Pavilhão Leônidas Deane, Salas 513-517, 5° andar Manguinhos, Rio de Janeiro, RJ, CEP: 21040-900, Brazil. .,Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Fiocruz, Reference Centre for Malaria in the Extra-Amazonian Region for the Secretary for Health Surveillance, Ministry of Health, Rio de Janeiro, RJ, Brazil.
| | - Leonardo J M Carvalho
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fiocruz, Avenida Brasil 4365, Pavilhão Leônidas Deane, Salas 513-517, 5° andar Manguinhos, Rio de Janeiro, RJ, CEP: 21040-900, Brazil. .,Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Fiocruz, Reference Centre for Malaria in the Extra-Amazonian Region for the Secretary for Health Surveillance, Ministry of Health, Rio de Janeiro, RJ, Brazil.
| | - Cláudio Tadeu Daniel-Ribeiro
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fiocruz, Avenida Brasil 4365, Pavilhão Leônidas Deane, Salas 513-517, 5° andar Manguinhos, Rio de Janeiro, RJ, CEP: 21040-900, Brazil. .,Centro de Pesquisa, Diagnóstico e Treinamento em Malária (CPD-Mal), Fiocruz, Reference Centre for Malaria in the Extra-Amazonian Region for the Secretary for Health Surveillance, Ministry of Health, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
19
|
Abstract
The development of a highly effective malaria vaccine remains a key goal to aid in the control and eventual eradication of this devastating parasitic disease. The field has made huge strides in recent years, with the first-generation vaccine RTS,S showing modest efficacy in a Phase III clinical trial. The updated 2030 Malaria Vaccine Technology Roadmap calls for a second generation vaccine to achieve 75% efficacy over two years for both Plasmodium falciparum and Plasmodium vivax, and for a vaccine that can prevent malaria transmission. Whole-parasite immunisation approaches and combinations of pre-erythrocytic subunit vaccines are now reporting high-level efficacy, whilst exciting new approaches to the development of blood-stage and transmission-blocking vaccine subunit components are entering clinical development. The development of a highly effective multi-component multi-stage subunit vaccine now appears to be a realistic ambition. This review will cover these recent developments in malaria vaccinology.
Collapse
|
20
|
Patterns and dynamics of genetic diversity in Plasmodium falciparum: what past human migrations tell us about malaria. Parasitol Int 2014; 64:238-43. [PMID: 25305418 DOI: 10.1016/j.parint.2014.09.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 08/14/2014] [Accepted: 09/12/2014] [Indexed: 01/23/2023]
Abstract
Plasmodium falciparum is the main agent of malaria, one of the major human infectious diseases affecting millions of people worldwide. The genetic diversity of P. falciparum populations is an essential factor in the parasite's ability to adapt to changes in its environment, enabling the development of drug resistance and the evasion from the host immune system through antigenic variation. Therefore, characterizing these patterns and understanding the main drivers of the pathogen's genetic diversity can provide useful inputs for informing control strategies. In this paper, we review the pioneering work led by Professor Kazuyuki Tanabe on the genetic diversity of P. falciparum populations. In a first part, we recall basic results from population genetics for quantifying within-population genetic diversity, and discuss the main mechanisms driving this diversity. Then, we show how these approaches have been used for reconstructing the historical spread of malaria worldwide, and how current patterns of genetic diversity suggest that the pathogen followed our ancestors in their journey out of Africa. Because these results are robust to different types of genetic markers, they provide a baseline for predicting the pathogen's diversity in unsampled populations, and some useful elements for predicting vaccine efficacy and informing malaria control strategies.
Collapse
|
21
|
Barry AE, Arnott A. Strategies for designing and monitoring malaria vaccines targeting diverse antigens. Front Immunol 2014; 5:359. [PMID: 25120545 PMCID: PMC4112938 DOI: 10.3389/fimmu.2014.00359] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 07/13/2014] [Indexed: 01/28/2023] Open
Abstract
After more than 50 years of intensive research and development, only one malaria vaccine candidate, “RTS,S,” has progressed to Phase 3 clinical trials. Despite only partial efficacy, this candidate is now forecast to become the first licensed malaria vaccine. Hence, more efficacious second-generation malaria vaccines that can significantly reduce transmission are urgently needed. This review will focus on a major obstacle hindering development of effective malaria vaccines: parasite antigenic diversity. Despite extensive genetic diversity in leading candidate antigens, vaccines have been and continue to be formulated using recombinant antigens representing only one or two strains. These vaccine strains represent only a small fraction of the diversity circulating in natural parasite populations, leading to escape of non-vaccine strains and challenging investigators’ abilities to measure strain-specific efficacy in vaccine trials. Novel strategies are needed to overcome antigenic diversity in order for vaccine development to succeed. Many studies have now cataloged the global diversity of leading Plasmodium falciparum and Plasmodium vivax vaccine antigens. In this review, we describe how population genetic approaches can be applied to this rich data source to predict the alleles that best represent antigenic diversity, polymorphisms that contribute to it, and to identify key polymorphisms associated with antigenic escape. We also suggest an approach to summarize the known global diversity of a given antigen to predict antigenic diversity, how to select variants that best represent the strains circulating in natural parasite populations and how to investigate the strain-specific efficacy of vaccine trials. Use of these strategies in the design and monitoring of vaccine trials will not only shed light on the contribution of genetic diversity to the antigenic diversity of malaria, but will also maximize the potential of future malaria vaccine candidates.
Collapse
Affiliation(s)
- Alyssa E Barry
- Division of Infection and Immunity, Walter and Eliza Hall Institute of Medical Research , Parkville, VIC , Australia ; Department of Medical Biology, The University of Melbourne , Parkville, VIC , Australia
| | - Alicia Arnott
- Division of Infection and Immunity, Walter and Eliza Hall Institute of Medical Research , Parkville, VIC , Australia ; Department of Medical Biology, The University of Melbourne , Parkville, VIC , Australia
| |
Collapse
|
22
|
Chiu CYH, Healer J, Thompson JK, Chen L, Kaul A, Savergave L, Raghuwanshi A, Li Wai Suen CSN, Siba PM, Schofield L, Mueller I, Cowman AF, Hansen DS. Association of antibodies to Plasmodium falciparum reticulocyte binding protein homolog 5 with protection from clinical malaria. Front Microbiol 2014; 5:314. [PMID: 25071730 PMCID: PMC4074990 DOI: 10.3389/fmicb.2014.00314] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 06/09/2014] [Indexed: 11/13/2022] Open
Abstract
Emerging evidence suggests that antibodies against merozoite proteins involved in Plasmodium falciparum invasion into the red blood cell (RBC) play an important role in clinical immunity to malaria. The protein family of parasite antigens known as P. falciparum reticulocyte binding protein-like homolog (PfRh) is required for RBC invasion. PfRh5 is the only member within the PfRh family that cannot be genetically deleted, suggesting it plays an essential role in parasite survival. This antigen forms a complex with the cysteine-rich P. falciparum Rh5 interacting protein (PfRipr), on the merozoite surface during RBC invasion. The PfRh5 ectodomain sequence and a C-terminal fragment of PfRipr were cloned and expressed in Escherichia coli and baculovirus-infected cells, respectively. Immunization of rabbits with these recombinant proteins induced antibodies able to inhibit growth of various P. falciparum strains. Antibody responses to these proteins were investigated in a treatment-re-infection study conducted in an endemic area of Papua New Guinea (PNG) to determine their contribution to naturally acquired immunity. Antibody titers to PfRh5 but not PfRipr showed strong association with protection against P. falciparum clinical episodes. When associations with time-to-first infection were analyzed, high antibody levels against PfRh5 were also found to be associated with protection from high-density infections but not from re-infection. Together these results indicate that PfRh5 is an important target of protective immunity and constitutes a promising vaccine candidate.
Collapse
Affiliation(s)
- Chris Y H Chiu
- The Walter and Eliza Hall Institute of Medical Research Parkville, VIC, Australia ; Department of Medical Biology, The University of Melbourne Parkville, VIC, Australia
| | - Julie Healer
- The Walter and Eliza Hall Institute of Medical Research Parkville, VIC, Australia
| | - Jennifer K Thompson
- The Walter and Eliza Hall Institute of Medical Research Parkville, VIC, Australia
| | - Lin Chen
- The Walter and Eliza Hall Institute of Medical Research Parkville, VIC, Australia
| | - Aiki Kaul
- Gennova Biopharmaceuticals Pune, India
| | | | | | | | - Peter M Siba
- Vector Borne Disease Unit, Papua New Guinea Institute of Medical Research Goroka, New Guinea
| | - Louis Schofield
- The Walter and Eliza Hall Institute of Medical Research Parkville, VIC, Australia ; Australian Institute of Tropical Health and Medicine, James Cook University Douglas, QLD, Australia
| | - Ivo Mueller
- The Walter and Eliza Hall Institute of Medical Research Parkville, VIC, Australia ; Barcelona Center for International Health, University of Barcelona Barcelona, Spain
| | - Alan F Cowman
- The Walter and Eliza Hall Institute of Medical Research Parkville, VIC, Australia ; Department of Medical Biology, The University of Melbourne Parkville, VIC, Australia
| | - Diana S Hansen
- The Walter and Eliza Hall Institute of Medical Research Parkville, VIC, Australia ; Department of Medical Biology, The University of Melbourne Parkville, VIC, Australia
| |
Collapse
|
23
|
de Cassan SC, Draper SJ. Recent advances in antibody-inducing poxviral and adenoviral vectored vaccine delivery platforms for difficult disease targets. Expert Rev Vaccines 2014; 12:365-78. [DOI: 10.1586/erv.13.11] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
24
|
Mena JA, Kamen AA. Insect cell technology is a versatile and robust vaccine manufacturing platform. Expert Rev Vaccines 2014; 10:1063-81. [DOI: 10.1586/erv.11.24] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
25
|
Cavanagh DR, Kocken CHM, White JH, Cowan GJM, Samuel K, Dubbeld MA, der Wel AVV, Thomas AW, McBride JS, Arnot DE. Antibody responses to a novel Plasmodium falciparum merozoite surface protein vaccine correlate with protection against experimental malaria infection in Aotus monkeys. PLoS One 2014; 9:e83704. [PMID: 24421900 PMCID: PMC3885447 DOI: 10.1371/journal.pone.0083704] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 11/06/2013] [Indexed: 11/29/2022] Open
Abstract
The Block 2 region of the merozoite surface protein-1 (MSP-1) of Plasmodium falciparum has been identified as a target of protective immunity by a combination of seroepidemiology and parasite population genetics. Immunogenicity studies in small animals and Aotus monkeys were used to determine the efficacy of recombinant antigens derived from this region of MSP-1 as a potential vaccine antigen. Aotus lemurinus griseimembra monkeys were immunized three times with a recombinant antigen derived from the Block 2 region of MSP-1 of the monkey-adapted challenge strain, FVO of Plasmodium falciparum, using an adjuvant suitable for use in humans. Immunofluorescent antibody assays (IFA) against erythrocytes infected with P. falciparum using sera from the immunized monkeys showed that the MSP-1 Block 2 antigen induced significant antibody responses to whole malaria parasites. MSP-1 Block 2 antigen-specific enzyme-linked immunosorbent assays (ELISA) showed no significant differences in antibody titers between immunized animals. Immunized animals were challenged with the virulent P. falciparum FVO isolate and monitored for 21 days. Two out of four immunized animals were able to control their parasitaemia during the follow-up period, whereas two out of two controls developed fulminating parasitemia. Parasite-specific serum antibody titers measured by IFA were four-fold higher in protected animals than in unprotected animals. In addition, peptide-based epitope mapping of serum antibodies from immunized Aotus showed distinct differences in epitope specificities between protected and unprotected animals.
Collapse
Affiliation(s)
- David R. Cavanagh
- Institute of Immunology and Infection Research, Center for Immunity, Infection and Evolution, Ashworth Laboratories, University of Edinburgh, Edinburgh, United Kingdom
| | - Clemens H. M. Kocken
- Biomedical Primate Research Center, Department of Parasitology, Rijswijk, The Netherlands
| | - John H. White
- Institute of Immunology and Infection Research, Center for Immunity, Infection and Evolution, Ashworth Laboratories, University of Edinburgh, Edinburgh, United Kingdom
| | - Graeme J. M. Cowan
- Institute of Immunology and Infection Research, Center for Immunity, Infection and Evolution, Ashworth Laboratories, University of Edinburgh, Edinburgh, United Kingdom
| | - Kay Samuel
- Scottish National Blood Transfusion Service, Cell Therapy Group, University of Edinburgh, Edinburgh, United Kingdom
| | - Martin A. Dubbeld
- Biomedical Primate Research Center, Department of Parasitology, Rijswijk, The Netherlands
| | | | - Alan W. Thomas
- Biomedical Primate Research Center, Department of Parasitology, Rijswijk, The Netherlands
| | - Jana S. McBride
- Institute of Immunology and Infection Research, Center for Immunity, Infection and Evolution, Ashworth Laboratories, University of Edinburgh, Edinburgh, United Kingdom
| | - David E. Arnot
- Institute of Immunology and Infection Research, Center for Immunity, Infection and Evolution, Ashworth Laboratories, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
26
|
Douglas AD, Williams AR, Knuepfer E, Illingworth JJ, Furze JM, Crosnier C, Choudhary P, Bustamante LY, Zakutansky SE, Awuah DK, Alanine DGW, Theron M, Worth A, Shimkets R, Rayner JC, Holder AA, Wright GJ, Draper SJ. Neutralization of Plasmodium falciparum merozoites by antibodies against PfRH5. THE JOURNAL OF IMMUNOLOGY 2013; 192:245-58. [PMID: 24293631 DOI: 10.4049/jimmunol.1302045] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
There is intense interest in induction and characterization of strain-transcending neutralizing Ab against antigenically variable human pathogens. We have recently identified the human malaria parasite Plasmodium falciparum reticulocyte-binding protein homolog 5 (PfRH5) as a target of broadly neutralizing Abs, but there is little information regarding the functional mechanism(s) of Ab-mediated neutralization. In this study, we report that vaccine-induced polyclonal anti-PfRH5 Abs inhibit the tight attachment of merozoites to erythrocytes and are capable of blocking the interaction of PfRH5 with its receptor basigin. Furthermore, by developing anti-PfRH5 mAbs, we provide evidence of the following: 1) the ability to block the PfRH5-basigin interaction in vitro is predictive of functional activity, but absence of blockade does not predict absence of functional activity; 2) neutralizing mAbs bind spatially related epitopes on the folded protein, involving at least two defined regions of the PfRH5 primary sequence; 3) a brief exposure window of PfRH5 is likely to necessitate rapid binding of Ab to neutralize parasites; and 4) intact bivalent IgG contributes to but is not necessary for parasite neutralization. These data provide important insight into the mechanisms of broadly neutralizing anti-malaria Abs and further encourage anti-PfRH5-based malaria prevention efforts.
Collapse
|
27
|
Pusic K, Clements D, Kobuch S, Hui G. Antibody and T cell responses in reciprocal prime-boost studies with full-length and truncated merozoite surface protein 1-42 vaccines. PLoS One 2013; 8:e75939. [PMID: 24098747 PMCID: PMC3786974 DOI: 10.1371/journal.pone.0075939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 08/16/2013] [Indexed: 11/18/2022] Open
Abstract
The P. falciparum Merozoite Surface Protein 1-42 (MSP1-42) is one of the most studied malaria subunit vaccine candidates. The N-terminal fragment of MSP1-42, MSP1-33, is primarily composed of allelic sequences, and has been shown to possess T helper epitopes that influence protective antibody responses toward the C-terminal region, MSP1-19. A truncated MSP1-42 vaccine, Construct 33-I, consisting of exclusively conserved T epitope regions of MSP1-33 expressed in tandem with MSP1-19, was previously shown to be a more effective immunogen than the full-length MSP1-42 vaccine. Here, by way of reciprocal priming/boosting immunization regimens, we studied the immunogenicity of Construct 33-I in the context of recognition by immune responses induced by the full-length native MSP1-42 protein, in order to gauge the effects of pre- and post-exposures to MSP1-42 on vaccine induced responses. Judging by immune responsiveness, antibody and T cell responses, Construct 33-I was effective as the priming antigen followed by full-length MSP1-42 boosting, as well as the boosting antigen following full-length MSP1-42 priming. In particular, Construct 33-I priming elicited the broadest responsiveness in immunized animals subsequently exposed to MSP1-42. Moreover, Construct 33-I, with its conserved MSP1-33 specific T cell epitopes, was equally well recognized by homologous and heterologous allelic forms of MSP1-42. Serum antibodies raised against Construct 33-I efficiently inhibited the growth of parasites carrying the heterologous MSP1-42 allele. These results suggest that Construct 33-I maintains and/or enhances its immunogenicity in an allelic or strain transcending fashion when deployed in populations having prior or subsequent exposures to native MSP1-42s.
Collapse
Affiliation(s)
- Kae Pusic
- University of Hawaii, School of Medicine, Department of Tropical Medicine, Honolulu, Hawaii, United States of America
- * E-mail:
| | - Danielle Clements
- University of Hawaii, School of Medicine, Department of Tropical Medicine, Honolulu, Hawaii, United States of America
| | - Sophie Kobuch
- University of Hawaii, School of Medicine, Department of Tropical Medicine, Honolulu, Hawaii, United States of America
| | - George Hui
- University of Hawaii, School of Medicine, Department of Tropical Medicine, Honolulu, Hawaii, United States of America
| |
Collapse
|
28
|
Alaro JR, Partridge A, Miura K, Diouf A, Lopez AM, Angov E, Long CA, Burns JM. A chimeric Plasmodium falciparum merozoite surface protein vaccine induces high titers of parasite growth inhibitory antibodies. Infect Immun 2013; 81:3843-54. [PMID: 23897613 PMCID: PMC3811772 DOI: 10.1128/iai.00522-13] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 07/23/2013] [Indexed: 01/20/2023] Open
Abstract
The C-terminal 19-kDa domain of Plasmodium falciparum merozoite surface protein 1 (PfMSP119) is an established target of protective antibodies. However, clinical trials of PfMSP142, a leading blood-stage vaccine candidate which contains the protective epitopes of PfMSP119, revealed suboptimal immunogenicity and efficacy. Based on proof-of-concept studies in the Plasmodium yoelii murine model, we produced a chimeric vaccine antigen containing recombinant PfMSP119 (rPfMSP119) fused to the N terminus of P. falciparum merozoite surface protein 8 that lacked its low-complexity Asn/Asp-rich domain, rPfMSP8 (ΔAsn/Asp). Immunization of mice with the chimeric rPfMSP1/8 vaccine elicited strong T cell responses to conserved epitopes associated with the rPfMSP8 (ΔAsn/Asp) fusion partner. While specific for PfMSP8, this T cell response was adequate to provide help for the production of high titers of antibodies to both PfMSP119 and rPfMSP8 (ΔAsn/Asp) components. This occurred with formulations adjuvanted with either Quil A or with Montanide ISA 720 plus CpG oligodeoxynucleotide (ODN) and was observed in both inbred and outbred strains of mice. PfMSP1/8-induced antibodies were highly reactive with two major alleles of PfMSP119 (FVO and 3D7). Of particular interest, immunization with PfMSP1/8 elicited higher titers of PfMSP119-specific antibodies than a combined formulation of rPfMSP142 and rPfMSP8 (ΔAsn/Asp). As a measure of functionality, PfMSP1/8-specific rabbit IgG was shown to potently inhibit the in vitro growth of blood-stage parasites of the FVO and 3D7 strains of P. falciparum. These data support the further testing and evaluation of this chimeric PfMSP1/8 antigen as a component of a multivalent vaccine for P. falciparum malaria.
Collapse
Affiliation(s)
- James R. Alaro
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
- Malaria Immunology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Andrea Partridge
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Kazutoyo Miura
- Malaria Immunology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Ababacar Diouf
- Malaria Immunology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Ana M. Lopez
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Evelina Angov
- U.S. Military Malaria Research Program, Malaria Vaccine Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Carole A. Long
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
- Malaria Immunology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - James M. Burns
- Center for Molecular Parasitology, Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
29
|
Healer J, Thompson JK, Riglar DT, Wilson DW, Chiu YH, Miura K, Chen L, Hodder AN, Long CA, Hansen DS, Baum J, Cowman AF. Vaccination with conserved regions of erythrocyte-binding antigens induces neutralizing antibodies against multiple strains of Plasmodium falciparum. PLoS One 2013; 8:e72504. [PMID: 24039774 PMCID: PMC3769340 DOI: 10.1371/journal.pone.0072504] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 07/10/2013] [Indexed: 02/07/2023] Open
Abstract
Background A highly effective vaccine against Plasmodium falciparum malaria should induce potent, strain transcending immunity that broadly protects against the diverse population of parasites circulating globally. We aimed to identify vaccine candidates that fulfill the criteria. Methods We have measured growth inhibitory activity of antibodies raised to a range of antigens to identify those that can efficiently block merozoite invasion for geographically diverse strains of P. falciparum. Results This has shown that the conserved Region III-V, of the P. falciparum erythrocyte-binding antigen (EBA)-175 was able to induce antibodies that potently inhibit merozoite invasion across diverse parasite strains, including those reliant on invasion pathways independent of EBA-175 function. Additionally, the conserved RIII-V domain of EBA-140 also induced antibodies with strong in vitro parasite growth inhibitory activity. Conclusion We identify an alternative, highly conserved region (RIV-V) of EBA-175, present in all EBA proteins, that is the target of potent, strain transcending neutralizing antibodies, that represents a strong candidate for development as a component in a malaria vaccine.
Collapse
Affiliation(s)
- Julie Healer
- Walter & Eliza Hall Institute for Medical Research, Melbourne, Australia
| | | | - David T. Riglar
- Walter & Eliza Hall Institute for Medical Research, Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Danny W. Wilson
- Walter & Eliza Hall Institute for Medical Research, Melbourne, Australia
| | - Yu-H.C. Chiu
- Walter & Eliza Hall Institute for Medical Research, Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, Maryland, United States of America
| | - Lin Chen
- Walter & Eliza Hall Institute for Medical Research, Melbourne, Australia
| | - Anthony N. Hodder
- Walter & Eliza Hall Institute for Medical Research, Melbourne, Australia
| | - Carole A. Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, Maryland, United States of America
| | - Diana S. Hansen
- Walter & Eliza Hall Institute for Medical Research, Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Jake Baum
- Walter & Eliza Hall Institute for Medical Research, Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - Alan F. Cowman
- Walter & Eliza Hall Institute for Medical Research, Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
- * E-mail:
| |
Collapse
|
30
|
Koepfli C, Colborn KL, Kiniboro B, Lin E, Speed TP, Siba PM, Felger I, Mueller I. A high force of plasmodium vivax blood-stage infection drives the rapid acquisition of immunity in papua new guinean children. PLoS Negl Trop Dis 2013; 7:e2403. [PMID: 24040428 PMCID: PMC3764149 DOI: 10.1371/journal.pntd.0002403] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 07/23/2013] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND When both parasite species are co-endemic, Plasmodium vivax incidence peaks in younger children compared to P. falciparum. To identify differences in the number of blood stage infections of these species and its potential link to acquisition of immunity, we have estimated the molecular force of blood-stage infection of P. vivax ((mol)FOB, i.e. the number of genetically distinct blood-stage infections over time), and compared it to previously reported values for P. falciparum. METHODS P. vivax (mol)FOB was estimated by high resolution genotyping parasites in samples collected over 16 months in a cohort of 264 Papua New Guinean children living in an area highly endemic for P. falciparum and P. vivax. In this cohort, P. vivax episodes decreased three-fold over the age range of 1-4.5 years. RESULTS On average, children acquired 14.0 new P. vivax blood-stage clones/child/year-at-risk. While the incidence of clinical P. vivax illness was strongly associated with mol FOB (incidence rate ratio (IRR) = 1.99, 95% confidence interval (CI95) [1.80, 2.19]), (mol)FOB did not change with age. The incidence of P. vivax showed a faster decrease with age in children with high (IRR = 0.49, CI95 [0.38, 0.64] p<0.001) compared to those with low exposure (IRR = 0.63, CI95[0.43, 0.93] p = 0.02). CONCLUSION P. vivax (mol)FOB is considerably higher than P. falciparum (mol)FOB (5.5 clones/child/year-at-risk). The high number of P. vivax clones that infect children in early childhood contribute to the rapid acquisition of immunity against clinical P. vivax malaria.
Collapse
Affiliation(s)
- Cristian Koepfli
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- Walter and Eliza Hall Institute, Parkville, Victoria, Australia
| | - Kathryn L. Colborn
- Walter and Eliza Hall Institute, Parkville, Victoria, Australia
- University of California, Berkeley, Department of Biostatistics, Berkeley, California, United States of America
| | - Benson Kiniboro
- Papua New Guinea Institute of Medical Research, Goroka, Eastern Highland Province, Papua New Guinea
| | - Enmoore Lin
- Papua New Guinea Institute of Medical Research, Goroka, Eastern Highland Province, Papua New Guinea
| | | | - Peter M. Siba
- Papua New Guinea Institute of Medical Research, Goroka, Eastern Highland Province, Papua New Guinea
| | - Ingrid Felger
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Ivo Mueller
- Walter and Eliza Hall Institute, Parkville, Victoria, Australia
- Papua New Guinea Institute of Medical Research, Goroka, Eastern Highland Province, Papua New Guinea
- Barcelona Centre for International Health Research, Barcelona, Spain
| |
Collapse
|
31
|
Sheehy SH, Douglas AD, Draper SJ. Challenges of assessing the clinical efficacy of asexual blood-stage Plasmodium falciparum malaria vaccines. Hum Vaccin Immunother 2013; 9:1831-40. [PMID: 23778312 PMCID: PMC3906345 DOI: 10.4161/hv.25383] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In the absence of any highly effective vaccine candidate against Plasmodium falciparum malaria, it remains imperative for the field to pursue all avenues that may lead to the successful development of such a formulation. The development of a subunit vaccine targeting the asexual blood-stage of Plasmodium falciparum malaria infection has proven particularly challenging with only limited success to date in clinical trials. However, only a fraction of potential blood-stage vaccine antigens have been evaluated as targets, and a number of new promising candidate antigen formulations and delivery platforms are approaching clinical development. It is therefore essential that reliable and sensitive methods of detecting, or ruling out, even modest efficacy of blood-stage vaccines in small clinical trials be established. In this article we evaluate the challenges facing blood-stage vaccine developers, assess the appropriateness and limitations of various in vivo approaches for efficacy assessment and suggest future directions for the field.
Collapse
|
32
|
Moormann AM, Sumba PO, Chelimo K, Fang H, Tisch DJ, Dent AE, John CC, Long CA, Vulule J, Kazura JW. Humoral and cellular immunity to Plasmodium falciparum merozoite surface protein 1 and protection from infection with blood-stage parasites. J Infect Dis 2013; 208:149-58. [PMID: 23539744 DOI: 10.1093/infdis/jit134] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Acquired immunity to malaria develops with increasing age and repeated infections. Understanding immune correlates of protection from malaria would facilitate vaccine development and identification of biomarkers that reflect changes in susceptibility resulting from ongoing malaria control efforts. METHODS The relationship between immunoglobulin G (IgG) antibody and both interferon γ (IFN-γ) and interleukin 10 (IL-10) responses to the 42-kD C-terminal fragment of Plasmodium falciparum merozoite surface protein 1 (MSP142) and the risk of (re)infection were examined following drug-mediated clearance of parasitemia in 94 adults and 95 children in an area of holoendemicity of western Kenya. RESULTS Positive IFN-γ enzyme-linked immunosorbent assay (ELISA) and enzyme-linked immunosorbent spot assay (ELISPOT) responses to MSP142 3D7 were associated with delayed time to (re)infection, whereas high-titer IgG antibodies to MSP142 3D7 or FVO alleles were not independently predictive of the risk of (re)infection. When IFN-γ and IL-10 responses were both present, the protective effect of IFN-γ was abrogated. A Cox proportional hazard model including IFN-γ, IL-10, MSP142 3D7 IgG antibody responses, hemoglobin S genotype, age, and infection status at baseline showed that the time to blood-stage infection correlated positively with IFN-γ responses and negatively with IL-10 responses, younger age, and asymptomatic parasitemia. CONCLUSIONS Evaluating combined allele-specific cellular and humoral immunity elicited by malaria provides a more informative measure of protection relative to evaluation of either measure alone.
Collapse
Affiliation(s)
- Ann M Moormann
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Within-population genetic diversity of Plasmodium falciparum vaccine candidate antigens reveals geographic distance from a Central sub-Saharan African origin. Vaccine 2013; 31:1334-9. [DOI: 10.1016/j.vaccine.2012.12.039] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 11/15/2012] [Accepted: 12/14/2012] [Indexed: 12/16/2022]
|
34
|
Elias SC, Collins KA, Halstead FD, Choudhary P, Bliss CM, Ewer KJ, Sheehy SH, Duncan CJA, Biswas S, Hill AVS, Draper SJ. Assessment of immune interference, antagonism, and diversion following human immunization with biallelic blood-stage malaria viral-vectored vaccines and controlled malaria infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 190:1135-47. [PMID: 23293353 PMCID: PMC3672846 DOI: 10.4049/jimmunol.1201455] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Overcoming antigenic variation is one of the major challenges in the development of an effective vaccine against Plasmodium falciparum, a causative agent of human malaria. Inclusion of multiple Ag variants in subunit vaccine candidates is one strategy that has aimed to overcome this problem for the leading blood-stage malaria vaccine targets, that is, merozoite surface protein 1 (MSP1) and apical membrane Ag 1 (AMA1). However, previous studies, utilizing malaria Ags, have concluded that inclusion of multiple allelic variants, encoding altered peptide ligands, in such a vaccine may be detrimental to both the priming and in vivo restimulation of Ag-experienced T cells. In this study, we analyze the T cell responses to two alleles of MSP1 and AMA1 induced by vaccination of malaria-naive adult volunteers with bivalent viral-vectored vaccine candidates. We show a significant bias to the 3D7/MAD20 allele compared with the Wellcome allele for the 33 kDa region of MSP1, but not for the 19 kDa fragment or the AMA1 Ag. Although this bias could be caused by "immune interference" at priming, the data do not support a significant role for "immune antagonism" during memory T cell restimulation, despite observation of the latter at a minimal epitope level in vitro. A lack of class I HLA epitopes in the Wellcome allele that are recognized by vaccinated volunteers may in fact contribute to the observed bias. We also show that controlled infection with 3D7 strain P. falciparum parasites neither boosts existing 3D7-specific T cell responses nor appears to "immune divert" cellular responses toward the Wellcome allele.
Collapse
Affiliation(s)
- Sean C Elias
- The Jenner Institute, University of Oxford, Oxford OX3 7DQ, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Otsyula N, Angov E, Bergmann-Leitner E, Koech M, Khan F, Bennett J, Otieno L, Cummings J, Andagalu B, Tosh D, Waitumbi J, Richie N, Shi M, Miller L, Otieno W, Otieno GA, Ware L, House B, Godeaux O, Dubois MC, Ogutu B, Ballou WR, Soisson L, Diggs C, Cohen J, Polhemus M, Heppner DG, Ockenhouse CF, Spring MD. Results from tandem Phase 1 studies evaluating the safety, reactogenicity and immunogenicity of the vaccine candidate antigen Plasmodium falciparum FVO merozoite surface protein-1 (MSP1(42)) administered intramuscularly with adjuvant system AS01. Malar J 2013; 12:29. [PMID: 23342996 PMCID: PMC3582548 DOI: 10.1186/1475-2875-12-29] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 01/14/2013] [Indexed: 01/06/2023] Open
Abstract
Background The development of an asexual blood stage vaccine against Plasmodium falciparum malaria based on the major merozoite surface protein-1 (MSP1) antigen is founded on the protective efficacy observed in preclinical studies and induction of invasion and growth inhibitory antibody responses. The 42 kDa C-terminus of MSP1 has been developed as the recombinant protein vaccine antigen, and the 3D7 allotype, formulated with the Adjuvant System AS02A, has been evaluated extensively in human clinical trials. In preclinical rabbit studies, the FVO allele of MSP142 has been shown to have improved immunogenicity over the 3D7 allele, in terms of antibody titres as well as growth inhibitory activity of antibodies against both the heterologous 3D7 and homologous FVO parasites. Methods Two Phase 1 clinical studies were conducted to examine the safety, reactogenicity and immunogenicity of the FVO allele of MSP142 in the adjuvant system AS01 administered intramuscularly at 0-, 1-, and 2-months: one in the USA and, after evaluation of safety data results, one in Western Kenya. The US study was an open-label, dose escalation study of 10 and 50 μg doses of MSP142 in 26 adults, while the Kenya study, evaluating 30 volunteers, was a double-blind, randomized study of only the 50 μg dose with a rabies vaccine comparator. Results In these studies it was demonstrated that this vaccine formulation has an acceptable safety profile and is immunogenic in malaria-naïve and malaria-experienced populations. High titres of anti-MSP1 antibodies were induced in both study populations, although there was a limited number of volunteers whose serum demonstrated significant inhibition of blood-stage parasites as measured by growth inhibition assay. In the US volunteers, the antibodies generated exhibited better cross-reactivity to heterologous MSP1 alleles than a MSP1-based vaccine (3D7 allele) previously tested at both study sites. Conclusions Given that the primary effector mechanism for blood stage vaccine targets is humoral, the antibody responses demonstrated to this vaccine candidate, both quantitative (total antibody titres) and qualitative (functional antibodies inhibiting parasite growth) warrant further consideration of its application in endemic settings. Trial registrations Clinical Trials NCT00666380
Collapse
Affiliation(s)
- Nekoye Otsyula
- Walter Reed Project, Kenya Medical Research Institute, Kisumu, Kenya
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Williams AR, Douglas AD, Miura K, Illingworth JJ, Choudhary P, Murungi LM, Furze JM, Diouf A, Miotto O, Crosnier C, Wright GJ, Kwiatkowski DP, Fairhurst RM, Long CA, Draper SJ. Enhancing blockade of Plasmodium falciparum erythrocyte invasion: assessing combinations of antibodies against PfRH5 and other merozoite antigens. PLoS Pathog 2012; 8:e1002991. [PMID: 23144611 PMCID: PMC3493472 DOI: 10.1371/journal.ppat.1002991] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 09/11/2012] [Indexed: 02/01/2023] Open
Abstract
No vaccine has yet proven effective against the blood-stages of Plasmodium falciparum, which cause the symptoms and severe manifestations of malaria. We recently found that PfRH5, a P. falciparum-specific protein expressed in merozoites, is efficiently targeted by broadly-neutralizing, vaccine-induced antibodies. Here we show that antibodies against PfRH5 efficiently inhibit the in vitro growth of short-term-adapted parasite isolates from Cambodia, and that the EC50 values of antigen-specific antibodies against PfRH5 are lower than those against PfAMA1. Since antibody responses elicited by multiple antigens are speculated to improve the efficacy of blood-stage vaccines, we conducted detailed assessments of parasite growth inhibition by antibodies against PfRH5 in combination with antibodies against seven other merozoite antigens. We found that antibodies against PfRH5 act synergistically with antibodies against certain other merozoite antigens, most notably with antibodies against other erythrocyte-binding antigens such as PfRH4, to inhibit the growth of a homologous P. falciparum clone. A combination of antibodies against PfRH4 and basigin, the erythrocyte receptor for PfRH5, also potently inhibited parasite growth. This methodology provides the first quantitative evidence that polyclonal vaccine-induced antibodies can act synergistically against P. falciparum antigens and should help to guide the rational development of future multi-antigen vaccines. Malaria is the most devastating parasitic disease of humans, resulting in an estimated 0.6–1 million deaths per year. The symptoms of malaria are caused when merozoites invade and replicate within red blood cells, and therefore a vaccine which induced antibodies that effectively prevent this invasion process would be a major step towards the control of the disease. However, development of such a vaccine has proved extremely challenging. A major roadblock has been the probable need for extremely high levels of antibodies to achieve vaccine efficacy. We have now shown that antibodies against the merozoite protein PfRH5 are able to neutralize the invasion of red blood cells by malaria parasites at concentrations that are significantly lower than for antibodies against PfAMA1 – the previous leading blood-stage malaria vaccine target. This neutralization was observed in both laboratory-adapted parasite lines and in five different parasite isolates from Cambodian patients with malaria. Furthermore, we found that by combining antibodies against PfRH5 with antibodies against certain other merozoite antigens we could achieve synergistic neutralization of parasites, further lowering the amount of antibody needed to be induced by a vaccine. The development of vaccines encoding the PfRH5 antigen in combination with a second target may thus be the best way to achieve the long-sought after goal of an efficacious blood-stage malaria vaccine. Moreover, the methodology described here to assess the ability of antibodies against different targets to synergize should greatly aid the future rational design of improved vaccine candidates.
Collapse
|
37
|
ChAd63-MVA-vectored blood-stage malaria vaccines targeting MSP1 and AMA1: assessment of efficacy against mosquito bite challenge in humans. Mol Ther 2012; 20:2355-68. [PMID: 23089736 DOI: 10.1038/mt.2012.223] [Citation(s) in RCA: 164] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The induction of cellular immunity, in conjunction with antibodies, may be essential for vaccines to protect against blood-stage infection with the human malaria parasite Plasmodium falciparum. We have shown that prime-boost delivery of P. falciparum blood-stage antigens by chimpanzee adenovirus 63 (ChAd63) followed by the attenuated orthopoxvirus MVA is safe and immunogenic in healthy adults. Here, we report on vaccine efficacy against controlled human malaria infection delivered by mosquito bites. The blood-stage malaria vaccines were administered alone, or together (MSP1+AMA1), or with a pre-erythrocytic malaria vaccine candidate (MSP1+ME-TRAP). In this first human use of coadministered ChAd63-MVA regimes, we demonstrate immune interference whereby responses against merozoite surface protein 1 (MSP1) are dominant over apical membrane antigen 1 (AMA1) and ME-TRAP. We also show that induction of strong cellular immunity against MSP1 and AMA1 is safe, but does not impact on parasite growth rates in the blood. In a subset of vaccinated volunteers, a delay in time to diagnosis was observed and sterilizing protection was observed in one volunteer coimmunized with MSP1+AMA1-results consistent with vaccine-induced pre-erythrocytic, rather than blood-stage, immunity. These data call into question the utility of T cell-inducing blood-stage malaria vaccines and suggest that the focus should remain on high-titer antibody induction against susceptible antigen targets.
Collapse
|
38
|
Ellis RD, Wu Y, Martin LB, Shaffer D, Miura K, Aebig J, Orcutt A, Rausch K, Zhu D, Mogensen A, Fay MP, Narum DL, Long C, Miller L, Durbin AP. Phase 1 study in malaria naïve adults of BSAM2/Alhydrogel®+CPG 7909, a blood stage vaccine against P. falciparum malaria. PLoS One 2012; 7:e46094. [PMID: 23056238 PMCID: PMC3464250 DOI: 10.1371/journal.pone.0046094] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 08/27/2012] [Indexed: 11/25/2022] Open
Abstract
A Phase 1 dose escalating study was conducted in malaria naïve adults to assess the safety, reactogenicity, and immunogenicity of the blood stage malaria vaccine BSAM2/Alhydrogel®+ CPG 7909. BSAM2 is a combination of the FVO and 3D7 alleles of recombinant AMA1 and MSP142, with equal amounts by weight of each of the four proteins mixed, bound to Alhydrogel®, and administered with the adjuvant CPG 7909. Thirty (30) volunteers were enrolled in two dose groups, with 15 volunteers receiving up to three doses of 40 µg total protein at Days 0, 56, and 180, and 15 volunteers receiving up to three doses of 160 µg protein on the same schedule. Most related adverse events were mild or moderate, but 4 volunteers experienced severe systemic reactions and two were withdrawn from vaccinations due to adverse events. Geometric mean antibody levels after two vaccinations with the high dose formulation were 136 µg/ml for AMA1 and 78 µg/ml for MSP142. Antibody responses were not significantly different in the high dose versus low dose groups and did not further increase after third vaccination. In vitro growth inhibition was demonstrated and was closely correlated with anti-AMA1 antibody responses. A Phase 1b trial in malaria-exposed adults is being conducted.
Collapse
Affiliation(s)
- Ruth D. Ellis
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIAID/NIH), Rockville, Maryland, United States of America
| | - Yimin Wu
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIAID/NIH), Rockville, Maryland, United States of America
- * E-mail:
| | - Laura B. Martin
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIAID/NIH), Rockville, Maryland, United States of America
| | - Donna Shaffer
- Center for Immunization Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Kazutoyo Miura
- Biostatistics Research Branch, NIAID/NIH, Rockville, Maryland, United States of America
| | - Joan Aebig
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIAID/NIH), Rockville, Maryland, United States of America
| | - Andrew Orcutt
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIAID/NIH), Rockville, Maryland, United States of America
| | - Kelly Rausch
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIAID/NIH), Rockville, Maryland, United States of America
| | - Daming Zhu
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIAID/NIH), Rockville, Maryland, United States of America
| | - Anders Mogensen
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIAID/NIH), Rockville, Maryland, United States of America
| | - Michael P. Fay
- Biostatistics Research Branch, NIAID/NIH, Rockville, Maryland, United States of America
| | - David L. Narum
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIAID/NIH), Rockville, Maryland, United States of America
| | - Carole Long
- Laboratory of Malaria and Vector Research, NIAID/NIH, Rockville, Maryland, United States of America
| | - Louis Miller
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health (NIAID/NIH), Rockville, Maryland, United States of America
| | - Anna P. Durbin
- Center for Immunization Research, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| |
Collapse
|
39
|
Bergmann-Leitner ES, Duncan EH, Mease RM, Angov E. Impact of pre-existing MSP1(42)-allele specific immunity on potency of an erythrocytic Plasmodium falciparum vaccine. Malar J 2012; 11:315. [PMID: 22958482 PMCID: PMC3502560 DOI: 10.1186/1475-2875-11-315] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 08/30/2012] [Indexed: 01/03/2023] Open
Abstract
Background MSP1 is the major surface protein on merozoites and a prime candidate for a blood stage malaria vaccine. Preclinical and seroepidemiological studies have implicated antibodies to MSP1 in protection against blood stage parasitaemia and/or reduced parasite densities, respectively. Malaria endemic areas have multiple strains of Plasmodium falciparum circulating at any given time, giving rise to complex immune responses, an issue which is generally not addressed in clinical trials conducted in non-endemic areas. A lack of understanding of the effect of pre-existing immunity to heterologous parasite strains may significantly contribute to vaccine failure in the field. The purpose of this study was to model the effect of pre-existing immunity to MSP142 on the immunogenicity of blood-stage malaria vaccines based on alternative MSP1 alleles. Methods Inbred and outbred mice were immunized with various recombinant P. falciparum MSP142 proteins that represent the two major alleles of MSP142, MAD20 (3D7) and Wellcome (K1, FVO). Humoral immune responses were analysed by ELISA and LuminexTM, and functional activity of induced MSP142-specific antibodies was assessed by growth inhibition assays. T-cell responses were characterized using ex vivo ELISpot assays. Results Analysis of the immune responses induced by various immunization regimens demonstrated a strong allele-specific response at the T cell level in both inbred and outbred mice. The success of heterologous regimens depended on the degree of homology of the N-terminal p33 portion of the MSP142, likely due to the fact that most T cell epitopes reside in this part of the molecule. Analysis of humoral immune responses revealed a marked cross-reactivity between the alleles. Functional analyses showed that some of the heterologous regimens induced antibodies with improved growth inhibitory activities. Conclusion The development of a more broadly efficacious MSP1 based vaccine may be hindered by clonally imprinted p33 responses mainly restricted at the T cell level. In this study, the homology of the p33 sequence between the clonally imprinted response and the vaccine allele determines the magnitude of vaccine induced responses.
Collapse
Affiliation(s)
- Elke S Bergmann-Leitner
- Malaria Vaccine Branch, US Military Malaria Vaccine Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA.
| | | | | | | |
Collapse
|
40
|
The blood-stage malaria antigen PfRH5 is susceptible to vaccine-inducible cross-strain neutralizing antibody. Nat Commun 2011; 2:601. [PMID: 22186897 DOI: 10.1038/ncomms1615] [Citation(s) in RCA: 198] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 11/28/2011] [Indexed: 11/08/2022] Open
Abstract
Current vaccine strategies against the asexual blood stage of Plasmodium falciparum are mostly focused on well-studied merozoite antigens that induce immune responses after natural exposure, but have yet to induce robust protection in any clinical trial. Here we compare human-compatible viral-vectored vaccines targeting ten different blood-stage antigens. We show that the full-length P. falciparum reticulocyte-binding protein homologue 5 (PfRH5) is highly susceptible to cross-strain neutralizing vaccine-induced antibodies, out-performing all other antigens delivered by the same vaccine platform. We find that, despite being susceptible to antibody, PfRH5 is unlikely to be under substantial immune selection pressure; there is minimal acquisition of anti-PfRH5 IgG antibodies in malaria-exposed Kenyans. These data challenge the widespread beliefs that any merozoite antigen that is highly susceptible to immune attack would be subject to significant levels of antigenic polymorphism, and that erythrocyte invasion by P. falciparum is a degenerate process involving a series of parallel redundant pathways.
Collapse
|
41
|
Kusi KA, Remarque EJ, Riasat V, Walraven V, Thomas AW, Faber BW, Kocken CHM. Safety and immunogenicity of multi-antigen AMA1-based vaccines formulated with CoVaccine HT™ and Montanide ISA 51 in rhesus macaques. Malar J 2011; 10:182. [PMID: 21726452 PMCID: PMC3142537 DOI: 10.1186/1475-2875-10-182] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 07/04/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Increasing the breadth of the functional antibody response through immunization with Plasmodium falciparum apical membrane antigen 1 (PfAMA1) multi-allele vaccine formulations has been demonstrated in several rodent and rabbit studies. This study assesses the safety and immunogenicity of three PfAMA1 Diversity-Covering (DiCo) vaccine candidates formulated as an equimolar mixture (DiCo mix) in CoVaccine HT™ or Montanide ISA 51, as well as that of a PfAMA1-MSP1₁₉ fusion protein formulated in Montanide ISA 51. METHODS Vaccine safety in rhesus macaques was monitored by animal behaviour observation and assessment of organ and systemic functions through clinical chemistry and haematology measurements. The immunogenicity of vaccine formulations was assessed by enzyme-linked immunosorbent assays and in vitro parasite growth inhibition assays with three culture-adapted P. falciparum strains. RESULTS These data show that both adjuvants were well tolerated with only transient changes in a few of the chemical and haematological parameters measured. DiCo mix formulated in CoVaccine HT™ proved immunologically and functionally superior to the same candidate formulated in Montanide ISA 51. Immunological data from the fusion protein candidate was however difficult to interpret as four out of six immunized animals were non-responsive for unknown reasons. CONCLUSIONS The study highlights the safety and immunological benefits of DiCo mix as a potential human vaccine against blood stage malaria, especially when formulated in CoVaccine HT™, and adds to the accumulating data on the specificity broadening effects of DiCo mix.
Collapse
Affiliation(s)
- Kwadwo A Kusi
- Department of Parasitology, Biomedical Primate Research Centre, Postbox 3306, 2280 GH, Rijswijk, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
42
|
Moon JE, Deye GA, Miller L, Fracisco S, Miller RS, Tosh D, Cummings JF, Ohrt C, Magill AJ. Plasmodium falciparum infection during suppressive prophylaxis with mefloquine does not induce an antibody response to merozoite surface protein-1(42). Am J Trop Med Hyg 2011; 84:825-9. [PMID: 21540397 DOI: 10.4269/ajtmh.2011.10-0699] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
A sensitive biomarker of malaria infection would obviate the need for placebo control arms in clinical trials of malaria prophylactic drugs. Antibodies to the 42-kDa fragment of merozoite surface protein-1 (MSP1(42)) have been identified as a potential marker of malaria exposure in individuals receiving prophylaxis with mefloquine. We conducted an open-label trial to determine the sensitivity of seroconversion to MSP1(42), defined as a fourfold rise in enzyme-linked immunosorbant assay (ELISA) titer, among 23 malaria naïve volunteers receiving mefloquine prophylaxis and 6 controls after Plasmodium falciparum sporozoite challenge. All members of the control cohort but none of the mefloquine cohort developed patent parasitemia. Four of six controls but zero of the mefloquine cohort seroconverted to MSP1(42). We conclude that malaria infection during suppressive prophylaxis does not induce antibody response to the blood-stage antigen MSP1(42) in a malaria-naïve study population.
Collapse
Affiliation(s)
- James E Moon
- Walter Reed Army Institute of Research, 503 Robert Grant Avenue, Silver Spring, MD 20910-7500, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Malaria Vaccine Development: Are Bacterial Flagellin Fusion Proteins the Bridge between Mouse and Humans? J Parasitol Res 2011; 2011:965369. [PMID: 21603205 PMCID: PMC3095412 DOI: 10.1155/2011/965369] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 01/18/2011] [Indexed: 12/25/2022] Open
Abstract
In the past 25 years, the development of an effective malaria vaccine has become one of the biggest riddles in the biomedical sciences. Experimental data using animal infection models demonstrated that it is possible to induce protective immunity against different stages of malaria parasites. Nonetheless, the vast body of knowledge has generated disappointments when submitted to clinical conditions and presently a single antigen formulation has progressed to the point where it may be translated into a human vaccine. In parallel, new means to increase the protective effects of antigens in general have been pursued and depicted, such as the use of bacterial flagellins as carriers/adjuvants. Flagellins activate pathways in the innate immune system of both mice and humans. The recent report of the first Phase I clinical trial of a vaccine containing a Salmonella flagellin as carrier/adjuvant may fuel the use of these proteins in vaccine formulations. Herein, we review the studies on the use of recombinant flagellins as vaccine adjuvants with malarial antigens in the light of the current state of the art of malaria vaccine development. The available information indicates that bacterial flagellins should be seriously considered for malaria vaccine formulations to the development of effective human vaccines.
Collapse
|
44
|
Douglas AD, de Cassan SC, Dicks MDJ, Gilbert SC, Hill AVS, Draper SJ. Tailoring subunit vaccine immunogenicity: maximizing antibody and T cell responses by using combinations of adenovirus, poxvirus and protein-adjuvant vaccines against Plasmodium falciparum MSP1. Vaccine 2011; 28:7167-78. [PMID: 20937436 PMCID: PMC3404461 DOI: 10.1016/j.vaccine.2010.08.068] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2010] [Revised: 08/12/2010] [Accepted: 08/13/2010] [Indexed: 12/15/2022]
Abstract
Subunit vaccination modalities tend to induce particular immune effector responses. Viral vectors are well known for their ability to induce strong T cell responses, while protein-adjuvant vaccines have been used primarily for induction of antibody responses. Here, we demonstrate in mice using a Plasmodium falciparum merozoite surface protein 1 (PfMSP1) antigen that novel regimes combining adenovirus and poxvirus vectored vaccines with protein antigen in Montanide ISA720 adjuvant can achieve simultaneous antibody and T cell responses which equal, or in some cases surpass, the best immune responses achieved by either the viral vectors or the protein vaccine alone. Such broad responses can be achieved either using three-stage vaccination protocols, or with an equally effective two-stage protocol in which viral vectors are admixed with protein and adjuvant, and were apparent despite the use of a protein antigen that represented only a portion of the viral vector antigen. We describe further possible advantages of viral vectors in achieving consistent antibody priming, enhanced antibody avidity, and cytophilic isotype skew. These data strengthen the evidence that tailored combinations of vaccine platforms can achieve desired combinations of immune responses, and further encourage the co-administration of antibody-inducing recombinant protein vaccines with T cell- and antibody-inducing recombinant viral vectors as one strategy that may achieve protective blood-stage malaria immunity in humans.
Collapse
|
45
|
Dauvillée D, Delhaye S, Gruyer S, Slomianny C, Moretz SE, d'Hulst C, Long CA, Ball SG, Tomavo S. Engineering the chloroplast targeted malarial vaccine antigens in Chlamydomonas starch granules. PLoS One 2010; 5:e15424. [PMID: 21179538 PMCID: PMC3002285 DOI: 10.1371/journal.pone.0015424] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 10/01/2010] [Indexed: 11/18/2022] Open
Abstract
Background Malaria, an Anopheles-borne parasitic disease, remains a major global health problem causing illness and death that disproportionately affects developing countries. Despite the incidence of malaria, which remains one of the most severe infections of human populations, there is no licensed vaccine against this life-threatening disease. In this context, we decided to explore the expression of Plasmodium vaccine antigens fused to the granule bound starch synthase (GBSS), the major protein associated to the starch matrix in all starch-accumulating plants and algae such as Chlamydomonas reinhardtii. Methods and Findings We describe the development of genetically engineered starch granules containing plasmodial vaccine candidate antigens produced in the unicellular green algae Chlamydomonas reinhardtii. We show that the C-terminal domains of proteins from the rodent Plasmodium species, Plasmodium berghei Apical Major Antigen AMA1, or Major Surface Protein MSP1 fused to the algal granule bound starch synthase (GBSS) are efficiently expressed and bound to the polysaccharide matrix. Mice were either immunized intraperitoneally with the engineered starch particles and Freund adjuvant, or fed with the engineered particles co-delivered with the mucosal adjuvant, and challenged intraperitoneally with a lethal inoculum of P. Berghei. Both experimental strategies led to a significantly reduced parasitemia with an extension of life span including complete cure for intraperitoneal delivery as assessed by negative blood thin smears. In the case of the starch bound P. falciparum GBSS-MSP1 fusion protein, the immune sera or purified immunoglobulin G of mice immunized with the corresponding starch strongly inhibited in vitro the intra-erythrocytic asexual development of the most human deadly plasmodial species. Conclusion This novel system paves the way for the production of clinically relevant plasmodial antigens as algal starch-based particles designated herein as amylosomes, demonstrating that efficient production of edible vaccines can be genetically produced in Chlamydomonas.
Collapse
Affiliation(s)
- David Dauvillée
- Centre National de la Recherche Scientifique, CNRS UMR 8576, UGSF, Université des Sciences et Technologies de Lille, Villeneuve d'Ascq, France
| | - Stéphane Delhaye
- Centre National de la Recherche Scientifique, CNRS UMR 8576, UGSF, Université des Sciences et Technologies de Lille, Villeneuve d'Ascq, France
- Center for Infection and Immunity of Lille, CNRS UMR 8204, INSERM U 1019, Institut Pasteur de Lille, Université Lille Nord de France, Lille, France
| | - Sébastien Gruyer
- Centre National de la Recherche Scientifique, CNRS UMR 8576, UGSF, Université des Sciences et Technologies de Lille, Villeneuve d'Ascq, France
| | - Christian Slomianny
- Laboratoire de Physiologie Cellulaire, INSERM U 1003, Université des Sciences et Technologies de Lille, Villeneuve d'Ascq, France
| | - Samuel E. Moretz
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, Maryland, United States of America
| | - Christophe d'Hulst
- Centre National de la Recherche Scientifique, CNRS UMR 8576, UGSF, Université des Sciences et Technologies de Lille, Villeneuve d'Ascq, France
| | - Carole A. Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Disease, National Institutes of Health, Rockville, Maryland, United States of America
| | - Steven G. Ball
- Centre National de la Recherche Scientifique, CNRS UMR 8576, UGSF, Université des Sciences et Technologies de Lille, Villeneuve d'Ascq, France
| | - Stanislas Tomavo
- Centre National de la Recherche Scientifique, CNRS UMR 8576, UGSF, Université des Sciences et Technologies de Lille, Villeneuve d'Ascq, France
- Center for Infection and Immunity of Lille, CNRS UMR 8204, INSERM U 1019, Institut Pasteur de Lille, Université Lille Nord de France, Lille, France
- * E-mail:
| |
Collapse
|
46
|
Yoshida S, Nagumo H, Yokomine T, Araki H, Suzuki A, Matsuoka H. Plasmodium berghei circumvents immune responses induced by merozoite surface protein 1- and apical membrane antigen 1-based vaccines. PLoS One 2010; 5:e13727. [PMID: 21060850 PMCID: PMC2965677 DOI: 10.1371/journal.pone.0013727] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Accepted: 09/07/2010] [Indexed: 11/30/2022] Open
Abstract
Background Two current leading malaria blood-stage vaccine candidate antigens for Plasmodium falciparum, the C-terminal region of merozoite surface protein 1 (MSP119) and apical membrane antigen 1 (AMA1), have been prioritized because of outstanding protective efficacies achieved in a rodent malaria Plasmodium yoelii model. However, P. falciparum vaccines based on these antigens have had disappointing outcomes in clinical trials. Discrepancies in the vaccine efficacies observed between the P. yoelii model and human clinical trials still remain problematic. Methodology and Results In this study, we assessed the protective efficacies of a series of MSP119- and AMA1-based vaccines using the P. berghei rodent malarial parasite and its transgenic models. Immunization of mice with a baculoviral-based vaccine (BBV) expressing P. falciparum MSP119 induced high titers of PfMSP119-specific antibodies that strongly reacted with P. falciparum blood-stage parasites. However, no protection was achieved following lethal challenge with transgenic P. berghei expressing PfMSP119 in place of native PbMSP119. Similarly, neither P. berghei MSP119- nor AMA1-BBV was effective against P. berghei. In contrast, immunization with P. yoelii MSP119- and AMA1-BBVs provided 100% and 40% protection, respectively, against P. yoelii lethal challenge. Mice that naturally acquired sterile immunity against P. berghei became cross-resistant to P. yoelii, but not vice versa. Conclusion This is the first study to address blood-stage vaccine efficacies using both P. berghei and P. yoelii models at the same time. P. berghei completely circumvents immune responses induced by MSP119- and AMA1-based vaccines, suggesting that P. berghei possesses additional molecules and/or mechanisms that circumvent the host's immune responses to MSP119 and AMA1, which are lacking in P. yoelii. Although it is not known whether P. falciparum shares these escape mechanisms with P. berghei, P. berghei and its transgenic models may have potential as useful tools for identifying and evaluating new blood-stage vaccine candidate antigens for P. falciparum.
Collapse
Affiliation(s)
- Shigeto Yoshida
- Division of Medical Zoology, Department of Infection and Immunity, Jichi Medical University, Tochigi, Japan.
| | | | | | | | | | | |
Collapse
|
47
|
New candidate vaccines against blood-stage Plasmodium falciparum malaria: prime-boost immunization regimens incorporating human and simian adenoviral vectors and poxviral vectors expressing an optimized antigen based on merozoite surface protein 1. Infect Immun 2010; 78:4601-12. [PMID: 20713623 DOI: 10.1128/iai.00315-10] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Although merozoite surface protein 1 (MSP-1) is a leading candidate vaccine antigen for blood-stage malaria, its efficacy in clinical trials has been limited in part by antigenic polymorphism and potentially by the inability of protein-in-adjuvant vaccines to induce strong cellular immunity. Here we report the design of novel vectored Plasmodium falciparum vaccines capable of overcoming such limitations. We optimized an antigenic insert comprising the four conserved blocks of MSP-1 fused to tandemly arranged sequences that represent both allelic forms of the dimorphic 42-kDa C-terminal region. Inserts were expressed by adenoviral and poxviral vectors and employed in heterologous prime-boost regimens. Simian adenoviral vectors were used in an effort to circumvent preexisting immunity to human adenoviruses. In preclinical studies these vaccines induced potent cellular immune responses and high-titer antibodies directed against MSP-1. The antibodies induced were found to have growth-inhibitory activity against dimorphic allelic families of P. falciparum. These vectored vaccines should allow assessment in humans of the safety and efficacy of inducing strong cellular as well as cross-strain humoral immunity to P. falciparum MSP-1.
Collapse
|
48
|
Protective immune responses elicited by immunization with a chimeric blood-stage malaria vaccine persist but are not boosted by Plasmodium yoelii challenge infection. Vaccine 2010; 28:6876-84. [PMID: 20709001 DOI: 10.1016/j.vaccine.2010.08.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Revised: 07/17/2010] [Accepted: 08/02/2010] [Indexed: 11/20/2022]
Abstract
An efficacious malaria vaccine remains elusive despite concerted efforts. Using the Plasmodium yoelii murine model, we previously reported that immunization with the C-terminal 19 kDa domain of merozoite surface protein 1 (MSP1(19)) fused to full-length MSP8 protected against lethal P. yoelii 17XL, well beyond that achieved by single or combined immunizations with the component antigens. Here, we continue the evaluation of the chimeric PyMSP1/8 vaccine. We show that immunization with rPyMSP1/8 vaccine elicited an MSP8-restricted T cell response that was sufficient to provide help for both PyMSP1(19) and PyMSP8-specific B cells to produce high and sustained levels of protective antibodies. The enhanced efficacy of immunization with rPyMSP1/8, in comparison to a combined formulation of rPyMSP1(42) and rPyMSP8, was not due to improved conformation of protective B cell epitopes in the chimeric molecule. Unexpectedly, rPyMSP1/8 vaccine-induced antibody responses were not boosted by exposure to P. yoelii 17XL infected RBCs. However, rPyMSP1/8 immunized and infected mice mounted robust responses to a diverse set of blood-stage antigens. The data support the further development of an MSP1/8 chimeric vaccine but also suggest that vaccines that prime for responses to a diverse set of parasite proteins will be required to maximize vaccine efficacy.
Collapse
|
49
|
Allele specificity of gamma interferon responses to the carboxyl-terminal region of Plasmodium falciparum merozoite surface protein 1 by Kenyan adults with naturally acquired immunity to malaria. Infect Immun 2010; 78:4431-41. [PMID: 20696832 DOI: 10.1128/iai.00415-10] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cross-sectional seroepidemiological studies of populations naturally exposed to Plasmodium falciparum suggest an association between protection from malaria and circulating antibodies to the carboxyl terminus of merozoite surface protein 1 (MSP1). Questions remain regarding the significance of cell-mediated immunity to MSP1 in conferring protection and inducing immunologic memory. Vaccine constructs have been based on the 42-kDa recombinant MSP1 protein (MSP1(42)), which includes the 19-kDa (MSP1(19)) and 33-kDa (MSP1(33)) fragments containing the major B- and T-cell epitopes, respectively. To evaluate T-cell responses to the MSP1(33) fragment, two libraries of overlapping 18-mer peptides from the 3D7 and FVO MSP1(33) regions were used to screen a cohort of asymptomatic Kenyan adults. Gamma interferon (IFN-γ) measured by enzyme-linked immunospot assay (ELISPOT) at multiple time points assessed the magnitude and stability of these responses. The percentage of individuals with IFN-γ responses to single MSP1(33) peptides ranged from nil to 24%, were clustered among a subset of peptides, and were not consistently recalled over time. In comparison to peptide responses, IFN-γ ELISPOT responses to recombinant MSP1(42) were more prevalent, more frequently elicited by the 3D7 as opposed to the FVO allele, and more stable over time. The prevailing MSP1(33) genotype infection was 3D7, with few mixed infections and no sole FVO infections. This study demonstrates that immunity against MSP1(33) after cumulative natural infections consists of low-magnitude and difficult-to-detect IFN-γ responses. Although immunity against MSP1 alone will not confer protection against malaria, demonstrating a relative and sustained increase in T-cell immunity to MSP1 after vaccination would be a reasonable measurement of vaccine responsiveness.
Collapse
|
50
|
Moorthy VS, Kieny MP. Reducing empiricism in malaria vaccine design. THE LANCET. INFECTIOUS DISEASES 2010; 10:204-11. [PMID: 20185099 DOI: 10.1016/s1473-3099(09)70329-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Gains in the control of malaria and the promising progress of a malaria vaccine that is partly efficacious do not reduce the need for a high-efficacy vaccine in the longer term. Evidence supports the feasibility of developing a highly efficacious malaria vaccine. However, design of candidate malaria vaccines remains empirical and is necessarily based on many unproven assumptions because much of the knowledge needed to design vaccines and to predict efficacy is not available. Data to inform key questions of vaccine science might allow the design of vaccines to progress to a less empirical stage, for example through availability of assay results associated with vaccine efficacy. We discuss six strategic gaps in knowledge that contribute to empiricism in the design of vaccines. Comparative evaluation, assay and model standardisation, greater sharing of information, collaboration and coordination between groups, and rigorous evaluation of existing datasets are steps that can be taken to enable reductions in empiricism over time.
Collapse
|