1
|
Yu Y, Cai Y, Yang F, Yang Y, Cui Z, Shi D, Bai R. Vascular smooth muscle cell phenotypic switching in atherosclerosis. Heliyon 2024; 10:e37727. [PMID: 39309965 PMCID: PMC11416558 DOI: 10.1016/j.heliyon.2024.e37727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/25/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024] Open
Abstract
Atherosclerosis (AS) is a complex pathology process involving intricate interactions among various cells and biological processes. Vascular smooth muscle cells (VSMCs) are the predominant cell type in normal arteries, and under atherosclerotic stimuli, VSMCs respond to altered blood flow and microenvironment changes by downregulating contractile markers and switching their phenotype. This review overviews the diverse phenotypes of VSMCs, including the canonical contractile VSMCs, synthetic VSMCs, and phenotypes resembling macrophages, foam cells, myofibroblasts, osteoblasts/chondrocytes, and mesenchymal stem cells. We summarize their presumed protective and pro-atherosclerotic roles in AS development. Additionally, we underscore the molecular mechanisms and regulatory pathways governing VSMC phenotypic switching, encompassing transcriptional regulation, biochemical factors, plaque microenvironment, epigenetics, miRNAs, and the cytoskeleton, emphasizing their significance in AS development. Finally, we outline probable future research directions targeting VSMCs, offering insights into potential therapeutic strategies for AS management.
Collapse
Affiliation(s)
- Yanqiao Yu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, 100091, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yajie Cai
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, 100091, China
| | - Furong Yang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, 100091, China
| | - Yankai Yang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, 100091, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zhuorui Cui
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, 100091, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Dazhuo Shi
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, 100091, China
| | - Ruina Bai
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, 100091, China
| |
Collapse
|
2
|
Zakaria S, Elshazly AM, Alaa R, Elsebaey S. Dantrolene and coenzyme Q10 as a suggested combination therapy to statin-induced myopathy in high fat diet rats: A possible interference with ROS/ TGF-β / Smad4 signaling pathway. Toxicol Appl Pharmacol 2024; 485:116900. [PMID: 38508403 DOI: 10.1016/j.taap.2024.116900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/03/2024] [Accepted: 03/13/2024] [Indexed: 03/22/2024]
Abstract
One of the major hitches for statins' utilization is the development of myotoxicity. Versatile studies reported that the underlining molecular mechanisms including coenzyme Q10 (CoQ10)/ubiquinone depletion, as well as the disturbance in the cytoplasmic Ca2+ homeostasis. Therefore, we investigated the consequences of supplementing CoQ10 and dantrolene, a cytoplasmic Ca2+ reducing agent, in combination with simvastatin. This adjuvant therapy normalized the simvastatin-mediated elevation in serum ALT, AST, CK-MM, as well as tissue Ca2+ content, in addition to suppressing the simvastatin-mediated oxidative stress in simvastatin-treated rats, while having no effect upon statin-induced antihyperlipidemic effect. Additionally, the combination inhibited the simvastatin-induced TGF-β/ Smad4 pathway activation. Collectively, the current study emphasizes on the potential utilization of dantrolene and CoQ10 as an adjuvant therapy to statins treatment for improving their side effect profile.
Collapse
Affiliation(s)
- Sherin Zakaria
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt.
| | - Ahmed M Elshazly
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt; Department of Pharmacology and Toxicology, Massey Cancer Center, Virginia Commonwealth University, 401 College St., Richmond, VA 23298, USA.
| | - Reem Alaa
- Department of Clinical Pharmacy, Faculty of Pharmacy, Delta University, Mansoura 15955, Egypt
| | - Samer Elsebaey
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt.
| |
Collapse
|
3
|
Eslami Z, Aghili SS, Ghafi AG. Atorvastatin on Treatment of Nonalcoholic Fatty Liver Disease Patients. Chonnam Med J 2024; 60:13-20. [PMID: 38304133 PMCID: PMC10828082 DOI: 10.4068/cmj.2024.60.1.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 02/03/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a condition in which excess fat builds up in the liver, often related to obesity and insulin resistance, which can lead to inflammation and scarring of the liver tissue. While efforts have been made to develop effective treatments for NAFLD, the need for pharmaceutical interventions remains unmet. Large clinical trials investigating the association between statin use and NAFLD are scarce, leading to contradictory results. Statins play a crucial role in cholesterol synthesis in the liver. Several studies have demonstrated that statins possess anti-inflammatory, anti-thrombotic, and anti-fibrotic properties. These properties make statins potentially useful in preventing the progression of NAFLD from simple steatosis to more severe forms like non-alcoholic steatohepatitis (NASH) and fibrosis. The results indicate that statin use is associated with a lower prevalence of NASH and fibrosis and may have a preventive effect on NAFLD.
Collapse
Affiliation(s)
- Zahra Eslami
- Department of Clinical Biochemistry, Hamadan University of Medical Science, Hamadan, Iran
| | | | - Amir Ghaleh Ghafi
- Department of Biology, Islamic Azad University Damghan Branch, Semnan, Iran
| |
Collapse
|
4
|
Atef MM, Mostafa YM, Ahmed AAM, El-Sayed NM. Simvastatin attenuates aluminium chloride-induced neurobehavioral impairments through activation of TGF-β1/ SMAD2 and GSK3β/β-catenin signalling pathways. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 102:104220. [PMID: 37454825 DOI: 10.1016/j.etap.2023.104220] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 06/19/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterised by the presence of β-amyloid plaques and acetylcholine depletion leading to neurobehavioral defects. AD was contributed also with downregulation of TGF-β1/SMAD2 and GSK3β/β-catenin pathways. Simvastatin (SMV) improved memory function experimentally and clinically. Hence, this study aimed to investigate the mechanistic role of SMV against aluminium chloride (AlCl3) induced neurobehavioral impairments. AD was induced by AlCl3 (50 mg/kg) for 6 weeks. Mice received Simvastatin (10 or 20 mg/kg) or Donepezil (3 mg/kg) for 6 weeks after that the histopathological, immunohistochemical and biochemical test were examined. Treatment with SMV improved the memory deterioration induced by AlCl3 with significant recovery of the histopathological changes. This was concomitant with the decrease of AChE and Aβ (1-42). SMV provides its neuroprotective effect through upregulating the protein expression of β-catenin, TGF-β1 and downregulating the expression of GSK3β, TLR4 and p-SMAD2.
Collapse
Affiliation(s)
| | - Yasser M Mostafa
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; Department of Pharmacology & Toxicology, Faculty of Pharmacy, Badr University in Cairo, Egypt
| | - Amal A M Ahmed
- Department of Cytology & Histology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Norhan M El-Sayed
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt.
| |
Collapse
|
5
|
Pakhtusov NN, Yusupova AO, Zhbanov KA, Shchedrygina AA, Privalova EV, Belenkov YN. Evaluation of Fibrosis Markers as a Potential Method for Diagnosing Non-Obstructive Coronary Artery Disease in Patients with Stable Coronary Artery Disease. RATIONAL PHARMACOTHERAPY IN CARDIOLOGY 2023. [DOI: 10.20996/1819-6446-2022-11-01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Aim. To study the levels of fibrosis markers in patients with stable coronary artery disease (CAD) and various types of coronary artery (CA) lesions (obstructive and non-obstructive), to identify possible differences for diagnosing the types of coronary obstruction.Material and methods. The observational study included three groups of patients: with non-obstructive (main group, coronary artery stenosis <50%; n=20) and obstructive (comparison group, hemodynamically significant coronary artery stenosis according to the results of coronary angiography; n=20) CAD and healthy volunteers (control group; n=40). Transforming growth factor beta 1 (TGF-β1) and matrix metalloproteinase 9 (MMP-9) levels were measured in plasma by enzyme immunoassay. According to the results of echocardiography, all patients included in the study were divided into four groups depending on the type of myocardial remodeling.Results. TGF-β1 levels were significantly higher in patients with obstructive CAD (p=0.008) than in patients with non-obstructive CAD and healthy volunteers (p <0.001). There were no significant differences between the main and control groups (p>0.05). There were no statistically significant differences in TGF-β1 levels depending on the type of left ventricular remodeling (p=0.139). The maximum level of MMP-9 was in the group with obstructive coronary disease and significantly differed from the main group (p <0.001) and the control group (p=0.04).Conclusio. The maximum levels of TGF-β1 and MMP-9 were found in the group with obstructive coronary artery disease. The levels of these biomarkers in the main group were statistically different from the values obtained in the control group. Thus, considering the pathogenesis of the development of non-obstructive CAD, the use of fibrosis markers TGF-β1 and MMP-9 may be promising for diagnosing the severity of CA obstruction.
Collapse
Affiliation(s)
- N. N. Pakhtusov
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - A. O. Yusupova
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - K. A. Zhbanov
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - A. A. Shchedrygina
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - E. V. Privalova
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - Yu. N. Belenkov
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| |
Collapse
|
6
|
Asghari AA, Mahmoudabady M, Mousavi Emadi Z, Hosseini SJ, Salmani H. Cardiac hypertrophy and fibrosis were attenuated by olive leaf extract treatment in a rat model of diabetes. J Food Biochem 2022; 46:e14494. [PMID: 36322398 DOI: 10.1111/jfbc.14494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 12/29/2022]
Abstract
The key role of fibrosis and hypertrophy processes in developing diabetes-induced heart injury has been demonstrated. Considering the known hypoglycemic effects of olive leaf extract (OLE), we decided to investigate its potential effect and associated mechanisms on cardiac fibrosis and myocardial hypertrophy in streptozotocin (STZ)-induced diabetic rats. Eight groups were included in this study: control, diabetic, diabetic-OLEs (100, 200 and 400 mg/kg), diabetic-metformin (300 mg/kg), diabetic-valsartan (30 mg/kg), and diabetic-metformin/valsartan (300/30 mg/kg). After a treatment period of 6 weeks, echocardiography was used to assess cardiac function. Heart-to-body weight ratio (HW/BW) and fasting blood sugar (FBS) were measured. Myocardial histology was examined by Masson's trichrome staining. Gene expressions of atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP), β-myosin heavy chain (β-MHC), TGF-β1, TGF-β3, angiotensin II type 1 receptor (AT1), alpha-smooth muscle actin (α-SMA), and collagen were evaluated by the quantitative real-time PCR in heart tissue. A reduction in the FBS level and HW/BW ratio in the extract groups was obvious. The improvement of left ventricular dysfunction, cardiac myocytes hypertrophy, and myocardial interstitial fibrosis was also observed in treated groups. A lowering trend in the expression of all hypertrophic and fibrotic indicator genes was evident in the myocardium of OLE treated rats. Our data indicated that OLE could attenuate fibrosis and reduce myocardial hypertrophy markers, thus improving the cardiac function and structure in the STZ-induced diabetic rats. PRACTICAL APPLICATIONS: This study demonstrates that olive leaf extract in addition to lowering blood glucose levels and the heart-to-body weight ratio (HW/BW) may also improve cardiac function and reduce cardiac hypertrophy and fibrosis in cardiac tissue, which leads to inhibition of diabetic heart damage. Thus it is possible that including olive leaf extracts in the diets of individuals with diabetes may assist in lowering cardiovascular disease risk factors.
Collapse
Affiliation(s)
- Ali Akbar Asghari
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Mahmoudabady
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Mousavi Emadi
- Department of Pediatrics, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Javad Hosseini
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Salmani
- Student Research Committee, Jiroft University of Medical Sciences, Jiroft, Iran
| |
Collapse
|
7
|
Sawma T, Shaito A, Najm N, Sidani M, Orekhov A, El-Yazbi AF, Iratni R, Eid AH. Role of RhoA and Rho-associated kinase in phenotypic switching of vascular smooth muscle cells: Implications for vascular function. Atherosclerosis 2022; 358:12-28. [DOI: 10.1016/j.atherosclerosis.2022.08.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/15/2022] [Accepted: 08/11/2022] [Indexed: 12/13/2022]
|
8
|
Park SY, Rhi SH, Chung JY, Lee CH, Shin BS, Kang HG. Rapid Regression of Carotid Artery Stenosis Shortly after Intensive Medical Therapy. Tomography 2022; 8:543-549. [PMID: 35202209 PMCID: PMC8878850 DOI: 10.3390/tomography8010044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/31/2022] [Accepted: 02/19/2022] [Indexed: 12/24/2022] Open
Abstract
Carotid artery stenosis (CAS) is mainly caused by atherosclerosis. Intensive medical therapy is effective in preventing stroke in CAS. To date, there has been no published report of rapid regression of CAS. A woman with untreated hyperlipidemia visited our emergency room with left hemiparesis. She exhibited facial palsy, left hemiparesis, and dysarthria immediately after the visit. Brain magnetic resonance (MR) diffusion-weighted imaging confirmed acute infarction in the right middle cerebral artery (MCA) territory due to severe stenosis of the right internal carotid artery (ICA), which was revealed by MR angiography and carotid duplex ultrasonography. The patient started intensive statin therapy and dual antiplatelet agent therapy. Carotid artery stenting was not performed until hospitalization day 16 due to pleural effusion. On day 16, digital subtraction angiography was performed, and spontaneous regression of severe stenosis was observed. Only mild stenosis with ulcerative plaque was evident. The rapid CAS regression in this case may be caused by M2 macrophage polarization as a result of intensive statin therapy. This rapid regression may also result from reduced foam cell formation by statin and aspirin and thereby increased endogenous thrombolysis. Our patient demonstrated the efficacy of short-term intensive statin and aspirin therapy on atherosclerosis with untreated hyperlipidemia.
Collapse
Affiliation(s)
- Suh Yeon Park
- Jeonbuk National University Medical School, Jeonju 54907, Korea; (S.Y.P.); (S.H.R.)
| | - Sang Hun Rhi
- Jeonbuk National University Medical School, Jeonju 54907, Korea; (S.Y.P.); (S.H.R.)
| | - Ji Yeon Chung
- Department of Neurology, Chosun University Medical School, Gwangju 61453, Korea;
| | - Chan-Hyuk Lee
- Department of Neurology, Jeonbuk National University Hospital, Jeonju 54907, Korea; (C.-H.L.); (B.-S.S.)
| | - Byoung-Soo Shin
- Department of Neurology, Jeonbuk National University Hospital, Jeonju 54907, Korea; (C.-H.L.); (B.-S.S.)
- Department of Neurology, Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Korea
| | - Hyun Goo Kang
- Department of Neurology, Jeonbuk National University Hospital, Jeonju 54907, Korea; (C.-H.L.); (B.-S.S.)
- Department of Neurology, Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Korea
- Correspondence: ; Tel.: +82-63-250-1590; Fax: +82-63-251-9364
| |
Collapse
|
9
|
Tejera-Muñoz A, Marquez-Exposito L, Tejedor-Santamaría L, Rayego-Mateos S, Orejudo M, Suarez-Álvarez B, López-Larrea C, Ruíz-Ortega M, Rodrigues-Díez RR. CCN2 Increases TGF-β Receptor Type II Expression in Vascular Smooth Muscle Cells: Essential Role of CCN2 in the TGF-β Pathway Regulation. Int J Mol Sci 2021; 23:375. [PMID: 35008801 PMCID: PMC8745763 DOI: 10.3390/ijms23010375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 12/12/2022] Open
Abstract
The cellular communication network factor 2 (CCN2/CTGF) has been traditionally described as a mediator of the fibrotic responses induced by other factors including the transforming growth factor β (TGF-β). However, several studies have defined a direct role of CCN2 acting as a growth factor inducing oxidative and proinflammatory responses. The presence of CCN2 and TGF-β together in the cellular context has been described as a requisite to induce a persistent fibrotic response, but the precise mechanisms implicated in this relation are not described yet. Considering the main role of TGF-β receptors (TβR) in the TGF-β pathway activation, our aim was to investigate the effects of CCN2 in the regulation of TβRI and TβRII levels in vascular smooth muscle cells (VSMCs). While no differences were observed in TβRI levels, an increase in TβRII expression at both gene and protein level were found 48 h after stimulation with the C-terminal fragment of CCN2 (CCN2(IV)). Cell pretreatment with a TβRI inhibitor did not modify TβRII increment induced by CCN2(VI), demonstrating a TGF-β-independent response. Secondly, CCN2(IV) rapidly activated the SMAD pathway in VSMCs, this being crucial in the upregulation of TβRII since the preincubation with an SMAD3 inhibitor prevented it. Similarly, pretreatment with the epidermal growth factor receptor (EGFR) inhibitor erlotinib abolished TβRII upregulation, indicating the participation of this receptor in the observed responses. Our findings suggest a direct role of CCN2 maintaining the TGF-β pathway activation by increasing TβRII expression in an EGFR-SMAD dependent manner activation.
Collapse
Affiliation(s)
- Antonio Tejera-Muñoz
- Molecular and Cellular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain; (A.T.-M.); (L.M.-E.); (L.T.-S.); (S.R.-M.); (M.O.)
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, 28029 Madrid, Spain; (B.S.-Á.); (C.L.-L.)
| | - Laura Marquez-Exposito
- Molecular and Cellular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain; (A.T.-M.); (L.M.-E.); (L.T.-S.); (S.R.-M.); (M.O.)
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, 28029 Madrid, Spain; (B.S.-Á.); (C.L.-L.)
| | - Lucía Tejedor-Santamaría
- Molecular and Cellular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain; (A.T.-M.); (L.M.-E.); (L.T.-S.); (S.R.-M.); (M.O.)
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, 28029 Madrid, Spain; (B.S.-Á.); (C.L.-L.)
| | - Sandra Rayego-Mateos
- Molecular and Cellular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain; (A.T.-M.); (L.M.-E.); (L.T.-S.); (S.R.-M.); (M.O.)
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, 28029 Madrid, Spain; (B.S.-Á.); (C.L.-L.)
| | - Macarena Orejudo
- Molecular and Cellular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain; (A.T.-M.); (L.M.-E.); (L.T.-S.); (S.R.-M.); (M.O.)
| | - Beatriz Suarez-Álvarez
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, 28029 Madrid, Spain; (B.S.-Á.); (C.L.-L.)
- Translational Immunology Laboratory, Health Research Institute of Asturias (ISPA), 33011 Oviedo, Spain
| | - Carlos López-Larrea
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, 28029 Madrid, Spain; (B.S.-Á.); (C.L.-L.)
- Translational Immunology Laboratory, Health Research Institute of Asturias (ISPA), 33011 Oviedo, Spain
- Department of Immunology, Hospital Universitario Central De Asturias, 33011 Oviedo, Spain
| | - Marta Ruíz-Ortega
- Molecular and Cellular Biology in Renal and Vascular Pathology, IIS-Fundación Jiménez Díaz-Universidad Autónoma Madrid, 28040 Madrid, Spain; (A.T.-M.); (L.M.-E.); (L.T.-S.); (S.R.-M.); (M.O.)
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, 28029 Madrid, Spain; (B.S.-Á.); (C.L.-L.)
| | - Raúl R. Rodrigues-Díez
- Red de Investigación Renal (REDINREN), Instituto de Salud Carlos III, 28029 Madrid, Spain; (B.S.-Á.); (C.L.-L.)
- Translational Immunology Laboratory, Health Research Institute of Asturias (ISPA), 33011 Oviedo, Spain
| |
Collapse
|
10
|
Rho/ROCK Inhibition Promotes TGF- β3-Induced Tenogenic Differentiation in Mesenchymal Stromal Cells. Stem Cells Int 2021; 2021:8284690. [PMID: 34659420 PMCID: PMC8519677 DOI: 10.1155/2021/8284690] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 09/04/2021] [Indexed: 12/17/2022] Open
Abstract
Mesenchymal stromal cells (MSC) represent a promising therapeutic tool for tendon regeneration. Their tenogenic differentiation is crucial for tissue engineering approaches and may support their beneficial effects after cell transplantation in vivo. The transforming growth factor (TGF)-β, signalling via intracellular Smad molecules, is a potent paracrine mediator of tenogenic induction. Moreover, scaffold topography or tendon matrix components induced tenogenesis via activation of the Rho/ROCK cascade, which, however, is also involved in pathological adaptations in extracellular matrix pathologies. The aim of this study was to investigate the interplay of Rho/ROCK and TGF-β3/Smad signalling in tenogenic differentiation in both human and equine MSC. Primary equine and human MSC isolated from adipose tissue were cultured as monolayers or on tendon-derived decellularized scaffolds to evaluate the influence of the ROCK inhibitor Y-27632 on TGF-β3-induced tenogenic differentiation. The MSC were incubated with and without TGF-β3 (10 ng/ml), Y-27632 (10 μM), or both. On day 1 and day 3, the signalling pathway of TGF-β and the actin cytoskeleton were visualized by Smad 2/3 and phalloidin staining, and gene expression of signalling molecules and tendon markers was assessed. ROCK inhibition was confirmed by disruption of the actin cytoskeleton. Activation of Smad 2/3 with nuclear translocation was evident upon TGF-β3 stimulation. Interestingly, this effect was most pronounced with additional ROCK inhibition in both species (p < 0.05 in equine MSC). In line with that, the tendon marker scleraxis showed the strongest upregulation when TGF-β3 and ROCK inhibition were combined (p < 0.05 in human MSC). The regulation pattern of tendon extracellular matrix components and the signalling molecules TGF-β3 and Smad 8 showed differences between human and equine MSC. The obtained results showed that ROCK inhibition promotes the TGF-β3/Smad 2/3 axis, with possible implications for future MSC priming regimes in tendon therapy.
Collapse
|
11
|
Hubert MO, Rodriguez-Vita J, Wiedmann L, Fischer A. Isolation of Murine Primary Aortic Smooth Muscle Cells. Bio Protoc 2021; 11:e3907. [PMID: 33732794 DOI: 10.21769/bioprotoc.3907] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/03/2020] [Accepted: 11/09/2020] [Indexed: 11/02/2022] Open
Abstract
Vascular smooth muscle cells (VSMCs) have been cultured for decades to study the role of these cells in cardiovascular disorders. The most common source of VSMCs is the rat aorta. Here we show the adaptation of this method to isolate and culture mouse aortic VSMCs. The advantage of this method is that there are many more transgenic mouse lines available compared to rats. The protocol consists of the isolation of the aorta, the liberation of vascular cells by the action of collagenase, culturing of VSCMs, and analyzing filamentous actin and alpha smooth muscle actin by fluorescence microscopy. VSCMs can be further used to study mechanisms underlying cardiovascular diseases. Graphic abstract: Figure 1.Working steps.
Collapse
Affiliation(s)
- Max Ole Hubert
- Division of Vascular Signaling and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Juan Rodriguez-Vita
- Division of Vascular Signaling and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Lena Wiedmann
- Division of Vascular Signaling and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andreas Fischer
- Division of Vascular Signaling and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany.,European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.,Medical Clinic I, Endocrinology and Clinical Chemistry, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
12
|
Gao S, Soares F, Wang S, Wong CC, Chen H, Yang Z, Liu W, Go MYY, Ahmed M, Zeng Y, O’Brien CA, Sung JJY, He HH, Yu J. CRISPR screens identify cholesterol biosynthesis as a therapeutic target on stemness and drug resistance of colon cancer. Oncogene 2021; 40:6601-6613. [PMID: 34621019 PMCID: PMC8639446 DOI: 10.1038/s41388-021-01882-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 05/15/2021] [Accepted: 06/01/2021] [Indexed: 12/13/2022]
Abstract
Cancer stem cells (CSCs) are responsible for tumor progression, recurrence, and drug resistance. To identify genetic vulnerabilities of colon cancer, we performed targeted CRISPR dropout screens comprising 657 Drugbank targets and 317 epigenetic regulators on two patient-derived colon CSC-enriched spheroids. Next-generation sequencing of pooled genomic DNAs isolated from surviving cells yielded therapeutic candidates. We unraveled 44 essential genes for colon CSC-enriched spheroids propagation, including key cholesterol biosynthetic genes (HMGCR, FDPS, and GGPS1). Cholesterol biosynthesis was induced in colon cancer tissues, especially CSC-enriched spheroids. The genetic and pharmacological inhibition of HMGCR/FDPS impaired self-renewal capacity and tumorigenic potential of the spheroid models in vitro and in vivo. Mechanistically, HMGCR or FDPS depletion impaired cancer stemness characteristics by activating TGF-β signaling, which in turn downregulated expression of inhibitors of differentiation (ID) proteins, key regulators of cancer stemness. Cholesterol and geranylgeranyl diphosphate (GGPP) rescued the growth inhibitory and signaling effect of HMGCR/FDPS blockade, implying a direct role of these metabolites in modulating stemness. Finally, cholesterol biosynthesis inhibitors and 5-FU demonstrated antitumor synergy in colon CSC-enriched spheroids, tumor organoids, and xenografts. Taken together, our study unravels novel genetic vulnerabilities of colon CSC-enriched spheroids and suggests cholesterol biosynthesis as a potential target in conjunction with traditional chemotherapy for colon cancer treatment.
Collapse
Affiliation(s)
- Shanshan Gao
- grid.10784.3a0000 0004 1937 0482Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China ,grid.415224.40000 0001 2150 066XPrincess Margaret Cancer Centre, University Health Network, Ontario, ON Canada
| | - Fraser Soares
- grid.415224.40000 0001 2150 066XPrincess Margaret Cancer Centre, University Health Network, Ontario, ON Canada
| | - Shiyan Wang
- grid.415224.40000 0001 2150 066XPrincess Margaret Cancer Centre, University Health Network, Ontario, ON Canada
| | - Chi Chun Wong
- grid.10784.3a0000 0004 1937 0482Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Huarong Chen
- grid.10784.3a0000 0004 1937 0482Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Zhenjie Yang
- grid.10784.3a0000 0004 1937 0482Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Weixin Liu
- grid.10784.3a0000 0004 1937 0482Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Minnie Y. Y. Go
- grid.10784.3a0000 0004 1937 0482Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Musaddeque Ahmed
- grid.415224.40000 0001 2150 066XPrincess Margaret Cancer Centre, University Health Network, Ontario, ON Canada
| | - Yong Zeng
- grid.415224.40000 0001 2150 066XPrincess Margaret Cancer Centre, University Health Network, Ontario, ON Canada
| | - Catherine Adell O’Brien
- grid.415224.40000 0001 2150 066XPrincess Margaret Cancer Centre, University Health Network, Ontario, ON Canada
| | - Joseph J. Y. Sung
- grid.10784.3a0000 0004 1937 0482Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| | - Housheng Hansen He
- grid.415224.40000 0001 2150 066XPrincess Margaret Cancer Centre, University Health Network, Ontario, ON Canada ,grid.17063.330000 0001 2157 2938Department of Medical Biophysics, University of Toronto, Ontario, ON Canada
| | - Jun Yu
- grid.10784.3a0000 0004 1937 0482Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
13
|
Lim YH, Ryu J, Kook H, Kim YK. Identification of Long Noncoding RNAs Involved in Differentiation and Survival of Vascular Smooth Muscle Cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 22:209-221. [PMID: 33230428 PMCID: PMC7515970 DOI: 10.1016/j.omtn.2020.08.032] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 08/25/2020] [Indexed: 02/07/2023]
Abstract
Long noncoding RNAs (lncRNAs) have recently been implicated in many pathophysiological cardiovascular processes, including vascular remodeling and atherosclerosis. However, the functional role of lncRNAs in the differentiation, proliferation, and apoptosis of vascular smooth muscle cells (VSMCs) is largely unknown. In this study, differentially expressed lncRNAs in synthetic and contractile human VSMCs were screened using RNA sequencing. Among the seven selected lncRNAs, the expression of MSC-AS1, MBNL1-AS1, and GAS6-AS2 was upregulated, whereas the expression of NR2F1-AS1, FUT8-AS1, FOXC2-AS1, and CTD-2207P18.2 was reduced upon VSMC differentiation. We focused on the NR2F1-AS1 and FOXC2-AS1 lncRNAs and showed that their knockdown significantly reduced the expression of smooth muscle contractile marker genes (ACTA2, CNN1, and TAGLN). Furthermore, FOXC2-AS1 was found to regulate cell proliferation and apoptosis through Akt/mTOR signaling, and affect Notch signaling, which is a key regulator of the contractile phenotype of VSMCs. Taken together, we identified novel lncRNAs involved in VSMC proliferation and differentiation and FOXC2-AS1 as a multifunctional regulator for vascular homeostasis and associated diseases.
Collapse
Affiliation(s)
- Yeong-Hwan Lim
- Basic Research Laboratory for Vascular Remodeling Research Laboratory, Chonnam National University Medical School, Jeollanam-do, Republic of Korea.,Department of Biochemistry, Chonnam National University Medical School, Jeollanam-do, Republic of Korea.,Department of Biomedical Sciences, Center for Creative Biomedical Scientists at Chonnam National University, Jeollanam-do, Republic of Korea
| | - Juhee Ryu
- Basic Research Laboratory for Vascular Remodeling Research Laboratory, Chonnam National University Medical School, Jeollanam-do, Republic of Korea.,Department of Biomedical Sciences, Center for Creative Biomedical Scientists at Chonnam National University, Jeollanam-do, Republic of Korea.,Department of Pharmacology, Chonnam National University Medical School, Jeollanam-do, Republic of Korea
| | - Hyun Kook
- Basic Research Laboratory for Vascular Remodeling Research Laboratory, Chonnam National University Medical School, Jeollanam-do, Republic of Korea.,Department of Biomedical Sciences, Center for Creative Biomedical Scientists at Chonnam National University, Jeollanam-do, Republic of Korea.,Department of Pharmacology, Chonnam National University Medical School, Jeollanam-do, Republic of Korea
| | - Young-Kook Kim
- Basic Research Laboratory for Vascular Remodeling Research Laboratory, Chonnam National University Medical School, Jeollanam-do, Republic of Korea.,Department of Biochemistry, Chonnam National University Medical School, Jeollanam-do, Republic of Korea.,Department of Biomedical Sciences, Center for Creative Biomedical Scientists at Chonnam National University, Jeollanam-do, Republic of Korea
| |
Collapse
|
14
|
Low EL, Baker AH, Bradshaw AC. TGFβ, smooth muscle cells and coronary artery disease: a review. Cell Signal 2019; 53:90-101. [PMID: 30227237 PMCID: PMC6293316 DOI: 10.1016/j.cellsig.2018.09.004] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 09/06/2018] [Accepted: 09/06/2018] [Indexed: 12/15/2022]
Abstract
Excessive vascular smooth muscle cell (SMC) proliferation, migration and extracellular matrix (ECM) synthesis are key events in the development of intimal hyperplasia, a pathophysiological response to acute or chronic sources of vascular damage that can lead to occlusive narrowing of the vessel lumen. Atherosclerosis, the primary cause of coronary artery disease, is characterised by chronic vascular inflammation and dyslipidemia, while revascularisation surgeries such as coronary stenting and bypass grafting represent acute forms of vascular injury. Gene knockouts of transforming growth factor-beta (TGFβ), its receptors and downstream signalling proteins have demonstrated the importance of this pleiotropic cytokine during vasculogenesis and in the maintenance of vascular homeostasis. Dysregulated TGFβ signalling is a hallmark of many vascular diseases, and has been associated with the induction of pathological vascular cell phenotypes, fibrosis and ECM remodelling. Here we present an overview of TGFβ signalling in SMCs, highlighting the ways in which this multifaceted cytokine regulates SMC behaviour and phenotype in cardiovascular diseases driven by intimal hyperplasia.
Collapse
Affiliation(s)
- Emma L Low
- Institute for Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Andrew H Baker
- Queen's Medical Research Institute, University of Edinburgh, 47 Little Crescent, Edinburgh EH16 4TJ, UK
| | - Angela C Bradshaw
- Institute for Cardiovascular and Medical Sciences, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK.
| |
Collapse
|
15
|
Tamai R, Kiyoura Y. Alendronate augments lipid A-induced IL-1β release and Smad3/NLRP3/ASC-dependent cell death. Life Sci 2018; 198:8-17. [DOI: 10.1016/j.lfs.2018.02.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 02/01/2018] [Accepted: 02/09/2018] [Indexed: 12/13/2022]
|
16
|
The T2238C Human Atrial Natriuretic Peptide Molecular Variant and the Risk of Cardiovascular Diseases. Int J Mol Sci 2018; 19:ijms19020540. [PMID: 29439446 PMCID: PMC5855762 DOI: 10.3390/ijms19020540] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 02/07/2018] [Accepted: 02/10/2018] [Indexed: 12/12/2022] Open
Abstract
Atrial natriuretic peptide (ANP) is a cardiac hormone which plays important functions to maintain cardio-renal homeostasis. The peptide structure is highly conserved among species. However, a few gene variants are known to fall within the human ANP gene. The variant rs5065 (T2238C) exerts the most substantial effects. The T to C transition at the 2238 position of the gene (13–23% allele frequency in the general population) leads to the production of a 30-, instead of 28-, amino-acid-long α-carboxy-terminal peptide. In vitro, CC2238/αANP increases the levels of reactive oxygen species and causes endothelial damage, vascular smooth muscle cells contraction, and increased platelet aggregation. These effects are achieved through the deregulated activation of type C natriuretic peptide receptor, the consequent inhibition of adenylate cyclase activity, and the activation of Giα proteins. In vivo, endothelial dysfunction and increased platelet aggregation are present in human subjects carrying the C2238/αANP allele variant. Several studies documented an increased risk of stroke and of myocardial infarction in C2238/αANP carriers. Recently, an incomplete response to antiplatelet therapy in ischemic heart disease patients carrying the C2238/αANP variant and undergoing percutaneous coronary revascularization has been reported. In summary, the overall evidence supports the concept that T2238C/ANP is a cardiovascular genetic risk factor that needs to be taken into account in daily clinical practice.
Collapse
|
17
|
Holland NA, Francisco JT, Johnson SC, Morgan JS, Dennis TJ, Gadireddy NR, Tulis DA. Cyclic Nucleotide-Directed Protein Kinases in Cardiovascular Inflammation and Growth. J Cardiovasc Dev Dis 2018; 5:E6. [PMID: 29367584 PMCID: PMC5872354 DOI: 10.3390/jcdd5010006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 01/17/2018] [Accepted: 01/19/2018] [Indexed: 02/08/2023] Open
Abstract
Cardiovascular disease (CVD), including myocardial infarction (MI) and peripheral or coronary artery disease (PAD, CAD), remains the number one killer of individuals in the United States and worldwide, accounting for nearly 18 million (>30%) global deaths annually. Despite considerable basic science and clinical investigation aimed at identifying key etiologic components of and potential therapeutic targets for CVD, the number of individuals afflicted with these dreaded diseases continues to rise. Of the many biochemical, molecular, and cellular elements and processes characterized to date that have potential to control foundational facets of CVD, the multifaceted cyclic nucleotide pathways continue to be of primary basic science and clinical interest. Cyclic adenosine monophosphate (cyclic AMP) and cyclic guanosine monophosphate (cyclic GMP) and their plethora of downstream protein kinase effectors serve ubiquitous roles not only in cardiovascular homeostasis but also in the pathogenesis of CVD. Already a major target for clinical pharmacotherapy for CVD as well as other pathologies, novel and potentially clinically appealing actions of cyclic nucleotides and their downstream targets are still being discovered. With this in mind, this review article focuses on our current state of knowledge of the cyclic nucleotide-driven serine (Ser)/threonine (Thr) protein kinases in CVD with particular emphasis on cyclic AMP-dependent protein kinase (PKA) and cyclic GMP-dependent protein kinase (PKG). Attention is given to the regulatory interactions of these kinases with inflammatory components including interleukin 6 signals, with G protein-coupled receptor and growth factor signals, and with growth and synthetic transcriptional platforms underlying CVD pathogenesis. This article concludes with a brief discussion of potential future directions and highlights the importance for continued basic science and clinical study of cyclic nucleotide-directed protein kinases as emerging and crucial controllers of cardiac and vascular disease pathologies.
Collapse
Affiliation(s)
- Nathan A Holland
- Department of Physiology, Brody School of Medicine, East Carolina University, 600 Moye Boulevard, Greenville, NC 27834, USA.
| | - Jake T Francisco
- Department of Physiology, Brody School of Medicine, East Carolina University, 600 Moye Boulevard, Greenville, NC 27834, USA.
| | - Sean C Johnson
- Department of Physiology, Brody School of Medicine, East Carolina University, 600 Moye Boulevard, Greenville, NC 27834, USA.
| | - Joshua S Morgan
- Department of Physiology, Brody School of Medicine, East Carolina University, 600 Moye Boulevard, Greenville, NC 27834, USA.
| | - Troy J Dennis
- Department of Physiology, Brody School of Medicine, East Carolina University, 600 Moye Boulevard, Greenville, NC 27834, USA.
| | - Nishitha R Gadireddy
- Department of Physiology, Brody School of Medicine, East Carolina University, 600 Moye Boulevard, Greenville, NC 27834, USA.
| | - David A Tulis
- Department of Physiology, Brody School of Medicine, East Carolina University, 600 Moye Boulevard, Greenville, NC 27834, USA.
| |
Collapse
|
18
|
Kim ML, Sung KR, Shin JA, Young Yoon J, Jang J. Statins reduce TGF-beta2-modulation of the extracellular matrix in cultured astrocytes of the human optic nerve head. Exp Eye Res 2017; 164:55-63. [PMID: 28789942 DOI: 10.1016/j.exer.2017.08.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 07/22/2017] [Accepted: 08/03/2017] [Indexed: 10/19/2022]
Abstract
Statins are cholesterol lowering drugs and have shown beneficial effects on glaucoma. With regard to the mechanism of statin action on glaucoma, we investigated the effects of statins on transforming growth factor-beta 2 (TGF-β2)-induced expression of extracellular matrix (ECM) proteins in human astrocytes of the optic nerve head (ONH) lamina cribrosa (LC). By using primary human ONH astrocytes, we found that both simvastatin and lovastatin inhibited TGF-β2-mediated expression of ECM proteins such as connective tissue growth factor, collagen I, fibronectin, and plasminogen activator inhibitor-1. Suppression of ECM related proteins is due to inhibition of Smad2/3 activation as statins inhibit TGF-β2-induced Smad2 phosphorylation and Smad2/3 nuclear accumulation. In ONH astrocytes, TGF-β2 does not induce MAPK activation. In this study we found an anti-fibrotic effect of statins in human astrocytes of the ONH and identified TGF-β2 as a mediator of statin action, which may support a beneficial role for statins in blocking glaucomatous axonal damage induced by ECM remodeling.
Collapse
Affiliation(s)
- Mi-Lyang Kim
- Biomedical Research Center, College of Medicine, University of Ulsan, Asan Medical Center, Seoul, South Korea
| | - Kyung Rim Sung
- Department of Ophthalmology, College of Medicine, University of Ulsan, Asan Medical Center, Seoul, South Korea.
| | - Jin A Shin
- Biomedical Research Center, College of Medicine, University of Ulsan, Asan Medical Center, Seoul, South Korea
| | - Joo Young Yoon
- College of Medicine, University of Ulsan, Seoul, South Korea
| | - Joonhee Jang
- Notre Dame Prep High School, Pontiac, MI, United States
| |
Collapse
|
19
|
Rac1-mediated cardiac damage causes diastolic dysfunction in a mouse model of subacute doxorubicin-induced cardiotoxicity. Arch Toxicol 2017; 92:441-453. [PMID: 28710503 DOI: 10.1007/s00204-017-2017-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 06/14/2017] [Indexed: 01/13/2023]
Abstract
The anticancer efficacy of anthracyclines is limited by congestive heart failure. Clinically established markers of early onset of cardiotoxicity following anthracycline treatment and preventive measures are missing. Although statins are reported to alleviate anthracycline-induced cardiotoxicity in vivo, the molecular mechanisms involved remain elusive. In vitro data point to Rac1 as major target of the cytoprotective statin effects. Here we investigated whether specific inhibition of Rac1 by NSC23766 is as effective as lovastatin in preventing subacute cardiotoxicity following doxorubicin treatment. C57BL/6 mice were treated over 3 weeks with multiple low doses of doxorubicin (6 × 3 mg/kg BW, i.p.) and the level of DNA damage, apoptosis and regenerative proliferation as well as pro-inflammatory, pro-fibrotic and oxidative stress responses were investigated. Moreover, heart function was monitored by echocardiography. Doxorubicin induced subacute cardiotoxicity which was reflected on the level of residual DNA damage, frequency of apoptotic and mitotic cells as well as elevated mRNA expression of markers of heart failure, remodeling and mitochondrial biogenesis. These molecular markers of cardiotoxicity were mitigated to a similar extent by co-treatment with either lovastatin (10 mg/kg BW, p.o.) or NSC23766 (5 mg/kg BW, i.p.) three times a week. Moreover, doxorubicin caused diastolic dysfunction as reflected by increased E-wave acceleration time (EAT), which again was prevented by pharmacological inhibition of Rac1. Inhibition of Rac1 signaling is of major relevance for the cardioprotective effects of lovastatin in the context of anthracycline-induced cardiotoxicity. Moreover, EAT is a useful marker of subacute cardiotoxicity caused by persisting harmful effects of doxorubicin.
Collapse
|
20
|
Ruan C, Lu J, Wang H, Ge Z, Zhang C, Xu M. miR-26b-5p regulates hypoxia-induced phenotypic switching of vascular smooth muscle cells via the TGF-β/Smad4 signaling pathway. Mol Med Rep 2017; 15:4185-4190. [PMID: 28487943 DOI: 10.3892/mmr.2017.6509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 07/14/2016] [Indexed: 11/06/2022] Open
Abstract
Hypoxia contributes to the phenotypic switch of vascular smooth muscle cells (VSMCs). Various microRNAs (miRNAs) participate in this process as post‑transcriptional regulators, however the mechanism remains unclear. In the present study, mouse VSMCs (mVSMCs) harvested from aortas were cultured in normoxic and hypoxic conditions, and the mRNA levels of miR-26b-5p, desmin, H‑caldesmon and smoothelin were quantified using reverse transcription‑quantitative polymerase chain reaction. Following treatment with a miR‑26b‑5p antagonist (agomir) or non‑targeting control (scramble), the cell areas of normoxic and hypoxic mVSMCs were analyzed by immunofluorescence staining. In addition, the protein expression levels of collagen Iα, Smad2/phosphorylated (p)‑Smad2, Smad3/p‑Smad3 and Smad4 were determined by western blotting. Potential miRNA26b‑5p binding sequences in the 3'‑untranslated region (UTR) of Smad4 were investigated, and the distribution of Smad4 in mVSMCs was visualized using immunofluorescence methods. Hypoxic mVSMCs exhibited a significant downregulation miR‑26b‑5p, upregulation of hypoxia inducible factor‑1α mRNA and suppression of desmin, H‑caldesmon and smoothelin mRNA levels. Additionally, miR‑26b‑5p agomir reduced the cell area and decreased collagen Iα expression levels in hypoxic mVSMCs compared with normoxic mVSMCs transfected with agomir, and the area was comparable with those of normoxic mVSMCs transfected with agomir or scramble. Furthermore, miR‑26b‑5p suppressed Smad4 expression in hypoxic mVSMCs, but did not change the expression levels of Smad2 and Smad3, p‑Smad2 and p‑Smad3, however p‑Smad2 and p‑Smad3 levels were upregulated in response to hypoxic stimuli. Additionally, the miR‑26b‑5p agomir caused weak immunoreactivity with Smad4 in hypoxic mVSMCs. The binding motif of miR‑26b‑5p in the Smad4 3'‑UTR was identified as UACUUGA at position 978-984. These findings suggest that miR‑26b‑5p regulates hypoxia‑induced phenotypic switching of VSMCs via the transforming growth factor β/Smad4 signaling pathway.
Collapse
Affiliation(s)
- Changwu Ruan
- Department of Cardiology, Gongli Hospital, Shanghai 200135, P.R. China
| | - Jide Lu
- Department of Cardiology, Gongli Hospital, Shanghai 200135, P.R. China
| | - Hairong Wang
- Department of Cardiology, Gongli Hospital, Shanghai 200135, P.R. China
| | - Zhiru Ge
- Department of Cardiology, Gongli Hospital, Shanghai 200135, P.R. China
| | - Chenjun Zhang
- Department of Cardiology, Gongli Hospital, Shanghai 200135, P.R. China
| | - Maochun Xu
- Department of Cardiology, Gongli Hospital, Shanghai 200135, P.R. China
| |
Collapse
|
21
|
Statins in anthracycline-induced cardiotoxicity: Rac and Rho, and the heartbreakers. Cell Death Dis 2017; 8:e2564. [PMID: 28102848 PMCID: PMC5386353 DOI: 10.1038/cddis.2016.418] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 11/02/2016] [Indexed: 01/06/2023]
Abstract
Cancer patients receiving anthracycline-based chemotherapy are at risk to develop life-threatening chronic cardiotoxicity with the pathophysiological mechanism of action not fully understood. Besides the most common hypothesis that anthracycline-induced congestive heart failure (CHF) is mainly caused by generation of reactive oxygen species, recent data point to a critical role of topoisomerase II beta (TOP2B), which is a primary target of anthracycline poisoning, in the pathophysiology of CHF. As the use of the only clinically approved cardioprotectant dexrazoxane has been limited by the FDA in 2011, there is an urgent need for alternative cardioprotective measures. Statins are anti-inflammatory and anti-oxidative drugs that are clinically well established for the prevention of cardiovascular diseases. They exhibit pleiotropic beneficial properties beyond cholesterol-lowering effects that most likely rest on the indirect inhibition of small Ras homologous (Rho) GTPases. The Rho GTPase Rac1 has been shown to be a major factor in the regulation of the pro-oxidative NADPH oxidase as well as in the regulation of type II topoisomerase. Both are discussed to play an important role in the pathophysiology of anthracycline-induced CHF. Therefore, off-label use of statins or novel Rac1 inhibitors might represent a promising pharmacological approach to gain control over chronic cardiotoxicity by interfering with key mechanisms of anthracycline-induced cardiomyocyte cell death.
Collapse
|
22
|
Liu C, Yang Q, Fang G, Li BS, Wu DB, Guo WJ, Hong SS, Hong L. Collagen metabolic disorder induced by oxidative stress in human uterosacral ligament‑derived fibroblasts: A possible pathophysiological mechanism in pelvic organ prolapse. Mol Med Rep 2016; 13:2999-3008. [PMID: 26936098 PMCID: PMC4805094 DOI: 10.3892/mmr.2016.4919] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 01/20/2016] [Indexed: 01/05/2023] Open
Abstract
Pelvic organ prolapse (POP) is a global health problem, for which the pathophysiological mechanism remains to be fully elucidated. The loss of extracellular matrix protein has been considered to be the most important molecular basis facilitating the development of POP. Oxidative stress (OS) is a well-recognized mechanism involved in fiber metabolic disorders. The present study aimed to clarify whether OS exists in the uterosacral ligament (USL) with POP, and to investigate the precise role of OS in collagen metabolism in human USL fibroblasts (hUSLFs). In the present study, 8-hydroxyguanosine (8-OHdG) and 4 hydroxynonenal (4-HNE), as oxidative biomarkers, were examined by immunohistochemistry to evaluate oxidative injury in USL sections in POP (n=20) and non-POP (n=20) groups. The primary cultured hUSLFs were treated with exogenous H2O2 to establish an original OS cell model, in which the expression levels of collagen, type 1, α1 (COL1A1), matrix metalloproteinase (MMP)-2, tissue inhibitor of metalloproteinase (TIMP)-2 and transforming growth factor (TGF)-β1 were evaluated by western blot and reverse transcription-quantitative polymerase chain reaction analyses. The results showed that the expression levels of 8-OHdG and 4-HNE in the POP group were significantly higher, compared with those in the control group. Collagen metabolism was regulated by H2O2 exposure in a concentration-dependent manner, in which lower concentrations of H2O2 (0.1–0.2 mM) stimulated the anabolism of COL1A1, whereas a higher concentration (0.4 mM) promoted catabolism. The expression levels of MMP-2, TIMP-2 and TGF-β1 exhibited corresponding changes with the OS levels. These results suggested that OS may be involved in the pathophysiology of POP by contributing to collagen metabolic disorder in a severity-dependent manner in hUSLFs, possibly through the regulation of MMPs, TIMPs and TGF-β1 indirectly.
Collapse
Affiliation(s)
- Cheng Liu
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Qing Yang
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Gui Fang
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Bing-Shu Li
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - De-Bin Wu
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Wen-Jun Guo
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Sha-Sha Hong
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Li Hong
- Department of Gynecology and Obstetrics, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|
23
|
Stanzione R, Sciarretta S, Marchitti S, Bianchi F, Di Castro S, Scarpino S, Cotugno M, Frati G, Volpe M, Rubattu S. C2238/αANP modulates apolipoprotein E through Egr-1/miR199a in vascular smooth muscle cells in vitro. Cell Death Dis 2015; 6:e2033. [PMID: 26720342 PMCID: PMC4720902 DOI: 10.1038/cddis.2015.370] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/16/2015] [Accepted: 11/17/2015] [Indexed: 12/21/2022]
Abstract
Subjects carrying the T2238C ANP gene variant have a higher risk to suffer a stroke or myocardial infarction. The mechanisms through which T2238C/αANP exerts detrimental vascular effects need to be fully clarified. In the present work we aimed at exploring the impact of C2238/αANP (mutant form) on atherosclerosis-related pathways. As a first step, an atherosclerosis gene expression macroarray analysis was performed in vascular smooth muscle cells (VSMCs) exposed to either T2238/αANP (wild type) or C2238/αANP. The major finding was that apolipoprotein E (ApoE) gene expression was significantly downregulated by C2238/αANP and it was upregulated by T2238/αANP. We subsequently found that C2238/αANP induces ApoE downregulation through type C natriuretic peptide receptor (NPR-C)-dependent mechanisms involving the upregulation of miR199a-3p and miR199a-5p and the downregulation of DNAJA4. In fact, NPR-C knockdown rescued ApoE level. Upregulation of miR199a by NPR-C was mediated by a reactive oxygen species-dependent increase of the early growth response protein-1 (Egr-1) transcription factor. In fact, Egr-1 knockdown abolished the impact of C2238/αANP on ApoE and miR199a. Of note, downregulation of ApoE by C2238/αANP was associated with a significant increase in inflammation, apoptosis and necrosis that was completely rescued by the exogenous administration of recombinant ApoE. In conclusion, our study dissected a novel mechanism of vascular damage exerted by C2238/αANP that is mediated by ApoE downregulation. We provide the first demonstration that C2238/αANP downregulates ApoE in VSMCs through NPR-C-dependent activation of Egr-1 and the consequent upregulation of miR199a. Restoring ApoE levels could represent a potential therapeutic strategy to counteract the harmful effects of C2238/αANP.
Collapse
Affiliation(s)
- R Stanzione
- IRCCS Neuromed, Pozzilli (Is), Sapienza University of Rome, Latina, Italy
| | - S Sciarretta
- IRCCS Neuromed, Pozzilli (Is), Sapienza University of Rome, Latina, Italy.,Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - S Marchitti
- IRCCS Neuromed, Pozzilli (Is), Sapienza University of Rome, Latina, Italy
| | - F Bianchi
- IRCCS Neuromed, Pozzilli (Is), Sapienza University of Rome, Latina, Italy
| | - S Di Castro
- IRCCS Neuromed, Pozzilli (Is), Sapienza University of Rome, Latina, Italy
| | - S Scarpino
- Department of Clinical and Molecular Medicine, School of Medicine and Psychology, Sapienza University of Rome, Ospedale S. Andrea, Rome, Italy
| | - M Cotugno
- IRCCS Neuromed, Pozzilli (Is), Sapienza University of Rome, Latina, Italy
| | - G Frati
- IRCCS Neuromed, Pozzilli (Is), Sapienza University of Rome, Latina, Italy.,Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - M Volpe
- IRCCS Neuromed, Pozzilli (Is), Sapienza University of Rome, Latina, Italy.,Department of Clinical and Molecular Medicine, School of Medicine and Psychology, Sapienza University of Rome, Ospedale S. Andrea, Rome, Italy
| | - S Rubattu
- IRCCS Neuromed, Pozzilli (Is), Sapienza University of Rome, Latina, Italy.,Department of Clinical and Molecular Medicine, School of Medicine and Psychology, Sapienza University of Rome, Ospedale S. Andrea, Rome, Italy
| |
Collapse
|
24
|
Tie C, Gao K, Zhang N, Zhang S, Shen J, Xie X, Wang JA. Ezetimibe Attenuates Atherosclerosis Associated with Lipid Reduction and Inflammation Inhibition. PLoS One 2015; 10:e0142430. [PMID: 26555472 PMCID: PMC4640821 DOI: 10.1371/journal.pone.0142430] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 10/21/2015] [Indexed: 12/13/2022] Open
Abstract
Background Ezetimibe, as a cholesterol absorption inhibitor, has been shown protecting against atherosclerosis when combined with statin. However, side by side comparison has not been made to evaluate the beneficial effects of ezetimibe alone versus statin. Herein, the study aimed to test whether ezetimibe alone would exhibit similar effects as statin and the combination therapy would be necessary in a moderate lesion size. Methods and Results ApoE-/- male mice that were fed a saturated-fat supplemented diet were randomly assigned to different therapeutic regimens: vehicle, ezetimibe alone (10 mg/kg/day), atorvastatin (20 mg/kg/day) or combination of ezetimibe and atorvastatin through the drinking water. On 28 days, mice were sacrificed and aorta and sera were collected to analyze the atherosclerotic lesion and blood lipid and cholesterol levels. As a result, ezetimibe alone exerted similar protective effects on atherosclerotic lesion sizes as atorvastatin, which was mediated by lowering serum cholesterol concentrations, inhibiting macrophage accumulation in the lesions and reducing circulatory inflammatory cytokines, such as monocyte chemoattractant protein (MCP-1) and tumor necrosis factor (TNF-α). In contrast to ezetimibe administration, atorvastatin alone attenuated atherosclerotic lesion which is dependent on its anti-inflammation effects. There were no significance differences in lesion areas and serum concentrations of cholesterol, oxidized LDL and inflammatory cytokines between combination therapy and monotherapy (either ezetimibe or atorvastatin). There were significant correlations between the lesion areas and serum concentrations of cholesterol, MCP-1 and TNF-α, respectively. However, there were no significant correlations between the lesion areas and serum concentrations of TGF-β1 and oxLDL. Conclusions Ezetimibe alone played the same protection against a moderate atherosclerotic lesion as atorvastatin, which was associated with lowering serum cholesterol, decreasing circulating inflammatory cytokines, and inhibiting macrophage accumulation in the lesions.
Collapse
Affiliation(s)
- Chunmiao Tie
- Department of Cardiology, Cardiovascular Key Laboratory of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
- Department of Cardiology, Affiliated Boai Hospital of Shaoxing University, Shaoxing, Zhejiang, P.R. China
| | - Kanglu Gao
- Department of Cardiology, Cardiovascular Key Laboratory of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Na Zhang
- Department of Cardiology, Cardiovascular Key Laboratory of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Songzhao Zhang
- Department of Clinical Laboratory, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Jiali Shen
- Department of Cardiology, Cardiovascular Key Laboratory of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Xiaojie Xie
- Department of Cardiology, Cardiovascular Key Laboratory of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
- * E-mail: (XX); (JW)
| | - Jian-an Wang
- Department of Cardiology, Cardiovascular Key Laboratory of Zhejiang Province, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
- * E-mail: (XX); (JW)
| |
Collapse
|
25
|
Curtis A, Smith T, Ziganshin BA, Elefteriades JA. Ascending Aortic Proaneurysmal Genetic Mutations with Antiatherogenic Effects. Int J Angiol 2015; 24:189-97. [PMID: 26417187 DOI: 10.1055/s-0035-1556075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Thoracic aortic aneurysms are common and are associated with a high morbidity and mortality. Despite this lethal diagnosis, there is an increasing body of evidence to suggest that the diagnosis of an aneurysm, specifically in the ascending thoracic aorta, may significantly reduce the risk of developing systemic atherosclerosis. Clinical observations in the operating room have shown pristine blood vessels in patients undergoing surgery for thoracic aortic aneurysms. There is now evidence that both the carotid intima-media thickness and arterial calcification, which are early and late signs of atherosclerosis respectively, are decreased in those with thoracic aortic aneurysms. These clinical studies are supported by molecular, genetic, and pharmacological evidence. Two principle mechanisms have been identified to explain the relationship of a proaneurysmal state conferring protection from atherosclerosis. These include an excess proteolytic balance of matrix metalloproteinase activity, leading to fragmentation of elastic lamellae and disordered collagen deposition. In addition, transforming growth factor β modulates vascular smooth muscle cells, extracellular matrix, and leukocytes. This confers protection from the initial plaque formation and, later provides stability to the plaque possibly through alteration of the types I and II transforming growth factor β receptor ratio. Furthermore, studies are now beginning to establish an important role for statins and estradiol in modulating these complex pathways. In the future, as our understanding of these complex mechanisms underlying aneurysmal protection against atherosclerosis increases, corresponding therapies may be developed to offer protection from atherosclerosis.
Collapse
Affiliation(s)
- Alexander Curtis
- Aortic Institute at Yale-New Haven, Yale University School of Medicine, New Haven, Connecticut
| | - Tanya Smith
- Aortic Institute at Yale-New Haven, Yale University School of Medicine, New Haven, Connecticut
| | - Bulat A Ziganshin
- Aortic Institute at Yale-New Haven, Yale University School of Medicine, New Haven, Connecticut ; Department of Surgical Diseases No. 2, Kazan State Medical University, Kazan, Russia
| | - John A Elefteriades
- Aortic Institute at Yale-New Haven, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
26
|
Vilas-Boas W, Veloso Cerqueira BA, Figueiredo CVB, Santiago RP, da Guarda CC, Pitanga TN, Santana SS, Dias Zanette AM, Goncalves MDS. Association of homocysteine and inflammatory-related molecules in sickle cell anemia. ACTA ACUST UNITED AC 2015; 21:126-31. [PMID: 26334689 DOI: 10.1179/1607845415y.0000000048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVE Investigate the role of homocysteine (Hcy), Th17-related cytokines, and adhesion molecules in the inflammatory state seen in the sickle cell anemia (SCA). METHODS We studied the Hcy, interleukin (IL)-17, and transforming growth factor β (TGF-β) cytokine levels of 62 SCA patients, as well as the expression levels of inflammatory and endothelial activation markers. RESULTS We found significant associations between Hcy levels and increased expression of IL-17 and TGF-β among SCA patients, and a positive significant correlation between Hcy and soluble vascular cellular adhesion molecules (sVCAM). SCA individuals had raised IL-17 levels when compared with controls. DISCUSSION These results suggest a possible role of Hyc in the induction of TGF-β and IL-17. Other authors proposed that Hcy may contribute to the initiation and progression of vascular disease by monocyte activation, resulting in the secretion of cytokines that amplify the inflammatory response. The role of Hcy in cytokine production and oxidative stress in the endothelium may explain the increase of sVCAM expression and, the vascular activation currently described among the SCA individuals with the highest Hcy serum levels. The chronic inflammation was observed in hyperhomocysteinemic mice, with an increased expression of VCAM-1 and plasma levels of tumor necrosis factor-alpha, showing an association of this inflammatory molecule and vascular changes. CONCLUSION Our findings suggest that the increased levels of IL-17,Hcy and sVCAM contributes contributes to the vascular inflammation and activation presented by SCA patients, which probably have an important role in vaso-occlusion. On the basis of the presented data, IL-17 and Hcy might be considered as important components in the pathogenesis of SCA.
Collapse
Affiliation(s)
| | - Bruno Antonio Veloso Cerqueira
- a Centro de Pesquisas Gonçalo Moniz/FIOCRUZ , Salvador , Brazil.,b Universidade do Estado da Bahia , Salvador , Bahia , Brazil
| | - Camylla V B Figueiredo
- a Centro de Pesquisas Gonçalo Moniz/FIOCRUZ , Salvador , Brazil.,c Universidade Federal da Bahia , Salvador , Brazil
| | - Rayra Pereira Santiago
- a Centro de Pesquisas Gonçalo Moniz/FIOCRUZ , Salvador , Brazil.,c Universidade Federal da Bahia , Salvador , Brazil
| | - Caroline C da Guarda
- a Centro de Pesquisas Gonçalo Moniz/FIOCRUZ , Salvador , Brazil.,c Universidade Federal da Bahia , Salvador , Brazil
| | - Thassila Nogueira Pitanga
- a Centro de Pesquisas Gonçalo Moniz/FIOCRUZ , Salvador , Brazil.,c Universidade Federal da Bahia , Salvador , Brazil
| | - Sanzio Silva Santana
- a Centro de Pesquisas Gonçalo Moniz/FIOCRUZ , Salvador , Brazil.,c Universidade Federal da Bahia , Salvador , Brazil
| | | | - Marilda de Souza Goncalves
- a Centro de Pesquisas Gonçalo Moniz/FIOCRUZ , Salvador , Brazil.,c Universidade Federal da Bahia , Salvador , Brazil
| |
Collapse
|
27
|
Goodman CA, Pol D, Zacharewicz E, Lee-Young RS, Snow RJ, Russell AP, McConell GK. Statin-Induced Increases in Atrophy Gene Expression Occur Independently of Changes in PGC1α Protein and Mitochondrial Content. PLoS One 2015; 10:e0128398. [PMID: 26020641 PMCID: PMC4447258 DOI: 10.1371/journal.pone.0128398] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 04/27/2015] [Indexed: 11/18/2022] Open
Abstract
One serious side effect of statin drugs is skeletal muscle myopathy. Although the mechanism(s) responsible for statin myopathy remains to be fully determined, an increase in muscle atrophy gene expression and changes in mitochondrial content and/or function have been proposed to play a role. In this study, we examined the relationship between statin-induced expression of muscle atrophy genes, regulators of mitochondrial biogenesis, and markers of mitochondrial content in slow- (ST) and fast-twitch (FT) rat skeletal muscles. Male Sprague Dawley rats were treated with simvastatin (60 or 80 mg·kg-1·day-1) or vehicle control via oral gavage for 14 days. In the absence of overt muscle damage, simvastatin treatment induced an increase in atrogin-1, MuRF1 and myostatin mRNA expression; however, these were not associated with changes in peroxisome proliferator gamma co-activator 1 alpha (PGC-1α) protein or markers of mitochondrial content. Simvastatin did, however, increase neuronal nitric oxide synthase (nNOS), endothelial NOS (eNOS) and AMPK α-subunit protein expression, and tended to increase total NOS activity, in FT but not ST muscles. Furthermore, simvastatin induced a decrease in β-hydroxyacyl CoA dehydrogenase (β-HAD) activity only in FT muscles. These findings suggest that the statin-induced activation of muscle atrophy genes occurs independent of changes in PGC-1α protein and mitochondrial content. Moreover, muscle-specific increases in NOS expression and possibly NO production, and decreases in fatty acid oxidation, could contribute to the previously reported development of overt statin-induced muscle damage in FT muscles.
Collapse
Affiliation(s)
- Craig A. Goodman
- Department of Physiology, University of Melbourne, Parkville, Victoria, Australia
- Institute of Sport, Exercise and Active Living and the College of Health and Biomedicine, Victoria University, Victoria, Australia
- * E-mail:
| | - Derk Pol
- Department of Physiology, University of Melbourne, Parkville, Victoria, Australia
| | - Evelyn Zacharewicz
- Centre for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Australia
| | - Robert S. Lee-Young
- Cellular and Molecular Metabolism Laboratory, Division of Metabolism and Obesity, Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Rod J. Snow
- Centre for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Australia
| | - Aaron P. Russell
- Centre for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Australia
| | - Glenn K. McConell
- Department of Physiology, University of Melbourne, Parkville, Victoria, Australia
- Institute of Sport, Exercise and Active Living and the College of Health and Biomedicine, Victoria University, Victoria, Australia
| |
Collapse
|
28
|
Statins increase the frequency of circulating CD4+ FOXP3+ regulatory T cells in healthy individuals. J Immunol Res 2015; 2015:762506. [PMID: 25759848 PMCID: PMC4352479 DOI: 10.1155/2015/762506] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 02/08/2015] [Indexed: 12/22/2022] Open
Abstract
Statins have been shown to modulate the number and the suppressive function of CD4+FOXP3+ T cells (Treg) in inflammatory conditions. However, it is not well established whether statin could also affect Treg in absence of inflammation. To address this question, eighteen normocholesterolemic male subjects were treated with lovastatin or atorvastatin daily for 45 days. The frequency and phenotype of circulating
Treg were evaluated at days 0, 7, 30, and 45. mRNA levels of FOXP3, IDO, TGF-β, and IL-10 were measured in CD4+ T cells.
We found that both statins significantly increased Treg frequency and FOXP3 mRNA levels at day 30. At day 45, Treg numbers returned to baseline values;
however, TGF-β and FOXP3 mRNA levels remained high, accompanied by increased percentages of CTLA-4- and GITR-expressing Treg. Treg Ki-67
expression was decreased upon statin treatment. Treg frequency positively correlated with plasma levels of high-density lipoprotein cholesterol (HDL-c),
suggesting a role for HDL-c in Treg homeostasis. Therefore, statins appear to have inflammation-independent immune-modulatory effects.
Thus, the increase in Treg cells frequency likely contributes to immunomodulatory effect of statins, even in healthy individuals.
Collapse
|
29
|
Shang L, Jia SS, Jiang HM, Wang H, Xu WH, Lv CJ. Simvastatin downregulates expression of TGF-βRII and inhibits proliferation of A549 cells via ERK. Tumour Biol 2015; 36:4819-24. [PMID: 25631750 DOI: 10.1007/s13277-015-3134-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Accepted: 01/19/2015] [Indexed: 12/29/2022] Open
Abstract
Lung cancer is the leading cause of cancer-related death worldwide. Transforming growth factor-β receptor II (TGF-βRII) plays an important role in the regulation of proliferation and progression in cancer. Statins have been documented to exhibit anticancer and cancer chemopreventive properties. However, the effects and mechanisms of simvastatin on the development of lung cancer are still unclear. In the present study, quiescent A549 cells were treated in vitro with fetal bovine serum (FBS) in the presence or absence of simvastatin. MTT, Western blot, and real-time qPCR were used to detect cell viability, activation of ERK, and expression of TGF-βRII at the protein and RNA level. Our results demonstrated that simvastatin inhibited activation of ERK, downregulated expression of TGF-βRII, and suppressed A549 cell proliferation. Furthermore, the effects of simvastatin can be reversed by farnesyl pyrophosphate (FPP). Therefore, these results suggest that simvastatin may inhibit A549 cell proliferation and downregulate TGF-βRII expression by inhibiting activation of ERK. Our findings may advance the current understanding of the effects of simvastatin on cancer progression and contribute to the study of cancer treatment.
Collapse
Affiliation(s)
- Li Shang
- Nursing Division, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264100, China
| | | | | | | | | | | |
Collapse
|
30
|
Vilahur G, Casani L, Peña E, Juan-Babot O, Mendieta G, Crespo J, Badimon L. HMG-CoA reductase inhibition prior reperfusion improves reparative fibrosis post-myocardial infarction in a preclinical experimental model. Int J Cardiol 2014; 175:528-38. [DOI: 10.1016/j.ijcard.2014.06.040] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 05/13/2014] [Accepted: 06/24/2014] [Indexed: 12/30/2022]
|
31
|
Saito T, Izumi K, Shiomi A, Uenoyama A, Ohnuki H, Kato H, Terada M, Nozawa-Inoue K, Kawano Y, Takagi R, Maeda T. Zoledronic acid impairs re-epithelialization through down-regulation of integrin αvβ6 and transforming growth factor beta signalling in a three-dimensional in vitro wound healing model. Int J Oral Maxillofac Surg 2014; 43:373-80. [DOI: 10.1016/j.ijom.2013.06.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Revised: 06/14/2013] [Accepted: 06/17/2013] [Indexed: 11/16/2022]
|
32
|
Chau KH, Bender JR, Elefteriades JA. Silver Lining in the Dark Cloud of Aneurysm Disease. Cardiology 2014; 128:327-32. [DOI: 10.1159/000358123] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 12/18/2013] [Indexed: 11/19/2022]
|
33
|
Egom EE, Rose RA, Neyses L, Soran H, Cleland JGF, Mamas MA. Activation of sphingosine-1-phosphate signalling as a potential underlying mechanism of the pleiotropic effects of statin therapy. Crit Rev Clin Lab Sci 2013; 50:79-89. [DOI: 10.3109/10408363.2013.813013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
34
|
Fluvastatin influences hair color in C57BL/6 mice. Int J Mol Sci 2013; 14:14333-45. [PMID: 23846727 PMCID: PMC3742247 DOI: 10.3390/ijms140714333] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Revised: 06/25/2013] [Accepted: 07/01/2013] [Indexed: 01/14/2023] Open
Abstract
Our recent in vitro experiments suggest that fluvastatin may influence tyrosinase (key enzyme of melanogenesis) synthesis. The aim of the present study was to verify those findings in experiments, in vitro, in melanoma cell line, and in vivo, in mice. The expression of tyrosinase in B16F10 melanoma cell line, after induction of melanogenesis by UVB irradiation, was examined by Western blot analysis. Afterwards, the effect of fluvastatin on melanin synthesis in hair follicles of C57Bl/6 mice was investigated. The expression of tyrosinase was reduced in the presence of fluvastatin. In mice after anagen induction over the dorsal skin, gel containing fluvastatin in various concentrations was injected subcutaneously, while in part of control groups of mice, gel with placebo was injected. In addition, gel with fluvastatin was injected to four week-old mice (mice in first postnatal anagen) without anagen induction. In extension, injections of gel with fluvastatin or placebo were performed in mice without anagen induction (but after first postnatal anagen). In part of study group of mice (mice after anagen induction and injection of fluvastatin) regrowth of depigmented hair was observed, while in all control groups (mice after injection of placebo), such hair depigmentation over the skin area was not found. In conclusion, this study, for the first time, shows that fluvastatin might affect melanin synthesis in vivo.
Collapse
|
35
|
Li Q, Deng SB, Xia S, Du JL, She Q. Impact of intensive statin use on the level of inflammation and platelet activation in stable angina after percutaneous coronary intervention: a clinical study. Med Clin (Barc) 2012. [PMID: 23177313 DOI: 10.1016/j.medcli.2012.05.042] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND OBJECTIVE This study was designed to investigate whether high-dose atorvastatin before percutaneous coronary intervention (PCI) can reduce inflammation, platelet activation, and major adverse cardiac events (MACE) in patients with stable angina who are undergoing long-term statin therapy. METHODS In total, 215 patients with chronic stable angina were randomized to pretreatment with 80 mg of atorvastatin (12 h before PCI; n = 106) or with 20 mg of atorvastatin (12 h before PCI; n = 109). All patients underwent PCI. Serum levels of interleukin-6, high-sensitivity C-reactive protein, tumor necrosis factor-α, GMP-140, and p-selectin were measured 24 h before and after PCI. The 30-day incidence of MACE was determined. RESULTS No differences in baseline characteristics were observed between the groups. The levels of inflammation and platelet activation were significantly lower after 24 h in the group that received intensive statin therapy (P < 0.05). The levels of inflammation and platelet activation increased sharply 24 h after PCI in the group that received the lower dose of atorvastatin (P > 0.05). In other words, pretreatment with a high dose of atorvastatin decreased the incidence of MACE sharply within 30 days (P < 0.05). CONCLUSIONS Pretreatment with a high dose of atorvastatin significantly reduced inflammation, platelet activation, and the incidence of MACE in patients with stable angina.
Collapse
Affiliation(s)
- Qing Li
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, PR China
| | | | | | | | | |
Collapse
|
36
|
Elewa U, Sanchez-Niño MD, Martin-Cleary C, Fernandez-Fernandez B, Egido J, Ortiz A. Cardiovascular risk biomarkers in CKD: the inflammation link and the road less traveled. Int Urol Nephrol 2012; 44:1731-44. [DOI: 10.1007/s11255-012-0271-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 08/13/2012] [Indexed: 12/11/2022]
|
37
|
Li L, Zhang W, Cheng S, Cao D, Parent M. Isoprenoids and related pharmacological interventions: potential application in Alzheimer's disease. Mol Neurobiol 2012; 46:64-77. [PMID: 22418893 DOI: 10.1007/s12035-012-8253-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 02/28/2012] [Indexed: 12/18/2022]
Abstract
Two major isoprenoids, farnesyl pyrophosphate and geranylgeranyl pyrophosphate, serve as lipid donors for the posttranslational modification (known as prenylation) of proteins that possess a characteristic C-terminal motif. The prenylation reaction is catalyzed by prenyltransferases. The lipid prenyl group facilitates to anchor the proteins in cell membranes and mediates protein-protein interactions. A variety of important intracellular proteins undergo prenylation, including almost all members of small GTPase superfamilies as well as heterotrimeric G protein subunits and nuclear lamins. These prenylated proteins are involved in regulating a wide range of cellular processes and functions, such as cell growth, differentiation, cytoskeletal organization, and vesicle trafficking. Prenylated proteins are also implicated in the pathogenesis of different types of diseases. Consequently, isoprenoids and/or prenyltransferases have emerged as attractive therapeutic targets for combating various disorders. This review attempts to summarize the pharmacological agents currently available or under development that control isoprenoid availability and/or the process of prenylation, mainly focusing on statins, bisphosphonates, and prenyltransferase inhibitors. Whereas statins and bisphosphonates deplete the production of isoprenoids by inhibiting the activity of upstream enzymes, prenyltransferase inhibitors directly block the prenylation of proteins. As the importance of isoprenoids and prenylated proteins in health and disease continues to emerge, the therapeutic potential of these pharmacological agents has expanded across multiple disciplines. This review mainly discusses their potential application in Alzheimer's disease.
Collapse
Affiliation(s)
- Ling Li
- Department of Experimental and Clinical Pharmacology, University of Minnesota, 2001 6th St SE, MTRF 4-208, Minneapolis, MN 55455, USA.
| | | | | | | | | |
Collapse
|
38
|
Vecerova L, Strasky Z, Rathouska J, Slanarova M, Brcakova E, Micuda S, Nachtigal P. Activation of TGF-β Receptors and Smad Proteins by Atorvastatin is Related to Reduced Atherogenesis in ApoE/LDLR Double Knockout Mice. J Atheroscler Thromb 2012; 19:115-26. [DOI: 10.5551/jat.8185] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
39
|
Swales KE, Moore R, Truss NJ, Tucker A, Warner TD, Negishi M, Bishop-Bailey D. Pregnane X receptor regulates drug metabolism and transport in the vasculature and protects from oxidative stress. Cardiovasc Res 2011; 93:674-81. [PMID: 22166712 PMCID: PMC3291088 DOI: 10.1093/cvr/cvr330] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
AIMS Circulating endogenous, dietary, and foreign chemicals can contribute to vascular dysfunction. The mechanism by which the vasculature protects itself from these chemicals is unknown. This study investigates whether the pregnane X receptor (PXR), the major transcriptional regulator of hepatic drug metabolism and transport that responds to such xenobiotics, mediates vascular protection by co-ordinating a defence gene programme in the vasculature. METHODS AND RESULTS PXR was detected in primary human and rat aortic endothelial and smooth muscle cells (SMC) and blood vessels including the human and rat aorta. Metabolic PXR target genes cytochrome P450 3A, 2B, 2C, and glutathione S-transferase mRNA and activity were induced by PXR ligands in rodent and human vascular cells and absent in the aortas from PXR-null mice stimulated in vivo or in rat aortic SMC expressing dominant-negative PXR. Activation of aortic PXR by classical agonists had several protective effects: increased xenobiotic metabolism demonstrated by bioactivation of the pro-drug clopidogrel, which reduced adenosine diphosphate-induced platelet aggregation; increased expression of multidrug resistance protein 1, mediating chemical efflux from the vasculature; and protection from reactive oxygen species-mediated cell death. CONCLUSION PXR co-ordinately up-regulates drug metabolism, transport, and antioxidant genes to protect the vasculature from endogenous and exogenous insults, thus representing a novel gatekeeper for vascular defence.
Collapse
Affiliation(s)
- Karen E Swales
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7XH, UK.
| | | | | | | | | | | | | |
Collapse
|
40
|
Liu T, Xin H, Li W, Zhou F, Li G, Gong Y, Gao Z, Qin X, Cui W, Shindel AW, Xin Z. Effects of Icariin on Improving Erectile Function in Streptozotocin‐Induced Diabetic Rats. J Sex Med 2011; 8:2761-72. [DOI: 10.1111/j.1743-6109.2011.02421.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
41
|
Ma S, Ma CCH. Recent development in pleiotropic effects of statins on cardiovascular disease through regulation of transforming growth factor-beta superfamily. Cytokine Growth Factor Rev 2011; 22:167-75. [PMID: 21700485 DOI: 10.1016/j.cytogfr.2011.05.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 05/14/2011] [Accepted: 05/24/2011] [Indexed: 01/04/2023]
Abstract
BACKGROUND 3-Hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors, also known as statins, are a drug class that reduce the level of cholesterol in the blood. As a result, statins are used to suppress the progression of cardiovascular disease. Evidence points to another component of statins involving the non-lipid effects of the drug class in preventing cardiovascular disease. One specific mediator of this action is the transforming growth factor β (TGF-β) superfamily. The TGF-β superfamily consists of proteins that include TGF-β and bone morphogenetic proteins (BMPs). These proteins regulate cellular pathways to mediate effects including immunomodulation, cell cycling, and angiogenesis. One pathway that mediates these effects is Ras. Moreover, within this pathway, different functions are possible depending on the activation of the specific receptor subtype. This review discusses the recent development of the non-lipid effects of statins in preventing cardiovascular disease progression by regulating Ras pathway of the TGF-β superfamily, especially RhoA/ROCK pathway. METHODS A systematic PubMed database search of all English-language articles up to 2011 was conducted using the following terms: statin, TGF-β, Ras, ROCK, GGPP, inducible nitric oxide synthase, endothelial nitric oxide synthase, actin filament formation, PPARγ, MMP-2, and human trials. CONCLUSION With better understanding of the pathway, various mediators were identified; some of these mediators are important biomarkers producing more specific and accurate assessment of the pleiotropic effects of statins. The review of human trials also highlights that more specific biomarkers are employed in recent studies, and the non-lipid effects on human subjects are more accurately documented. Confirmation of the accuracy of these biomarkers by further large-scale studies and further development of new biomarkers may prove an important path leading to better patient selection for treatment, and thus better cost-effectiveness may be achieved.
Collapse
Affiliation(s)
- Sze Ma
- King's College London School of Medicine, London SE1 7GL, United Kingdom
| | | |
Collapse
|
42
|
|
43
|
Does atorvastatin induce aortic smooth muscle cell apoptosis in vivo? Vascul Pharmacol 2011; 54:5-12. [DOI: 10.1016/j.vph.2010.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 08/30/2010] [Accepted: 10/07/2010] [Indexed: 01/12/2023]
|
44
|
Stern I, Marc J, Kranjec I, Zorman D, Cerne A, Cerne D. Increased plasma levels of CATS mRNA but not CATB mRNA in patients with coronary atherosclerosis. Clin Biochem 2010; 43:1427-30. [DOI: 10.1016/j.clinbiochem.2010.09.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Revised: 09/17/2010] [Accepted: 09/21/2010] [Indexed: 12/01/2022]
|
45
|
Rodrigues Díez R, Rodrigues-Díez R, Lavoz C, Rayego-Mateos S, Civantos E, Rodríguez-Vita J, Mezzano S, Ortiz A, Egido J, Ruiz-Ortega M. Statins inhibit angiotensin II/Smad pathway and related vascular fibrosis, by a TGF-β-independent process. PLoS One 2010; 5:e14145. [PMID: 21152444 PMCID: PMC2994748 DOI: 10.1371/journal.pone.0014145] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Accepted: 10/29/2010] [Indexed: 12/16/2022] Open
Abstract
We have recently described that in an experimental model of atherosclerosis and in vascular smooth muscle cells (VSMCs) statins increased the activation of the Smad pathway by transforming growth factor-β (TGF-β), leading to an increase in TGF-β-dependent matrix accumulation and plaque stabilization. Angiotensin II (AngII) activates the Smad pathway and contributes to vascular fibrosis, although the in vivo contribution of TGF-β has not been completely elucidated. Our aim was to further investigate the mechanisms involved in AngII-induced Smad activation in the vasculature, and to clarify the beneficial effects of statins on AngII-induced vascular fibrosis. Infusion of AngII into rats for 3 days activates the Smad pathway and increases fibrotic-related factors, independently of TGF-β, in rat aorta. Treatment with atorvastatin or simvastatin inhibited AngII-induced Smad activation and related-fibrosis. In cultured rat VSMCs, direct AngII/Smad pathway activation was mediated by p38 MAPK and ROCK activation. Preincubation of VSMCs with statins inhibited AngII-induced Smad activation at all time points studied (from 20 minutes to 24 hours). All these data show that statins inhibited several AngII-activated intracellular signaling systems, including p38-MAPK and ROCK, which regulates the AngII/Smad pathway and related profibrotic factors and matrix proteins, independently of TGF-β responses. The inhibitory effect of statins on the AngII/Smad pathway could explain, at least in part, their beneficial effects on hypertension-induced vascular damage.
Collapse
MESH Headings
- Angiotensin II/pharmacology
- Animals
- Aorta/drug effects
- Aorta/metabolism
- Atorvastatin
- Blotting, Western
- Cells, Cultured
- Fibrosis/metabolism
- Heptanoic Acids/pharmacology
- Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Phosphorylation/drug effects
- Pyrroles/pharmacology
- Rats
- Rats, Wistar
- Signal Transduction/drug effects
- Simvastatin/pharmacology
- Smad Proteins/metabolism
- Transforming Growth Factor beta/metabolism
- Transforming Growth Factor beta/pharmacology
- Vasoconstrictor Agents/pharmacology
- p38 Mitogen-Activated Protein Kinases/metabolism
Collapse
Affiliation(s)
- Raúl Rodrigues Díez
- Cellular Biology in Renal Diseases Laboratory, Universidad Autónoma de Madrid, Madrid, Spain
| | - Raquel Rodrigues-Díez
- Cellular Biology in Renal Diseases Laboratory, Universidad Autónoma de Madrid, Madrid, Spain
| | - Carolina Lavoz
- Cellular Biology in Renal Diseases Laboratory, Universidad Autónoma de Madrid, Madrid, Spain
| | - Sandra Rayego-Mateos
- Cellular Biology in Renal Diseases Laboratory, Universidad Autónoma de Madrid, Madrid, Spain
| | - Esther Civantos
- Cellular Biology in Renal Diseases Laboratory, Universidad Autónoma de Madrid, Madrid, Spain
| | - Juan Rodríguez-Vita
- Cellular Biology in Renal Diseases Laboratory, Universidad Autónoma de Madrid, Madrid, Spain
| | - Sergio Mezzano
- Division of Nephrology, School of Medicine, Universidad Austral, Valdivia, Chile
| | - Alberto Ortiz
- Dialysis Unit, Fundación Jiménez Díaz, Madrid, Spain
| | - Jesús Egido
- Renal Research Laboratory, Fundación Jiménez Díaz, Universidad Autónoma de Madrid, Madrid, Spain
| | - Marta Ruiz-Ortega
- Cellular Biology in Renal Diseases Laboratory, Universidad Autónoma de Madrid, Madrid, Spain
- * E-mail:
| |
Collapse
|
46
|
Abstract
Statins are 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors, which are widely used to lower serum cholesterol levels in the primary and secondary prevention of cardiovascular disease. Recent experimental and clinical evidence suggests that the beneficial effects of statins may extend beyond their cholesterol-lowering effects, to include so-called pleiotropic effects. These cholesterol-independent effects include improving endothelial function, attenuating vascular and myocardial remodeling, inhibiting vascular inflammation and oxidation, and stabilizing atherosclerotic plaques. The mechanism underlying some of these pleiotropic effects is the inhibition of isoprenoid synthesis by statins, which leads to the inhibition of intracellular signaling molecules Rho, Rac and Cdc42. In particular, inhibition of Rho and one of its downstream targets, Rho kinase, may be a predominant mechanism contributing to the pleiotropic effects of statins. The aim of the present review is to provide an update on the non-cholesterol-dependent statin effects in the cardiovascular system and highlight some of the recent findings from bench to bedside to support the concept of statin pleiotropy.
Collapse
Affiliation(s)
- Qian Zhou
- Vascular Medicine Research Unit, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139, USA
| | | |
Collapse
|
47
|
Xu S, Liu AC, Gotlieb AI. Common pathogenic features of atherosclerosis and calcific aortic stenosis: role of transforming growth factor-beta. Cardiovasc Pathol 2009; 19:236-47. [PMID: 19942455 DOI: 10.1016/j.carpath.2009.09.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Revised: 09/22/2009] [Accepted: 09/24/2009] [Indexed: 12/20/2022] Open
Abstract
Calcific aortic stenosis and atherosclerosis have been investigated separately in experimental in vitro and in vivo studies and in clinical studies. The similarities identified in both diseases suggest that similar pathogenic pathways are involved in both conditions. Most current therapeutic studies are focused on statins. The evidence suggests that statin effects on valves may, in large part, be independent of the lipid lowering effects of the drug. There are several molecules that play significant regulatory roles on the development and progression of valve sclerosis and calcification and on growth and complications of atherosclerotic plaques. The purpose of this review is to discuss the pathogenic features of the two conditions, highlight the important similarities, and then review the data that suggest that transforming growth factor-beta may play a key regulatory role in both diseases and that this is worthy of study as a potential therapeutic target for both conditions.
Collapse
Affiliation(s)
- Songyi Xu
- Toronto General Research Institute and Laboratory Medicine Program, University Health Network, Toronto, ON, Canada
| | | | | |
Collapse
|