1
|
de Bruyn E, Dorn AE, Rossetti G, Fernandez C, Outeiro TF, Schulz JB, Carloni P. Impact of Phosphorylation on the Physiological Form of Human alpha-Synuclein in Aqueous Solution. J Chem Inf Model 2024. [PMID: 39462994 DOI: 10.1021/acs.jcim.4c01172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Serine 129 can be phosphorylated in pathological inclusions formed by the intrinsically disordered protein human α-synuclein (AS), a key player in Parkinson's disease and other synucleinopathies. Here, molecular simulations provide insight into the structural ensemble of phosphorylated AS. The simulations allow us to suggest that phosphorylation significantly impacts the structural content of the physiological AS conformational ensemble in aqueous solution, as the phosphate group is mostly solvated. The hydrophobic region of AS contains β-hairpin structures, which may increase the propensity of the protein to undergo amyloid formation, as seen in the nonphysiological (nonacetylated) form of the protein in a recent molecular simulation study. Our findings are consistent with existing experimental data with the caveat of the observed limitations of the force field for the phosphorylated moiety.
Collapse
Affiliation(s)
- Emile de Bruyn
- Jülich Supercomputing Centre (JSC), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
- Department of Physics, RWTH Aachen University, 52062 Aachen, Germany
| | - Anton Emil Dorn
- Jülich Supercomputing Centre (JSC), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
- Faculty of Biology, University of Duisburg-Essen, 45141 Essen, Germany
| | - Giulia Rossetti
- Jülich Supercomputing Centre (JSC), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
- Computational Biomedicine (IAS-5/INM-9), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
- Department of Neurology, RWTH Aachen University, 52074 Aachen, Germany
| | - Claudio Fernandez
- Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPINAT), Partner of the Max Planck Institute for Multidisciplinary Sciences (MPINAT, MPG), Centro de Estudios Interdisciplinarios, Universidad Nacional de Rosario, S2002LRK Rosario, Argentina
- Department of NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37075 Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, 37075 Göttingen, Germany
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Jörg B Schulz
- Department of Physics, RWTH Aachen University, 52062 Aachen, Germany
- Department of Neurology, RWTH Aachen University, 52074 Aachen, Germany
- JARA Brain Institute Molecular Neuroscience and Neuroimaging (INM-11), Research Centre Jülich and RWTH Aachen University, 52074 Aachen, Germany
| | - Paolo Carloni
- Department of Physics, RWTH Aachen University, 52062 Aachen, Germany
- Computational Biomedicine (IAS-5/INM-9), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| |
Collapse
|
2
|
Peña-Díaz S, Ventura S. The small molecule ZPD-2 inhibits the aggregation and seeded polymerisation of C-terminally truncated α-Synuclein. FEBS J 2024. [PMID: 39462681 DOI: 10.1111/febs.17310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/26/2024] [Accepted: 10/16/2024] [Indexed: 10/29/2024]
Abstract
Protein aggregation, particularly the formation of amyloid fibrils, is associated with numerous human disorders, including Parkinson's disease. This neurodegenerative condition is characterised by the accumulation of α-Synuclein amyloid fibrils within intraneuronal deposits known as Lewy bodies or neurites. C-terminally truncated forms of α-Synuclein are frequently observed in these inclusions in the brains of patients, and their increased aggregation propensity suggests a role in the disease's pathogenesis. This study demonstrates that the small molecule ZPD-2 acts as a potent inhibitor of both the spontaneous and seeded amyloid polimerisation of C-terminally truncated α-Synuclein by interfering with early aggregation intermediates. This dual activity positions this molecule as a promising candidate for therapeutic development in treating synucleinopathies.
Collapse
Affiliation(s)
- Samuel Peña-Díaz
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Salvador Ventura
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Hospital Universitari Parc Taulí, Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA), Universitat Autònoma de Barcelona, Sabadell, Spain
| |
Collapse
|
3
|
Kim M, Bezprozvanny I. Potential direct role of synuclein in dopamine transport and its implications for Parkinson's disease pathogenesis. Biochem Biophys Res Commun 2023; 671:18-25. [PMID: 37290280 DOI: 10.1016/j.bbrc.2023.05.110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/10/2023]
Abstract
Parkinson Disease (PD) is a progressive neurodegenerative disorder that is caused by dysfunction and death of dopaminergic neurons. Mutations in the gene encoding α-synuclein (ASYN) have been linked with familial PD (FPD). Despite important role of ASYN in PD pathology, its normal biological function has not been clarified, although direct action of ASYN in synaptic transmission and dopamine (DA+) release have been proposed. In the present report we propose a novel hypothesis that ASYN functions as DA+/H+ exchanger that can facilitate transport of dopamine across synaptic vesicle (SV) membrane by taking advantage of proton gradient between SV lumen and cytoplasm. According to this hypothesis, normal physiological role of ASYN consists of fine-tuning levels of dopamine in the SVs based on cytosolic concentration of dopamine and intraluminal pH. This hypothesis is based on similarity in domain structure of ASYN and pHILP, a designed peptide developed to mediate loading of lipid nanoparticles with the cargo molecules. We reason that carboxy-terminal acidic loop D2b domain in both ASYN and pHILP binds cargo molecules. By mimicking DA+ association with E/D residues in D2b domain of ASYN using Tyrosine replacement approach (TR) we have been able to estimate that ASYN is able to transfer 8-12 molecules of dopamine across SV membrane on each DA+/H+ exchange cycle. Our results suggest that familial PD mutations (A30P, E46K, H50Q, G51D, A53T and A53E) will interfere with different steps of the exchange cycle, resulting in partial loss of dopamine transport function phenotype. We also predict that similar impairment in ASYN DA+/H+ exchange function also occurs as a result on neuronal aging due to changes in SV lipid composition and size and also dissipation of pH gradient across SV membrane. Proposed novel functional role of ASYN provides novel insights into its biological role and its role in PD pathogenesis.
Collapse
Affiliation(s)
- Meewhi Kim
- Dept of Physiology, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Ilya Bezprozvanny
- Dept of Physiology, UT Southwestern Medical Center, Dallas, TX, 75390, USA; Laboratory of Molecular Neurodegeneration, St Petersburg State Polytechnical Universty, St Petersburg, 195251, Russian Federation.
| |
Collapse
|
4
|
Zhou Y, Yao Y, Yang Z, Tang Y, Wei G. Naphthoquinone-dopamine hybrids disrupt α-synuclein fibrils by their intramolecular synergistic interactions with fibrils and display a better effect on fibril disruption. Phys Chem Chem Phys 2023; 25:14471-14483. [PMID: 37190853 DOI: 10.1039/d3cp00340j] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
α-Synuclein (αSyn) is an intrinsically disordered protein and its abnormal aggregation into amyloid fibrils is the main hallmark of Parkinson's disease (PD). The disruption of preformed αSyn fibrils using small molecules is considered as a potential strategy for PD treatment. Recent experiments have reported that naphthoquinone-dopamine hybrids (NQDA), synthesized by naphthoquinone (NQ) and dopamine (DA) molecules, can significantly disrupt αSyn fibrils and cross the blood-brain barrier. To unravel the fibril-disruptive mechanisms at the atomic level, we performed microsecond molecular dynamics simulations of αSyn fibrils in the absence and presence of NQDA, NQ, DA, or NQ+DA molecules. Our simulations showed that NQDA reduces the β-sheet content, disrupts K45-E57 and E46-K80 salt-bridges, weakens the inter-protofibril interaction, and thus destabilizes the αSyn fibril structure. NQDA has the ability to form cation-π and H-bonding interactions with K45/K80, and form π-π stacking interactions with Y39/F94. Those interactions between NQDA and αSyn fibrils play a crucial role in disaggregating αSyn fibrils. Moreover, we found that NQDA has a better fibril destabilization effect than that of NQ, DA, and NQ+DA molecules. This is attributed to the synergistic fibril-binding effect between NQ and DA groups in NQDA molecules. The DA group can form strong π-π stacking interactions with aromatic residues Y39/F94 of the αSyn fibril, while the DA molecule cannot. In addition, NQDA can form stronger cation-π interactions with residues K45/K80 than those of both NQ and DA molecules. Our results provide the molecular mechanism underlying the disaggregation of the αSyn fibril by NQDA and its better performance in fibril disruption than NQ, DA, and NQ+DA molecules, which offers new clues for the screening and development of promising drug candidates to treat PD.
Collapse
Affiliation(s)
- Yun Zhou
- Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China.
| | - Yifei Yao
- Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China.
| | - Zhongyuan Yang
- Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China.
| | - Yiming Tang
- Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China.
| | - Guanghong Wei
- Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China.
| |
Collapse
|
5
|
Zohoorian-Abootorabi T, Meratan AA, Jafarkhani S, Muronetz V, Haertlé T, Saboury AA. Modulation of cytotoxic amyloid fibrillation and mitochondrial damage of α-synuclein by catechols mediated conformational changes. Sci Rep 2023; 13:5275. [PMID: 37002248 PMCID: PMC10066314 DOI: 10.1038/s41598-023-32075-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 03/22/2023] [Indexed: 04/03/2023] Open
Abstract
The interplay between α-synuclein (α-syn) and catechols plays a central role in Parkinson's disease. This may be related to the modulating effects of catechols on the various aspects of α-syn fibrillization. Some of these effects may be attributed to the membrane-binding properties of the protein. In this work, we compare the effect of some catechols, including dopamine, epinephrine, DOPAL, and levodopa in micromolar concentrations, on the in vitro cytotoxicity of α-syn fibrils on human neuroblastoma SH-SY5Y cells. The study was followed by comparing the interactions of resulting structures with rat brain mitochondria used as an in vitro biological model. The obtained results demonstrate that catechols-induced structures have lost their cytotoxicity mimicking apoptotic cell death mediated by α-syn aggregates in different proportions. Moreover, α-syn fibrils-induced mitochondrial dysfunction, evaluated by a range of biochemical assays, was modulated by catechols-modified α-syn oligomers in different manners, as levodopa and DOPAL demonstrated the maximal and minimal effects, respectively. The plausible mechanism causing the inhibition of α-syn cytotoxic fibrillization and mitochondrial dysfunction by catechols is discussed. Taken together, we propose that catechols can prevent the cytotoxic assembly of α-syn and its destructive effects on mitochondria at various stages, suggesting that decreased levels of catechols in dopaminergic neurons might accelerate the α-syn cytotoxicity and mitochondrial dysfunction implicating Parkinson's disease.
Collapse
Affiliation(s)
| | - Ali Akbar Meratan
- Department of Biological Sciences, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, 45137-66731, Iran.
| | - Saeed Jafarkhani
- Division of Biomedical Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, 57131-14399, Iran
| | - Vladimir Muronetz
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Thomas Haertlé
- National Institute of Agronomic and Environmental Research, 44316, Nantes, France
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, 14176-14335, Iran.
| |
Collapse
|
6
|
Peña-Díaz S, García-Pardo J, Ventura S. Development of Small Molecules Targeting α-Synuclein Aggregation: A Promising Strategy to Treat Parkinson's Disease. Pharmaceutics 2023; 15:839. [PMID: 36986700 PMCID: PMC10059018 DOI: 10.3390/pharmaceutics15030839] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Parkinson's disease, the second most common neurodegenerative disorder worldwide, is characterized by the accumulation of protein deposits in the dopaminergic neurons. These deposits are primarily composed of aggregated forms of α-Synuclein (α-Syn). Despite the extensive research on this disease, only symptomatic treatments are currently available. However, in recent years, several compounds, mainly of an aromatic character, targeting α-Syn self-assembly and amyloid formation have been identified. These compounds, discovered by different approaches, are chemically diverse and exhibit a plethora of mechanisms of action. This work aims to provide a historical overview of the physiopathology and molecular aspects associated with Parkinson's disease and the current trends in small compound development to target α-Syn aggregation. Although these molecules are still under development, they constitute an important step toward discovering effective anti-aggregational therapies for Parkinson's disease.
Collapse
Affiliation(s)
- Samuel Peña-Díaz
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Javier García-Pardo
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Salvador Ventura
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
7
|
Pandey AK, Buchholz CR, Nathan Kochen N, Pomerantz WCK, Braun AR, Sachs JN. pH Effects Can Dominate Chemical Shift Perturbations in 1H, 15N-HSQC NMR Spectroscopy for Studies of Small Molecule/α-Synuclein Interactions. ACS Chem Neurosci 2023; 14:800-808. [PMID: 36749138 DOI: 10.1021/acschemneuro.2c00782] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
1H,15N-Heteronuclear Single Quantum Coherence (HSQC) NMR is a powerful technique that has been employed to characterize small-molecule interactions with intrinsically disordered monomeric α-Synuclein (aSyn). We report how solution pH can impact the interpretation of aSyn HSQC NMR spectra and demonstrate that small-molecule formulations (e.g., complexation with acidic salts) can lower sample pH and confound interpretation of drug binding and concomitant protein structural changes. Through stringent pH control, we confirm that several previously identified compounds (EGCG, Baicalin, and Dopamine (DOPA)) as well as a series of potent small-molecule inhibitors of aSyn pathology (Demeclocycline, Ro90-7501, and (±)-Bay K 8644) are capable of direct target engagement of aSyn. Previously, DOPA-aSyn interactions have been shown to elicit a dramatic chemical shift perturbation (CSP) localized to aSyn's H50 at low DOPA concentrations then expanding to aSyn's acidic C-terminal residues at increasing DOPA levels. Interestingly, this CSP profile mirrors our pH titration, where a small reduction in pH affects H50 CSP, and large pH changes induce robust C-terminal CSP. In contrast, under tightly controlled pH 5.0, DOPA induces significant CSPs observed at both ionizable and nonionizable residues. These results suggest that previous interpretations of DOPA-aSyn interactions were conflated with pH-induced CSP, highlighting the need for stringent pH control to minimize potential false-positive interpretations of ligand interactions in HSQC NMR experiments. Furthermore, DOPA's preferential interaction with aSyn under acidic pH represents a novel understanding of DOPA-aSyn interactions that may provide insight into the potential gain of toxic function of aSyn misfolding in α-synucleinopathies.
Collapse
Affiliation(s)
- Anil K Pandey
- Dept. of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Caroline R Buchholz
- Dept. of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Noah Nathan Kochen
- Dept. of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - William C K Pomerantz
- Dept. of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States.,Dept. of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Anthony R Braun
- Dept. of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jonathan N Sachs
- Dept. of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
8
|
R K, Aouti S, Jos S, Prasad TK, K N K, Unni S, Padmanabhan B, Kamariah N, Padavattan S, Mythri RB. High-affinity binding of celastrol to monomeric α-synuclein mitigates in vitro aggregation. J Biomol Struct Dyn 2023; 41:12703-12713. [PMID: 36744543 DOI: 10.1080/07391102.2023.2175379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 01/05/2023] [Indexed: 02/07/2023]
Abstract
α-Synuclein (αSyn) aggregation is associated with Parkinson's disease (PD). The region αSyn36-42 acts as the nucleation 'master controller' and αSyn1-12 as a 'secondary nucleation site'. They drive monomeric αSyn to aggregation. Small molecules targeting these motifs are promising for disease-modifying therapy. Using computational techniques, we screened thirty phytochemicals for αSyn binding. The top three compounds were experimentally validated for their binding affinity. Amongst them, celastrol showed high binding affinity. NMR analysis confirmed stable αSyn-celastrol interactions involving several residues in the N-terminus and NAC regions but not in the C-terminal tail. Importantly, celastrol interacted extensively with the key motifs that drive αSyn aggregation. Thioflavin-T assay indicated that celastrol reduced αSyn aggregation. Thus, celastrol holds promise as a potent drug candidate for PD.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Kavya R
- Department of Biotechnology, Mount Carmel College, Autonomous, Bengaluru, Karnataka, India
| | - Snehal Aouti
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Sneha Jos
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Thazhe Kootteri Prasad
- Centre for Chemical Biology & Therapeutics, Institute for Stem Cell Science and Regenerative Medicine, Bengaluru, Karnataka, India
| | - Kumuda K N
- Department of Biotechnology, Mount Carmel College, Autonomous, Bengaluru, Karnataka, India
| | - Sruthi Unni
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Balasundaram Padmanabhan
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Neelagandan Kamariah
- Centre for Chemical Biology & Therapeutics, Institute for Stem Cell Science and Regenerative Medicine, Bengaluru, Karnataka, India
| | - Sivaraman Padavattan
- Department of Biophysics, National Institute of Mental Health and Neurosciences, Bengaluru, Karnataka, India
| | - Rajeswara Babu Mythri
- Department of Biotechnology, Mount Carmel College, Autonomous, Bengaluru, Karnataka, India
| |
Collapse
|
9
|
Review on the interactions between dopamine metabolites and α-Synuclein in causing Parkinson's disease. Neurochem Int 2023; 162:105461. [PMID: 36460239 DOI: 10.1016/j.neuint.2022.105461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022]
Abstract
Parkinson's disease (PD) is characterized by an abnormal post-translational modifications (PTM) in amino acid sequence and aggregation of alpha-synuclein (α-Syn) protein. It is generally believed that dopamine (DA) metabolite in dopaminergic (DAergic) neurons promotes the aggregation of toxic α-Syn oligomers and protofibrils, whereas DA inhibits the formation of toxic fibers and even degrades the toxic fibers. Therefore, the study on interaction between DA metabolites and α-Syn oligomers is one of the current hot topics in neuroscience, because this effect may have direct relevance to the selective DAergic neuron loss in PD. Several mechanisms have been reported for DA metabolites induced α-Syn oligomers viz. i) The reactive oxygen species (ROS) released during the auto-oxidation or enzymatic oxidation of DA changes the structure of α-Syn by the oxidation of amino acid residue leading to misfolding, ii) The oxidized DA metabolites directly interact with α-Syn through covalent or non-covalent bonding leading to the formation of oligomers, iii) DA interacts with lipid or autophagy related proteins to decreases the degradation efficiency of α-Syn aggregates. However, there is no clear-cut mechanism proposed for the interaction between DA and α-Syn. However, it is believed that the lysine (Lys) side chain of α-Syn sequence is the initial trigger site for the oligomer formation. Herein, we review different chemical mechanism involved during the interaction of Lys side chain of α-Syn with DA metabolites such as dopamine-o-quinone (DAQ), dopamine-chrome (DAC), dopamine-aldehyde (DOPAL) and neuromelanin. This review also provides the promotive effect of divalent Cu2+ ions on DA metabolites induced α-Syn oligomers and its inhibition effect by antioxidant glutathione (GSH).
Collapse
|
10
|
Vaikath N, Sudhakaran I, Abdi I, Gupta V, Majbour N, Ghanem S, Abdesselem H, Vekrellis K, El-Agnaf O. Structural and Biophysical Characterization of Stable Alpha-Synuclein Oligomers. Int J Mol Sci 2022; 23:ijms232314630. [PMID: 36498957 PMCID: PMC9740078 DOI: 10.3390/ijms232314630] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/14/2022] [Accepted: 11/19/2022] [Indexed: 11/25/2022] Open
Abstract
The aggregation of α-synuclein (α-syn) into neurotoxic oligomers and fibrils is an important pathogenic feature of synucleinopatheis, including Parkinson's disease (PD). A further characteristic of PD is the oxidative stress that results in the formation of aldehydes by lipid peroxidation. It has been reported that the brains of deceased patients with PD contain high levels of protein oligomers that are cross-linked to these aldehydes. Increasing evidence also suggests that prefibrillar oligomeric species are more toxic than the mature amyloid fibrils. However, due to the heterogenous and metastable nature, characterization of the α-syn oligomeric species has been challenging. Here, we generated and characterized distinct α-syn oligomers in vitro in the presence of DA and lipid peroxidation products 4-hydroxy-2-nonenal (HNE) and 4-oxo-2-nonenal (ONE). HNE and ONE oligomer were stable towards the treatment with SDS, urea, and temperature. The secondary structure analysis revealed that only HNE and ONE oligomers contain β-sheet content. In the seeding assay, both DA and ONE oligomers significantly accelerated the aggregation. Furthermore, all oligomeric preparations were found to seed the aggregation of α-syn monomers in vitro and found to be cytotoxic when added to SH-SY5Y cells. Finally, both HNE and ONE α-syn oligomers can be used as a calibrator in an α-syn oligomers-specific ELISA.
Collapse
Affiliation(s)
- Nishant Vaikath
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha P.O. Box 5825, Qatar
- Correspondence:
| | - Indulekha Sudhakaran
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha P.O. Box 5825, Qatar
| | - Ilham Abdi
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha P.O. Box 5825, Qatar
| | - Vijay Gupta
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha P.O. Box 5825, Qatar
| | - Nour Majbour
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha P.O. Box 5825, Qatar
| | - Simona Ghanem
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha P.O. Box 5825, Qatar
| | - Houari Abdesselem
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha P.O. Box 5825, Qatar
| | - Kostas Vekrellis
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, 11527 Athens, Greece
| | - Omar El-Agnaf
- Neurological Disorder Research Center, Qatar Biomedical Research Institute (QBRI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, Doha P.O. Box 5825, Qatar
| |
Collapse
|
11
|
Interactions of dopamine, iron, and alpha-synuclein linked to dopaminergic neuron vulnerability in Parkinson's disease and neurodegeneration with brain iron accumulation disorders. Neurobiol Dis 2022; 175:105920. [DOI: 10.1016/j.nbd.2022.105920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 10/21/2022] [Accepted: 11/04/2022] [Indexed: 11/08/2022] Open
|
12
|
Yao Y, Tang Y, Zhou Y, Yang Z, Wei G. Baicalein exhibits differential effects and mechanisms towards disruption of α-synuclein fibrils with different polymorphs. Int J Biol Macromol 2022; 220:316-325. [PMID: 35981677 DOI: 10.1016/j.ijbiomac.2022.08.088] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 07/30/2022] [Accepted: 08/11/2022] [Indexed: 11/05/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative diseases with no cure yet and its major hallmark is α-synuclein fibrillary aggregates. The crucial role of α-synuclein aggregation in PD makes it an attractive target for potential disease-modifying therapies. Disaggregation of α-synuclein fibrils is considered as one of the promising therapeutic strategies to treat PD. The wild type (WT) and mutant α-synuclein fibrils exhibit different polymorphs and provide therapeutic targets for PD. Recent experiments reported that a flavonoid baicalein can disrupt WT α-synuclein fibrils. However, the underlying disruptive mechanism remains largely elusive, and whether BAC is capable of disrupting mutant α-synuclein fibrils is also unknown. Herein, we performed microsecond molecular dynamics simulations on cryo-EM-determined WT and two familial PD-associated mutant (E46K and H50Q) α-synuclein fibrils with and without baicalein. We find that baicalein destructs WT fibril by disrupting E46-K80 salt-bridge and β-sheets, and by remodeling the inter-protofilament interface. And baicalein can also damage E46K and H50Q mutant fibrils, but to different extents and via different mechanisms. The E46K fibril disruption is initiated from E61-K80 salt-bridge and N-terminal β-sheet, while the H50Q fibril disruption starts from the inter-protofilament interface and N-terminal β-sheet. These results reveal that disruptive effects and modes of baicalein on α-synuclein fibrils are polymorphism-dependent. This study suggests that baicalein may be a potential drug candidate to disrupt both WT and E46K/H50Q mutant α-synuclein fibrils and alleviate the pathological process of PD.
Collapse
Affiliation(s)
- Yifei Yao
- Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China
| | - Yiming Tang
- Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China
| | - Yun Zhou
- Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China
| | - Zhongyuan Yang
- Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China
| | - Guanghong Wei
- Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China.
| |
Collapse
|
13
|
Kumar ST, Mahul-Mellier AL, Hegde RN, Rivière G, Moons R, Ibáñez de Opakua A, Magalhães P, Rostami I, Donzelli S, Sobott F, Zweckstetter M, Lashuel HA. A NAC domain mutation (E83Q) unlocks the pathogenicity of human alpha-synuclein and recapitulates its pathological diversity. SCIENCE ADVANCES 2022; 8:eabn0044. [PMID: 35486726 PMCID: PMC9054026 DOI: 10.1126/sciadv.abn0044] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The alpha-synuclein mutation E83Q, the first in the NAC domain of the protein, was recently identified in a patient with dementia with Lewy bodies. We investigated the effects of this mutation on the aggregation of aSyn monomers and the structure, morphology, dynamic, and seeding activity of the aSyn fibrils in neurons. We found that it markedly accelerates aSyn fibrillization and results in the formation of fibrils with distinct structural and dynamic properties. In cells, this mutation is associated with higher levels of aSyn, accumulation of pS129, and increased toxicity. In a neuronal seeding model of Lewy body (LB) formation, the E83Q mutation significantly enhances the internalization of fibrils into neurons, induces higher seeding activity, and results in the formation of diverse aSyn pathologies, including the formation of LB-like inclusions that recapitulate the immunohistochemical and morphological features of brainstem LBs observed in brains of patients with Parkinson's disease.
Collapse
Affiliation(s)
- Senthil T. Kumar
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, School of Life Sciences, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Anne-Laure Mahul-Mellier
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, School of Life Sciences, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Ramanath Narayana Hegde
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, School of Life Sciences, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Gwladys Rivière
- Research Group Translational Structural Biology, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Von-Siebold-Str. 3a, 37075 Göttingen, Germany
| | - Rani Moons
- Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
| | - Alain Ibáñez de Opakua
- Research Group Translational Structural Biology, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Von-Siebold-Str. 3a, 37075 Göttingen, Germany
| | - Pedro Magalhães
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, School of Life Sciences, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Iman Rostami
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, School of Life Sciences, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Sonia Donzelli
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, School of Life Sciences, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Frank Sobott
- Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium
- School of Molecular and Cellular Biology and The Astbury Centre for Structural Molecular Biology, University of Leeds, Woodhouse Lane, Leeds, UK
| | - Markus Zweckstetter
- Research Group Translational Structural Biology, Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Von-Siebold-Str. 3a, 37075 Göttingen, Germany
- Department for NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Am Faßberg 11, 37077 Göttingen, Germany
| | - Hilal A. Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, School of Life Sciences, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Corresponding author.
| |
Collapse
|
14
|
Saffari B, Amininasab M. Crocin Inhibits the Fibrillation of Human α-synuclein and Disassembles Mature Fibrils: Experimental Findings and Mechanistic Insights from Molecular Dynamics Simulation. ACS Chem Neurosci 2021; 12:4037-4057. [PMID: 34636232 DOI: 10.1021/acschemneuro.1c00379] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The aggregation of human alpha-synuclein (hαS) is pivotally implicated in the development of most types of synucleinopathies. Molecules that can inhibit or reverse the aggregation process of amyloidogenic proteins have potential therapeutic value. The anti-aggregating activity of multiple carotenoid compounds has been reported over the past decades against a growing list of amyloidogenic polypeptides. Here, we aimed to determine whether crocin, the main carotenoid glycoside component of saffron, would inhibit hαS aggregation or could disassemble its preformed fibrils. By employing a series of biochemical and biophysical techniques, crocin was exhibited to inhibit hαS fibrillation in a dose-dependent fashion by stabilizing very early aggregation intermediates in off-pathway non-toxic conformations with little β-sheet content. We also observed that crocin at high concentrations could efficiently destabilize mature fibrils and disassemble them into seeding-incompetent intermediates by altering their β-sheet conformation and reshaping their structure. Our atomistic molecular dynamics (MD) simulations demonstrated that crocin molecules bind to both the non amyloid-β component (NAC) region and C-terminal domain of hαS. These interactions could thereby stabilize the autoinhibitory conformation of the protein and prevent it from adopting aggregation-prone structures. MD simulations further suggested that ligand molecules prefer to reside longitudinally along the fibril axis onto the edges of the inter-protofilament interface where they establish hydrogen and hydrophobic bonds with steric zipper stabilizing residues. These interactions turned out to destabilize hαS fibrils by altering the interstrand twist angles, increasing the rigidity of the fibril core, and elevating its radius of gyration. Our findings suggest the potential pharmaceutical implication of crocin in synucleinopathies.
Collapse
Affiliation(s)
- Babak Saffari
- Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran 14155-6455, Iran
| | - Mehriar Amininasab
- Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran 14155-6455, Iran
| |
Collapse
|
15
|
Haque ME, Akther M, Azam S, Kim IS, Lin Y, Lee YH, Choi DK. Targeting α-synuclein aggregation and its role in mitochondrial dysfunction in Parkinson's disease. Br J Pharmacol 2021; 179:23-45. [PMID: 34528272 DOI: 10.1111/bph.15684] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/17/2021] [Accepted: 08/25/2021] [Indexed: 11/28/2022] Open
Abstract
Lewy bodies that contain aggregated α-synuclein (α-syn) in the dopaminergic (DA) neuron are the main culprit behind neurodegeneration in Parkinson's disease (PD). Besides, mitochondrial dysfunction has a well established and prominent role in the pathogenesis of PD. However, the exact mechanism by which α-syn causes dopaminergic neuronal loss was unclear. Recent evidence suggests that aggregated α-syn localises in the mitochondria and contributes to oxidative stress-mediated apoptosis in neurons. Therefore, the involvement of aggregated α-syn in mitochondrial dysfunction-mediated neuronal loss has made it an emerging drug target for the treatment of PD. However, the exact mechanism by which α-syn permeabilises through the mitochondrial membrane and affects the electron transport chain remains under investigation. In the present study, we describe mitochondria-α-syn interactions and how α-syn aggregation modulates mitochondrial homeostasis in PD pathogenesis. We also discuss recent therapeutic interventions targeting α-syn aggregation that may help researchers to design novel therapeutic treatments for PD.
Collapse
Affiliation(s)
- Md Ezazul Haque
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju, Republic of Korea
| | - Mahbuba Akther
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju, Republic of Korea
| | - Shofiul Azam
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju, Republic of Korea
| | - In-Su Kim
- Department of Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju, Republic of Korea
| | - Yuxi Lin
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Ochang, Chung Buk, Republic of Korea
| | - Young-Ho Lee
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Ochang, Chung Buk, Republic of Korea.,Department of Bio-analytical Science, University of Science and Technology, Daejeon, Republic of Korea.,Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, Republic of Korea.,Research Headquarters, Korea Brain Research Institute, Daegu, Republic of Korea
| | - Dong-Kug Choi
- Department of Applied Life Science, Graduate School, BK21 Program, Konkuk University, Chungju, Republic of Korea.,Department of Biotechnology, College of Biomedical and Health Science, Research Institute of Inflammatory Disease (RID), Konkuk University, Chungju, Republic of Korea
| |
Collapse
|
16
|
Co-Aggregation of S100A9 with DOPA and Cyclen-Based Compounds Manifested in Amyloid Fibril Thickening without Altering Rates of Self-Assembly. Int J Mol Sci 2021; 22:ijms22168556. [PMID: 34445262 PMCID: PMC8395260 DOI: 10.3390/ijms22168556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 11/24/2022] Open
Abstract
The amyloid cascade is central for the neurodegeneration disease pathology, including Alzheimer’s and Parkinson’s, and remains the focus of much current research. S100A9 protein drives the amyloid-neuroinflammatory cascade in these diseases. DOPA and cyclen-based compounds were used as amyloid modifiers and inhibitors previously, and DOPA is also used as a precursor of dopamine in Parkinson’s treatment. Here, by using fluorescence titration experiments we showed that five selected ligands: DOPA-D-H-DOPA, DOPA-H-H-DOPA, DOPA-D-H, DOPA-cyclen, and H-E-cyclen, bind to S100A9 with apparent Kd in the sub-micromolar range. Ligand docking and molecular dynamic simulation showed that all compounds bind to S100A9 in more than one binding site and with different ligand mobility and H-bonds involved in each site, which all together is consistent with the apparent binding determined in fluorescence experiments. By using amyloid kinetic analysis, monitored by thioflavin-T fluorescence, and AFM imaging, we found that S100A9 co-aggregation with these compounds does not hinder amyloid formation but leads to morphological changes in the amyloid fibrils, manifested in fibril thickening. Thicker fibrils were not observed upon fibrillation of S100A9 alone and may influence the amyloid tissue propagation and modulate S100A9 amyloid assembly as part of the amyloid-neuroinflammatory cascade in neurodegenerative diseases.
Collapse
|
17
|
Roles for α-Synuclein in Gene Expression. Genes (Basel) 2021; 12:genes12081166. [PMID: 34440340 PMCID: PMC8393936 DOI: 10.3390/genes12081166] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/15/2021] [Accepted: 07/27/2021] [Indexed: 11/24/2022] Open
Abstract
α-Synuclein (α-Syn) is a small cytosolic protein associated with a range of cellular compartments, including synaptic vesicles, the nucleus, mitochondria, endoplasmic reticulum, Golgi apparatus, and lysosomes. In addition to its physiological role in regulating presynaptic function, the protein plays a central role in both sporadic and familial Parkinson’s disease (PD) via a gain-of-function mechanism. Because of this, several recent strategies propose to decrease α-Syn levels in PD patients. While these therapies may offer breakthroughs in PD management, the normal functions of α-Syn and potential side effects of its depletion require careful evaluation. Here, we review recent evidence on physiological and pathological roles of α-Syn in regulating activity-dependent signal transduction and gene expression pathways that play fundamental role in synaptic plasticity.
Collapse
|
18
|
Sandoval IM, Marmion DJ, Meyers KT, Manfredsson FP. Gene Therapy to Modulate Alpha-Synuclein in Synucleinopathies. JOURNAL OF PARKINSONS DISEASE 2021; 11:S189-S197. [PMID: 34092656 PMCID: PMC8543271 DOI: 10.3233/jpd-212679] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The protein alpha-Synuclein (α-Syn) is a key contributor to the etiology of Parkinson’s disease (PD) with aggregation, trans-neuronal spread, and/or depletion of α-Syn being viewed as crucial events in the molecular processes that result in neurodegeneration. The exact succession of pathological occurrences that lead to neuronal death are still largely unknown and are likely to be multifactorial in nature. Despite this unknown, α-Syn dose and stability, autophagy-lysosomal dysfunction, and inflammation, amongst other cellular impairments, have all been described as participatory events in the neurodegenerative process. To that end, in this review we discuss the logical points for gene therapy to intervene in α-Syn-mediated disease and review the preclinical body of work where gene therapy has been used, or could conceptually be used, to ameliorate α-Syn induced neurotoxicity. We discuss gene therapy in the traditional sense of modulating gene expression, as well as the use of viral vectors and nanoparticles as methods to deliver other therapeutic modalities.
Collapse
Affiliation(s)
- Ivette M Sandoval
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - David J Marmion
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Kimberly T Meyers
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, USA
| | | |
Collapse
|
19
|
Luise A, De Cecco E, Ponzini E, Sollazzo M, Mauri P, Sobott F, Legname G, Grandori R, Santambrogio C. Profiling Dopamine-Induced Oxidized Proteoforms of β-synuclein by Top-Down Mass Spectrometry. Antioxidants (Basel) 2021; 10:antiox10060893. [PMID: 34206096 PMCID: PMC8226665 DOI: 10.3390/antiox10060893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/19/2021] [Accepted: 05/28/2021] [Indexed: 01/16/2023] Open
Abstract
The formation of multiple proteoforms by post-translational modifications (PTMs) enables a single protein to acquire distinct functional roles in its biological context. Oxidation of methionine residues (Met) is a common PTM, involved in physiological (e.g., signaling) and pathological (e.g., oxidative stress) states. This PTM typically maps at multiple protein sites, generating a heterogeneous population of proteoforms with specific biophysical and biochemical properties. The identification and quantitation of the variety of oxidized proteoforms originated under a given condition is required to assess the exact molecular nature of the species responsible for the process under investigation. In this work, the binding and oxidation of human β-synuclein (BS) by dopamine (DA) has been explored. Native mass spectrometry (MS) has been employed to analyze the interaction of BS with DA. In a second step, top-down fragmentation of the intact protein from denaturing conditions has been performed to identify and quantify the distinct proteoforms generated by DA-induced oxidation. The analysis of isobaric proteoforms is approached by a combination of electron-transfer dissociation (ETD) at each extent of modification, quantitation of methionine-containing fragments and combinatorial analysis of the fragmentation products by multiple linear regression. This procedure represents a promising approach to systematic assessment of proteoforms variety and their relative abundance. The method can be adapted, in principle, to any protein containing any number of methionine residues, allowing for a full structural characterization of the protein oxidation states.
Collapse
Affiliation(s)
- Arianna Luise
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
| | - Elena De Cecco
- Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), 34136 Trieste, Italy
- ELETTRA-Sincrotrone Trieste S.C.p.A, Basovizza, 34149 Trieste, Italy
| | - Erika Ponzini
- Department of Materials Science, University of Milano-Bicocca, 20125 Milan, Italy
| | - Martina Sollazzo
- Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), 34136 Trieste, Italy
- ELETTRA-Sincrotrone Trieste S.C.p.A, Basovizza, 34149 Trieste, Italy
| | - PierLuigi Mauri
- Institute of Biomedical Technologies, National Research Council of Italy, Segrate, 20090 Milan, Italy
| | - Frank Sobott
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Giuseppe Legname
- Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), 34136 Trieste, Italy
- ELETTRA-Sincrotrone Trieste S.C.p.A, Basovizza, 34149 Trieste, Italy
| | - Rita Grandori
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
| | - Carlo Santambrogio
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, 20126 Milan, Italy
| |
Collapse
|
20
|
Liu H, Zou S, Dai S, Zhang J, Li W. Dopamine sheathing facilitates the anisotropic growth of lysozyme crystals. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
21
|
Hayashi J, Ton J, Negi S, Stephens DEKM, Pountney DL, Preiss T, Carver JA. The Effect of Oxidized Dopamine on the Structure and Molecular Chaperone Function of the Small Heat-Shock Proteins, αB-Crystallin and Hsp27. Int J Mol Sci 2021; 22:ijms22073700. [PMID: 33918165 PMCID: PMC8037807 DOI: 10.3390/ijms22073700] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/14/2021] [Accepted: 03/30/2021] [Indexed: 11/16/2022] Open
Abstract
Oxidation of the neurotransmitter, dopamine (DA), is a pathological hallmark of Parkinson’s disease (PD). Oxidized DA forms adducts with proteins which can alter their functionality. αB-crystallin and Hsp27 are intracellular, small heat-shock molecular chaperone proteins (sHsps) which form the first line of defense to prevent protein aggregation under conditions of cellular stress. In vitro, the effects of oxidized DA on the structure and function of αB-crystallin and Hsp27 were investigated. Oxidized DA promoted the cross-linking of αB-crystallin and Hsp27 to form well-defined dimer, trimer, tetramer, etc., species, as monitored by SDS-PAGE. Lysine residues were involved in the cross-links. The secondary structure of the sHsps was not altered significantly upon cross-linking with oxidized DA but their oligomeric size was increased. When modified with a molar equivalent of DA, sHsp chaperone functionality was largely retained in preventing both amorphous and amyloid fibrillar aggregation, including fibril formation of mutant (A53T) α-synuclein, a protein whose aggregation is associated with autosomal PD. In the main, higher levels of sHsp modification with DA led to a reduction in chaperone effectiveness. In vivo, DA is sequestered into acidic vesicles to prevent its oxidation and, intracellularly, oxidation is minimized by mM levels of the antioxidant, glutathione. In vitro, acidic pH and glutathione prevented the formation of oxidized DA-induced cross-linking of the sHsps. Oxidized DA-modified αB-crystallin and Hsp27 were not cytotoxic. In a cellular context, retention of significant chaperone functionality by mildly oxidized DA-modified sHsps would contribute to proteostasis by preventing protein aggregation (particularly of α-synuclein) that is associated with PD.
Collapse
Affiliation(s)
- Junna Hayashi
- Research School of Chemistry, The Australian National University, Acton, ACT 2601, Australia; (J.H.); (J.T.); (S.N.); (D.E.K.M.S.)
| | - Jennifer Ton
- Research School of Chemistry, The Australian National University, Acton, ACT 2601, Australia; (J.H.); (J.T.); (S.N.); (D.E.K.M.S.)
| | - Sparsh Negi
- Research School of Chemistry, The Australian National University, Acton, ACT 2601, Australia; (J.H.); (J.T.); (S.N.); (D.E.K.M.S.)
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Daniel E. K. M. Stephens
- Research School of Chemistry, The Australian National University, Acton, ACT 2601, Australia; (J.H.); (J.T.); (S.N.); (D.E.K.M.S.)
| | - Dean L. Pountney
- School of Medical Science, Griffith University, Gold Coast, QLD 4215, Australia;
| | - Thomas Preiss
- Department of Genome Sciences, John Curtin School of Medical Research, The Australian National University, Acton, ACT 2601, Australia;
- Victor Chang Cardiac Research Institute, Sydney, NSW 2010, Australia
| | - John A. Carver
- Research School of Chemistry, The Australian National University, Acton, ACT 2601, Australia; (J.H.); (J.T.); (S.N.); (D.E.K.M.S.)
- Correspondence: ; Tel.: +61-2-6125-9748
| |
Collapse
|
22
|
Paul A, Viswanathan GK, Huber A, Arad E, Engel H, Jelinek R, Gazit E, Segal D. Inhibition of tau amyloid formation and disruption of its preformed fibrils by Naphthoquinone-Dopamine hybrid. FEBS J 2021; 288:4267-4290. [PMID: 33523571 DOI: 10.1111/febs.15741] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/02/2021] [Accepted: 01/28/2021] [Indexed: 01/10/2023]
Abstract
Misfolding and aggregation of tau protein, into pathological amyloids, are hallmarks of a group of neurodegenerative diseases collectively termed tauopathies and their modulation may be therapeutically valuable. Herein, we describe the synthesis and characterization of a dopamine-based hybrid molecule, naphthoquinone-dopamine (NQDA). Using thioflavin S assay, CD, transmission electron microscopy, dynamic light scattering, Congo Red birefringence, and large unilamellar vesicle leakage assays, we demonstrated its efficacy in inhibiting the in vitro aggregation of key tau-derived amyloidogenic fragments, PHF6 (VQIVYK) and PHF6* (VQIINK), prime drivers of aggregation of full-length tau in disease pathology. Isothermal titration calorimetry analysis revealed that the interaction between NQDA and PHF6 is spontaneous and has significant binding efficiency driven by both entropic and enthalpic processes. Furthermore, NQDA efficiently disassembled preformed fibrils of PHF6 and PHF6* into nontoxic species. Molecular dynamic simulations supported the in vitro results and provided a plausible mode of binding of NQDA with PHF6 fibril. NQDA was also capable of inhibiting the aggregation of full-length tau protein and disrupting its preformed fibrils in vitro in a dose-dependent manner. In a comparative study, the IC50 value (50% inhibition of fibril formation) of NQDA in inhibiting the aggregation of PHF6 (25 µm) was ~ 17 µm, which is lower than for other bona fide amyloid inhibitors, naphthoquinone-tryptophan, rosmarinic acid, epigallocatechin gallate, ~ 21, ~ 77, or ~ 19 µm, respectively. Comparable superiority of NQDA was observed for inhibition of PHF6*. These findings suggest that NQDA can be a useful scaffold for designing new therapeutics for Alzheimer's disease and other tauopathies.
Collapse
Affiliation(s)
- Ashim Paul
- Department of Molecular Microbiology and Biotechnology, Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Israel
| | - Guru KrishnaKumar Viswanathan
- Department of Molecular Microbiology and Biotechnology, Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Israel
| | - Adi Huber
- Department of Molecular Microbiology and Biotechnology, Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Israel
| | - Elad Arad
- Ilse Katz Institute for Nanoscale Science and Technology & Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Hamutal Engel
- Blavatnik Center for Drug Discovery, Tel Aviv University, Israel
| | - Raz Jelinek
- Ilse Katz Institute for Nanoscale Science and Technology & Department of Chemistry, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Ehud Gazit
- Department of Molecular Microbiology and Biotechnology, Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Israel.,Department of Materials Science and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Israel
| | - Daniel Segal
- Department of Molecular Microbiology and Biotechnology, Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Israel.,Sagol Interdisciplinary School of Neuroscience, Tel Aviv University, Israel
| |
Collapse
|
23
|
Minakaki G, Krainc D, Burbulla LF. The Convergence of Alpha-Synuclein, Mitochondrial, and Lysosomal Pathways in Vulnerability of Midbrain Dopaminergic Neurons in Parkinson's Disease. Front Cell Dev Biol 2020; 8:580634. [PMID: 33381501 PMCID: PMC7767856 DOI: 10.3389/fcell.2020.580634] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/10/2020] [Indexed: 12/15/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease, characterized by progressive bradykinesia, rigidity, resting tremor, and gait impairment, as well as a spectrum of non-motor symptoms including autonomic and cognitive dysfunction. The cardinal motor symptoms of PD stem from the loss of substantia nigra (SN) dopaminergic (DAergic) neurons, and it remains unclear why SN DAergic neurons are preferentially lost in PD. However, recent identification of several genetic PD forms suggests that mitochondrial and lysosomal dysfunctions play important roles in the degeneration of midbrain dopamine (DA) neurons. In this review, we discuss the interplay of cell-autonomous mechanisms linked to DAergic neuron vulnerability and alpha-synuclein homeostasis. Emerging studies highlight a deleterious feedback cycle, with oxidative stress, altered DA metabolism, dysfunctional lysosomes, and pathological alpha-synuclein species representing key events in the pathogenesis of PD. We also discuss the interactions of alpha-synuclein with toxic DA metabolites, as well as the biochemical links between intracellular iron, calcium, and alpha-synuclein accumulation. We suggest that targeting multiple pathways, rather than individual processes, will be important for developing disease-modifying therapies. In this context, we focus on current translational efforts specifically targeting lysosomal function, as well as oxidative stress via calcium and iron modulation. These efforts could have therapeutic benefits for the broader population of sporadic PD and related synucleinopathies.
Collapse
Affiliation(s)
- Georgia Minakaki
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Dimitri Krainc
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Lena F Burbulla
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
24
|
Ulamec SM, Brockwell DJ, Radford SE. Looking Beyond the Core: The Role of Flanking Regions in the Aggregation of Amyloidogenic Peptides and Proteins. Front Neurosci 2020; 14:611285. [PMID: 33335475 PMCID: PMC7736610 DOI: 10.3389/fnins.2020.611285] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/02/2020] [Indexed: 12/14/2022] Open
Abstract
Amyloid proteins are involved in many neurodegenerative disorders such as Alzheimer’s disease [Tau, Amyloid β (Aβ)], Parkinson’s disease [alpha-synuclein (αSyn)], and amyotrophic lateral sclerosis (TDP-43). Driven by the early observation of the presence of ordered structure within amyloid fibrils and the potential to develop inhibitors of their formation, a major goal of the amyloid field has been to elucidate the structure of the amyloid fold at atomic resolution. This has now been achieved for a wide variety of sequences using solid-state NMR, microcrystallography, X-ray fiber diffraction and cryo-electron microscopy. These studies, together with in silico methods able to predict aggregation-prone regions (APRs) in protein sequences, have provided a wealth of information about the ordered fibril cores that comprise the amyloid fold. Structural and kinetic analyses have also shown that amyloidogenic proteins often contain less well-ordered sequences outside of the amyloid core (termed here as flanking regions) that modulate function, toxicity and/or aggregation rates. These flanking regions, which often form a dynamically disordered “fuzzy coat” around the fibril core, have been shown to play key parts in the physiological roles of functional amyloids, including the binding of RNA and in phase separation. They are also the mediators of chaperone binding and membrane binding/disruption in toxic amyloid assemblies. Here, we review the role of flanking regions in different proteins spanning both functional amyloid and amyloid in disease, in the context of their role in aggregation, toxicity and cellular (dys)function. Understanding the properties of these regions could provide new opportunities to target disease-related aggregation without disturbing critical biological functions.
Collapse
Affiliation(s)
- Sabine M Ulamec
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - David J Brockwell
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
25
|
Paul A, Huber A, Rand D, Gosselet F, Cooper I, Gazit E, Segal D. Naphthoquinone–Dopamine Hybrids Inhibit α‐Synuclein Aggregation, Disrupt Preformed Fibrils, and Attenuate Aggregate‐Induced Toxicity. Chemistry 2020; 26:16486-16496. [DOI: 10.1002/chem.202003374] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Ashim Paul
- Department of Molecular Microbiology and Biotechnology School of Molecular Cell Biology and Biotechnology Tel Aviv University Ramat Aviv Tel Aviv 6997801 Israel
| | - Adi Huber
- Department of Molecular Microbiology and Biotechnology School of Molecular Cell Biology and Biotechnology Tel Aviv University Ramat Aviv Tel Aviv 6997801 Israel
| | - Daniel Rand
- The Joseph Sagol Neuroscience Center Sheba Medical Center, Tel Hashomer Ramat Gan 52621 Israel
| | - Fabien Gosselet
- UR 2465 Blood-brain barrier Laboratory (LBHE) Artois University 62300 Lens France
| | - Itzik Cooper
- The Joseph Sagol Neuroscience Center Sheba Medical Center, Tel Hashomer Ramat Gan 52621 Israel
| | - Ehud Gazit
- Department of Molecular Microbiology and Biotechnology School of Molecular Cell Biology and Biotechnology Tel Aviv University Ramat Aviv Tel Aviv 6997801 Israel
- Department of Materials Science and Engineering Iby and Aladar Fleischman Faculty of Engineering Tel Aviv University Ramat Aviv Tel Aviv 6997801 Israel
| | - Daniel Segal
- Department of Molecular Microbiology and Biotechnology School of Molecular Cell Biology and Biotechnology Tel Aviv University Ramat Aviv Tel Aviv 6997801 Israel
- Sagol Interdisciplinary School of Neuroscience Tel Aviv University Ramat Aviv Tel Aviv 6997801 Israel
| |
Collapse
|
26
|
Caldwell KA, Willicott CW, Caldwell GA. Modeling neurodegeneration in Caenorhabditis elegans. Dis Model Mech 2020; 13:13/10/dmm046110. [PMID: 33106318 PMCID: PMC7648605 DOI: 10.1242/dmm.046110] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The global burden of neurodegenerative diseases underscores the urgent need for innovative strategies to define new drug targets and disease-modifying factors. The nematode Caenorhabditis elegans has served as the experimental subject for multiple transformative discoveries that have redefined our understanding of biology for ∼60 years. More recently, the considerable attributes of C. elegans have been applied to neurodegenerative diseases, including amyotrophic lateral sclerosis, Alzheimer's disease, Parkinson's disease and Huntington's disease. Transgenic nematodes with genes encoding normal and disease variants of proteins at the single- or multi-copy level under neuronal-specific promoters limits expression to select neuronal subtypes. The anatomical transparency of C. elegans affords the use of co-expressed fluorescent proteins to follow the progression of neurodegeneration as the animals age. Significantly, a completely defined connectome facilitates detailed understanding of the impact of neurodegeneration on organismal health and offers a unique capacity to accurately link cell death with behavioral dysfunction or phenotypic variation in vivo. Moreover, chemical treatments, as well as forward and reverse genetic screening, hasten the identification of modifiers that alter neurodegeneration. When combined, these chemical-genetic analyses establish critical threshold states to enhance or reduce cellular stress for dissecting associated pathways. Furthermore, C. elegans can rapidly reveal whether lifespan or healthspan factor into neurodegenerative processes. Here, we outline the methodologies employed to investigate neurodegeneration in C. elegans and highlight numerous studies that exemplify its utility as a pre-clinical intermediary to expedite and inform mammalian translational research. Summary: While unsurpassed as an experimental system for fundamental biology, Caenorhabditis elegans remains undervalued for its translational potential. Here, we highlight significant outcomes from, and resources available for, C. elegans-based research into neurodegenerative disorders.
Collapse
Affiliation(s)
- Kim A Caldwell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA .,Departments of Neurobiology, Neurology, Center for Neurodegeneration and Experimental Therapeutics, and Nathan Shock Center of Excellence in the Basic Biology of Aging, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Corey W Willicott
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Guy A Caldwell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL 35487, USA.,Departments of Neurobiology, Neurology, Center for Neurodegeneration and Experimental Therapeutics, and Nathan Shock Center of Excellence in the Basic Biology of Aging, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
27
|
Peña-Díaz S, Pujols J, Pinheiro F, Santos J, Pallarés I, Navarro S, Conde-Gimenez M, García J, Salvatella X, Dalfó E, Sancho J, Ventura S. Inhibition of α-Synuclein Aggregation and Mature Fibril Disassembling With a Minimalistic Compound, ZPDm. Front Bioeng Biotechnol 2020; 8:588947. [PMID: 33178678 PMCID: PMC7597392 DOI: 10.3389/fbioe.2020.588947] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/22/2020] [Indexed: 11/13/2022] Open
Abstract
Synucleinopathies are a group of disorders characterized by the accumulation of α-Synuclein amyloid inclusions in the brain. Preventing α-Synuclein aggregation is challenging because of the disordered nature of the protein and the stochastic nature of fibrillogenesis, but, at the same time, it is a promising approach for therapeutic intervention in these pathologies. A high-throughput screening initiative allowed us to discover ZPDm, the smallest active molecule in a library of more than 14.000 compounds. Although the ZPDm structure is highly related to that of the previously described ZPD-2 aggregation inhibitor, we show here that their mechanisms of action are entirely different. ZPDm inhibits the aggregation of wild-type, A30P, and H50Q α-Synuclein variants in vitro and interferes with α-Synuclein seeded aggregation in protein misfolding cyclic amplification assays. However, ZPDm distinctive feature is its strong potency to dismantle preformed α-Synuclein amyloid fibrils. Studies in a Caenorhabditis elegans model of Parkinson's Disease, prove that these in vitro properties are translated into a significant reduction in the accumulation of α-Synuclein inclusions in ZPDm treated animals. Together with previous data, the present work illustrates how different chemical groups on top of a common molecular scaffold can result in divergent but complementary anti-amyloid activities.
Collapse
Affiliation(s)
- Samuel Peña-Díaz
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jordi Pujols
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Francisca Pinheiro
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jaime Santos
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Irantzu Pallarés
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Susanna Navarro
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - María Conde-Gimenez
- Department of Biochemistry and Molecular and Cell Biology, Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, and Aragon Institute for Health Research (IIS Aragon), Zaragoza, Spain
| | - Jesús García
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Xavier Salvatella
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain.,ICREA, Barcelona, Spain
| | - Esther Dalfó
- Medicine, M2, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Faculty of Medicine, University of Vic-Central University of Catalonia (UVic-UCC), Barcelona, Spain
| | - Javier Sancho
- Department of Biochemistry and Molecular and Cell Biology, Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, and Aragon Institute for Health Research (IIS Aragon), Zaragoza, Spain
| | - Salvador Ventura
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Barcelona, Spain.,Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain.,ICREA, Barcelona, Spain
| |
Collapse
|
28
|
Raina A, Leite K, Guerin S, Mahajani SU, Chakrabarti KS, Voll D, Becker S, Griesinger C, Bähr M, Kügler S. Dopamine promotes the neurodegenerative potential of β-synuclein. J Neurochem 2020; 156:674-691. [PMID: 32730640 DOI: 10.1111/jnc.15134] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/09/2020] [Accepted: 07/21/2020] [Indexed: 01/21/2023]
Abstract
A contribution of α-Synuclein (α-Syn) to etiology of Parkinson´s disease (PD) and Dementia with Lewy bodies (DLB) is currently undisputed, while the impact of the closely related β-Synuclein (β-Syn) on these disorders remains enigmatic. β-Syn has long been considered to be an attenuator of the neurotoxic effects of α-Syn, but in a rodent model of PD β-Syn induced robust neurodegeneration in dopaminergic neurons of the substantia nigra. Given that dopaminergic nigral neurons are selectively vulnerable to neurodegeneration in PD, we now investigated if dopamine can promote the neurodegenerative potential of β-Syn. We show that in cultured rodent and human neurons a dopaminergic neurotransmitter phenotype substantially enhanced β-Syn-induced neurodegeneration, irrespective if dopamine is synthesized within neurons or up-taken from extracellular space. Nuclear magnetic resonance interaction and thioflavin-T incorporation studies demonstrated that dopamine and its oxidized metabolites 3,4-dihydroxyphenylacetaldehyde (DOPAL) and dopaminochrome (DCH) directly interact with β-Syn, thereby enabling structural and functional modifications. Interaction of DCH with β-Syn inhibits its aggregation, which might result in increased levels of neurotoxic oligomeric β-Syn. Since protection of outer mitochondrial membrane integrity prevented the additive neurodegenerative effect of dopamine and β-Syn, such oligomers might act at a mitochondrial level similar to what is suggested for α-Syn. In conclusion, our results suggest that β-Syn can play a significant pathophysiological role in etiology of PD through its interaction with dopamine metabolites and thus should be re-considered as a disease-relevant factor, at least for those symptoms of PD that depend on degeneration of nigral dopaminergic neurons.
Collapse
Affiliation(s)
- Anupam Raina
- Department of Neurology, University Medicine Göttingen, Göttingen, Germany
| | - Kristian Leite
- Department of Neurology, University Medicine Göttingen, Göttingen, Germany
| | - Sofia Guerin
- Department of Neurology, University Medicine Göttingen, Göttingen, Germany
| | | | | | - Diana Voll
- Department of Neurology, University Medicine Göttingen, Göttingen, Germany
| | - Stefan Becker
- Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
| | | | - Mathias Bähr
- Department of Neurology, University Medicine Göttingen, Göttingen, Germany
| | - Sebastian Kügler
- Department of Neurology, University Medicine Göttingen, Göttingen, Germany.,Center Nanoscale Microscopy and Physiology of the Brain (CNMPB), Göttingen, Germany
| |
Collapse
|
29
|
Zhao H, Huang S, Palanisamy S, Wang C, Rainer G, Zhang X. Alpha-Synuclein Dopaminylation Presented in Plasma of Both Healthy Subjects and Parkinson's Disease Patients. Proteomics Clin Appl 2020; 14:e1900117. [PMID: 32538547 DOI: 10.1002/prca.201900117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 05/03/2020] [Indexed: 02/04/2023]
Abstract
PURPOSE Alpha-synuclein (α-syn) dopaminylation can lead to the death of dopaminergic neurons in the brain and is a risk factor of Parkinson's disease (PD). This study aims to examine whether such a posttranslational modification (PTM) is presented in human blood plasma. EXPERIMENTAL DESIGN In vitro reaction simulation between α-syn and dopamine (DA) is conducted to study the biochemical mechanism. Then α-syn from human blood plasma samples is detected by using immunoprecipitation-mass spectrometry (IP-MS). Lastly the levels of endogenous α-syn and α-syn dopaminylation in 88 blood plasma samples from patients with PD, major depressive disorder (MDD), and healthy control (HC) are compared. RESULTS DA modifies α-syn with the addition of dopamine-quinone (DAQ) into lysine sites of α-syn in vitro and the addition of DAQ and 3,4-dihydroxyphenylacetaldehyde (DOPAL) in plasma samples. The unmodified α-syn between the PD and HC groups showed similar levels. The levels of two peptides, one with lysine 34 (34 K) DAQ modification and the other with lysine 23 (23 K) ubiquitination, are significantly higher in PD and MDD compared with HC. CONCLUSIONS AND CLINICAL RELEVANCE Thus, α-syn dopaminylation is measurable and might be used to indicatethe presence and progression of neurological disorders.
Collapse
Affiliation(s)
- Huiyuan Zhao
- Section of Medicine, University of Fribourg, Fribourg, CH1700, Switzerland.,Division of Biological Technology, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, China, 116023
| | - Shuai Huang
- Division of Biological Technology, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, China, 116023
| | - Sivakumar Palanisamy
- Division of Biological Technology, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, China, 116023
| | - Cui Wang
- Department of Neurology, Dalian Central Hospital, Dalian, China, 116033
| | - Gregor Rainer
- Section of Medicine, University of Fribourg, Fribourg, CH1700, Switzerland
| | - Xiaozhe Zhang
- Division of Biological Technology, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, China, 116023
| |
Collapse
|
30
|
Advances in the development of imaging probes and aggregation inhibitors for alpha-synuclein. Acta Pharmacol Sin 2020; 41:483-498. [PMID: 31586134 PMCID: PMC7470848 DOI: 10.1038/s41401-019-0304-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 08/29/2019] [Indexed: 12/20/2022] Open
Abstract
Abnormal protein aggregation has been linked to many neurodegenerative diseases, including Parkinson’s disease (PD). The main pathological hallmark of PD is the formation of Lewy bodies (LBs) and Lewy neurites, both of which contain the presynaptic protein alpha-synuclein (α-syn). Under normal conditions, native α-syn exists in a soluble unfolded state but undergoes misfolding and aggregation into toxic aggregates under pathological conditions. Toxic α-syn species, especially oligomers, can cause oxidative stress, membrane penetration, synaptic and mitochondrial dysfunction, as well as other damage, leading to neuronal death and eventually neurodegeneration. Early diagnosis and treatments targeting PD pathogenesis are urgently needed. Given its critical role in PD, α-syn is an attractive target for the development of both diagnostic tools and effective therapeutics. This review summarizes the progress toward discovering imaging probes and aggregation inhibitors for α-syn. Relevant strategies and techniques in the discovery of α-syn-targeted drugs are also discussed.
Collapse
|
31
|
Pujols J, Peña-Díaz S, Pallarès I, Ventura S. Chemical Chaperones as Novel Drugs for Parkinson's Disease. Trends Mol Med 2020; 26:408-421. [PMID: 32277934 DOI: 10.1016/j.molmed.2020.01.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 11/19/2019] [Accepted: 01/21/2020] [Indexed: 12/14/2022]
Abstract
Parkinson's disease (PD) is characterized by progressive loss of dopaminergic neurons and the accumulation of deposits of α-synuclein (α-syn) in the brain. The pivotal role of α-syn aggregation in PD makes it an attractive target for potential disease-modifying therapies. However, the disordered nature of the protein, its multistep aggregation mechanism, and the lack of structural information on intermediate species complicate the discovery of modulators of α-syn amyloid deposition. Despite these difficulties, small molecules have been shown to block the misfolding and aggregation of α-syn, and can even disentangle mature α-syn amyloid fibrils. In this review we provide an updated overview of these leading small compounds and discuss how these chemical chaperones hold great promise to alter the course of PD progression.
Collapse
Affiliation(s)
- Jordi Pujols
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| | - Samuel Peña-Díaz
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Irantzu Pallarès
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Salvador Ventura
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain.
| |
Collapse
|
32
|
Zou Y, Qian Z, Gong Y, Tang Y, Wei G, Zhang Q. Critical nucleus of Greek-key-like core of α-synuclein protofibril and its disruption by dopamine and norepinephrine. Phys Chem Chem Phys 2020; 22:203-211. [DOI: 10.1039/c9cp04610k] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Protofibrillar trimer is the critical nucleus for the αS fibril formation, and the tetramer is the minimal stable nucleus. The interactions of DA/NE with αS trimer/tetramer disrupt the backbone H-bonds and destabilize the αS protofibrils.
Collapse
Affiliation(s)
- Yu Zou
- Department of Sport and Exercise Science
- College of Education
- Zhejiang University
- Hangzhou 310007
- People's Republic of China
| | - Zhenyu Qian
- Key Laboratory of Exercise and Health Sciences (Ministry of Education) and School of Kinesiology
- Shanghai University of Sport
- Shanghai 200438
- People's Republic of China
| | - Yehong Gong
- College of Physical Education and Training
- Shanghai University of Sport
- Shanghai 200438
- People's Republic of China
| | - Yiming Tang
- State Key Laboratory of Surface Physics
- Key Laboratory for Computational Physical Science (Ministry of Education), and Department of Physics, Fudan University
- 220 Handan Road
- Shanghai 200433
- People's Republic of China
| | - Guanghong Wei
- State Key Laboratory of Surface Physics
- Key Laboratory for Computational Physical Science (Ministry of Education), and Department of Physics, Fudan University
- 220 Handan Road
- Shanghai 200433
- People's Republic of China
| | - Qingwen Zhang
- College of Physical Education and Training
- Shanghai University of Sport
- Shanghai 200438
- People's Republic of China
| |
Collapse
|
33
|
|
34
|
Palazzi L, Leri M, Cesaro S, Stefani M, Bucciantini M, Polverino de Laureto P. Insight into the molecular mechanism underlying the inhibition of α-synuclein aggregation by hydroxytyrosol. Biochem Pharmacol 2019; 173:113722. [PMID: 31756328 DOI: 10.1016/j.bcp.2019.113722] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 11/15/2019] [Indexed: 01/07/2023]
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative disease in the elderly people. To date, drugs able to reverse the disease are not available; the gold standard is levodopa that only relieves clinical symptoms, yet with severe side effects after prolonged administration. Many efforts are underway to find alternative targets for PD prevention or treatment, the most promising being α-synuclein (Syn). Recently, we reported that oleuropein aglycone (OleA) interferes with amyloid aggregation of Syn both stabilizing its monomeric state and inducing the formation of harmless, off-pathway oligomers. This study is focused at describing the interaction between Syn and hydroxytyrosol (HT), the phenolic moiety and main metabolite of OleA, and the interferences with Syn aggregation by using biophysical and biological techniques. Our results show that HT dose-dependently inhibits Syn aggregation and that covalent and non-covalent binding mediate HT-Syn interaction. HT does not modify the natively unfolded structure of Syn, rather, it stabilizes specific regions of the molecule leading to inhibition of protein fibrillation. Cellular assays showed that HT reduces the toxicity of Syn aggregates. Moreover, Syn aggregates interaction with the cell membrane, an important factor for prion-like properties of Syn on-pathway oligomers, was reduced in cells exposed to Syn aggregates grown in the presence of HT.
Collapse
Affiliation(s)
- Luana Palazzi
- Department of Pharmaceutical Sciences, CRIBI Biotechnology Centre, University of Padova, Italy
| | - Manuela Leri
- Department of Biomedical, Experimental and Clinical Sciences, University of Firenze, Italy; Department of Neuroscience, Psychology, Drug Research and Child Health, University of Firenze, Italy
| | - Samuele Cesaro
- Department of Pharmaceutical Sciences, CRIBI Biotechnology Centre, University of Padova, Italy
| | - Massimo Stefani
- Department of Biomedical, Experimental and Clinical Sciences, University of Firenze, Italy
| | - Monica Bucciantini
- Department of Biomedical, Experimental and Clinical Sciences, University of Firenze, Italy
| | | |
Collapse
|
35
|
Chaudhary H, Fernandes RMF, Gowda V, Claessens MMAE, Furó I, Lendel C. Intrinsically disordered protein as carbon nanotube dispersant: How dynamic interactions lead to excellent colloidal stability. J Colloid Interface Sci 2019; 556:172-179. [PMID: 31445446 DOI: 10.1016/j.jcis.2019.08.050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/12/2019] [Accepted: 08/13/2019] [Indexed: 11/19/2022]
Abstract
The rich pool of protein conformations combined with the dimensions and properties of carbon nanotubes create new possibilities in functional materials and nanomedicine. Here, the intrinsically disordered protein α-synuclein is explored as a dispersant of single-walled carbon nanotubes (SWNTs) in water. We use a range of spectroscopic methods to quantify the amount of dispersed SWNT and to elucidate the binding mode of α-synuclein to SWNT. The dispersion ability of α-synuclein is good even with mild sonication and the obtained dispersion is very stable over time. The whole polypeptide chain is involved in the interaction accompanied by a fraction of the chain changing into a helical structure upon binding. Similar to other dispersants, we observe that only a small fraction (15-20%) of α-synuclein is adsorbed on the SWNT surface with an average residence time below 10 ms.
Collapse
Affiliation(s)
- Himanshu Chaudhary
- Department of Chemistry, Division of Applied Physical Chemistry, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden.
| | - Ricardo M F Fernandes
- Department of Chemistry, Division of Applied Physical Chemistry, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden; Centro de Investigação em Química, Department of Chemistry and Biochemistry, Faculty of Science, University of Porto, Rua do Campo Alegre, s/n, P-4169-007 Porto, Portugal.
| | - Vasantha Gowda
- Department of Chemistry, Division of Applied Physical Chemistry, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden
| | - Mireille M A E Claessens
- MESA + Institute for Nanotechnology and Mira Institute for Biomedical Technology and Technical Medicine, University of Twente, 7500AE Enschede, the Netherlands
| | - István Furó
- Department of Chemistry, Division of Applied Physical Chemistry, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden
| | - Christofer Lendel
- Department of Chemistry, Division of Applied Physical Chemistry, KTH Royal Institute of Technology, SE-10044 Stockholm, Sweden.
| |
Collapse
|
36
|
Structural Influence and Interactive Binding Behavior of Dopamine and Norepinephrine on the Greek-Key-Like Core of α-Synuclein Protofibril Revealed by Molecular Dynamics Simulations. Processes (Basel) 2019. [DOI: 10.3390/pr7110850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The pathogenesis of Parkinson’s disease (PD) is closely associated with the aggregation of α-synuclein (αS) protein. Finding the effective inhibitors of αS aggregation has been considered as the primary therapeutic strategy for PD. Recent studies reported that two neurotransmitters, dopamine (DA) and norepinephrine (NE), can effectively inhibit αS aggregation and disrupt the preformed αS fibrils. However, the atomistic details of αS-DA/NE interaction remain unclear. Here, using molecular dynamics simulations, we investigated the binding behavior of DA/NE molecules and their structural influence on αS44–96 (Greek-key-like core of full length αS) protofibrillar tetramer. Our results showed that DA/NE molecules destabilize αS protofibrillar tetramer by disrupting the β-sheet structure and destroying the intra- and inter-peptide E46–K80 salt bridges, and they can also destroy the inter-chain backbone hydrogen bonds. Three binding sites were identified for both DA and NE molecules interacting with αS tetramer: T54–T72, Q79–A85, and F94–K96, and NE molecules had a stronger binding capacity to these sites than DA. The binding of DA/NE molecules to αS tetramer is dominantly driven by electrostatic and hydrogen bonding interactions. Through aromatic π-stacking, DA and NE molecules can bind to αS protofibril interactively. Our work reveals the detailed disruptive mechanism of protofibrillar αS oligomer by DA/NE molecules, which is helpful for the development of drug candidates against PD. Given that exercise as a stressor can stimulate DA/NE secretion and elevated levels of DA/NE could delay the progress of PD, this work also enhances our understanding of the biological mechanism by which exercise prevents and alleviates PD.
Collapse
|
37
|
Ponzini E, De Palma A, Cerboni L, Natalello A, Rossi R, Moons R, Konijnenberg A, Narkiewicz J, Legname G, Sobott F, Mauri P, Santambrogio C, Grandori R. Methionine oxidation in α-synuclein inhibits its propensity for ordered secondary structure. J Biol Chem 2019; 294:5657-5665. [PMID: 30755483 DOI: 10.1074/jbc.ra118.001907] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 01/30/2019] [Indexed: 11/06/2022] Open
Abstract
α-Synuclein (AS) is an intrinsically disordered protein highly expressed in dopaminergic neurons. Its amyloid aggregates are the major component of Lewy bodies, a hallmark of Parkinson's disease (PD). AS is particularly exposed to oxidation of its methionine residues, both in vivo and in vitro Oxidative stress has been implicated in PD and oxidized α-synuclein has been shown to assemble into soluble, toxic oligomers, rather than amyloid fibrils. However, the structural effects of methionine oxidation are still poorly understood. In this work, oxidized AS was obtained by prolonged incubations with dopamine (DA) or epigallocatechin-3-gallate (EGCG), two inhibitors of AS aggregation, indicating that EGCG promotes the same final oxidation product as DA. The conformational transitions of the oxidized and non-oxidized protein were monitored by complementary biophysical techniques, including MS, ion mobility (IM), CD, and FTIR spectroscopy assays. Although the two variants displayed very similar structures under conditions that stabilize highly disordered or highly ordered states, differences emerged in the intermediate points of transitions induced by organic solvents, such as trifluoroethanol (TFE) and methanol (MeOH), indicating a lower propensity of the oxidized protein for forming either α- or β-type secondary structures. Furthermore, oxidized AS displayed restricted secondary-structure transitions in response to dehydration and slightly amplified tertiary-structure transitions induced by ligand binding. This difference in susceptibility to induced folding could explain the loss of fibrillation potential observed for oxidized AS. Finally, site-specific oxidation kinetics point out a minor delay in Met-127 modification, likely due to the effects of AS intrinsic structure.
Collapse
Affiliation(s)
- Erika Ponzini
- From the Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Antonella De Palma
- the Institute of Biomedical Technologies, National Research Council of Italy, Segrate, 20090 Milan, Italy
| | - Lucilla Cerboni
- From the Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Antonino Natalello
- From the Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Rossana Rossi
- the Institute of Biomedical Technologies, National Research Council of Italy, Segrate, 20090 Milan, Italy
| | - Rani Moons
- the Biomolecular and Analytical Mass Spectrometry, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Albert Konijnenberg
- the Biomolecular and Analytical Mass Spectrometry, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Joanna Narkiewicz
- the Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA) and ELETTRA-Sincrotrone Trieste S.C.p.A, 34136 Trieste, Italy
| | - Giuseppe Legname
- the Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA) and ELETTRA-Sincrotrone Trieste S.C.p.A, 34136 Trieste, Italy
| | - Frank Sobott
- the Biomolecular and Analytical Mass Spectrometry, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium.,the School of Molecular and Cellular Biology, University of Leeds, Leeds LS29JT, United Kingdom, and.,the Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - PierLuigi Mauri
- the Institute of Biomedical Technologies, National Research Council of Italy, Segrate, 20090 Milan, Italy
| | - Carlo Santambrogio
- From the Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy,
| | - Rita Grandori
- From the Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy,
| |
Collapse
|
38
|
Mor DE, Daniels MJ, Ischiropoulos H. The usual suspects, dopamine and alpha-synuclein, conspire to cause neurodegeneration. Mov Disord 2019; 34:167-179. [PMID: 30633814 PMCID: PMC6379109 DOI: 10.1002/mds.27607] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 11/15/2018] [Accepted: 12/03/2018] [Indexed: 01/07/2023] Open
Abstract
Parkinson's disease (PD) is primarily a movement disorder driven by the loss of dopamine-producing neurons in the substantia nigra (SN). Early identification of the oxidative properties of dopamine implicated it as a potential source of oxidative stress in PD, yet few studies have investigated dopamine neurotoxicity in vivo. The discovery of PD-causing mutations in α-synuclein and the presence of aggregated α-synuclein in the hallmark Lewy body pathology of PD revealed another important player. Despite extensive efforts, the precise role of α-synuclein aggregation in neurodegeneration remains unclear. We recently manipulated both dopamine levels and α-synuclein expression in aged mice and found that only the combination of these 2 factors caused progressive neurodegeneration of the SN and an associated motor deficit. Dopamine modified α-synuclein aggregation in the SN, resulting in greater abundance of α-synuclein oligomers and unique dopamine-induced oligomeric conformations. Furthermore, disruption of the dopamine-α-synuclein interaction rescued dopaminergic neurons from degeneration in transgenic Caenorhabditis elegans models. In this Perspective, we discuss these findings in the context of known α-synuclein and dopamine biology, review the evidence for α-synuclein oligomer toxicity and potential mechanisms, and discuss therapeutic implications. © 2019 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Danielle E. Mor
- Lewis-Sigler Institute for Integrative Genomics and Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Malcolm J. Daniels
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Harry Ischiropoulos
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Children’s Hospital of Philadelphia Research Institute, Philadelphia, PA, USA
| |
Collapse
|
39
|
Oliveri V. Toward the discovery and development of effective modulators of α-synuclein amyloid aggregation. Eur J Med Chem 2019; 167:10-36. [PMID: 30743095 DOI: 10.1016/j.ejmech.2019.01.045] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 01/21/2019] [Accepted: 01/21/2019] [Indexed: 12/17/2022]
Abstract
A host of human diseases, including Parkinson's disease and Dementia with Lewy bodies, are suspected to be directly linked to protein aggregation. Amyloid protein aggregates and oligomeric intermediates of α-synuclein are observed in synucleinopathies and considered to be mediators of cellular toxicity. Hence, α-synuclein has seen as one of the leading and most compelling targets and is receiving a great deal of attention from researchers. Nevertheless, there is no neuroprotective approach directed toward Parkinson's disease or other synucleinopathies so far. In this review, we summarize the available data concerning inhibitors of α-synuclein aggregation and their advancing towards clinical use. The compounds are grouped according to their chemical structures, providing respective insights into their mechanism of action, pharmacology, and pharmacokinetics. Overall, shared structure-activity elements are emerging, as well as specific binding modes related to the ability of the modulators to establish hydrophobic and hydrogen bonds interactions with the protein. Some molecules with encouraging in vivo data support the possibility of translation to the clinic.
Collapse
Affiliation(s)
- Valentina Oliveri
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, viale A. Doria 6, 95125, Catania, Italy.
| |
Collapse
|
40
|
Vinnakota RL, Yedlapudi D, Manda KM, Bhamidipati K, Bommakanti KT, RangaLakshmi GS, Kalivendi SV. Identification of an Alternatively Spliced α-Synuclein Isoform That Generates a 41-Amino Acid N-Terminal Truncated Peptide, 41-syn: Role in Dopamine Homeostasis. ACS Chem Neurosci 2018; 9:2948-2958. [PMID: 29996045 DOI: 10.1021/acschemneuro.8b00140] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The presynaptic protein, α-synuclein (α-syn), has been shown to play a crucial role in multiple neurodegenerative diseases, such as Parkinson's disease (PD), Alzheimer's disease (AD), and dementia with Lewy bodies (DLB). The three major domains of α-syn protein were shown to govern its membrane interaction, protein fibrillation, and chaperone activity. So far, four different alternatively spliced isoforms of α-syn, which lack either exon 3 (syn-126) or exon 5 (syn-112) or both (syn-98) resulting in altered function of the proteins, have been identified. In the present study, we have identified the smallest isoform of α-syn due to the skipping of exons 3 and 4 generating a 238 bp transcript. Due to the presence of a premature stop codon, the 238 bp transcript generated a 41 aa N-terminal peptide instead of the 78 aa protein, which is secreted into the extracellular medium when overexpressed in cells. The presence of 41-syn was initially noticed in the substantia nigra of PD autopsy tissues, as well as in cells undergoing oxidative stress. In vitro studies inferred that 41-syn neither aggregates nor alters the aggregation propensity of either WT or 112-syn. Overexpression of 41-syn or treatment of cells with 41-syn peptide did not affect cell viability. However, PC-12 cells treated with 41-syn exhibited a time and dose dependent enhancement in the cellular uptake of dopamine. Based on the physiological role of the N-terminal region of α-syn in modulating membrane trafficking events, we believe that the identification of 41-syn may provide novel impetus in unraveling the physiological basis of alternative splicing events in governing PD pathophysiology.
Collapse
Affiliation(s)
| | | | | | | | | | - G Sree RangaLakshmi
- Department of Neurology, Osmania General Hospital, Afzal Gunj, Hyderabad, 500012 TS, India
| | | |
Collapse
|
41
|
Nuber S, Rajsombath M, Minakaki G, Winkler J, Müller CP, Ericsson M, Caldarone B, Dettmer U, Selkoe DJ. Abrogating Native α-Synuclein Tetramers in Mice Causes a L-DOPA-Responsive Motor Syndrome Closely Resembling Parkinson's Disease. Neuron 2018; 100:75-90.e5. [PMID: 30308173 PMCID: PMC6211795 DOI: 10.1016/j.neuron.2018.09.014] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 07/16/2018] [Accepted: 09/06/2018] [Indexed: 11/22/2022]
Abstract
α-Synuclein (αS) regulates vesicle exocytosis but forms insoluble deposits in Parkinson's disease (PD). Developing disease-modifying therapies requires animal models that reproduce cardinal features of PD. We recently described a previously unrecognized physiological form of αS, α-helical tetramers, and showed that familial PD-causing missense mutations shift tetramers to aggregation-prone monomers. Here, we generated mice expressing the fPD E46K mutation plus 2 homologous E→K mutations in adjacent KTKEGV motifs. This tetramer-abrogating mutant causes phenotypes similar to PD. αS monomers accumulate at membranes and form vesicle-rich inclusions. αS becomes insoluble, proteinase K-resistant, Ser129-phosphorylated, and C-terminally truncated, as in PD. These changes affect regions controlling motor behavior, including a decrease in nigrostriatal dopaminergic neurons. The outcome is a progressive motor syndrome including tremor and gait and limb deficits partially responsive to L-DOPA. This fully penetrant phenotype indicates that tetramers are required for normal αS homeostasis and that chronically shifting tetramers to monomers may result in PD, with attendant therapeutic implications.
Collapse
Affiliation(s)
- Silke Nuber
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Molly Rajsombath
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Georgia Minakaki
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-University (FAU), Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Jürgen Winkler
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-University (FAU), Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Christian P Müller
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander-University (FAU), Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Maria Ericsson
- Electron Microscopy Laboratory, Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Barbara Caldarone
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; NeuroBehavior Laboratory, Harvard NeuroDiscovery Center, Harvard Medical School, Boston, MA 02115, USA
| | - Ulf Dettmer
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Dennis J Selkoe
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
42
|
α-Synuclein interacts directly but reversibly with psychosine: implications for α-synucleinopathies. Sci Rep 2018; 8:12462. [PMID: 30127535 PMCID: PMC6102231 DOI: 10.1038/s41598-018-30808-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 08/01/2018] [Indexed: 12/27/2022] Open
Abstract
Aggregation of α-synuclein, the hallmark of α-synucleinopathies such as Parkinson’s disease, occurs in various glycosphingolipidoses. Although α-synuclein aggregation correlates with deficiencies in the lysosomal degradation of glycosphingolipids (GSL), the mechanism(s) involved in this aggregation remains unclear. We previously described the aggregation of α-synuclein in Krabbe’s disease (KD), a neurodegenerative glycosphingolipidosis caused by lysosomal deficiency of galactosyl-ceramidase (GALC) and the accumulation of the GSL psychosine. Here, we used a multi-pronged approach including genetic, biophysical and biochemical techniques to determine the pathogenic contribution, reversibility, and molecular mechanism of aggregation of α-synuclein in KD. While genetic knock-out of α-synuclein reduces, but does not completely prevent, neurological signs in a mouse model of KD, genetic correction of GALC deficiency completely prevents α-synuclein aggregation. We show that psychosine forms hydrophilic clusters and binds the C-terminus of α-synuclein through its amino group and sugar moiety, suggesting that psychosine promotes an open/aggregation-prone conformation of α-synuclein. Dopamine and carbidopa reverse the structural changes of psychosine by mediating a closed/aggregation-resistant conformation of α-synuclein. Our results underscore the therapeutic potential of lysosomal correction and small molecules to reduce neuronal burden in α-synucleinopathies, and provide a mechanistic understanding of α-synuclein aggregation in glycosphingolipidoses.
Collapse
|
43
|
Post MR, Lieberman OJ, Mosharov EV. Can Interactions Between α-Synuclein, Dopamine and Calcium Explain Selective Neurodegeneration in Parkinson's Disease? Front Neurosci 2018; 12:161. [PMID: 29593491 PMCID: PMC5861202 DOI: 10.3389/fnins.2018.00161] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 02/27/2018] [Indexed: 12/11/2022] Open
Abstract
Several lines of evidence place alpha-synuclein (aSyn) at the center of Parkinson's disease (PD) etiology, but it is still unclear why overexpression or mutated forms of this protein affect some neuronal populations more than others. Susceptible neuronal populations in PD, dopaminergic neurons of the substantia nigra pars compacta (SNpc) and the locus coeruleus (LC), are distinguished by relatively high cytoplasmic concentrations of dopamine and calcium ions. Here we review the evidence for the multi-hit hypothesis of neurodegeneration, including recent papers that demonstrate synergistic interactions between aSyn, calcium ions and dopamine that may lead to imbalanced protein turnover and selective susceptibility of these neurons. We conclude that decreasing the levels of any one of these toxicity mediators can be beneficial for the survival of SNpc and LC neurons, providing multiple opportunities for targeted drug interventions aimed at modifying the course of PD.
Collapse
Affiliation(s)
- Michael R Post
- Departments of Psychiatry and Neurology, New York State Psychiatric Institute, Columbia University Medical Center, New York, NY, United States
| | - Ori J Lieberman
- Departments of Psychiatry and Neurology, New York State Psychiatric Institute, Columbia University Medical Center, New York, NY, United States
| | - Eugene V Mosharov
- Departments of Psychiatry and Neurology, New York State Psychiatric Institute, Columbia University Medical Center, New York, NY, United States
| |
Collapse
|
44
|
Jha NN, Kumar R, Panigrahi R, Navalkar A, Ghosh D, Sahay S, Mondal M, Kumar A, Maji SK. Comparison of α-Synuclein Fibril Inhibition by Four Different Amyloid Inhibitors. ACS Chem Neurosci 2017; 8:2722-2733. [PMID: 28872299 DOI: 10.1021/acschemneuro.7b00261] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Aggregation of α-synuclein (α-Syn) into toxic oligomers and fibrils leads to Parkinson's disease (PD) pathogenesis. Molecules that can inhibit the fibrillization and oligomerization of α-Syn have potential therapeutic value. Here, we studied four selective amyloid inhibitors: dopamine (Dopa), amphotericin-B (Amph), epigallocatechingallate (EGCG), and quinacrinedihydrochloride (Quin) for their effect on oligomerization, fibrillization, and preformed fibrils of α-Syn. The aggregation kinetics of α-Syn using ThT fluorescence and conformational transition by circular dichroism (CD) in the presence and absence of these four compounds suggest that, except Quin, the remaining three molecules inhibit α-Syn aggregation in a concentration dependent manner. Consistent with the aggregation kinetics data, the morphological study of aggregates formed in the presence of these compounds showed corresponding decrease in fibrillar size. The analysis of cell viability using MTT assay showed reduction in toxicity of α-Syn aggregates formed in the presence of these compounds, which also correlates with reduction of exposed hydrophobic surface as studied by ANS binding. Additionally, these inhibitors, except Quin, demonstrated reduction in size as well as the toxicity of oligomeric/fibrillar aggregates of α-Syn. The residue specific interaction to low molecular weight (LMW) species of α-Syn by 2D NMR study revealed that, the region and extent of binding are different for all these molecules. Furthermore, fibril-binding data using SPR suggested that there is no direct relationship between the binding affinity and fibril inhibition by these compounds. The present study suggests that sequence based interaction of small molecules with soluble α-Syn might dictate their inhibition or modulation capacity, which might be helpful in designing modulators of α-Syn aggregation.
Collapse
Affiliation(s)
- Narendra Nath Jha
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai 400 076, India
| | - Rakesh Kumar
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai 400 076, India
| | - Rajlaxmi Panigrahi
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai 400 076, India
| | - Ambuja Navalkar
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai 400 076, India
| | - Dhiman Ghosh
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai 400 076, India
| | - Shruti Sahay
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai 400 076, India
| | - Mritunjoy Mondal
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai 400 076, India
| | - Ashutosh Kumar
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai 400 076, India
| | - Samir. K. Maji
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai 400 076, India
| |
Collapse
|
45
|
Jamal S, Kumari A, Singh A, Goyal S, Grover A. Conformational Ensembles of α-Synuclein Derived Peptide with Different Osmolytes from Temperature Replica Exchange Sampling. Front Neurosci 2017; 11:684. [PMID: 29270108 PMCID: PMC5725442 DOI: 10.3389/fnins.2017.00684] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 11/22/2017] [Indexed: 11/13/2022] Open
Abstract
Intrinsically disordered proteins (IDP) are a class of proteins that do not have a stable three-dimensional structure and can adopt a range of conformations playing various vital functional role. Alpha-synuclein is one such IDP which can aggregate into toxic protofibrils and has been associated largely with Parkinson's disease (PD) along with other neurodegenerative diseases. Osmolytes are small organic compounds that can alter the environment around the proteins by acting as denaturants or protectants for the proteins. In the present study, we have conducted a series of replica exchange molecular dynamics simulations to explore the role of osmolytes, urea which is a denaturant and TMAO (trimethylamine N-oxide), a protecting osmolyte, in aggregation and conformations of the synuclein peptide. We observed that both the osmolytes have significantly distinct impacts on the peptide and led to transitions of the conformations of the peptide from one state to other. Our findings highlighted that urea attenuated peptide aggregation and resulted in the formation of extended peptide structures whereas TMAO led to compact and folded forms of the peptide.
Collapse
Affiliation(s)
- Salma Jamal
- Department of Bioscience and Biotechnology, Banasthali University, Tonk, India
| | - Anchala Kumari
- Department of Biotechnology, TERI School of Advanced Studies, New Delhi, India
| | - Aditi Singh
- Department of Biotechnology, TERI School of Advanced Studies, New Delhi, India
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Sukriti Goyal
- Department of Bioscience and Biotechnology, Banasthali University, Tonk, India
| | - Abhinav Grover
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
46
|
Mor DE, Tsika E, Mazzulli JR, Gould NS, Kim H, Daniels MJ, Doshi S, Gupta P, Grossman JL, Tan VX, Kalb RG, Caldwell KA, Caldwell GA, Wolfe JH, Ischiropoulos H. Dopamine induces soluble α-synuclein oligomers and nigrostriatal degeneration. Nat Neurosci 2017; 20:1560-1568. [PMID: 28920936 PMCID: PMC5893155 DOI: 10.1038/nn.4641] [Citation(s) in RCA: 159] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 08/22/2017] [Indexed: 01/27/2023]
Abstract
Parkinson's disease (PD) is defined by the loss of dopaminergic neurons in the substantia nigra and the formation of Lewy body inclusions containing aggregated α-synuclein. Efforts to explain dopamine neuron vulnerability are hindered by the lack of dopaminergic cell death in α-synuclein transgenic mice. To address this, we manipulated both dopamine levels and α-synuclein expression. Nigrally targeted expression of mutant tyrosine hydroxylase with enhanced catalytic activity increased dopamine levels without damaging neurons in non-transgenic mice. In contrast, raising dopamine levels in mice expressing human A53T mutant α-synuclein induced progressive nigrostriatal degeneration and reduced locomotion. Dopamine elevation in A53T mice increased levels of potentially toxic α-synuclein oligomers, resulting in conformationally and functionally modified species. Moreover, in genetically tractable Caenorhabditis elegans models, expression of α-synuclein mutated at the site of interaction with dopamine prevented dopamine-induced toxicity. These data suggest that a unique mechanism links two cardinal features of PD: dopaminergic cell death and α-synuclein aggregation.
Collapse
Affiliation(s)
- Danielle E. Mor
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Elpida Tsika
- AC Immune SA, Ecole Polytechnique fédérale de Lausanne Innovation Park, Lausanne, Switzerland
| | - Joseph R. Mazzulli
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Neal S. Gould
- Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
| | - Hanna Kim
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama, USA
| | - Malcolm J. Daniels
- Pharmacology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Shachee Doshi
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Preetika Gupta
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jennifer L. Grossman
- State University of New York Downstate College of Medicine, Brooklyn, New York, USA
| | - Victor X. Tan
- College of Arts and Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Robert G. Kalb
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
| | - Kim A. Caldwell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama, USA
| | - Guy A. Caldwell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama, USA
| | - John H. Wolfe
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
- W.F. Goodman Center for Comparative Medical Genetics, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Harry Ischiropoulos
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania, USA
- Pharmacology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
47
|
Chatzikonstantinou AV, Chatziathanasiadou MV, Ravera E, Fragai M, Parigi G, Gerothanassis IP, Luchinat C, Stamatis H, Tzakos AG. Enriching the biological space of natural products and charting drug metabolites, through real time biotransformation monitoring: The NMR tube bioreactor. Biochim Biophys Acta Gen Subj 2017; 1862:1-8. [PMID: 28974426 DOI: 10.1016/j.bbagen.2017.09.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 09/26/2017] [Accepted: 09/29/2017] [Indexed: 12/28/2022]
Abstract
BACKGROUND Natural products offer a wide range of biological activities, but they are not easily integrated in the drug discovery pipeline, because of their inherent scaffold intricacy and the associated complexity in their synthetic chemistry. Enzymes may be used to perform regioselective and stereoselective incorporation of functional groups in the natural product core, avoiding harsh reaction conditions, several protection/deprotection and purification steps. METHODS Herein, we developed a three step protocol carried out inside an NMR-tube. 1st-step: STD-NMR was used to predict the: i) capacity of natural products as enzyme substrates and ii) possible regioselectivity of the biotransformations. 2nd-step: The real-time formation of multiple-biotransformation products in the NMR-tube bioreactor was monitored in-situ. 3rd-step: STD-NMR was applied in the mixture of the biotransformed products to screen ligands for protein targets. RESULTS Herein, we developed a simple and time-effective process, the "NMR-tube bioreactor", that is able to: (i) predict which component of a mixture of natural products can be enzymatically transformed, (ii) monitor in situ the transformation efficacy and regioselectivity in crude extracts and multiple substrate biotransformations without fractionation and (iii) simultaneously screen for interactions of the biotransformation products with pharmaceutical protein targets. CONCLUSIONS We have developed a green, time-, and cost-effective process that provide a simple route from natural products to lead compounds for drug discovery. GENERAL SIGNIFICANSE This process can speed up the most crucial steps in the early drug discovery process, and reduce the chemical manipulations usually involved in the pipeline, improving the environmental compatibility.
Collapse
Affiliation(s)
- Alexandra V Chatzikonstantinou
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece; Department of Biological Applications and Technologies, University of Ioannina, 45110 Ioannina, Greece
| | - Maria V Chatziathanasiadou
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece
| | - Enrico Ravera
- Magnetic Resonance Center (CERM), University of Florence and Interuniversity Consortium for Magnetic Resonance in MetalloProteins (CIRMMP), 50019 Sesto Fiorentino, Italy; Department of Chemistry "Ugo Schiff", University of Florence, 50019 Sesto Fiorentino, Italy
| | - Marco Fragai
- Magnetic Resonance Center (CERM), University of Florence and Interuniversity Consortium for Magnetic Resonance in MetalloProteins (CIRMMP), 50019 Sesto Fiorentino, Italy; Department of Chemistry "Ugo Schiff", University of Florence, 50019 Sesto Fiorentino, Italy
| | - Giacomo Parigi
- Magnetic Resonance Center (CERM), University of Florence and Interuniversity Consortium for Magnetic Resonance in MetalloProteins (CIRMMP), 50019 Sesto Fiorentino, Italy; Department of Chemistry "Ugo Schiff", University of Florence, 50019 Sesto Fiorentino, Italy
| | - Ioannis P Gerothanassis
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM), University of Florence and Interuniversity Consortium for Magnetic Resonance in MetalloProteins (CIRMMP), 50019 Sesto Fiorentino, Italy; Department of Chemistry "Ugo Schiff", University of Florence, 50019 Sesto Fiorentino, Italy
| | - Haralambos Stamatis
- Department of Biological Applications and Technologies, University of Ioannina, 45110 Ioannina, Greece
| | - Andreas G Tzakos
- Department of Chemistry, Section of Organic Chemistry and Biochemistry, University of Ioannina, 45110 Ioannina, Greece.
| |
Collapse
|
48
|
Heller GT, Aprile FA, Vendruscolo M. Methods of probing the interactions between small molecules and disordered proteins. Cell Mol Life Sci 2017; 74:3225-3243. [PMID: 28631009 PMCID: PMC5533867 DOI: 10.1007/s00018-017-2563-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 06/01/2017] [Indexed: 12/15/2022]
Abstract
It is generally recognized that a large fraction of the human proteome is made up of proteins that remain disordered in their native states. Despite the fact that such proteins play key biological roles and are involved in many major human diseases, they still represent challenging targets for drug discovery. A major bottleneck for the identification of compounds capable of interacting with these proteins and modulating their disease-promoting behaviour is the development of effective techniques to probe such interactions. The difficulties in carrying out binding measurements have resulted in a poor understanding of the mechanisms underlying these interactions. In order to facilitate further methodological advances, here we review the most commonly used techniques to probe three types of interactions involving small molecules: (1) those that disrupt functional interactions between disordered proteins; (2) those that inhibit the aberrant aggregation of disordered proteins, and (3) those that lead to binding disordered proteins in their monomeric states. In discussing these techniques, we also point out directions for future developments.
Collapse
Affiliation(s)
- Gabriella T Heller
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Francesco A Aprile
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | | |
Collapse
|
49
|
Breydo L, Redington JM, Uversky VN. Effects of Intrinsic and Extrinsic Factors on Aggregation of Physiologically Important Intrinsically Disordered Proteins. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 329:145-185. [PMID: 28109327 DOI: 10.1016/bs.ircmb.2016.08.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Misfolding and aggregation of proteins and peptides play an important role in a number of diseases as well as in many physiological processes. Many of the proteins that misfold and aggregate in vivo are intrinsically disordered. Protein aggregation is a complex multistep process, and aggregates can significantly differ in morphology, structure, stability, cytotoxicity, and self-propagation ability. The aggregation process is influenced by both intrinsic (e.g., mutations and expression levels) and extrinsic (e.g., polypeptide chain truncation, macromolecular crowding, posttranslational modifications, as well as interaction with metal ions, other small molecules, lipid membranes, and chaperons) factors. This review examines the effect of a variety of these factors on aggregation of physiologically important intrinsically disordered proteins.
Collapse
Affiliation(s)
- L Breydo
- Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.
| | - J M Redington
- Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - V N Uversky
- Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States; Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia.
| |
Collapse
|
50
|
Ghosh D, Mehra S, Sahay S, Singh PK, Maji SK. α-synuclein aggregation and its modulation. Int J Biol Macromol 2016; 100:37-54. [PMID: 27737778 DOI: 10.1016/j.ijbiomac.2016.10.021] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 10/06/2016] [Accepted: 10/09/2016] [Indexed: 12/20/2022]
Abstract
Parkinson's disease (PD) is a neurological disorder marked by the presence of cytoplasmic inclusions, Lewy bodies (LBs) and Lewy neurites (LNs) as well as the degeneration of dopamine producing neurons in the substantia nigra region of the brain. The LBs and LNs in PD are mainly composed of aggregated form of a presynaptic protein, α-synuclein (α-Syn). However, the mechanisms of α-Syn aggregation and actual aggregated species responsible for the degeneration of dopaminergic neurons have not yet been resolved. Despite the fact that α-Syn aggregation in LBs and LNs is crucial and mutations of α-Syn are associated with early onset PD, it is really a challenging task to establish a correlation between α-Syn aggregation rate and PD pathogenesis. Regardless of strong genetic contribution, PD is mostly sporadic and familial forms of the disease represent only a minor part (<10%) of all cases. The complexity in PD further increases due to the involvement of several cellular factors in the pathogenesis of the disease as well as the environmental factors associated with the risk of developing PD. Therefore, effect of these factors on α-Syn aggregation pathway and how these factors modulate the properties of wild type (WT) as well as mutated α-Syn should be collectively taken into account. The present review specifically provides an overview of recent research on α-Syn aggregation pathways and its modulation by several cellular factors potentially relevant to PD pathogenesis. We also briefly discuss about effect of environmental risk factors on α-Syn aggregation.
Collapse
Affiliation(s)
- Dhiman Ghosh
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, Maharashtra, India.
| | - Surabhi Mehra
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, Maharashtra, India
| | - Shruti Sahay
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, Maharashtra, India.
| | - Pradeep K Singh
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, Maharashtra, India
| | - Samir K Maji
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai, Maharashtra, India.
| |
Collapse
|