1
|
Liao SX, Wang YW, Sun PP, Xu Y, Wang TH. Prospects of neutrophilic implications against pathobiology of chronic obstructive pulmonary disease: Pharmacological insights and technological advances. Int Immunopharmacol 2025; 144:113634. [PMID: 39577220 DOI: 10.1016/j.intimp.2024.113634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/03/2024] [Accepted: 11/11/2024] [Indexed: 11/24/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) is a prevalent chronic inflammatory condition that affects the lungs globally. A key feature of this inflammatory response is the migration and aggregation of polymorphonuclear neutrophils (PMNs). The presence of neutrophilic inflammation within the airways is as distinguishing characteristic of COPD. As research advances, PMNs and their products emerge as central players in the airway inflammatory cascade of COPD patients. Their involvement in phagocytosis, degranulation, and the formation of neutrophil extracellular traps (NETs) significantly contributes to the pathogenesis of COPD. Moreover, studies have shown that excessive biological activities of neutrophils in the lungs can result in airway epithelial injury, emphysema, and mucus hypersecretion. Currently, there is growing empirical support for the moderate targeting neutrophils in the clinical management of COPD. This article delves into the pivotal role of neutrophils in COPD, emphasizing the urgency for novel therapeutic approaches that specifically target neutrophils. Additionally, it explores the potential of utilizing single-cell RNA sequencing to further investigate neutrophils and relevant risk genes as potential biomarkers for COPD treatment. By elucidating these mechanisms, this review aims to pave the way for future strategies to modulate neutrophil function, thereby addressing the pressing need for more effective COPD therapies.
Collapse
Affiliation(s)
- Shi-Xia Liao
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China; Department of Respiratory and Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China
| | - Yan-Wen Wang
- West China Clinical Medical College, Sichuan University, Chengdu 610041, China
| | - Peng-Peng Sun
- Department of Osteopathy, Affiliated Hospital of Zunyi Medical University, Zunyi 563003, China
| | - Yang Xu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Ting-Hua Wang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China; Institute of Neurological Disease, West China Hospital, Sichuan University & The Research Units of West China, Chinese Academy of Medical Sciences, Chengdu 610041, China.
| |
Collapse
|
2
|
Lee JH, Shin SJ, Lee JH, Knowles JC, Lee HH, Kim HW. Adaptive immunity of materials: Implications for tissue healing and regeneration. Bioact Mater 2024; 41:499-522. [PMID: 39206299 PMCID: PMC11350271 DOI: 10.1016/j.bioactmat.2024.07.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/16/2024] [Accepted: 07/21/2024] [Indexed: 09/04/2024] Open
Abstract
Recent cumulative findings signify the adaptive immunity of materials as a key agenda in tissue healing that can improve regenerative events and outcomes. Modulating immune responses, mainly the recruitment and functions of T and B cells and their further interplay with innate immune cells (e.g., dendritic cells, macrophages) can be orchestrated by materials. For instance, decellularized matrices have been shown to promote muscle healing by inducing T helper 2 (Th2) cell immunity, while synthetic biopolymers exhibit differential effects on B cell responses and fibrosis compared decellularized matrices. We discuss the recent findings on how implantable materials instruct the adaptive immune events and the subsequent tissue healing process. In particular, we dissect the materials' physicochemical properties (shape, size, topology, degradation, rigidity, and matrix dynamic mechanics) to demonstrate the relations of these parameters with the adaptive immune responses in vitro and the underlying biological mechanisms. Furthermore, we present evidence of recent in vivo phenomena, including tissue healing, cancer progression, and fibrosis, wherein biomaterials potentially shape adaptive immune cell functions and in vivo outcomes. Our discussion will help understand the materials-regulated immunology events more deeply, and offer the design rationale of materials with tunable matrix properties for accelerated tissue repair and regeneration.
Collapse
Affiliation(s)
- Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea
- Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
- Cell & Matter Institute, Dankook University, Cheonan 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan 31116, Republic of Korea
| | - Seong-Jin Shin
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan 31116, Republic of Korea
| | - Jun Hee Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
- Cell & Matter Institute, Dankook University, Cheonan 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan 31116, Republic of Korea
| | - Jonathan C. Knowles
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan 31116, Republic of Korea
- UCL Eastman Dental Institute, University College London, London NW3 2PX, United Kingdom
| | - Hae-Hyoung Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea
- Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan 31116, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan 31116, Republic of Korea
- Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan 31116, Republic of Korea
- Department of Nanobiomedical Science and BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan 31116, Republic of Korea
- Cell & Matter Institute, Dankook University, Cheonan 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
3
|
Zhang Y, Xie Y, Zhang X, Duan C, Ma J, Wang Y, Wu Y, Shan N, Cheng K, Zhuang R, Bian K. CD226 implicated in Akt-dependent apoptosis of CD4 + T cell contributes to asthmatic pathogenesis. Cell Death Dis 2024; 15:705. [PMID: 39349422 PMCID: PMC11442704 DOI: 10.1038/s41419-024-07080-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/09/2024] [Accepted: 09/13/2024] [Indexed: 10/02/2024]
Abstract
Asthma is a chronic airway inflammatory disease in which CD4+ T cell dysregulation occurs. Here, we investigated the molecular role and clinical significance of CD226, a costimulatory molecule of T lymphocytes, in the development of allergic asthma. Our results revealed that the expression of CD226 was significantly increased in CD4+ effector T cells, especially in T helper (Th) 2 cells and Th17 cells in patients with asthma. Moreover, CD4+ T cell-specific Cd226-knockout mice were generated and together with littermates were challenged with ovalbumin (OVA) to establish a model of allergic asthma. We found that CD226 deficiency in CD4+ T cells mitigated lung inflammation, IgE production, and eosinophil infiltration and reduced airway remodeling in experimental allergic asthma. However, the impact of CD226 on asthma was independent of Treg cell modulation. Through RNA-seq data analysis, the apoptosis pathway was screened. Mechanistically, CD226 deletion promoted CD4+ T cell late apoptosis via the activation of Caspase-3 in an Akt-dependent manner. Furthermore, blocking CD226 signaling with a recombinant fusion protein attenuated asthma features in mice and achieved a good therapeutic effect. Overall, this study revealed a unique role of CD226 in CD4+ T cell regulation in asthma pathogenesis. Therefore, targeting CD226 may provide new insights into the clinical treatment of asthma.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
- Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yang Xie
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xuexin Zhang
- Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Chujun Duan
- Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, China
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Jingchang Ma
- Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yuling Wang
- Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yilin Wu
- Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Niqi Shan
- Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Kun Cheng
- Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Ran Zhuang
- Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, China.
| | - Ka Bian
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
4
|
Mara AB, Rawat K, King WT, Jakubzick CV. Natural antibodies drive type 2 immunity in response to damage-associated molecular patterns. JCI Insight 2024; 9:e177230. [PMID: 38470489 PMCID: PMC11141869 DOI: 10.1172/jci.insight.177230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/07/2024] [Indexed: 03/13/2024] Open
Abstract
Allergic airway disease (AAD) is an example of type 2 inflammation that leads to chronic airway eosinophilia controlled by CD4 Th2 cells. Inflammation is reinforced by mast cells and basophils armed with allergen-specific IgE made by allergen-specific B2 B cells of the adaptive immune system. Little is known about how AAD is affected by innate B1 cells, which produce natural antibodies (NAbs) that facilitate apoptotic cell clearance and detect damage- and pathogen-associated molecular patterns (DAMPS and PAMPS). We used transgenic mice lacking either B cells or NAbs in distinct mouse models of AAD that require either DAMPS or PAMPS as the initial trigger for type 2 immunity. In a DAMP-induced allergic model, driven by alum and uric acid, mouse strains lacking B cells (CD19DTA), NAbs (IgHEL MD4), or all secreted antibodies (sIgm-/-Aid-/-) displayed a significant reduction in both eosinophilia and Th2 priming compared with WT or Aid-/- mice lacking only germinal center-dependent high-affinity class-switched antibodies. Replenishing B cell-deficient mice with either unimmunized B1 B cells or NAbs during sensitization restored eosinophilia, suggesting that NAbs are required for licensing antigen-presenting cells to prime type 2 immunity. Conversely, PAMP-dependent type 2 priming to house dust mite or Aspergillus was not dependent on NAbs. This study reveals an underappreciated role of B1 B cell-generated NAbs in selectively driving DAMP-induced type 2 immunity.
Collapse
|
5
|
He J, Li J, Lin Q, Ni H, Huang S, Cheng H, Ding X, Huang Y, Yu H, Xu Y, Nie H. Anti-CD20 treatment attenuates Th2 cell responses: implications for the role of lung follicular mature B cells in the asthmatic mice. Inflamm Res 2024; 73:433-446. [PMID: 38345634 DOI: 10.1007/s00011-023-01847-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/18/2023] [Accepted: 12/22/2023] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND B cells were believed to act as antigen-presenting cells (APCs) to promote T helper type 2 (Th2) cell responses. However, the role of lung B cells and its subpopulations in Th2 cell responses in asthma remains unclear. OBJECTIVE We leveraged an anti-CD20 monoclonal antibody (mAb) treatment that has been shown to selectively deplete B cells in mice and investigated whether this treatment modulates Th2 cell responses and this modulation is related to lung follicular mature (FM) B cells in a murine model of asthma. METHODS AND RESULTS We used a house dust mite (HDM)-induced asthma mouse model and found that anti-CD20 mAb treatment attenuates Th2 cell responses. Meanwhile, anti-CD20 mAb treatment did dramatically reduce the number of B cells, especially FM B cells in the lungs, but did not impact the frequency of other immune cell types, including lung T cells, dendritic cells, natural killer cells, and regulatory T cells in wild-type mice. Moreover, we found that the suppressive effect of anti-CD20 mAb treatment on Th2 cell responses could be reversed upon adoptive transfer of lung FM B cells, but not lung CD19+ B cells without FM B cells in asthmatic mice. CONCLUSIONS These findings reveal that anti-CD20 mAb treatment alleviates Th2 cell responses, possibly by depleting lung FM B cells in a Th2-driven asthma model. This implies a potential therapeutic approach for asthma treatment through the targeting of lung FM B cells.
Collapse
Affiliation(s)
- Jilong He
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang District, Wuhan, 430060, China
| | - Jingling Li
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang District, Wuhan, 430060, China
| | - Qibin Lin
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang District, Wuhan, 430060, China
| | - Haiyang Ni
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang District, Wuhan, 430060, China
| | - Sisi Huang
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang District, Wuhan, 430060, China
| | - Hong Cheng
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Xuhong Ding
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang District, Wuhan, 430060, China
| | - Yi Huang
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang District, Wuhan, 430060, China
| | - Hongying Yu
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang District, Wuhan, 430060, China
| | - Yaqing Xu
- Department of Geriatric Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei, China.
| | - Hanxiang Nie
- Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuchang District, Wuhan, 430060, China.
| |
Collapse
|
6
|
Abstract
Barrier tissues are the primary site of infection for pathogens likely to cause future pandemics. Tissue-resident lymphocytes can rapidly detect pathogens upon infection of barrier tissues and are critical in preventing viral spread. However, most vaccines fail to induce tissue-resident lymphocytes and are instead reliant on circulating antibodies to mediate protective immunity. Circulating antibody titers wane over time following vaccination leaving individuals susceptible to breakthrough infections by variant viral strains that evade antibody neutralization. Memory B cells were recently found to establish tissue residence following infection of barrier tissues. Here, we summarize emerging evidence for the importance of tissue-resident memory B cells in the establishment of protective immunity against viral and bacterial challenge. We also discuss the role of tissue-resident memory B cells in regulating the progression of non-infectious diseases. Finally, we examine new approaches to develop vaccines capable of eliciting barrier immunity.
Collapse
Affiliation(s)
- Changfeng Chen
- Division of Allergy and Immunology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - Brian J Laidlaw
- Division of Allergy and Immunology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States.
| |
Collapse
|
7
|
Chudakov DB, Kotsareva OD, Konovalova MV, Tsaregorodtseva DS, Shevchenko MA, Sergeev AA, Fattakhova GV. Early IgE Production Is Linked with Extrafollicular B- and T-Cell Activation in Low-Dose Allergy Model. Vaccines (Basel) 2022; 10:vaccines10060969. [PMID: 35746576 PMCID: PMC9231339 DOI: 10.3390/vaccines10060969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 06/01/2022] [Accepted: 06/14/2022] [Indexed: 12/23/2022] Open
Abstract
Despite its paramount importance, the predominant association of early IgE production with harmless antigens, via germinal-center B- and T-cell subpopulations or extrafollicular activation, remains unresolved. The aim of this work was to clarify whether the reinforced IgE production following the subcutaneous immunization of BALB/c mice with low antigen doses in withers adipose tissue might be linked with intensified extrafollicular or germinal-center responses. The mice were immunized three times a week for 4 weeks in the withers region, which is enriched in subcutaneous fat and tissue-associated B cells, with high and low OVA doses and via the intraperitoneal route for comparison. During long-term immunization with both low and high antigen doses in the withers region, but not via the intraperitoneal route, we observed a significant accumulation of B220-CD1d-CD5-CD19+ B-2 extrafollicular plasmablasts in the subcutaneous fat and regional lymph nodes but not in the intraperitoneal fat. Only low antigen doses induced a significant accumulation of CXCR4+ CXCR5- CD4+ extrafollicular T helpers in the withers adipose tissue but not in the regional lymph nodes or abdominal fat. Only in subcutaneous fat was there a combination of extrafollicular helper accumulation. In conclusion, extrafollicular B- and T-cell activation are necessary for early IgE class switching.
Collapse
Affiliation(s)
- Dmitrii Borisovich Chudakov
- Laboratory of Cell Interactions, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya St., 117997 Moscow, Russia; (O.D.K.); (M.V.K.); (M.A.S.); (A.A.S.); (G.V.F.)
- Correspondence: ; Tel.: +7-495-330-4011
| | - Olga Dmitrievna Kotsareva
- Laboratory of Cell Interactions, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya St., 117997 Moscow, Russia; (O.D.K.); (M.V.K.); (M.A.S.); (A.A.S.); (G.V.F.)
| | - Maryia Vladimirovna Konovalova
- Laboratory of Cell Interactions, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya St., 117997 Moscow, Russia; (O.D.K.); (M.V.K.); (M.A.S.); (A.A.S.); (G.V.F.)
| | - Daria Sergeevna Tsaregorodtseva
- Faculty of Medical Biology, Sechenov First Moscow State Medical University, 2 Bolshaya Pirogovskaya St., 1194535 Moscow, Russia;
| | - Marina Alexandrovna Shevchenko
- Laboratory of Cell Interactions, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya St., 117997 Moscow, Russia; (O.D.K.); (M.V.K.); (M.A.S.); (A.A.S.); (G.V.F.)
| | - Anton Andreevich Sergeev
- Laboratory of Cell Interactions, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya St., 117997 Moscow, Russia; (O.D.K.); (M.V.K.); (M.A.S.); (A.A.S.); (G.V.F.)
| | - Gulnar Vaisovna Fattakhova
- Laboratory of Cell Interactions, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya St., 117997 Moscow, Russia; (O.D.K.); (M.V.K.); (M.A.S.); (A.A.S.); (G.V.F.)
| |
Collapse
|
8
|
Masjedi M, Montahaei T, Sharafi Z, Jalali A. Pulmonary vaccine delivery: An emerging strategy for vaccination and immunotherapy. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
9
|
Unravelling the molecular mechanisms underlying chronic respiratory diseases for the development of novel therapeutics via in vitro experimental models. Eur J Pharmacol 2022; 919:174821. [DOI: 10.1016/j.ejphar.2022.174821] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/01/2022] [Accepted: 02/09/2022] [Indexed: 12/11/2022]
|
10
|
Allen CDC. Features of B Cell Responses Relevant to Allergic Disease. THE JOURNAL OF IMMUNOLOGY 2022; 208:257-266. [PMID: 35017215 PMCID: PMC10054180 DOI: 10.4049/jimmunol.2100988] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 11/04/2021] [Indexed: 01/16/2023]
Abstract
This Brief Review delves into B cell responses in the context of allergy. The primary contribution of B cells to allergy is the production of IgE, the Ab isotype that triggers immediate hypersensitivity reactions through the release of mediators from mast cells and basophils. B cells may also have protective roles in allergy, such as through the production of IgG or as regulatory B cells. In this review, I focus on the basic principles of B cell differentiation and discuss features relevant to allergic immune responses. In particular, I discuss: (1) class-switch recombination; (2) plasma cell differentiation; (3) germinal centers and affinity maturation; and (4) memory B cells and recall responses, with an emphasis on IgE, IgG1, and IgG4. I also consider how B cells may contribute to allergic responses independent of Ab production-for example, by serving as APCs.
Collapse
Affiliation(s)
- Christopher D C Allen
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA; Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA; and Department of Anatomy, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
11
|
Moore EM, Maestas DR, Cherry CC, Garcia JA, Comeau HY, Davenport Huyer L, Kelly SH, Peña AN, Blosser RL, Rosson GD, Elisseeff JH. Biomaterials direct functional B cell response in a material-specific manner. SCIENCE ADVANCES 2021; 7:eabj5830. [PMID: 34851674 PMCID: PMC8635437 DOI: 10.1126/sciadv.abj5830] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 10/13/2021] [Indexed: 05/13/2023]
Abstract
B cells are an adaptive immune target of biomaterials development in vaccine research but, despite their role in wound healing, have not been extensively studied in regenerative medicine. To probe the role of B cells in biomaterial scaffold response, we evaluated the B cell response to biomaterial materials implanted in a muscle wound using a biological extracellular matrix (ECM), as a reference for a naturally derived material, and synthetic polyester polycaprolactone (PCL), as a reference for a synthetic material. In the local muscle tissue, small numbers of B cells are present in response to tissue injury and biomaterial implantation. The ECM materials induced mature B cells in lymph nodes and antigen presentation in the spleen. The synthetic PCL implants resulted in prolonged B cell presence in the wound and induced an antigen-presenting phenotype. In summary, the adaptive B cell immune response to biomaterial induces local, regional, and systemic immunological changes.
Collapse
Affiliation(s)
- Erika M. Moore
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL, USA
- Translational Tissue Engineering Center, Wilmer Eye Institute and the Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - David R. Maestas
- Translational Tissue Engineering Center, Wilmer Eye Institute and the Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Chris C. Cherry
- Translational Tissue Engineering Center, Wilmer Eye Institute and the Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jordan A. Garcia
- Translational Tissue Engineering Center, Wilmer Eye Institute and the Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Hannah Y. Comeau
- Translational Tissue Engineering Center, Wilmer Eye Institute and the Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Locke Davenport Huyer
- Translational Tissue Engineering Center, Wilmer Eye Institute and the Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Sean H. Kelly
- Translational Tissue Engineering Center, Wilmer Eye Institute and the Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Alexis N. Peña
- Translational Tissue Engineering Center, Wilmer Eye Institute and the Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Richard L. Blosser
- Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Gedge D. Rosson
- Division of Plastic Surgery, Department of Surgery, Johns Hopkins University, Baltimore, MD, USA
| | - Jennifer H. Elisseeff
- Translational Tissue Engineering Center, Wilmer Eye Institute and the Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
12
|
Zhang XY, Chen ZC, Li N, Wang ZH, Guo YL, Tian CJ, Cheng DJ, Tang XY, Zhang LX. Exosomal transfer of activated neutrophil-derived lncRNA CRNDE promotes proliferation and migration of airway smooth muscle cells in asthma. Hum Mol Genet 2021; 31:638-650. [PMID: 34590683 DOI: 10.1093/hmg/ddab283] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/06/2021] [Accepted: 09/20/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Activated neutrophil-derived exosomes reportedly contribute to the proliferation of airway smooth muscle cells (ASMCs), thereby aggravating the airway wall remodeling during asthma; however, the specific mechanism remains unclear. METHODS Lipopolysaccharide (LPS)-EXO and si-CRNDE-EXO were extracted from the media of human neutrophils treated with LPS and LPS + si-CRNDE (a siRNA targets long non-coding RNA CRNDE), respectively. Human ASMCs were co-cultured with LPS-EXO or si-CRNDE-EXO, and cell viability, proliferation, and migration were measured. The interplay of CRNDE, inhibitor of nuclear factor kappa B kinase subunit beta (IKKβ), and nuclear receptor subfamily 2 group C member 2 (TAK1) was explored using RNA immunoprecipitation (RIP) and Co-IP assays. A mouse model of asthma was induced using ovalbumin. RESULTS CRNDE was upregulated in LPS-EXO and successfully transferred from LPS-treated neutrophils to ASMCs through exosome. Mechanically, CRNDE loaded in LPS-EXO reinforced TAK1-mediated IKKβ phosphorylation, thereby activating the nuclear factor kappa B (NF-κB) pathway. Functionally, silencing CRNDE in LPS-EXO, an IKKβ inhibitor, and an NF-κB inhibitor all removed the upregulation of cell viability, proliferation, and migration induced by LPS-EXO in ASMCs. In the end, the in vivo experiment demonstrated that CRNDE knockdown in neutrophils effectively reduced the thickness of bronchial smooth muscle in a mouse model for asthma. CONCLUSION Activated neutrophils-derived CRNDE was transferred to ASMCs through exosomes and activated the NF-κB pathway by enhancing IKKβ phosphorylation. The latter promoted the proliferation and migration of ASMCs and then contributed to airway remodeling in asthma.
Collapse
Affiliation(s)
- Xiao-Yu Zhang
- Department of Respiratory Disease and Intensive Care, Henan Provincial People's Hospital.,Department of Respiratory Disease and Intensive Care, People's Hospital Affiliated to Zhengzhou University
| | - Zhuo-Chang Chen
- Department of Respiratory Disease and Intensive Care, Henan Provincial People's Hospital.,Department of Respiratory Disease and Intensive Care, People's Hospital Affiliated to Zhengzhou University
| | - Nan Li
- Department of Respiratory Disease and Intensive Care, Henan Provincial People's Hospital.,Department of Respiratory Disease and Intensive Care, People's Hospital Affiliated to Zhengzhou University
| | - Zhi-Hua Wang
- Department of Respiratory Disease and Intensive Care, Henan Provincial People's Hospital.,Department of Respiratory Disease and Intensive Care, People's Hospital Affiliated to Zhengzhou University
| | - Ya-Li Guo
- Department of Respiratory Disease and Intensive Care, Henan Provincial People's Hospital.,Department of Respiratory Disease and Intensive Care, People's Hospital Affiliated to Zhengzhou University
| | - Cui-Jie Tian
- Department of Respiratory Disease and Intensive Care, Henan Provincial People's Hospital.,Department of Respiratory Disease and Intensive Care, People's Hospital Affiliated to Zhengzhou University
| | - Dong-Jun Cheng
- Department of Respiratory Disease and Intensive Care, Henan Provincial People's Hospital.,Department of Respiratory Disease and Intensive Care, People's Hospital Affiliated to Zhengzhou University
| | - Xue-Yi Tang
- Department of Respiratory Disease and Intensive Care, Henan Provincial People's Hospital.,Department of Respiratory Disease and Intensive Care, People's Hospital Affiliated to Zhengzhou University
| | - Luo-Xian Zhang
- Department of Respiratory Disease and Intensive Care, Henan Provincial People's Hospital.,Department of Respiratory Disease and Intensive Care, People's Hospital Affiliated to Zhengzhou University
| |
Collapse
|
13
|
Initiation and Pathogenesis of Severe Asthma with Fungal Sensitization. Cells 2021; 10:cells10040913. [PMID: 33921169 PMCID: PMC8071493 DOI: 10.3390/cells10040913] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 04/02/2021] [Accepted: 04/09/2021] [Indexed: 12/26/2022] Open
Abstract
Fungi represent one of the most diverse and abundant eukaryotes on earth, and their ubiquity and small proteolytically active products make them pervasive allergens that affect humans and other mammals. The immunologic parameters surrounding fungal allergies are still not fully elucidated despite their importance given that a large proportion of severe asthmatics are sensitized to fungal allergens. Herein, we explore fungal allergic asthma with emphasis on mouse models that recapitulate the characteristics of human disease, and the main leukocyte players in the pathogenesis of fungal allergies. The endogenous mycobiome may also contribute to fungal asthma, a phenomenon that we discuss only superficially, as much remains to be discovered.
Collapse
|
14
|
Habener A, Happle C, Grychtol R, Skuljec J, Busse M, Dalüge K, Obernolte H, Sewald K, Braun A, Meyer-Bahlburg A, Hansen G. Regulatory B cells control airway hyperreactivity and lung remodeling in a murine asthma model. J Allergy Clin Immunol 2020; 147:2281-2294.e7. [PMID: 33249168 DOI: 10.1016/j.jaci.2020.09.041] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 06/05/2020] [Accepted: 09/02/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Asthma is a widespread, multifactorial chronic airway disease. The influence of regulatory B cells on airway hyperreactivity (AHR) and remodeling in asthma is poorly understood. OBJECTIVE Our aim was to analyze the role of B cells in a house dust mite (HDM)-based murine asthma model. METHODS The influence of B cells on lung function, tissue remodeling, and the immune response were analyzed by using wild-type and B-cell-deficient (μMT) mice and transfer of IL-10-proficient and IL-10-deficient B cells to μMT mice. RESULTS After HDM-sensitization, both wild-type and μMT mice developed AHR, but the AHR was significantly stronger in μMT mice, as confirmed by 2 independent techniques: invasive lung function measurement in vivo and examination of precision-cut lung slices ex vivo. Moreover, airway remodeling was significantly increased in allergic μMT mice, as shown by enhanced collagen deposition in the airways, whereas the numbers of FoxP3+ and FoxP3- IL-10-secreting regulatory T cells were reduced. Adoptive transfer of IL-10-proficient but not IL-10-deficient B cells into μMT mice before HDM-sensitization attenuated AHR and lung remodeling. In contrast, FoxP3+ regulatory T cells were equally upregulated by transfer of IL-10-proficient and IL-10-deficient B cells. CONCLUSION Our data in a murine asthma model illustrate a central role of regulatory B cells in the control of lung function and airway remodeling and may support future concepts for B-cell-targeted prevention and treatment strategies for allergic asthma.
Collapse
Affiliation(s)
- Anika Habener
- Department of Paediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research, Hannover, Germany
| | - Christine Happle
- Department of Paediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research, Hannover, Germany
| | - Ruth Grychtol
- Department of Paediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research, Hannover, Germany
| | - Jelena Skuljec
- Department of Paediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany; Department of Neurology, University Medicine Essen, Essen, Germany
| | - Mandy Busse
- Department of Paediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany; Experimental Obstetrics and Gynecology, Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Kathleen Dalüge
- Department of Paediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Helena Obernolte
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research, Hannover, Germany; Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - Katherina Sewald
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research, Hannover, Germany; Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - Armin Braun
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research, Hannover, Germany; Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | - Almut Meyer-Bahlburg
- Department of Paediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research, Hannover, Germany; Department of Pediatrics, University Medicine Greifswald, Greifswald, Germany
| | - Gesine Hansen
- Department of Paediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research, Hannover, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany.
| |
Collapse
|
15
|
Mohan A, Agarwal S, Clauss M, Britt NS, Dhillon NK. Extracellular vesicles: novel communicators in lung diseases. Respir Res 2020; 21:175. [PMID: 32641036 PMCID: PMC7341477 DOI: 10.1186/s12931-020-01423-y] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 06/15/2020] [Indexed: 02/06/2023] Open
Abstract
The lung is the organ with the highest vascular density in the human body. It is therefore perceivable that the endothelium of the lung contributes significantly to the circulation of extracellular vesicles (EVs), which include exosomes, microvesicles, and apoptotic bodies. In addition to the endothelium, EVs may arise from alveolar macrophages, fibroblasts and epithelial cells. Because EVs harbor cargo molecules, such as miRNA, mRNA, and proteins, these intercellular communicators provide important insight into the health and disease condition of donor cells and may serve as useful biomarkers of lung disease processes. This comprehensive review focuses on what is currently known about the role of EVs as markers and mediators of lung pathologies including COPD, pulmonary hypertension, asthma, lung cancer and ALI/ARDS. We also explore the role EVs can potentially serve as therapeutics for these lung diseases when released from healthy progenitor cells, such as mesenchymal stem cells.
Collapse
Affiliation(s)
- Aradhana Mohan
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Mail Stop 3007, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA
| | - Stuti Agarwal
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Mail Stop 3007, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA
| | - Matthias Clauss
- Division of Pulmonary, Critical Care, Sleep & Occupational Medicine, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Nicholas S Britt
- Department of Pharmacy Practice, University of Kansas School of Pharmacy, Lawrence, Kansas, USA.,Division of Infectious Diseases, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Navneet K Dhillon
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Kansas Medical Center, Mail Stop 3007, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA. .,Department of Molecular & Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, USA.
| |
Collapse
|
16
|
Hossain FMA, Choi JY, Uyangaa E, Park SO, Eo SK. The Interplay between Host Immunity and Respiratory Viral Infection in Asthma Exacerbation. Immune Netw 2019; 19:e31. [PMID: 31720042 PMCID: PMC6829071 DOI: 10.4110/in.2019.19.e31] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 08/22/2019] [Accepted: 08/25/2019] [Indexed: 12/16/2022] Open
Abstract
Asthma is one of the most common and chronic diseases characterized by multidimensional immune responses along with poor prognosis and severity. The heterogeneous nature of asthma may be attributed to a complex interplay between risk factors (either intrinsic or extrinsic) and specific pathogens such as respiratory viruses, and even bacteria. The intrinsic risk factors are highly correlated with asthma exacerbation in host, which may be mediated via genetic polymorphisms, enhanced airway epithelial lysis, apoptosis, and exaggerated viral replication in infected cells, resulting in reduced innate immune response and concomitant reduction of interferon (types I, II, and III) synthesis. The canonical features of allergic asthma include strong Th2-related inflammation, sensitivity to non-steroidal anti-inflammatory drugs (NSAIDs), eosinophilia, enhanced levels of Th2 cytokines, goblet cell hyperplasia, airway hyper-responsiveness, and airway remodeling. However, the NSAID-resistant non-Th2 asthma shows a characteristic neutrophilic influx, Th1/Th17 or even mixed (Th17-Th2) immune response and concurrent cytokine streams. Moreover, inhaled corticosteroid-resistant asthma may be associated with multifactorial innate and adaptive responses. In this review, we will discuss the findings of various in vivo and ex vivo models to establish the critical heterogenic asthmatic etiologies, host-pathogen relationships, humoral and cell-mediated immune responses, and subsequent mechanisms underlying asthma exacerbation triggered by respiratory viral infections.
Collapse
Affiliation(s)
- Ferdaus Mohd Altaf Hossain
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan 54596, Korea.,Faculty of Veterinary, Animal and Biomedical Sciences, Sylhet Agricultural University, Sylhet 3100, Bangladesh
| | - Jin Young Choi
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan 54596, Korea
| | - Erdenebileg Uyangaa
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan 54596, Korea
| | - Seong Ok Park
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan 54596, Korea
| | - Seong Kug Eo
- College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan 54596, Korea
| |
Collapse
|
17
|
Enciso J, Pelayo R, Villarreal C. From Discrete to Continuous Modeling of Lymphocyte Development and Plasticity in Chronic Diseases. Front Immunol 2019; 10:1927. [PMID: 31481957 PMCID: PMC6710364 DOI: 10.3389/fimmu.2019.01927] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 07/30/2019] [Indexed: 12/12/2022] Open
Abstract
The molecular events leading to differentiation, development, and plasticity of lymphoid cells have been subject of intense research due to their key roles in multiple pathologies, such as lymphoproliferative disorders, tumor growth maintenance and chronic diseases. The emergent roles of lymphoid cells and the use of high-throughput technologies have led to an extensive accumulation of experimental data allowing the reconstruction of gene regulatory networks (GRN) by integrating biochemical signals provided by the microenvironment with transcriptional modules of lineage-specific genes. Computational modeling of GRN has been useful for the identification of molecular switches involved in lymphoid specification, prediction of microenvironment-dependent cell plasticity, and analyses of signaling events occurring downstream the activation of antigen recognition receptors. Among most common modeling strategies to analyze the dynamical behavior of GRN, discrete dynamic models are widely used for their capacity to capture molecular interactions when a limited knowledge of kinetic parameters is present. However, they are less powerful when modeling complex systems sensitive to biochemical gradients. To compensate it, discrete models may be transformed into regulatory networks that includes state variables and parameters varying within a continuous range. This approach is based on a system of differential equations dynamics with regulatory interactions described by fuzzy logic propositions. Here, we discuss the applicability of this method on modeling of development and plasticity processes of adaptive lymphocytes, and its potential implications in the study of pathological landscapes associated to chronic diseases.
Collapse
Affiliation(s)
- Jennifer Enciso
- Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Mexico City, Mexico
- Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Rosana Pelayo
- Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Carlos Villarreal
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Departamento de Física Cuántica y Fotónica, Instituto de Física, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
18
|
León B, Lund FE. Compartmentalization of dendritic cell and T-cell interactions in the lymph node: Anatomy of T-cell fate decisions. Immunol Rev 2019; 289:84-100. [PMID: 30977197 PMCID: PMC6464380 DOI: 10.1111/imr.12758] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 01/31/2019] [Accepted: 02/04/2019] [Indexed: 12/27/2022]
Abstract
Upon receiving cognate and co-stimulatory priming signals from antigen (Ag)-presenting dendritic cells (DCs) in secondary lymphoid tissues, naïve CD4+ T cells differentiate into distinct effector and memory populations. These alternate cell fate decisions, which ultimately control the T-cell functional attributes, are dictated by programming signals provided by Ag-bearing DCs and by other cells that are present in the microenvironment in which T-cell priming occurs. We know that DCs can be subdivided into multiple populations and that the various DC subsets exhibit differential capacities to initiate development of the different CD4+ T-helper populations. What is less well understood is why different subanatomic regions of secondary lymphoid tissues are colonized by distinct populations of Ag-presenting DCs and how the location of these DCs influences the type of T-cell response that will be generated. Here we review how chemokine receptors and their ligands, which position allergen and nematode-activated DCs within different microdomains of secondary lymphoid tissues, contribute to the establishment of IL-4 committed follicular helper T and type 2 helper cell responses.
Collapse
Affiliation(s)
- Beatriz León
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Frances E. Lund
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
19
|
Cyster JG, Allen CDC. B Cell Responses: Cell Interaction Dynamics and Decisions. Cell 2019; 177:524-540. [PMID: 31002794 PMCID: PMC6538279 DOI: 10.1016/j.cell.2019.03.016] [Citation(s) in RCA: 579] [Impact Index Per Article: 96.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 12/21/2022]
Abstract
B cells and the antibodies they produce have a deeply penetrating influence on human physiology. Here, we review current understanding of how B cell responses are initiated; the different paths to generate short- and long-lived plasma cells, germinal center cells, and memory cells; and how each path impacts antibody diversity, selectivity, and affinity. We discuss how basic research is informing efforts to generate vaccines that induce broadly neutralizing antibodies against viral pathogens, revealing the special features associated with allergen-reactive IgE responses and uncovering the antibody-independent mechanisms by which B cells contribute to health and disease.
Collapse
Affiliation(s)
- Jason G Cyster
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA.
| | - Christopher D C Allen
- Cardiovascular Research Institute, Department of Anatomy, and Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
20
|
Zhang J, Ma C, Yang A, Zhang R, Gong J, Mo F. Is preterm birth associated with asthma among children from birth to 17 years old? -A study based on 2011-2012 US National Survey of Children's Health. Ital J Pediatr 2018; 44:151. [PMID: 30579359 PMCID: PMC6303925 DOI: 10.1186/s13052-018-0583-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 11/11/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Preterm birth can interrupt lung development in utero and is associated with early life factors, which adversely affects the developing respiratory system. Studies on preterm birth and asthma risk are comparatively sparse and the results are not consistent. METHODS Multivariate analyses were performed on a cross-sectional data from the National Survey of Children's Health (NSCH) collected in 2011 to 2012. The NSCH was a nationally representative telephone survey sponsored by the Maternal and Child Health Bureau and conducted by the National Center for Health Statistics. A cross-sectional analysis using data from the US on 90,721 children was conducted to examine the relationship between preterm birth and asthma risk. RESULTS A total of 90,721 children under 17 years were included and 12% of the children were reported as preterm birth. The prevalence of diagnosed asthma was 15%, with a male to female ratio of 1.26:1. Children who were born preterm were 1.64 times (95% confidence interval: 1.45-1.84) more likely to develop asthma compared with those who were born term after controlling for confounders. Similarly, children who were low birth weight were 1.43 times (95% confidence interval: 1.25-1.63) more likely for asthma, and the odds ratio increased to 1.77 for those both preborn and low birth weight. Child's gender, race/ethnicity, age, family structure, family income levels, and household smoking were significantly associated with the odds of reported asthma. CONCLUSIONS Preterm birth was associated with increased risk of asthma among US children, supporting the notion that preterm birth may play a critical role in asthma development.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Ship Hygiene, Faculty of Naval Medicine, Second Military Medical University, Shanghai, 200433 China
- School of Public Health, Brown University, Providence, RI USA
| | - Chenchao Ma
- Department of thoracic surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, China
| | - Aimin Yang
- School of Public Health, Brown University, Providence, RI USA
| | - Rongqiang Zhang
- School of Public Health, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Jiannan Gong
- Department of Respiratory and Critical Medicine, The Second Affiliated Hospital of Shanxi Medical University, Taiyuan, China
| | - Fengfeng Mo
- Department of Ship Hygiene, Faculty of Naval Medicine, Second Military Medical University, Shanghai, 200433 China
| |
Collapse
|
21
|
Exosomes in Severe Asthma: Update in Their Roles and Potential in Therapy. BIOMED RESEARCH INTERNATIONAL 2018; 2018:2862187. [PMID: 29854739 PMCID: PMC5964496 DOI: 10.1155/2018/2862187] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 03/25/2018] [Indexed: 02/06/2023]
Abstract
Exosomes are nanosized vesicles and have recently been recognized as important players in cell-to-cell communication. Exosomes contain different mediators such as proteins, nucleic acids (DNA, mRNA, miRNAs, and other ncRNAs), and lipid mediators and can shuttle their exosomal content to both neighboring and distal cells. Exosomes are very effective in orchestrating immune responses in the airways and all cell types can contribute to the systemic exosome pool. Intracellular communication between the broad range of cell types within the lung is crucial in disease emphasizing the importance of exosomes. In asthma, exosomes affect the inflammatory microenvironment which ultimately determines the development or alleviation of the pathological symptoms. Recent studies in this area have provided insight into the underlying mechanisms of disease and led to interest in using exosomes as potential novel therapeutic agents.
Collapse
|
22
|
Xia F, Deng C, Jiang Y, Qu Y, Deng J, Cai Z, Ding Y, Guo Z, Wang J. IL4 (interleukin 4) induces autophagy in B cells leading to exacerbated asthma. Autophagy 2018; 14:450-464. [PMID: 29297752 DOI: 10.1080/15548627.2017.1421884] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Allergic asthma is a common airway inflammatory disease in which B cells play important roles through IgE production and antigen presentation. SNP (single nucleotide polymorphism) analysis showed that Atg (autophagy-related) allele mutations are involved in asthma. It has been demonstrated that macroautophagy/autophagy is essential for B cell survival, plasma cell differentiation and immunological memory maintenance. However, whether B cell autophagy participates in asthma pathogenesis remains to be investigated. In this report, we found that autophagy was enhanced in pulmonary B cells from asthma-prone mice. Autophagy deficiency in B cells led to attenuated immunopathological symptoms in asthma-prone mice. Further investigation showed that IL4 (interleukin 4), a key effector Th2 cytokine in allergic asthma, was critical for autophagy induction in B cells both in vivo and in vitro, which further sustained B cell survival and enhanced antigen presentation by B cells. Moreover, IL4-induced autophagy depended on JAK signaling via an MTOR-independent, PtdIns3K-dependent pathway. Together, our data indicate that B cell autophagy aggravates experimental asthma through multiple mechanisms.
Collapse
Affiliation(s)
- Fucan Xia
- a Institute of Immunology , Zhejiang University School of Medicine , Hangzhou , China
| | - Changwen Deng
- b Department of Respiratory Medicine , Changhai Hospital , Second Military Medical University , Shanghai , China
| | - Yanyan Jiang
- c National Key Laboratory of Medical Immunology & Institute of Immunology , Second Military Medical University , Shanghai , China
| | - Yulan Qu
- b Department of Respiratory Medicine , Changhai Hospital , Second Military Medical University , Shanghai , China
| | - Jiewen Deng
- c National Key Laboratory of Medical Immunology & Institute of Immunology , Second Military Medical University , Shanghai , China
| | - Zhijian Cai
- a Institute of Immunology , Zhejiang University School of Medicine , Hangzhou , China
| | - Yuanyuan Ding
- d National Key Laboratory of Medical Molecular Biology & Department of Immunology , Institute of Basic Medical Sciences , Peking Union Medical College , Chinese Academy of Medical Sciences , Beijing , China
| | - Zhenhong Guo
- c National Key Laboratory of Medical Immunology & Institute of Immunology , Second Military Medical University , Shanghai , China
| | - Jianli Wang
- a Institute of Immunology , Zhejiang University School of Medicine , Hangzhou , China
| |
Collapse
|
23
|
Morán G, Uberti B, Ortloff A, Folch H. Aspergillus fumigatus-sensitive IgE is associated with bronchial hypersensitivity in a murine model of neutrophilic airway inflammation. J Mycol Med 2017; 28:128-136. [PMID: 29233467 DOI: 10.1016/j.mycmed.2017.11.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 11/15/2017] [Accepted: 11/16/2017] [Indexed: 11/29/2022]
Abstract
Neutrophils are the predominant inflammatory cells that infiltrate airways during acute exacerbation of asthma. The importance of A. fumigatus sensitization, and IgE response in the airways in patients with acute asthma is unclear. Rockefeller (RK) mice were sensitized with A. fumigatus extract protein. The animals were subsequently challenged with different degrees of A. fumigatus contamination in the cage bedding. All groups of mice were euthanized to obtain bronchoalveolar lavage fluid (BALF) for cytological and Elisa assays, and lung tissue for histological analysis. Moreover, several bioassays were conducted to determine whether BALF IgE antibodies can activate mast cells. In this study, we demonstrated that exposure of sensitized mice to a known concentration of A. fumigatus conidia produces bronchial hyperreactivity with marked neutrophilic bronchial infiltration and increased BALF IgE, capable of triggering mast cell degranulation. This study suggests that IgE may play a role in bronchial hyperreactivity associated to A. fumigatus exposure in mice. Mice sensitized and challenged with this fungus showed characteristics of severe asthma, with an increase of BALF neutrophils, histological changes consistent with severe asthma and an increase of IgE capable of triggering type I hypersensitivity.
Collapse
Affiliation(s)
- G Morán
- Department of pharmacology, faculty of veterinary science, universidad Austral de Chile, Valdivia, Chile.
| | - B Uberti
- Department of clinical veterinary sciences, faculty of veterinary sciences, universidad Austral de Chile, Valdivia, Chile
| | - A Ortloff
- College of veterinary medicine, universidad Católica de Temuco, Temuco, Chile
| | - H Folch
- Department of immunology, faculty of medicine, universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
24
|
Wypych TP, Marzi R, Wu GF, Lanzavecchia A, Sallusto F. Role of B cells in T H cell responses in a mouse model of asthma. J Allergy Clin Immunol 2017; 141:1395-1410. [PMID: 28889953 DOI: 10.1016/j.jaci.2017.09.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 06/22/2017] [Accepted: 09/01/2017] [Indexed: 01/24/2023]
Abstract
BACKGROUND The importance of B lymphocytes to present antigens for antibody production is well documented. In contrast, very little is known about their capacity to influence CD4+ T-cell activation during a primary or secondary response to allergens. OBJECTIVE Using mouse models of asthma, we investigated the role of B cells as antigen-presenting cells in priming and maintenance of TH cell responses. METHODS Mice were immunized through the intranasal route with house dust mite (HDM) extract derived from Dermatophagoides pteronyssinus. B cells were depleted in HDM-sensitized animals to investigate the importance of B cells in maintenance of the allergic response. B cells were depleted before HDM sensitization to investigate the role of B cells in T-cell priming; furthermore, HDM sensitization was performed in mice with MHC class II expression restricted to the B-cell lineage. RESULTS We found that B cells serve as potent antigen-presenting cells ex vivo and restimulate in vivo-primed HDM-specific TH cells. HDM antigens were taken up by B cells independently of B-cell receptor specificity, indicating that HDM uptake and antigen presentation to CD4+ T cells is not restricted to rare B cells carrying HDM-specific B cell receptors. B-cell depletion before HDM challenge in HDM-sensitized mice resulted in a dramatic reduction of allergic response, indicating the role of B cells in amplification of TH2 responses. In contrast, HDM sensitization of mice in which MHC class II expression was restricted to B cells revealed the inability of these cells to prime TH2 responses but highlighted their unexpected role in priming TH1 and TH17 responses. CONCLUSION Collectively, these data reveal new mechanisms leading to initiation and exacerbation of the allergic response that might have implications for designing new therapeutic strategies to combat HDM allergy.
Collapse
Affiliation(s)
- Tomasz Piotr Wypych
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland; Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland.
| | - Roberta Marzi
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Gregory F Wu
- Department of Neurology, Washington University, St Louis, Mo
| | - Antonio Lanzavecchia
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland; Institute of Microbiology, ETH Zürich, Zurich, Switzerland
| | - Federica Sallusto
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland.
| |
Collapse
|
25
|
Patel PS, Kearney JF. CD36 and Platelet-Activating Factor Receptor Promote House Dust Mite Allergy Development. THE JOURNAL OF IMMUNOLOGY 2017; 199:1184-1195. [PMID: 28667161 DOI: 10.4049/jimmunol.1700034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 06/07/2017] [Indexed: 12/21/2022]
Abstract
Over 89% of asthmatic children in underdeveloped countries demonstrate sensitivity to house dust mites (HDMs). The allergic response to HDMs is partially mediated by epithelial cell-derived cytokines that activate group 2 innate lymphoid cells, induce migration and activation of dendritic cells, and promote effector differentiation of HDM-specific TH2 cells. However, the contribution of innate receptor engagement on epithelial or dendritic cells by HDMs that ultimately mediates said innate and adaptive allergic responses is poorly understood. We and other investigators have demonstrated that HDMs express phosphorylcholine (PC) moieties. The major PC receptors involved in immune responses include CD36 and platelet-activating factor receptor (PAFR). Because CD36 and PAFR are expressed by epithelial cells and dendritic cells, and expression of these receptors is higher in human asthmatics, we determined whether engagement of CD36 or PAFR on epithelial or dendritic cells contributes to HDM allergy development. Testing bone marrow chimeric mice revealed that CD36 engagement on radioresistant cells and PAFR engagement on radioresistant and radiosensitive cells in the lung promote allergic responses to HDMs. Additionally, passive anti-PC IgM Abs administered intratracheally with HDMs decreased allergen uptake by epithelial cells and APCs in the lungs of C57BL/6 mice but not CD36-/- or PAFR-/- mice. These results show that CD36 and PAFR are important mediators of HDM allergy development and that inhibiting HDM engagement with PC receptors in the lung protects against allergic airway disease.
Collapse
Affiliation(s)
- Preeyam S Patel
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL 35294
| | - John F Kearney
- Department of Microbiology, The University of Alabama at Birmingham, Birmingham, AL 35294
| |
Collapse
|
26
|
Schistosome-induced pulmonary B cells inhibit allergic airway inflammation and display a reduced Th2-driving function. Int J Parasitol 2017; 47:545-554. [PMID: 28385494 DOI: 10.1016/j.ijpara.2017.02.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 02/13/2017] [Accepted: 02/15/2017] [Indexed: 12/31/2022]
Abstract
Chronic schistosome infections protect against allergic airway inflammation (AAI) via the induction of IL-10-producing splenic regulatory B (Breg) cells. Previous experiments have demonstrated that schistosome-induced pulmonary B cells can also reduce AAI, but act independently of IL-10. We have now further characterized the phenotype and inhibitory activity of these protective pulmonary B cells. We excluded a role for regulatory T (Treg) cell induction as putative AAI-protective mechanisms. Schistosome-induced B cells showed increased CD86 expression and reduced cytokine expression in response to Toll-like receptor (TLR) ligands compared with control B cells. To investigate the consequences for T cell activation we cultured ovalbumin (OVA)-pulsed, schistosome-induced B cells with OVA-specific transgenic T cells and observed less Th2 cytokine expression and T cell proliferation compared with control conditions. This suppressive effect was preserved even under optimal T cell stimulation by anti-CD3/28. Blocking of the inhibitory cytokines IL-10 or TGF-β only marginally restored Th2 cytokine induction. These data suggest that schistosome-induced pulmonary B cells are impaired in their capacity to produce cytokines to TLR ligands and to induce Th2 cytokine responses independent of their antigen-presenting function. These findings underline the presence of distinct B cell subsets with different stimulatory or inhibitory properties even if induced by the same type of helminth.
Collapse
|
27
|
Tindemans I, Lukkes M, de Bruijn MJW, Li BWS, van Nimwegen M, Amsen D, KleinJan A, Hendriks RW. Notch signaling in T cells is essential for allergic airway inflammation, but expression of the Notch ligands Jagged 1 and Jagged 2 on dendritic cells is dispensable. J Allergy Clin Immunol 2017; 140:1079-1089. [PMID: 28111308 DOI: 10.1016/j.jaci.2016.11.046] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 11/03/2016] [Accepted: 11/11/2016] [Indexed: 01/09/2023]
Abstract
BACKGROUND Allergic asthma is characterized by a TH2 response induced by dendritic cells (DCs) that present inhaled allergen. Although the mechanisms by which they instruct TH2 differentiation are still poorly understood, expression of the Notch ligand Jagged on DCs has been implicated in this process. OBJECTIVE We sought to establish whether Notch signaling induced by DCs is critical for house dust mite (HDM)-driven allergic airway inflammation (AAI) in vivo. METHODS The induction of Notch ligand expression on DC subsets by HDM was quantified by using quantitative real-time PCR. We used an HDM-driven asthma mouse model to compare the capacity of Jagged 1 and Jagged 2 single- and double-deficient DCs to induce AAI. In addition, we studied AAI in mice with a T cell-specific deletion of recombination signal-binding protein for immunoglobulin Jκ region (RBPJκ), a downstream effector of Notch signaling. RESULTS HDM exposure promoted expression of Jagged 1, but not Jagged 2, on DCs. In agreement with published findings, in vitro-differentiated and HDM-pulsed Jagged 1 and Jagged 2 double-deficient DCs lacked the capacity to induce AAI. However, after in vivo intranasal sensitization and challenge with HDM, DC-specific Jagged 1 or Jagged 2 single- or double-deficient mice had eosinophilic airway inflammation and a TH2 cell activation phenotype that was not different from that in control littermates. In contrast, RBPJκ-deficient mice did not experience AAI and airway hyperreactivity. CONCLUSION Our results show that the Notch signaling pathway in T cells is crucial for the induction of TH2-mediated AAI in an HDM-driven asthma model but that expression of Jagged 1 or Jagged 2 on DCs is not required.
Collapse
Affiliation(s)
- Irma Tindemans
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Melanie Lukkes
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, The Netherlands
| | | | - Bobby W S Li
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Menno van Nimwegen
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, The Netherlands
| | | | - Alex KleinJan
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Rudi W Hendriks
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
28
|
Habener A, Behrendt AK, Skuljec J, Jirmo AC, Meyer-Bahlburg A, Hansen G. B cell subsets are modulated during allergic airway inflammation but are not required for the development of respiratory tolerance in a murine model. Eur J Immunol 2017; 47:552-562. [PMID: 27995616 DOI: 10.1002/eji.201646518] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 11/01/2016] [Accepted: 12/16/2016] [Indexed: 01/04/2023]
Abstract
Allergic asthma is a widespread chronic inflammatory disease of the airways. The role of different B cell subsets in developing asthma and respiratory tolerance is not well known. Especially regulatory B (Breg) cells are proposed to be important in asthma regulation. Using wild-type (WT) and B cell-deficient (μMT) mice we investigated how B cells are affected by induction of allergic airway inflammation and respiratory tolerance and whether they are necessary to develop these conditions. WT mice with an asthma-like phenotype, characterized by increased airway hyper reactivity, eosinophilic airway inflammation, mucus hypersecretion and elevated Th2 cytokines, exhibited increased MHCII and CD23 expression on follicular mature B cells in lung, bronchial lymph nodes (bLN) and spleen, which contributed to allergen-specific T cell proliferation in vitro. Germinal center B cell numbers were elevated and associated with increased production of allergen-specific immunoglobulins especially in bLN. In contrast, respiratory tolerance clearly attenuated these B cell alterations and directly enhanced marginal zone precursor B cells, which induced regulatory T cells in vitro. However, μMT mice developed asthma-like and tolerized phenotypes like WT mice. Our data indicate that although B cell subsets are affected by asthma-like and respiratory tolerant phenotypes, B cells are not required for tolerance induction.
Collapse
Affiliation(s)
- Anika Habener
- Department of Paediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL)
| | - Ann-Kathrin Behrendt
- Department of Paediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany.,Department of Paediatrics, University Medicine Greifswald, Greifswald, Germany
| | - Jelena Skuljec
- Department of Paediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL)
| | - Adan Chari Jirmo
- Department of Paediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL)
| | - Almut Meyer-Bahlburg
- Department of Paediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL).,Department of Paediatrics, University Medicine Greifswald, Greifswald, Germany
| | - Gesine Hansen
- Department of Paediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany.,Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL)
| |
Collapse
|
29
|
Vroman H, Bergen IM, Li BWS, van Hulst JAC, Lukkes M, van Uden D, Hendriks RW, Kool M. Development of eosinophilic inflammation is independent of B-T cell interaction in a chronic house dust mite-driven asthma model. Clin Exp Allergy 2016; 47:551-564. [PMID: 27743410 DOI: 10.1111/cea.12834] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 08/30/2016] [Accepted: 09/07/2016] [Indexed: 01/12/2023]
Abstract
BACKGROUND Chronic exposure to environmental triggers, such as house dust mite (HDM), drives T helper 2 (Th2) cell-mediated asthma. Recent evidence has shown that B-T cell interaction, and in particular germinal centre reactions and follicular T helper (Tfh) cells are required for the development of eosinophilic airway inflammation in HDM-driven models containing a sensitization and challenge phase. Whether B-T cell interactions are essential for pulmonary eosinophilic inflammation following chronic allergen provocation remains unknown. AIMS In this study, we investigated the importance of B-T cell interaction in the development of eosinophilic airway inflammation and pulmonary remodelling in a chronic HDM-driven asthma model. METHODS We exposed C57BL/6, Cd40l-/- , and Mb1-/- mice to HDM three times a week for five consecutive weeks. RESULTS Chronic HDM exposure induced a pronounced eosinophilic allergic airway inflammation in broncho-alveolar lavage fluid (BALf) and lung tissue, associated with the formation of immunologically active inducible bronchus-associated lymphoid tissue (iBALT) in the lungs. The absence of B cells or lack of CD40L signalling did not hamper eosinophilic inflammation in the airways, although the number of Tfh and Th2 cells was substantially reduced in the lungs. Importantly, type 2 innate lymphoid cell (ILC2) numbers in BALf and lung were not affected by the absence of B cells or B-T cell interaction. Furthermore, eosinophilic airway inflammation is not sufficient to induce pulmonary remodelling and airway hyperresponsiveness. CONCLUSION AND CLINICAL RELEVANCE From these findings, we conclude that B-T cell interaction is required for robust Tfh and Th2 cell induction, but not essential for eosinophilic airway inflammation during a chronic HDM-driven asthma model.
Collapse
Affiliation(s)
- H Vroman
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - I M Bergen
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - B W S Li
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - J A C van Hulst
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - M Lukkes
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - D van Uden
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - R W Hendriks
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - M Kool
- Department of Pulmonary Medicine, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
30
|
Dullaers M, Schuijs MJ, Willart M, Fierens K, Van Moorleghem J, Hammad H, Lambrecht BN. House dust mite-driven asthma and allergen-specific T cells depend on B cells when the amount of inhaled allergen is limiting. J Allergy Clin Immunol 2016; 140:76-88.e7. [PMID: 27746238 DOI: 10.1016/j.jaci.2016.09.020] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 08/12/2016] [Accepted: 09/09/2016] [Indexed: 11/25/2022]
Abstract
BACKGROUND Allergic asthma is a CD4 TH2-lymphocyte driven disease characterized by airway hyperresponsiveness and eosinophilia. B cells can present antigens to CD4 T cells and produce IgE immunoglobulins that arm effector cells; however, mouse models are inconclusive on whether B cells are necessary for asthma development. OBJECTIVES We sought to address the role of B cells in a house dust mite (HDM)-driven TH2-high asthma mouse model. METHODS Wild-type and B cell-deficient muMT mice were sensitized and challenged through the airways with HDM extracts. The antigen-presenting capacities of B cells were studied by using new T-cell receptor transgenic 1-DER mice specific for the Der p 1 allergen. RESULTS In vitro-activated B cells from HDM-exposed mice presented antigen to 1-DER T cells and induced a TH2 phenotype. In vivo B cells were dispensable for activation of naive 1-DER T cells but necessary for full expansion of primed 1-DER T cells. At high HDM challenge doses, B cells were not required for development of pulmonary asthmatic features yet contributed to TH2 expansion in the mediastinal lymph nodes but not in the lungs. When the amount of challenge allergen was decreased, muMT mice had reduced asthma features. Under these limiting conditions, B cells contributed also to expansion of TH2 effector cells in the lungs and central memory T cells in the mediastinal lymph nodes. CONCLUSION B cells are a major part of the adaptive immune response to inhaled HDM allergen, particularly when the amount of inhaled allergen is low, by expanding allergen-specific T cells.
Collapse
Affiliation(s)
- Melissa Dullaers
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Inflammation Research Center, Ghent University, Ghent, Belgium; Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Martijn J Schuijs
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Inflammation Research Center, Ghent University, Ghent, Belgium; Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Monique Willart
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Inflammation Research Center, Ghent University, Ghent, Belgium; Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Kaat Fierens
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Inflammation Research Center, Ghent University, Ghent, Belgium; Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Justine Van Moorleghem
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Inflammation Research Center, Ghent University, Ghent, Belgium; Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Hamida Hammad
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Inflammation Research Center, Ghent University, Ghent, Belgium; Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Bart N Lambrecht
- Laboratory of Immunoregulation and Mucosal Immunology, VIB Inflammation Research Center, Ghent University, Ghent, Belgium; Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium; Department of Pulmonary Medicine, ErasmusMC, Rotterdam, The Netherlands.
| |
Collapse
|
31
|
Role of interleukin-18 in the pathophysiology of allergic diseases. Cytokine Growth Factor Rev 2016; 32:31-39. [PMID: 27496752 DOI: 10.1016/j.cytogfr.2016.07.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 07/08/2016] [Accepted: 07/13/2016] [Indexed: 01/24/2023]
Abstract
Interleukin (IL)-18 is an IL-1 family cytokine expressed by macrophages, dendritic cells, epithelial cells, and keratinocytes and is implicated in various aspects of both the innate and adaptive immune systems. IL-18 signals similar to IL-1β intracellularly to activate gene transcription. Since its discovery, IL-18 has been demonstrated to play a key role in pathogen defense from helminths and some bacteria. Recently however, evidence has accumulated that IL-18 expression is increased in many presentations of allergic disease. A pathologic role for IL-18 includes stimulating mast cell and basophil degranulation, recruiting granulocytes to sites of inflammation, increasing cytotoxic activity of natural killer (NK) and NK-T cells, inducing Immunoglobulin (Ig)E production and isotype switching, and affecting a broad range of T cells to promote a type II helper T cell (Th2) response. Evidence and importance of these effects are presented, including novel results from our lab implicating IL-18 in the direct expansion of mast cells, basophils, and other myeloid-lineage cells from bone-marrow precursors. The development of urticaria, asthma, dermatitis, rhinitis, and eosinophilic disorders all have demonstrated correlations to increased IL-18 levels either in the tissue or systemically. IL-18 represents a novel site of immune regulation in not only allergic conditions, but also autoimmune diseases and other instances of aberrant immune functioning. Diagrammatic summarized abstract for readers convinance is presented in Fig. 1.
Collapse
|
32
|
T Follicular Helper Cell Plasticity Shapes Pathogenic T Helper 2 Cell-Mediated Immunity to Inhaled House Dust Mite. Immunity 2016; 44:259-73. [PMID: 26825674 DOI: 10.1016/j.immuni.2015.11.017] [Citation(s) in RCA: 152] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 10/26/2015] [Accepted: 11/19/2015] [Indexed: 11/22/2022]
Abstract
Exposure to environmental antigens, such as house dust mite (HDM), often leads to T helper 2 (Th2) cell-driven allergic responses. However, the mechanisms underlying the development of these responses are incompletely understood. We found that the initial exposure to HDM did not lead to Th2 cell development but instead promoted the formation of interleukin-4 (IL-4)-committed T follicular helper (Tfh) cells. Following challenge exposure to HDM, Tfh cells differentiated into IL-4 and IL-13 double-producing Th2 cells that accumulated in the lung and recruited eosinophils. B cells were required to expand IL-4-committed Tfh cells during the sensitization phase, but did not directly contribute to disease. Impairment of Tfh cell responses during the sensitization phase or Tfh cell depletion prevented Th2 cell-mediated responses following challenge. Thus, our data demonstrate that Tfh cells are precursors of HDM-specific Th2 cells and reveal an unexpected role of B cells and Tfh cells in the pathogenesis of allergic asthma.
Collapse
|
33
|
Stanic-Vucinic D, Stojadinovic M, Mirkov I, Apostolovic D, Burazer L, Atanaskovic-Markovic M, Kataranovski M, Cirkovic Velickovic T. Hypoallergenic acid-sensitive modification preserves major mugwort allergen fold and delivers full repertoire of MHC class II-binding peptides during endolysosomal degradation. RSC Adv 2016. [DOI: 10.1039/c6ra17261j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Hypoallergenic acid-sensitive modification preserves major mugwort pollen allergen fold and delivers a full repertoire of MHC class II-binding peptides during endolysosomal degradation.
Collapse
Affiliation(s)
- Dragana Stanic-Vucinic
- University of Belgrade
- Faculty of Chemistry
- Center of Excellence for Molecular Food Sciences
- Department of Biochemistry
- 11000 Belgrade
| | - Marija Stojadinovic
- University of Belgrade
- Faculty of Chemistry
- Center of Excellence for Molecular Food Sciences
- Department of Biochemistry
- 11000 Belgrade
| | - Ivana Mirkov
- Institute for Biological Research “Sinisa Stankovic”
- University of Belgrade
- Belgrade
- Serbia
| | | | - Lidija Burazer
- Institute of Virology
- Vaccines and Sera – Torlak
- Belgrade
- Serbia
| | - Marina Atanaskovic-Markovic
- University Children's Hospital “Tirsova”
- Department of Allergology and Pulmology
- University of Belgrade
- Belgrade
- Serbia
| | - Milena Kataranovski
- Institute for Biological Research “Sinisa Stankovic”
- University of Belgrade
- Belgrade
- Serbia
- University of Belgrade
| | - Tanja Cirkovic Velickovic
- University of Belgrade
- Faculty of Chemistry
- Center of Excellence for Molecular Food Sciences
- Department of Biochemistry
- 11000 Belgrade
| |
Collapse
|
34
|
Allergic Inflammation in Aspergillus fumigatus-Induced Fungal Asthma. Curr Allergy Asthma Rep 2015; 15:59. [PMID: 26288940 DOI: 10.1007/s11882-015-0561-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Although fungi are pervasive in many environments, few cause disease in humans. Of these, Aspergillus fumigatus is particularly well suited to be a pathogen of the human lung. Its physical and biological characteristics combine to provide an organism that can cause tremendous morbidity and high mortality if left unchecked. Luckily, that is rarely the case. However, repeated exposure to inhaled A. fumigatus spores often results in an immune response that carries significant immunopathology, exacerbating asthma and changing the structure of the lung with chronic impacts to pulmonary function. This review focuses on the current understanding of the mechanisms that are associated with fungal exposure, sensitization, and infection in asthmatics, as well as the function of various inflammatory cells associated with severe asthma with fungal sensitization.
Collapse
|
35
|
Proteomic Alterations in B Lymphocytes of Sensitized Mice in a Model of Chemical-Induced Asthma. PLoS One 2015; 10:e0138791. [PMID: 26398101 PMCID: PMC4580316 DOI: 10.1371/journal.pone.0138791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 09/03/2015] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION AND AIM The role of B-lymphocytes in chemical-induced asthma is largely unknown. Recent work demonstrated that transferring B lymphocytes from toluene diisocyanate (TDI)-sensitized mice into naïve mice, B cell KO mice and SCID mice, triggered an asthma-like response in these mice after a subsequent TDI-challenge. We applied two-dimensional difference gel electrophoresis (2D-DIGE) to describe the "sensitized signature" of B lymphocytes comparing TDI-sensitized mice with control mice. RESULTS Sixteen proteins were identified that were significantly up- or down-regulated in B lymphocytes of sensitized mice. Particularly differences in the expression of cyclophilin A, cofilin 1 and zinc finger containing CCHC domain protein 11 could be correlated to the function of B lymphocytes as initiators of T lymphocyte independent asthma-like responses. CONCLUSION This study revealed important alterations in the proteome of sensitized B cells in a mouse model of chemical-induced asthma, which will have an important impact on the B cell function.
Collapse
|
36
|
Modulation of Th1/Th2 immune responses by killed Propionibacterium acnes and its soluble polysaccharide fraction in a type I hypersensitivity murine model: induction of different activation status of antigen-presenting cells. J Immunol Res 2015; 2015:132083. [PMID: 25973430 PMCID: PMC4418006 DOI: 10.1155/2015/132083] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 10/25/2014] [Accepted: 10/25/2014] [Indexed: 01/15/2023] Open
Abstract
Propionibacterium acnes (P. acnes) is a gram-positive anaerobic bacillus present in normal human skin microbiota, which exerts important immunomodulatory effects, when used as heat- or phenol-killed suspensions. We previously demonstrated that heat-killed P. acnes or its soluble polysaccharide (PS), extracted from the bacterium cell wall, suppressed or potentiated the Th2 response to ovalbumin (OVA) in an immediate hypersensitivity model, depending on the treatment protocol. Herein, we investigated the mechanisms responsible for these effects, using the same model and focusing on the activation status of antigen-presenting cells (APCs). We verified that higher numbers of APCs expressing costimulatory molecules and higher expression levels of these molecules are probably related to potentiation of the Th2 response to OVA induced by P. acnes or PS, while higher expression of toll-like receptors (TLRs) seems to be related to Th2 suppression. In vitro cytokines production in cocultures of dendritic cells and T lymphocytes indicated that P. acnes and PS seem to perform their effects by acting directly on APCs. Our data suggest that P. acnes and PS directly act on APCs, modulating the expression of costimulatory molecules and TLRs, and these differently activated APCs drive distinct T helper patterns to OVA in our model.
Collapse
|
37
|
Drake LY, Iijima K, Hara K, Kobayashi T, Kephart GM, Kita H. B cells play key roles in th2-type airway immune responses in mice exposed to natural airborne allergens. PLoS One 2015; 10:e0121660. [PMID: 25803300 PMCID: PMC4372217 DOI: 10.1371/journal.pone.0121660] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 02/02/2015] [Indexed: 11/18/2022] Open
Abstract
Humans are frequently exposed to various airborne allergens. In addition to producing antibodies, B cells participate in immune responses via various mechanisms. The roles of B cells in allergic airway inflammation and asthma have been controversial. We examined the functional importance of B cells in a mouse model of asthma, in which mice were exposed repeatedly to common airborne allergens. Naïve wild-type BALB/c mice or B cell-deficient JH−/− mice were exposed intranasally to a cocktail of allergen extracts, including Alternaria, Aspergillus, and house dust mite, every other day for two weeks. Ovalbumin was included in the cocktail to monitor the T cell immune response. Airway inflammation, lung pathology, and airway reactivity were analyzed. The airway exposure of naïve wild type mice to airborne allergens induced robust eosinophilic airway inflammation, increased the levels of Th2 cytokines and chemokines in the lung, and increased the reactivity to inhaled methacholine. These pathological changes and immune responses were attenuated in B cell-deficient JH−/− mice. The allergen-induced expansion of CD4+ T cells was impaired in the lungs and draining lymph nodes of JH−/− mice. Furthermore, lymphocytes from JH−/− mice failed to produce Th2 cytokines in response to ovalbumin re-stimulation in vitro. Our results suggest that B cells are required for the optimal development of Th2-type immune responses and airway inflammation when exposed to common airborne allergens. The therapeutic targeting of B cells may be beneficial to treat asthma in certain patients.
Collapse
Affiliation(s)
- Li Yin Drake
- Department of Internal Medicine, Division of Allergic Diseases, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Koji Iijima
- Department of Internal Medicine, Division of Allergic Diseases, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Kenichiro Hara
- Department of Internal Medicine, Division of Allergic Diseases, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Takao Kobayashi
- Department of Internal Medicine, Division of Allergic Diseases, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Gail M. Kephart
- Department of Internal Medicine, Division of Allergic Diseases, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Hirohito Kita
- Department of Internal Medicine, Division of Allergic Diseases, Mayo Clinic, Rochester, Minnesota, United States of America
- Department of Immunology, Mayo Clinic, Rochester, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
38
|
B lymphocytes regulate airway granulocytic inflammation and cytokine production in a murine model of fungal allergic asthma. Cell Mol Immunol 2014; 12:202-12. [PMID: 25363529 DOI: 10.1038/cmi.2014.103] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 09/02/2014] [Accepted: 09/17/2014] [Indexed: 12/27/2022] Open
Abstract
Sensitization to fungi often leads to a severe form of asthma that is particularly difficult to manage clinically, resulting in increased morbidity and hospitalizations in these patients. Although B lymphocytes might exacerbate asthma symptoms through the production of IgE, these cells might also be important in the protective response against inhaled fungi. Through cytokine release and T-cell interactions, these lymphocytes might also influence the development and maintenance of airway wall fibrosis. J(H)(-/-) mice lack the JH gene for the heavy chain component of antibodies, which is critical for B-cell function and survival. These animals have facilitated the elucidation of the role of B lymphocytes in a number of immune responses; however, J(H)(-/-) mice have not been used to study fungal allergy. In this study, we examined the role of B lymphocytes using an Aspergillus fumigatus murine fungal aeroallergen model that mimics human airway disease that is triggered by environmental fungal exposure. We compared disease progression in sensitized wild-type BALB/c and J(H)(-/-) mice that were exposed to repeated fungal exposure and found no differences in airway hyperresponsiveness, overall pulmonary inflammation or collagen deposition around the large airways. However, the levels of the Th2-type cytokines IL-4 and IL-13 were significantly attenuated in the airways of J(H)(-/-) mice relative to the BALB/c controls. By contrast, levels of the inflammatory cytokines IL-17A and IL-6 were significantly elevated in the J(H)(-/-) animals, and there was significantly more robust airway eosinophilia and neutrophilia than in control animals. Taken together, these findings demonstrate that B lymphocytes help to regulate granulocytic responses to fungal exposure in the pulmonary compartment.
Collapse
|
39
|
León B, Ballesteros-Tato A, Lund FE. Dendritic cells and B cells: unexpected partners in Th2 development. THE JOURNAL OF IMMUNOLOGY 2014; 193:1531-7. [PMID: 25086176 DOI: 10.4049/jimmunol.1400149] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Although we have known for decades that B cells contribute to immune responses by secreting Ab, it is now clear that they are more than simply factories for Ig production, and they also play key roles as modulators of T cell-dependent immunity. Indeed, the evidence showing that Ag-presenting and cytokine-producing B cells can alter the magnitude and quality of CD4 T cell responses continues to grow. In this article, we review the data showing that B cells, working in partnership with dendritic cells, regulate the development of Th2 cells and the subsequent allergic response.
Collapse
Affiliation(s)
- Beatriz León
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294; and
| | - André Ballesteros-Tato
- Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Frances E Lund
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294; and
| |
Collapse
|
40
|
B-lymphocytes as key players in chemical-induced asthma. PLoS One 2013; 8:e83228. [PMID: 24349469 PMCID: PMC3862726 DOI: 10.1371/journal.pone.0083228] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 10/31/2013] [Indexed: 11/19/2022] Open
Abstract
T-lymphocytes and B-lymphocytes are key players in allergic asthma, with B-lymphocytes producing antigen-specific immunoglobulins E (IgE). We used a mouse model of chemical-induced asthma and transferred B-lymphocytes from sensitized animals into naïve wild type mice, B-lymphocyte knock-out (B-KO) mice or severe combined immunodeficiency (SCID) mice. On days 1 and 8, BALB/c mice were dermally sensitized with 0.3% toluene diisocyanate (TDI) (20µl/ear). On day 15, mice were euthanized and the auricular lymph nodes isolated. B-lymphocytes (CD19+) were separated from the whole cell suspension and 175,000 cells were injected in the tail vein of naïve wild type, B-KO or SCID mice. Three days later, the mice received a single oropharyngeal challenge with 0.01% TDI (20µl) or vehicle (acetone/olive oil (AOO)) (controls). Airway reactivity to methacholine and total and differential cell counts in the bronchoalveolar lavage (BAL) fluid were measured 24 hours after challenge. B-lymphocytes of AOO or TDI-sensitized mice were characterized for the expression of surface markers and production of cytokines. We found that transfer of B-cells obtained from mice dermally sensitized to toluene diisocyanate (TDI) into naïve wild type mice, B-KO mice or SCID mice led, within three days, to an acute asthma-like phenotype after an airway challenge with TDI. This response was specific and independent of IgE. These B-lymphocytes showed antigen presenting capacities (CD80/CD86 and CD40) and consisted of B effector (Be)2- (IL-4) and Be1-lymphocytes (IFN-γ). The transferred B-lymphocytes were visualized near large airways, 24 hours after TDI challenge. Thus, B-lymphocytes can provoke an asthmatic response without the action of T-lymphocytes and without major involvement of IgE.
Collapse
|
41
|
Lundy SK, Lukacs NW. Chronic schistosome infection leads to modulation of granuloma formation and systemic immune suppression. Front Immunol 2013; 4:39. [PMID: 23429492 PMCID: PMC3576626 DOI: 10.3389/fimmu.2013.00039] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 01/31/2013] [Indexed: 11/13/2022] Open
Abstract
Schistosome worms have been infecting humans for millennia, but it is only in the last half century that we have begun to understand the complexities of this inter-relationship. As our sophistication about the inner workings of every aspect of the immune system has increased, it has also become obvious that schistosome infections have broad ranging effects on nearly all of the innate and adaptive immune response mechanisms. Selective pressures on both the worms and their hosts, has no doubt led to co-evolution of protective mechanisms, particularly those that favor granuloma formation around schistosome eggs and immune suppression during chronic infection. The immune modulatory effects that chronic schistosome infection and egg deposition elicit have been intensely studied, not only because of their major implications to public health issues, but also due to the emerging evidence that schistosome infection may protect humans from severe allergies and autoimmunity. Mouse models of schistosome infection have been extremely valuable for studying immune modulation and regulation, and in the discovery of novel aspects of immunity. A progression of immune reactions occurs during granuloma formation ranging from innate inflammation, to activation of each branch of adaptive immune response, and culminating in systemic immune suppression and granuloma fibrosis. Although molecular factors from schistosome eggs have been identified as mediators of immune modulation and suppressive functions of T and B cells, much work is still needed to define the mechanisms of the immune alteration and determine whether therapies for asthma or autoimmunity could be developed from these pathways.
Collapse
Affiliation(s)
- Steven K Lundy
- Graduate Training Program in Immunology, University of Michigan Medical School Ann Arbor, MI, USA ; Department of Internal Medicine-Rheumatology, University of Michigan Medical School Ann Arbor, MI, USA
| | | |
Collapse
|
42
|
Ghosh S, Hoselton SA, Dorsam GP, Schuh JM. Eosinophils in fungus-associated allergic pulmonary disease. Front Pharmacol 2013; 4:8. [PMID: 23378838 PMCID: PMC3561640 DOI: 10.3389/fphar.2013.00008] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Accepted: 01/10/2013] [Indexed: 12/30/2022] Open
Abstract
Asthma is frequently caused and/or exacerbated by sensitization to fungal allergens, which are ubiquitous in many indoor and outdoor environments. Severe asthma with fungal sensitization is characterized by airway hyperresponsiveness and bronchial constriction in response to an inhaled allergen that is worsened by environmental exposure to airborne fungi and which leads to a disease course that is often very difficult to treat with standard asthma therapies. As a result of complex interactions among inflammatory cells, structural cells, and the intercellular matrix of the allergic lung, patients with sensitization to fungal allergens may experience a greater degree of airway wall remodeling and progressive, accumulated pulmonary dysfunction as part of the disease sequela. From their development in the bone marrow to their recruitment to the lung via chemokine and cytokine networks, eosinophils form an important component of the inflammatory milieu that is associated with this syndrome. Eosinophils are recognized as complex multi-factorial leukocytes with diverse functions in the context of allergic fungal asthma. In this review, we will consider recent advances in our understanding of the molecular mechanisms that are associated with eosinophil development and migration to the allergic lung in response to fungal inhalation, along with the eosinophil’s function in the immune response to and the immunopathology attributed to fungus-associated allergic pulmonary disease.
Collapse
Affiliation(s)
- Sumit Ghosh
- Department of Veterinary and Microbiological Sciences, North Dakota State University Fargo, ND, USA
| | | | | | | |
Collapse
|
43
|
Cheng G, Swaidani S, Sharma M, Lauer ME, Hascall VC, Aronica MA. Correlation of hyaluronan deposition with infiltration of eosinophils and lymphocytes in a cockroach-induced murine model of asthma. Glycobiology 2012; 23:43-58. [PMID: 22917573 DOI: 10.1093/glycob/cws122] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Asthma is a chronic inflammatory disease that exhibits airway remodeling with changes in the extracellular matrix (ECM). The role of the ECM in mediating these changes is poorly understood. Hyaluronan (HA), a major component of the ECM, has been implicated in many biological processes in diseases. This study investigates the processes involved in HA synthesis, deposition and localization during the propagation of cockroach-induced asthma. Mice were sensitized and challenged with cockroach antigen, and sacrificed at various time points during an 8-week challenge protocol. Analysis of bronchoalveolar lavage (BAL) fluid revealed an increase in total nucleated cells as early as 6h, which peaked at 6 days. Histopathologic analysis of the lung tissue revealed an influx of inflammatory cells at the peribronchial and perivascular regions starting at 12 h, which peaked at 6 days and persisted to 8 weeks. Eosinophils predominated in the early time points while lymphocytes predominated during the late time points. Quantitative polymerase chain reaction (PCR) data showed that hyaluronan synthase 1 (HAS1) mRNA peaked within 6 h and then declined. HAS2 mRNA also peaked within 6 h but remained elevated throughout the 8-week exposure course. HA levels in lung tissue and BAL increased at 12 h and peaked by 6 and 8 days, respectively. Inflammatory cells and new collagen formation localized in areas of HA deposition. Taken together, these data support a role for HA in the pathogenesis in asthma.
Collapse
|
44
|
Doi T, Kanai T, Mikami Y, Sujino T, Jun L, Ono Y, Hayashi A, Hibi T. IgA plasma cells express the negative regulatory co-stimulatory molecule programmed cell death 1 ligand and have a potential tolerogenic role in the intestine. Biochem Biophys Res Commun 2012; 425:918-23. [PMID: 22906740 DOI: 10.1016/j.bbrc.2012.08.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 08/04/2012] [Indexed: 01/22/2023]
Abstract
To maintain immune homeostasis in the intestine, the intestinal immune system has evolved several tolerogenic mechanisms toward intestinal microflora and food antigens. Although programmed cell death-1 (PD-1) protein has been implicated in immunological tolerance in the intestine and gut-associated lymphoid tissues (GALTs), distribution of its ligands PD-L1 and PD-L2 in the small intestine lamina propria (LP) are unknown. We investigated PD-L1 expression in intestinal LP and found that IgA plasma cells (PCs) were major PD-L1 expressing cells. PD-L1 expression levels on IgA PCs were higher than that on IgG PCs in peripheral lymphoid tissues. IgA PCs expressed antigen-presenting molecule MHC class II and co-stimulatory molecules CD80, CD86, and PD-L2. IgA PCs isolated from intestinal LP exhibited antigen presentation activity, and in the presence of TGF-β induced FoxP3(+) regulatory T cells, but not IFN-γ(+) Th1 cells, from naïve T cells. Thus, IgA PCs in the intestine may be involved in an immune regulatory role in the intestinal immune system.
Collapse
Affiliation(s)
- Tomomitsu Doi
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Fukami N, Ramachandran S, Takenaka M, Weber J, Subramanian V, Mohanakumar T. An obligatory role for lung infiltrating B cells in the immunopathogenesis of obliterative airway disease induced by antibodies to MHC class I molecules. Am J Transplant 2012; 12:867-76. [PMID: 22233464 PMCID: PMC3721353 DOI: 10.1111/j.1600-6143.2011.03917.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Using a murine model, we demonstrated that endobronchial administration of antibodies (Abs) to major histocompatibility complex (MHC) class I results in cellular infiltration, epithelial metaplasia, fibrosis and obstruction of the small airways (obliterative airway disease [OAD]) mediated predominantly by Th17 responses to self-antigens. This resembles bronchiolitis obliterans syndrome developed following human lung transplantation. Since B cells play a crucial role in induction of autoimmune responses, we defined the role of B cells and its antigen presenting properties in induction of OAD in this study. Anti-MHC class I was administered endobronchially in B(-/-) and wild-type mice. In contrast to wild type, B(-/-) animals did not demonstrate cellular infiltration, epithelial metaplasia and obstruction of airways following anti-MHC. Frequency of K-α1 tubulin and CollagenV-specific IL-17 cells was significantly decreased in B(-/-) mice. As expected, Abs against self-antigens and germinal center formation were not developed in B(-/-) mice. Thus, we conclude that B cells and its antigen presenting capacity play an important role in induction of immune responses to self-antigens and immunopathogenesis of OAD following the administration of anti-MHC. Therefore, strategies to block B-cell and its antigen presenting functions should be considered for preventing the development of chronic rejection.
Collapse
Affiliation(s)
- N. Fukami
- Department of Surgery, Washington University School of Medicine, St. Louis, MO 63101
| | - S. Ramachandran
- Department of Surgery, Washington University School of Medicine, St. Louis, MO 63101
| | - M. Takenaka
- Department of Surgery, Washington University School of Medicine, St. Louis, MO 63101
| | - J. Weber
- Department of Surgery, Washington University School of Medicine, St. Louis, MO 63101
| | - V. Subramanian
- Department of Surgery, Washington University School of Medicine, St. Louis, MO 63101
| | - T. Mohanakumar
- Department of Surgery, Washington University School of Medicine, St. Louis, MO 63101,Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63101
| |
Collapse
|
46
|
Qiu S, Du Y, Duan X, Geng X, Xie J, Gao H, Yang PC. B cell immunity in allergic nasal mucosa induces T helper 2 cell differentiation. J Clin Immunol 2012; 32:886-95. [PMID: 22454245 DOI: 10.1007/s10875-012-9675-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Accepted: 02/17/2012] [Indexed: 01/27/2023]
Abstract
BACKGROUND The pathogenesis of allergic diseases is to be further understood. Recent studies indicate that B cells are involved in the immune regulation. The present study aimed to investigate the role of B cells in the initiation of skewed T helper (Th)2 polarization. METHODS The surgically removed nasal mucosal specimens from 24 patients with allergic rhinitis (AR) and 22 patients with non-AR (nAR) were collected. B cells isolated from the AR nasal mucosa were characterized. The effect of B cells on inducing naïve CD4+ T cells to differentiate into Th2 cells was evaluated with a cell culture model. RESULTS Abundant B cells were detected in the nasal mucosa of patients with AR, which also expressed high levels of T cell immunoglobulin mucin domain (TIM)4 and costimulatory molecules. High levels of Staphylococcal enterotoxin B (SEB) were detected in the AR nasal mucosa. Expression of TIM4 could be induced in naïve B cells in the presence of SEB in culture. TIM4+ B cells could induce naïve CD4+ T cells to differentiate into Th2 cells. CONCLUSIONS TIM4+ B cells from AR nasal mucosa can induce skewed Th2 polarization. It may be a potential therapeutic target in the treatment of AR. B cells plays an important role in the initiation of Th2 polarization. KEY MESSAGES • High frequency of B cells exists in nasal mucosa of allergic rhinitis • These B cells express high levels of TIM4 • TIM4+ B cells can initiate the skewed Th2 polarization.
Collapse
Affiliation(s)
- Shuqi Qiu
- Shenzhen ENT Institute, Shenzheng, Guangzhou, China.
| | | | | | | | | | | | | |
Collapse
|
47
|
B cells are critical to T-cell-mediated antitumor immunity induced by a combined immune-stimulatory/conditionally cytotoxic therapy for glioblastoma. Neoplasia 2012; 13:947-60. [PMID: 22028620 DOI: 10.1593/neo.11024] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 08/19/2011] [Accepted: 08/23/2011] [Indexed: 12/25/2022] Open
Abstract
We have demonstrated that modifying the tumor microenvironment through intratumoral administration of adenoviral vectors (Ad) encoding the conditional cytotoxic molecule, i.e., HSV1-TK and the immune-stimulatory cytokine, i.e., fms-like tyrosine kinase 3 ligand (Flt3L) leads to T-cell-dependent tumor regression in rodent models of glioblastoma. We investigated the role of B cells during immune-mediated glioblastoma multiforme regression. Although treatment with Ad-TK+Ad-Flt3L induced tumor regression in 60% of wild-type (WT) mice, it completely failed in B-cell-deficient Igh6(-/-) mice. Tumor-specific T-cell precursors were detected in Ad-TK+Ad-Flt3L-treated WT mice but not in Igh6(-/-) mice. The treatment also failed in WT mice depleted of total B cells or marginal zone B cells. Because we could not detect circulating antibodies against tumor cells and the treatment was equally efficient in WT mice and in mice with B-cell-specific deletion of Prdm 1 (encoding Blimp-1), in which B cells are present but unable to fully differentiate into antibody-secreting plasma cells, tumor regression in this model is not dependent on B cells' production of tumor antigen-specific immunoglobulins. Instead, B cells seem to play a role as antigen-presenting cells (APCs). Treatment with Ad-TK+Ad-Flt3L led to an increase in the number of B cells in the cervical lymph nodes, which stimulated the proliferation of syngeneic T cells and induced clonal expansion of antitumor T cells. Our data show that B cells act as APCs, playing a critical role in clonal expansion of tumor antigen-specific T cells and brain tumor regression.
Collapse
|
48
|
Deifl S, Bohle B. Factors influencing the allergenicity and adjuvanticity of allergens. Immunotherapy 2012; 3:881-93. [PMID: 21751956 DOI: 10.2217/imt.11.69] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
IgE-mediated allergic disorders affect up to 25% of the population in industrialized countries and result in a Th2-polarized immune response to innocuous environmental proteins, so-called allergens. Among a large number of proteins to which humans are exposed to, only a minute fraction are allergens. This observation suggests that allergens share special features of allergenicity (i.e., the capacity to induce the production of specific IgE antibodies in susceptible individuals). However, the question 'what makes a protein allergenic' still remains unanswered although some biochemical characteristics of allergens and their capacity to interact with the innate immune system could be associated with their allergenic potential. Allergen-specific immunotherapy aims at an alteration of the disease-eliciting immune response by repeated administration of allergens. Recently, approaches emerged to endow allergens with adjuvanticity, in particular aiming at an increase of their immunomodulatory capacity. This article summarizes factors of allergenicity and introduces recent concepts of adjuvanticity to improve allergen-specific immunotherapy.
Collapse
Affiliation(s)
- Stephan Deifl
- Christian Doppler Laboratory for Immunomodulation, Department of Pathophysiology & Allergy Research, Center for Pathophysiology, Infectiology & Immunology, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | | |
Collapse
|
49
|
Ghosh S, Hoselton SA, Schuh JM. Characterization of CD19(+)CD23(+)B2 lymphocytes in the allergic airways of BALB/c mice in response to the inhalation of Aspergillus fumigatus conidia. ACTA ACUST UNITED AC 2012; 5:46-54. [PMID: 23316260 DOI: 10.2174/1874226201205010046] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Fungal sensitization in patients with asthma often indicates an unusual disease course in which traditional asthma treatments have little effect and in which morbidity is particularly severe. Airway hyperresponsiveness (AHR), inflammatory infiltrates, smooth muscle hyperplasia, and irreversible fibrotic remodeling of the bronchial architecture are features of allergic fungal asthma. The systemic production of IgE has long been associated with the immunopathogenesis of allergic asthma; however, the role of B lymphocytes and their products in the response to fungal allergens remains unclear. In the present study, we hypothesize that B lymphocytes are recruited to the allergic lung to impact the allergic response. Using a murine fungal aeroallergen model to mimic the human syndrome, we characterized the B cell population in the lung after fungal challenge and found that CD19(+)CD23(+) B2 lymphocyte numbers are increased in the allergic lung in a dynamic process. IgA, IgG(2a), and IgE were prominent in the serum and bronchoalveolar lavage fluid of allergic animals. It was evident that a tissue-centric production of these antibodies was possible. IgA-, IgG-, and IgE-producing cells from the allergic lung were identified by flow cytometry and immunohistochemistry. This study shows for the first time that CD19(+)CD23(+) B2 lymphocyte numbers change in the lung in a dynamic process after inhalation of fungal conidia and their increase has a significant impact on the Ab production in the pulmonary compartment in the context of fungal allergy.
Collapse
Affiliation(s)
- Sumit Ghosh
- Department of Veterinary and Microbiological Sciences, North Dakota State University, Fargo, ND 58108, USA
| | | | | |
Collapse
|
50
|
Activated primary human B cells efficiently induce early CD40L and CD107a expression in CD4+ T cells. Blood 2011; 118:5979-80. [DOI: 10.1182/blood-2011-05-356683] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|